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Introduction – Assessing Prediction Models to 
Support Clinical Decisions

What is the situation? A fundamental problem of medical  
decision making is that of prognosis.1 The patient and clinician 
must decide which among the available treatments is likely to 
lead to the best outcome for that particular patient. When there 
is heterogeneity in individual patient’s risk for poor outcome, 
reliance on the population ‘mean’ treatment effect may be of 
limited value. We seek a personalized prediction of patient 
health trajectories for the different treatments under consider-
ation. In addition, many medical treatments come with both 
expected and unintended consequences (eg, monetary cost, 

inconvenience, side effects). Optimal treatment decisions must 
weigh a patient’s likely benefits against the risk and severity of 
these consequences. In the following, we focus on situations 
in which the different treatment choices affect the probability 
of patient outcomes. Our goal is to evaluate the quality of pre-
diction models or rules in the presence of uncertainty about 
outcomes.

Statistical model selection and prediction assessment 
are long-standing problems in the field of statistics (see 
eg,2,3). Much effort has been focused on the statistical prop-
erties of predictive models and their predictions. Common 
evaluation criteria include the Brier score and the area under 
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the receiver operating characteristic (ROC) curve. However, 
the clinical benefit of an improved predictive model remains 
difficult to assess. New measures are emerging which seek 
to quantify the clinical utility of predictions. These include 
reclassification measures (net reclassification improvement 
and integrated discrimination improvement4), as well as 
decision curves5 and relative utility curves.6,7 The decision 
curve analysis quantifies the clinical utility of a diagnostic 
prediction model by incorporating harms and benefits into 
an optimal decision threshold. The advantage of the Vickers 
and Elkin (VE)5 approach is that a risk probability thresh-
old can be used to “both categorize patients as positive or 
negative and to weight the false-positive and false-negative 
classifications”.8 Baker et al.6 extend decision curves ideas to 
evaluate the relative expected maximum utility. This is the 
ratio of expected utility achieved by a risk prediction model 
to that obtained by perfect prediction. A key idea in both 
Ref. 5 and 6 is that the importance of harms and benefits 
may differ from patient to patient. Both approaches consider 
a range of thresholds appropriate to a particular diagnostic 
situation.

What is our solution? We propose a novel approach 
to evaluating prediction models using a decision analytic 
framework. Our work stems from the observation that 
a prediction model is clinically useful only if it changes a 
treatment decision and the prediction-supported treat-
ment improves the patient’s outcome compared to that 
which would have occurred with the original treatment 
choice. The clinical utility of prediction relies on the avail-
ability of better treatment options. Our approach com-
bines a predictive model’s ability to discriminate good 
from poor outcome with the benefits afforded by treat-
ment. It also includes the (potential) negative consequences  
of treatment. We term this combination of predictive model 
and treatment efficacy the “combined benefit” (CB) of pre-
dictive treatment. We focus on a setting where the proposed 
treatment reduces a patient’s risk (probability) of a poor pri-
mary outcome. The choice of whether to take a chemopre-
ventive agent is our motivating example.

To preview our result, consider the probabilities of 
acquiring disease when doing nothing or taking a treatment, 
pN and pT, respectively. With each choice there is an associ-
ated “cost” (money, side effects, inconvenience), CN and CT. 
Also, we must consider the patient’s utility (a valuation of a 
patient’s preferences for different outcomes) for acquiring dis-
ease. Let U0 be the patient’s utility for no disease, and UD that 
for acquiring disease. Then, the standard decision rule9 is that 
treatment should be selected only if
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That is, the reduction in risk of disease is greater than the 
cost-to-benefit ratio of treatment.

To assess a prediction model or treatment rule, we pro-
pose the CB criterion. This combines model-based predictions 
of acquiring disease (pN and pT) with costs and benefits associ-
ated with treatment.
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where f0 denotes the fraction of eligible patients who subse-
quently do not develop disease, and fT the fraction who are 
treated. To evaluate a prediction model, the CB criterion may 
be considered a function of the cost–benefit ratio. The model 
influences the criterion through estimates of pN and pT, and 
their subsequent effect on treatment decisions and the fraction 
of patients treated. A model results in a larger CB if it cor-
rectly identifies patients who will benefit from treatment, and 
those who will not.

The cost–benefit ratio may be considered a patient-specific 
threshold for selecting treatment. Competing prediction mod-
els and/or treatment rules can be compared at each threshold 
value. It is possible for one model to provide greater benefit 
when the treatment cost is high, but a different model to be 
superior with low treatment cost. Further, patients have het-
erogeneous attitudes toward treatment cost and benefit. Thus, 
identifying a relevant range of treatment thresholds is key to 
evaluating competing prediction models. We note that indi-
vidual patients do not benefit directly from the proposed CB 
framework. The benefit is indirect, and is achieved through 
the use of decision support models tuned to problem-specific 
costs and benefits.

Links to similar approaches. Our approach follows 
directly from an application of decision analysis, and is related 
to several results reported previously. Observe that the deci-
sion rule above is related to a widely used measure of clinical 
effectiveness, the “number needed to treat” (NNT).10 This is 
the number of patients who must be treated to prevent one 
patient’s disease. The form of this measure is

 
NNT

N T
=

−
1

p p

Clearly, NNT is the reciprocal of the standard decision 
rule (eqn. 1, above), but in our approach, it is scaled by the 
relative benefit and cost of treatment.

Also, our approach is similar to Vickers and Elkin5 and 
to Baker et al.6 for evaluating diagnostic prediction.

 ( )1

Loss of  overtreatment
Benefit of  treating diseased–

p
p

=

where p is an individual’s probability of disease. All three 
approaches rely on a formal decision analysis framework, and 
all consider a relevant region of risk, which is most useful for 
clinical decision making.
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However, our approach differs in several important ways. 
First, we are concerned with problems in which the proposed 
treatment reduces the risk of disease. This leads to a criterion 
based on the difference in risk probabilities. Conversely, Ref. 
5 and 6 consider the problem of diagnosis, and their criterion 
follows the odds ratio. Second, our CB measure relies on both 
the predictive model and the costs and benefits of the treat-
ment. VE’s “net benefit” criterion combines predictive accu-
racy with the costs of misclassification. Finally, CB makes use 
of utilities from both treated and untreated patients, whereas 
net benefit considers only patients with a positive diagnosis.11 
By comparison, Baker et al.6 developed a relative utility curve, 
which compares the performance of a risk prediction model 
with that achieved by perfect prediction. They also propose 
a “test threshold”: the minimum number of tests that would 
be traded for a true positive while maintaining non-negative 
expected utility.

other perspectives. Our approach relies on a Bayesian 
perspective of decision making under uncertainty.12,13 Spe-
cifically, it allows personalistic, subjective probabilities and 
utilities. Despite a scientific history since the 1930s,14,15 there 
remain both practical difficulties and philosophical foundation 
controversy regarding this approach. Practically, evaluating 
and quantifying each patient’s cost–benefit ratio (eg, in eqn. 1)  
is a key challenge. Both costs and benefits are composed of 
multiple objectives, and contribute to patient’s highly person-
alistic utility valuations. In addition, the philosophical foun-
dations of Bayesian decision theory have been criticized for 
their subjective nature, behavioristic decision making (rather 
than scientific inference), and reliance on semi-empirical,  
a priori reasoning.16,17

The next section introduces a motivating example in the 
area of colorectal adenoma chemoprevention. We make use 
of data from a clinical trial18 evaluating a drug treatment to 
prevent adenoma recurrence. This trial exhibits key features 
that motivate our approach, and is an informative example 
for evaluating a predictive model. Note, however, we do not 
consider this as an analysis of the trial data. Because formal 
decision analysis is frequently omitted from informatics, bio-
statistics, and epidemiology training, Section 3 reviews the 
principles involved. Section 4 develops the CB measure, and 
Section 5 demonstrates its use with the adenoma chemopre-
vention trial data. Finally, we discuss ramifications of using 
formal decision analysis techniques to evaluate patient treat-
ment decisions.

example: Chemoprevention of Colorectal Adenoma
To motivate development, we consider a chemoprevention 
trial to prevent recurrence of colorectal adenomas.18 This trial 
was hugely successful in recurrence prevention, and has mul-
tiple features which make it informative for methodologic 
examination. We use data from this clinical trial to motivate 
development of the methods, and to demonstrate use of the 
predictive model CB analysis.

Difluoromethylornithine (DFMo) and sulindac 
clinical trial overview. Three hundred seventy-five patients 
with a history of resected adenoma were randomly assigned to 
an oral chemopreventive, DFMO plus sulindac, or placebo fol-
lowing a stratified randomization scheme. Colonoscopies were 
performed at baseline and three years post-randomization.  
An independent data safety and monitoring board recom-
mended early-stopping of the study for treatment efficacy. 
There were 267 evaluable patients: 129 in the placebo arm 
and 138 assigned to treatment with DFMO. Adenoma recur-
rence was 41% in the placebo group, and only 12% for patients 
treated with DFMO (risk ratio 0.30, 95% confidence interval 
0.18–0.49, P , 0.001).

trial safety: side effects with chemopreventive treat-
ment. Any chemopreventive may increase the risk of side 
effects and adverse events. The DFMO treatment suggests 
small increases in risk of several side effects (shown in Table 1). 
None of the treatment groups comparisons reached statisti-
cal significance (P , 0.05). Nevertheless, any trend toward 
greater risk with DFMO is the same for the reported condi-
tions. This suggests that we should consider the (predicted) 
benefit of DFMO treatment and weigh it against potential 
side effects in considering patient treatment decisions.

Decision problem components. Suppose we now con-
sider treating a new patient with a resected adenoma. The 
patient has the choice of taking a chemoprevention therapy 
(DFMO + sulindac) to prevent recurrence. “Should this 
patient take DFMO + sulindac or not?”

The patient’s decision may involve (at least) the following 
questions:

•	 What is the patient’s risk of adenoma recurrence, say, in 
3 years?

•	 If chemoprevention is chosen, what is the risk of 
recurrence?

•	 With chemoprevention, what are the risks and severity of 
side effects?

•	 Are there additional treatment risks without chemopreven-
tion (such as risk associated with more colonoscopies)?

The usual statistics of trial reporting (OR = 0.3, 
P , 0.001) are informative about the average response to 
treatment, but do not tell us about individual patient’s risk 
and benefit. If patients are heterogeneous for baseline risk, 

Table 1. Reported frequency of side effects and adverse events (AE) 
from the DFMO plus sulindac trial, Meyskens et al. 2008.

EvENT PLACEBo DfMo + SUL RISk RATIo

AE w/Hosp. 17% 22% 1.3

Cardiovascular 12% 15% 1.2

Gastrointestinal 8% 13% 1.7

15 dB Hearing Loss 10% 18% 1.9

http://www.la-press.com
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treatment benefit, or risks of side effects, we need a more 
personalized approach.

Fundamentals of Decision Analysis
When faced with a decision in the context of uncertain risk 
and benefit, we rely on Bayesian decision analysis to provide a 
principled, coherent approach. We provide only a brief over-
view of the process. For textbook accounts of general Bayesian 
decision analysis, see eg, Ref. 13 and 19. For a text focusing on 
medical decisions see Ref. 20. Also, Ref. 9 provides a readable 
introduction to the implementation of evidence-based medi-
cine as Bayesian decision-making.

A decision analysis explicitly recognizes multiple compo-
nents of a decision problem. We outline the components and 
their parallel in the chemoprevention example.

1. The decision maker (DM): patient (and her physician).
2. The set of actions available to DM: take DFMO + sulin-

dac or not.
3. The possible outcomes or consequences that may be 

uncertain: adenoma recurrence, adverse events, hearing 
loss, carcinoma.

4. Information or evidence that may be relevant: DFMO 
and sulindac chemoprevention trial

5. Utility, an assessment of the DM’s preferences for the 
different outcomes: weighs disease recurrence against 
possible side effects of medication. This also considers 
less well defined factors such as the requirement of taking 
daily medication, or increased risk from more colonosco-
pies. Patients’ utilities vary substantially by individual.

The DM’s goal is to choose among the possible actions to 
achieve the best outcome. “Best” is defined by the probabil-
ity weighted outcome preferences; this is maximum expected 
utility.

More formally, consider the set of actions A = {a1, a2,⋅⋅⋅, ak}  
available to the DM, and that z ∈ Z are the uncertain out-
comes. The choice of ai induces a probability distribution on Z 
that may depend on (nuisance) parameters θ ∈ Θ. We denote 
this by

 ( )|θap z

The information available about θ is denoted by x, and 
may be represented by p(θ | x). Finally, the DM’s preferences 
for the different outcomes are described by a utility function, 
u(z, a), which values the different outcomes z for action a 
(from Ref. 20 p. 55).

The expected utility for each potential action, ai, may be 
computed, conditional on information x.

 
( ) ( ) ( ) ( ), | | d dθ θ θ

Θ

= ∫ ∫ a
z

U a u z a p z p x z

The best action is the ai that maximizes expected utility.
Note that we may rearrange the equation, and integrate

 
( ) ( ) ( ) ( ), | |θ θ θ

Θ

= ∫ ∫ az
U a u z a p z p x d dz  (3)

( ) ( ), | d= ∫ a
z

u z a p z x z  (4)

where pa(z | x) is the (posterior) predictive distribution of 
outcome z, given information x, when action a is taken. Now 
the meaning of the equation is clear. We choose the action 
that maximizes the weighted average of the outcome utilities. 
The weights correspond to the predictive distribution of out-
comes when action a is taken (for each patient).

Combining risk Prediction and treatment benefit
We develop the prediction–treatment CB criterion. To ease 
interpretation, we describe development in terms of the ade-
noma chemoprevention example. For this development, we 
assume that a model is available to predict the probability of 
adenoma recurrence. This model accounts for differences in 
baseline risk associated with patient-specific covariates, and 
for differences in risk associated with chemopreventive treat-
ment. In the next section, we describe one modeling approach 
to predict heterogeneous probability of recurrence.

For each person, we estimate the reduction in probability 
of adenoma recurrence associated with DFMO treatment. Let 
pNi denote the probability of recurrence for patient i with no 
treatment, and pTi the probability with DFMO treatment. If 
the risk reduction with treatment (pNi − pTi) is large enough, 
then treatment is indicated.

We also posit a benefit of avoiding disease recurrence:  
U0i − UDi, where U0i denotes the patient’s utility of no recur-
rence, and UDi their utility of disease recurrence. Similarly, 
each patient incurs a loss associated with treatment (side 
effects, inconvenience, cost): CTi − CNi.1 Consider this the 
“cost” of treatment minus the “cost” of no treatment. Clearly 
costs are more than just monetary.

A standard decision analysis result (Ashby and Smith, 
2000) says to treat only if

 0

T N
N T

D

–
– cost : benefit ratio

–
i i

i i
i i

C C
p p

U U
> =

We define the indifference threshold (δi) to be the probabil-
ity difference where left and right hand sides of the inequality 
above are equal.
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δ
−
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−
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1Side effects should also be considered under uncertain outcomes, and their risk mod-
eled. For simplicity we consider them fixed for each patient.
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Thus, we treat only if predicted risk reduction is greater 
than δi. In the next subsection we compare the patient-specific 
index δi against a threshold (δ) to classify patient’s treatment 
decisions.

Cb. Now consider a fixed risk reduction threshold S. We 
may create a table describing treatment choice and outcome 
for the population of patients eligible for treatment. Note that 
patients with large risk reduction, pNi − pTi . δ, are treated, 
while those with small risk reduction, pNi − pTi , δ, are not. 
Table 2 illustrates the treatment decision process.

The table entries a, b, c, and d denote the fractions of 
people treated/not treated, and the fractions with adenoma 
recurrence/no recurrence. Note that a + b + c + d = 1. If all 
patients are treated, then a = pT, probability of recurrence 
among treated. If none are treated, then c = pn, probability of 
recurrence among untreated.

Now, for a fixed δ the expected benefit (expected utility) 
of the combined treatment and prediction model is

( ) ( ) ( ) ( )0

Expected Benefit 

– –= + + + + +D T Na c U b d U a b C c d C

Consider this the average benefit per person.
To derive CB, we perform some algebra adding and sub-

tracting (b + d)UD and (a + b)CN. After rearranging and col-
lecting terms we obtain the following expression:

Expected benefit

D T N D N= +( ) −( ) − +( ) −( ) + + + +( ) −(b d U U a b C C a b c d U C0 ))
Note that the last term is constant for all values of δ, and can 
be ignored for decision making. Finally, we divide by U0 − Ud 
(assume U0 − Ud . 0, adenoma recurrence is not the preferred 
outcome). This results in the CB criterion.

 
( ) ( ) T N

0
Combined benefit( )

D

C C
b d a b

U U
δ

 −
= + − +  − 

 (5)

( ) ( )– δ= + +b d a b  (6)

For any risk reduction, δ = pN − pT, the CB criterion 
[CB(δ)] is the fraction of people who do not recur, less the frac-
tion who are treated, weighted by the relative cost of treatment. 
This is the average benefit per person after adjusting for the 
cost of treatment. Note that if everyone is treated (ALL), then 
CB(δ) = 1 − pT − δ. As a function of δ, this is a line with slope −1.  
If no one is treated (NONE), then a = b = 0, and CB(δ) = 1 − pN,  
the fraction of nontreated patients who do not recur.

Use of Cb. The relative cost of treatment, δ, is a useful 
index to aid treatment decisions. At the indifference thresh-
old, δ may be interpreted as both the relative cost of treatment 
and (predicted) risk reduction necessary to justify treatment. 
For treatments with a small relative cost (eg, taking a mul-
tivitamin), only a small reduction in risk is needed to accept 
treatment. Conversely, when the relative cost is high (eg, pro-
phylactic colonectomy), then the risk reduction must be large 
to justify treatment. Each medical decision has a relevant range 
of δ values. We may think of this range spanning the patients’ 
tolerance to risk of poor outcome and to treatment cost.

CB can be used to compare different prediction models 
or rules, as well as the treat ALL and treat NONE decision 
rules. Prediction models enter CB(δ) through the computed 
values pNi and pTi. For a fixed risk reduction, different predic-
tion models will perform better or worse at actually classifying 
patient outcome. We may compute CB(δ) for each prediction 
model (or rule) across δ values, focusing on the range relevant 
to the clinical decision. Models with larger CB provide greater 
benefit. We note three key features of CB.

1. We care only about a specific range of δ values for each 
decision. Better prediction outside that range is not clini-
cally relevant.

2. CB may be improved by better identification of patients 
likely to be helped by treatment.

3. CB is also improved by identifying patients unlikely to 
benefit from treatment.

Predicting a Patient’s risk of recurrence
We outline our procedure for predicting risk of adenoma 
recurrence; the details are given in Appendix 1. The goal of 
the CB criterion is to evaluate the clinical relevance of a pre-
diction model and treatment decisions based on the predictive 
distributions. The model developed for our adenoma example 
is intended to illustrate the procedure. It is not intended as an 
exhaustive analysis of adenoma recurrence.

The primary outcome is adenoma recurrence after three 
years of follow-up. We model the probability of recurrence using 
logistic regression with Bayesian model averaging (BMA21). 
BMA accounts for uncertainty in the selection of the predic-
tion model, as well as in the model coefficients. This approach 
has been shown to improve model predictive performance, and 
appears less prone to overfitting than alternative procedures.

We fit separate models for placebo- and DFMO-treated 
patients. In each model, potential predictors include patient 
demographics (age, sex, body mass index [BMI], aspirin use), 
as well as characteristics of their baseline adenoma. These char-
acteristics include:

•	 Location: proximal or distal colon
•	 Large adenoma (.1 cm)
•	 Number of adenomas
•	 Villous (yes/no)

Table 2. Treatment decision and outcomes for a specific value of δ.

TREATMENT DEvELoP DISEASE No DISEASE

treated; pNi—pTi . δ a b

Untreated; pNi—pTi , δ c d

http://www.la-press.com
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Potential molecular (PGE2, putrescine, spermidine) and 
genotypic (Ode and Fmo3) biomarkers were also considered. 
None of these, however, was found to be predictive of recur-
rence. They are not considered further.

bMA results overview. For patients receiving placebo, 
the model average fitting summary is shown in Table 3. The 
second column, Pr(β ≠ 0), sums the posterior probabilities 
across models that include a given predictor. Unlike P-values, 
larger probabilities indicate a greater role in prediction. The 
number of adenomas and adenoma location at baseline are 
important predictors of recurrence. These predictors exhibit 

substantial probability of inclusion in prediction at 0.66 and 
0.58, respectively. In addition, aspirin use among male patients 
adds to predictive ability [Pr(β ≠ 0) = 0.39]. Note, however, 
that aspirin use was very different among males and females, 
and it is unclear whether this represents an independent 
effect of aspirin use. See Appendix 1 for details and further 
interpretation.

Figure 1 shows the posterior predictive probability of 
recurrence for patients assigned to the placebo group. We 
observe substantial heterogeneity of recurrence risk ranging 
from 25% to about 75%. The error bars indicate uncertainty 
associated with modeling. These regions indicate 66% (black) 
and 95% (gray) posterior predictive probability. For DFMO-
treated patients, none of the predictors has substantial prob-
ability of model inclusion. With DFMO treatment, our best 
prediction is that all patients have about 12% risk of recur-
rence. This inability to detect important predictors of recur-
rence is likely because of the small number of recurrences 
among treated patients (17 of 138). These posterior predictive 
probabilities will be used in the calculation of the CB crite-
rion. For each patient, they represent our best estimates of pN 
and pT, respectively.

Table 3. Distribution of BMA logistic regression coefficients for placebo 
patients. Results average over 30 best models retained by BMA.

PRoB β ≠ 0 E[β] SD[β]

Intercept 1.00 −1.41 0.60

Number of adenomas 0.66 0.31 0.26

Location (proximal) 0.58 0.63 0.62

Aspirin use (yes) 0.19 0.18 0.40

Sex (male) 0.04 0.03 0.17

Sex * Aspirin 0.39 0.40 0.56

with DFMO + Sulindac

0.00
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figure 1. Predicted probability of recurrence for patients with placebo treatment. Center point is the Bayesian model average prediction. Error bars show 
66% (black) and 95% (gray) model uncertainty intervals. Orange line denotes the predicted recurrence with DFMO plus sulindac treatment (with 95% 
credible region).
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figure 2. The CB of prediction and treatment (Y axis) for different treatment thresholds δ (X axis). The CB of the BMA prediction model of adenoma 
recurrence is denoted by the blue line. The dashed (black) line corresponds to the CB of treating ALL patients, while the horizontal dotted line denotes the 
benefit of treating NONE.

results – Cb Curves to Assess Prediction
We use the BMA results of the previous section to dem-
onstrate the CB curve method. We use point estimates for 
disease probabilities and patient fractions a, b, c, and, d 
based on the observed clinical trial data.18 While there is 
some danger of over-optimistic assessment, recall that BMA 
is robust to overfitting. As with all prediction model assess-
ment, use of an independent test set would provide a more 
reliable approach.

Figure 2 shows the CB curve [CB(δ)] for the BMA predic-
tion model of adenoma recurrence (blue line). Small values of δ 
correspond to low cost treatments (those with mild side effects), 
while large values are associated with high treatment cost. The 
dashed (black) line corresponds to the CB of treating ALL 
patients, while the horizontal dotted line denotes the benefit 
of treating NONE. At δ = 0 (no cost of treatment), the benefit 
of treating ALL vs. NONE is denoted by the vertical distance 

between lines (0.88 − 0.59 = 0.29). This is the difference in non-
recurrence probabilities in treated and placebo arms.

At treatment cost δ = 0.29 (the observed reduction 
in recurrence), the treat ALL and treat NONE lines cross. 
Thus, if the cost of treatment is equivalent to 0.29 adenoma 
recurrences, there is no net benefit to treating all patients 
(compared with treating none).

The figure shows that for treatment thresholds between 
0.13 and 0.50, the BMA prediction provides substantial ben-
efit compared with the treat ALL and treat NONE strategies. 
This benefit is provided by not treating selected patients with 
small treatment-related reductions in risk of recurrence.

Note that CB for the BMA prediction and treat ALL 
strategies coincide for treatment thresholds δ , 0.13. This 
occurs because the prediction model cannot reliably identify 
patients with recurrence probabilities less than 0.25 (pT = 0.12 
and δ = 0.13; threshold ≈ 0.25 = 0.12 + 0.13).
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What is the relevant range of thresholds (δ) associated 
with the DFMo plus sulindac treatment? Figure 3 shows 
the same CB curves with an approximate range of relevant 
treatment thresholds. The DFMO plus sulindac treatment 
may contribute to potentially serious side effects, but these are 
only weakly indicated by the trial data. Thus, we posit that 
small-to-moderate reductions in recurrence risk (0.02–0.20) 
are sufficient to indicate treatment. Note that the BMA 
prediction model provides only limited benefit at the upper 
end of this range. Among patients who are most averse to tak-
ing a chemopreventive, we may identify a few with low enough 
baseline risk to justify avoidance of treatment. This indicates 
that if we wish to improve prediction in this situation, we 
should focus on patients with low recurrence probabilities.

We next illustrate how CB can be used to compare dif-
ferent prediction models or rules. Rather than using the full 
prediction model, suppose we instead choose a risk cut-point 
and treat all patients exceeding that point. Figure 4 shows the 
CB curve when that risk probability is 0.40 (approximate fre-
quency of recurrence in the placebo arm). With this simplified 
rule, we obtain much of the benefit afforded by the full BMA 

model, and vastly exceed the CB obtained by the treat ALL 
rule. This benefit is obtained by excusing low-risk patients 
from treatment. Note that this simple rule fixes each patient’s 
decision threshold at δ = 0.28.2

Finally, Figure 5 compares the performance of the full 
BMA prediction model with a restricted model that omits 
adenoma location (restricted model). This demonstrates how 
predictions based on different covariates (eg, biomarkers) can 
be compared. The inclusion of adenoma location provides a 
modest improvement in predictive performance. But, this 
improvement is realized primarily among smaller threshold 
values (δ , 0.33). These smaller thresholds are more relevant 
for this chemoprevention treatment decision.

Discussion
Summary. We have developed a criterion that com-

bines a patient’s predicted outcomes under different treatment 
options with consideration of loss associated with the treatment.  
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figure 3. The relevant threshold region for DFMO plus sulindac treatment is indicated by the orange shaded region. Patients with recurrence risk 
reduction between 0.02 and 0.20 receive limited benefit with DFMO, and might prefer to avoid chemopreventive treatment. The BMA prediction model is 
relatively poor at identifying such patients.

2This threshold is greater than our proposed risk region for this treatment decision. We 
include this to demonstrate the use of CB.
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The CB curve helps us focus on the relevant risk groups by 
considering only the range of risk reduction that is consistent 
with the relative cost of treatment. The CB curves can be used 
to compare different prediction models, the contribution of 
potential biomarkers to an existing model, and different treat-
ment decision rules.

In our motivating example for chemoprevention of 
colorectal adenoma, we observe that there is substantial 
interpatient heterogeneity of recurrence risk among untreated 
patients. However, over the risk region of interest we are 
unable to identify patients who would benefit by avoiding 
treatment. This example demonstrates that clinically benefi-
cial improvements in prediction (eg, new biomarkers) should 
identify patients with very low risk of recurrence – those who 
would benefit by avoiding treatment. While not addressed 
in our example, it would also be useful to identify patients 
with high risk of experiencing side effects associated with 
treatment.

For the medical community to fully embrace personal-
ized medicine, we need improved approaches for assessing 
treatment decisions. These include improvements in

•	 predicting what will happen to individual patients,
•	 evaluating predictive models,
•	 incorporating treatment benefits and consequences, and
•	 understanding patient utilities for outcomes.

The decision analytic approach outlined above dem-
onstrates how these components interact, and that evalu-
ation of individual components in the absence of the 
others is incomplete. We argue that prediction–decision 
statistical approaches are more relevant for clinical deci-
sion support than P-value based inference for treatment 
eff icacy.

Why not use clinical trials for benefit assessment? 
Clinical trials provide a wealth of information about patients 
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figure 4. CB curve for a fixed decision probability of 0.40. This simpler rule achieves much of the benefit of the full BMA prediction. The equivalent 
threshold is δ = 0.28.

http://www.la-press.com
http://www.la-press.com/journal-cancer-informatics-j10


Billheimer et al

102 CanCer InformatICs 2014:13(s2)

with disease or those susceptible to it. In addition, trials include 
a formal monitoring mechanism to assess outcomes, and to 
evaluate side effects. As we demonstrate, this information is use-
ful for estimating patient outcome predictive distributions, and 
is necessary to evaluate clinical benefit (not just treatment effi-
cacy). A slight expansion of current clinical trial protocols would 
include information about patient utilities. This additional infor-
mation would allow a more complete picture of the benefits of 
treatment.

Our societal trend toward personalized medicine indi-
cates that we need more information about “who to treat,” and 
less focus on “which treatment to use.” Such a shift in per-
spective would change the focus of clinical trials from drug 
superiority to one of patient benefit. This seems much more 
relevant for health care than the usual P-value based inference 
for efficacy.
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Appendix 1
The primary outcome is adenoma recurrence after three years 
of follow-up. We model the probability of recurrence using 
logistic regression with Bayesian model averaging (BMA21). 
BMA accounts for uncertainty in the selection of the predic-
tion model, as well as in the model coefficients. This approach 
has been shown to improve model predictive performance, 
both theoretically and empirically.22 It also appears to be less 
prone to overfitting than alternative procedures.

We fit separate models for placebo- and DFMO-treated 
patients. In each model, potential predictors include patient 
demographics (age, sex, BMI, aspirin use), as well as char-
acteristics of their baseline adenoma. These characteristics 
include:

•	 Location: proximal or distal colon
•	 Large (.1 cm)
•	 Number of adenomas
•	 Villous (yes/no)

Potential molecular (PGE2, putrescine, spermidine) and 
genotypic (Ode and Fmo3) biomarkers were also considered. 
None of these, however, was found to be predictive of recur-
rence. They are not considered further.

All patient demographics and adenoma characteris-
tics were included as potential predictors. Patient age was 
included using a restricted cubic spline to allow nonlinear 
association with recurrence probability. In addition, age- 
by-sex and aspirin use-by-sex interactions were also consid-
ered as potential predictors. BMA was implemented using 
the BMA package23 in R24. The prior probability of inclu-
sion of each predictor was 0.3. Sensitivity analysis indicated 
that similar results were obtained over a range of prior values  
(0.10–0.50). Models with posterior probability greater than 
0.005 were retained for inclusion in prediction. Posterior 
predictive distributions were estimated using Monte Carlo 
sampling and each patient’s observed covariate values. Monte 
Carlo sampling was conducted by first selecting a retained 

model according to posterior model probabilities, and then 
drawing parameter values from that model’s posterior (para-
meter) distribution.

bMA results. Among patients assigned to placebo 
treatment, we find substantial uncertainty about the “best” 
logistic regression model. BMA has great advantage in 
this situation. The single best regression model accounts 
for only 12% of posterior model probability. The top five 
models account for 52% of posterior probability. The top 
30 models were retained to estimate recurrence probability. 
Table A1 summarizes coefficients, averaging over these top 
30 models.

The table shows the results for selected predictors. The 
posterior probability of inclusion (Prob β ≠ 0) is the sum of 
posterior model probabilities, which include a given predictor. 
Thus, we see that the number of adenomas and the location of 
the adenoma at baseline have greater than 50% posterior prob-
ability. The posterior expected value and standard deviation 
of the coefficients reflect a mixture of distributions in which 
the coefficient is included (β ≠ 0) or excluded (β = 0). We also 
see that sex and aspirin use, separately, have modest effects on 
prediction of recurrence. However, their interaction effect has 
substantial posterior probability (nearly 40%). We observed 
much greater aspirin use among men than among women. 
The estimated interaction may be related to this unequal 
distribution.

Table A1. Distribution of logistic regression coefficients for placebo 
patients. Results average over 30 best models retained by BMA.

 PRoB β ≠ 0 E[β] SD[β]

Intercept 1.00 -1.41 0.60

Number of adenomas 0.66 0.31 0.26

Location (proximal) 0.58 0.63 0.62

Aspirin use (yes) 0.19 0.18 0.40

Sex (male) 0.04 0.03 0.17

Sex * Aspirin 0.39 0.40 0.56
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