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ABSTRACT The DOE Joint Genome Institute (JGI) Metagenome Workflow performs
metagenome data processing, including assembly; structural, functional, and taxonomic
annotation; and binning of metagenomic data sets that are subsequently included into
the Integrated Microbial Genomes and Microbiomes (IMG/M) (I.-M. A. Chen, K. Chu, K.
Palaniappan, A. Ratner, et al., Nucleic Acids Res, 49:D751–D763, 2021, https://doi.org/10
.1093/nar/gkaa939) comparative analysis system and provided for download via the JGI
data portal (https://genome.jgi.doe.gov/portal/). This workflow scales to run on thou-
sands of metagenome samples per year, which can vary by the complexity of microbial
communities and sequencing depth. Here, we describe the different tools, databases,
and parameters used at different steps of the workflow to help with the interpretation
of metagenome data available in IMG and to enable researchers to apply this workflow
to their own data. We use 20 publicly available sediment metagenomes to illustrate the
computing requirements for the different steps and highlight the typical results of data
processing. The workflow modules for read filtering and metagenome assembly are
available as a workflow description language (WDL) file (https://code.jgi.doe.gov/
BFoster/jgi_meta_wdl). The workflow modules for annotation and binning are pro-
vided as a service to the user community at https://img.jgi.doe.gov/submit and
require filling out the project and associated metadata descriptions in the Genomes
OnLine Database (GOLD) (S. Mukherjee, D. Stamatis, J. Bertsch, G. Ovchinnikova, et al.,
Nucleic Acids Res, 49:D723–D733, 2021, https://doi.org/10.1093/nar/gkaa983).

IMPORTANCE The DOE JGI Metagenome Workflow is designed for processing meta-
genomic data sets starting from Illumina fastq files. It performs data preprocessing,
error correction, assembly, structural and functional annotation, and binning. The
results of processing are provided in several standard formats, such as fasta and gff,
and can be used for subsequent integration into the Integrated Microbial Genomes
and Microbiomes (IMG/M) system where they can be compared to a comprehensive
set of publicly available metagenomes. As of 30 July 2020, 7,155 JGI metagenomes
have been processed by the DOE JGI Metagenome Workflow. Here, we present a
metagenome workflow developed at the JGI that generates rich data in standard for-
mats and has been optimized for downstream analyses ranging from assessment of
the functional and taxonomic composition of microbial communities to genome-
resolved metagenomics and the identification and characterization of novel taxa.
This workflow is currently being used to analyze thousands of metagenomic data
sets in a consistent and standardized manner.

KEYWORDS metagenomics, assembly, annotation, binning, SOP, IMG, JGI

Metagenomics, the study of the genetic content of natural microbial communities,
provides a wealth of information about the structure, dynamics, perturbation, and re-

silience of ecosystems. Many tools are available for processing and analyzing metagenomic
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data sets, including metaSPAdes (1) and MEGAHIT (2) for assembly, Prokka (3) and MG-
RAST (4) for annotation, and Kraken 2 (5) for taxonomic identification, as are integrated
workflows such as SqueezeMeta (6) and MGnify (7). Some tools process data sets without
any a priori information, while tools like MetaPhlAn2 (8) for taxonomic profiling and
HUMAnN2 (9) for functional profiling use advanced reference-based techniques. The Joint
Genome Institute (JGI) Metagenome Workflow is an integrated workflow focused on the
analysis of assembled data and includes read filtering, read error correction and assembly,
structural and functional annotation of assembled contigs, and contig-based binning.

RESULTS

The DOE JGI Metagenome Workflow aims to provide consistently processed metage-
nome data in standard formats suitable for a wide variety of analyses and interpretations
across many studies and environmental samples. The workflow performs multiple quality
checks and artifact removal and provides a variety of summary statistics to assist users
with the assessment of data quality and consistency. We illustrate the workflow using
microbiomes from the Loxahatchee Nature Preserve in the Florida Everglades (10) as an
example. In this follow-up study, sediment samples were collected and DNA was isolated
by the students of Boca Raton Community High School, Boca Raton, FL, from 4 different
sites in the Loxahatchee Nature Preserve with 5 replicates at each site, as previously
described. DNA isolated from these samples was sequenced at the JGI using the Illumina
NovaSeq platform and standard library and sequencing protocols (Kapa HyperPrep library
preparation kit) (see Materials and Methods). Raw 2 � 150 reads were then processed by
the DOE JGI Metagenome Workflow. The metadata for these samples can be found in the
Genomes OnLine Database (GOLD) (11) under GOLD study identifier Gs0136122. Raw
reads, as well as intermediate results and final assembly and annotation data, can be found
in the JGI data portal (https://genome.jgi.doe.gov) using JGI sequencing project identifiers
linked to the GOLD study and Integrated Microbial Genome (IMG) (12) taxon identifiers
provided in Table 1.

Read prefiltering and assembly results. The target amount of raw sequence data
was 45Gb per sample (300 million reads). The numbers of high-quality (HQ) raw reads per
sample after quality trimming, filtering, and artifact and contamination removal are shown
in Table 1. While the replicates from Loxahatchee West were sequenced somewhat more
deeply than other samples, there is no significant difference in the amount of sequence

TABLE 1 Sequencing and assembly statistics for 20 samples (4 sites, with 5 replicates each) from the Loxahatchee Nature Preserve

Sample name IMG taxon ID Latitude/longitude
No. of filtered
reads (million)

No. of contigs
(million) Contig size (Mb) Contig L50

% of reads mapped
to assembly (%)

Lox_West_1 3300038551 26.469/280.443 432.41 6.37 4,281.10 783 61.64
Lox_West_2 3300038408 26.469/280.443 335.90 5.01 3,329.57 763 58.92
Lox_West_3 3300038552 26.469/280.443 478.21 7.22 4,968.38 814 65.04
Lox_West_4 3300038469 26.469/280.443 447.07 6.49 4,393.53 792 62.92
Lox_West_5 3300038470 26.469/280.443 347.74 4.89 3,172.10 734 53.95
Lox_North_1 3300038409 26.677/280.375 265.39 3.12 2,017.05 736 52.06
Lox_North_2 3300038421 26.677/280.375 294.36 3.60 2,255.03 697 52.26
Lox_North_3 3300038558 26.677/280.375 355.61 4.86 2,909.37 646 44.28
Lox_North_4 3300038550 26.677/280.375 296.91 3.86 2,361.02 666 43.15
Lox_North_5 3300038422 26.677/280.375 240.01 3.14 1,896.85 654 41.56
Lox_South_1 3300038401 26.358/280.298 241.50 2.87 1,328.12 445 23.17
Lox_South_2 3300038549 26.358/280.298 335.62 4.83 2,379.73 481 31.57
Lox_South_3 3300038402 26.358/280.298 240.39 2.93 1,406.77 469 25.33
Lox_South_4 3300038403 26.358/280.298 244.71 3.00 1,514.26 496 27.91
Lox_South_5 3300038663 26.358/280.298 253.01 3.31 1,771.86 538 33.78
Lox_East_1 3300038454 26.502/280.223 299.62 3.99 2,746.17 819 54.72
Lox_East_2 3300038455 26.502/280.223 322.84 4.18 2,834.88 795 52.17
Lox_East_3 3300038431 26.502/280.223 292.44 3.65 2,385.22 740 46.35
Lox_East_4 3300038410 26.502/280.223 247.69 3.49 2,320.95 761 52.70
Lox_East_5 3300038468 26.502/280.223 266.29 3.75 2,317.21 670 46.14
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generated for the other three sites. The prefiltering and assembly modules of the workflow
automatically generate several conventional measures of assembly quality that are pro-
vided in README files and can be accessed via the JGI data portal. A subset of these meas-
ures, which helps with assessing the consistency of the samples and identifying outliers
and artifacts, is shown in Table 1. Despite the fact that the samples from Loxahatchee F1

FIG 1 Plots of sequencing and assembly statistics for 4 sites in the Loxahatchee Nature Preserve. (a)
Total assembly length per site, in megabases. (b) L50 (the smallest length of contigs whose sum of
lengths makes up half of the data set size) per site, in nucleotides. (c) Reads mapped to the assembly
as a percentage of the total number of reads generated per sample, per site.
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North, South, and East received very similar amounts of sequence, assembly statistics indi-
cate that the replicates collected at the South site differ from the rest, as shown in Fig. 1a.
Box-and-whisker plots for the L50 metric (the shortest length of contigs for which the sum
of lengths makes up half of the data set size) (Fig. 1b) and the percentage of reads
mapped to the assembly (Fig. 1c) demonstrate that assemblies of South site replicates are
significantly more fragmented, as indicated by the much lower L50, and have fewer reads
mapped to them. This may be due to the fact that the sediment at the South site has a
large amount of sand, which hindered the isolation of sufficient quantities of high-quality
DNA (Jonathan B. Benskin, personal communication), thereby resulting in a suboptimal
library and poor assembly. Variation of library quality due to the quality and quantity of
the source DNA may not be immediately obvious with a functional and/or taxonomic anal-
ysis of unassembled reads but is prominently brought to the researcher’s attention by the
DOE JGI Metagenome Workflow. It highlighted the differences between the South site
and other sites due to the inconsistent performance of a sampling protocol, which may
confound statistical analysis and obfuscate the true differences in functional and taxo-
nomic composition.

Annotation results. The DOE JGI Metagenome Workflow performs feature predic-
tion (also known as structural annotation) on the assembled sequences and functional
annotation of the coding sequences (CDSs). Similar to the filtering and assembly mod-
ules, the annotation module generates summary statistics helpful for the identification
of artifacts and outlier samples. These statistics are provided in README files via the
JGI data portal and can be also found in the IMG database on the metagenome details
page of each data set. A subset of the annotation measures for Loxahatchee samples is
provided in Table 2. The results of functional annotation of CDSs appear to be highly
consistent across the four sites, with 65.75% 6 1.2% of all CDSs assigned to Clusters of
Orthologous Genes (COGs) (13), 14.25% 6 0.44% assigned to TIGRFAMs (14), 62.65% 6

0.81% assigned to Pfams (15), and 40.2% 6 1.85% assigned to KEGG Orthology (KO)
terms (16). However, the results of feature prediction summarized in Fig. 2 paint a dif-
ferent picture. Again, the South site is different from the other three sites, having more
predicted CDSs per kilobase of assembled sequence (Fig. 2a) and a much higher num-
ber of predicted rRNAs per megabase of assembled sequence (Fig. 2b). Remarkably,

TABLE 2 Annotation statistics for 20 samples (4 sites, with 5 replicates each) from the Loxahatchee Nature Preserve

Sample name IMG taxon ID
Contig
size (Mb)

No. of CRISPR
elements

Predicted count
% of CDSs assigned to
database (% of total)

CDSs
(million)

16S
rRNA

18S
rRNA

23S
rRNA

28S
rRNA

5S
rRNA tRNAs COGs TIGRFAM Pfam KEGG

Lox_West_1 3300038551 2,859.7 391 4.413 943 2 1,559 8 384 18,675 67 15 63 39
Lox_West_2 3300038408 2,204.4 250 3.412 742 8 1,209 14 377 19,124 65 14 63 39
Lox_West_3 3300038552 3,396.0 458 5.245 1,084 8 1,735 12 560 29,892 64 14 62 38
Lox_West_4 3300038469 2,949.2 420 4.534 957 5 1,612 9 529 27,020 65 14 62 39
Lox_West_5 3300038470 2,061.2 242 3.218 722 6 1,292 11 384 18,675 66 15 63 40
Lox_North_1 3300038409 1,293.3 339 1.994 574 15 973 22 289 13,655 65 14 62 39
Lox_North_2 3300038421 1,408.6 372 2.189 644 16 1,029 20 292 14,843 65 14 62 39
Lox_North_3 3300038558 1,761.8 255 2.818 877 11 1,432 9 382 19,094 65 14 62 41
Lox_North_4 3300038550 1,460.0 171 2.333 736 9 1,209 13 345 16,512 65 14 62 40
Lox_North_5 3300038422 1,161.4 145 1.860 589 9 978 12 268 12,534 66 14 62 40
Lox_South_1 3300038401 571.3 58 1.011 454 21 863 33 150 4,992 67 14 63 44
Lox_South_2 3300038549 1,139.7 137 1.977 622 15 1,187 27 237 10,120 67 14 63 42
Lox_South_3 3300038402 653.7 83 1.159 421 18 854 33 140 5,752 68 14 64 44
Lox_South_4 3300038403 750.8 105 1.286 465 14 895 20 174 6,767 67 14 63 43
Lox_South_5 3300038663 950.1 87 1.589 493 5 911 7 190 8,662 68 14 64 42
Lox_East_1 3300038454 1,852.5 219 2.803 691 11 1,041 15 334 16,789 65 15 63 39
Lox_East_2 3300038455 1,891.4 259 2.879 678 10 1,158 20 322 17,682 65 15 63 39
Lox_East_3 3300038431 1,551.8 156 2.396 615 8 1,020 12 249 13,642 66 15 64 40
Lox_East_4 3300038410 1,529.8 208 2.359 557 8 942 12 246 14,059 65 14 62 39
Lox_East_5 3300038468 1,431.5 196 2.232 581 13 966 18 271 12,773 64 14 61 38
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there is no significant difference in tRNA counts (Fig. 2c). These observations are con-
sistent with the lower contiguity of South site assemblies, as reflected in their lower L50
(Fig. 1b), which in turn results in the fragmentation of longer protein-coding genes as
well as long 16S/18S and 23S/28S rRNA genes. On the other hand, tRNAs, which are on
average ,100 nucleotides (nt) long, are largely unaffected by the fragmentation of
assembled sequences. Importantly, protein-coding genes, which span a large interval

FIG 2 Plots summarizing the results of structural annotation for 20 samples (4 sites, with 5 replicates
each) from the Loxahatchee Nature Preserve. (a) Number of predicted CDSs per kilobase of
assembled sequence. (b) Number of predicted rRNA genes per megabase of assembled sequence. (c)
Number of predicted tRNA genes per megabase of assembled sequence.
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of sequence lengths, will be affected unevenly, with the copy number of longer pro-
teins appearing to be higher in more fragmented assemblies, while shorter proteins
will show no differences. These factors have to be taken into account when comparing
the functional compositions of different samples and attempting to correlate them
with various environmental factors. The feature prediction and functional annotation
module of the DOE JGI Metagenome Workflow provides other indicators of the quality
and consistency of metagenomic data: the counts of eukaryotic 18S and 28S rRNAs
suggest the presence and abundance of eukaryotic genomes in the sample, which
could derive from the eukaryotic members of the microbial community and/or host
DNA in host-associated microbiomes. On the other hand, the relatively low percentage
of CDSs assigned to COGs and Pfams may indicate the presence of a large viral fraction
in the community since viral proteins are poorly represented in these protein and do-
main classification systems. All of these characteristics of the assembled metagenome
need to be taken into account in comparative analyses as they may affect the results
of the taxonomic and functional annotation of the communities.

Binning results. The DOE JGI Metagenome Workflow includes automated binning
of assembled sequences as well as an initial characterization of bins in terms of com-
pleteness, contamination, and quality. The bins are assigned to high-quality (HQ) and
medium-quality (MQ) categories based on Minimum Information about a Metagenome-
Assembled Genome (MIMAG) standards (17). Bins that do not meet the standards for HQ
or MQ are discarded. For HQ and MQ bins, additional data processing is performed: bins
are assigned a predicted lineage based on the NCBI (18) and GTDB-tk (19) taxonomies. The
results of genome binning for the Loxahatchee samples are summarized in Table 3. The
vast majority of the bins generated for these data sets are MQ and represent a minor por-
tion of the total assembly typical of high-complexity metagenomes from soil and sediment
samples. Binning results for each data set can be accessed via the JGI data portal and in
the IMG database, where a number of tools for searching, analysis, and comparison of
metagenome bins are available.

Run times. We illustrate the typical computational requirements of the DOE JGI
Metagenome Workflow on 20 samples from Loxahatchee Nature Preserve in Table 4.

TABLE 3 Binning statistics for 20 samples (4 sites, with 5 replicates each) from the
Loxahatchee Nature Preserve

Sample name IMG taxon ID

High-quality bins Medium-quality bins

No. of
bins

Size
(Mb)

No. of
contigs

No. of
bins

Size
(Mb)

No. of
contigs

Lox_West_1 3300038551 0 0 0 9 18.97 3,041
Lox_West_2 3300038408 0 0 0 12 24.90 3,854
Lox_West_3 3300038552 0 0 0 11 27.55 3,251
Lox_West_4 3300038469 0 0 0 10 19.56 2,542
Lox_West_5 3300038470 0 0 0 6 16.68 2,542
Lox_North_1 3300038409 0 0 0 4 12.25 2,100
Lox_North_2 3300038421 0 0 0 4 15.51 2,241
Lox_North_3 3300038558 1 1.25 35 12 22.80 3,749
Lox_North_4 3300038550 1 1.29 46 6 7.24 1,180
Lox_North_5 3300038422 1 1.26 39 6 10.36 1,751
Lox_South_1 3300038401 0 0 0 1 3.14 498
Lox_South_2 3300038549 1 7.34 152 3 4.06 711
Lox_South_3 3300038402 0 0 0 0 0 0
Lox_South_4 3300038403 0 0 0 1 0.83 103
Lox_South_5 3300038663 0 0 0 2 3.50 528
Lox_East_1 3300038454 2 4.16 365 6 18.80 2,485
Lox_East_2 3300038455 0 0 0 4 8.41 1,150
Lox_East_3 3300038431 0 0 0 7 16.21 2,177
Lox_East_4 3300038410 0 0 0 8 22.64 3,269
Lox_East_5 3300038468 0 0 0 10 21.20 2,753
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Filtering was done using Intel Xeon Gold 6140 processors using 32 virtual centralized
processing unit (vCPU) and 324 GB of random access memory (RAM). For error correc-
tion, assembly, and mapping, a mix of configurations was used. Some data sets were
run on Intel Xeon Platinum 8000 series processors with different amounts of memory
depending on the stage (16 vCPU and 128 GB of random access memory (RAM). RAM
for error correction, 64 vCPU and 512 GB of RAM for assembly, and 32 vCPU and 256
GB of RAM for mapping). For others, Intel Xeon Gold 6140 processors were used, with
72 vCPU, 1.5 TB of RAM, and 5 TB of local disk. The run time assembly in Table 4 repre-
sents CPU hours for filtering, error correction, assembly, and mapping. For annotation,
assembled metagenomic sequences were split into 10-MB shards. The splitting is per-
formed by a wrapper script for the optimal utilization of the JGI compute infrastructure
and is not required to run the workflow. These 10-MB shards were then processed in
parallel, with each shard running on its own 2.3-GHz Haswell processor node with 128
GB of RAM. Binning was run on 2.3-GHz Haswell processor nodes with 128 GB of RAM.

DISCUSSION

The DOE JGI Metagenome Workflow provides automatic assembly, annotation, and
binning of metagenome data sets. It is largely based on publicly available software and
databases supplemented with custom scripts and wrappers to control the workflow
and enable the seamless integration of the input and output of different programs.
Filtering, read correction, assembly, and mapping use a median of 2,004 CPU hours for
current metagenomes such as the Loxahatchee sediment metagenomes and can be
performed on standard high-performance computing nodes such as the Intel Xeon
Platinum 8000 series processor with 256 GB of memory. On average, the annotation
module of the workflow (feature prediction, functional annotation, and product name
assignment) can process 1 million bp in 9 CPU hours on a 2.3-GHz Haswell processor
(Intel Xeon Processor E5-2698 v3) node with 128 GB of RAM. On the same Haswell
node, the entire binning workflow, from initial bin prediction to scaffold-level cleanup,
bin-level phylogenetic prediction, and estimation of contamination and completion,

TABLE 4 CPU hours for different modules in the JGI Metagenome Workflow on 20 samples
from Loxahatchee Nature Preserve

Sample name IMG taxon ID

CPU h

Assembly
Feature
prediction

Functional
annotation Binning

Lox_West_1 3300038551 3,576.16 12,423.68 8,980.48 264.9
Lox_West_2 3300038408 2,751.16 12,572.8 6,836.48 110.3
Lox_West_3 3300038552 4,155.04 13,522.56 10,065.92 367.6
Lox_West_4 3300038469 3,699.6 12,163.84 9,695.36 225.9
Lox_West_5 3300038470 2,713.03 8,332.16 7,274.88 90.0
Lox_North_1 3300038409 1,801.75 5,659.52 3,489.28 23.9
Lox_North_2 3300038421 2,064.19 6,092.85 3,990.40 23.5
Lox_North_3 3300038558 2,455.81 7,430.4 6,223.36 14.9
Lox_North_4 3300038550 1,944.75 6,147.2 4,270.08 11.0
Lox_North_5 3300038422 1,692.39 5,338.8 3,429.76 9.3
Lox_South_1 3300038401 1,540.82 62.72 29.30 2.1
Lox_South_2 3300038549 1,534.45 88.55 62.23 7.1
Lox_South_3 3300038402 1,556.06 78.19 33.38 1.9
Lox_South_4 3300038403 1,621.84 61.65 36.12 5.7
Lox_South_5 3300038663 1,771.97 72.76 53.28 7.4
Lox_East_1 3300038454 2,086.37 114.67 99.84 59.3
Lox_East_2 3300038455 2,298.94 117.02 89.79 62.5
Lox_East_3 3300038431 2,153.02 102.98 100.34 31.7
Lox_East_4 3300038410 1,877.78 99.47 84.15 35.4
Lox_East_5 3300038468 1,795.02 101.5 66.69 25.3
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can process 100,000 scaffolds in an average of 13 CPU hours. The workflow modules for
read filtering and metagenome assembly are available as a workflow description language
(WDL) file (https://code.jgi.doe.gov/BFoster/jgi_meta_wdl). The annotation and binning
modules of the workflow are publicly available via the IMG system’s submission site
(https://img.jgi.doe.gov/submit), which accepts assembled metagenome sequences in
fasta format and requires the submission of the sample and project metadata as a condi-
tion of annotation and binning services. We plan to continue to improve the workflow by
updating reference database versions, extending the existing software, and adding new
tools that allow the identification and characterization of more features in the metage-
nome data sets, as well as improving the performance by making changes geared toward
exploiting the specific infrastructure that the workflow is utilizing. Describing features in
IMG that allow comparative analysis of data sets is described separately in the IMG/M ver-
sion 6.0 publication (12).

MATERIALS ANDMETHODS
Figure 3 shows workflow diagrams for computational tasks.
Data input. Standard metagenomes at JGI currently use 100 ng of genomic DNA, sheared to 300 bp

using the Covaris LE220 instrument and size selected with SPRI using TotalPure NGS beads (Omega Bio-
tek). The fragments are treated with end repair, A-tailing, and ligation of Illumina-compatible adapters
(IDT, Inc.) using the Kapa-HyperPrep kit (Kapa Biosystems) to create an unamplified Illumina library,
which is then sequenced 2 � 150 bp on the Illumina NovaSeq 6000 platform using S4 flow cells. The
workflow can be used on paired-end Illumina data sets; kmer sizes for assembly should be adjusted if
reads are shorter than 150 bp.

Sequence data preprocessing. Data are processed using Real-Time Analysis (RTA) version 3.4.4
(https://support.illumina.com/downloads.html). BBDuk version 38.79 from the BBTools package (https://
jgi.doe.gov/data-and-tools/bbtools/) is used to remove contamination, trim reads that contain an
adapter sequence, and quality trim reads where quality drops to zero. Furthermore, it is used to remove
reads that contain 4 or more “N” bases, have an average quality score across the read of ,3, or have a

FIG 3 Workflow diagrams of the components of the DOE JGI Metagenome Workflow. (a) Assembly, which produces assembled contigs and an alignment
of reads to assembled contigs. qc, quality control. (b) Feature prediction, which produces features in general feature format (GFF), genes in FASTA nucleic
acid (FNA) format, and proteins in FASTA amino acid (FAA) format. (c) Functional annotation, which produces product name assignments. (d) Taxonomic
annotation, which produces contig-level phylogenetic assignment. (e) Binning, which produces high- and medium-quality genome bins.
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minimum length of #51 bp or 33% of the full read length. Homopolymer stretches of 5 G’s or more at
the ends of reads are removed. Reads that can be mapped with BBMap from BBTools to masked human,
cat, dog, and mouse references at 93% identity are separated into a “chaff” file and not used in the as-
sembly. In an abundance of caution, reads aligned to common microbial contaminants described in the
literature, such as Ralstonia pickettii and Acinetobacter calcoaceticus (20–23), are also separated into a
chaff file. Masked references can be found at https://portal.nersc.gov/dna/microbial/assembly/bushnell/
fusedERPBBmasked2.fa.gz. For convenience, chaff files are provided on JGI’s data portal.

Assembly. Filtered reads are error corrected using bbcms version 38.44 from BBTools with a mini-
mum count of 2 and a high-count fraction of 0.6. bbcms uses a count-min sketch to store kmer counts,
making it a scalable solution for error correction of metagenomic data sets. For computational efficiency,
interleaved fastq files are split into two separate files. These split-error-corrected files are assembled
with metaSPAdes version 3.13.0 using the “metagenome” flag, running the assembly module only (i.e.,
without error correction) with kmer sizes of 33, 55, 77, 99, and 127. Contigs that are smaller than 200 bp
are discarded. Filtered reads are mapped back to contigs larger than 200 bp using BBMap 38.44 with
“interleaved” as true, “ambiguous” as random, and the “covstats” option specifying a contig coverage
file for subsequent analysis of the abundances of various populations and genes. The coverage file con-
tains information on the average fold coverage, length, GC content, percentage of bases covered, num-
ber of reads by strand, read GC, median fold, and standard deviation of coverage. No further analysis is
performed on unassembled reads.

Feature prediction. The assembled contigs are passed on to the annotation module of the work-
flow, which first predicts noncoding RNA (ncRNA) genes (tRNAs, rRNAs, and other RNAs), followed by
the identification of clustered regularly interspaced short palindromic repeats (CRISPR) and protein-cod-
ing genes (CDSs), as shown in Fig. 3b. Prediction of tRNAs is performed using tRNAscan-SE 2.0.6 (24) in
“bacterial” and “archaeal” search modes. This allows the workflow to select the best annotation mode
and ensure higher annotation accuracy for metagenomic contigs of different taxonomic origins since
many archaeal tRNAs cannot be predicted in “bacterial” or “general” modes. For each contig, the num-
bers of tRNAs with a known isotype returned by each mode are compared. The results from the mode
with the higher number of tRNAs with a known isotype are reported, and if both modes have returned
the same number, the results from the bacterial mode are included in the final annotation. rRNA genes
(5S, 16S, and 23S) as well as other ncRNA genes, including transfer-messenger RNA (tmRNA) and anti-
sense RNAs, etc., and RNA regulatory features, such as various binding sites and motifs (“misc_bind,”
“misc_feature,” and “regulatory”), are identified by comparing the contigs via cmsearch from the
INFERNAL 1.1.3 package (25) against the Rfam 13.0 database (26) using the trusted cutoffs parameter (–
cut_tc). If any reported hits are overlapping even by 1bp and they belong to the same Rfam class, the
lower scoring of the two is discarded. CRISPR elements are identified using a version of CRT-CLI 1.2
modified in-house as described previously (27). For the search parameter, the minimum and maximum
repeat lengths are set to 20 and 50 bp, respectively, whereas the minimum and maximum spacer
lengths are set to 20 and 60 bp, respectively. The search window size is set to 7 bp, and an element
needs to have at least three repeats to be reported. Protein-coding genes are predicted via a combina-
tion of Prodigal 2.6.3 (28) and GeneMarkS-2 1.07 (29). Prodigal is executed in “meta” mode and with the
“-m” argument so that genes will not be built across runs of N’s. GeneMark is run with “–Meta mgm_11.
mod” and “–incomplete_at_gaps 30.” CDSs shorter than 75 bp (25 amino acids) are discarded. The last
step of the feature prediction combines the results from all tools and attempts to resolve overlaps
between features of different types. Two features are considered to overlap if they share more than
10 bp or more than 90bp in the case of two CDSs. The regulatory RNA features (misc_bind, misc_feature,
and regulatory) are allowed to overlap any other feature type. In the case of an overlap between other
types of features, the lower-ranked feature is removed. The feature ranking order is rRNA . tRNA .
ncRNA, tmRNA . CRISPR . GeneMarkS-2. Prodigal. Before deleting a CDS that overlaps another fea-
ture over its 59 end, an attempt is first made to find an alternative start site for the protein-coding gene
that removes the overlap. Functional annotations of RNA features are based on their descriptions pro-
vided by the tool or database used to predict them: tRNA isotype (amino acid and codon) as well as
potential pseudogene annotations are provided by tRNAscan-SE, while product names for rRNAs,
ncRNAs, and regulatory RNA features are derived from the corresponding Rfam models. Functional
annotation and product name assignment for protein sequences of the nonoverlapping CDSs are per-
formed by the functional annotation module.

Functional annotation. Functional annotation for metagenomes consists of associating protein-
coding genes with KO terms, Enzyme Commission (EC) numbers, COG assignments, SMART domains,
SUPERFAMILY assignments, CATH-FunFam annotations, Pfams, and TIGRFAM annotations, as shown in
Fig. 3c. Genes are associated with KO terms and EC numbers based on the results of a sequence similar-
ity search of metagenome proteins against a reference database of isolate proteomes using lastal 1066
from the LAST package (30), with default parameters. The reference database of isolate proteomes (IMG-
NR) is composed of all nonredundant protein sequences encoded by public, high-quality genomes in
the current version of the IMG database. For each metagenome protein, the top five LAST hits are con-
sidered. At least two of the top five hits need to have a KO assignment, and all hits that have a KO
assignment need to list the same combination of KO terms. If both conditions are met, the same combi-
nation of KO terms is assigned to the query gene if the alignment length for any of the hits with a KO
assignment covers at least 70% of the shorter one of query and subject. Proteins are associated with
COGs by comparing protein sequences to the COG hidden Markov models (HMMs) created from the
updated 2014 models using HMMER 3.1b2 (31) and a thread-optimized version of hmmsearch (32), with
a per-domain E value cutoff (–domE) of 0.01. Since an alignment of a protein to the model may be
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fragmented, i.e., there may be multiple aligned segments of the two, these are concatenated, and their
cumulative alignment length is calculated. If the cumulative alignment length is less than 70% of the
shorter of the two (the protein or the model), such a hit is discarded. In addition, if a protein has hits to
different COG models and their alignments overlap significantly (by more than 10% of the length of the
shorter model), the hit to the model with the lower full-sequence bit score is discarded; for significantly
overlapping hits with the same bit score, the hit with the higher E value is removed. The same thread-
optimized version of hmmsearch as well as parameters, filtering, and overlap resolution rules are used
to assign protein sequences to the 01_06_2016 version of the SMART database (33), the 1.75 version of
the SUPERFAMILY database (34), and the frozen set of the 4.2.0 version of the CATH-FunFam database
(35). Proteins are associated with Pfam-A by comparing protein sequences to version 30 of the Pfam
database using the thread-optimized version of hmmsearch from HMMER 3.1b2. Model-specific trusted
cutoffs are used with the –cut_tc option in hmmsearch, and for overlapping hits that belong to the
same Pfam clan, the lower-scoring one is removed. Proteins are associated with TIGRFAMs using version
15.0 of the TIGRFAM database and hmmsearch with a per-domain E value cutoff (–domE) of 0.01. All hits
that do not cover at least 70% of the shorter protein or model are discarded. Furthermore, if two hits
overlap for more than 10% of the length of the shorter model, the hit to the lower-scoring model (by bit
score) is discarded. Protein product names are assigned based on the name of their associated protein
families in the order of priority KO term . TIGRFAM . COG . Pfam. If multiple TIGRFAMs with different
isology types are associated with a protein, only one TIGRFAM is assigned in the order equivalog .
hypoth_equivalog . paralog . exception . equivalog_domain . hypoth_equivalog_domain . paral-
og_domain . subfamily . superfamily . subfamily_domain . domain . signature . repeat. Proteins
without any of the above-mentioned assignments are annotated as a “hypothetical protein.” Proteins
associated with multiple protein families of the same type (KO term, TIGRFAM, COG, or Pfam) are anno-
tated with a product name consisting of concatenation of individual protein family names joined with
“/.” Multiple repetitions of the same protein family are collapsed into a single instance. The contig cover-
age information is used to calculate so-called “estimated gene copies,” whereby the number of genes in
a certain group, such as a COG or Pfam protein family, is multiplied by the average coverage of the con-
tigs from which these genes were predicted. This step is important for accurate estimation of the abun-
dance of protein families and takes into account the different abundances of populations found in the
assembled metagenome sequences.

Taxonomic annotation. For the taxonomic annotation of metagenomes, the best LAST (30) hits of
CDSs, computed as described above for KO term assignment, are used. The taxonomy of the best hit is
assigned to each metagenome protein. The taxonomy of metagenome contigs (“scaffold lineage”) is
predicted based on the majority rule, whereby the lineage at the lowest taxonomic rank to which at
least 50% of CDSs encoded by the metagenomic contig have hits is assigned. Similar to protein family
annotations, contig coverage information is used to estimate the abundance of various lineages in the
community by multiplying contig counts by their average coverage.

Binning. The assembled contigs and coverage file generated per metagenome are used as the input to
the MetaBAT v2.12.1 (36) program to generate genome bins based on the consistency of coverage and tetra-
nucleotide frequency. The genome bins then undergo contamination removal, wherein the per-scaffold phy-
lum information generated by the annotation module (“scaffold lineage”) is used to remove scaffolds per bin
that are not assigned to the predominant phylum. The postprocessed bins are fed to the CheckM v1.0.12
(37) program to determine genome completion and contamination estimates. These estimates along with
the per-scaffold rRNA and tRNA information generated by the annotation module are used to assign an HQ
or MQ value to each bin, per MIMAG standards. The HQ and MQ bins are then subjected to phylogenetic lin-
eage determination by two methods. First, an internal IMG program computes the phylogenetic lineage per
genome bin using the per-scaffold lineage generated by the annotation module. Next, the GTDB-tk v0.2.2
program computes per-bin lineage by placing them into domain-specific, concatenated protein reference
trees. The high- and medium-quality bins, along with the corresponding data processing metadata, are
loaded into the IMG database for user access and download.

Preformatted tables. To assist with preparing publications, 9 tables are generated. Information on
what is contained in each table is described in Table 5.

Availability of data. The metadata for these samples can be found in GOLD (https://gold.jgi.doe.gov/)
under GOLD study identifier Gs0136122. Raw reads, as well as intermediate results and final assembly and
annotation data, can be found in the JGI data portal (https://genome.jgi.doe.gov) by following links from the

TABLE 5 Preformatted tables

Table no. Table information
1 Study information
2 Sample information
3 Library information
4 Sequence process
5 Assembly statistics
6 Annotation parameters
7 Functional diversity
8 Metagenome properties
9 Taxonomic composition
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GOLD study or by using IMG taxon identifiers provided in Table 1. A WDL for filtering and genome assembly
(v1.0) is available at https://code.jgi.doe.gov/BFoster/jgi_meta_wdl. IMG for annotation (v5.0.19) and binning
(v1.0) is available at https://img.jgi.doe.gov/. For information and tutorials on using GOLD and submitting
metadata, see the IMG-GOLD Webinar: Data Submission and Management or the GOLD help page. For infor-
mation on IMG, see IMG help page or the IMG Webinar Series.
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