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Abstract GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase

(LPL) within the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1-bound LPL is

essential for the margination of triglyceride-rich lipoproteins (TRLs) along capillaries, allowing the

lipolytic processing of TRLs to proceed. In peripheral tissues, the intravascular processing of TRLs

by the GPIHBP1–LPL complex is crucial for the generation of lipid nutrients for adjacent

parenchymal cells. GPIHBP1 is absent from the capillaries of the brain, which uses glucose for fuel;

however, GPIHBP1 is expressed in the capillaries of mouse and human gliomas. Importantly, the

GPIHBP1 in glioma capillaries captures locally produced LPL. We use NanoSIMS imaging to show

that TRLs marginate along glioma capillaries and that there is uptake of TRL-derived lipid nutrients

by surrounding glioma cells. Thus, GPIHBP1 expression in gliomas facilitates TRL processing and

provides a source of lipid nutrients for glioma cells.

DOI: https://doi.org/10.7554/eLife.47178.001

Introduction
GPIHBP1, a GPI-anchored protein of capillary endothelial cells, is required for lipoprotein lipase

(LPL)–mediated processing of triglyceride-rich lipoproteins (TRLs) (Beigneux et al., 2007).
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The principal function of GPIHBP1 is to capture LPL within the interstitial spaces, where it is secreted

by parenchymal cells, and then to shuttle this enzyme to the luminal surface of capillary endothelial

cells (Davies et al., 2010). GPIHBP1 is a long-lived protein (Young et al., 2011; Olafsen et al.,

2010) that moves bidirectionally across endothelial cells, with each trip to the abluminal plasma

membrane representing an opportunity to capture LPL and bring it to the capillary lumen

(Davies et al., 2012). When GPIHBP1 is absent or defective, LPL is stranded within the interstitial

spaces, where it remains bound to sulfated proteoglycans near the surface of cells (Young et al.,

2011; Davies et al., 2010; Allan et al., 2017a; Fong et al., 2016). The inability of LPL to reach the

capillary lumen in the absence of GPIHBP1 expression profoundly impairs TRL processing, resulting

in severe hypertriglyceridemia (chylomicronemia) (Beigneux et al., 2007; Davies et al., 2010;

Goulbourne et al., 2014).

GPIHBP1 is expressed in the capillary endothelial cells of peripheral tissues, with particularly high

levels of expression in heart and brown adipose tissue (Beigneux et al., 2007; Davies et al., 2010;

Fong et al., 2016). Most of the LPL within those tissues is bound to GPIHBP1 on capillaries

(Beigneux et al., 2007; Davies et al., 2010; Davies et al., 2012; Allan et al., 2017a; Fong et al.,

2016; Allan et al., 2017b; Allan et al., 2016), and the processing of TRLs in these tissues is robust,

generating fatty acid nutrients for nearby parenchymal cells (Fong et al., 2016; Jiang et al., 2014a;

He et al., 2018a). By contrast, GPIHBP1 is absent from capillaries of the brain (Young et al., 2011;

Davies et al., 2010; Olafsen et al., 2010), a tissue that depends on glucose for fuel

(Mergenthaler et al., 2013). When wild-type mice are injected intravenously with a GPIHBP1-spe-

cific antibody, the antibody rapidly binds to GPIHBP1-expressing capillaries in peripheral tissues and

disappears from the plasma (Davies et al., 2010; Olafsen et al., 2010). By contrast, there is no anti-

body binding to the capillaries of the brain (Davies et al., 2010; Olafsen et al., 2010).

For the lipolytic processing of TRLs to proceed, lipoproteins in the bloodstream must marginate

along the luminal surface of capillaries (Goulbourne et al., 2014). TRL margination along capillaries

depends on GPIHBP1, more specifically on GPIHBP1-bound LPL (Goulbourne et al., 2014). In

GPIHBP1-deficient mice, TRLs never stop along heart capillaries and instead simply ‘flow on by’ in

the bloodstream (Goulbourne et al., 2014). In wild-type mice, TRLs marginate along heart capillar-

ies, but TRL margination is absent along capillaries of the brain (Goulbourne et al., 2014).

Even though GPIHBP1 is not found in brain capillaries, there is ample evidence for LPL expression

within the brain (Ben-Zeev et al., 1990; Bessesen et al., 1993; Goldberg et al., 1989; Vilaró et al.,

1990; Yacoub et al., 1990; Eckel and Robbins, 1984). Several groups have found LPL in the rat

brain, specifically in neurons of the dentate gyrus and hippocampus, in pyramidal cells of the cortex,

and in Purkinje cells of the cerebellum (Ben-Zeev et al., 1990; Bessesen et al., 1993;

Goldberg et al., 1989; Vilaró et al., 1990; Eckel and Robbins, 1984). Using single-cell RNA

sequencing, Zhang et al. (2014) found Lpl transcripts in the resident macrophages of the brain

(microglia), with lower levels in astrocytes, neurons, and oligodendrocytes. Using the same

approach, Vanlandewijck et al. (2018) found LPL expression in brain smooth muscle cells and in

perivascular fibroblasts (at even higher levels than in microglial cells). Given the absence of GPIHBP1

expression in brain capillaries and the absence of TRL margination along brain capillaries, we have

proposed that the LPL in the brain probably has an extravascular function, presumably to hydrolyze

glycerolipids within the extracellular spaces (Young et al., 2011; Adeyo et al., 2012).

Despite the absence of GPIHBP1 expression in brain capillaries, we were curious about whether

GPIHBP1 might be expressed in the capillaries of gliomas. Glioma capillaries are morphologically

distinct from normal brain capillaries (Yuan et al., 1994; Hobbs et al., 1998; Monsky et al., 1999;

Bullitt et al., 2005), and the blood–brain barrier is often defective (Zhang et al., 1992). Electron

microscopy has suggested that glioblastoma capillaries resemble capillaries in peripheral tissues

(Vaz et al., 1996).

If GPIHBP1 were to be expressed in glioma capillaries, it could be relevant to glioma metabolism.

The GPIHBP1 might capture locally produced LPL, allowing for TRL margination and TRL processing,

and thereby providing a source of lipid nutrients for glioma cells. Interestingly, Dong et al. (2017)

documented LPL expression in gliomas. Also, several studies have raised the possibility that glioma

cells use fatty acids for fuel (Lin et al., 2017; Guo et al., 2011; Guo et al., 2009a; Guo et al.,

2009b; Guo et al., 2013) and that levels of free fatty acids are higher in gliomas than in normal brain

tissue (Guo et al., 2013; Gopal et al., 1963).
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In the current study, we sought to determine whether glioma capillaries express GPIHBP1 and, if

so, whether it binds LPL and facilitates TRL margination and the lipolytic processing of TRLs. In our

study, we took advantage of NanoSIMS imaging, a high-resolution mass spectrometry–based imag-

ing modality that makes it possible to visualize TRL margination and TRL processing in tissue sec-

tions (He et al., 2018a; Jiang et al., 2014a; Jiang et al., 2014b; He et al., 2017a; He et al., 2017b;

He et al., 2018b; He et al., 2018c). This imaging modality allowed us to visualize TRL margination

in glioma capillaries as well as the entry of TRL-derived nutrients into tumor cells.

Results

GPIHBP1 is expressed in the endothelial cells of human gliomas
We sectioned 20 human gliomas (Table 1) and screened them for GPIHBP1 expression by confocal

microscopy with three GPIHBP1-specific monoclonal antibodies (mAbs) — RF4, which binds to resi-

dues 27–44 downstream from GPIHBP1’s acidic domain (Kristensen et al., 2018); and RE3 and RG3,

which both bind to GPIHBP1’s LU (Ly6/uPAR) domain (Hu et al., 2017). GPIHBP1 in capillary endo-

thelial cells was detected in 14 of 20 gliomas (Table 1) and colocalized with von Willebrand factor,

an endothelial cell marker (Figure 1). GPIHBP1 expression in glioma capillaries did not appear to

correlate with glioma grade, 1p/19q co-deletions, or IDH1 mutations (Table 1). GPIHBP1 was not

detectable in the capillaries of human brain specimens (Figure 1). The GPIHBP1 in glioma capillaries

could be detected with all three GPIHBP1-specific mAbs (Figure 2A). To be confident in the

Table 1. Human glioma tumor specimens.

Expression of GPIHBP1 was assessed by immunohistochemistry with mAbs against human GPIHBP1 (RF4, RE3, RG3). Those conducting

the studies were blinded to diagnoses. This table details the tumor diagnosis, location, 1p/19q co-deletion, and IDH1 mutation status,

as well as the presence of GPIHBP1.

Sample
ID Tissue diagnosis Location

1p/19q co-
deletion

IDH1
mutation GPIHBP1

1 Glioblastoma (GBM) Right frontal, parietal No Negative Yes

2 GBM Left temporal No Negative Yes

3 GBM Right occipital No Negative Yes

4 GBM Left frontal No Negative Yes

5 Oligodendroglioma Grade II Left anterior temporal, left posterior
temporal

Yes Negative Yes

6 Oligoastrocytoma Grade III Right temporal No Negative Yes

7 GBM + oligodendroglial component Left frontal Yes Negative Yes

8 GBM + extensive oligodendroglial
component

Right frontal No Negative Yes

9 Oligodendroglioma Grade III Left frontal Yes +R132H Yes

10 Oligodendroglioma Grade III Left frontal Yes +R132H Yes

11 Oligoastrocytoma Right parietal No Negative Yes

12 Oligodendroglioma Grade III Right parietal Yes +R132H Yes

13 Oligodendroglioma Grade III Right parietal Yes Negative Yes

14 Oligoastrocytoma Grade III Left temporal No +R132H Yes

15 Oligoastrocytoma Grade III Right temporal No +R132G No

16 Oligoastrocytoma Grade III Right frontal No +R132H No

17 Oligodendroglioma Grade III Left frontal Yes Negative No

18 Oligodendroglioma Grade III Left frontal Yes +R132H No

19 Oligodendroglioma Grade III Left temporal Yes Negative No

20 Oligodendroglioma Grade III Right temporal Yes +R132H No

DOI: https://doi.org/10.7554/eLife.47178.005
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Figure 1. GPIHBP1 expression in the endothelial cells of several human gliomas. Immunohistochemical studies on surgically resected gliomas (Gliomas

1, 5, 9; Table 1) and non-diseased human frontal lobe (n = 3), revealing GPIHBP1 expression in capillaries of gliomas but not in frontal lobe specimens.

GPIHBP1 (detected with a combination of the mAbs RE3 and RF4, 10 mg/ml each [red]) colocalized with von Willebrand factor (vWF, a marker for

endothelial cells [green]), but not with glial fibrillary acidic protein (GFAP, a marker for astroglial cells [magenta]). DNA was stained with DAPI (blue).

Three sections of each tumor and normal brain were evaluated and representative images are shown. Scale bar, 50 mm.

DOI: https://doi.org/10.7554/eLife.47178.002

The following figure supplement is available for figure 1:

Figure supplement 1. Detecting GPIHBP1 in glioma capillaries with immunoperoxidase staining.

DOI: https://doi.org/10.7554/eLife.47178.003
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Figure 2. Detecting GPIHBP1 in capillaries of human glioma specimens with three different monoclonal antibodies (mAbs) against GPIHBP1. (A)

Confocal fluorescence microscopy studies on sections from glioma sample 1 (Table 1), demonstrating the detection of GPIHBP1 with three different

human GPIHBP1–specific monoclonal antibodies (mAbs). Tissue sections were fixed with 3% PFA and then stained with mAbs against human GPIHBP1

(RF4, RE3, or RG3, 10 mg/ml [red]), an antibody against von Willebrand factor (vWF[green]), and an antibody against glial fibrillary acidic protein (GFAP

Figure 2 continued on next page
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specificity of the antibodies, we performed studies in which recombinant human GPIHBP1 was

added to the GPIHBP1-specific mAbs before incubating the solution with the glioma sections. As

expected, the presence of recombinant GPIHBP1 eliminated binding of the GPIHBP1-specific mAbs

to glioma capillaries (Figure 2B). GPIHBP1 expression in glioma capillaries could also be detected

by immunoperoxidase staining (Figure 1—figure supplement 1).

GPIHBP1 is present in the capillary endothelial cells of mouse gliomas
To determine whether GPIHBP1 is expressed in a mouse model of glioblastoma, spheroids of synge-

neic C57BL/6 mouse CT-2A glioma cells (Seyfried et al., 1992; Oh et al., 2014), modified to

express a blue fluorescent protein (BFP) (Mathivet et al., 2017), were engrafted into the brains of

mice harboring an endothelial cell–specific Pdgfb-iCreERT2 transgene (Claxton et al., 2008) and a

ROSAmT/mG reporter allele (Muzumdar et al., 2007). ROSAmT/mG is a two-color fluorescent, mem-

brane-targeted Cre-dependent reporter allele. In the absence of Cre, all cells express a membrane-

localized tdTomato and fluoresce red. In the setting of Cre expression, cells express membrane-

localized EGFP (rather than tdTomato) and fluoresce green. Before tumor implantation, mice were

injected with tamoxifen to induce Pdgfb-driven Cre expression in endothelial cells; thus, the endo-

thelial cells of the mice expressed EGFP and fluoresced green. Mice harboring gliomas (after three

weeks of growth) were injected intravenously with an Alexa Fluor 647–conjugated antibody against

mouse GPIHBP1 (11A12) (Beigneux et al., 2009). Mice were perfused with PBS and then perfusion-

fixed with 2% PFA, and tumor sections were processed for confocal immunofluorescence micros-

copy. GPIHBP1 was detected in endothelial cells of the gliomas, colocalizing with EGFP (brain endo-

thelial cells), but GPIHBP1 was absent from capillaries in the adjacent normal brain (Figure 3,

Figure 3—figure supplement 1). Using transmission electron microscopy, we observed large and

irregularly shaped capillaries in gliomas, with numerous villus-like structures on the luminal surface of

endothelial cells (Figure 3—figure supplement 2), similar to findings reported for capillaries in

human gliomas (Vaz et al., 1996; Coomber et al., 1987; Weller et al., 1977).

The factors that regulate Gpihbp1 expression in the capillary endothelial cells of peripheral tis-

sues and gliomas are incompletely understood. However, a recent study found that Gpihbp1 tran-

script levels in rat aortic endothelial cells are upregulated by vascular endothelial growth factor

(VEGF) (Chiu et al., 2016), an angiogenic factor known to be expressed at high levels by glioma cells

(Plate et al., 1994; Pietsch et al., 1997; Christov et al., 1998). We found that Gpihbp1 expression

in the mouse brain endothelial cell line bEnd.3 is upregulated by recombinant VEGF (Figure 3—fig-

ure supplement 3).

GLUT1 is expressed in the capillaries of gliomas and normal brain
We used immunofluorescence microscopy to examine the expression of GPIHBP1 and GLUT1 (the

main glucose transporter in brain capillaries [Maher et al., 1994; Pardridge et al., 1990]) in mouse

gliomas and adjacent normal brain. GPIHBP1 expression was detected in gliomas but was absent in

the normal brain. The signal for GLUT1 was strong in the endothelial cells of the normal brain and

was easily detectable in the capillaries of gliomas (Figure 4, Figure 4—figure supplements 1–

2). Consistent findings were observed in single-cell RNA-seq studies on vascular cells of gliomas

(Ken Matsumoto, manuscript in preparation) and normal brain vascular cells (Vanlandewijck et al.,

2018; He et al., 2018d). Endothelial cells of gliomas (identifed by high von Willebrand factor [vWF]

expression) exhibit high expression of Gpihbp1 and somewhat lower levels of Glut1 expression (e.g.,

Endothelial cell cluster 5 in Figure 4—figure supplement 3). In normal brain, Glut1 was

highly expressed in endothelial cells, whereas Gpihbp1 expression was absent (Figure 4—figure

Figure 2 continued

[magenta]). All three GPIHBP1-specific mAbs detected GPIHBP1 in capillaries, colocalizing with von Willebrand factor. DNA was stained with DAPI

(blue). Scale bar, 50 mm. (B) Immunofluorescence confocal microscopy studies on human glioma sample 5, performed with mAbs RF4 and RE3 (10 mg/

ml) in the presence or absence of 50 mg of recombinant soluble human GPIHBP1 (hGPIHBP1). Adding recombinant hGPIHBP1 to the antibody

incubation abolished binding of the GPIHBP1-specific mAbs to GPIHBP1 on glioma capillaries. Images show GPIHBP1 (red), vWF (green), GFAP

(magenta), and DAPI (blue). Three sections of tumors were evaluated; representative images are shown. Scale bar, 50 mm.

DOI: https://doi.org/10.7554/eLife.47178.004
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supplement 3). In Gpihbp1-deficient mice, GLUT1 expression was detectable in the capillaries of gli-

omas and normal brain (Figure 4—figure supplement 4).

Figure 3. GPIHBP1 is expressed by capillary endothelial cells in mouse gliomas. Confocal microscopy images of a

BFP-tagged CT-2A glioma implanted in a ROSAmT/mG::Pdgfb-iCreERT2 mouse, revealing the expression of

GPIHBP1 in capillary endothelial cells of the glioma but not those of normal brain. Tamoxifen was administered

prior to implantation of the glioma spheroid to activate membrane-targeted EGFP in endothelial cells (green).

After three weeks of glioma growth, mice were anesthetized and injected via the tail vein with an Alexa Fluor 647–

labeled antibody against mouse GPIHBP1 (11A12; red). The mice were then perfused with PBS and perfusion-fixed

with 2% PFA in PBS. Glioma and adjacent normal brain were harvested, and 200-mm-thick sections were imaged

by confocal microscopy. GPIHBP1 was present on endothelial cells of the glioma (blue) but was absent from

normal brain. High-magnification images of the boxed area are shown on the right. Three mice were evaluated;

representative images are shown. Scale bar, 50 mm.

DOI: https://doi.org/10.7554/eLife.47178.006

The following figure supplements are available for figure 3:

Figure supplement 1. GPIHBP1 is expressed in the capillaries of mouse glioma but not normal brain.

DOI: https://doi.org/10.7554/eLife.47178.007

Figure supplement 2. The morphology of glioma capillaries differs from that of capillaries in normal brain, as

revealed by transmission electron microscopy (TEM).

DOI: https://doi.org/10.7554/eLife.47178.008

Figure supplement 3. Vascular endothelial growth factor (VEGF) increases Gpihbp1 transcript levels in the mouse

brain microvascular endothelial cell line bEnd.3.

DOI: https://doi.org/10.7554/eLife.47178.009

Hu et al. eLife 2019;8:e47178. DOI: https://doi.org/10.7554/eLife.47178 7 of 29

Research article Biochemistry and Chemical Biology Human Biology and Medicine

https://doi.org/10.7554/eLife.47178.006
https://doi.org/10.7554/eLife.47178.007
https://doi.org/10.7554/eLife.47178.008
https://doi.org/10.7554/eLife.47178.009
https://doi.org/10.7554/eLife.47178


LPL is present on GPIHBP1-expressing capillaries of mouse gliomas
Most of the LPL in peripheral tissues (e.g., heart or brown adipose tissue) is bound to GPIHBP1 on

capillaries; consequently, LPL and GPIHBP1 colocalize in tissue sections (Young et al., 2011;

Davies et al., 2010; Davies et al., 2012; Allan et al., 2017a; Fong et al., 2016; Allan et al., 2017b;

Allan et al., 2016). We hypothesized that GPIHBP1-expressing endothelial cells of gliomas could

capture LPL. Several observations prompted us to consider this hypothesis. First, as noted earlier,

there is ample evidence for LPL expression in the brain (Ben-Zeev et al., 1990; Bessesen et al.,

1993; Goldberg et al., 1989; Vilaró et al., 1990; Yacoub et al., 1990; Zhang et al., 2014), and it

seemed reasonable that some of that LPL would reach high-affinity GPIHBP1-binding sites on endo-

thelial cells. Second, gliomas contain large numbers of macrophages (F4/80-expressing cells; Fig-

ure 5—figure supplement 1), and macrophages are known to express LPL (Mahoney et al., 1982).

Figure 4. Expression of GPIHBP1 and GLUT1 in the endothelial cells of mouse gliomas. Immunohistochemical

studies of a BFP-expressing CT-2A glioma (after three weeks of growth). Mice were injected via the tail vein with

an Alexa Fluor 647–labeled antibody against mouse GPIHBP1 (11A12; green), then perfused with PBS and

perfusion-fixed with 2% PFA. Glioma and adjacent normal brain tissue were harvested, then 200-mm thick sections

cut, fixed with 4% PFA, and stained with an antibody against GLUT1 (red). GPIHBP1 was present in the capillaries

of mouse gliomas (blue) but absent from the capillaries of the normal brain. High-magnification images in the

boxed region are shown below. Three mice were evaluated; representative images are shown. Scale bar, 50 mm.

DOI: https://doi.org/10.7554/eLife.47178.010

The following figure supplements are available for figure 4:

Figure supplement 1. GPIHBP1 and GLUT1 expression in glioma capillaries.

DOI: https://doi.org/10.7554/eLife.47178.011

Figure supplement 2. GPIHBP1 and GLUT1 in glioma capillaries.

DOI: https://doi.org/10.7554/eLife.47178.012

Figure supplement 3. Single-cell RNA-seq observations on normal mouse brain and mouse gliomas.

DOI: https://doi.org/10.7554/eLife.47178.013

Figure supplement 4. GLUT1 is detectable in the endothelial cells of gliomas and normal brain in wild-type

(Gpihbp1+/+) and Gpihbp1–/– mice.

DOI: https://doi.org/10.7554/eLife.47178.014
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We found that LPL could be detected in peritoneal macrophages from wild-type mice but not in

macrophages harvested from Lpl–/– mice carrying a skeletal muscle–specific human LPL transgene

(Lpl–/–MCK-hLPL) (Levak-Frank et al., 1995) (Figure 5—figure supplement 2). We also found that

LPL could be detected in some of the macrophages in mouse gliomas and in normal brain of wild-

type mice, but not in the brain of Lpl–/–MCK-hLPL mice (Figure 5—figure supplement 3). These

findings were consistent with single-cell RNA-seq data from glioma and normal brain, in which Lpl

transcripts were found in the macrophages of gliomas and microglia of normal brain (Figure 4—fig-

ure supplement 3). Lpl transcripts are not present in capillary endothelial cells. Third, the most

highly upregulated fatty acid metabolism gene in human gliomas, compared to normal brain tissue,

is LPL (Figure 5—figure supplement 4). The second most perturbed gene in gliomas is CD36, which

encodes a putative fatty acid transporter (Figure 5—figure supplement 4).

To determine whether LPL is bound to GPIHBP1-expressing capillaries of gliomas, we performed

immunohistochemical studies, taking advantage of an affinity-purified goat antibody against mouse

LPL (Page et al., 2006). These studies revealed colocalization of GPIHBP1 and LPL in glioma

capillaries (Figure 5, Figure 5—figure supplement 5). LPL was not present in the capillaries of the

normal brain or in the capillaries of gliomas from Gpihbp1–/– mice (Figure 5, Figure 5—figure sup-

plement 5). As expected, the binding of the goat LPL antibody to tissues of Lpl–/–MCK-hLPL mice

was low (Figure 5, Figure 5—figure supplement 5), whereas mouse LPL was easily detectable in

the heart capillaries of wild-type mice (colocalizing with GPIHBP1) (Figure 5—figure supplement 6).

Consistent with earlier publications (Ben-Zeev et al., 1990; Vilaró et al., 1990), we observed a

strong mouse LPL signal in the hippocampal neurons of wild-type mice but not of Lpl–/–MCK-hLPL

mice (Figure 5—figure supplement 7). Of note, LPL was undetectable in ‘secondary antibody–only’

experiments (i.e., when the incubation of the primary antibody with tissue sections was omitted) (Fig-

ure 5, Figure 5—figure supplement 5–7).

There is little reason to suspect that the expression of LPL influences the expression of GPIHBP1

in capillaries. The overexpression of human LPL in the skeletal muscle of Lpl–/–MCK-hLPL mice did

not alter levels of Gpihbp1 expression (Figure 5—figure supplement 8).

Margination of TRLs along glioma capillaries and uptake of TRL-derived
nutrients in glioma cells
Given the presence of GPIHBP1-bound LPL on glioma capillaries, we suspected that we might find

evidence of TRL margination and processing in gliomas. To test this idea, TRLs that were heavily

labeled with deuterated lipids ([2H]TRLs) (He et al., 2018a) were injected intravenously into mice

harboring CT-2A gliomas (after three weeks of glioma growth). After allowing the [2H]TRLs to circu-

late for either 1 min or 30 min, the mice were euthanized, extensively perfused with PBS, and perfu-

sion-fixed with carbodiimide/glutaraldehyde. Heart, brain, and glioma specimens were harvested

and processed for NanoSIMS imaging. 12C14N– or 1H– images were used to visualize tissue morphol-

ogy, and 2H/1H images were used to identify regions of 2H enrichment. The scale in the 2H/1H

images of brain and glioma specimens ranges from 0.00018 to 0.0003 (i.e., from levels slightly above
2H natural abundance to levels twice as high as 2H natural abundance). The scale in the heart 2H/1H

images ranges from 0.00018 to 0.0006. In mice euthanized 1 min after the [2H]TRLs injection, [2H]

TRL margination was visualized along the luminal surface of glioma and heart capillaries, but not

along the capillaries of normal brain (Figure 6A–B). After 1 min, deuterated lipids from the [2H]TRLs

had already entered glioma cells and were even found in cytosolic neutral lipid droplets of those

cells (Figure 6B). By contrast, 2H enrichment was virtually absent in normal brain. As expected

(He et al., 2018a), we observed substantial amounts of [2H]TRL-derived lipids in cardiomyocytes,

including in cytosolic lipid droplets. In gliomas harvested 30 min after the injection of [2H]TRLs, we

observed similar findings: TRL margination along capillaries of gliomas and heart and the uptake of

TRL-derived nutrients by glioma cells and cardiomyocytes (Figure 7). Again, [2H]TRL margination

was absent in capillaries of the normal brain at the 30-min time point, and we did not find 2H enrich-

ment in the parenchymal cells of the normal brain. We did, however, observe very low levels of 2H

enrichment in capillary endothelial cells of normal brain. Given the absence of TRL margination in

normal brain capillaries, we speculate that the very low amounts of 2H enrichment in brain capillary

endothelial cells may relate to [2H]TRL processing in the periphery, followed by the uptake of unes-

terified [2H]fatty acids by endothelial cells of the brain.
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Figure 5. Lipoprotein lipase (LPL) colocalizes with GPIHBP1 in glioma capillaries. Confocal immunofluorescence

microscopy studies on glioma and normal brain from wild-type and Gpihbp1–/– mice, along with the brain from an

Lpl–/– mouse carrying a skeletal muscle–specific human LPL transgene (MCK). Glioma and brain sections (10-mm-

thick) were fixed with 3% PFA and then stained with a mAb against mouse GPIHBP1 (11A12; green), a goat

antibody against mouse LPL (red), and a rabbit antibody against CD31 (white). LPL colocalizes with GPIHBP1 and

CD31 in the capillaries of gliomas; GPIHBP1 and LPL were absent from normal brain capillaries and from glioma

capillaries in Gpihbp1–/– mice. DNA was stained with DAPI (blue). No LPL was detected in the capillaries of Lpl-

Figure 5 continued on next page
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At both the 1-min and 30-min time points, we observed heterogeneity in 2H enrichment in glioma

cells, with occasional perivascular cells exhibiting striking 2H enrichment. We do not know the iden-

tity of the highly enriched perivascular cells (i.e., whether they are tumor cells, pericytes, or macro-

phages), nor do we understand why some cells within the glioma took up more [2H]TRL-derived

lipids than other cells.

As an experimental control, we injected a mouse with PBS alone rather than with [2H]TRLs. As

expected, there was no 2H enrichment in the tissues of that mouse (Figure 7—figure supplement

1).

We performed an additional study in which [2H]TRLs were injected intravenously into a wild-type

mouse and a Gpihbp1–/– mouse. After 15 min, the hearts and brains from these mice were harvested

and processed for NanoSIMS imaging. The 2H/1H ratio images revealed 2H enrichment in the heart

of the wild-type mouse but negligible 2H enrichment in the heart of the Gpihbp1–/– mouse (2H

enrichment in cardiomyocyte lipid droplets was only ~10% greater than natural abundance) (Fig-

ure 7—figure supplement 2). In hindsight, the negligible amounts of 2H enrichment in the heart of

the Gpihbp1–/– mouse was probably not surprising, given the very large pool of unlabeled triglycer-

ides in the bloodstream of Gpihbp1–/– mice (~50–100-fold higher than that in wild-type mice). At the

15-min time point, we were unable to detect 2H enrichment in the brain of either the wild-type

mouse or the Gpihbp1–/– mouse (Figure 7—figure supplement 2).

13C enrichment in gliomas following administration of 13C-labeled fatty
acids or 13C-labeled glucose by gastric gavage
In addition to studies of gliomas after an intravenous injection of [2H]TRLs, we performed NanoSIMS

imaging after administering 13C-labeled fatty acids or 13C-labeled glucose by gastric gavage (three

doses over 36 hr) (Figure 8). In the case of the 13C-labeled fatty acid experiments, it is likely that

most of the 13C-labeled lipids entered the bloodstream in chylomicrons. Once again, 12C14N–

images were useful for tissue morphology, and the 13C/12C ratio images were useful to identify

Figure 5 continued

deficient mice (MCK) or when the incubation with primary antibodies was omitted (Secondary Only). Staining of all

tissue sections was performed simultaneously, and all images were recorded with identical microscopy settings.

Three mice per genotype were evaluated; representative images are shown. Scale bar, 50 mm.

DOI: https://doi.org/10.7554/eLife.47178.015

The following figure supplements are available for figure 5:

Figure supplement 1. Large numbers of macrophages in mouse gliomas.

DOI: https://doi.org/10.7554/eLife.47178.016

Figure supplement 2. LPL is expressed in peritoneal macrophages from wild-type mice but not in macrophages

from Lpl–/–MCK-hLPL mice, as revealed by confocal immunofluorescence microscopy.

DOI: https://doi.org/10.7554/eLife.47178.017

Figure supplement 3. LPL is present in the macrophages of brain and gliomas, as revealed by confocal

immunofluorescence microscopy.

DOI: https://doi.org/10.7554/eLife.47178.018

Figure supplement 4. Heat map showing genes related to fatty acid metabolism that are upregulated in human

gliomas, compared to normal brain.

DOI: https://doi.org/10.7554/eLife.47178.019

Figure supplement 5. LPL colocalizes with GPIHBP1 in glioma capillaries, as revealed by confocal

immunofluorescence microscopy.

DOI: https://doi.org/10.7554/eLife.47178.020

Figure supplement 6. Mouse LPL is absent from tissues of an Lpl–/–MCK-hLPL mouse, as revealed by confocal

immunofluorescence microscopy.

DOI: https://doi.org/10.7554/eLife.47178.021

Figure supplement 7. LPL is present in the hippocampal neurons of wild-type mice, as revealed by confocal

immunofluorescence microscopy.

DOI: https://doi.org/10.7554/eLife.47178.022

Figure supplement 8. Mouse Gpihbp1, mouse Lpl, and human LPL transcript levels in 25-week-old wild-type and

Lpl–/–MCK-hLPL mice (MCK-hLPL).

DOI: https://doi.org/10.7554/eLife.47178.023
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Figure 6. NanoSIMS imaging reveals margination of [2H]TRLs along glioma capillaries and 2H enrichment in adjacent glioma cells. Four-month-old

C57BL/6 mice harboring CT-2A gliomas were fasted for 4 hr and then injected intravenously with 200 ml of [2H]TRLs. After 1 min, mice were

euthanized and perfusion-fixed with carbodiimide/glutaraldehyde. Tissue sections were processed for NanoSIMS imaging. (A) NanoSIMS images

showing margination of [2H]TRLs in glioma capillaries. 1H– images were created to visualize tissue morphology (upper panels). Composite 2H/1H (red)

Figure 6 continued on next page
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regions of 13C enrichment. The scale for the 13C/12C images ranges from 0.0115 to 0.0150 (from

slightly above 13C natural abundance to ~36% greater than natural abundance). After administering
13C-labeled fatty acids, 13C enrichment was observed in both glioma cells and in the capillary endo-

thelial cells of gliomas (Figure 8A). In some images, 13C-enriched cytosolic lipid droplets were visible

in glioma cells (Figure 8—figure supplement 1). 13C enrichment was virtually absent from normal

brain (Figure 8A). However, after adjusting the scale of the NanoSIMS images, a small amount of
13C enrichment was observed in capillary endothelial cells within the brain parenchyma (Figure 8—

figure supplement 2). As expected (He et al., 2018a), we observed substantial amounts of 13C

enrichment in cardiomyocytes (Figure 8A).

After administering [13C]glucose to mice, 13C enrichment was easily detectable in normal brain

but was even ~20% higher in gliomas (Figure 8B). We also observed 13C enrichment in cardiomyo-

cytes (Figure 8B). As expected, there was no 13C enrichment in the tissues of a mouse that was

administered PBS alone (Figure 8—figure supplement 3).

To determine whether an absence of GPIHBP1 expression would influence the growth of glioma

tumors, CT-2A glioma cells that had been stably transfected with a Gaussia luciferase reporter were

injected into the brains of wild-type and Gpihbp1–/– mice (n = 11/group). Tumor burden was

assessed in live animals by measuring luciferase activity in the blood (Mai et al., 2017; Tan-

nous, 2009). We observed no statistically significant differences in tumor growth, tumor size, or sur-

vival between wild-type and Gpihbp1–/– mice (Figure 8—figure supplement 4). This result was not

particularly surprising, given that gliomas have a robust capacity to utilize glucose-derived nutrients

(Figure 8B).

Discussion
We sought to determine whether GPIHBP1, despite its complete absence from the capillaries of the

brain, might nevertheless be expressed in the capillaries of gliomas. Using standard immunohis-

tochemistry procedures, we documented GPIHBP1 expression in capillary endothelial cells of human

gliomas and CT-2A-derived mouse gliomas. The expression of GPIHBP1 in glioma capillaries was

intriguing, but the crucial issue is whether LPL would be bound to the GPIHBP1. Additional immuno-

histochemistry studies on mouse gliomas revealed that LPL colocalizes with GPIHBP1 on glioma

capillaries, just as LPL colocalizes with GPIHBP1 in the capillaries of heart and brown adipose tissue

(Young et al., 2011; Davies et al., 2010; Davies et al., 2012; Allan et al., 2017a; Fong et al.,

2016; Allan et al., 2017b; Allan et al., 2016). The binding of LPL to GPIHBP1 was specific: the LPL-

specific goat antibody did not detect LPL in the capillaries of gliomas in Gpihbp1–/– mice, nor did it

detect any LPL in macrophages or hippocampal neurons of Lpl–/–MCK-hLPL mice. The colocalization

of GPIHBP1 and LPL in the capillaries of gliomas implied that we might find evidence for TRL mar-

gination and processing in these tumors. Indeed, we observed both [2H]TRL margination along gli-

oma capillaries and the entry of TRL-derived nutrients into glioma cells. Consistent with results of

earlier studies (Goulbourne et al., 2014; He et al., 2018a), TRL margination was absent from the

capillaries of normal brain, and we found no 2H enrichment in the brain parenchyma. We did, how-

ever, find very low levels of 2H enrichment in capillary endothelial cells of normal brain, perhaps as a

result of the uptake of fatty acids that are derived from TRL processing in peripheral tissues. We

observed consistent findings after administering [13C]fatty acids to mice by gastric gavage. In those

experiments, we observed strong 13C enrichment in gliomas but no 13C enrichment in the normal

brain (except for low levels of enrichment in capillary endothelial cells). After administering [13C]glu-

cose by gavage, 13C enrichment was observed in both gliomas and normal brain. It is important to

Figure 6 continued

and 1H– (blue) images reveal [2H]TRLs (white arrows) in glioma and heart capillaries (middle and lower panels). The lower panels are close-up images of

the regions outlined in the middle panels. 2H/1H ratio scales were set to show marginated TRLs. Scale bars, 4 mm. (B) NanoSIMS images showing
2H enrichment in glioma tissue. 12C14N– images were generated to visualize tissue morphology. 2H/1H ratio images reveal margination of [2H]TRLs

within the capillary lumen and 2H-enriched lipid droplets in gliomas and heart. There was no 2H enrichment in normal brain tissue. Scale bars, 4 mm.

The bar graph shows the average fold change ± SD in the 2H/1H ratio above natural abundance. The experiment was performed in two mice with a

minimum of seven images analyzed for each sample. Differences were assessed using a Student’s t-test with Welch’s correction.

DOI: https://doi.org/10.7554/eLife.47178.024
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Figure 7. NanoSIMS imaging showing 2H enrichment in gliomas 30 min after an intravenous injection of [2H]TRLs. Four-month-old C57BL/6 mice

harboring CT-2A gliomas were fasted for 4 hr and then injected intravenously with 200 ml of [2H]TRLs. After 30 min, mice were euthanized and

perfusion-fixed with carbodiimide/glutaraldehyde. Sections of glioma, brain, and heart were processed for NanoSIMS imaging. 12C14N– images were

created to visualize tissue morphology. 2H/1H ratio images reveal margination of [2H]TRLs along the capillary lumen (white arrows) and 2H enrichment in

glioma and heart, including in cytosolic lipid droplets. Images of normal brain revealed slight 2H enrichment in capillary endothelial cells. Scale bars, 4

mm. The bar graph shows the average fold change ± SD in the 2H/1H ratio above natural abundance. The experiment was performed in two mice, with

a minimum of seven images analyzed for each sample. Differences were assessed with a Student’s t-test with Welch’s correction.

Figure 7 continued on next page
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note that the [13C]fatty acids and the [13C]glucose were administered in three doses over 36 hr

before harvesting tissues for NanoSIMS analyses, allowing ample time for the labeled nutrients to be

utilized as fuel or to be converted into other nutrients (e.g., nonessential amino acids) (He et al.,

2018a; Sidossis et al., 1995; Schneider and Potter, 1957). Thus, after administering 13C-labeled

Figure 7 continued

DOI: https://doi.org/10.7554/eLife.47178.025

The following figure supplements are available for figure 7:

Figure supplement 1. Absence of 2H enrichment in glioma and brain of a mouse that had been given an injection of PBS alone.

DOI: https://doi.org/10.7554/eLife.47178.026

Figure supplement 2. Uptake of [2H]TRLs in heart and brain of Gpihbp1–/– mice.

DOI: https://doi.org/10.7554/eLife.47178.027

Figure 8. Tissue uptake of fatty acid and glucose-derived nutrients by mice harboring CT-2A gliomas. (A) NanoSIMS images showing 13C enrichment

in mouse tissues (brain, glioma, and heart) after oral administration of 13C-labeled mixed fatty acids to mice (three 80-mg doses administered 12 h

apart). 12C14N– images were generated to visualize tissue morphology; 13C/12C ratio images were used to visualize 13C enrichment in tissues. Scale

bars, 4 mm. (B) NanoSIMS images revealing 13C enrichment in tissues following oral administration of 13C-labeled glucose to mice (three 75-mg doses

given 12-h apart). 12C14N– images were generated to visualize tissue morphology; 13C/12C ratio images were generated to assess 13C enrichment in

tissues. Scale bars, 4 mm. The bar graphs show the average 13C/12C ratio ± SD multiplied by 10,000 for fatty acids (left) and glucose (right). Each

experiment was performed in two mice, with a minimum of seven images analyzed for each sample. Differences were assessed using a Student’s t-test

with Welch’s correction.

DOI: https://doi.org/10.7554/eLife.47178.028

The following figure supplements are available for figure 8:

Figure supplement 1. 13C-enriched lipid droplets in mouse glioma cells.

DOI: https://doi.org/10.7554/eLife.47178.029

Figure supplement 2. NanoSIMS imaging showing 13C enrichment in capillary endothelial cells of normal brain after administering 13C-labeled mixed

fatty acids by oral gavage (three doses of 80 mg administered 12 hr apart).

DOI: https://doi.org/10.7554/eLife.47178.030

Figure supplement 3. Absence of 13C enrichment in the glioma and brain of a mouse that had been given an injection of PBS alone.

DOI: https://doi.org/10.7554/eLife.47178.031

Figure supplement 4. Glioma studies in Gpihbp1+/+ and Gpihbp1–/– mice.

DOI: https://doi.org/10.7554/eLife.47178.032
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fatty acids or glucose to mice, the 13C in glioma cells was probably present in a variety of macromo-

lecules (e.g., glucose, lipids, proteins, and nucleic acids).

Documenting GPIHBP1 and LPL in glioma capillaries, combined with the discovery that TRL-

derived nutrients are taken up and utilized by glioma cells, opens a new chapter in glioma metabo-

lism research (Figure 9). Laboratories that are interested in glioma metabolism have typically

focused on the intrinsic metabolic properties of glioma cells and on how metabolic pathways in glio-

mas differ from those in normal brain (Lin et al., 2017; Guo et al., 2009a; Guo et al., 2009b;

Guo et al., 2013; Gopal et al., 1963; Strickland and Stoll, 2017; Agnihotri and Zadeh, 2016).

There have been suggestions, based on indirect observations of substrate utilization, that glioma

tumors are capable of utilizing fatty acids for fuel and for anabolic processes (Lin et al., 2017;

Guo et al., 2013; Mashimo et al., 2014; Ru et al., 2013; Zaidi et al., 2013). In those studies,

however, the assumption was that the fatty acids probably originated from the tumor cells by de

novo lipogenesis (Guo et al., 2011; Guo et al., 2009a; Guo et al., 2009b). No one, as far as we are

aware, had ever considered the possibility that gliomas might be capable of taking up and utilizing

nutrients from LPL-mediated intravascular processing of TRLs.

In an ultrastructural study of human gliomas, Vaz et al. (1996) commented that the morphology

of endothelial cells in gliomas resembles that of capillary endothelial cells in peripheral tissues, with

euchromatin-rich nuclei, occasional fenestrations, and numerous pinocytotic vesicles within the cyto-

plasm. The expression of GPIHBP1 (a hallmark of capillary endothelial cells in peripheral tissues) in

gliomas provides biochemical support for the notion that glioma capillaries resemble capillaries in

peripheral tissues (Vaz et al., 1996). Our electron microscopy studies confirmed that the morpho-

logical features of glioma capillaries and normal brain capillaries differ substantially.

We have relatively few insights into the molecular basis for GPIHBP1 expression in glioma capillar-

ies. One possibility is that the absence of a blood–brain barrier in glioma capillaries (Dubois et al.,

2014; Wolburg et al., 2012; Liebner et al., 2000; Sage and Wilson, 1994) permits the exposure of

endothelial cells to a paracrine factor that activates GPIHBP1 expression. Another possibility is that

GPIHBP1 expression is stimulated by the expression of VEGF that is produced by glioma cells

(Plate et al., 1994; Pietsch et al., 1997; Christov et al., 1998). In our studies, VEGF increased

GPIHBP1 expression in the mouse brain endothelial cell line bEnd.3.

Figure 9. Intravascular lipolysis as a source of lipid nutrients for gliomas. In normal brain (left panel), LPL is

produced by astrocytes, neurons, oligodendrocytes, and fibroblasts. Because GPIHBP1 is not expressed in

the capillaries of the brain parenchyma, we have proposed that LPL remains within the interstitial spaces of the

brain (i.e., that it has an extravascular function) (Adeyo et al., 2012; Young et al., 2011). In gliomas (right panel),

GPIHBP1 is expressed in capillary endothelial cells, allowing GPIHBP1 to capture locally produced LPL and

to shuttle it to the capillary lumen. Intravascular processing of triglyceride-rich lipoproteins in gliomas provides a

source of lipid nutrients for glioma cells. HSPGs, heparan sulfate proteoglycans.

DOI: https://doi.org/10.7554/eLife.47178.033
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In the past, other laboratories have reported that glioma tumor cells can transdifferentiate into

endothelial cells, thereby augmenting the vascular supply to tumors (Wang et al., 2010; Ricci-

Vitiani et al., 2010; Soda et al., 2011). For example, endothelial cells in human glioblastomas were

reported to harbor the same genetic alterations as the tumor cells, implying that at least some of

the glioblastoma endothelial cells originate from stem cells within the tumor (Wang et al., 2010;

Ricci-Vitiani et al., 2010). In another model (Soda et al., 2011), a Cre recombinase (Cre)-loxP–con-

trolled lentiviral vector encoding activated forms of H-Ras and Akt was injected into the hippocam-

pus of GFAP-Cre p53 mice, eliciting glioblastomas. In that model, the oncogenes were expressed in

the GFAP+ cells, and the resulting tumors expressed GFP, H-Ras, and Akt and the loss of p53. Some

GFP+ endothelial cells were observed in tumors, implying that these endothelial cells had originated

from tumor cells. Furthermore, implanting a tumor cell line (generated from tumors induced with the

same lentiviral vector) into the brain of immunocompromised mice was reported to yield tumors con-

taining GFP+ endothelial cells. In our current studies, we observed no evidence of the differentiation

of glioma cells into capillary endothelial cells. The glioma cell line that we used expressed blue fluo-

rescent protein (BFP), but we did not find BFP expression in the capillary endothelial cells of

gliomas.

Mass spectrometry–based analyses of homogenized tissue extracts from mouse gliomas and nor-

mal brain tissue, along with similar analyses of tumors from human patients, suggested differences in

acetate oxidation in gliomas vs. normal brain (Mashimo et al., 2014). Although these studies of tis-

sue extracts have been useful, they obviously cannot provide anatomical insights into metabolism.

We have argued that NanoSIMS imaging studies are particularly useful when the goal is to under-

stand metabolism at an anatomic level (cellular or subcellular) (He et al., 2018a). In the current stud-

ies, NanoSIMS imaging provided anatomic insights into glioma metabolism. For example, we

observed TRL margination along the capillaries of gliomas but not in the capillaries of adjacent nor-

mal brain tissue. We also showed that the transport of TRL-derived nutrients across glioma capillar-

ies and into glioma cells is rapid, occurring within 1 min, and that there is heterogeneity in nutrient

uptake by different cells within the tumor. We found no uptake of TRL-derived nutrients by normal

brain 1 or 15 min after the injection of [2H]TRLs and only very small amounts (confined to capillary

endothelial cells) after 30 min. In addition, following the administration of [13C]glucose, we found

more 13C enrichment in gliomas than in normal brain. As far as we are aware, our study is the first to

use NanoSIMS analyses to investigate cancer metabolism in vivo. As we look to the future, we have

little doubt that NanoSIMS imaging will be an important tool for understanding tumor metabolism,

making it possible to investigate metabolic heterogeneity in tumor cells along with the metabolic

properties of vascular cells, fibroblasts, and macrophages within the tumor. Nevertheless, it is impor-

tant to point out that NanoSIMS imaging is not high-throughput, at least with the current instru-

ments, and for that reason NanoSIMS imaging is best used (as in this study) to address discrete

anatomic issues in metabolism. Examining large numbers of tumors or large numbers of mice would

be difficult. Also, NanoSIMS imaging is very expensive.

Our studies have provided fresh insights into the uptake of lipid nutrients by gliomas, but many

issues remain to be investigated. For example, in the current studies, we found numerous macro-

phages within gliomas, but we did not address differences in nutrient uptake by macrophages and

glioma cells. In future studies, it should be possible to examine the uptake of TRL-derived nutrients

into tumor cells, macrophages, and other immune cells within gliomas (by identifying specific cell

types with 15N-labeled monoclonal antibodies or antibodies tagged with different lanthanide metals

[Waentig et al., 2012; Kanje et al., 2016; Angelo et al., 2014; Keren et al., 2018]). It would also

be desirable to determine whether the uptake of TRL-derived nutrients in gliomas correlates with

the levels of GPIHBP1 and LPL in glioma capillaries (as quantified with LPL- and GPIHBP1-specific

antibodies tagged with different lanthanide metals). Finally, it would be desirable to investigate

whether the presence of GPIHBP1 and LPL in glioma capillaries could be exploited for patient care.

For example, it is conceivable that fluorescently labeled GPIHBP1 antibodies or DiI-labeled TRLs

could guide the surgical resection of tumors. In addition, a localized injection of GPIHBP1-specific

monoclonal antibodies conjugated to chemotherapeutic agents into gliomas might be useful in tar-

geting tumor vasculature (Schrama et al., 2006). A localized injection of gold-conjugated GPIHBP1-

specific monoclonal antibodies could augment the efficacy of external beam radiotherapy

(Haume et al., 2016; Hainfeld et al., 2004; Hainfeld et al., 2008).
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic
reagent (M. musculus)

Gpihbp1–/– Beigneux et al., 2007 RRID: MGI:3771172 Dr. Stephen
G Young (UCLA)

Genetic
reagent (M. musculus)

Lpl–/–MCK-hLPL Levak-Frank et al., 1995 RRID: MGI:3624988 Dr. Rudolph
Zechner (Graz University)

Genetic
reagent (M. musculus)

ROSAmT/mG

Pdgfb-iCreT2
Mathivet et al., 2017 Dr. Holger

Gerhardt (VIB KU-Leuven)

Cell line
(M. musculus)

CT-2A Seyfried et al., 1992 Dr. Thomas
Seyfried (Boston College)

Cell line
(M. musculus)

CT-2A–BFP PMID: 24658686 Dr. Holger Gerhardt (VIB KU-Leuven)

Cell line
(M. musculus)

bEnd.3 ATCC Catalog No. CRL-2299
RRID: CVCL_0170

Transfected construct
(lentiviral plasmid)

plenti-GLuc-IRES-EGFP Targeting Systems Catalog No. GL-GFP

Antibody Rat monoclonal
anti-mouse
GPIHBP1 (11A12)

Beigneux et al., 2009 Dr. Stephen
G Young (UCLA);
IHC (10 mg/ml)

Antibody Mouse monoclonal
anti-human
GPIHBP1 (RE3)

Hu et al., 2017 Dr. Stephen
G Young (UCLA);
IHC (10 mg/ml)

Antibody Mouse monoclonal
anti-human GPIHBP1 (RF4)

Hu et al., 2017 Dr. Stephen
G Young (UCLA);
IHC (10 mg/ml)

Antibody Mouse monoclonal
anti-human GPIHBP1 (RG3)

Hu et al., 2017 Dr. Stephen
G Young (UCLA);
IHC (10 mg/ml)

Antibody Rabbit polyclonal
anti-vWF

Dako Catalog No. A0082
RRID: AB_2315602

IHC (1:200)

Antibody Goat polyclonal
anti-GFAP

Abcam Catalog No. ab53554
RRID: AB_880202

IHC (1:200)

Antibody Rabbit polyclonal
anti-GLUT1

Millipore-Sigma Catalog No. 07–1401
RRID: AB_1587074

IHC (1:200)

Antibody Rabbit polyclonal
anti-CD31

Abcam Catalog No. ab28364
RRID: AB_726362

IHC (1:50)

Antibody Rat monoclonal
anti-F4/80

Abcam Catalog No. ab6640
RRID: AB_1140040

IHC (10 mg/ml)

Antibody Goat polyclonal
anti-mouse LPL

Page et al., 2006 Dr. André Bensadoun
(Cornell); IHC (12 mg/ml)

Antibody Alexa Fluor 488,
568, 647 secondaries

ThermoFisher Scientific IHC (1:500)

Commercial
assay or kit

ImmPRESS Excel
Staining Kit

Vector Laboratory Catalog No. MP-7602

Sequence-
based reagent

Mouse
Gpihbp1 primers

50-AGCAGGGACAGAGCACCTCT-30

and
50-AGACGAGCGTGATGCAGAAG-30

Sequence-
based reagent

Mouse Cd31 primers 50-AACCGTATCTCCAAAGCCAGT-30

and
50-CCAGACGACTGGAGGAGAACT-30

Sequence-
based reagent

Mouse Angpt2 primers 50-AACTCGCTCCTTCAGAAGCAGC-30

and
50-TTCCGCACAGTCTCTGAAGGTG-30

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Sequence-
based reagent

Mouse Dusp5 primers 50-TCGCCTACAGACCAGCCTATGA-30

and
50-TGATGTGCAGGTTGGCGAGGAA-30

Sequence-
based reagent

Mouse Cxcr4 primers 50-GACTGGCATAGTCGGCAATGGA-30

and
50-CAAAGAGGAGGTCAGCCACTGA-30

Sequence-
based reagent

Mouse Lpl primers 50-AGGTGGACATCGGAGAACTG-30

and
50-TCCCTAGCACAGAAGATGACC-30

Sequence-
based reagent

Human LPL primers 50-TAGCTGGTCAGACTGGTGGA-30

and
50-TTCACAAATACCGCAGGTG-30

Recombinant
DNA reagent

ALO-D4 plasmid Gay et al., 2015 Dr. Arun Radhakrishnan
(UT Southwestern)

Chemical
compound, drug

N-(3-Dimethylaminopropyl)-
N0-ethylcarbodiimide
hydrochloride (carbodiimide)

Millipore-Sigma Catalog No. 03449

Chemical
compound, drug

Glutaraldehyde
25% solution

Electron
Microscopy Sciences

Catalog No. 16220

Chemical
compound, drug

Osmium
tetroxide 4% solution

Electron
Microscopy Sciences

Catalog No. 18459

Chemical
compound, drug

Paraformaldehyde
16% solution

Electron
Microscopy Sciences

Catalog No. 15170

Chemical
compound, drug

EMbed 812 Electron Microscopy Sciences Catalog No. 14120

Chemical
compound, drug

Sodium cacodylate
trihydrate

Electron
Microscopy Sciences

Catalog No. 12300

Chemical
compound, drug

Uranyl acetate SPI-Chem Catalog No. 02624AB

Chemical
compound, drug

DAPI ThermoFisher
Scientific

Catalog No. 1306 IHC (3 mg/ml)

Chemical
compound, drug

Mouse VEGF Millipore-Sigma Catalog No. V4512

Software,
algorithm

LIMMA Ritchie et al., 2015 RRID:
SCR_010943

Other D-GLUCOSE
(U-13C6, 99%)

Cambridge Isotope
Laboratories

Catalog No.
CLM-1396-PK

Other Mixed fatty
acids (U-D, 96–98%)

Cambridge Isotope
Laboratories

Catalog No.
DLM-8572-PK

Other Mixed fatty
acids (13C, 98%+)

Cambridge Isotope
Laboratories

Catalog No.
CLM-8455-PK

Immunohistochemical studies on human glioma specimens
Frozen surgical glioma specimens were obtained from the UCLA Department of Neurosurgery. Fro-

zen autopsy control brain samples (frontal lobe, occipital lobe, and cerebellum) were obtained from

the UCLA Section of Neuropathology. Samples were sectioned to 8 mm and placed on glass slides.

All samples were fixed with 3% paraformaldehyde (PFA) in PBS/Ca/Mg and permeabilized in 0.2%

Triton X-100 in PBS/Ca/Mg. Tissues were blocked with PBS/Ca/Mg containing 5% donkey serum

and 0.2% bovine serum albumin (BSA) and incubated overnight at 4˚C with one or more mouse

monoclonal antibodies (mAbs) against human GPIHBP1 (RF4, RE3, RG3; 10 mg/ml) (Hu et al., 2017),

a rabbit polyclonal antibody against von Willebrand factor (vWF) (Dako; 1:200), and a goat poly-

clonal antibody against human glial fibrillary acidic protein (GFAP) (Abcam; 1:500). In some experi-

ments, recombinant soluble human GPIHBP1 (50 mg) was added to the primary antibody incubation.

After washing the slides, 1-hr incubations were performed with an Alexa Fluor 647–conjugated
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donkey anti–mouse IgG (ThermoFisher Scientific; 1:500), an Alexa Fluor 488–conjugated donkey

anti–rabbit IgG (ThermoFisher Scientific; 1:500), and an Alexa Fluor 568–conjugated donkey anti–

goat IgG (ThermoFisher Scientific; 1:500). DNA was stained with 40,6-diamidino-2-phenylindole

(DAPI). Images were taken with an LSM700 confocal microscope with an Axiovert 200M stand and

processed with Zen 2010 software (Zeiss).

Immunoperoxidase staining was performed with the ImmPRESS Excel Staining Kit (Vector Labora-

tories). Endogenous peroxidase activity was quenched with BLOXALL Blocking Solution (Vector Lab-

oratories). After incubating sections in 10% normal horse serum, sections were incubated for 1 hr

with mAb RF4 (5 mg/ml), followed by a 15-min incubation with a goat anti-mouse IgG (10 mg/ml, Vec-

tor Laboratories). Slides were then incubated for 30 min with a horseradish peroxidase–conjugated

horse anti–goat IgG (ImmPRESS Excel Reagent, Vector Laboratories). After washing, the slides were

incubated with ImmPACT DAB EqV (Vector Laboratories) until a color change was evident (~30 s).

Finally, sections were counterstained with hematoxylin and mounted with Vectashield Mounting

Media (Vector Laboratories). Images were recorded with a Nikon Eclipse E600 microscope (Plan

Fluor 40�/0.50 NA or 100�/0.75 NA objectives) equipped with a DS-Fi2 camera (Nikon).

Genome dataset and gene-expression analyses
Cohorts for RNA-seq analysis were obtained from two databases: The Cancer Genome Atlas (TCGA)

for tumor samples and Genotype-Tissue Expression (GTEx) for normal brain samples. Samples from

TCGA (n = 157) and GTEx (n = 283) were processed with the TOIL pipeline as described

(Vivian et al., 2017). A differential expression analysis of fatty acid metabolism genes was carried

out with a linear model RNA-seq analysis software (LIMMA) (Ritchie et al., 2015). Genes were con-

sidered differentially expressed if the p-values were <0.05 and the log2 changes were >twofold. A

heatmap was generated with the software R (Kolde, 2015).

Animal procedures and glioma implantation
Mice on a C57BL/6 background expressing both the ROSAmT/mG Cre-reporter (Muzumdar et al.,

2007) and tamoxifen-inducible Pdgfb-iCreERT2 alleles (Claxton et al., 2008) were generated by

breeding. In those mice, the administration of tamoxifen induces Cre recombinase expression in

Pdgfb-positive cells. The recombination event results in the expression of EGFP in endothelial cells;

all other cells express tdTomato. For the glioma implantation studies, mice (8–12-weeks-old) were

injected intraperitoneally with tamoxifen (65 mg/g body weight, 4 injections in 2 weeks) before sur-

gery. Mice were anesthetized with ketamine/xylazine, and a craniotomy was performed by drilling a

5-mm hole between the lambdoid, sagittal, and coronal sutures. A blue fluorescent protein (BFP)-

tagged CT-2A glioblastoma spheroid (250-mm in diameter) (Seyfried et al., 1992; Oh et al., 2014)

was injected into the cortex and sealed by cementing a glass coverslip on the skull. The CT-2A cell

line was generated by Seyfried and coworkers through chemical induction with 20-methylcholan-

threne in the brain of C57BL/6 mice and has been characterized extensively (Seyfried et al., 1992).

In other experiments, CT-2A glioblastoma spheroids were implanted into the cortex of C57BL/6

wild-type mice and Gpihbp1–/– mice (Beigneux et al., 2007). Those procedures were performed as

described previously (Stanchi et al., 2019).

Immunohistochemical studies on mouse gliomas
Mice harboring BFP-expressing CT-2A gliomas (Seyfried et al., 1992; Oh et al., 2014) were anes-

thetized with ketamine/xylazine and then injected intravenously (via the tail vein) with 100 mg of an

Alexa Fluor 647–conjugated antibody against mouse GPIHBP1 (11A12) (Beigneux et al., 2009).

After 1 min, the mice were perfused through the heart with 15 ml of PBS, followed by 10 ml of 2%

PFA in PBS. Brain and glioma tissues were harvested and fixed overnight in 4% PFA. Tissue sections

(200-mm-thick) were prepared with a vibratome. For immunofluorescence microscopy studies, the

sections were fixed with 4% PFA in PBS and blocked and permeabilized in TNBT (0.1 M Tris, pH 7.4,

150 mM NaCl, 0.5% blocking reagent from Perkin Elmer, 0.5% Triton X-100) for 4 hr at room tem-

perature. Tissues were incubated with an antibody against GLUT1 (Millipore; 1:200) diluted in TNBT

buffer overnight at 4˚C, washed in TNT buffer (0.1 M Tris pH 7.4; 150 mM NaCl, 0.5% Triton X-100)

and incubated with an Alexa Fluor 488–conjugated donkey anti–rabbit IgG (ThermoFisher Scientific;

Hu et al. eLife 2019;8:e47178. DOI: https://doi.org/10.7554/eLife.47178 20 of 29

Research article Biochemistry and Chemical Biology Human Biology and Medicine

https://doi.org/10.7554/eLife.47178


1:200). Tissues were washed and mounted in fluorescent mounting medium (Dako). Images were

obtained with a Leica TCS SP8 confocal microscope.

For the analysis of tissues from mice that were not injected with anti-GPIHBP1 antibodies, tissues

were embedded in OCT medium, and 10-mm sections were cut with a cryostat. Sections were fixed

with 3% PFA in PBS/Ca/Mg, permeabilized with 0.2% Triton X-100 in PBS/Ca/Mg, and blocked with

PBS/Ca/Mg containing 5% donkey serum and 0.2% BSA. Tissue sections were incubated overnight

at 4˚C with a rabbit antibody against CD31 (Abcam; 1:50), a goat antibody against mouse LPL (12

mg/ml) (Page et al., 2006), an Alexa Fluor 488–conjugated antibody against F4/80, or an

Alexa Fluor 647–conjugated antibody against mouse GPIHBP1 (11A12, 10 mg/ml). After removing

non-bound antibodies and washing the sections, unlabeled primary antibodies were detected with

an Alexa Fluor 488–conjugated donkey anti–rabbit IgG (ThermoFisher Scientific; 1:500) or an

Alexa Fluor 568–conjugated donkey ant–goat IgG (ThermoFisher Scientific; 1:500). DNA was stained

with DAPI, and tissues were mounted with ProLong Gold mounting media (ThermoFisher Scientific).

Images were recorded on an LSM 800 confocal microscope (Zeiss).

Immunocytochemistry studies on mouse peritoneal macrophages
Macrophages were collected by peritoneal lavage of C57BL/6 wild-type and Lpl–/–MCK-hLPL mice.

Cells were centrifuged at 400 � g for 5 min at 4˚C, washed with 5 ml of red blood cell lysing buffer

(Sigma) for 5 min, washed twice with cold PBS, and then plated onto FBS-coated Petri dishes. Cells

were cultured overnight in macrophage medium (Dulbecco Modified Eagle Medium with 10% FBS,

1% glutamine, and 1% sodium pyruvate). On the next day, macrophages were lifted with cold PBS

containing 5 mM EDTA for 30 min at 4˚C. Cells were then plated onto poly-D-lysine–coated glass

coverslips (75,000 cells/coverslip) and incubated overnight in macrophage media. On the following

day, the cells were washed three times for 10 min in PBS/Ca/Mg containing 0.2% BSA and then incu-

bated with Alexa Fluor 568–labeled ALO-D4 (a modified cytolysin that binds to ‘accessible choles-

terol’ in the plasma membrane) (Das et al., 2014; Das et al., 2013; Gay et al., 2015) for 2 hr at 4˚C.

Samples were washed three times for 1 min with PBS/Ca/Mg, fixed with 3% PFA in PBS/Ca/Mg, per-

meabilized with 0.2% Triton X-100 in PBS/Ca/Mg, and blocked with PBS/Ca/Mg containing 5% don-

key serum and 0.2% BSA. Cells were then incubated with a goat antibody against mouse LPL (12 mg/

ml) (Page et al., 2006) for 1 hr at room temperature followed by a 30-min incubation with an

Alexa Fluor 647–labeled donkey anti–goat IgG (ThermoFisher Scientific; 1:500). DNA was stained

with DAPI, and coverslips were mounted onto glass slides in ProLong Gold mounting media (Ther-

moFisher Scientific). Images were recorded with a Zeiss LSM700 confocal microscope.

Administration of [13C]fatty acids, [13C]glucose, and [2H]TRLs to mice
C57BL/6 mice with CT-2A gliomas (of three-week duration) were given 80 ml of [13C]fatty acids (~1

mg/ml; Cambridge Isotope Laboratories) or 80 ml of [13C]glucose (3 mg/kg body weight; Cambridge

Isotope Laboratories) by oral gavage every 12 hr for 36 hr (three doses). To study TRL metabolism,

mice were injected intravenously with a single bolus of [2H]TRLs (40 mg triglycerides in 100 ml) via the

tail vein. The [2H]TRLs were isolated from the plasma of Gpihbp1–/– mice after administering deuter-

ated fatty acids by gastric gavage (He et al., 2018a). After allowing the [2H]TRLs to circulate for 1

min or 30 min, the mice were perfused through the heart with 15 ml of ice-cold PBS/Ca/Mg at 3 ml/

min (10 ml though the left ventricle and 5 ml through the right ventricle). Next, the mice were perfu-

sion-fixed through the left ventricle with 10 ml of ice-cold 4% N-(3-dimethylaminopropyl)-N0-ethylcar-

bodiimide hydrochloride (‘carbodiimide;’ Sigma-Aldrich) (mass/vol) and 0.4% glutaraldehyde

(Electron Microscopy Sciences) (vol/vol) in 0.1 M phosphate buffer. The heart, brain, and glioma

tumors were collected and placed in 0.1 M phosphate buffer containing 4% carbodiimide and 2.5%

glutaraldehyde for 2 hr at 4˚C. Tissues were cut into 1-mm3 pieces and fixed overnight in 2.5% glu-

taraldehyde, 3.7% PFA, and 2.1% sucrose in 0.1 M sodium cacodylate (pH 7.4).

Preparation of tissue sections for NanoSIMS imaging and electron
microscopy
After fixation, 1-mm3 pieces of tissue were rinsed three times (10 min each) in 0.1 M sodium cacody-

late buffer (pH 7.4) and fixed with 2% OsO4 (Electron Microscopy Sciences) in 0.1 M sodium cacody-

late on ice for 90 min. The samples were rinsed three times (10 min each) with distilled water and
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stained overnight with 2% uranyl acetate at 4˚C. On the following day, the samples were rinsed three

times for 10 min each with distilled water and then dehydrated with increasing amounts of ethanol

(30%, 50%, 70%, 85%, 95%, and 100%; 3 � 10 min) before infiltration with Embed812 resin (Electron

Microscopy Sciences) diluted in acetone (33% for 2 hr; 66% overnight; 100% for 3 hr). The samples

were embedded in polyethylene molds (Electron Microscopy Sciences) with fresh resin and polymer-

ized in a vacuum oven at 65˚C for 48 hr. The polymerized blocks were then removed from the molds,

trimmed, and sectioned.

For transmission electron microscopy, 65-nm sections were cut and collected on freshly glow-dis-

charged copper grids (Ted Pella) that were coated with formvar and carbon. Sections were then

stained with Reynold’s lead citrate solution for 10 min. Images were acquired with an FEI T12 trans-

mission electron microscope set to 120 kV accelerating voltage and a Gatan 2K � 2K digital camera

(Electron Imaging Center).

For NanoSIMS analyses, 500-nm sections were cut with a Leica UC6 ultramicrotome and collected

on silicon wafers. Sections of tissue were coated with ~5 nm of platinum and analyzed with Nano-

SIMS 50L or NanoSIMS 50 instruments (CAMECA). Samples were scanned with a 16-KeV 133Cs+-

beam, and secondary electrons (SEs) and secondary ions (1H–, 2H–, 12C–, 13C–, 12C14N–) were

collected. A 50 � 50-mm region of the section was pre-sputtered with a ~1.2-nA beam current (pri-

mary aperture D1 = 1) to reach a dose of ~1 � 1017 ions/cm2 to remove the platinum coating and

implant 133Cs+ in order to ensure a steady state of secondary ion release. A ~40 � 40-mm region was

imaged with an ~3-pA beam current (primary aperture D1 = 2) and a dwell time of ~10 ms/pixel per

frame for multiple frames. Both 256 � 256–pixel and 512 � 512–pixel images were obtained. Images

were prepared using the OpenMIMS plugin in ImageJ. For image quantification, 2H/1H and 13C/12C

ratios in the regions of interests were calculated with the OpenMIMS plugin and processed by

GraphPad Prism 7.0.

Tumor studies in wild-type and Gpihbp1-deficient mice
Three-month-old C57BL/6 wild-type (five females, six males) and Gpihbp1–/– mice (six females, five

males) were injected intracranially with CT-2A glioma cells stably expressing a Gaussia luciferase

reporter gene (4 � 105 cells/mouse). Cells were injected 1 mm posterior and 2 mm lateral to the

bregma at a depth of 2 mm. Tumor burden was monitored every three days by measuring Gaussia

luciferase in the blood (Mai et al., 2017; Tannous, 2009). Mice were weighed at weekly intervals

and were euthanized when they lost >20% of their body weight. After the mice were euthanized,

their tumors and brains were weighed. All studies were approved by UCLA’s Animal Research

Committee.

Gaussia luciferase measurements
To measure the levels of secreted Gaussia luciferase (sGluc), blood was obtained from the tail vein

of mice and mixed with 50 mM EDTA to prevent coagulation. 5 ml of blood was transferred to a 96-

well plate, and sGluc activity was measured by chemiluminescence after injecting 100 ml of 100 mM

coelentarazine (Nanolight) (Mai et al., 2017; Tannous, 2009). Data were plotted as relative light

units (RLU).

Quantifying mouse and human transcripts by qRT-PCR
C57BL/6 wild-type mice and Lpl–/–MCK-hLPL mice were anesthetized with isoflurane and perfused

with PBS. Heart, brown adipose tissue (BAT), and quadricep were harvested and flash-frozen in liq-

uid nitrogen. RNA was isolated with TRI reagent (Molecular Research), and quantitative (q)RT-PCR

measurements were performed in triplicate with a 7900HT Fast real-time PCR system (Applied Bio-

systems). Gene expression was calculated with a comparative CT method and normalized to levels

of cyclophilin A expression. Primers for mouse Gpihbp1, mouse Lpl, and human LPL are described in

the ’Key Resources Table’.

VEGF treatment of brain endothelial cells
Mouse brain microvascular endothelial cells (bEnd.3; ATCC #CRL-2299) were plated into 6-well

plates and grown in DMEM media containing 10% FBS, 1% glutamine, and 1% sodium pyruvate

overnight. On the next day, cells were rinsed with PBS and incubated in medium containing

Hu et al. eLife 2019;8:e47178. DOI: https://doi.org/10.7554/eLife.47178 22 of 29

Research article Biochemistry and Chemical Biology Human Biology and Medicine

https://doi.org/10.7554/eLife.47178


recombinant mouse VEGF (100 ng/ml; Sigma) for another 24 hr. RNA was isolated with TRI reagent

(Molecular Research), and qRT-PCR measurements were performed in triplicate with a 7900HT Fast

real-time PCR system (Applied Biosystems). Gene expression was calculated with a comparative CT

method and normalized to cyclophilin A expression. Primers for mouse Gpihbp1, Cd31, Angpt2,

Cxcr4, and Dusp5 are described in the ’Key Resources Table’.

Cell lines
CT-2A cells were obtained originally from the Seyfried laboratory and have been extensively tested

and characterized (Seyfried et al., 1992). These cells also robustly expressed GFAP. The bEnd.3

cells were obtained from ATCC with a proper ‘certificate of analysis’. All cell lines were negative for

mycoplasma contamination.

Statistics
Statistical analyses of data were performed with GraphPad Prism 7.0 software. All data are shown as

the means ± standard deviations. Differences were assessed using a Student’s t-test with Welch’s

correction.

Study approval
All tissue samples from patients were obtained after informed consent and with approval from the

UCLA Institutional Review Board (IRB; protocol 10–000655). Animal housing and experimental proto-

cols were approved by UCLA’s Animal Research Committee (ARC; 2004-125-51, 2016–005) and the

Institutional Animal Care and Research Advisory Committee of the KU Leuven (085/2016). The ani-

mals were housed in an AAALAC (Association for Assessment and Accreditation of Laboratory Ani-

mal Care International)-approved facility and cared for according to guidelines established by

UCLA’s Animal Research Committee. The mice were fed a chow diet and housed in a barrier facility

with a 12 hr light-dark cycle.
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