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Agglomeration Economies and Industry Location Decisions:
The Impacts of Vertical and Horizontal Spillovers

Jeffrey P. Cohen and Catherine J. Morrison Paul*

ABSTRACT

Economic analysis of production processes and performance typically neglects

consideration of spatial and industry inter-dependencies that may affect economic

performance, although there is increasing theoretical recognition that such linkages may

be both substantive and expanding.  In particular, thick market or agglomeration effects

may arise due to knowledge or other types of spillovers associated with own-industry

(horizontal), and supply-side or demand-driven (vertical), externalities.   In this paper we

provide a conceptual and empirical framework for measuring and evaluating such

spillovers, which allows us both to quantify their cost-effects, and to evaluate their

contribution to location decisions.  We focus on the U.S. food manufacturing sector, and

the spillovers that may occur across states within the sector and from agricultural

production (supply) and consumer buying power (demand).  And we find substantive

total and marginal cost-impacts in both spatial and industry dimensions, which appear to

be motivating forces for regional concentration patterns of the U.S. food manufacturing

industries.

*The authors are Assistant Professor of Economics, Barney School of Business,
University of Hartford and Professor, Department of Agricultural and Resource
Economics, University of California, Davis, and member of the Giannini Foundation.
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Introduction
Although there has recently been increased focus in the economics literature on spatial

location or “economic geography” (Krugman, 1991a,b), the literature on the effects of

agglomeration externalities on location decisions and associated economic performance

remains sparse.  In particular, little attention has been paid – especially in the empirical

context – to the competing effects of different types of spatial and industrial

agglomeration effects on the connection between economic performance and optimal

location of firms and industries.

There are clear indications, however, both anecdotally and theoretically, that there

is an important spatial dimension to firms’ decisions and resulting performance. Locating

a firm in an area where other similar types of firms, or suppliers/demanders, are in close

proximity, seems to have a clear economic motivation in terms of enhanced productivity

(reduced costs).  The implied agglomeration externalities or economies across firms in an

industry or sector may be due to various forces, including a conglomeration of

specialized inputs, and informational or knowledge spillovers.

In the industry or sectoral dimension, agglomeration economies that work through

layers of a system – via geographic linkages to suppliers and demanders – may motivate

the increasing vertical coordination or integration observed in many industries.  However,

forces counteracting these spatial or industry external cost economies might also exist.

For example, congestion or greater input competition in high-density areas could cause

producers in an industry, and/or their suppliers, to locate in more rural areas.

In this context, we attempt in this study to shed new light on the question posed

by Krugman (1991a): “Why and when does manufacturing becomes concentrated in a

few regions…”.  We address this question for the U.S. food system, from the perspective
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of the overall food manufacturing or processing industry.  This is obviously a crucial

sector, which plays a key role not only in producing perhaps the most essential

consumption commodity, but also in demanding inputs from the agricultural sector – a

foundation of all economies.  It is thus fundamentally connected both with primary

agricultural production, which tends to be in rural areas, and consumption demand, which

is concentrated in more urban areas.  The food manufacturing industries are also

important in terms of magnitudes; the food and fiber industries as a whole employed

almost 23 million people, and contributed almost $998 billion (more than 13 percent) to

U.S. GDP in 1996 (Lipton et al, 1998).  This sector thus seems a particularly important

example of the combination of spatial and industrial linkages we wish to explore.

Our treatment of spillovers is similar to the recognition of external as well as

internal contributors to scale economies that has recently been stressed in various

literatures, such as the “new” growth and trade literatures.  Spatial or sectoral inter-

dependencies can be thought of as external economies of scale in the sense that they

augment (or counteract) internal scale economies by acting as shift factors, which affect

the cost-output relationship and thus economic performance and competitiveness.  Since

both positive and negative external spillovers – or thick and thin market effects – might

exist, however, the combined impacts of these shift factors on economic performance

(costs) and location are not a priori obvious.  Empirical investigation is thus required to

quantify and analyze the impacts and patterns of spatial and industrial spillovers.

Using state-level data for the U.S. food manufacturing industry, and associated

supplying and demanding sectors, we construct a cost-based model to identify thick or

thin market effects.  We evaluate their contribution to productive performance in terms of



4

production costs, and motivations for location decisions.  In particular, we examine the

productive spillovers for state-level food processing industries from own-industry activity

in neighboring states, and from inter-dependencies with suppliers (primary agricultural

production, or the activity level of a crucial supplying sector) and demanders (consumer

demand, proxied by overall economic activity in the state).

These spatial and industrial agglomeration effects are measured via shadow value

elasticities representing cost effects from the proximity of own-industry production, own-

state and neighboring state’s agricultural production, and overall production density

(gross state product, GSP).  Such indicators allow us to represent both benefits and costs

of industrial proximity, which may result from thick market agglomeration effects, or

insufficient density to facilitate economical food manufacturing production, respectively.

We find substantive variations between total and marginal cost-economies or

shadow values, as well as significant regional differences in all these measures.  State-

level food manufacturing industries appear to reap significant total cost-saving benefits

from locating close to own-industry markets as well as suppliers and demanders (thick-

market or agglomeration effects), but high agricultural intensity within the state under

consideration seems to augments production costs (thin market effects).  By contrast,

marginal costs are greater in areas of high consumer demand, perhaps due to congestion

or quality impacts, whereas they are lower in rural areas.

In turn, geographic concentration patterns in this industry seem to have clear cost-

based motivations.  Food processing is less concentrated than agriculture in rural states,

but still more concentrated in these regions than is total productive activity (GSP).

Measures of the average and marginal cost-benefits from internal and external scale
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economies confirm that the observed density of the food processing industry in regions

(states) such as Pacific (CA), East North Central, Mid-Atlantic (NY, PA), and West

South Central (TX), are consistent with lower marginal costs from such economies in

these areas.  Because marginal costs motivate behavior – in this context location choices

– there seems a clear convergence of, and thus explanation for, observed geographical

densities in this sector from a combination of marginal spillover cost effects, although

average cost patterns are less consistent.

The Conceptual and Theoretical Context of the Analysis

Marshall recognized the importance of external geographical economies to firms’

performance and thus decisions in the mid 1800s.  These ideas stimulated a broad

traditional literature on the impacts of agglomeration externalities, as represented by

Hoover (1948).  However, such productive linkages, externalities, or spillovers still

receive little attention in the mainstream economics literature.  In fact, Krugman (1991a)

asserted that it “seems fair to say that the study of economic geography plays at best a

marginal role in economic theory.”

Although the recognition of the spatial dimension has recently increased, this

crucial dimension of economic behavior needs much more attention and exploration.  In

particular, empirical investigation of external costs and benefits from various types of

spatial and industrial thick or thin market effects seems crucially important for measuring

and understanding firms’ or industries’ performance patterns and their location decisions.

It is clear that there are important economic motivations for population and

production to cluster in a few relatively dense areas (Krugman, 1991a,b).  Some of the
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advantages of clustering stem from transportation costs.1  Others emerge from various

types of thick market effects such as the availability of skilled labor or other specialized

inputs for firms, and knowledge or informational spillovers across own- and associated

industrial sectors.2  There may also, however, be counteracting stimuli for moving away

from densely populated centers, due to competition for inputs (especially land), or “thin

market” effects in more rural areas that may be linked to distance, such as lack of

telecommunications or limited communications or transportation infrastructure.

The balancing of positive and negative external factors may be particularly

striking in industries where the primary inputs for production are located in rural areas,

and yet the main demanders of the products are in more urban centers, such as those in

the food manufacturing/processing sector.  This sector also has a key role in the economy

due to its (vertically) central location in the food system between the fundamental

primary agricultural sector and the purchasers of a crucial consumption commodity.  It

thus seems a particularly interesting target for an analysis of thick and thin, and spatial

and industrial, spillover effects, and resulting performance and location decisions.

Various thick market or agglomeration effects that have impacts on firms’ costs,

and thus on economic performance, might be summarized as spatial and industrial inter-

dependencies of both own-industry firms, and supplying or demanding sectors.  These

forces are similar to agglomeration impacts, in the form of localization and urbanization

economies, which provide an important basis of the urban/regional economics literature.

They may also be thought of as associated with “activity levels” of related sectors.

                                                
1 About 4 percent of the U.S. food dollar, or $22.3 billion in total in 1996, was spent for transportation.
2 They might also take the form of either (or both) technological and pecuniary economies, although to the
extent that the latter are reflected in price variables in a cost analysis the former become the primary target
of analysis of spillover effects.
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These inter-dependencies have a fundamental spatial dimension, in the sense that

formalizing their cost or productivity impacts requires measuring linkages to own or

neighboring locations – states for our application.  An industry dimension is also

relevant, however, since urbanization economies largely stem from (consumer) demand

spillovers, and the density of (intermediate) inputs implies supply-side spillovers from

lower vertical levels of the sector – or of the “food chain” for our application.

Such agglomeration effects are in some sense external to firms’ decision making,

although in a full long run context – at least implicitly – they are the basis for localization

choices or changes.  Our goal is therefore to identify agglomeration effects from various

spillover factors, through their measured external cost impacts, given existing industry

concentration patterns.  We then evaluate to what extent these are consistent with

observed location choices of food processing firms, by characterizing optimal

localization decisions on the margin.  That is, we measure the benefits (costs) of thick

(thin) market effects for existing firms, and then to use these patterns to examine their

implications for optimal, cost effective, or “productive” locational choices.

The impacts of such spillovers may be expressed in the context of increasing

returns, like in the “New Growth” literature (Romer  1986) , and to a more limited extent

in the “New Trade” (Krugman, 1991a,b), and the cost and productivity literatures (Paul

1999, Morrison and Siegel 1999).  The external nature of these factors is recognized by

representing their productivity impacts in terms of shifts of the production or cost

function.  As (overall) production expands over time, the firm not only moves down its

existing cost curve due to internal scale economies, but experiences downward shifts in

the curve due to agglomeration effects (external cost economies) associated with
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augmented production in its own and neighboring states and industries.  A positive

(negative) shift factor thus enhances internal scale economies.

We can formalize these relationships through a production function for the food

processing industry of a particular state, of the form YO = YO(X,t, DS,E) =

YO(N,P,M,K,t,DS,YN,AO,AN,GO), where YO is food processing output in the own (O)

state, and X is a vector of (internally demanded) inputs: nonproduction labor, N,

production labor, P, intermediate materials, M, and capital, K.  t and DS represent

variations over time and space: the trend term t represents shifts in the production frontier

over time due to technical change, and the vector of state-level dummy variables or fixed

effects DS represents cost variations across states not explained by other arguments of the

function.  And E is a vector of external or agglomeration factors, including the extent of

food processing production in neighboring states, YN, agricultural output in the own and

neighboring states, AO and AN, and total production in the own state, GO.

If we wish to focus on production costs instead of technological relationships, we

can more directly represent the costs and benefits of agglomeration factors through a cost

function.  This requires assuming cost minimizing behavior, where firms choose internal

input demand levels – here N, P, M, K – given their market prices, the production

function (or technology), and the levels of external factors.  This results in the dual total

cost function TC(YO,pN,pP,pM,pK,t,YN,AO,AN,GO,GN).3

                                                
3 Note that in much of the current production/cost literature short run fixities of factors such as capital are
often recognized.  In preliminary investigation with our data, however, we found little evidence of short run
rigidities.  In particular, we found that imposing Shephard’s lemma with respect to K, which implies that K
is a variable input, did not change our results substantively; its shadow value and market prices were
insignificantly different.  This seems consistent with the fact that our panel data are more cross-sectional
than time-series in nature, so the temporal dimension or short run rigidities are unlikely to play a large role.
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Although the roles of X, t and even DS (for panel data) in the production and thus

cost function are standard, and therefore require little further discussion, those of the

components of the E vector need additional elaboration.  First, the mechanism underlying

agglomeration economies is often stated in general terms as: “by locating close to one

another, firms can produce at a lower cost” (O’Sullivan, 2000).  This suggests that there

are some types of information or knowledge spillovers, or other unmeasured factors, that

cause thick markets in terms of own-industry production to enhance productivity.  This is

represented by YN.4  The roles of supply-side agglomeration factors – largely benefits

from the proximity of, and thus interactions with, materials input producers (since much

of M for the food processing sector is agricultural products) – are represented by AO and

AN.5  And the impact of own-state demand density is represented by GO, measured as

gross state product (GSP), indicating the extent of the local market for food products.

More specifically, this treatment is related to the notion of “agglomerative

economies in production” in the form of localization and urban economies in the regional

economics literature, as overviewed in O’Sullivan (2000).  Localization economies are

attributed to three principal causes – “scale economies in the production of intermediate

inputs, labor-market pooling, and knowledge spillovers” – and occur “if the production

costs of firms in a particular industry decrease as the total output of the industry

increases”.  The scale economies associated with expansion of the industry in the own

state are captured as the own scale effect, represented by the proportional impact of YO

on TC.  The other identified drivers for agglomeration economies, both in general and

                                                
4 The production measures for neighboring states are weighted sums of production in all states with a
common boundary, as discussed in the data appendix.
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specific terms, relate to the inclusion of the YN, AO and AN agglomeration factors in our

framework.

Thick market effects from localization of labor (or other specialized input)

markets, and knowledge or informational spillovers, are captured by the cost-impacts of

food processing production levels in neighboring states, represented by the level of YN

and its changes or spatial differences.  For example, labor market pooling for food

processing firms may well exist, particularly if the products being produced are seasonal.

Also, as equipment for such firms is becoming increasingly specialized, clustering of

production around equipment suppliers, or secondary equipment markets, may generate

cost-benefits.  Less well-defined inputs, such as specialized banking services and product

distribution networks, or even expert information on food markets provided by

government and university extension services, may also be relatively localized.  These

mechanisms are in turn related to the notion of information spillovers and the diffusion of

technology, which may be expected to stimulate own-industry production clustering.

In turn, location spillovers associated with intermediate input markets are

represented through the measures of agricultural output in the own and neighboring

states, AO and AN.  These supply impacts implicitly represent the impact of transportation

costs, as well as other factors associated with the “closeness” of agricultural markets or

rural areas.  As noted by O’Sullivan, if transportation costs are high, the proximity of

input markets may have an important cost-savings impact on production.  However, in

our treatment transport costs for the inputs – a pecuniary economy – will be at least to

some extent captured in the price of the materials input, M.  Thus, the primary forces

                                                                                                                                                
5 Although one might think that one measure indicating the effect of producing close to primary
agricultural producers would suffice here, this distinction is retained because it became clear in preliminary
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reflected in the cost-benefits of higher AO or AN will be factors indirectly related to

transportation costs, such as the perishable and fragile nature of most agricultural

products, or other technological benefits of having agricultural markets close by.

For example, as processed food products change in quality, and increase in

differentiation, being physically close to the agricultural markets to monitor the primary

product growing process in some form may be important.  In addition, although demand

for food products is relatively stable, supply of agricultural products is not, which

suggests that direct connection with the primary agricultural producers may help to

smooth the availability of agricultural materials over supply fluctuations.

Note also that the rural nature of highly agricultural states may impose rather than

relieve production costs for processing plants, if, say, fewer services such as

telecommunications are available in these states.  It is also likely that the labor pool will

be more limited, and perhaps less educated, in more rural regions.  There may thus be a

balance between higher and lower rurality for the costs and thus location of food

manufacturing operations.

 Urbanization economies instead arise from the demand side.  Again, as for the

agricultural inputs, some indication of the impacts of urbanization that may affect costs

will appear in the price data for our model.  For example, input competition, which will

increase the cost of producing closer to urban centers, will be to some extent captured in

measured input prices.  Such factors could also be reflected in cost differentials embodied

in the state-level fixed effects DS, which accommodates any “unexplained” positive or

negative own-state impacts.  Other agglomeration economies associated with increased

urbanization or higher product demand levels are measured as the cost effects of higher

                                                                                                                                                
empirical investigation that AO and AN had very different and contradictory impacts.
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own-state GSP, GO.  Urbanization economies are implied if costs are lower in more dense

production/population areas.

As noted by O’Sullivan, such economies “result from the scale of the entire urban

economy, not simply the scale of a particular industry.”  They are often thought to be

associated with input (N,P,K) market impacts, although for food processing this is not as

likely to be a major factor, since agricultural materials are the primary input for many

food manufacturing industries.  Knowledge spillovers and innovation may also be

enhanced by being in a more urban area, but again, for this industry, there is no obvious

reason to think this mechanism will be strong.  By contrast, demand effects will clearly

be operative in this industry, although competing forces may cause such externalities to

be either positive or negative.  For example, scale economies in production generated by

proximity to a higher demand area may permit cost savings.  However, it may also be that

more processed, high quality, or differentiated products may be demanded in more urban

areas, which will increase the costs of producing the measured output.

The distinctions between the own, supply-side and demand-side agglomeration

effects made here are also similar to those in other literatures.  In particular, they are

related to macro- and production-oriented studies such as those by Bartlesman, Caballero

and Lyons (1994), and Morrison and Siegel (1999), in which “activity levels” of

suppliers and demanders generate agglomeration externalities.  In these studies,

externalities arising through various types of knowledge spillovers, which may feed

through labor, capital, R&D, or other markets, are summarized in the activity variables.6

But such studies focus only on the industrial, rather than spatial, dimension.

                                                
6 This provides the basis for much of the development of the recent “new growth theory”, or the
endogenous growth literature, much of which is well summarized in Barro and Sala-i-Martin (1995).
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Our treatment may therefore be thought of as an attempt to quantify a

combination of spatial and industrial agglomeration effects.  As discussed in Paul (2001),

these dimensions are fundamentally connected.  However, distinguishing them in terms

of own- and supplying- or demanding-industry, and own- and neighboring-state

production, facilitates representing and analyzing not only the relative magnitudes of the

associated spillovers, but also the extent to which positive agglomeration externalities

might be counteracted by contradictory forces.  For example we can identify the

advantages of locating near primary agricultural markets, and yet the disadvantages of

being in a highly rural state, away from dense demand centers.

Evaluating these impacts requires measuring both the cost-effects or shadow

values of the external factors, and the fixed effects associated with state characteristics

not captured in other aspects of the model.  We will elaborate on these measures, after

developing their underlying estimation model, in the next section.

Model Implementation and Measures of Agglomeration Effects

For empirical implementation of our model a functional form must be specified,

appropriate data identified, estimating equations constructed, and measures of cost

determinants computed.  We assume the functional form can be approximated by a fully

flexible generalized Leontief (GL) function, of the form:

1) TC(YO,DS,pN,pP,pM,pK,t,YN,AO,AN,GO,GN) = ΣqΣS δqS pq DS + ΣqΣb αqb pq
 .5 pb

.5 + Σq

δqYO pqYO + ΣqΣn δqn pq rn + Σqpq(δYOYO YO
2 + Σn δnY rnY + ΣnΣm δnm rnrm) ,
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Where q,b denote the variables inputs in the X vector (N, P, M, K), and m,n denote the

external shift factors in the E vector (YN,AO,AN,GO,GN) as well as the trend term t.7  This

function by definition represents the costs of production associated with optimal input

demand for N, P, M, and K, given E, t.  Thus, Shephard’s lemma may be used to

formalize the implied input demand equations as:

2) Xq = ∂TC/∂pq = ΣS δqS DS + Σb αqb pb
.5/pq

 .5 + δqYO YO + Σn δqn rn + δYOYO YO
2

                                 + Σn δnYO rnYO + ΣnΣm δnm rnrm   .

The system of equations for the four variable input equations represented by (2), plus the

cost function (1), comprise the system of estimating equations, which was estimated by

seemingly unrelated systems estimation methods.8

Since the model directly represents cost-minimizing input demand behavior, the

patterns of spillover effects on both costs and input use from the proximity of own-

industry, supply-side, and demand-side activity may be estimated.  The existence and

form of these agglomeration or thick markets effects are measured via cost elasticities,

based on cost-side shadow values.  That is, the external cost-effects of the thick-market

variables in E, and the unspecified state-level impacts represented by the fixed effects DS,

may be expressed as (proportional) shadow values.  These measures can be used to

summarize a range of individual and combined external, and residual spatial, cost effects.

The cost-effect on an own-state food processing industry from higher levels of

food processing production in neighboring states is reflected by the derivative (shadow

                                                
7 The agglomeration spillovers variables were normalized by the size of the state, in terms of land mass, to
recognize that it is the intensity or density of supplier and demander production levels that drives associated
agglomeration economies.
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value) ∂TC/∂YN, or its proportional impact by the associated shadow value elasticity

εTC,YN = ∂ln TC/∂ln YN.9  This is similar to the more familiar representation of scale

economies within the own state by the cost-output elasticity εTC,YO = ∂TC/∂YO•YO/TC =

MCYO/ACYO = ∂ln TC/∂ln YO. 10  The εTC,YN and εTC,YO elasticities therefore represent

external and internal cost economies associated with own-industry production.  If higher

levels of YN yield cost-savings for firms in the own-state, the εTC,YN measure will be

negative, and indicate the proportion by which both average and total costs fall (since YO

is held constant by construction): εAC,YN=εTC,YN.  By contrast, εTC,YO represents the

proportional change in total input costs when own-output expands, and therefore

indicates scale economies if it falls short of 1.  The implied average cost change may

therefore be imputed as εAC,YO=εTC,YO-1.

Thus, the total reduction in average costs associated with 1% higher levels (across

time or space) of both YN and YO, which implies both a shift in and movement along the

cost curve due to external localization and internal scale economies, may be computed as

the sum of εAC,YN and εAC,YO.  This is similar to the measurement of scale economies for a

multiple-output production process (as developed by Baumol, Panzar and Willig, 1982)

as the sum of the corresponding cost elasticities with respect to the various outputs.  Such

a multi-output (internal) scale economy measure for R outputs, Yr, εT CY =

                                                                                                                                                
8 Since such a complex model is typically quite sensitive to alternative specifications of instruments (see
Cohen and Paul, 2001), SUR estimation methods were retained for the final model
9 Since this represents a shift in the cost function, and thus the change in the cost/output ratio TC/YO, it is
dual to the more commonly discussed notion of a production function effect, which may be thought of as a
change in Y/X (where TC is the cost of X at given input prices).
10 These types of elasticities implicitly capture the range of input use changes resulting from the thick
market effects, through their overall cost impact.  The input-specific impacts may also be evaluated,
through second order derivatives from the input demand functions.  That is, since Xq = ∂TC/∂pq, the impact
of a change in, say, YN, on Xq demand, is reflected in the second-order cost elasticity ∂2TC/∂pq∂YN =
∂Xq/∂YN, which can be rewritten in elasticity form as ∂ln Xq/∂ln YN = εXq,YN.  Although these elasticities are
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( Σr  ∂ TC/∂ Y r • Y r ) /TC  =  Σr  M Cr • Y r /TC = Σr ε T CYr, indicates the combined (total) cost impact

if all outputs were 1 percent larger, rather than if only one output level increased.  It is

straightforward to make an analogous argument for adding the total (average) internal

and external cost economies represented by εTC,YO and εTC,YN (εAC,YO and εAC,YN).

In turn, one may append to this own-industry cost economy measure the external

effects from other E factors and DS.  That is, the contribution to average costs – or cost

economies – in any particular location from a combination of internal and external cost

effects, may be imputed as a sum of the measured cost elasticities evaluated at existing

levels of Y (YO,YN), A (AO,AN), and G (GO).

To examine the impacts of supply- and demand-side spillover or agglomeration

factors, for example, we may compute the (total and average) shadow value elasticities

εTC,AO = ∂ln TC/∂ln AO = εAC,AO, and εTC,AN =  ∂ln TC/∂ln AN = εAC,AN, representing

supply-side agglomeration economies, and εTC,GO =  ∂ln TC/∂ln GO = εAC,GO, capturing

demand-side agglomeration or urbanization economies.  These elasticities, which

individually provide estimates of the separate cost economies derived from the

agglomeration factors, can also be combined to impute their balance in terms of overall

cost effects from spillovers in the industry dimension.

Finally, the state-level fixed effect may be computed as ∂TC/∂DS, or the

proportional cost-saving from being in state S as εTC,DS = ∂ln TC/∂DS.  This measure,

representing the unexplained relative cost differential for the state S industry, may in turn

be added to the other spillover cost effects to indicate the total cost economies or

                                                                                                                                                
not considered in the empirical results section below since a full analysis of substitution patterns is beyond
the scope of this paper, they are summarized on average in Cohen and Paul (2001b).
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diseconomies gained from locating in a particular state or region, from a combination of

internal, external, and residual, cost effects.

More formally, to evaluate the combined (average) cost impacts of the full range

of these cost economies, one may construct the combined measure εAC,IEF = εAC,I + εAC,E

+ εAC,F, where εAC,I = εAC,YO = ∂ln ACO/∂ln YO = εTC,YO -1 captures internal (average) cost

economies, εAC,E = εAC,YN + εAC,AO + εAC,AN + εAC,GO = εTC,YN + εTC,AO + εTC,AN + εTC,GO

represents a combination of external cost economies from own, supplying, and

demanding-sector spillover or agglomeration factors, and εAC,F = εAC,DS = εTC,DS reflects

residual fixed effects.

Note that both positive (thick market) and negative (thin market) externalities

may be evident, and reflected by negative and positive (average) cost elasticities,

respectively.  If there are such conflicting forces, a balance across the associated

localization and urbanization externalities is implied, that pulls firms in different

directions.  That is, there are counteracting implicit cost and benefits associated with

locational choices.  The combined measures provide information about the dominating

forces in this balance, and so, along with the individual measures, facilitate our

exploration of spillover cost effects, and their impact on localization decisions.11

One way to summarize our evidence of cost-effects or economies – and associated

locational motivations – from spatial and industrial spillovers is simply to peruse, and

compare across time and space, the patterns of individual and combined costs and

benefits captured by the shadow value elasticities.  These measures will be dependent on

the existing concentration patterns of food processing firms, since the shadow values are

                                                
11 We could potentially also consider state-level information, but tabling the results then quickly becomes
beyond the scope of one paper.  Regional and state-level patterns are, however, very consistent.
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implicit valuations given the existing distribution of firms.  However, to focus on the

location implications, we wish to directly evaluate the concentration and location of food

processing industries, their supplying and demanding sectors, and the implied (marginal)

motivations for location decisions or changes by food processing firms.  In particular, it

may be useful to represent existing concentration patterns, and compare them to spatial

patterns of the average (or total) and corresponding marginal cost savings associated with

internal and external productive factors.

More specifically, although average cost elasticities indicate unit cost savings

obtained by the existing firms/industry in a particular state, examination of the spillover

motivations for making location decisions – which are based on marginal net benefits –

requires evaluation of the marginal cost effects from the spillover factors.  Measures of

these cost-saving benefits may be obtained through second-order relationships associated

with the marginal cost (MC) of own-industry and -state (internal) production,

MCO=∂TC/∂YO.  For example, the contribution of higher YN levels to MCO, or the

marginal cost impact of proximity to own-industry enterprises, can be computed as

εMC,YN = ∂ln MCO/∂ln YN = ∂2TC/∂YO∂YN•(YN/MC).  Similarly, εMC,AO =

∂ln MCO/∂ln AO, εMC,AN = ∂ln MCO/∂ln AN, and εMC,GO = ∂ln MCO/∂ln GO.12  A

combination of these state-level spillover effects’ contributions to marginal costs may

therefore be expressed in terms of a sum of the individual effects, similarly to the

combination of average cost elasticities.13

                                                
12 Note that there is no marginal cost elasticity associated with the DS since they are fixed effects, and
therefore do not have interaction terms with cost function arguments other than the input prices.
13 Since internal scale economies may be measured as a marginal-to-average cost ratio, these measures
could also be used directly to impute the effect of external factors on measured internal cost economies.
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Further insights about concentration and location may thus be obtained by

investigating where YO, AO, and GO are concentrated, and comparing these patterns to the

location motivations implied by the marginal cost elasticities for the internal scale and

external spillover factors.  To pursue this, we can summarize our data on own- and

associated-industry concentration along the lines of Krugman (1991b), who constructed a

“locational Gini coefficient” as a measure of industrial concentration by comparing the

concentration of a specific manufacturing industry to that for overall manufacturing.  A

similar mechanism may be used to evaluate to what extent concentration patterns are

consistent with observed internal and external cost savings or economies.

Since our focus is on the food processing industry, an exercise similar to that

underlying Krugman’s locational Gini curve might be carried out to compare the

concentration of YO with that of overall production, GO.  We may also, however,

compare YO with AO, and GO with AO, to consider a broader range of concentration

patterns for the overall food system.

Pursuing this involves computing (a) a region or state’s share of GNP (the total

GSP of states in the region as compared to the sum of all state’s GSP), and (b) the

corresponding share of production in the food processing industry (total YO in the region

compared to national YO).  The ratios of the regions’ shares of YO to their share of GNP

(SYO=YO/ΣSYO and SGO=GO/ΣSGO=GO/GNP) are then computed, the regions ranked in

descending order according to this ratio, and the shares cumulated from the top to bottom

of the ranking.  The regions’ relative YO-GO cumulative shares are then graphed in terms

of a Gini-type curve. Similar exercises may be carried out to compare the balance of

agricultural (AO) to overall production (GO) density, or of YO to AO density.
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Further discussion of such measurement tools will be deferred until we present the

resulting graphs in the next section, which facilitates their interpretation.  But it is worth

noting here that such a YO-GO comparison, for example, uses GO as a base; it represents

how concentrated YO production is relative to GO.  The measures and diagram indicate

whether the states with, say, 10% of GO, have more than 10% of food processing.  But

since they are ranked in terms of the SYO/SGO ratio – firms with the highest SYO/SGO ratio

appear first on the graph – the measure is always relative to the denominator (here GO),

rather than absolute.

Finally, we can use a similar mechanism (again discussed more in the next section

when the results are presented since perusal of the resulting graphs helps motivate their

use), to compare the convergence, or “tracking” of YO location relative to the average and

marginal spillover cost effects.  For example, one might think that external economy

motivations for location choices imply that the state with the greatest marginal cost

benefits from external effects should attract the greatest observed YO production.  To

evaluate these patterns, we will use a Gini-type comparison of the state-share of (average

or marginal) cost benefits from internal, external, and fixed effects to its share of YO.

Although the computation of the YO share is standard, the notion of the cost economy

share requires some further elaboration.

For example, consider the contribution to food processing cost economies or

savings from the proximity of agricultural (supply) production in neighboring states,

εAC,YN = εTC,YN = ∂ln TC/∂ln YN = ∂TC/∂YN•YN/TC.  In some sense this represents the

“share” of YN-related cost effects in total costs; it indicates the cost-contribution of YN, in

terms of levels or dollars –  ∂TC/∂YN•YN – as a proportion of TC.  Total U.S. cost
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savings from the proximity of YN may therefore be computed as the sum of the

numerators of these measures across states, ΣS ∂TC/∂YN•YN.  The share of overall cost

savings for a particular state is thus simply STC,N = (∂TC/∂YN•YN)/ (ΣS∂TC/∂YN•YN).

This share may be compared with SYO for that state to assess whether states with high YO

levels exhibit correspondingly high cost economies derived from the external factor YN.

A summary measure reflecting a combination of internal, external, and residual

cost economies may similarly be computed based on εAC,IEF, say, rather than εAC,YN, to

represent the driving forces for location decisions from overall cost economies.  And such

comparisons can also be carried out based on the marginal cost elasticities, which drive

choices and thus might be expected to more closely reflect observed behavior.

Empirical Results

Estimation of the system of cost and input demand equations represented by (1) and (2),

for the food processing sectors of the 48 contiguous states,14 was carried out by

seemingly unrelated regressions procedures using PC-TSP.  This resulted in the

coefficient estimates presented in Appendix Table A1 (with t statistics in italics, and

where coefficients on the dummy variables are omitted to keep the table manageable,

although they were primarily statistically significant).  Various adaptations to the model

were tried in preliminary empirical investigation to identify patterns in the data, and to

determine the robustness of the results.  The final model is therefore representative of

strong patterns emerging from a broad exploration of the data.

Allowing for heteroskedasticity by computing standard errors using robust-White

methods made no substantive difference to the results.  Incorporating an AR(1)

                                                
14 Further information on the data construction is presented in the Data Appendix.
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autoregressive process also had virtually no impact on the measured indicators, even

though all ρs (except for the K equation) were statistically significant.  This result,

combined with evidence that K could justifiably be considered variable for these data,15

indicates that little information is gained from the temporal dimension for this

application.  The AR(1) adaptation was therefore omitted from the final specification.

By contrast, the spatial dimension appears to be a key component of cost

performance, not only in terms of the structural model (significant shadow value

elasticities for spatial linkages, as elaborated below), but also in terms of the stochastic

specification.  That is, using spatial econometrics techniques to accommodate spatial

autocorrelation was clearly statistically supported.

Such methods, as developed by Kelejian and Prucha (1999) and Bell and

Bockstael (2000), recognize spatial linkages in the stochastic structure via lags for

geographical location (say, state) at any one point in time.  If there is only one adjoining

state who’s “activity” levels affect that of the state under consideration, this adaptation is

directly analogous to an AR(1) adjustment: TCi,t = TC(•)i,t +  ui,t, where ui,t = ρuj,t + εi,t, uj,t

is the (unadjusted) error term for state j at time t, and εi,t is a white-noise error.  If

multiple states’ production or costs affect state i’s costs, the error structure for state i at

time t becomes ui,t = ρΣjwi,juj,t + εi,t.  Substituting, and writing this in matrix notation,

yields TC = TC(•) + ρWut + εt, where W is a weighting matrix and ut is a vector of time-t

error terms for each state that has a cost effect on state i.  So Wut reflects a weighted sum

of the uj,t from TC(•) estimation for other states (assuming wi,i = 0).

                                                
15 Models representing K as a quasi-fixed input for these data suggested that its shadow value was
insignificantly different from its measured market price, so specifying it as a variable input whose demand
is appropriately represented by Shephard’s lemma seemed justified.  This is likely due to the greater cross-
section than temporal dimension in the data, with 48 states but only 11 years.
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For our application we defined the inter-related states as those with a common

boundary, and wi,j to give all neighboring states equal weight, and all other states zero

weight.  Such a SAR (spatial autoregressive) adaptation was carried out for each (cost

and input demand) equation in the system, with different ρ coefficients for each equation.

These estimates were primarily statistically significant, as can be seen in Table A1, so

this adaptation was retained although the SAR adaptation had limited impact on the

elasticity measures’ magnitudes.

 The t-statistics for the remaining coefficients presented in Table A1 also indicate

much statistical significance, except for the cross- or interaction-terms for the external

effects, which are largely insignificant.  Omitting these terms, however, did not affect the

results substantively, and indicated some joint significance, so the model was left fully

flexible for completeness.  The R2s (all greater than 0.99) also indicate a very close fit for

the equations as a system.

Total (average), and marginal shadow value elasticities, representing the extent of

agglomeration economies, are reported on average across the full sample, and for the two

decades covered by our data (the 80s and 90s), in Table 1.  The reported mean estimate

(Mean Est) values are constructed by computing the indicators for each observation and

then averaging across the sample.  The standard deviation (Std Dev) is based on this

distribution of estimated elasticities.  The t-statistics (t stat) for these measures were

computed by evaluating the elasticities (which comprise a combination of data,

coefficient estimates, and their standard errors) at the mean value of the data, and then

generating the statistics from the resulting coefficient estimates and standard errors.



24

First note that all the estimated total (average) cost elasticities are very

statistically significant.16  They are also primarily negative, indicating cost-savings from

higher levels of the associated scale or agglomeration factors.  This is not true, however,

for either εTC,YN or εTC,t.  The positive – and very robust – measures for εTC,YN initially

prompted the inclusion of AO as well as AN in our model.  As we explored why estimated

εTC,YN might be positive, it became evident that although being in a state with a high level

of agricultural production seems to enhance costs of production, being in close proximity

to a heavily agricultural/rural state appears cost-saving.  This suggests some form of thin

market effect, possibly due to limited labor/capital markets in highly rural states, or lower

levels of infrastructure support (such as telecommunications).  It thus implies

“ruralization diseconomies”, similar to the “urbanization economies” often alluded to or

found in the urban economics literature.

The time-trend evidence from εTC,t initially appears to indicate technological

regression, if it is interpreted, as is typical, as a technical change indicator.  Note,

however, that even though measured parametrically, this is in essence a residual measure

representing any time trend in costs not explained by other arguments of the function.  It

thus is likely that this measure represents demand impacts not otherwise represented, that

are determinants of observed production trends in this industry.  In particular, this upward

cost trend could reflect the rapidly increasing demand for more processed and diverse,

and higher quality, food products, particularly since the time dimension seems otherwise

a limited driving force for this short time frame data panel.

                                                
16 t statistics are not reported for the εAC,YO elasticity ,since it is computed simply as εTC,YO-1, or for the
εTC,DS elasticity since the significance differs across state and washes out in the average data, but it is
almost invariably significant across states.



25

All other external measures – associated with localization economies (proximity

to own-industry production), εTC,YO or εAC,YO, supply-side agglomeration economies from

neighboring states, εTC,AN, and urbanization economies (proximity to high demand or

buying power), εTC,GO – clearly indicate significant cost-economies on average across the

U.S., as found by Cohen and Paul (2001b).  In sum, the costs associated with high AO in

the own-state are on average outweighed by cost-savings associated with AN, and further

cost benefits from other external effects substantively dominate any external costs

(εTCYN+εTC,AO+εTC,AN+εTC,GO ≈ -0.9, an overall cost decline).

The marginal cost elasticities, by contrast, suggest that higher levels of all

externalities except GO imply lower marginal costs, and thus likely motivate location

decisions; the supply and demand own-state effects are reversed in terms of the

marginals.  Since greater potential demand in the state implies higher marginal costs on

average, and more agricultural intensity, or “rurality”, implies lower marginal costs, this

may suggest that these factors act more as fixed than marginal effects.

It also seems that both own- and supplying-industry production in neighboring

states (YN, AN) decrease marginal as well as average costs, but reduce marginal costs by a

smaller proportion than on average. And the change in marginal cost over time appears

positive, but is not significant either statistically or in terms of magnitude.  However,

although only the YO and GO elasticities are statistically significant on average for the full

(country) sample, the significance of the elasticities varies somewhat across the

individual regions, and the MC impacts overall seem substantive.

Finally, when compared for the 1980s and 1990s few of these measures appear to

have varied very much (at least statistically significantly).  This might be expected due to
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the dominance in these data of the spatial as compared to temporal variations and

patterns.  However, it does seem that more internal- or own-industry and -state (YO) scale

economies, and less demand (GO) economies are evident later in the sample period.

More variation is apparent from the elasticities summarized across regions, as

reported in Table 2.  For example, the food processing industries of the New England

region, which have the smallest food manufacturing share of all regions, also exhibit the

second smallest internal scale economies, and the largest own-industry localization

economies.   This region also has the greatest diseconomies from own-state agricultural

production, and economies from neighboring state agricultural (supply) and overall

(demand) production.

These patterns seem potentially due to the small size of the states in this region.

However, the agglomeration factors were normalized by the size of the state to recognize

the importance of density rather than absolute levels for spillover effects, and the YO per

land mass in this region is lower than for many states – particularly those in the South

Atlantic region, such as DE.  The results may more likely be related to the proximity to

the second largest, and clearly most dense (YO per land mass) Mid-Atlantic region.

A similar mechanism seems to be at work in the Mountain region, which

surrounds the highest – Pacific (dominated by CA) – food-processing share region.  This

small (in terms of both overall-production- and food-processing-intensity) region exhibits

large cost impacts from neighboring states, with the largest (in absolute value) εTC,YN and

third largest εTC,AN elasticities.  It also has the only negative fixed-cost-effect (indicating

the lowest unit costs net of all explanatory variables for food processing industries in the
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U.S.), but the highest increase in costs of production over time, as well as the second

highest TC/YO ratio.

The only states that exceed this overall average cost ratio on average are those in

the traditionally agricultural W.N. Central region, although they also exhibit the highest

internal scale economies.  And they display some of the lowest localization or own-

industry agglomeration economies (YN), and the smallest urbanization (GO) economies.

The Pacific region exhibits the lowest localization economies and external supply

agglomeration economies (from AN), and nearly the smallest diseconomies from own-

state agricultural production (AO).  Average costs are also quite low.  This may imply that

external economies from own- and related-industry agglomeration effects are internalized

in this large and heavily agricultural as well as food manufacturing-intensive region.

The E.N. Central region – the second largest food processing region (on average

across states), and comprising much of the traditional dairy and related industries – also

has a very low average production cost.  It does not, however seem to gain a significant

amount from agglomeration effects, although it has one of the lowest diseconomies from

own-state agricultural production.  These states, like those in the Pacific region, also

exhibit some of the smallest economies from neighboring states production (YN and AN).

The Mid-Atlantic region, which has the third highest state-share of food

processing activity (dominated by NY and PA) displays a similarly low level of

diseconomies from own-state agricultural production, and the lowest overall average cost

(TC/YO).  But it otherwise has few obvious locational driving forces on average, with the

least own-industry cost (or scale) economies of any region, and a relatively large residual

cost diseconomy measure (εTC,DS).  Note also that εMC,YO, indicating the reduction in



28

marginal costs when own-industry scale expands, is second only to the Pacific region in

magnitude.  But this is counteracted, as in the Pacific region, by marginal (MC)

diseconomies associated with higher urbanization levels (GO), perhaps indicating

congestion or greater demand for high-quality or processed products associated with the

high GO levels in these regions.

To move to the implications of these measures for location and concentration, we

can first consider the concentration patterns for YO as compared to GO and AO.  The Gini

curves for these experiments, for the last year of our sample, 1996, are presented in

Figure 1 (1a,b,c), and the underlying data, in terms of shares and rankings, are reported in

Table 3.  Although the curves are based on state level data, and information in the Table

is summarized by region, the states grouped quite closely to the regional breakdowns so

the regional rankings are strongly representative of the overall state ranking.

Note from the YO-GO diagram, Figure 1a, that the food processing industries are

substantively more concentrated than overall production, represented by GSP.  For

example, ranking from the highest to lowest SYO/SGO ratio, we find that 40 percent of YO

output is found in regions with only 20 percent of total production (aggregate GSP, or

GNP).  The highest SYO/SGO levels by far are found in the W.N. Central region, with E.N.

Central and E.S. Central at about half this level.  Pacific, with the highest YO levels, falls

in the middle due to its correspondingly high GO level, and the Mid-Atlantic region is

second-to-last in terms of this ratio, for the same reason.

Figure 1b shows, however, that agricultural production is even more concentrated

relative to GO; regions with only 20 percent of total GO have over 50 percent of total AO.

And about 90 percent of agricultural output is in states with only 60 percent of the GNP.
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In particular, we find a 5-to-1 ratio of AO to GO for the W.N. Central region, which drops

to 1.5, 1.4, and 1.3 for the Mountain, E.S. Central, and W.S. Central regions.

This conclusion is supported by the comparison of YO to AO production in Figure

1c.  The curve by definition falls above the 45-degree line (unless the distributions are

exactly equal, in which case it will coincide with the line), since concentration of the

industry on the vertical axis is expressed relative to that on the horizontal axis, with the

ratios in descending order.  But this diagram, in combination with Table 3, documents

that approximately the same order of regions is retained for this comparison.  So the

highest levels of agricultural activity are clearly in states with correspondingly high food

processing intensity, even though agricultural production is more concentrated than YO.

In particular, from Figure 1c it is apparent that states with 10 percent of YO output

produce about 25 percent of total AO.  The deviation of the Gini curve from the 45 line is,

in fact, very similar to that for the YO to GO comparison, but is much smaller than that for

AO to GO.  Table 3 also shows that the Mountain states rise to the first in this ranking;

they exhibit even higher SAO/SYO than SAO/SGO ratios, although this is largely due to low

YO and GO levels in these states rather than to high AO levels.  The Central states clearly

dominate in terms of not only the AO/GO but also the AO/YO ratios, with Pacific falling

next in line due to the size of its SYO, even though it also has the highest SAO.

Finally, consider the implications from Figures 2a,b,c and d, and Table 4.  The

SAC,IEF and SMC,IEF measures (abbreviated to SA and SM in some cases to fit on the tables),

represent the regional share of εAC,IEF•TC and εMC,IEF•TC, or the aggregate average and

marginal cost savings from a combination of all internal, external, and residual cost

economies, respectively. These values, expressed in terms of dollar levels rather than
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proportions through the multiplication of the elasticities by TC, may be compared to the

corresponding shares of YO to see to what extent food processing industry concentration

is consistent with, or “tracks”, measured cost economies.  That is, since we are analyzing

food manufacturing location decisions, and we would expect that states with high shares

of marginal cost savings from overall cost economies would also have relatively high

shares of food manufacturing output, comparing these share ratios illustrates the extent to

which these patterns are consistent.

The measures presented in Table 4 indicate discrepancies between the distribution

of the average cost measures and the regions with the highest food processing activity or

density.  Consider, for example, the εAC,IEF-YO comparison for 1986.  It is evident that the

W.S. Central (dominated by TX, a heavily food-processing intensive state), Pacific

(dominated by CA), and Mid Atlantic (NY, PA) states have very low average cost-

savings (SA) shares from expansion relative to their YO shares.  This implies that the total

contribution of the internal, external, and residual economies to these states are relatively

lower – in proportional or share terms – than are observed production levels.  Or that the

concentration of food processing activity in these states is greater than might be

“explained” by lower average costs in these regions due to these cost economy factors, so

average cost savings from the cost economies are more spread out geographically, or less

concentrated, relative to production.

This could at least partly be driven by state industry size – that is, the high

absolute amounts of YO produced in these regions.  For example, these average cost

ratios more closely track a land-mass normalized YO measure, which places some of the

S. Atlantic states (particularly DE) at the top of a ranking of states in terms of food
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processing density rather than just levels.  Note, for example, that the highest SAC,IEF level

appears in the E.N. Central region; it is the relatively high corresponding SYO that pushes

it down on the rankings.

There is also a time dimension to these patterns, although the concentration

evidence from the YO, GO, and AO Ginis is consistent over the sample period.  E.g.,

although the Pacific region remains the second lowest in terms of the SA/SYO ratio, its

SAC,IEF share rises from 11.7 to 17.5 percent.  It maintains its place in the SA/SYO rankings

due to the corresponding rise in SYO from 20.6 to 21.5 percent.  Overall, the states that

have experienced the greatest increases in SAC,IEF on balance also have the highest and

increasing share of YO, SYO, although they still have low SA/SYO ratios in absolute terms.

These patterns are evident from the 1986 and 1996 Gini curves for the SA/SYO

comparison, in Figures 2a and 2b.  The interpretation of such a diagram can loosely be

based on concentration, like the Krugman locational Ginis on which it is modeled.

However, it may also be thought of simply as a useful mechanism to summarize the

industry- and cost economy- location information contained in Table 4.

In particular, the diagram for 1986 shows a heavy concentration of states at the

bottom of the curve with very little YO share, although a relatively large share of SAC,IEF.

In fact, states with only 35 percent of YO production have twice that – 70 percent – of the

unit-cost savings from combined cost economies.  By 1996, YO production seems to

more closely follow or track unit cost savings, since the curve is closer to the 45-degree

line, although it is even more concentrated at the very low end where states have very

small YO shares relative to measured average cost economies.
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The marginal cost economy measures, however, tell a different story.  This

suggests that internal scale economies, which involve a MC-AC comparison, are an

important piece of the puzzle.  It may also imply that states exhibiting particularly high

YO levels have already internalized – and perhaps even to some extent “used up” – these

economies, through expansion of the industry.17

From Table 4 it is clear that the states with the highest shares of YO production, in

particular the Pacific (CA) and E.N. Central regions, exhibit by far the highest shares of

marginal cost savings from internal, external, and residual cost economies.  In fact, the

Pacific region alone, with approximately 20 percent of YO, has about 40 percent of the

measured marginal cost savings.  These patterns changed less over time than those for

average costs, although the εMC,IEF (and SYO) shares for the Mid Atlantic fell significantly

from 1986 to 1996 (with the W.S. Central states taking up much of the slack).

These patterns are reflected in Gini curves (Figures 2c,d) which look much

different than those for average cost economies, with most of the states congregated at

the top of the curve, and the large states, led by CA, spread out over the low range (with

high SYO , SMC,IEF and SM/SYO levels).  That is, high values of the share of marginal cost

savings from cost economies are accompanied by high values of the own state output

share.  There also seems to be a tendency for the curve to move toward the 45-degree line

over time, implying more consistency between marginal cost savings and YO output

levels.  But overall the heavy concentration of SMC,IEF in a few regions seems not only to

be consistent with high concentration levels of YO, but even to imply more concentration

in these areas is likely to be supported on the margin due to cost economies.

                                                
17 A similar divergence was found when we compared AC=TC/YO and MC=∂MC/∂YO measures to the YO

distribution.  This supports the idea that the marginal measures have the most impact on location decisions.
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Concluding Remarks

In sum, our analysis of internal, external, and residual or fixed effect cost economies

across U.S. states for the food manufacturing industries, and the resulting implications for

location and concentration, suggest that such cost economies not only are substantive, but

provide important motivations on the margin for location decisions.

The evidence from total and average cost economies, which are usually focused

on as shadow values of external effects, vary from marginal cost impacts.  We find

significant (total and average) cost economies associated with own-production, own-

industry thick market effects, neighboring state supply-sector agglomeration effects, and

own-state demand drivers, but high costs of locating in a heavily agricultural state.

However, marginal cost economies from spillovers differ from their average cost

counterparts.  High production density (urbanization) appears to drive higher marginal

costs, possibly due to congestion, and high agricultural density implies lower marginal

costs.  And these measures vary significantly by region.

When these spatial patterns are compared to observed state-level concentration

levels for the food processing and agricultural sectors, we find that food processing sector

concentration is lower than that for agriculture, and greater than overall production, but

that regional concentration patterns are quite consistent.  Location decisions also seem

well “explained” by a combination of internal, external, and residual marginal cost

economies, in particular for the Pacific (CA), Central, and Mid Atlantic (NY,PA) states.

They are less consistent with average cost saving patterns, which might be expected since

marginal benefits drive decision-making, although these indicators also seem to be

converging to more closely reflect location concentrations.
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Data Appendix

Annual state-level data for 1986 through 1996 were used in this study.

Labor quantities: The number of workers engaged in production (PL) at operating food

manufacturing establishments, and the number of full-time and part-time employees

(TOTAL) on the payrolls of these manufacturing establishments, are from the U.S.

Census Bureau’s Annual Survey of Manufactures (ASM), Geographic Area Statistics.

Total number of non-production workers (NL) are obtained as the difference between

TOTAL and PL.

Wage bills: The ASM reports wages paid to production workers in the food and kindred

products industry and gross earnings of all employees on the payroll of operating food

and kindred products establishments.  Wage bill for NL is obtained by subtracting the

wages paid to PL from the gross earnings of all food and kindred products employees.

Nonproduction wage is obtained by dividing the nonproduction wage bill by NL.

Production wage is obtained by dividing the production wage bill by PL.

Private capital stock: The perpetual inventory method was applied to data on state level

new capital expenditures for the food and kindred products industry from the ASM, with

the initial capital stock (1986) calculated by multiplying the average of the first three

years of data for each state by the inverse of the depreciation rate.  Annual depreciation

rates for capital equipment are assumed to be 10 percent.  The investment deflator, from

the Office of Productivity and Technology of the Bureau of Labor Statistics, is their

national capital price deflator for all assets for total manufacturing. The price of capital is

obtained as (it+dt) •qK,t[1/(1-taxratet)], where dt is the depreciation rate, it the Moody’s

Baa corporate bond rate (obtained from the Economic Report of the President), qK,t the

investment deflator, and taxratet the corporate tax rate (from the Office of Multifactor

Productivity, Bureau of Labor Statistics).

Materials: The ASM reports direct charges actually paid or payable for items consumed

or put into production during the year.  The quantity of materials is obtained by deflating
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these charges by a national materials deflator for agriculture provided by the Economic

Research Service, USDA.  This deflator is also used as the price of materials.

Output:  Value of state-level food manufacturing shipments reported in the ASM were

deflated by the ratio of nominal to real GSP for food and kindred products. Nominal and

real GSP data for food and kindred products were obtained from the BEA website.

Agricultural industry output: state level data were obtained from the Economic Research

Service, USDA.

Total Gross State Product: State-level data were obtained from the BEA website.

State Land Area: Data were obtained online from:

http://ddi.digital.net/~sjoiner/city/CapitalCities.htm

Data were missing from the ASM for several states for various variables in various years.
These food manufacturing data points were interpolated as follows:

Fi  = (FUS /TUS)*(Ti)

Where Fi  represents state i’s food manufacturing variable,
 Ti represents state i’s total manufacturing variable,

TUS represents U.S. total for the total manufacturing variable,
FUS represents U.S. total for the food manufacturing variable.

These states, years, and missing variables were:

FL 1986: all employees, production workers, cost of materials, value of shipments, new
capital expenditures.

GA 1986: all employees, production workers, cost of materials, value of shipments, new
capital expenditures.

ID 1986: all employees, production workers, cost of materials, value of shipments, new
capital expenditures.

MI 1987, 1988, 1989, 1990, 1991: new capital expenditures only.

WY 1985, 1986, 1987, 1988, 1989, 1990, 1991, 1993, 1994: all employees, production
workers, cost of materials, value of shipments, new capital expenditures.

WY 1992, 1996: new capital expenditures only.



Table 1, Total and Marginal Cost Elasticities
(average measures, overall and by time period)

Entire Time Period 80s  90s
 

Measure Mean Est Std Dev t stat Mean Est Std Dev  Mean Est Std Dev
εTC,YO 0.7401 0.109 36.910 0.7873 0.093 0.7131 0.109
εAC,YO -0.2599 0.109 -0.2127 0.093 -0.2869 0.109
εTC,YN -0.3607 0.492 -3.091 -0.3764 0.526 -0.3518 0.473
εTC,AO 0.3574 0.438 8.345 0.3435 0.419 0.3654 0.450
εTC,AN -0.7032 1.584 -5.682 -0.7077 1.515 -0.7007 1.624
εTC,GO -0.1889 0.413 -4.525 -0.1817 0.387 -0.1929 0.427
εTC,DS 0.4821 1.810 0.5088 1.713 0.4669 1.865
εTC,t 0.0493 0.069 10.519 0.0525 0.073 0.0474 0.067

εMC,YO -0.0164 0.017 -3.347 -0.0154 0.016 -0.0169 0.018
εMC,YN -0.0169 0.008 -1.507 -0.0159 0.008 -0.0175 0.009
εMC,AO -0.0091 0.008 -1.446 -0.0081 0.006 -0.0098 0.008
εMC,AN -0.0180 0.026 -1.790 -0.0162  -0.0191 0.028
εMC,GO 0.0302 0.043 6.941 0.0269 0.039 0.0320 0.046
εMC,t 0.0002 0.000 0.540 0.0002 0.000 0.0002 0.000

TC 6233.091 6154.525 5550.616 5414.638 6623.076 6515.532
YO 9176.721 9232.434 9053.672 9120.884 9247.035 9308.380
TC/YO 0.690 0.081 0.624 0.056 0.727 0.068

37



Table 2, Total and Marginal Cost Elasticities, Regions

Region 1, Pacific Region 2 , Mountain Region 3, W.N. Central Region 4, E. N. Central
(CA,OR,WA) (AZ,CO,ID,MT,NM,NV, (IA,KS,MN,MO,ND) (IL,IN,MI,OH,WI)

UT, WY) NE,SD)

Measure Mean Est Std Dev Mean Est Std Dev Mean Est Std Dev Mean Est Std Dev
εTC,YO 0.7349 0.073 0.7215 0.080 0.6857 0.167 0.7419 0.080
εAC,YO -0.2651 0.073 -0.2785 0.080 -0.3143 0.167 -0.2581 0.080
εTC,YN -0.1063 0.103 -0.7110 0.756 -0.1677 0.146 -0.1210 0.042
εTC,AO 0.1181 0.050 0.3114 0.234 0.3400 0.302 0.1662 0.084
εTC,AN -0.0916 0.084 -0.6291 0.622 -0.2421 0.264 -0.1223 0.052
εTC,GO -0.0250 0.021 -0.0750 0.065 -0.0198 0.010 -0.0549 0.028
εTC,DS 0.1589 0.082 -0.4546 0.982 0.0387 0.279 0.2305 0.063
εTC,t 0.0128 0.008 0.1274 0.110 0.0265 0.031 0.0082 0.003

εMC,YO -0.0374 0.037 -0.0042 0.004 -0.0200 0.012 -0.0335 0.013
εMC,YN -0.0134 0.010 -0.0121 0.008 -0.0193 0.006 -0.0287 0.007
εMC,AO -0.0090 0.005 -0.0022 0.002 -0.0136 0.008 -0.0159 0.005
εMC,AN -0.0066 0.004 -0.0059 0.002 -0.0147 0.004 -0.0205 0.005
εMC,GO 0.0191 0.015 0.0027 0.002 0.0060 0.004 0.0302 0.011
εMC,t 0.0002 9.52707D-06 0.0002 0.000 0.0002 9.75992D-06 0.0002 8.82995D-06

TC 13464.963 12684.445 1683.722 1736.110 7888.612 4688.448 12076.535 4727.155
YO 20432.753 19579.757 2366.889 2386.690 10869.124 6326.128 18348.419 7006.685
TC/YO 0.678 0.075 0.710 0.082 0.729 0.092 0.659 0.068
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Region 5, New EnglandRegion 6, Mid Atlantic Region 7, E. S. Central Region 8, W. S. Central Region 9, S. Atlantic
(CT,MA,ME,NH,RI,VT)(NJ,NY,PA) (AL,KY,MS,TN) (AR,LA,OK,TX) (DE,FL,GA,MD,NC)

SC,VA,WV)

Measure Mean Est Std Dev Mean Est Std Dev Mean Est Std Dev Mean Est Std Dev Mean Est Std Dev
εTC,YO 0.8192 0.115 0.8224 0.087 0.7130 0.076 0.7195 0.073 0.7407 0.080
εAC,YO -0.1808 0.115 -0.1776 0.087 -0.2870 0.076 -0.2805 0.073 -0.2593 0.080
εTC,YN -0.7075 0.627 -0.2114 0.219 -0.1652 0.052 -0.1757 0.118 -0.4109 0.443
εTC,AO 0.7531 0.532 0.1151 0.056 0.2411 0.104 0.2080 0.133 0.5550 0.743
εTC,AN -2.1019 2.853 -0.2012 0.291 -0.1815 0.056 -0.2272 0.169 -1.4114 2.394
εTC,GO -0.8214 0.825 -0.0659 0.104 -0.0630 0.021 -0.0533 0.043 -0.2983 0.337
εTC,DS 2.0663 3.991 0.4889 0.545 0.1644 0.092 0.2702 0.166 1.1594 1.786
εTC,t 0.0961 0.054 0.0070 0.003 0.0185 0.005 0.0184 0.012 0.0420 0.048

εMC,YO -0.0030 0.003 -0.0270 0.010 -0.0123 0.004 -0.0205 0.018 -0.0130 0.009
εMC,YN -0.0077 0.004 -0.0171 0.003 -0.0191 0.004 -0.0187 0.006 -0.0185 0.005
εMC,AO -0.0046 0.002 -0.0094 0.002 -0.0082 0.002 -0.0073 0.003 -0.0128 0.011
εMC,AN -0.0216 0.017 -0.0197 0.021 -0.0138 0.003 -0.0134 0.008 -0.0370 0.056
εMC,GO 0.0765 0.066 0.1043 0.065 0.0127 0.005 0.0098 0.004 0.0392 0.031

8.82995D-06 εMC,t 0.0002 0.000 0.0002 0.000 0.0002 0.000 0.0002 0.000 0.0002 0.000

TC 1274.144 1245.583 10436.152 3426.879 4812.432 1609.389 7888.283 6672.266 4995.569 3364.689
YO 1885.697 1763.598 16029.826 5139.440 6889.446 2516.020 11451.982 9775.019 7456.739 4971.662
TC/YO 0.673 0.086 0.656 0.064 0.707 0.083 0.689 0.066 0.676 0.069
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Table 3: Gini Location Concentration Data, Y O , G O , and A O

Y O -G O  comparison A O -G O  comparison A O -Y O  comparison

1996 SYO SGO SYO/SGO 1996 SAO SGO SAO/SGO 1996 SYO SAO SAO/SYO

W.N. Central 0.114 0.042 2.682 W.N. Central 0.199 0.042 4.681 Mountain 0.026 0.050 1.899
E.N. Central 0.187 0.143 1.305 Mountain 0.050 0.032 1.568 W.N. Central 0.114 0.199 1.745
E.S. Central 0.071 0.057 1.258 E.S. Central 0.079 0.057 1.392 W.S. Central 0.127 0.148 1.162
W.S. Central 0.127 0.115 1.103 W.S. Central 0.148 0.115 1.282 E.S. Central 0.071 0.079 1.107
Pacific 0.215 0.235 0.915 E.N. Central 0.144 0.143 1.008 Pacific 0.215 0.232 1.075
Atlantic 0.083 0.093 0.898 Pacific 0.232 0.235 0.983 Atlantic 0.083 0.074 0.886
Mountain 0.026 0.032 0.826 Atlantic 0.074 0.093 0.796 E.N. Central 0.187 0.144 0.772
Mid Atlantic 0.156 0.240 0.652 Mid Atlantic 0.067 0.240 0.279 Mid Atlantic 0.156 0.067 0.428
New England 0.019 0.042 0.455 New England 0.008 0.042 0.185 New England 0.019 0.008 0.406

Y O  levels A O  levels G O  levels

1996 YO 1996 AO 1996 GO

Pacific 21326.77 Pacific 9254.18 Mid Atlantic 416409
E.N. Central 18507.10 W.N. Central 7944.21 Pacific 408961
Mid Atlantic 15472.83 W.S. Central 5914.35 E.N. Central 248711
W.S. Central 12611.75 E.N. Central 5768.62 W.S. Central 200424
W.N. Central 11280.09 E.S. Central 3151.07 Atlantic 161407
Atlantic 8267.24 Atlantic 2955.56 E.S. Central 98362
E.S. Central 7056.03 Mid Atlantic 2672.21 W.N. Central 73744.6
Mountain 2602.47 Mountain 1994.58 New England 73265.8
New England 1901.55 New England 311.23 Mountain 55281.9
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Table 4, Average and Marginal Cost Economies and Y O  Concentration, Gini data

AC,IEF-YO comparison, 1986 AC,IEF-YO comparison, 1996 AC,IEF levels, 1986 AC,IEF levels, 1996

1986 SYO SAC,IEF SA/SYO 1996 SYO SAC,IEF SA/SYO 1986 εAC,IEF 1996 εAC,IEF

Mountain 0.026 0.110 4.259 Mountain 0.026 0.078 2.967 E.N. Central -1256.69 Pacific -3010.28
New England 0.021 0.072 3.402 New England 0.019 0.043 2.220 S. Atlantic -1065.73 E.N. Central -2780.76
S. Atlantic 0.074 0.131 1.764 E.S. Central 0.071 0.104 1.453 W.N. Central -994.59 W.N. Central -2227.95
E.S. Central 0.071 0.117 1.644 S. Atlantic 0.083 0.120 1.437 E.S. Central -956.63 S. Atlantic -2063.57
W.N. Central 0.109 0.122 1.115 W.N. Central 0.114 0.130 1.137 Pacific -955.84 W.S. Central -1883.58
W.S. Central 0.114 0.103 0.905 E.N. Central 0.187 0.162 0.865 Mountain -900.64 E.S. Central -1780.75
E.N. Central 0.193 0.154 0.798 W.S. Central 0.127 0.110 0.860 W.S. Central -840.99 Mid Atlantic -1380.16
Pacific 0.206 0.117 0.569 Pacific 0.215 0.175 0.813 Mid Atlantic -602.39 Mountain -1341.10
Mid Atlantic 0.186 0.074 0.398 Mid Atlantic 0.156 0.080 0.514 New England -586.01 New England -733.39

 
MC,IEF-YO comparison, 1986 MC,IEF-YO comparison, 1996 MC,IEF levels, 1986 MC,IEF levels, 1996

1986 SYO SMC,IEF SM/SYO 1996 SYO SMC,IEF SM/SYO 1986 εMC,IEF 1996 εMC,IEF

Pacific 0.206 0.383 1.863 Pacific 0.215 0.403 1.870 Pacific -507.228 Pacific -827.639
E.N. Central 0.193 0.199 1.029 E.N. Central 0.187 0.185 0.988 E.N. Central -262.795 E.N. Central -379.321
W.S. Central 0.114 0.109 0.959 W.S. Central 0.127 0.124 0.975 Mid Atlantic -219.514 Mid Atlantic -260.112
Mid Atlantic 0.186 0.166 0.894 Mid Atlantic 0.156 0.127 0.810 W.S. Central -144.602 W.S. Central -255.075
W.N. Central 0.109 0.071 0.652 W.N. Central 0.114 0.081 0.711 W.N. Central -94.325 W.N. Central -166.570
S. Atlantic 0.074 0.033 0.452 S. Atlantic 0.083 0.046 0.551 S. Atlantic -44.249 S. Atlantic -94.598
E.S. Central 0.071 0.028 0.392 E.S. Central 0.071 0.026 0.366 E.S. Central -37.021 E.S. Central -53.541
Mountain 0.026 0.006 0.248 Mountain 0.026 0.006 0.223 Mountain -8.502 Mountain -12.039
New England 0.021 0.004 0.177 New England 0.019 0.003 0.160 New England -4.940 New England -6.322
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Figure 1a:  YO cdf (Y-axis) vs. GO cdf (X-axis)
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Figure 1b:  AO cdf (Y-axis) vs. GO cdf (X-axis)
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Appendix Table A1: Coefficient Estimates (dummies omitted, t statistics in italics)

αN,P 1.30E+01 0.62 δAN,AN -2.29E-10 -1.13
αN,M 6.82E+01 2.06 δAO,AO 8.35E-10 0.80
αN,K 3.58E+01 0.80 δYN,YN 2.86E-07 1.30
αP,M 1.86E+02 4.15 δGO,GO 7.23E-13 6.77
αP,K 1.81E+02 2.74 δGO,YO 1.09E-09 7.30
αK,M 1.83E+01 0.24 δGO,YN -1.52E-09 -6.49
δN,YO 2.00E-02 6.34 δGO,AO -1.21E-11 -0.70
δP,YO 3.24E-02 10.15 δYO,YN -2.05E-07 -1.04
δM,YO 4.87E-01 35.19 δYO,AO -7.22E-09 -0.55
δK,YO 3.41E-02 5.89 δYO,GO -5.50E-08 -2.11
δN,t -1.86E+00 -1.56 δGO,AN 1.20E-11 0.93
δP,t 6.08E+00 5.21 δYO,AN -3.00E-08 -1.94
δM,t 6.74E+01 8.63 δYN,AN 1.98E-08 1.84
δK,t 1.00E+01 3.90 δAO,AN -8.63E-10 -1.27
δN,AN 2.31E-04 0.88 δGO,t -4.14E-07 -5.10
δP,AN 1.03E-04 0.38 δYO,t 1.84E-05 0.36
δM,AN -1.26E-02 -6.60 δYN,t -2.71E-04 -2.98
δK,AN -1.35E-03 -2.11 δAN,t 4.50E-06 0.60
δN,YN 1.70E-03 0.30 δAO,t 5.65E-05 5.89
δP,YN -4.16E-03 -0.73 ρ 3.22E-01 10.04
δM,YN -7.08E-02 -2.45 ρLD 3.28E-01 6.88
δK,YN 2.04E-03 0.22 ρL 2.61E-01 5.78
δN,AO 4.07E-04 1.26 ρM 3.29E-01 10.09
δP,AO 9.50E-04 2.69 ρK 4.23E-04 0.41
δM,AO 1.69E-02 8.77
δK,AO 2.78E-03 3.94 R2s TC 0.9940
δN,GO -2.33E-05 -3.49 P 0.9939
δP,GO -2.79E-05 -4.18 N 0.9973
δM,GO -8.05E-05 -3.09 M 0.9916
δK,GO -4.44E-05 -4.27 K 0.9971
δYO,YO -1.69E-07 -3.81
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