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ABSTRACT OF THE THESIS 

 

Portfolio effect and the predictability of natural phytoplankton population dynamics 

 

by  

 

Vitul Agarwal 

Master of Science in Marine Biology 

University of California San Diego, 2020 

Professor Andrew D. Barton, Chair 

 

 Phytoplankton play important roles in marine food webs and biogeochemical 

cycles. The ability to understand natural changes in phytoplankton populations are a 

central goal in biological oceanography; however, the dynamics of phytoplankton 

populations are often noisy and difficult to predict. The portfolio effect in ecology is a 

concept that relies on the aggregation of data to reduce the variance of individual 

populations. We test whether the aggregation of data across multiple species can help 

improve the predictions of phytoplankton assemblages one month into the future. Using 

empirical dynamic modelling, we assess the predictability of phytoplankton 

assemblages in varying group sizes, and show that certain assemblages of 

phytoplankton species are more predictable in groups rather than as individual species.  
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Abstract 

It is difficult to make skillful future predictions about the dynamics of marine 

phytoplankton populations. Aggregating species abundance data across multiple species 

to reduce temporal variability (i.e. the portfolio effect) is an approach that has been 

applied within fisheries restoration, conservation, and monitoring programs in order to 

reduce noise and examine long-term patterns and trends. Here, we use 22-year time 

series of 198 phytoplankton taxa from Station L4 in the Western English Channel (1992 

– 2014) to test whether and how the portfolio effect can improve predictions of 

phytoplankton assemblage dynamics. Using a non-parametric framework to assess 

predictability, we demonstrate that the prediction skill is significantly affected by how 

species data are grouped into assemblages, the presence of noise, and stochastic 

behavior within species. We find that predictability one month into the future increases 

significantly when species are aggregated together into assemblages with more species, 

compared with the predictability of individual taxa. In contrast, predictability of the 

dynamics of dinoflagellates and larger phytoplankton (>12µm cell radius) is low overall 

and does not increase by aggregating similar species together. The presence of noise, 

such as observational error in data or stochasticity in growth rates, reduces the 

predictability of individual species more than the predictability of aggregate groups. 

These findings show the portfolio effect can be used to increase the predictability of 

certain assemblages of phytoplankton species and has implications for microbial 

observing campaigns and ecosystem modeling.  

 

 

 



 

 3 

Introduction 

Phytoplankton play vital roles in marine ecosystems. Because of the importance of 

phytoplankton dynamics for marine food webs, fisheries, and biogeochemical cycles 

(Ryther 1969; Falkowski et al. 1998), there is growing interest in making skillful 

predictions of phytoplankton population dynamics, particularly on seasonal and longer 

timescales. Phytoplankton communities exhibit considerable variability on rapid (daily 

to interseasonal) as well as longer-term (interannual to decadal) timescales due to 

natural and anthropogenic drivers (Chavez et al. 2003; Falkowski and Oliver 2007; 

Chiba et al. 2012; Edwards et al. 2013b; Barton et al. 2016). This means that predicting 

ecological dynamics beyond the immediate future is difficult for a broad range of 

physical, biological, and ecological reasons. The management of living marine 

resources could be improved with skillful predictions of primary productivity or 

phytoplankton community structure, in addition to other environmental and biological 

conditions (Hobday et al. 2016; Tommasi et al. 2017; Marshall et al. 2019).  

Anomalies in phytoplankton populations rapidly decorrelate in time and space 

(Doney et al. 1998). For example, phytoplankton population anomalies in most of the 

ocean persist for only a few weeks, on average (Kuhn et al. 2019). In contrast, 

midlatitude sea surface temperature and nutrient anomalies last, on average, a few 

months to a year or longer (Deser et al. 2003; Kuhn et al. 2019), and may have 

interannual persistence when subsurface anomalies are re-exposed by deep water 

column mixing in subsequent years (Deser et al. 2003). Even longer duration, persistent 

anomalies in temperature are possible due to dominant modes of climate variability and 

marine heatwaves, for example in the tropical Pacific due to El Niño Southern 

Oscillation (Deser et al. 2010) and in the North Pacific due to the North Pacific “blob” 
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in 2013-2015 (Bond et al. 2015). Surface temperature can, in some regions, be predicted 

skillfully months or even years in advance (Song et al. 2008; Stock et al. 2015; Taboada 

et al. 2019). Ocean surface chlorophyll and primary productivity may also be 

predictable, up to years in advance, though the degree of predictability varies strongly in 

space (Park et al. 2019; Taboada et al. 2019). While prediction skill of the physical and 

chemical environment, and aggregate measures of primary producers (e.g., chlorophyll 

and primary production) on intraseasonal and longer timescales is developing quickly 

(Park et al. 2019), thus far ecological predictions at the population or species 

assemblage level have received less attention. 

In this paper, we test the portfolio effect in ecology as a possible strategy to improve 

the predictability of phytoplankton assemblage dynamics. In this context, we define 

assemblage as a group of more than one species. The abundance of the assemblage is 

the sum of the abundance of the individual taxa within the assemblage. We define 

predictability as the correlation coefficient between predicted and observed population 

abundance (in cells L-1)  one month into the future. A higher correlation coefficient 

implies higher predictability. Briefly, the portfolio effect refers to the reduction of 

variance through the aggregation of data, in this case the abundance of individual 

phytoplankton species. By examining the system as a whole, rather than through their 

individual components, the portfolio effect reduces the “noise” generated by non-linear 

interactions, potentially highlighting broad signals and patterns (Schindler et al. 2015). 

This concept was first employed in financial investment theory – diversifying 

investment to a broader selection of securities reduces overall risk (Markowitz 1952).  

Here we ask: 1) Are single species more or less predictable than groups of species 

aggregated together?; 2) What factors affect the predictability of phytoplankton 
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assemblages?; 3) How does assemblage composition affect predictability?; and 4) What 

are the implications for future studies that attempt to maximize predictive skill? 

We use phytoplankton time series data for 198 phytoplankton taxa sampled at the 

long-term coastal monitoring Station L4 in the Western English Channel (50° 15¢N, 4° 

13¢W) collected between October 1992 to December 2014. Using empirical dynamic 

modeling (Sugihara and May 1990), we first quantify the predictability of each taxon, 

defined as the correlation coefficient between predicted and observed population 

abundance one month into the future. We then aggregate the time series for varying 

assemblage sizes (e.g., groups of 2, 3,4…,198) taxa, and assess the assemblage 

predictability in comparison to the predictability of individual taxa. We examine how 

predictability at the taxon and assemblage level varies across major functional groups of 

phytoplankton, including diatoms, dinoflagellates, coccolithophores, and 

phytoflagellates, as well as across groups of similarly sized phytoplankton. Finally, we 

develop a simple model resolving species interactions and stochasticity in a community 

of phytoplankton to understand the mechanisms that explain changes in predictability 

between individual and groups of taxa. 

 

Materials and Methods 

Ecological data from the English Channel 

Station L4 is a coastal station located approximately 10 nautical miles off 

Plymouth, UK and is characterized by summer nutrient depletion with seasonal vertical 

and horizontal influx of nitrate into the system (Smyth et al. 2010). Water samples were 

collected on weekly basis (weather permitting) at a depth of 10m using a 10L Niskin 

bottle, and species were identified by light microscopy using the Utermöhl technique 
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(Widdicombe et al. 2010a). Although measurements at station L4 are conducted on a 

roughly weekly basis, phytoplankton data were converted to monthly averages to 

account for gaps in the data. The dataset includes 198 phytoplankton taxa, including 

well-defined species (e.g. Alexandrium tamarense), but also more broadly-defined 

groups such as “Phytoflagellates 2µm”, indicating all flagellates with a mean diameter 

of 2µm (Widdicombe et al. 2010a; Widdicombe et al. 2010b). In this dataset, there were 

a wide range of phytoplankton species and associated dynamics, from numerically 

abundant, generic groups like “Phytoflagellates 2µm” (Fig. 1A) to rarely occurring 

Prorocentrum dentatum (Fig. 1B) and seasonally occurring Paralia sulcata (Fig. 1C). 

Some of the most numerically dominant diatom species were Paralia sulcata, 

Guinardia delicatula and Pseudo-nitzschia "delicatissima", whereas the most 

numerically dominant dinoflagellate species were Karenia mikimotoi and Prorocentrum 

cordatum. 
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Figure 1: Abundance (cells L-1) of three different illustrative phytoplankton taxa 
showing various dynamics within the community: (A) Phytoflagellates 2µm (B) 
Prorocentrum dentatum and (C) Paralia sulcata. There are 10 months of missing data 
in 22 years, as indicated by the gaps in the time series.   
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Group formation 

We estimated the predictability of both individual time series and grouped time 

series created by aggregating multiple time series together (i.e., creating an assemblage 

of species). By creating groups of species, we explicitly test whether portfolios of 

species are more predictable than individual species. We grouped taxa together 

randomly, within the diatom, dinoflagellate, coccolithophore and phytoflagellate 

functional groups, and by cell size. In the case of grouping species randomly, we 

selected a random subset of all species for each group size. In the case of functional 

groups, we followed the same process but limited the selection to only diatoms, 

dinoflagellates, coccolithophores or phytoflagellates. In the case of grouping by cell 

size, we created broader categories based on cell radius and randomly selected species 

within those categories. Each assemblage time series was an arithmetic sum of all the 

individual species data at each month over time. Since groups were generated from a 

random subset of all time series, we ran 1000 trials for each group size. Prediction 

estimates for each group size could then be provided as a mean value (𝜌) and a standard 

error with 95% confidence intervals. 

 

Empirical dynamic modeling (EDM) 

We use empirical dynamic modeling (EDM) to estimate the predictability of 

both individual and grouped time series. Briefly, EDM is a non-parametric framework 

for creating predictive models of dynamic systems (Sugihara and May 1990). EDM has 

been successfully applied to many problems, such as understanding fisheries 

recruitment (Munch et al. 2018) and testing the nonlinearity of large-scale 

oceanographic processes (Hsieh et al. 2005). In this study, we employ in-sample 
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simplex projection to predict phytoplankton assemblage and population dynamics 

(Sugihara and May 1990).  

Taken’s theorem suggests that we can reconstruct the dynamical attractor of a 

system with time lags of a variable of interest (Takens 1981). The number of lags is 

determined by E, the embedding dimension. Every time-point in a time series for each 

taxon can then be represented as a set of coordinates in this E-dimensional space 

{𝑥! , 𝑥!"#, 𝑥!"$…𝑥!"(&"#)}, where 𝑥! is the abundance of taxon	𝑥 at time 𝑡, and 𝑥!"# is 

its abundance at time 𝑡 − 1, etc. Following this reconstruction, we can then look at the 

nearest neighbors of every point and track their movement in time. Future predictions 

are the weighted average of the trajectory of the nearest neighbors. Prediction estimates 

are given by r (0 £ r £ 1), which is the standard correlation coefficient between 

observed data and the predicted values based on time series reconstruction. A higher r 

means that predictions a month in advance are more accurate, whereas lower r values 

mean the predictions are less accurate. We next assess whether predictability exceeds 

what would be expected from seasonal ecological changes.  

Phytoplankton in natural ecosystems often respond to seasonal environmental 

and biological changes. Therefore, we next describe a method for testing whether the 

predictability we estimate within each population time series exceeds what is expected 

from seasonality alone.  Here we implemented a surrogate test for each time series 

prediction. Surrogate time series are created in a series of steps: (i) calculate the 

climatological seasonal cycle for each population or assemblage (i.e., average all the 

data from all Januaries in the time series to calculate the average January phytoplankton 

abundance), ii) calculate the residuals, or anomalies, by subtracting the seasonal cycle 

from each time series, (iii) shuffle the time series of residuals, and iv) add the shuffled 
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residuals back to the repeating climatological seasonal cycle. The resulting surrogate 

time series removes the ecological dynamics within the time series but retains the 

seasonal cycle. We then calculated a r value using the simplex methodology described 

above for this surrogate time series to assess the predictability of the seasonality. A 

direct comparison of r between a time series and its associated surrogates then indicates 

the strength of our model in predicting actual ecosystem dynamics over seasonal 

forcing.  

 

Noise modeling 

We created a simple model to test how noise added to a time series, for example 

as measurement error, influences predictability. In the model, the abundance of each 

species through time (𝑥(,!) is a sine function with a species-specific phase shift and 

time-varying noise added: 

𝑥(,! =	𝐴 ∙ 𝑠𝑖𝑛(𝜔𝑡 + 	∅) + 𝐴 + 𝛾*+, ∙ 𝜀(,!*+, +	𝛽(*+,  (1) 

Where 𝑥(,! is the abundance of taxon 𝑥( at time 𝑡	(cells	L"#) , 𝐴	is the amplitude 

(unitless), 𝜔 is the frequency of oscillation, ∅ is the phase shift (rad), 𝛾*+, is the 

scaling factor of noise (unitless), 𝜀(,!*+, is the observational error (cells	L"#) and 𝛽*+, is 

an offset (cells	L"#) to ensure that 𝑥(,! ≥ 0. 

𝛽(*+, = Imin	(𝛾*+, ∙ 𝜀(,!*+,)I 

𝜀(,!*+,	~𝒩(𝜇 = 0, 𝜎$ = 1) 

The amount of observational error in the time series (𝜀(,!*+,) was selected from 

normally distributed noise and modulated by 𝛾*+,. Observational error refers to error 

associated within the sampling process. In this example, the model resolution is 
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monthly, and we add noise to each monthly time step. We tested the predictability of 

100 species in portfolios (of 1, 2, 3…100 species) with three levels of noise (𝛾 =

0, 0.5	𝑎𝑛𝑑	1). The phase shift (∅) allowed for some variability in dynamics across the 

model species. The values for each of the parameters can be found in Table 1. Sample 

time series from the model can be found in Fig. S1. 

 

Table 1: List of model parameters, units and values used in the noise model  

Symbol Parameter Units Value 

𝐭 time step months 1 

𝐱𝐢 abundance of species i cells	L"#  

𝐀 amplitude of oscillation - 1 

∅ phase shift rad −1 ≤ ∅	 ≤ 1 

𝛚 frequency of oscillation rad	month"# 2π
12 

𝛄𝐨𝐛𝐬 scaling factor for noise - 0, 0.5 (low) and 1 (high)  

𝛆𝐢,𝐭𝐨𝐛𝐬 observational error for 

species i 

cells	L"# ~𝒩(𝜇 = 0, 𝜎$ = 1)	 

𝛃𝐢𝐨𝐛𝐬 offset to ensure x2 ≥ 0 cells	L"# Imin	(γ345 ∙ ε2,6345)I 

 

 

Phytoplankton community modeling 

We next describe an idealized model of an interacting phytoplankton community 

that we use sequentially to test how inter-species interactions and stochasticity in vital 

rates influence predictability for individual and multiple model taxa. The model is based 

on the Lotka-Volterra competition equations (Lotka 1920). The abundance of species 𝑖, 

𝑥( 	(cells	L"#)	, is controlled by the realized population growth rate 𝑟(,!	(day"#) , the 
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carrying capacity 𝐾(,!	(cells	L"#), and the sum of interactions (𝛼(,7; 𝑢𝑛𝑖𝑡𝑙𝑒𝑠𝑠) with other 

species (𝑥7): 

89!
8!
= 𝑟(,!𝑥( 	(1 −

∑ ;!,#9#$
#%&

<!,'
)   (2) 

The realized population growth rate and carrying capacity for each species vary 

through time and are explained below. Each species interacted with only one-fourth the 

total number of species in the ecosystem and interaction strength was regulated by 𝛼. 

The interaction strength between any two species 𝛼(,7 was randomly selected from a 

uniform distribution with limits	±𝛼 and varied on a monthly basis. We created two 

treatments for interaction strength: (i) 𝛼 = 0 for no interactions between species and, 

(ii) 𝛼 = 0.25 for strong interactions between species. We limit the number of 

interacting species to one-fourth the total in order to simulate a community where many 

but not all species interact directly. Since interactions could be both positive and 

negative, every species had a minimum abundance of 1 × 10"#=cells	L"# through time 

to prevent extinction.  

The carrying capacity of each species (𝐾(,!) was controlled by the seasonal cycle 

without the addition of noise (Eq. 3):  

𝐾(,! = 		𝐾 ∙ (𝐴 ∙ 𝑠𝑖𝑛(𝜔𝑡) + 	𝛿) (3) 

𝛿 = 𝐴 + 0.1 

The scaling parameter K was constant and equal for every species. We added a 

small value 𝛿 to ensure that 𝐾(,! > 0. Each species had a basal physiological growth rate 

𝜇	(day"#) selected from 0.8 to 1.2. To introduce process noise into the system (that is, 

noise added to the key organism trait in the model), we added randomly generated 

values of growth rate 𝜀(
>	(day"#) to the seasonal cycle of each species. The values were 
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selected from a normal distribution	~𝒩(𝜇 = 0, 𝜎$ = 1). We chose to add noise on 

monthly timescales, assuming that environmental processes that influence growth rates 

(such as sea surface temperature anomalies) persist for weeks to months (Kuhn et al. 

2019). The realized population growth rate for each species (𝑟() at time t was a function 

of the physiological growth rate (𝜇), the seasonal cycle, and total amount of process 

noise (𝛾> ∙ 𝜀(,!
> ): 

𝑟( =	𝜇( ∙ (𝐴( ∙ sin(𝜔𝑡) +	𝜇( + 𝛾> ∙ 𝜀(,!
> +	𝛽(

>) (4) 

𝛽(
> = Imin	(𝛾> ∙ 𝜀(,!

> )I 

The parameter 𝛾> was determined at the start of each experiment. We had two 

treatments for adding process noise: (i) 𝛾> = 0 for no process noise and, (ii) 𝛾> = 1 for 

high process noise. 𝛽>	(day"#)	is an offset to ensure that 𝑟( ≥ 0 after the addition of 

process noise. 

The model was run with a time step of 6 hours for 20 years. We aggregated the 

6-hourly data to monthly averages to maintain our timescales of prediction and keep our 

model comparable to L4 monthly-averaged data. Our goal was to check the effects of 

interaction strength (𝛼) and level of process noise (𝛾>) on prediction skill (r) and the 

subsequent change in the portfolio effect for the model ecosystem. Values for each of 

the parameters in the model can be found in Table 2. Sample time series from the model 

can be found in Fig. S2. 
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Table 2: List of model parameters, units and values used in the phytoplankton 
community model 

Symbol Parameter Units Value 

𝐭 time step hours 6 

𝐱𝐢 abundance of species i cells	L"#  

𝐀 amplitude of oscillation - 1 

𝛚 frequency of oscillation rad	day"# 2π
360 

𝛂 limits of interaction strength - 0	(no	interactions)	 

	0.25(strong interactions) 

𝛂𝐢,𝐣 interaction strength between 

two species 

- 	−α < 	α2,@ < 	α 

𝛍 physiological growth rate day"# 0.8 ≤ µ ≤ 1.2 

𝐊 carrying capacity scaling 

factor 

cells	L"# 30,000 

𝐊𝐢 effective carrying capacity for 

species i 

cells	L"#  

𝛅 offset to ensure K2 > 0 - A + 0.1 

𝐫𝐢 realized growth rate for 

species i 

day"#  

𝛄𝐩 scaling factor for noise - 0 (no noise), 1(high 

noise) 

𝛆𝐢,𝐭
𝐩  process noise for species i day"# ~𝒩(𝜇 = 0, 𝜎$ = 1)	 

𝛃𝐢
𝐩 offset to ensure r2 ≥ 0 day"# Imin	(γB ∙ ε2,6

B )I 
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Results and Discussion 

Portfolio effect 

Are single species more or less predictable than groups of species? 

We find that predictability increases with the number of aggregated species, 

regardless of taxonomy, and the predictability exceeds what would be expected from 

seasonality alone. While individual or groups of few species tend to exhibit noisy 

population dynamics, larger aggregated group sizes tend to exhibit smoother, more 

repeating annual cycles of abundance (Fig. 2A; this figure shows three illustrative 

abundance time series with 5, 50, and 100 species added together). In this case, species 

are aggregated randomly with no regard for their taxonomic grouping. Prediction skill 

increases with group size for the actual time series and surrogates (Fig. 2B). However, 𝜌̅ 

is greater for the actual time series than for the seasonal surrogates, suggesting that the 

predictability is not merely a function of seasonality. The rate of increase in 

predictability with increasing group size saturates for large groups sizes, possibly 

pointing to a maximum level of prediction for assemblages of species in this system. 

We hypothesize that the existence of a maximum could be tied to the presence of noise 

in our data, originating from a range of sources such as observational error or stochastic 

environmental influence, which control the overall limits of being able to predict 

phytoplankton assemblage dynamics.  

One implication of this result is that while individual species may not be highly 

predictable on average, many species aggregated together can be much more 

predictable. This result appears consistent with empirical studies from aquatic and 

marine settings (Schindler et al. 2015) as well as theory (Koellner and Schmitz 2006). 

For example, experimental acidification of lakes has found that species composition 
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changes markedly while total biomass may not (Schindler 1990; Frost et al. 1995) and 

that experimental nutrient enrichment across multiple lakes produced contrasting 

responses in community structure but relatively consistent increases in total biomass 

(Cottingham and Carpenter 1998). Mutshinda et al. (Mutshinda et al. 2016) found that 

the total biomass dynamics of diatoms and dinoflagellates at the L4 station in the 

English Channel were distinct from one another and tied to environmental variations, 

but that the biomass of individual species within each group was typically less tied to 

environmental conditions.  
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Figure 2: (A) Abundance (cells L-1) of 5, 50 and 100 randomly grouped species from 
October 1992 to December 2014, and (B) Mean prediction skill (𝜌̅) for groups of 
species ranging in size from 1 to 198 species in the group (red) and their seasonal 
surrogates (blue). Each point is the mean of 1000 trials, and the black lines represent 
local regression fits for both sets of data (actual time series and surrogates). The shaded 
regions are 95% confidence intervals (defined as ±1.96 × 𝑆𝐸). The confidence 
intervals narrow with increasing group size because the number of distinct groups of 
species decreases. 
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The effect of noise on time series predictions 

Using the simple model where species differ only in the timing of their seasonal 

blooms and noise added to the time series (Eq. 1, Section 2.4), we find that increasing 

the level of noise decreases the predictability of populations (Fig. 3). In the case where 

no noise is added to the repeating seasonal cycles of abundance, the system has perfect 

predictability (𝜌̅ = 1) and increasing the group size does not change predictability. As 

the noise increases, the maximum prediction skill decreases, and this reduction is 

particularly evident for the individual time series (Group size = 1) (Fig. 3). In the case 

of low and high noise (𝛾 of 0.5 and 1, respectively), prediction skill increases with 

group size, as for the L4 times series data (Fig. 2). The aggregation of multiple time 

series amplifies the seasonal cycles by diluting the effect of process noise. This is also 

why the surrogate time series are as predictable as the model time series. These results 

suggest that noise from a range of sources, including observational error, tends to 

decrease predictability. The larger the amount of noise added, the larger the group size 

must be to achieve high predictability. 
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Figure 3: Mean prediction skill (𝜌̅) by group size for the simple model exploring how 
measurement noise affects predictability (Eq. 1), with three levels of noise (No noise, 
Low and High noise levels). Each point is the mean of 100 trials at each group size. The 
shaded regions are 95% confidence intervals (defined as ±1.96 × 𝑆𝐸). The model 
predictions overlap with the surrogate predictions because there are no dynamics 
beyond seasonality in the model. 
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Species interactions and stochasticity 

Using a simple ecological model that resolves species interactions and stochastic 

variations in growth rates (Equations 2-4, Section 2.5), we examine how interaction 

strength and stochastic behavior in growth rates influence predictability. In the case 

where species do not interact	(𝛼 = 0) and there is no stochasticity (𝛾> = 0) in growth 

rates, the predictability of all groups is perfect (𝜌̅ = 1) and does not increase with group 

size (Fig. 4A). In the case where there is no stochasticity (𝛾> = 0) in growth rates, but 

species interact (𝛼 = 0.25, Fig. 4B), the predictability of individual species is lower 

than the predictability of aggregated groups. Prediction skill increases with group size 

and exceeds what would be expected from seasonality alone. In the case with 

stochasticity in growth rates (𝛾> = 1) but no interactions between species (𝛼 = 0, Fig. 

4C), the predictability of individual species is lower than the predictability of groups 

and increases with group size. This predictability is also greater than what would be 

expected from seasonality. We find a similar result in the case with both stochasticity 

and species interactions (𝛾> = 1, 𝛼 = 0.25;	Fig. 4D). Thus, when stochastic variations 

in growth rate are uncorrelated across species, the dynamics of individual species may 

be more difficult to predict than assemblages containing many species. The dynamics of 

individual species are also more difficult to predict in the presence of inter-species 

interactions. Because there are many possible factors that influence the growth of 

phytoplankton in real systems that may be difficult to resolve, and because the 

interactions between species are in many cases difficult to assess, our results suggest 

under these conditions predicting single species will be difficult while prediction of 

assemblages of species may be more skillful.  
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Figure 4: Mean prediction skill (𝜌̅) by group size for the model resolving variations in 
growth rate and carrying capacity (Eq. 2-4) with (right column) and without inter-
species interactions (left column). The model was run without stochasticity in growth 
rates (e.g., process noise; top row) and with stochasticity in growth rates (bottom row). 
Each point is the mean of 100 trials at each group size. The shaded regions are 95% 
confidence intervals (defined as ±1.96 × 𝑆𝐸). 
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How does group composition affect predictability? 

We also explored whether predictability varied across taxonomic groups of species 

(e.g., diatoms, dinoflagellates, coccolithophores and phytoflagellates) and across cell 

size (Figs. 5-6). We first analyze the predictability of diatoms, dinoflagellates, 

coccolithophores, and phytoflagellates, as these groups are well-represented at the L4 

station, with 130, 37, 16, and 14 taxa, respectively. In many applications, taxonomically 

similar species are analyzed (Widdicombe et al. 2010b) or modeled (Le Quere et al. 

2005) collectively rather than on a species level, even though species within groups in 

many cases have different traits (Edwards et al. 2012; Marañón et al. 2013) and 

ecological dynamics (Edwards et al. 2013a; Mutshinda et al. 2016). We also separate 

taxa measured at L4 into three size classes: small (<5µm), medium (5-12µm), and large 

(>12µm). The size cutoffs are arbitrary but designed so that each group has a roughly 

equal number of taxa. Like taxonomic groups, in many cases phytoplankton of similar 

size are aggregated together in field measurements or satellite algorithms (Hirata et al. 

2011). Cell size constrains many important organism traits, such as growth rate and 

nutrient affinity (Edwards et al. 2012; Marañón et al. 2013), as well as predator-prey 

interactions (Hansen et al. 1994, 1997) and therefore may provide an additional way of 

grouping phytoplankton, and drawing out any differences in the portfolio effect that 

could arise as a result of group selection.  
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Taxonomy 

Mean prediction skill increases with group size for diatoms, coccolithophores 

and phytoflagellates (Figure 5A-C). Unlike other functional groups, the predictability of 

dinoflagellates does not increase with group size (Figure 5D). For all the functional 

groups, there is a clear difference between the predictive skill of time series and 

predictions based on seasonality alone. Dinoflagellates also have lower maximum 

predictability at high group size than other groups (lower 𝜌̅  in Fig. 5D compared to 

others). Why do dinoflagellates apparently differ from other groups in this regard? 

Dinoflagellates are a morphologically and physiologically diverse group of 

phytoplankton (Smayda and Reynolds 2003; Hackett et al. 2004; Brandenburg et al. 

2018). They exhibit not just a range of morphology and size-constrained traits, but also 

large variations in trophic mode, motility, production of allelopathic chemicals, and 

other traits (Smayda 1997; Stoecker et al. 2017). Since the portfolio effect is not 

apparent for this group, we believe that dinoflagellate species have dynamics that are 

independent of each other (i.e. aggregated data is not indicative of a common process on 

a larger ecological scale). Unlike dinoflagellates, the predictability of both diatoms and 

coccolithophores increased with group size (Figure 5A-B). A strong portfolio effect for 

diatoms and coccolithophores might point to common processes or features that link 

individual species, for example the uptake of silica by diatoms (Hamm et al. 2003). The 

results suggest that the portfolio effect in ecology is dependent on the process of group 

selection. A possible implication of these results is that field measurement programs 

should focus efforts on identifying to species level those phytoplankton, such as the 

dinoflagellates, for which predictability does not increase with group size. In contrast, 
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for groups such as diatoms, a coarser level of identification (i.e., to genera) would not 

limit the utility of the data for making predictions.  

 

 

Figure 5: Mean prediction skill (𝜌̅) of time series (red) and seasonal surrogates (blue) 
for (A) Coccolithophores (N=16) (B) Diatoms (N=130) (C) Phytoflagellates (N=14) 
and (D) Dinoflagellates (N=37).  Each point is the mean of 1000 trials, and the black 
lines represent local regression fits for both sets of data (actual time series and 
surrogates). The shaded regions are 95% confidence intervals (defined as ±1.96 × 𝑆𝐸). 
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Size 

Next, we describe how predictability changes across three size bins (<5µm, 5-

12µm, and >12µm). For cells in the <5µm size range, predictability increases with 

group size (Fig. 6A). The increase with group size is minor for cells in the 5-12µm size 

range (Fig. 6B) and negligible for the largest cells (Fig. 6C). The maximum 

predictability at large group size is lower for the largest compared to the smallest 

phytoplankton (comparing  𝜌̅  across Fig. 6A-C). A similar result is apparent when we 

look only within the diatoms (Fig. 7): predictability increases with group size for the 

smallest diatoms (Fig. 7A) but does not change much for the larger diatoms (Fig. 7B-

C). The relative insensitivity of prediction skill to group size among larger 

phytoplankton may be due to the observation that episodic blooms of phytoplankton are 

typically dominated by large phytoplankton (Irigoien et al. 2004).  

There are several implications of this finding. First, because increasing group size 

does not lead to increased prediction strength in large phytoplankton (including among 

diatoms; Fig. 6C, 7C), field measurement programs ideally should continue to measure 

and identify all species in this size range individually. In order to predict the dynamics 

of large phytoplankton, each species should be considered independently of each other 

as it is more important to retain species-specific information. In contrast, for the 

smallest phytoplankton, skillful predictions of integrated biomass of small 

phytoplankton might be achieved by measuring a few tens instead of all species (Fig. 

6A, 7A). This suggests that numerical models used for ecological prediction and 

forecasting may need to resolve even more biodiversity among the larger size classes 

(e.g., Follows et al. 2007; Dutkiewicz et al. 2015). Similarly, for field monitoring 

programs designed to detect (Widdicombe et al. 2010b) and forecast changes in marine 
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ecosystems, an ideal sample design might focus taxonomic identification time on the 

larger taxa but allow some of the smaller, harder to identify groups to be aggregated 

together.   
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Figure 6: Mean prediction skill (𝜌̅) of time series (red) and their seasonal surrogates 
(blue) for cells with radius (A) <5µm (N = 68) (B) 5-12µm (N = 63) and (C) >12µm (N 
= 67). Each point is the mean of 1000 trials, and the black lines represent local 
regression fits for both sets of data (actual time series and surrogates). The shaded 
regions are 95% confidence intervals (defined as ±1.96 × 𝑆𝐸). Pie graphs at right 
provide the relative diversity of taxonomic groups within each size-based category (Diat 
– diatoms, Dino – dinoflagellates, Cocco – coccolithophores, Phyto – phytoflagellates 
and Other – Phaeocystis).  
 

0.0
0.1
0.2
0.3
0.4
0.5

20 40 60
Group size

r

Time series
Surrogate

Radius <5 µm/cellA

0.0
0.1
0.2
0.3
0.4
0.5

10 20 30 40 50
Group size

r

Radius 5−12 µm/cellB

0.0
0.1
0.2
0.3
0.4
0.5

20 40 60
Group size

r

Radius >12 µm/cellC

N = 72

N = 59

N = 67

Group
Diat
Dino
Cocco
Phyto
Other



 

 28 

 

Figure 7: Mean prediction skill (𝜌̅) of time series (red) and their seasonal surrogates 
(blue) for only diatoms of the following radius: (A) <5µm (N = 44) (B) 5-12µm (N = 
40) and (C) >12µm (N = 46). Each point is the mean of 1000 trials, and the black lines 
represent local regression fits for both sets of data (actual time series and surrogates). 
The shaded regions are 95% confidence intervals (defined as ±1.96 × 𝑆𝐸). 
 

 

 

 

 

 

0.0

0.1

0.2

0.3

0.4

10 20 30 40
Group size

r
Radius <5 µm/cellA

0.0

0.1

0.2

0.3

0.4

10 20 30 40
Group size

r

Radius 5−12 µm/cellB

0.0

0.1

0.2

0.3

0.4

10 20 30 40
Group size

r

Radius >12 µm/cellC

Time series Surrogate



 

 29 

Conclusions 

The dynamics of individual phytoplankton populations are noisy and typically 

difficult to predict. The portfolio effect is an approach that relies on the aggregation of 

data to reduce variability and identify long-term patterns and trends. By aggregating 

individual phytoplankton populations into varying assemblage sizes, we used empirical 

dynamic modeling to assess the predictability of population and assemblage dynamics 

over monthly timescales. We observed that the presence of noise in data, such as 

observational error and stochastic environmental influence, reduces the overall 

predictability of phytoplankton populations. Predictability is also significantly affected 

by how species are grouped together. Dinoflagellates and large phytoplankton (>12µm 

cell radius) have lower overall predictability and do not increase in predictability with 

group size. This could be tied to the differences in dynamics between the individual 

species. In contrast, aggregating species as coccolithophores, diatoms, and 

phytoflagellates leads to improved predictability of the composite assemblage 

abundance time series over individual taxa. Similarly, small phytoplankton (<5µm cell 

radius) are more predictable in groups than as individual taxa and this predictability 

exceeds that which we expect from seasonality alone. Field monitoring programs should 

continue to focus efforts on species-level identification of dinoflagellates and large 

phytoplankton. In contrast, high predictability of smaller phytoplankton and 

coccolithophores, diatoms, and phytoflagellates could be achieved by aggregating them 

together, for example by size fractionating measurements or identifying species only to 

genus or higher level. 
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Appendix 

 

 

Figure S1: Abundance (cells L-1) of three noise model taxa with various levels of 
observational error: (A) No noise (B) Low Noise and (C) High noise. The values for the 
parameters can be found in Table 1. 
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Figure S2: Abundance (cells L-1) of three phytoplankton community model taxa (A) 
with no noise and inter-species interactions (B) with inter-species interactions and (C) 
with process noise. The values for the parameters can be found in Table 2. 
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