
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Connectivity Establishment and Maintenance for Sparse Network Graphs

Permalink
https://escholarship.org/uc/item/3240t1n9

Author
DING, KAI

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3240t1n9
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Connectivity Establishment and Maintenance for Sparse Network Graphs

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mechanical and Aerospace Engineering

by

Kai Ding

Dissertation Committee:
Professor Homayoun Yousefi’zadeh, Advisor

Professor Faryar Jabbari, Chair
Professor Kenneth D. Mease

Professor Solmaz S. Kia

2018

Chapter 2 c© 2016 IEEE
Chapter 3 and 4 c© 2017 IEEE

All other materials c© 2018 Kai Ding

DEDICATION

To my parents and their naive boy 5 years ago.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

LIST OF ALGORITHMS vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Overview of Connectivity Establishment in Heterogeneous Networks 2
1.2 Overview of Mobile Network Connectivity Maintenance 5
1.3 Literature Review . 7

1.3.1 Node Placement Strategies . 7
1.3.2 Connectivity Maintenance Strategies 11

2 Connectivity Model and Hexagon Coordinate System 14
2.1 Connectivity Model . 14
2.2 Hexagonal Coordinate System . 17

2.2.1 Operation Definitions in HCS . 18
2.2.2 Orientation of Distance Vector . 21

3 Advantaged Node Placement Algorithm 25
3.1 NP-hard Problem Statement and Exhaustive Search Algorithm 26

3.1.1 NP-Hard Problem Statement . 26
3.1.2 Exhaustive Search Algorithm . 28

3.2 Heuristic Algorithm 1: GDO algorithm . 29
3.3 Heuristic Algorithm 2: EGDO algorithm . 38
3.4 Analysis of Complexity . 42

3.4.1 Complexity of Solving the Optimization Problem 42
3.4.2 Complexity of EGDO Algorithm . 43
3.4.3 Complexity of GDO Algorithm . 44

iii

4 Experimental Results 46
4.1 Comparison with Exhaustive Search Algorithm 47
4.2 Performance Comparison of SMT and EGDO Algorithm 48
4.3 Experiment on Robustness -

Partial and Global Robustness Tests . 51
4.4 Inspection of Cluster Density Threshold Value 53
4.5 An Comparison of SMT and EGDO in HCS 55

5 Maintaining Connectivity in Mobile Network 59
5.1 Analysis of Mobility Bound under Small Scale Node Mobility 59
5.2 Connectivity Maintenance under Large Scale Node Mobility 62

5.2.1 Graph Theoretic Analysis . 62
5.2.2 Problem Statement . 66
5.2.3 Solution Alternatives . 67

5.3 Location-Aware Connectivity Maintenance under Large Scale Node Mobility 69
5.3.1 Problem Formulation . 69
5.3.2 Complexity Analysis . 73

6 Simulation Results of Connectivity Maintenance Problem 75
6.1 Experimental Results . 75

6.1.1 Small Scale Perturbation . 75
6.1.2 Large Scale Node Mobility . 77

7 Conclusion 83
7.1 Summary of Main Contribution . 83
7.2 Future Work . 85

7.2.1 Connectivity Establishment and Maintenance in More Heterogeneous
Network . 85

7.2.2 Formation Control in Multi-agent System 85
7.2.3 Communication Energy Optimization 86

Bibliography 87

Appendices 95
A A Brief Introduction to Algebraic Graph Theory 95

A.1 Adjacency Matrix . 98
A.2 Laplacian Matrix . 100

B Missing proofs in Chapter 5 . 102
B.1 Proof of Lemma 1 . 102
B.2 Proof of Theorem 5.1 . 103
B.3 Proof of theorem 5.2 . 104
B.4 Proof of Theorem 5.3 . 107
B.5 Proof of Theorem 5.4 . 108

iv

LIST OF FIGURES

Page

2.1 The hexagonal coordinate system (HCS). 18
2.2 Calculating angle θ between ϑ and x(+)-axis when ϑ is in the 1st or 3rd

quadrant. In the other two quadrants, the quadrant is divided into two areas
and θ is calculated with respect to y(+)-axis in Area I or x(−)-axis in Area II. 22

2.3 The longest possible distance covered by an AN. 23

3.1 A graphical representation of the feasible points of Υ(k) in Case 1. 33
3.2 A graphical representation of the feasible points of Υ

(k)
i and Υ

(k)
i+1 in Case 2. 35

4.1 An AN cost comparison of EGDO and exhaustive search algorithms. 48
4.2 An AN cost comparison among StaSMT, DynSMT, GDO, and EGDO algo-

rithms. 49
4.3 A runtime comparison of StaSMT, DynSMT, GDO, and EGDO algorithms. 50
4.4 A drawing of average robustness factor as a function of the number of pre-

deployed clusters in perturbation tests. 52
4.5 The identification of threshold τ for different field sizes. 54
4.6 An AN cost comparison of SMT and EGDO algorithms in HCS. 57

5.1 The cases of coverage overlap in which the overlapping area between two
connected nodes is (a) the largest, and (b) the smallest. 60

5.2 Sample illustrations describing the functionality of Algorithm 4 in four con-
secutive discrete mobility instances. The symbol + after a mobility instance
denotes the action instance for that mobility instance. 73

6.1 An experimental comparison of perturbation survivability p as a function of
mobility distance σ for different combinations of (Γ, n). 76

6.2 Plots of Recovery Probability as a function of mobility distance σ for different
numbers of pre-deployed nodes M . 78

6.3 Recovery Probability as a function of the number of pre-deployed nodes M . . 80
6.4 Bar plots of the total number of nodes M + N̄ (where N̄ indicates the average

number of intermediate nodes) for different choices of pre-deployed nodes M
in Fig. 6.3. 80

6.5 Capturings of the runtime of Algorithm 4 versus M + 2N +
√
M − r + 2N . 82

v

LIST OF TABLES

Page

4.1 Average AN cost in 100km× 100km field test. 56
4.2 Average AN cost in 200km× 200km field test. 56
4.3 Average AN cost in a 300km× 300km field test. 57

6.1 Line slope measures in seconds fitting Fig. 6.5 data. 81

vi

LIST OF ALGORITHMS

Page
1 Exhaustive Search Algorithm . 29
2 GDO Algorithm . 30
3 EGDO Algorithm . 39
4 Adaptive Node Relocation Algorithm . 71

vii

ACKNOWLEDGMENTS

First of all, I would like to thank Prof. Homayoun Yousefi’zadeh and Prof. Faryar Jabbari
for their invaluable guidance and mentorship. In preparation for the Ph.D preliminary exam
in 2013, Prof. Jabbari advised me to take Prof. Yousefi’zadeh’s Linear Programming class
in EECS department, which happened to ignite this dissertation. One year after the class
ended, I got an email from Prof. Yousefi’zadeh, when I was in a grocery store with my mom,
informing me that he could offer me an RA position related to a project funded by DARPA,
and I could work on it toward the completion of my Ph.D degree. The project was fasci-
nating and I started the journey without much of relevant background. Prof. Yousefi’zadeh
pointed me to relevant papers to read and taught me how to read those papers. He shaped
my scattered ideas and put me on a clear path formed by my sporadic thoughts. Prof.
Jabbari helped me find TA positions after the DARPA project ended, guided me through
administration issues, and offered insight on practical applications of theoretical research
topics. It was hard at the beginning. Doing research at that time felt like a daunting effort
in finding my way out of a swamp. Fortunately, their guidance allowed me to achieve my
goal without drowning in the swamp.

Second, I’m grateful to the support and encouragement provided by my family. My father
worked hard to support my first year study abroad and my mother traveled abroad a couple
of times to relieve my homesickness. Three of us endeavored to build a better future in
different ways. This is the spirit of my family - to always do whatever we can and hope for
the best. We live in different sides of the Pacific Ocean but our hearts beat as one.

Third, I want to thank my fiancee, Ms. Jingshu Ma. Our story started at UCI. She altered
the track of her life for our relationship. It was difficult seeking dreams of our own while
keeping a relationship. We worked it out. What we’ve been through these years, is a priceless
experience testing our endurance under server situations and then entertaining stories about
it after a homemade dinner, when no one wants to wash the dishes.

Apart from my advisors and family, I also want to thank my friends, who helped me settle
down in Irvine, provided assistance and important information when I needed them most,
accompanied me when I was alone, as well as those who showed me different life styles.

Last but not least, I want to thank our sponsor, DARPA GRAPHS program Award N66001-
14-1-4061, for supporting my research, as well as IEEE for giving me the permision to
incorporate some published works into this dissertation.

viii

CURRICULUM VITAE

Kai Ding

EDUCATION

Doctor of Philosophy in Mechanical and Aerospace Engineering Mar. 2018
University of California, Irvine Irvine, CA

Master of Science in Mechanical and Aerospace Engineering Dec. 2014
University of California, Irvine Irvine, CA

Bachelor of Engineering in Detection Guidance and Control Technology Jun. 2012
Beijing University of Aeronautics and Astronautics Beijing

RESEARCH EXPERIENCE

Graduate Student Researcher 2013–2017
University of California, Irvine Irvine, California

Project: Network Connectivity Establishment and Maintenance

TEACHING EXPERIENCE

Teaching Assistant
ENGRMAE 80 Dynamics Jan. 2017 - Aug. 2017

ENGRMAE 150L Mechanics of Structures Laboratory Sep. 2015 - Dec. 2015

Peer Mentor in Graduate Resource Center Summer 2014 & 2016

REFEREED JOURNAL PUBLICATIONS

A Robust Advantaged Node Placement Strategy for
Sparse Network Graphs

2017

IEEE Transactions on Network Science and Engineering

REFEREED CONFERENCE PUBLICATIONS

A systematic node placement strategy for multi-tier
heterogeneous network graphs

Apr. 2016

IEEE 2016 Wireless Communications and Networking Conference (WCNC’2016)

ix

ABSTRACT OF THE DISSERTATION

Connectivity Establishment and Maintenance for Sparse Network Graphs

By

Kai Ding

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2018

Professor Faryar Jabbari, Chair

Establishing robust connectivity in heterogeneous networks (HetNets) is an important yet

challenging problem. For a heterogeneous network accommodating a large number of nodes,

establishing perturbation-invulnerable connectivity is of utmost importance. This disserta-

tion provides a robust advantaged node placement strategy best suited for sparse network

graphs. In order to offer connectivity robustness, this work models the communication range

of an advantaged node with a hexagon embedded within a circle representing the physical

range of a node. Consequently, the proposed node placement method in this dissertation is

based on a so-called hexagonal coordinate system (HCS) in which we develop an extended

algebra. We formulate a class of geometric distance optimization problems aiming at es-

tablishing robust connectivity of a graph of multiple clusters of nodes. After showing that

our formulated problem is NP-hard, we provide a heuristic algorithm based on HCS that

efficiently solves the problem. Performance evaluation on different aspects of the algorithm

is given. The results show that our algorithm is most effective in sparse networks for which

we derive classification thresholds.

After connectivity is established, we consider the problem that when some nodes are exposed

to mobility, how to maintain connectivity. In this part, the network of interest consists of

two types of nodes, pre-deployed (client) and intermediate nodes. We assume full control

x

on the intermediate nodes but not the pre-deployed nodes. In such networks, on which we

have only partial control, two types of node mobility scenarios are investigated. The first

scenario analyzes the bounds of mobility when pre-deployed nodes move at small scales. The

bounds of node mobility preserving connectivity are derived through analysis and verified by

simulations. The second scenario considers the movement of pre-deployed nodes beyond the

bounds of the first scenario thereby breaking connected links and partitioning the connected

network. This scenario then considers relocating the existing intermediate nodes in order to

reestablish connectivity. A general formulation is proposed in the form of an optimization

problem. We prove that the general formulation of the problem is NP-hard. Next, we turn

our attention to a practical scenario in which the location of nodes is made available using

GPS signals. We solve the problem of the practical scenario in polynomial time and ana-

lyze the complexity of our solution. We also present comprehensive performance evaluation

results of our proposed algorithm.

xi

Chapter 1

Introduction

In this dissertation, we study the problem of network connectivity establishment and mainte-

nance. The first part of the research aims at developing a systematic strategy of establishing

robust network connectivity in the presence of perturbations. This task is fulfilled by place-

ment of extra nodes in the network. We seek a node placement strategy that aid establish

the initial connectivity and carries a certain level of robustness therein. The second part of

the research studies the problem that when some of the nodes in the network are exposed to

mobility, how to relocate the intermediate nodes placed in the first part, in order to maintain

connectivity. We formulate the problem in the form of an optimization problem, which is

later proved to be NP-hard, and seek solutions with reasonable time complexity. In the

following sections, an overview of each problem is given, respectively, followed by relative

literature review.

1

1.1 Overview of Connectivity Establishment in Het-

erogeneous Networks

Establishing connectivity in heterogeneous networks (HetNets) has been of high significance

in the studies of MANET [1], wireless sensor networks [2], multi-facility locations [3], and

traffic flow problems [4]. HetNets are typically composed of nodes with different capabilities

and are formed by a collection of clusters. Generally, each cluster contains several standard

nodes with short communication ranges and a cluster head node [5]. The cluster head node

is an advantaged node serving as the gateway of this cluster in communication with other

cluster heads. Connectivity scenarios of multi-tier networks have found extensive applica-

tions in different disciplines including but not limited to health surveillance, environment

monitoring, earthquake detection, and Internet of Things (IoT). In all these applications, a

large number of low-capability standard nodes (SNs) rely on a small number of advantaged

nodes (ANs) to form a communication network.

Similar to literature work of [6, 7], we assume HetNets are formed by SNs arranged in

clusters with each cluster designated an AN gateway. AN gateways are assumed to have

much longer communication ranges and able to simultaneously connect to multiple nodes

[8]. While the assumption guarantees intra-cluster connectivity inter-cluster connectivity

still needs to be established by placement of additional intermediate ANs. Lin and Xue [9]

abstract this problem in the form of a Steiner minimum tree problem with minimum number

of Steiner points and bounded edge length, which we refer to this algorithm as SMT not to

be confused with MST used to represent minimum spanning trees. Lin and Xue provide

an approximation algorithm to the original NP-complete problem with a polynomial time

complexity and a performance ratio of 5. This algorithm lays the groundwork of several other

approximation algorithms with smaller (better) performance ratios [10, 11, 12, 13]. In [8], the

authors develop a node placement algorithm for clustered ad-hoc networks subject to capacity

2

constraints. Other related works, albeit at small scale sensor networks, include [14, 4, 7, 15]

in which energy and network lifetime constraints are emphasized in node placement.

All of the above algorithms use the Gilbert disk connectivity model [16, 17, 18] representing

the communication range of an AN as a circle. One disadvantage of this model is lack of

boundary connectivity robustness where the distance between two centers is close to the

distance threshold of connectivity d. In such cases, a pair of connected nodes can easily

become disconnected as the result of small position perturbations, a phenomenon occurring

frequently and unpredictably, especially in harsh environments. To compensate against these

cases, fault-tolerant k-connectivity (k ≥ 2) node placement algorithms have been developed

[19, 14, 20, 21, 22]. By using a much larger number of ANs, these algorithms guarantee there

are always k different paths between each pair of ANs.

In addition to the disadvantage above, SMT-based methods are subject to a second yet major

disadvantage. Since the minimum spanning tree is formed statically once, to represent the

topology of the network graph, SMT-based methods do not consider the effects of changes

to minimum spanning tree as the result of placing ANs in subsequent iterations. This can

lead to potentially over utilizing AN resources, since it is possible to establish connectivity

with a smaller number of ANs.

As detailed in Section 2.2 and Section 3.3, this work provides a dynamic strategy for AN

placement capable of dynamically considering the effects of changes to minimum spanning

tree while offering robust network connectivity in the presence of perturbations. In essence,

we seek an AN placement strategy that carries a certain level of robustness therein. To avoid

the inherent problem of Gilbert disk model in boundary connectivity cases, we model the

communication ranges of nodes as hexagons embedded within the circles representing the

actual communication ranges of nodes. Two nodes are considered connected only when their

associated hexagons have a common edge. Consequently, a pair of connected nodes actually

have a margin of perturbation conserving connectivity. Projecting the node placement prob-

3

lem into HCS with integer coordinates allows us to utilize the higher computation efficiency

of HCS compared to a conventional Cartesian Coordinate System (CCS) in minimizing the

number of intermediate ANs, identifying their positions, and accounting for topology per-

turbations.

In our work, we consider a two-tier graph of nodes in which clusters of SNs are to be connected

with a minimum number of ANs. ANs are distinguished from SNs by their higher ranges of

communication and ability to simultaneously connect to a large number of standard nodes.

Each cluster of SNs is assumed to be equipped with an AN allowing full connectivity of the

nodes within the cluster. Multiple clusters of SNs may or may not be connected depending on

their separation distance. It is important to note that inter-cluster connectivity as facilitated

by ANs is mostly a function of distance as opposed to interference because of the much larger

separation distances of ANs and much stronger power profiles compared to SNs.

In this dissertation, connectivity establishment problem is studied in Chapter 2, Chapter 3

and Chapter 4. The main contributions of this part of work are as follows. First and for

the purpose of offering robustness, we introduce a hexagonal coordinate system and develop

associated extended algebra. Relying on the proposed HCS, we then formulate a class of

geometric distance optimization problems aiming at finding the minimum number of ANs

and their positions to guarantee robust connectivity of a given HetNet. We prove that our

formulated problem is NP-hard and offer an exhaustive search algorithm for solving this

NP-hard problem as well as a low complexity algorithm for solving an approximation of

this problem. We show our heuristic solution closely tracks the exhaustive search algorithm

while enjoying excellent node cost, runtime, and robustness characteristics compared to

other alternatives. Our proposed approximation algorithm utilizes far fewer ANs than a

k-connected network. This is because establishing a k-connected network requires many

additional edges to a graph so as to preserve connectivity under (k− 1) edge or vertex cuts.

Naturally, adding edges will increase the number of intermediate ANs.

4

1.2 Overview of Mobile Network Connectivity Main-

tenance

With the emergence of high speed networks, the concept of “connecting everything” has

drawn major attention in the recent years [23]. Accordingly, a vast array of stationary and

mobile devices have become members of large connected components. In the case of mobile

devices, connectivity is negatively affected by wireless network environment effects such as

fading [24], interference [25], and congestion [26]. Consequently, the challenge of “keeping

everything connected” is introduced after initially succeeding in “connecting everything”.

The problem space of this connectivity maintenance falls under the paradigm of keeping

everything connected in presence of mobility. The subject of keeping everything connected

is well studied in the literature of mobile ad hoc networks (MANET) [27, 1] and multi-agent

systems [28, 29].

One way of persisting connectivity is to preserve the quality of wireless channels in dynamic

networks [2, 30]. Accordingly, several MANET protocols have been developed [31, 32, 33] to

take advantage of preserving link qualities. Particularly useful in long range networks mostly

with line of sight links, another way of persisting connectivity is through topology control.

In such cases, the quality of communication channels largely depends on node separation

distances. In essence, a link between a pair of nodes is maintained if the distance between

the pair does not exceed a threshold denoted by 2R. The works of [34, 35, 36, 37, 38] propose

decentralized control laws to prevent a network from getting disconnected. In those works,

maintaining connectivity typically relies on strategies of preserving a spanning tree of the

network graph.

In this dissertation, after establishing connectivity among a number of isolated clusters, we

consider the problem of maintaining connectivity under node mobility. The mobile network

also consists of two type of nodes, pre-deployed and intermediate nodes, and mobility of nodes

5

will start with the connected network established through our proposed algorithm. In our

scenario of operation, similar to the connectivity establishment problem, each pre-deployed

node is the advantaged gateway node for a cluster of standard nodes whose transmission

ranges are limited. Referred to as members of a set V0, these pre-deployed nodes and their

associated cluster units may become mobile. Intermediate nodes, referred to as members

of another set V1, are additional advantaged nodes placed in the network so as to facilitate

connectivity.

In [39] and [40], we proposed a class of node placement algorithms to robustly establish

connectivity using a minimum number of intermediate nodes. Here, the phrase ‘robust’

indicates that connectivity is preserved in presence of small perturbations of node locations.

In order to gain coverage overlap and thereby helping robustness, a hexagon rather than

a disk (circle) is used to represent the communication range of individual nodes. Relying

on a hexagonal coordinate system (HCS) within which an extended algebra is developed, a

class of geometric distance optimization (GDO) node placement algorithms are introduced.

Numerical results show the robustness advantages of GDO algorithms in sparse networks.

However, connectivity is established among pre-deployed static nodes in set V0 without the

considerations of mobility.

In the second part of our research, we study how mobility of pre-deployed nodes impacts

connectivity and develop strategies of relocating inetrmediate nodes in order to maintain a

connected network. We will investigate this problem by splitting it into two subproblems.

First, since establishing connectivity utilizing the hexagonal model of [39] offers a built-in

robustness, the network may remain connected if the mobility of elements of V0 are at small

scales. The bounds of small scale mobility beyond which connectivity is not preserved are

identified. Second, when the mobility of elements of V0 exceed small scale mobility bounds,

the underlying network would, with a high probability, become disconnected. In this case, a

strategy of relocating the element of V1 is pursued in order to restore connectivity. Developing

6

such strategy is of interest albeit the fact that one can always run EGDO algorithm to

establish a connected network. The justification of our alternative approach is two folds.

First, applying EGDO algorithm may require adding extra intermediate nodes which my not

be practical in the middle of network operations. Second, the runtime of EGDO algorithm

is anticipated to be relatively high even without requiring to add extra nodes. Hence, we

focus on developing a lower complexity algorithm to restore connectivity if the circumstances

permit. Otherwise, EGDO algorithm may still be used to restore connectivity.

In this dissertation, the network maintenance problem is investigated in Chapter 5 and

Chapter 6. Our main contributions in this part are the followings. First, we analyze the small

scale mobility bounds of the elements of V0 within which the network remains connected.

Second and given the same number of intermediate nodes used to establish the connectivity

of the static network, an optimization problem is proposed to restore general connectivity

when the mobility of elements of V0 goes beyond the bound. The problem formulation

manifests in the form of semidefinite programming applied to an algebraic graph and is

proven to be NP-hard. Third, we consider a practical scenario in which node positions are

reported through GPS signaling. We inspect the solution of the second problem in two steps.

First, we answer a feasibility question as to whether the network can be reconnected using

the same number of intermediate nodes. If the answer is yes, we develop an algorithm with

polynomial time complexity to relocate the intermediate nodes.

1.3 Literature Review

1.3.1 Node Placement Strategies

In this section, related node placement strategies are reviewed. We go over a number of

published approaches highlighting their desired performance goals and according solutions.

7

It should be highlighted that when it comes to “node placement” in literature, there are

different types of node to be placed, such as sensor, relay, cluster-head, base-station, etc.

In our work, we consider the so-called ‘advantage node’, which is prone to representing

cluster-head in practice [41].

When establishing a connected network via advantage node placement, certain performance

goals, such as minimizing the number of ANs used, maximizing area coverage, improving

energy efficiency and gain the ability of fault tolerance, are usually desired. The authors in

[42] studied the problem of covering an area of interest with the least number of SNs so as to

maximize the probability of detecting targets. In [43], the authors investigated the problem

of maximal coverage with the lowest sensor cost in underwater wireless sensor networks.

These sensors are deployed on the bottom of the ocean and served by nearby gateway nodes

which collect data from them. In [44], the author seek a maximal coverage strategy with the

least node cost that maintains a robust connected network geometry even though one node

fails. This requires the network to be 2-connected. These works all aim at maximal coverage

area and the minimal nodes cost, while have secondary constraints on different aspects.

In optimization of energy efficiency, one aspect is to have relatively shorter path on average

by controlling network topology because the energy consumption rate will be drastically

increased if the communications between two nodes are through long distance links. Another

aspect with the same objective is to optimize power control and load allocation. In massively

dense sensor networks, it is unrealistic to model the network with node/edge notation. The

authors in [45], studied the node deployment problem in terms of node density. They attempt

to find a distribution function for sensor nodes so that all data flows over short paths to the

data collector. In [4, 46], the authors optimize the traffic allocation by AN placement in

order to gain high energy efficiency and consequently enhance average network life time.

The authors in [6] reported a AN deployment strategy to balance non-uniformly distributed

energy-consuming rate caused by deficient network geometry. In [47], the author investigated

8

the relation between node density of a network and its lifetime.

When the objective is to form a fault-tolerate network, researchers focus on achieving K-

connectivity while establishing a connected network. A network is said to be K-connected

if and only if there are K edge-independent paths between any two nodes. This problem is

usually posed as an optimization problem with K-connected as constraint and the number

of intermediate AN placed as objective function. Reference [48, 22, 20] are in this category.

In works aiming at minimizing the number of intermediate AN placed, both single and

multi-tier networks are studied. In single-tier networks [12, 10], all nodes has the same

communication capability. In multi-tier networks [49], R, referred to as the commutation

radius of an AN, is strictly and typically one or two orders larger than that of a SN, denoted

as r. In [7, 15] the authors mainly aim at minimizing network cost constrained by a certain

length of network life, when establishing connectivity by AN placement. Their strategies

are primarily applied to prefixed sensing spots within applications operating in non-harsh

environments.

The classes of node placement problems mentioned above are typically proved to be NP-hard.

There usually exist no analytical optimal solution, which left a wide space for researchers to

fill with heuristic algorithms that efficiently solve the problem under practical assumptions.

In this dissertation, we mainly focus on the objective of establishing connectivity with the

least number of intermediate ANs. Lin and Xue [9] prove this problem is NP-hard and provide

a static algorithm to solve it. In their algorithm, a minimum spanning tree (MST) of sensor

nodes is formed at the beginning. The formation of such MST may introduce some edges

that are longer than the communication range of a standard sensor node hence requiring

to rely on intermediate ANs, whose communication radius is R, to establish connectivity.

Their method calls for dividing each edge equally by R in order to identify the positions of

additional ANs. The authors claim their work has a performance ratio of 5, but Chen et al.

9

prove later in [11] that this algorithm is actually no more than 4 times the optimal solution

(4-approximation), and provided a 3-approximation algorithm. Here, an algorithm is said to

be α-approximation as long as it gives a solution no more than α times the optimal solution

of the problem. An extension of Lin and Xue’s work to homogeneous network where ANs

and SNs share the same communication range and could both serve as a sensor or a relay is

presented in [12] by X. Cheng. They considered a class of WSN, such as biomedical sensor

networks where sensors are determined prior to deployment. To maximize network life time

and reduce interference, it desired to maintain network connectivity with minimum number

of ANs and minimum transmission power per node. To further extend the MST algorithm

to the case of HetNets, Lloyd and Xue [10] consider a case in which R is larger than or equal

to r. They first consider the problem in a way that either an SN or an AN could serve as

a data forwarding and receiving node. This algorithm generates a path between two sensor

nodes consisting of both SNs and ANs. Then, the authors propose a (5 + ε) -approximation

algorithm for establishing a connected path composed of only ANs between each pair of

SNs. Slightly before Lloyd’s work got published, Tang [14] proposes an exhaustive-search

algorithm for HetNet graphs in which R is set to be 4 times larger than r. The proposed

algorithm has an approximation ratio of 4.5.

Being a static algorithm, MST-based methods do not consider the potential of connectivity

augmentation offered by ANs placed at later stages and those placed previously. This can lead

to potentially over utilizing AN resources, since it is possible to establish connectivity with

a smaller number of ANs. In addition, MST-based methods represent the communication

range of a node by a disk, i.e., geometric disk model which can potentially prove problematic.

As shown in Fig. 1.1a, when utilizing the geometric disk model, a pair of touching circles

representing connected nodes may be easily disconnected as the result of small perturbations

affecting the geometry of the system. In order to establish a robust network, we introduce,

for the first time, hexagon model to represent the communication range. Two hexagons

having one edge in touch are considered as connected. As shown in Fig. 1.1b, two connected

10

nodes share an overlapping area in the real world, which functions as the safety margin that

is capable of compensating local perturbations. Further investigation of this model will be

given in Chapter 2.

(a) Disk model incurs vulnerable connection. (b) Hexagon model offers safety margin.

1.3.2 Connectivity Maintenance Strategies

In literature, there are two other often-seen concepts that are equivalent to connectivity

maintenance, they are connectivity preservation and controlling connectivity. This topic

is widely studied in the area of multi-agent systems, mobile networks and wireless sensor

networks. There are three major strategies of connectivity maintenance. The first is to give

a control protocol to each node (agent) so as to preserve its connectivity to its neighbors.

This is usually done by impose a potential-field-like controller to each node [50, 51, 31].

The second is by establishing an initially k-connected network graph [52, 53, 54], which will

remain connected even though (k − 1) edges in the graph were lost due to node mobility.

The third, and usually the most difficult, is to design a network reconfiguration strategy to

accommodate the node mobility [55, 56].

11

Spanos and Murry proposed a quantity called the geometric connectivity robustness [57] that

can be employed as motion constraint for mobile nodes. Papas and Zavlanos [58] reported a

centralized control law that preserves k-hops connectivity. That is to say, each node, while

moving, keeps its k-hop neighbors unchanged. As a special case, when k = 1 it preserves

the connectivity of each edge. Later on, they proposed the idea of maintaining connectivity

by a controller based on potential field in [50], which laid the groundwork of several later

research on decentralized control algorithms that maintain connectivity [59, 60, 35]. This

potential field calls for exerting negative force to the motion of a node, when the node

is moving towards a direction that reduces the global connectivity, characterized by the

algebraic connectivity. In [61], the authors consider a practical application of the connectivity

maintenance problem. The strategy of maintaining connectivity in their work is by defining

an edge tension function, which is similar to the potential field. A big issue of applying

potential field based algorithms in multi-agent systems is that the calculation of the algebraic

connectivity requires the knowledge of Laplacian matrix of the graph. That is to say, we

have to get the information of the entire topology at each moment so as to calculate the

potential field, implying the algorithm we developed has to be centralized.

To relieve this issue, scholars come up with strategies that maintains local connectivity that

run on each individual agent [62, 63, 64]. In [38], the authors proposed a decentralized

estimate method for the algebraic connectivity and proved their designed decentralized algo-

rithm is able to maintain connectivity. [31] provides a scheme of sensor deployment and local

connectivity maintenance. Beyond preserving connectivity, this decentralized algorithm also

considers classic sensor network deployment problem such as maximizing the coverage area,

covering point of interest and barrier coverage.

When dealing with connectivity maintenance problem in the scenario of edge of node fail-

ure, establishing a k-connectivity at the very beginning may not always be a practical and

economic method. So the problem of adaptively changing the topology by controlling node

12

movement is investigated. [65] presents a decentralized scheme for connectivity maintenance

under the condition of possible node failure, while [66] provides a decentralized algorithm

for the scenario of possible edge failure.

Due to the importance of mobile robotic networks or multi-agent networks, more and more

scholars put attention on maintaining connectivity through reconfiguration of network topol-

ogy. [67] studies whether a node in a network is able to move to a desired location while

preserving the network connectivity. The problem is formulated to a convex optimization

problem for which the author provided a centralized solution. In [68], the problem of maxi-

mizing the lifetime of a sensor network, by adding and relocating a set of relay nodes in the

deployed network, is investigated. The author of [69] researches on a more practical applica-

tion problem of the same nature as connectivity maintenance. The two problems addressed

in this paper are maximizing the consensus rate and minimizing the communication cost

by relocating the nodes in a wireless network. The fundamental assumption is a connected

network. Both [68] and [69] formulated the problem in a Semi-definite Programming (SDP).

[53] provide a broad and in-depth survey on connectivity maintenance problem utilizing the

algebraic connectivity concept, which better explained why a lot of the problems in this area

falls into the category of SDP or Mixed-integer SDP (MISDP).

The problem we will study in Chapter 5 and 6 is connectivity maintenance via topology

reconfiguration, and with little doubt, is a MISDP.

13

Chapter 2

Connectivity Model and Hexagon

Coordinate System

In this section, a connectivity model as well as its variant model are introduced. To facilitate

the application of this model, a new coordinate system is define with corresponding algebras.

2.1 Connectivity Model

Based on the landmark Gilbert connectivity model [16], early connectivity models in network

graphs mainly consider the distance between nodes. Later, a number of more realistic models

[24, 70, 71] were established to capture connectivity using propagation, fading, shadowing,

signal-to-interference-noise ratio (SINR), symbol error rate (SER), and capacity. A review

of these recent works reveals that using a distance-based connectivity model is justified

when high power long range communication dominates other factors such as interference,

fading, and shadowing. Accordingly, this work assumes that ANs are characterized by longer

communication ranges, higher powers, and higher lifetimes compared to SNs.

14

A pair of nodes {M , N} are considered to be bi-directionally connected if both M and N

located within each other’s communication range . In the definition above, the distance

between nodes is a realistic measure of connectivity because inter-cluster communication

relies on LOS links established betweem high power ANs. For a pair of SN and AN nodes

with ranges r and d in radii, connectivity is established only when the distance between two

nodes is less than or equal to min{r, d} = r.

In our model, a number of SNs form a connected cluster for which the center of geometry

can be calculated. A number of these clusters in a given area compose a network topology

scenario. The location of clusters could be random or follow some certain distribution rule

depending on the SN deployment preference. The 3 red dots in Fig. 2.1 represent 3 SNs

with communication ranges of r forming a sample cluster of SNs. Each cluster is assumed

to be supported by an AN gateway node. This AN is typically located at the center of

geometry of the cluster in order to maximize the number of SNs to which it is directly

connected. Alternatively, AN gateways may have a small displacement from the center of

geometry. Nonetheless, SNs within a cluster are all connected to the AN gateway node and

able to communicate with nodes outside of the cluster through the AN gateway node. Thus,

the problem of global connectivity is converted to connecting individual clusters utilizing

additional intermediate AN nodes as necessary. Based on the connectivity condition given

above, one AN ought to locate within the communication range of another AN so as to

establish connectivity. A pair of ANs with communication ranges of d = 2R are connected

if the two circles with radii R and centered around them overlap.

In order to provide a margin of robustness in presence of location perturbation, we model

the communication area of an AN by a hexagon with an edge length of R. Considering

the extended range of AN compared to SN, we assume R is approximately two orders of

magnitude larger than r. Without loss of generality, the communication area of an AN can

be set as a hexagon with an edge length of (12n + 7)r where n is a positive integer chosen

15

such that the expression accurately approximates the value of R. The length selection of

(12n + 7)r offers a couple of geometrical advantages. First, any vertex of a large hexagon

overlaps with the vertex of a hexagonal cell at the same relative position. Second, center to

edge distance of a hexagon is conveniently measurable by the distance measure defined in

the next section. This distance relates to the minimum distance coverage by an AN and will

be utilized in Section 3.3. Two ANs are then robustly connected if their associated hexagons

have a common edge.

In our model, a number of SNs form a connected cluster for which the center of geometry

can be calculated. A number of these clusters in a given area compose a network topology

scenario. The location of clusters could be random or follow some certain distribution rule

depending on the SN deployment preference. The 3 red dots in Fig. 2.1 represent 3 SNs

with communication ranges of r forming a sample cluster of SNs. Each cluster is assumed

to be supported by an AN gateway node. This AN is typically located at the center of

geometry of the cluster in order to maximize the number of SNs to which it is directly

connected. Alternatively, AN gateways may have a small displacement from the center of

geometry. Nonetheless, SNs within a cluster are all connected to the AN gateway node and

able to communicate with nodes outside of the cluster through the AN gateway node. Thus,

the problem of global connectivity is converted to connecting individual clusters utilizing

additional intermediate AN nodes as necessary. Based on the connectivity condition given

above, one AN ought to locate within the communication range of another AN so as to

establish connectivity. A pair of ANs with communication ranges of d = 2R are connected

if the two circles with radii R and centered around them overlap.

In order to provide a margin of robustness in presence of location perturbation, we model

the communication area of an AN by a hexagon with an edge length of R. Considering

the extended range of AN compared to SN, we assume R is approximately two orders of

magnitude larger than r. Without loss of generality, the communication area of an AN can

16

be set as a hexagon with an edge length of (12n + 7)r where n is a positive integer chosen

such that the expression accurately approximates the value of R. The length selection of

(12n + 7)r offers a couple of geometrical advantages. First, any vertex of a large hexagon

overlaps with the vertex of a hexagonal cell at the same relative position. Second, center to

edge distance of a hexagon is conveniently measurable by the distance measure defined in

the next section. This distance relates to the minimum distance coverage by an AN and will

be utilized in Section 3.3. Two ANs are then robustly connected if their associated hexagons

have a common edge.

2.2 Hexagonal Coordinate System

First, the node placement problem is projected into a so-called hexagonal coordinate system.

To set up the HCS, we have to specify the origin, axes, and coordinates. The origin is defined

as the center of geometry of all clusters. From this origin, we start tiling the plane with

hexagonal cells. These cells have an edge length equal to the communication radius of an SN,

r. The first cell share the same center of geometry as the origin point with coordinates (0, 0).

Then, we establish the rest of the tessellation with equal-sized hexagonal cells. Theoretically,

an infinite tessellation can tile an infinite-extending plane without either overlapping or gaps.

In practice, we stop when the area of interest is fully tiled. The x-axis goes through the

origin and is perpendicular to a pair of parallel edges of the cell containing the origin. The

x-axis cuts through all hexagonal cells along that direction through their center and edge.

The y-axis is defined as the rotation of the x-axis by π/3 counter-clockwise, as shown in Fig.

2.1. The y-axis also crosses the origin and vertically cuts across the edges of all cells along

the way including origin. In this coordinate system, coordinates are associated with those

of a hexagonal cell unlike other coordinate systems [72, 73] such as that in reference [74] in

which the x−axis goes through the center and a cell vertex. Points A and B in Fig. 2.1

17

Figure 2.1: The hexagonal coordinate system (HCS).

illustrate a pair of coordinate examples.

2.2.1 Operation Definitions in HCS

Distance Measure

Since a point in an HCS actually represents the location of a hexagonal cell, a distance

measure between two hexagonal cells aims at counting the number of cells moving from one

cell to another. The distance between point A and B in Fig. 2.1 serves as a typical example.

For a given pair of points M(m1,m2) and N(n1, n2), the distance measure for the vector

ϑ = (M,N) is defined as follows.

|ϑ| = |(M,N)| = (m1 − n1,m2 − n2)

= max{|m1 − n1|, |m2 − n2|, |m1 − n1 +m2 − n2|}
(2.1)

For example, β = (A,B) is a vector starting at the center of cell A and ending at the center

of cell B in Fig. 2.1. The distance between A and B is 6 representing the shortest path from

18

A to B covers 6 cells.

β = (A,B) = (6,−4), |β| = |(A,B)| = 6

Theorem 2.1. The distance measure defined by (2.1) is a distance.

Proof. Noticing that a distance in HCS calculated through (2.1) is non-negative, it is left to

prove the triangular inequity:

∀L,M,N, |(L,M)|+ |(M,N)| ≥ |(L,N)|

We have the following three cases to consider. Case 1 RHS = |l1−n1|. In this case, we have

LHS = max{|l1 −m1|, |l2 −m2|, |l1 −m1 + l2 −m2|}

+ max{|m1 − n1|, |m2 − n2|, |m1 − n1 +m2 − n2|}

≥ |l1 −m1|+ |m1 − n1|

≥ |l1 − n1| = RHS

Case 2 RHS = |l2 − n2|. In this case, we have

LHS = max{|l1 −m1|, |l2 −m2|, |l1 −m1 + l2 −m2|}

+ max{|m1 − n1|, |m2 − n2|, |m1 − n1 +m2 − n2|}

≥ |l2 −m2|+ |m2 − n2|

≥ |l2 − n2| = RHS

19

Case 3 RHS = |l1 − n1 + l2 − n2|. In this case, we have

LHS = max{|l1 −m1|, |l2 −m2|, |l1 −m1 + l2 −m2|}

+ max{|m1 − n1|, |m2 − n2|, |m1 − n1 +m2 − n2|}

≥ |l1 −m1 + l2 −m2|+ |m1 − n1 +m2 − n2|

≥ |(l1 −m1 + l2 −m2) + (m1 − n1 +m2 − n2)|

= |l1 − n1 + l2 − n2| = RHS

The vector addition rule in HCS follows that of Cartesian coordinate system. For vector

ψ = (ψ1, ψ2) and γ = (γ1, γ2), we have ψ + γ = (ψ1 + γ1, ψ2 + γ2).

Inner Product

The definition of inner production in an HCS is not the same as that of Cartesian coordinate

system since the two basis vectors are not perpendicular to each other. Let’s call e1 and

e2 the two basis vectors in the HCS along x- and y-axis, respectively. We define the inner

product as follows.

x · y = xT∆y (2.2)

where x = x1e1 + x2e2, y = y1e1 + y2e2, T represents the transpose operator, and ∆ is a

symmetric matrix defined below.

∆ =

 1 cos
π

3

cos
π

3
1

 (2.3)

20

For example, in Fig. 2.1, the inner product between γ and β, γ and ψ are calculated as

below.

γ · β =

[
4 0

] 1 cos
π

3

cos
π

3
1


6

4

 = 32

γ · ψ =

[
4 0

] 1 cos
π

3

cos
π

3
1


 2

−4

 = 0

It is observed that the inner product of a pair of vectors is zero if they are perpendicular to

each other, as shown by vector γ and ψ in Fig. 2.1. Further, the inner product operation is

commutative as ∆ is a symmetric matrix.

2.2.2 Orientation of Distance Vector

When dealing with the least number of ANs required to link two clusters, one has to realize

that the maximum covered distance of an AN has its own orientation. When the distance

vector between two clusters is closely aligned with x- or y-axis, one has to possibly use more

ANs than a case in which the distance vector is oriented at the direction π/6 away from each

axis. In the latter case, one uses the length of diagonal to divide the distance and decide how

many ANs are needed. Since we are mainly concerned about whether the distance vector is

more aligned with x-, y-axis, or with the diagonals of the head and tail cluster, we take the

basis axis as the reference point of the orientation. In the following subsections, we discuss

a number of cases in which ϑ is in different quadrants. We specify the quadrant in which

ϑ is located by inspecting a vector parallel to and of the same length as ϑ with a starting

point at the origin.

21

Figure 2.2: Calculating angle θ between ϑ and x(+)-axis when ϑ is in the 1st or 3rd quadrant.
In the other two quadrants, the quadrant is divided into two areas and θ is calculated with
respect to y(+)-axis in Area I or x(−)-axis in Area II.

ϑ is in the 1st or 3rd Quadrant

As shown in Fig. 2.2, the distance vector between cluster A and B is (A,B). The orientation

of (A,B) is represented by θ which is between (A,B) and x-axis. In the triangle formed by

A, B, and C, we can identify the value of θ from the Law of Sines, with x = |(A,C)| and

y = |(C,B))|, as 1
y

sin θ = 1
x

sin(π
3
− θ).

Hence,

0 < θ = tan−1
(√

3 y

2x+ y

)
<
π

3
(2.4)

ϑ is in the 2nd or 4th Quadrant

In HCS, quadrants 2 and 4 are larger in area than quadrants 1 and 3. The angle between

y(+)-axis and x(−)-axis is 2π/3 which exceeds π/2. Whether we take y(+)- or x(−)-axis as the

reference, the method of the former subsection leads to a point of discontinuity in Eq. (2.4).

22

Figure 2.3: The longest possible distance covered by an AN.

Therefore, we partition each quadrant into two areas, as shown in quadrant 2 of Fig. 2.2.

In Area I, the orientation of distance vector is referred to as y(+)-axis, while in Area II, it

is referred to as x(−)-axis. Then, we can extract the associated equations from the Law of

Sines separately. In Area I with |x| ≤ |y|, we have 1
−x sin θ = 1

y
sin(2π

3
− θ). Therefore,

0 < θ = tan−1
(
−
√

3 y

2y + x

)
<
π

3
(2.5)

In Area II, |x| ≥ |y|, we have 1
−y sin θ = 1

x
sin(2π

3
− θ). Then,

0 < θ = tan−1
(
−
√

3 y

2x+ y

)
<
π

3
(2.6)

With distance orientation information, we are able to calculate the least number of interme-

diate ANs required to connect two clusters. That is to get the longest covering range of one

AN along the direction of the distance vector and then divide the distance by the range. The

following lemma gives the possible longest distance covered by an AN with a communication

range R = (12n+ 7)r.

23

Lemma 2.1. The longest possible distance covered by an AN is an odd integer between

(12n+ 7) and (16n+ 9) corresponding to direction relative to its neighboring AN.

Proof. Fig. 2.3 shows two extreme cases. Segment |(A,B)| is the shortest possible distance

covered by adding one AN, B, that is connected to A. The direction of vector (A,B) is

perpendicular to the common edge. On the other hand, segment |(A,C)| is the longest

possible distance covered by adding one AN. Here, we calculate them separately. Recalling

that the edge length of a large hexagon in Fig. 2.3 is R, that of a small hexagon cell is r,

and R = (12n+ 7)r, we have

|(A,B)| = 2× |(A,D)|+ 1 = 2× R− 1

2r
+ 1 = 12n+ 7

|(A,C)| = 2× |(C,E)|+ 1 = 2× (2× R− 1

3r
) + 1 = 16n+ 9

As long as two ANs are connected and have one common edge, the distance between them

in HCS is larger than the minimum case |(A,B)| and less than the maximum case |(A,C)|.

Last but not least, if two ANs have one edge in common, the distance between them is

always an odd number.

24

Chapter 3

Advantaged Node Placement

Algorithm

In this chapter, we first prove the problem of connectivity establishment via advantaged

node placement is a NP-hard problem. The optimal solution of this type of problem could be

obtained through exhaustive search algorithm. We will provide such an algorithm. However,

owing to its tremendous time complexity, it is hard to implement in physical network system

that carries limited battery source. Therefore, we develop corresponding heuristic algorithm,

known as Geometric Distance Optimization(GDO) algorithms, to solve it. Further more,

in order to increase the efficiency and reduce the time complexity, we improve the GDO

algorithm and give the Enhanced GDO (EGDO) algorithm. The corresponding simulation

results reflecting the comparison of time complexity will be given in the next chapter.

25

3.1 NP-hard Problem Statement and Exhaustive Search

Algorithm

In this section, we prove that our node placement problem in HCS is NP-hard by showing

that it is a reduction from Knapsack problem which is known to be NP-complete. Then, we

provide an exhaustive search algorithm to solve the problem as a comparison benchmark.

3.1.1 NP-Hard Problem Statement

Problem 1 (Knapsack Problem [75]) Given a set of items E = {e1, · · · , et} each with a

weight wi and a profit vi where i ∈ {1, · · · , t}, is there a way of choosing xi units of each

item ei to fill the knapsack such that the profit of the items chosen
∑t

i=1 xivi is at least V

while the total weight of the items chosen
∑t

i=1 xiwi is not exceeding W?

Problem 2 (Node placement problem in HCS) Given G pre-deployed gateway nodes with

integer coordinates in an HCS and a minimum spanning tree of length L formed by these

nodes, can one cover the total distance of L by N additional intermediate nodes?

In Problem 2, covering length L with (N + G) ANs is equivalent to being able to find a

connected path between any arbitrary pair of nodes where every pair of neighboring nodes

have distances in the range [(12n+ 7)r, (16n+ 9)r].

Theorem 3.1. There is a polynomial time reduction from Problem 1 to Problem 2.

Proof. Suppose set D has cardinality µ and contains all odd integers between (12n+ 7) and

(16n+ 9), i.e., D = {12n+ 7, 12n+ 9, . . . , 16n+ 9}. We start with an instance I of Problem

1 with which set E with cardinality µ is associated. Then, we construct an instance I ′ of

26

Problem 2 with which set D also with cardinality µ is associated.

According to Lemma 2.1, each intermediate AN, based on the orientation of distance vector

to its neighbor, covers a distance type di where |di| ∈ D. These di’s are items to be packed in

instance I ′. Let yi denote the number of ANs of type di. Then, the total distance l covered

by all intermediate ANs is expressed as

l =
∑
i

yi|di| (3.1)

Let profit V in instance I be equal to L. Assuming the weight of each AN is 1, i.e., wi = 1,

the total weight of all intermediate ANs amounts to the number of intermediate ANs, i.e.,

∑
i

yi = N (3.2)

Considering the statement above and assuming W = N , the process of constructing I ′ from

I occurs in polynomial time.

In Problem 2, we are seeking a yes/no answer to the question “Can we, by using N inter-

mediate ANs, cover a total distance of l ≥ L?” If the answer to Problem 1 is yes, we can

fill the knapsack such that a minimum profit of V is reached without exceeding a maximum

weight of W .

Through the reduction above, it is feasible to cover a length of at least L by placing at most

N additional nodes. In addition, if the answer to Problem 2 is no, which is a special instance

I of Problem 1 with V = L, wi = 1, and W = N , Problem 1 will also have no answer. This

implies a polynomial reduction from Problem 1 to Problem 2.

Therefore, we conclude that Problem 2 is NP-hard. In the next subsection, we provide an

exhaustive search algorithm to solve Problem 2.

27

3.1.2 Exhaustive Search Algorithm

Our exhaustive search algorithm uses a number of intermediate ANs and tries to rearrange

their locations so as to establish global connectivity, until the smallest number of ANs that

connect the entire graph is identified. We use κ to denote the number of intermediate ANs

in exhaustive search. There is a finite set of feasible locations representing the candidate

coordinates of intermediate AN locations in HCS. Generally speaking, all coordinate points

of HCS except those occupied by pre-deployed clusters are feasible. The number of feasible

locations M is then derived as

M = d Ω

1.5
√

3 r2
e −G (3.3)

where 1.5
√

3 r2 represents the area of a hexagonal cell of edge length r, Ω is the field area,

and G is the number of pre-deployed clusters. Those M feasible locations are then stored in

an M × 2 matrix F.

In our exhaustive search algorithm, we test all
(
M
κ

)
possible combinations of M coordinates in

F and check if there is one configuration that accomplishes connectivity of all clusters. If not,

we increase κ by 1 and repeat the same process until the least number of intermediate ANs

rendering global connectivity is reached. The algorithmic pseudo code is given in Algorithm

1.

One may notice the considerable computational complexity of the nested ’for’ loop. Given M

feasible AN locations, when the optimal solution is reached, say connecting the entire graph

with κ ANs, then the runtime of exhaustive algorithm is at least in the order ofO(
∑κ−1

i=1

(
M
i

)
).

It can be shown, by Stirling’s formula and binomial theorem, that the runtime is bounded

28

as shown below.

(M + 1)κ−1

(κ− 1)!
< O(

κ−1∑
i=1

(
M

i

)
) < 2M (3.4)

In practice, we are able to strategically preclude some locations that have very low possibility

of accommodating an AN. For instance, an AN may not be placed too close to a pre-deployed

cluster, and all ANs typically are, but not always, located inside the convex hull containing

all pre-deployed clusters. With this strategy, we can reduce the size of F to some extent.

However, to the best of our knowledge, there is no systematic strategy of reducing the number

of feasible locations.

Algorithm 1 Exhaustive Search Algorithm

Input: Location of pre-deployed clusters
Output: Coordinates of intermediate ANs
Establish finite HCS and
Put coordinates of feasible AN positions in FM×2

5: Set κ = 0
while (Graph G not fully connected) do
κ + = 1
for all

(
M
κ

)
possible combos of feasible positions do

Place κ ANs at these positions
10: if G is connected then

Set coordinates of κ ANs from FM×2
break

end if
end for

15: end while

3.2 Heuristic Algorithm 1: GDO algorithm

As the node placement problem described in the previous section is NP-hard, it is realistic

to find a heuristic near-optimal solution offering a reasonable time complexity. Hence, this

29

section provides a description of our heuristic connectivity algorithms and their complexity

analysis.

As illustrated in chapter 2, we model the communication range of an AN gateway by a

hexagonal cell. The communication range R of an AN is approximated by (12n+ 7)r where

n is a positive natural number.

A robust connectivity criterion is defined as when two large hexagons have a common edge.

Consequently, we are dealing with the task of connecting a number of hexagons within the

network graph by optimally placing a number of hexagons of the same size between each

pair as needed. Consequently, we are dealing with the task of connecting a batch of large

hexagons within the network graph by optimally placing a number of hexagons of the same

size between each pair. As this task can be abstracted as a distance optimization problem

within the HCS, we introduce a class of geometric distance optimization algorithm.

Given a number of clusters distributed in the plane, the first step is to set up the HCS origin

and axes. We set the origin of the HCS at the center of geometry of these clusters. Then,

we set up x- and y-axis for HCS at the origin. After setting up the HCS, the coordinates of

all clusters in HCS are specified. Then, the following 5-step iterative algorithm leads us to

achieving connectivity of the network graph using a number of additional ANs. The gist of

these steps is generalized in Algorithm 2.

Algorithm 2 GDO Algorithm

Input: Location of pre-deployed clusters
Output: Coordinates of intermediate ANs
Step 1: Establish HCS, calculate MST
while (Graph G not fully connected) do

5: Step 2: Identify clusters P and Q to be connected
Step 3: Connect P and Q by sloving the optimization problem
Step 4: Recalculate MST and check stoppage rule
Step 5: Break if graph is fully connected, otherwise go to Step 2

end while

30

Step 1: Calculate Minimum Spanning Tree

In this step, the distance-weighted minimum spanning tree of the current deployed clusters

is identified using the distance metric defined in the previous section. First, the distances

between each pair of clusters are calculated and stored in a weight function. Then by

employing Kruskal’s algorithm, the minimum spanning tree is calculated. We store all of

the edge lengths in an array M (k) of size m where k represents the iteration number and m

represents the number of edges in the minimum spanning tree. Corresponding to this array,

we keep an m× 2 matrix each row of which containing the end cluster nodes connected by

the associated edge in M (k).

Step 2: Identify the Pair of Connecting Clusters

Two strategies of identifying the pair of connecting clusters are introduced. Those are

namely the shortest edge and the longest edge cluster pairs referred to as ShortestHCS and

LongestHCS, respectively. This step is performed by searching for the smallest- or largest-

valued element in M (k). Assuming this identified element implies clusters P and Q to be

connected in the next step.

Step 3: Connect the Pair of Selected Clusters

This step attempts to achieve two goals. The primary goal is to connect the selected pair

of clusters P and Q (representing either gateway ANs or intermediate ANs) with the least

number of intermediate ANs. The secondary goal is to deploy those intermediate ANs, which

we denote as Υ, in a way to bring the remaining isolated clusters closer thereby helping their

future connectivity. We refer to the set of intermediate ANs in iteration k as A(k). In order

to achieve these goals, we utilize the following iterative process.

31

Case 1 : When using a single AN suffices to connect P and Q, A(k) = {Υ(k)} and Υ(k) is

placed between P and Q. The exact position of Υ(k) is calculated by solving the optimization

problem given in this section.

In order to identify the coordinates (x, y) of the new node Υ(k) placed in the k-th iteration

of Case 1, we introduce a pair of conditions.

1. Maintain the connectivity of all three ANs, namely, P , Q, and the new node Υ(k).

2. Identify the position of node Υ(k) by maximizing the probability of connecting the

newly aggregated cluster to other pre-deployed clusters and minimizing the overlap

area between Υ(k) and the other two nodes.

In short, we want to connect the pair of selected clusters by placing Υ(k), as well as expect to

facilitate the connectivity of remaining clusters by intelligently placing Υ(k) when possible.

Accordingly, we formulate the following distance maximization problem graphically depicted

in Fig. 3.1.

max
x,y

|(P,Υ(k))|+ |(Q,Υ(k))| (3.5)

S.T. (P,R) · (R,Υ(k)) = 0 (3.6)

(Q,S) · (S,Υ(k)) = 0 (3.7)

|(P,R)| ≤ λ (3.8)

|(Q,S)| ≤ λ (3.9)

|(R,Υ(k))| ≤ 8n+ 4 (3.10)

|(S,Υ(k))| ≤ 8n+ 4 (3.11)

32

In this problem, λ = 12n+ 7 and (P,R), (Q,S) ∈ Ψ.

Ψ = {(λ, 0), (−λ, 0), (0, λ), (0,−λ), (λ,−λ), (−λ, λ)} (3.12)

By definition of Ψ, Υ(k) is connected to P (or Q) and has the least overlap area with P (or

Q) as long as Υ(k) assumes its value from the set of feasible positions determined by the

inner product constraint (3.6) (or (3.7)). In other words, the distance between Υ(k) and P

(or Q) is maximized along the direction of vector (P,R) (or (Q,S)).

Figure 3.1: A graphical representation of the feasible points of Υ(k) in Case 1.

In what follows, we explain the meaning of these constraints. As shown in Fig. 3.1, the cells

in solid dark and light grey color represent all feasible positions of Υ(k) assuring connectivity

to nodes P and Q. These two inner product constraints maintain Υ(k) slides along the

line perpendicular to (P,R) at point R and (Q,S) at point S as shown by gray cells in

Fig. 3.1, while |(P,R)| identifies the furthest position Υ(k) can reach along the direction(s)

of (P,R) while staying connected to P . In short, the inner product constraint identifies

the track of movement for Υ(k) and |(R,Υ(k))| controls the range on the track. Although

(P,R) has six possible directions, we do not need to inspect them all. Based on the relative

33

position of Q with respect to P , only one facade of each node needs to be considered. The

same explanation also applies to Q. To solve the optimization problem, we first ignore the

inequality constraints and calculate the position of Υ(k) by the two equality constraints,

we verify the connectivity of the two gateway nodes. With different pairs of (P,R) and

(Q,S) selected in set Ψ, there will be two solutions associated with the coordinates of Υ(k)

satisfying inequality constraints. The one closer to the origin is chosen in order to improve

the probability of connecting to other clusters. Now, let us assume we solve Case 1 of Step

3 leading to specifying the coordinates of intermediate node Υ(k) as (x, y), P as (p1, p2), and

Q as (q1, q2). Now select (P,R) to be (λ, 0) and (Q,S) to be (0,−λ). Then, solving the

equality constraint (3.6) yields

x+
1

2
y = p1 + λ+

1

2
p2 (3.13)

Similarly, solving the equality constraint (3.7) yields

1

2
x+ y =

1

2
q1 + q2 − λ (3.14)

By solving Eq. (3.13) and Eq. (3.14), the coordinates of Υ(k) are identified which are re-

quired to be integers within the HCS. More importantly, the position of Υ(k) must satisfy the

inequality constraints (3.8), (3.9), (3.10), and (3.11). In this case, all possible combinations

of (P,R) and (Q,S) in set Ψ are to be inspected. Note that (P,R) and (Q,S) cannot be

parallel to each other, otherwise Eq. (3.13) and Eq. (3.14) have no joint solution. This rule

only applies to Case 1.

Case 2 : When using only one AN cannot establish connectivity between P and Q, the

following iterative process is initiated. In this case, we assume A(k) = {Υ(k)
1 , · · · ,Υ(k)

ν(k)
}, i.e.,

ν(k) ANs are required to connect P and Q where ν(k) ≥ 2.

34

1. Place an AN next to each of the two clusters P and Q. Referred to as Υ
(k)
i and Υ

(k)
i+1,

1 ≤ i < ν(k), these two ANs are connected to their associated clusters, P and Q,

respectively.

2. Find the exact positions of Υ
(k)
i and Υ

(k)
i+1 by minimizing the sum of three distances

between Υ
(k)
i and Υ

(k)
i+1, Υ

(k)
i and the origin, Υ

(k)
i+1 and the origin.

3. Inspect connectivity between Υ
(k)
i and Υ

(k)
i+1. If connected, terminate the process. If

more ANs are needed, replace the two end nodes with Υ
(k)
i and Υ

(k)
i+1 and then solve

the problem of connecting them by going through the same process described before.

Figure 3.2: A graphical representation of the feasible points of Υ
(k)
i and Υ

(k)
i+1 in Case 2.

We assume the AN pair P and Q are being connected using ANs Υ
(k)
i and Υ

(k)
i+1 with coor-

dinates (xi, yi) and (xi+1, yi+1), respectively. We use two sets of constraints to find feasible

positions of Υ
(k)
i and Υ

(k)
i+1 corresponding to P and Q, respectively. Then, different combi-

nations of these feasible positions of Υ
(k)
i and Υ

(k)
i+1 are inspected in order to find the one

minimizing the distance between Υ
(k)
i and Υ

(k)
i+1, Υ

(k)
i and the origin, as well as Υ

(k)
i+1 and the

origin. As shown in Fig. 3.2, dark gray cells on the line segment perpendicular to (P,R)

35

represent all feasible positions of Υ
(k)
i . Similarly, light gray cells on the line segment perpen-

dicular to (Q,S) represent all feasible positions of Υ
(k)
i+1. The distance optimization problem

is accordingly described as below.

min
xi,yi,xi+1,yi+1

|(Υ(k)
i ,Υ

(k)
i+1)|+ |(O,Υ

(k)
i |+ |(O,Υ

(k)
i+1)| (3.15)

S.T. (P,R) · (R,Υ(k)
i) = 0 (3.16)

(Q,S) · (S,Υ(k)
i+1) = 0 (3.17)

|(P,R)| ≤ λ (3.18)

|(Q,S)| ≤ λ (3.19)

|(R,Υ(k)
i)| ≤ 8n+ 4 (3.20)

|(S,Υ(k)
i+1)| ≤ 8n+ 4 (3.21)

The set of constraints used to find feasible positions of Υ
(k)
i are expressed by Eq. (3.16) and

Eq. (3.20), while the one used to find positions of Υ
(k)
i+1 are expressed by Eq. (3.17) and Eq.

(3.21). Here, (P,R) and (Q,S) are in Ψ.

However, (P,R) only has one choice in Ψ because the vector (P,R) can only point to the

facade that faces Q. Similarly, (Q,S) only has one choice in Ψ because the vector (Q,S)

can only point to the facade that faces P . After finding all feasible positions for Υ
(k)
i and

Υ
(k)
i+1, we have to conduct an exhaustive search among different combinations of the feasible

positions to find the unique combination that minimizes the objective function.

36

Step 4: Recalculate Distance Matrix

After forming a connected cluster containing nodes Ak(s), P , and Q, the distance matrix

between clusters need to be recalculated. In the calculation, intermediate ANs are treated

as normal clusters. This distance matrix will be used to calculate the new distance-weighted

minimum spanning tree for the next iteration. Before we pass it down, we have to prevent

those connected clusters from being selected again, so we set the distance between connected

clusters in order to prevent them from being selected.

In the case of LongestHCS, the distance of the selected element(s) is replaced by a small

number. The distance between Ak(s) and P , Ak(s)and Q are set to be small values. This

reflects, in the distance weight matrix, that P , Q and Ak(s) between them form a clusters,

within which, ANs are close to each other. Then, the new minimum spanning tree is recal-

culated based on the new distance weights. In the case of ShortestHCS, the distance of the

selected element(s) is replaced by a large number. Finally, we have a new array M (k+1) at

iteration (k + 1).

Step 5: Stoppage Rule

If the stoppage rule below is not met, go back to Step 2. The description of the stoppage rule

is as follows. As the number of iterations grows, the number of connected clusters increases.

The LongGDO algorithm stops when the largest-valued element in M is smaller than or

equal to a given threshold implying to have a fully connected graph; while the ShortGDO

algorithm stops when the picked up pair of clusters are already connected. Consequently,

the algorithm stops with a fully connected graph.

37

3.3 Heuristic Algorithm 2: EGDO algorithm

The main algorithm of interest in this section is referred to as enhanced geometric distance

optimization algorithm or EGDO. The name stems from the fact that the algorithm is an

enhanced version of a pair of GDO algorithms proposed in Section 3.2 and [40]. Our work

of [40] shows that the LongestHCS algorithm outperforms ShortestHCS algorithm in most

scenarios. The main improvement of EGDO algorithm over GDO (LongestHCS) algorithm is

its significantly improved time complexity. As described in the following context, the latter

is achieved by locally modifying the existing MST in iterative steps as opposed to forming

a new MST after each iteration as it was the case of GDO algorithms. In the rest of this

section, we refer to the LongestHCS algorithm illustrated in Section 3.2 and [40] as the GDO

algorithm.

Similar to GDO algorithm (Algorithm 2), the first step of EGDO is also the set-up of HCS

origin and axes. The details are omitted as one can refer to Section 3.2. After the HCS is

set up, the minimum spanning tree among the pre-deployed nodes is calculated and poten-

tially adjustable nodes are identified. Then we select a pair of nodes to be connected and

launch intermediate ANs placement iteration. After connectivity between this selected pair

of nodes are established, the MST is modified according to the distance between the poten-

tially adjustable nodes and the newly placed intermediate nodes. These procedures will be

repeated before global connectivity is established. The individual steps of EGDO algorithm

are described in details below. By convention, we generalize the gist of the algorithm first.

Step 1: Calculate MST and Find Terminals

In this Step, we first initialize the iteration counter k to 1. Then, we calculate the initial

distance weighted MST formed by a given set of clusters. The distance between a pair of

38

Algorithm 3 EGDO Algorithm

Input: Location of pre-deployed clusters
Output: Coordinates of intermediate ANs
Step 1: Establish HCS, calculate MST, find terminals
while (Graph G not fully connected) do

5: Step 2: Identify clusters P and Q to be connected
Step 3: Connect P and Q using minimum no of ANs
Step 4: Modify MST using ANs placed in Step 3
Step 5: Break if graph is fully connected

end while

clusters is calculated based on the distance measure definition in Section 2.2. The MST

is calculated using Kruskal algorithm [76]. The calculated MST is presented by an N × 2

matrix M(k) in which k represents the iteration number, each row identifies the two vertices

of an edge, and N is the number of edges. Matrix M(k) includes the edges in an increasing

order of edge length. Given M(k), we find all terminal nodes. A terminal node is an AN in

the network connected to only one AN. From these terminals, we establish a set of nodes

of interest for use in the next step. Once we place a new intermediate AN, we compare the

distances between this new AN and the nodes in which we are interested. We refer to the

nodes in which we are interested as potentially adjustable nodes or PANs. If the distance

between the new AN and a PAN is smaller than the edge length connected to that PAN, we

change the route by deleting the edge connected to the PAN and connecting the PAN with

the new AN.

Step 2: Identify the Pair of Connecting Clusters

Since the rows of distance matrix are in increasing order, the last row of M(k) identifies the

edge to be connected in the next step. Let us assume the elements of the last row are clusters

P and Q.

One might be curious as to why we select the pair of nodes that have the longest distance in

39

between. The answer lies in the fact that to always choose the longest distance pair yields

our best experimental results from among the variants tested. Other variants include always

selecting the shortest distance pair, alternating between shortest and longest distance pairs,

and several types of clustering strategies discussed in [77].

Step 3: Connect the Pair of Selected Clusters

This step is the same as Step 3 in Algorithm 2 which can be found in Section 3.2, we omit

the details here.

Step 4: Modify MST

In this step, first the current PAN set is identified following the placement of one or more

intermediate ANs in the previous step. In Case 1 of Step 3, this step takes place after the

single AN is placed. In Case 2 of Step 3, this step is initiated right after Υ
(k)
i and Υ

(k)
i+1 are

placed. It is observed that placing one or two new ANs can only introduce local changes to

the topology of the network, i.e., topology changes are limited to the neighboring nodes of

newly placed ANs.

In a given MST, a 2-connected node or terminal may be connected to a newly placed ANs

guaranteed not to create a loop. However, connecting a node with 3 or more edges to a

PAN may result in creating a loop. In order to avoid the possibility of creating a loop, only

2-connected nodes and terminals in an MST are considered as PANs.

Accordingly, we propose a line graph method in order to identify these PANs. A line graph

starts from a terminal node. This terminal is the first node. Then following the line, the

second node is reached and so on. The line ends when a 3-connected node, a terminal node,

or a currently selected node is reached. If a node on the line does not belong to any of the

40

categories above, then it is a 2-connected node and is subsequently added to the current PAN

set. Note that we are only interested in terminals or 2-connected nodes because 3-connected

nodes cannot be modified or else the entire spanning tree will become disconnected. The

nodes on the line represent the current PAN set which is one subset of all PANs.

Having identified the current PAN set, the MST can be modified accordingly. In order to

always keep the last row of M(k) as the edge to be connected, we modify the MST according

to the cases of Step 3 above.

If we are to follow Case 1 and place a single AN, we remove the last row [P Q] of M(k) and

insert two rows [P Υ(k)] and [Q Υ(k)] as the top rows of M(k). This changes the representation

of MST from M(k) in this iteration to M(k+1) in the next iteration.

If we are to follow Case 2 when adding a pair of ANs Υ
(k)
i and Υ

(k)
i+1, we replace the last row

of M(k) with [Υ
(k)
i Υ

(k)
i+1] and then insert [Υ

(k)
i P] and [Υ

(k)
i+1 Q] as the top rows of M(k) for

iteration (k + 1).

Second, for each newly added AN in set A(k), say Υ
(k)
i , we compare the distance between

Υ
(k)
i and the j-th node on a line graph, δ

(k)
ij , with the distance between j-th and (j + 1)-th

node on the line. If δ
(k)
ij is smaller, we modify the tree by deleting the edge between j-th and

(j + 1)-th node on this line graph, and then adding the edge between Υ
(k)
i and j-th node.

After this modification, Υ
(k)
i becomes a 3-connected node, as Υ

(k)
i will be connected with P

and Q or other intermediate ANs between P and Q, as well as j-th node on this line graph.

Therefore, the edges ending at Υ
(k)
i can never be modified. After making each modification,

we stop searching for other PANs on the current or other line graphs.

In this process, we always compare δ
(k)
ij with the edge lengths of MST entries and insert the

associated edges at the right place in order to preserve the ascending order of edge lengths

in MST matrix.

41

Step 5: Check Stoppage Rule

When the selected pair of clusters is found to have already been connected, the algorithm

stops. Otherwise, we increment the iteration counter k by 1 and go back to Step 2.

It is worth emphasizing that the main difference between EGDO and GDO algorithm is the

fact that EGDO algorithm adjusts the MST due to local topology changes associated with

adding ANs as opposed to recalculating a new MST done by GDO. This leads to a significant

reduction of average time complexity in EGDO algorithm as analyzed in Section 3.4.2 and

proved through numerical experiment in Chapter 4.

3.4 Analysis of Complexity

In this subsection, we analyze the computational complexity of EGDO in comparison with

GDO algorithm. We first determine the time complexity of solving the optimization problem

of Step 3 as it is the common step shared by both GDO and EGDO algorithms, and then

analyze the complexity of the recursive algorithm.

3.4.1 Complexity of Solving the Optimization Problem

The total number of cases that need to be inspected in order to solve the optimization

problem of Step 3 of Section 3.2 is equal to
(
6
2

)
− 3 = 12. As mentioned before, each (P,R)

and (Q,S) has 6 possible directions but cannot be in parallel or else there is no solution to

Eq.(3.13) and Eq.(3.14). However, this number can be reduced to 4 based on the relative

position of P with respect to Q. We argue that solving the optimization problem in Case 1

of Step 3 takes constant time as solving Eq.(3.13) costs constant time.

42

If we are to follow Case 2 in Step 3, we conduct an exhaustive search for combinations of

feasible positions for Υ
(k)
i and Υ

(k)
i+1. The total number of all individual feasible positions for

Υ
(k)
i is

2(R− r)
3r

+ 1 =
2(λ− 1)

3
+ 1 = 8n+ 5 (3.22)

The same number also represents the total number of all individual feasible positions for

Υ
(k)
i+1. Thus, the total number of combinations that either GDO or EGDO algorithm need

to inspect in Case 2 of Step 3 is (8n + 5)2. This is an exhaustive search within a finite

number of candidates since n is determined by the communication range of an AN. Therefore,

finding the particular combination of the pair (Υ
(k)
i , Υ

(k)
i+1) that minimizes their distance takes

constant time.

Next, we note that Case 2 follows the same approach iteratively until P and Q are connected.

This is because ν(k), the total number of intermediate ANs required to connect P and Q in

iteration k, is a finite number known at the beginning of each iteration and is decreasing

in consequent iterations as the selected edge length within MST never increases. Hence,

we conclude that solving the optimization problem of Case 2 also takes constant time. This

constant is a function of R/r as well as the number of ANs needed to connect the two selected

nodes.

3.4.2 Complexity of EGDO Algorithm

In this subsection, we analyze the complexity of the other steps of the EGDO algorithm. In

Step 1, the time complexity of calculating the distance weight matrix between all nodes is

in the order of O(N2
0) provided that there are N0 pre-deployed clusters. To calculate the

minimum spanning tree takes O(E logN0) where E is the number of edges in the initial

network graph. Since we need to inspect all edges in the weight matrix, E is close to N2
0 .

43

To find terminals, we need to inspect the degree of each node. Completing this process

takes a time complexity of O(N0). Hence, the total complexity of Step 1 is in the order of

O(N2
0) + O(N2

0 logN0) = O(N2
0 logN0). In Step 4 and in order to find the sets of PANs,

we start from each terminal node and stop after reaching a certain type of node. This is a

search process that usually stops way before going through all nodes at present. Assuming

that the algorithm starts with N0 pre-deployed clusters, stops after nt iterations, ν(k) is the

number of intermediate ANs added in iteration k with ν(0) = 0, and Γ(k) = N0 +
∑k

i=0 ν
(i)

represents the total number of ANs after iteration k. Thus, the worst case time complexity

of Step 4 is O(Γ(k − 1)) at k-th iteration. However, the average time complexity is much

shorter as the search stops way before Γ(k−1). Step 2 and Step 5 takes constant time which

can be ignored.

In summary, the worst case time complexity of EGDO algorithm is in the order of

O(N2
0 logN0) +

nt∑
k=1

O(Γ(k − 1)) < O
[
N2

0 logN0 + ntΓ(nt)
]

However, the average time complexity is much shorter considering the fact that the search

process of Step 4 stops before Γ(k − 1) as showed by our experiments in Section ??.

3.4.3 Complexity of GDO Algorithm

In comparison, we analyze the complexity of the other steps of GDO algorithm. In Step 1

the time complexity of calculating the distance weight matrix between all nodes is O(N2
0)

provided that there are N0 pre-deployed clusters. Similarly, the time complexity of Step 1

is in the order of O(N2
0 logN0). Since the GDO algorithm recalculates the MST after each

iteration and the number of nodes in MST is increasing, the runtime accumulates. With the

44

same definition of nt, ν
(k), and Γ(k), the time complexity of GDO algorithm is

nt∑
k=0

O
[
Γ(k)2 log Γ(k)

]
< O

[
ntΓ(nt)

2 log Γ(nt)
]

The worst case time complexity of GDO algorithm is hence in the order ofO [ntΓ(nt)
2 log Γ(nt)].

Even though the bound is not tight, GDO algorithm has a much higher time complexity than

EGDO as presented in Chapter 4.

45

Chapter 4

Experimental Results

In this chapter, we provide numerical evaluation of GDO and EGDO algorithms. We start

with comparing the results of our algorithm with exhaustive search algorithm. The latter

serves as the benchmarking baseline finding the global optimal solution to the problem of

node placement albeit with a very high time complexity. We show that our algorithms pro-

vide results close to the optimal solution given by exhaustive search within a limited area

where the time complexity of exhaustive search is affordable. Then, we compare the perfor-

mance of EGDO algorithm with the class of GDO and variants of the SMT [9] algorithms

which solves the problem efficient yet with disk model rather than hexagons. The results

shows SMT algorithms, without consideration of connectivity robustness, has advantage over

GDO and EGDO on the number of AN used. But if we endow SMT with the same level of

embedded robustness by replacing disk model with hexagon model, SMT algorithm lost its

advantage and tends to use more intermediate nodes than GDO algorithms. As the title of

this dissertation is regarding to sparse network, we also investigate numerically the range of

network sparsity within which our proposed algorithms retain advantage. Our experimental

results cover AN cost, i.e., the number of intermediate ANs, runtime, robustness, and the

effects of HCS.

46

4.1 Comparison with Exhaustive Search Algorithm

In this subsection, we compare the AN cost of EGDO algorithm with exhaustive search

algorithm, without considerations of runtime, in order to show our EGDO algorithm is in

fact producing results close to the global optimal solution.

In order to examine the deviation of EGDO solution from the globally optimal solution, we

run experiments in a field of 4500× 4500m2, with r = 50m and R = 350m. The selection of

parameters allows for completing exhaustive search experiments in realistic time. Fig. 4.1

gives the results. The horizontal axis is the number of pre-deployed clusters varying in the

range from 2 to 25 and the vertical axis is the AN cost. For each point on the x-axis, we run

50 different configurations and record the number of intermediate ANs used. Then, we fit

the data to a polynomial curve. The blue and black curves show the AN cost of EGDO and

exhaustive search algorithms, respectively. While the AN cost of EGDO is always higher

than that of exhaustive search, the largest gap observed between two curves along the vertical

axis is less than 10%. Without being able to offer a mathematical proof, the gap falls in the

range of 1.1-approximation ratio. It can also be observed that both curves start dropping

beyond a certain point. This is because when the number of pre-deployed clusters grows, the

network becomes denser and requires less ANs to establish connectivity. This aspect will be

further investigated in the following subsections.

On the aspect of runtime, the completion time of EGDO algorithm is in the range of 1 to

2 seconds in our simulation setting. However, the exhaustive search algorithm takes from

several minutes to over ten hours to complete within the same simulation settings.

47

0 5 10 15 20 25
NO. of Pre-deployed Clusters

10

12

14

16

18

20

N
O

. o
f I

nt
er

m
ed

ia
te

 A
N

s EGDO
Exhaustive Search

Figure 4.1: An AN cost comparison of EGDO and exhaustive search algorithms.

4.2 Performance Comparison of SMT and EGDO Al-

gorithm

In this subsection, we compare the performance of SMT, GDO, and EGDO algorithms mea-

sured by the minimum AN cost and runtime. When comparing the two classes of algorithms,

we also consider the fact that GDO and EGDO algorithms dynamically update minimum

spanning trees while the original SMT algorithm forms the minimum spanning tree once

statically. Therefore, we modify the SMT algorithm to become a dynamic algorithm in

which the minimum spanning tree is recalculated after connecting every edge. We refer to

the original static SMT algorithm as StaSMT and the revised dynamic SMT algorithm as

DynSMT. Because SMT algorithms model the communication range of a node as a disk

while GDO and EGDO do so as a hexagon embedded within the disk, SMT algorithms cover

distance with a smaller number of ANs in average. Yet one should notice that this is not

a fair comparison as a circle always covers a longer distance than the hexagon embedded

in it. Additionally, it is important to note that DynSMT and GDO algorithms recalculate

the entire spanning tree each time after a pair of clusters are connected. Hence, the time

complexity of these algorithms is higher than those of StaSMT and EGDO algorithms.

The experiments are conducted in a 200km × 200km field with r = 50m and R = 4550m.

Fig. 4.2 provides an AN cost comparison among the StaSMT, DynSMT, GDO, and EGDO

algorithms for a fixed field size. The results show that GDO algorithm uses an average of

48

0 100 200 300 400 500 600
NO. of Pre-deployed Clusters

50

60

70

80

90

100

110

120

130

N
O

. o
f I

nt
er

m
ed

ia
te

 A
N

s

EGDO
GDO
StaSMT
DynSMT

Figure 4.2: An AN cost comparison among StaSMT, DynSMT, GDO, and EGDO algorithms.

10% more AN resources than StaSMT. Further, the EGDO algorithm sometimes consumes

a slightly larger number of AN resources than GDO algorithm, because in doing local mod-

ification it might miss some larger scale variations in network graph topology caused by a

newly added AN. However, comprehensive experimental results have shown that these dif-

ferences are negligible. Interestingly, it is also observed that there is no significant difference

between the performance of the two variants of the SMT algorithm. This is alluded to the

fact that unlike the GDO algorithm, the recalculated minimum spanning tree in DynSMT

is not much different from the previously calculated minimum spanning tree obtained by

StaSMT algorithm. The results of all four algorithms show an initial rise followed by a drop

alongside some variations. The rise is related to the fact that an increase in the number of

pre-deployed clusters N in a sparse network requires utilizing more intermediate ANs. As the

N grows even larger within a fixed field size, the sparse network evolves to a dense network

covering most of the field with AN gateways thereby reducing the number of intermediate

ANs. All four algorithm tend to use the same number of intermediate ANs as the value of

N grows to 600 in this setting.

Fig. 4.3 includes a comparison of runtimes among the StaSMT, DynSMT, GDO, and EGDO

algorithms for the same fixed field size. It is observed that StaSMT has the lowest runtime

because it only forms the minimum spanning tree once. DynSMT has a much longer runtime

than the other three algorithms in general. Among three dynamic algorithms GDO, EGDO,

49

0 100 200 300 400 500 600
NO. of Pre-deployed Clusters

0

5

10

15

20

25

30

R
un

 T
im

e(
s)

DynSMT
GDO
EGDO
StaSMT

Figure 4.3: A runtime comparison of StaSMT, DynSMT, GDO, and EGDO algorithms.

and DynSMT, EGDO has the shortest runtime by far. While the runtime is generally higher

than that of StaSMT, it gets closer to that of StaSMT for values of N greater than 500.

This behavior is related to the fact that the cost of calculating the minimum spanning tree

increases as N grows and also a smaller number of intermediate nodes are needed.

Considering the fact that the AN cost performance of DynSMT is slightly better than that of

StaSMT but its runtime is significantly longer, we conclude that the advantage of DynSMT

does not justify its increased time complexity. Therefore, we mainly compare the perfor-

mance of StaSMT and EGDO algorithms in the rest of our experiments, considering com-

parable performance of GDO and EGDO but much better time complexity of EGDO. We

note that EGDO algorithm uses an additional 10% AN resources in average due to the use

of a hexagon instead of a circle to represent the communication range of a node and also has

a slightly longer runtime compared to StaSMT algorithm. However, it offers much better

robustness characteristics as reported in the next subsection.

50

4.3 Experiment on Robustness -

Partial and Global Robustness Tests

In this subsection, we evaluate the robustness of network connectivity algorithms by applying

perturbations to the position of nodes. In each experiment, we first establish global network

connectivity applying EGDO and StaSMT algorithms. Once connectivity is established, we

introduce random perturbations to the position of pre-deployed clusters. This scenario is

referred to as partial perturbation as it does not perturb the position of intermediate ANs

added for establishing connectivity. We also conduct additional robustness experiments in

which all existing ANs after node placement are perturbed. We refer to such experiments

as global perturbation experiments. A perturbation constitutes a random directional dis-

placement of the AN from its original position by a fixed distance 4r. The fixed value of

perturbation displacement 4r, albeit in random direction, represents the experimental find-

ing within the topology of our experiments introducing the most pronounced impact on

network connectivity without completely partitioning the network. In each experiment and

after applying perturbation, we test global connectivity.

We conduct our experiments in different field sizes but report sample results for a 200km×

200km field. The set of pre-deployed clusters are distributed randomly following a uniform

Poisson point process in the field of experiment. We set parameters r and R at 50m and

4550m, respectively. The number of clusters varies from 20 to 160 by a step size of 20. Before

reporting our results, we define a measure to quantify robustness. Equation (4.1) gives the

definition of the measure referred to as robustness factor (RF). The RF measure not only

takes into consideration the probability of staying connected after perturbation, but also the

number of intermediate ANs used to establish connectivity.

RF = (PrEGDO − PrSMT)× ηSMT

ηEGDO
(4.1)

51

0 20 40 60 80 100 120 140 160 180
No. of Pre-deployed Clusters

-0.1

0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 R
ob

us
tn

es
s

F
ac

to
r

Partial Perturb

Global Perturb

Figure 4.4: A drawing of average robustness factor as a function of the number of pre-
deployed clusters in perturbation tests.

In Equation (4.1), PrEGDO and PrSMT represent the probabilities of remaining connected

after perturbation is applied to the cases of EGDO and SMT algorithms, respectively. Ac-

cordingly, the calculation of PrEGDO in perturbation tests is described below. In each ex-

periment, the global connectivity count is increased by one if the network remains connected

after applying perturbation. The value of PrEGDO is identified by dividing the global con-

nectivity count to the total number of experiments, which is 500 here. Similarly, PrSMT is

identified. The numbers ηEGDO and ηSMT represent the number of intermediate ANs used

to establish global connectivity in EGDO and SMT algorithms.

Because EGDO algorithm uses hexagons instead of circles, it generally covers a given distance

along a line with a larger number of ANs than SMT. However, placing nodes towards the

center of geometry within HCS offsets some of the impact. Generally speaking, the EGDO

algorithm is observed to use a larger number of intermediate ANs than StaSMT. In return,

it offers a higher level of robustness.

Experimental results of partial perturbation within 95% confidence intervals are shown by

red line in Fig. 4.4. The horizontal axis shows the number of pre-deployed disconnected

clusters before we apply any node placement algorithm. The vertical axis is the value of

RF averaged over 500 different scenarios at each given number of pre-deployed clusters. We

notice that the value of RF is in the range [−1, 1] as two probability measures are within

52

[0, 1] and the EGDO algorithms is expected to use a larger number of ANs than the SMT

algorithm. A positive value of RF closer to 1 means that EGDO algorithm achieved much

better robustness characteristics while using a relatively small number of ANs. An inspection

of the reported results of Fig. 4.4 reveals that the EGDO algorithm shows a significant

performance advantage in sparse networks. However and as the number of pre-deployed

clusters increases, there is a threshold of cluster density beyond which EGDO algorithm will

lose its advantage over SMT algorithm. More information about the threshold will be given

in the next subsection.

Besides partial perturbation tests, we also conduct global perturbation experiments. In these

tests, we perturb the positions of pre-deployed AN gateway nodes as well as intermediate

AN nodes. All ANs within the connected network graph are displaced along a random

direction by an amplitude of 4r. The value of RF is calculated in the same way as explained

before. The test results within 95% confidence intervals are shown in Fig. 4.4 by the blue

curve. Compared to partial perturbation test results, the RF values in global perturbation

tests show a lower starting point and a faster drop rate as the density of clusters grows

higher. The results show that the difference in perturbation robustness is very significant in

some scenarios. Specifically, it is observed that the value of PrEGDO is one to two orders of

magnitude larger than the value of PrSMT in some instances.

4.4 Inspection of Cluster Density Threshold Value

As described in the previous subsection, we observe a threshold of AN density beyond which

the network can no longer be regarded as sparse. The threshold to which we refer as τ denotes

a cluster density value passed which the EGDO algorithm offers no advantage compared to

the SMT algorithm. In this subsection, we raise a hypothesis that the value of threshold

τ is related to the density of ANs, namely, the field area divided by the total area of AN

53

10 20 30 40 50 60 70
No. of Pre-deployed Clusters before Node Placement

-0.1

-0.05

0

0.05

0.1

0.15
R

ob
us

tn
es

s
F

ac
to

r

(a) 100km× 100km

0 20 40 60 80 100 120 140 160 180 200
 No. of Predeployed Clusters before Node Placement

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
ob

us
tn

es
s

Fa
ct

or

(b) 200km× 200km

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
 No. of Pre-deployed Clusters before Node Placement

-0.2

0

0.2

0.4

0.6

0.8

R
ob

us
tn

es
s

Fa
ct

or

(c) 300km× 300km

Figure 4.5: The identification of threshold τ for different field sizes.

coverage. We note that both SMT and EGDO algorithms seek to minimize the AN cost.

Yet, the SMT algorithm attempts at reducing the total distance covered by ANs while the

EGDO algorithm tries to reduce the AN overlap areas. In essence, minimizing the area of

overlap is no longer meaningful when the AN density goes beyond a certain value. As cluster

density grows, the average overlap area increases. Thus, the robustness of SMT algorithm

will inherently improve and EGDO algorithm no longer offers any robustness advantage. To

numerically validate this hypothesis, we conduct experiments on three different field sizes, of

100km× 100km, 200km× 200km, and 300km× 300km. We apply the partial perturbation

test to each field and vary the number of pre-deployed clusters. The threshold value for

each field size is identified as where the plots of RF versus AN cross the horizontal axis.

Perturbation experiments are repeated 100 times in each scenario and for every number of

clusters. Further, we test 100 different scenarios and report the average results. In Fig. 4.5a,

Fig. 4.5b, and Fig. 4.5c, the RF curves approximately cross the x-axis at values of 32, 120,

54

and 260.

Table 4.1 records average intermediate AN cost for each given number of pre-deployed clusters

in the test of the 100km × 100km field. Table 4.2 and Table 4.3 show the AN cost in the

tests of 200km × 200km and 300km × 300km field sizes, respectively. As described above,

the threshold is defined as

τ ∝ Field Area

AN area× No. of ANs
(4.2)

The threshold values τ1, τ2, and τ3 are calculated below for 100km×100km, 200km×200km,

and 300km× 300km field size scenarios where c absorbs all constants.

τ1 ≈ c× 1010

45502 × (32 + 27.1)
= 0.017× 1010

45502
c

τ2 ≈ c× 4× 1010

45502 × (120 + 102.7)
= 0.018× 1010

45502
c

τ3 ≈ c× 9× 1010

45502 × (260 + 227.2)
= 0.018× 1010

45502
c

From the calculations, the values of τ1, τ2, and τ3 are all around to 0.018c. While not reported

here, we have observed similar patterns with different values of r, R, and field sizes. The

results numerically support our hypothesis that the value of threshold τi is related to the

ratio of the field area and the total area covered by ANs.

4.5 An Comparison of SMT and EGDO in HCS

Since EGDO algorithm utilizes hexagonal tiles instead of radial disks to model the range

of advantaged nodes, one can raise the question as to what happens when applying SMT

algorithm to a network using hexagonal tiling. In order to answer this question, we run an

55

No. of Clusters EGDO AN cost SMT AN Cost
10 20.2 18.1
20 26.6 24.0
30 29.2 26.1
32 29.7 27.1
35 30.3 27.3
40 30.9 28.6
50 30.9 28.2
60 30.5 28.0
70 30.2 28.4
80 29.5 27.2

Table 4.1: Average AN cost in 100km× 100km field test.

No. of Clusters EGDO AN cost SMT AN Cost
10 46.5 41.6
20 63.7 56.9
30 74.8 67.4
40 84.1 75.5
50 91.4 81.9
60 96.0 86.2
70 100.4 90.8
80 103.9 93.8
90 105.2 95.2
100 109.0 99.8
120 112.9 102.7
150 116.3 106.4
200 117.9 109.1

Table 4.2: Average AN cost in 200km× 200km field test.

additional experiment.

Our experimental setting is described as follows. Within an area of 120km × 120km, we

randomly deploy a number of clusters ranging from 50 to 500 at an increasing step size of

50. In this experiment, we set r and R at 30m and 2730m, respectively. For each fixed

number of pre-deployed clusters, we run 100 different randomly distributed scenarios. Then,

we average the number of ANs to report our results. Fig. 4.6 compares the AN cost of

establishing connected graphs, through SMT and EGDO algorithms with the same level of

built-in robustness, as a function of the number of pre-deployed clusters. In this setting, the

56

No. of Clusters EGDO AN cost SMT AN Cost
30 127.8 120.7
40 136.5 121.6
50 148.7 133.3
60 161.8 145.3
70 170.6 153.0
80 179.0 159.8
90 187.0 169.3
100 193.2 173.5
120 205.4 184.8
150 218.3 197.0
200 233.8 211.3
240 244.3 222.3
260 247.3 227.2
300 252.1 231.6

Table 4.3: Average AN cost in a 300km× 300km field test.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
NO. of pre-deployed clusters

60

70

80

90

100

110

120

130

140

N
O

. o
f i

nt
er

m
ed

ia
te

 A
N

s

StaMST
EGDO

Figure 4.6: An AN cost comparison of SMT and EGDO algorithms in HCS.

network is no longer considered sparse once the number of pre-deployed clusters reaches 250.

It can be observed from the results that EGDO algorithm performs slightly better when

the number of clusters is small. As the number of pre-deployed clusters grows, the EGDO

algorithm intends to use even a smaller number of ANs than the SMT algorithm to establish

full connectivity. The number of ANs used by the EGDO algorithm is typically 10% to 20%

less than those used by the SMT algorithm for as long as the network is sparse, i.e., the

number of pre-deployed clusters is less than 250. Interestingly, the AN cost advantage of

57

the EGDO algorithm becomes even more apparent for a dense network with more than 250

pre-deployed clusters. However, the advantages of EGDO over SMT in dense networks are

not of high significance because a dense network naturally offers robustness.

While not shown here, it is also important to note that representing the communication range

of an AN with a reduced radius circle or a reduced edge square in CCS leads to utilizing an

increased number of ANs in establishing connectivity.

58

Chapter 5

Maintaining Connectivity in Mobile

Network

5.1 Analysis of Mobility Bound under Small Scale Node

Mobility

In this section, we quantitatively analyze the built-in robustness of the HCS approach of

[39] by allowing random omni-directional mobility of nodes in set V0 at small scales. We

geometrically analyze the maximum mobility distance of an edge resulting in disconnecting

the network.

In [39], we assume the communication radius of a gateway node is 2R and that of a standard

node is r where R is typically two orders of magnitude larger than r. As shown by Fig. 5.1,

the robust communication range of a gateway node is represented by a large hexagon with

an edge length of R = (12n + 7)r where n is a positive integer. The integer n is chosen to

facilitate HCS set-up without loss of generality. Standard nodes in a small hexagon cell are

59

(a) (b)

Figure 5.1: The cases of coverage overlap in which the overlapping area between two con-
nected nodes is (a) the largest, and (b) the smallest.

connected to their gateway node located at the center of that cell. In this work, the word

‘node’ denotes the gateway node whose communication radius is 2R. A pair of nodes are

connected if their distance is less than 2R.

A pair of connected nodes in HCS typically have a common edge. In reality, the communi-

cation ranges follow the disk format and would hence overlap as illustrated by Fig. 5.1. For

a pair of connected nodes in HCS, the overlapping area between the two disks functions as

a safety margin. Fig. 5.1a and Fig. 5.1b show cases in which the largest and the smallest

safety margin takes place, respectively. When a node becomes mobile and the direction of

movement is unknown, the safety margin between this node and its neighbors may decrease

or increase. We are not interested in scenarios in which mobility enhances safety margin.

Rather, we take interest in those cases for which safety margin reduces. The worst effect

of the latter cases is materialized when the center-to-center distance between two nodes

increases.

When two nodes are connected, the safety margin can accommodate mobility at a distance

60

of ∆ in the case of the largest safety margin and δ in the case of the smallest safety margin.

The value of ∆ is given below. The calculation is geometrically straightforward and the

details are omitted here.

∆ = 2(1−
√

3

2
)R

The following theorem places an upper bound on the value δ.

Theorem 5.1. In the case of the smallest safety margin, an edge can tolerate a maximum

mobility distance of δ = r/2 for any given value of n satisfying R = (12n+ 7)r.

The proof of Theorem 5.1 is given in Appendix B.2.

For a connected pair of nodes, the margin of connectivity typically falls in the range of

[δ,∆]. Assuming all safety margins in a connected network are approximately uniformly

distributed, the perturbation bound Γ has to be less than or equal to the expected value of

the margin. This implies

Γ ≤ δ + ∆

2
(5.1)

Plugging in the values, we have

Γ ≤ 0.134(12n+ 7)r +
r

4

Γ ≤ 7.6r when n = 4

Γ ≤ 9.2r when n = 5

Γ ≤ 10.8r when n = 6

Γ ≤ 12r when n = 7

. . .

(5.2)

61

The above analysis establishes a theoretical estimate of perturbation bound due to node

mobility in a connected network.

5.2 Connectivity Maintenance under Large Scale Node

Mobility

In the previous section, we assumed small scale mobility of pre-deployed clusters and showed

how the embedded safety margin of HCS model can preserve connectivity. In this section,

we study a case in which the mobility of nodes in set V0 is at a larger scale exceeding the

given thresholds of (5.2). Let pi ∈ R2 denote the position of vi ∈ V0 and qj ∈ R2 denote the

position of vj ∈ V1. When the mobility bounds of (5.2) are exceeded, we consider relocating

the existing nodes within set V1 in order to restore connectivity.

5.2.1 Graph Theoretic Analysis

We first introduce the general notations used throughout this chapter of the dissertation.

Given a graph G(V,E) with n nodes where V is the set of nodes and E is the set of edges, we

denote vi ∈ V as a node in G and (vi, vj) ∈ E as the edge between vi and vj. In this work,

we only consider non-directional graphs in which (vi, vj) = (vj, vi). Utilizing the distance

connectivity model with pi ∈ R2 representing the position of vi ∈ V , (vi, vj) ∈ E, nodes i and

j are connected if ‖pi − pj‖ ≤ 2R where 2R is the communication range of the nodes. Here,

we pick 2R because we can geometrically use two touching disks of the radius R to represent

a pair of connected nodes. Let the symmetric matrix A ∈ Rn×n denote the adjacency matrix

62

of G, and aij denote the element {i, j} in A. Then,

aij =


1, if (vi, vj) ∈ E

0, otherwise

(5.3)

Matrix D = diag{d1, d2, . . . , dn} is the degree matrix of graph G where di =
∑n

j=1 aij

denotes the degree of vi. The Laplacian matrix is then defined as L = D − A. Further, Sn+

represents the set of symmetric positive semidefinite (PSD) matrices of dimension n. Being

a real symmetric matrix, L carries the following properties.

1. Due to its real symmetry, all eigenvalues of L denoted by λ1 ≤ λ2 ≤ · · · ≤ λn, are real

numbers.

2. According to Gershgorin’s theorem, all eigenvalues of L are non-negative. Conse-

quently, L ∈ Sn+ has a complete orthonormal eigenspace referred to as {u1, u2, . . . , un}.

3. Since L1 ≡ 0, λ1 = 0 and vector 1 are an eigenvalue-eigenvector pair of any Laplacian

matrix. Here 1 is the vector of all ones and 0 is a vector of all zeros.

4. ∀ui (given u1 = 1), we have uTi uj = 0 for i 6= j) and uTi ui = 1. In particular, for i ≥ 2,

ui ∈ 1⊥.

5. The second smallest eigenvalue, λ2 is known as ‘the algebraic connectivity’ of a graph.

The graph is connected if and only f λ2 > 0. Furthermore, the number of zero eigen-

values of L equals to the number of connected components in graph G.

6. Finally, λ2 can be calculated through Raleigh quotient

λ2 = uT2Lu2 = min
u∈1⊥,u6=0

uTLu

uTu

63

The proofs of these properties can be found in [78]. From property 5 and 6, we see that

λ2 > 0 is the condition of graph connectivity. However, verifying this condition has a

high computational complexity associated with minimizing Raleigh quotient. The following

lemma provides a lower complexity alternative.

Lemma 1. The eigenvalue λ2 > 0 if and only if ∃W such that W TLW is positive definite

where W = [w1, w2, . . . , wn−1] ∈ Rn×(n−1) with wTi 1 = 0 ∀i ∈ {1, 2, . . . , n− 1} and wTi wj = 0

∀i 6= j.

Appendix B.1 includes the proof of Lemma 1.

In order to describe the change of topology when nodes become mobile, we introduce the

augmented Laplacian matrix. We consider two types of nodes. Based on the assumptions

made in previous sections, we e can place intermediate nodes in set V1 but not pre-deployed

nodes in set V0.

Suppose we have a graph G(V0 ∪ V1, E) at time (k − 1) with M pre-deployed nodes and N

intermediate nodes, where M = |V0| and N = |V1|. Without loss of generality, assume nodes

in V0 are numbered from 1 to M and nodes in V1 from M + 1 to M + N . This assumption

is justified because as long as two graphs are isomorphic, their matrix representation can be

switched back and forth through permutation transformation [79].

Let matrix P ∈ RM×2 represent the positions of nodes in set V0. The i-th row of P contains

the 2-D Euclidean coordinates of node vi ∈ V0. Similarly, the positions of intermediate nodes

are contained in Q ∈ RM×2. Let L0 ∈ RM×M denote the Laplacian graph among nodes in

V0. In general, L0 represents a disconnected graph, yet it doesn’t imply all nodes in V0 are

isolated. From the algebraic graph theory point of view, establishing a connected network

among the nodes of V0 ∪ V1 can be done by augmenting L0 to a higher dimension Laplacian

matrix L ∈ R(M+N)×(M+N) whose nullity is 1.

64

To augment L0 and include nodes of V1 in the graph, we define matrix C ∈ RM×N that

contains binary variables cij with i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N}. Each cij is

associated with the edge (vi, vj) where vi ∈ V0 and vj ∈ V1. We also define symmetric

matrix F ∈ RN×N whose off-diagonal elements are {0,−1}. For convenience, we denote the

off-diagonal elements as −fij (i > j) where i, j ∈ {M+1,M+2, . . . ,M+N}. Consequently,

each fij has a binary value indicating the edge (vi, vj) exists where vi, vj ∈ V1.

In a dynamic network, an edge between two nodes could possibly appear and disappear from

time to time. Edge additions and deletions are represented by binary variables {cij, fij} and

incidence matrix. Let us assume the Laplacian matrix of graph G(V,E) at time (k − 1) is

L(k − 1). If an edge appears between vi and vj at t, the Laplacian matrix will be updated

as L(k) = L(k − 1) + hTijhij where hij = [0, . . . , 1, 0, . . . ,−1, 0, . . .](i 6= j) with 1 appearing

at the i-th position and −1 at the j-th position. Conversely, L(k) = L(k − 1) − hTijhij,

if the edge (vi, vj) is deleted from the graph. With these assumptions and notations, the

augmented Laplacian matrix of graph G(V0 ∪ V1, E) is expressed as

L =

 L0 0

0 0

+
∑

cijh
T
ijhij +

∑
fijh

T
ijhij

=

L0 +Dc −C

−CT F


(5.4)

We assume the graph is connected at k = 0, i.e., Laplacian L(k) has λ2 > 0 but the nodes

in set V0 become mobile for k > 0. Our goal is then to maintain λ2(L(k)) > 0 for ∀k > 0 by

controlling decision variables, i.e., the elements of C, F , and Q.

65

5.2.2 Problem Statement

Eq. (5.4) provides a description of the topology change as well as a measure of network

connectivity λ2(L(k)) when the nodes in set V0 become mobile. Hence, we have to relate the

topology change to the new positions of the nodes in set V1. A binary variable cij indicates

the existence of an edge (vi, vj) according to our connectivity model, i.e., (vi, vj) ∈ E implies

that the distance between vi and vj is less than 2R or ‖pi − qj‖ ≤ 2R. Similarly, fij = 1

implies ‖qi − qj‖ ≤ 2R. With these conditions, we pose the following feasibility problem

solving which results in finding the new positions of nodes of V1 according to the changes

made in positions of nodes of V0.

Problem 5.1.

min
C,F,Q

0 (5.5)

S.T. W TLW � 0 (5.6)

∀cij, pi, qj, cij · ‖pi − qj‖ ≤ 2R (5.7)

∀fij, qi, qj, fij · ‖qi − qj‖ ≤ 2R (5.8)

2 ≤ fjj ≤ 5 (5.9)

cij ∈ {0, 1} (5.10)

fij ∈ {0, 1} (5.11)

∀j ∈ {1, 2, . . . , N} & ∀i ∈ {1, 2, . . . ,M}

The first constraint guarantees the algebraic connectivity based on Lemma 1. Here, matrix

W can be easily found by calculating the orthogonal space of 1 ∈ R(M+N)×1. The second and

third constraint groups are imposed by the the connectivity model. If an edge (vi, vj) ∈ E,

66

cij = 1 (or fij = 1), then the Euclidean distance between node vi and vj has to be less

than 2R. The fourth constraint is the result of considering the following two facts. First,

the degree of any intermediate node is larger than 2 because no intermediate node can be

a terminal node in the graph. Second, our goal is to reestablish connectivity while keeping

the number of existing intermediate nodes fixed. Hence, we need to construct a spanning

tree for the graph using the existing intermediate nodes. According to Lin [9], the maximum

node degree in a minimum spanning tree is 5.

5.2.3 Solution Alternatives

We open this subsection by providing the following theorem showing that the connectivity

maintenance problem formulated in the previous section is NP-hard.

Theorem 5.2. Problem 5.1 is NP-hard.

Appendix B.3 contains the proof of Theorem 5.2.

Next, the following lemma simplifies the two groups of nonlinear Euclidean norm constraints

in Problem 5.1 to linear matrix inequalities (LMIs).

Theorem 5.3. Constraint (5.7) is equivalent to a following LMI, given the large positive

number Ω.

4R2 + Ω(1− cij) (pi − qj)

(pi − qj)T I2×2

 � 0 (5.12)

∀j ∈ {1, 2, . . . , N} & ∀i ∈ {1, 2, . . . ,M}

67

Appendix B.4 contains the proof of Theorem 5.3.

Hence, Problem 5.1 can be reduced to to a mixed integer semi-definite programming (MISDP)

as the result of eliminating nonlinear constraints. Utilizing the optimization tool YALMIP

[80] to apply branch and bound (BnB) algorithm along with SDP solver MOSEK [81] to

lower the bounds of BnB iterations, we can then solve MISDP. Our experimental results

show that solving Problem 5.1 becomes computationally prohibitive when the number of

nodes exceeds 10. Theoretically, the worst case time complexity is

O(2MN ·
√

2
N2−N

)

occuring when all permutations of MN binary variables cij and (N2 −N)/2 binary variables

fij have to be tried.

We also utilize an alternative solution approach by relaxing binary constraints with contin-

uous constraints cij ≤ c2ij and fij ≤ f 2
ij in the range of [0, 1]. We then use PENLAB [82]

nonlinear SDP solver to disguise binary constraints. In this case, PENLAB solver is able

to generate acceptable results for network configurations with no more than 10 nodes. In

[83, 84, 85], the authors use cutting plane algorithms to solve their proposed MISDP prob-

lems. As a third alternative, we apply a similar cutting plane solution to our problem but

note that this method is only able to solve our problem when the number of nodes is less

than 20. Hence, we conclude that there is a need to develop alternative algorithms to solve

this problem for larger networks in practical scenarios.

68

5.3 Location-Aware Connectivity Maintenance under

Large Scale Node Mobility

In this section, we focus on solving Problem (5.1) in a practical case for which the positions

of network nodes are known. We show that in this case Problem 5.1 becomes a second order

cone programming (SOCP) problem and hence can be solved in polynomial time. We note

that this location-aware connectivity maintenance scenario is practically viable considering

the fact that network nodes can share their locations utilizing their GPS coordinates.

5.3.1 Problem Formulation

Recall that in our problem, the nodes of set V0 become mobile after network connectivity is

initially established. In this subsection, we consider a scenario in which we react to large scale

mobility of one node in set V0 at a time. Note that this scenario consideration does not lead

to loss of generality if the nodes of V1 are relocated fast enough to adapt to network topology

changes. Practically speaking, only one node is disconnected from the entire network, as long

as the relocation of nodes in set V1 can occur relatively faster than the rate of change in

the locations of nodes in V0. In this case, the network remains connected among discrete

mobility instances representing changes in the locations of nodes in set V0.

In this case, the topology variation lies on the connectivity condition between this single mo-

bile node referred to as vs ∈ V0 and intermediate nodes in V1. The corresponding part in the

augmented Laplacian matrix defined in Eq. (5.4) is row s of matrix C, i.e., [cs1, cs2, · · · , csN].

Since node locations are known, the mobile node vs is able to identify the closest node vd to

which it should connect in its new position. Denote L(k) the Laplacian of the topology at

discrete mobility instance k. Then, we can input the corresponding binary variables in L(k)

to Problem 5.1 which is now reduced to the following SOCP problem.

69

Problem 5.2.

min
Q(k)

Tr((Q(k)−Q(k − 1))(Q(k)−Q(k − 1))T) (5.13)

S.T.

4R2 + Ω(1− cij) (pi − qj)

(pi − qj)T I2×2

 � 0 (5.14)

4R2 + Ω(1− fij) (qi − qj)

(qi − qj)T I2×2

 � 0 (5.15)

∀j ∈ {1, 2, . . . , N} & ∀i ∈ {1, 2, . . . ,M}

Here Q(k) and Q(k−1) represent the positions of intermediate nodes at instances k and k−1,

respectively. The purpose of the objective function (5.13) is to minimize the total distance

traversed by the intermediate nodes so as to minimize the energy cost and reaction time.

As noted, this problem is a second order cone programming with 2N variables which can be

solved through interior point method [86]. As a good solution alternative, one can invoke

MOSEK solver under YALMIP environment to solve the problem. Algorithm 4 contains

the description of our adaptive node relocation algorithm proposed to solve location-aware

connectivity maintenance under large scale mobility.

The detailed description of Algorithm 4 is provided next. The algorithm is in essence a

continuous loop in discrete mobility instance k. The mobility instance k is increased as the

result of node movement. Per line 5, the algorithm takes action if the network is disconnected

after a node moves. The algorithm proceeds with inputting the Laplacian matrix at instance

k − 1 and location of vs at instance k. Next, connected component sets are formed as the

result of vs moving. The five lines starting from line 9 call for solving Problem 5.2 after

identifying the closest node vd to vs and forming the resulting Laplacian matrix. These

70

Algorithm 4 Adaptive Node Relocation Algorithm

Set mobility instance counter k = 0
Form fully connected component Υ0
while (TRUE) do

Set k = k + 1
5: if (disconnected) then

Input L(k − 1) and location of vs at instance k
Form connected component sets Υi with

vs ∈ Υ1 and Υ0 =
⋃
i

Υi

Identify vd ∈ Υj (j > 1) closest to vs ∈ Υ1
10: Form L(k)

Solve Problem 5.2 with L(k)
if (connected) then

Set coordinates of nodes of Q(k)
else if (Releasable node set NR 6= ∅) then

15: Change L(k) according to NR

Solve Problem 5.2 with L(k)
if (connected) then

Set coordinates of nodes of Q(k)
end if

20: else
Unable to restore connectivity
Set coordinates of nodes of Q(k) to −1

end if
Output coordinates of nodes of Q(k)

25: end if /* if (disconnected) */
end while

71

lines inspect the possibility of directly connecting vs to vd by directly relocating vd while

still containing it within its connected component. If connectivity cannot be restored, the

six lines starting from line 14 attempt at restoring connectivity by relocating the nodes of

releasable node set NR to form a line graph between vs and vd . The result is verified after

changing L(k) accordingly and solving Problem 5.2. The next four lines starting at line 20

indicate that connectivity cannot be restored after having made the two attempts above.

Line 18 and 22 set the coordinates of nodes of Q(k) according to the outcome of one of

the three scenarios above. Finally, line 24 outputs the coordinates of nodes Q(k) while the

following two lines go to the the top of while loop awaiting the next instance of mobility.

Fig. 5.2 illustrates the functionality of Algorithm 4 in four consecutive discrete mobility

instances. Fig. 5.2a shows a connected network at k = 0. Fig. 5.2b illustrates an event at

k = 1 in which vs = v1 gets isolated from other nodes with vd = v5. Fig. 5.2c shows that at

k = 1+ connectivity is restored by relocating node v5 and forming edge (v1, v5) after solving

Problem 5.2 (line 11 of the algorithm). Fig. 5.2d then shows another event at k = 2 in which

vs = v4 moves away and becomes disconnected from the network. However, relocating node

vd = v5 and forming edge (v4, v5) while containing v5 within its connected component is not

an option. At this instance, NR = {v6, v7}. Fig. 5.2e illustrates that connectivity is restored

at k = 2+ after relocating the nodes of NR, i.e., forming a revised L(k) associated with the

line graph of (v5, v6, v7, v4) and solving Problem 5.2. Fig. 5.2f shows a third event at k = 3

in which vs = v3 moves and becomes disconnected from the network. Again, relocating node

vd = v6 and forming edge (v3, v6) while containing v6 within its connected component is

not an option. Fig. 5.2g illustrates that connectivity is restored at k = 3+ after relocating

v9 ∈ NR, i.e., forming a revised L(k) associated with the line graph of v6, v9, v3 and solving

Problem 5.2. Finally, Fig. 5.2h shows a fourth event at t = 4 in which vs = v1 moves to

the upper right corner but neither the edge (v1, v8) nor the empty set NR can be used to

reconnect v1 to the network. At this point, it is possible that further mobility of other nodes

at later instances can help restore connectivity using Algorithm 4 or else EGDO algorithm

72

has to be applied to reconnect the network.

(a) k=0 (b) k=1 (c) k=1+ (d) k=2

(e) k=2+ (f) k=3 (g) k=3+ (h) k=4

Figure 5.2: Sample illustrations describing the functionality of Algorithm 4 in four consecu-
tive discrete mobility instances. The symbol + after a mobility instance denotes the action
instance for that mobility instance.

5.3.2 Complexity Analysis

In this subsection, we analyze the complexity of Algorithm 4. In [87, 88], the authors point

out that the time complexity for solving SOCP with κ conic constraints, such as (5.14) and

(5.15) is in the order of O(
√
κ). Each conic constraint corresponds to an edge connected

to at least one intermediate node in the network graph. Therefore, the number of conic

constraints is equal to the trace of matrix F in Eq. (5.4). The following theorem finds an

upper bound for Tr(F).

Theorem 5.4. Given a network graph with M pre-deployed clusters and N intermediate

nodes, suppose the primitive graph consisting of only M pre-deployed nodes has a Laplacian

matrix L0 with rank(L0) = r. Then, the trace of matrix F in the augmented Laplacian matrix

73

L, defined by Eq. (5.4), satisfies the following inequality.

Tr(F) ≤M − r + 2N − 2 (5.16)

Appendix B.5 includes the proof of Theorem 5.4.

Theorem 5.4 provides us with the maximum number of conic constraints of Problem 5.2.

Therefore, the time complexity of solving Problem 5.2, i.e., executing line 11 or line 16 of

Algorithm 4, is upper-bounded by

O(
√
M − r + 2N) (5.17)

The complexity of lines 7 − 8 mainly depends on calculating connected components and

line search of the closet nodes. The process of calculating connected components in a graph,

undergoing depth first search algorithm, has a time complexity ofO(|V |+|E|). When dealing

with a spanning tree graph, the number of edges is in the same order as that of the number

of nodes on the tree, i.e., O(M + N). The highest complexity of searching for the closest

node in set V1 is materialized when it has to traverse the entire set V1. Therefore, line 9 has a

runtime in the order of O(N). Line 10 mainly assigns numbers to some of cij and fij values.

Such assignment is made with a complexity in the order of constant time. The worst case

time complexity of line 14 in Algorithm 4 is in the order of constant time, as the releasable

intermediate nodes are all of degree 2 or lower. Assuming intermediate nodes are distributed

uniformly on each edge of the primitive spanning tree consisting of only pre-deployed nodes,

this constant is bounded by N/(M − 1). Counting time complexity of all these steps, the

total complexity of Algorithm 4 is then in the following order.

O(M + 2N +
√
M − r + 2N) (5.18)

74

Chapter 6

Simulation Results of Connectivity

Maintenance Problem

6.1 Experimental Results

6.1.1 Small Scale Perturbation

The following set of experiments aim at verifying small scale mobility bounds derived in

Section 5.1. For each experiment, different mobility distances are applied until reaching

the threshold value rendering network disconnected. The results are shown in Fig. 6.1. In

each graph, the horizontal axis is the mobility distance measured as a multiple of r and the

vertical axis shows the probability of network staying connected after mobility perturbed is

applied. The latter is referred to as ‘perturbation survivability’ and denoted as p. The value

of p is calculated by repeatedly applying random-directional mobility at a given distance to

pre-deployed nodes and then verifying connectivity. In each perturbation test, the test result

is increased by 1 if the network is still connected. In our experiment, we repeat the process

75

�� �� �� ��
δ

���

���

���

���

���

���

p

(a) (n,Γ) = (4, 7.6r)

�� �� �� ���
δ

���

���

���

���

���

���

p

(b) (n,Γ) = (5, 9.2r)

�� �� ��� ���
δ

���

���

���

���

���

���

p

(c) (n,Γ) = (6, 10.8r)

�� �� �� ��� ���
δ

���

���

���

���

���

���

p

(d) (n,Γ) = (7, 12r)

Figure 6.1: An experimental comparison of perturbation survivability p as a function of
mobility distance σ for different combinations of (Γ, n).

1000 times for each connected network and a given mobility distance. Then, we derive the

value of p as the number of connected perturbed cases divided by 1000. For each mobility

distance, we run the test on 100 different network scenarios and record the data of p in a

box plot. Since perturbation survivability of a connected network is also related to node

densities, we keep the number of pre-deployed nodes at 30 and vary the field size in order to

adapt the density change due to changes in the value of n. This allows us to keep network

sparsities and densities comparable in different experiments. The series of experiments start

with n = 4 and end with n = 7. The value of r is set to 30m. For every given value of n, we

gradually increase mobility distance until p becomes zero reflecting that the mobility bound

of the underlying network is reached. As observed, simulation results match the analysis of

Section 5.1 and particularly Eq. (5.2).

76

In Fig. 6.1a, the distribution of p for 100 different network scenarios is depicted within each

box plot associated with a mobility distance value on the x−axis. We can see when the

mobility distance is at 4r, more than half of network scenarios can survive perturbations.

When mobility distance increases, the box plot of p shifts down to zero. When the mobility

distance is at 7r, most of the network scenarios cannot survive perturbations. For a mobility

distance of 8r, the distribution of p goes to 0. The results imply that the mobility bound of

a network with R = 55r is located between 7r and 8r, while the analytical estimate is 7.6r

in Eq. (5.2). Following a similar approach for the case of n = 5, Fig. 6.1b shows that the

point at which p goes to 0 lies between 9r and 10r matching the estimate of 9.2r. Fig. 6.1c

and Fig. 6.1d show mobility bound values closely approximating the analytical findings of

10.8r and 12r for the cases of n = 6 and n = 7, respectively.

6.1.2 Large Scale Node Mobility

In this subsection, we provide numerical evaluation results of connectivity restoration algo-

rithm reported in Section 5.3. The algorithm is evaluated through an experiment consisting

of three steps. First and for a given number of nodes in set V0, we establish connectivity

by initially placing intermediate nodes of set V1 using GDO algorithm. Second, we let a

randomly chosen node in V0 move in a random direction by a certain distance and then

apply Algorithm 4 to restore connectivity if the network is disconnected. If connectivity

is successfully restored, we count this event as a ‘success’ event. For each given mobility

distance, we randomly generate a set of networks, apply mobility, restore connectivity, and

count the number of success events. We define ‘Recovery Probability’ as the percentage of

network success events in an experiment. In the figures below, mobility distance is referred

to as σ, the cardinality of set V0, i.e., the number of pre-deployed nodes is referred to as M ,

and the cardinality of set V1, the number of intermediate nodes is referred to as N .

77

20 40 60 80 100 120 140 160 180 200
σ

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 P
ro

ba
bi

lit
y

M = 10
M = 20
M = 40
M = 80

Figure 6.2: Plots of Recovery Probability as a function of mobility distance σ for different
numbers of pre-deployed nodes M .

The effect of mobility distance (σ)

Here, we report the effect of mobility distance σ on the Recovery Probability of Algorithm

4. The experiment is done in a field of 104×104m2. The communication range of a standard

node is set to r = 5m and that of a gateway node is set to R = 455m. For a given network

scenario with M randomly deployed nodes in set V0, connectivity is first established using

GDO algorithm. Then, a pre-deployed node is randomly chosen to become mobile. This

procedure is repeated until node mobility results in having a disconnected network. Once

we have a disconnected network, Algorithm 4 is applied. In each set of such experiments,

M is fixed and 100 different network scenarios are tested to evaluate Recovery Probability.

In this case, the value of σ grows from 20r to 200r within a range beyond the small scale

mobility bounds reported in Section 6.1.1.

Fig. 6.2 shows the relationship between Recovery Probability and mobility distance. Each

78

curve represents a set of experiments with a fixed number of pre-deployed nodes M . It is

as expected that the Recovery Probability drops as mobility distance grows. One may also

notice that Recovery Probability decreases as M increases. The latter is attributed to the

sparsity of network and further investigation results are provided in the following experiment.

The effect of the number of pre-deployed nodes (M)

Here, we present the relationship between the number of pre-deployed nodes and Recovery

Probability. In this experiment, we set dm = 60r and increase M from 20 to 140. Following

the same approach as the previous subsection, connectivity is initially established using

GDO algorithm and a randomly selected node is made mobile for the purpose of making the

network disconnected. Then, Algorithm 4 is launched to restore connectivity.

The results shown in Fig. 6.3 imply that as M increases, Recovery Probability decreases.

Noting that all nodes are located in a fixed area field, a smaller number of intermediate nodes

are initially required when there are a larger number of pre-deployed nodes. However, a larger

number of intermediate nodes offer finer granular controllability of network topology in the

case or restoring connectivity. Our statement is verified by Fig. 6.4 showing the number

of pre-deployed nodes and the average number of intermediate nodes in the experiments of

Fig. 6.3. In Fig. 6.4, the red bar shows that the number of intermediate nodes constantly

decreases as the network becomes denser. These experimental results reflect that Algorithm

4 works better in sparse networks.

Runtime evaluations

In Section 5.3.2, we showed that the runtime of Algorithm 4 is in the order of O(M + 2N +
√
M − r + 2N). Here, we numerically evaluate the runtime and compare the findings with

the theoretical analysis. The experiment is implemented in an 8000m × 8000m area, with

79

20 40 60 80 100 120 140
M

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
co

ve
ry

 P
ro

ba
bi

lit
y

Figure 6.3: Recovery Probability as a function of the number of pre-deployed nodes M .

20 40 60 80 100 120 140
M

0

20

40

60

80

100

120

140

160

N
+
M

M
N

Figure 6.4: Bar plots of the total number of nodes M + N̄ (where N̄ indicates the average
number of intermediate nodes) for different choices of pre-deployed nodes M in Fig. 6.3.

80

r = 5m and R = 455m. Similar to previous large scale mobility experiments, we let the

number of pre-deployed nodes M vary in the range of [20, 100]. For each value of M , we test

100 different network scenarios. In each test, M pre-deployed nodes are randomly placed

at the beginning and then network connectivity is established using GDO algorithm. After

that, a randomly selected node from the set V0 undergoes random mobility in the range of

60r for the purpose of making the network disconnected. Then, Algorithm 4 is applied to

restore connectivity and its runtime is measured.

We then plot the experimental runtime referred to as T , as a function of the runtime order

given by (5.18). Fig. 6.5 shows a series of experimental results in which the horizontal

axis is M + 2N +
√
M − r + 2N and vertical axis is the algorithm runtime in seconds.

Each subfigure in Fig. 6.5 shows the measure collected in 100 different networks with M

pre-deployed nodes. It can be observed that the runtime has a linearly increasing trend

with respect to the value of M + 2N +
√
M − r + 2N . The blue line shows the result

of data fitting in each subfigure. The slope of each line is reported in Table. 6.1, where

β = 1000T/(M + 2N +
√
M − r + 2N). Among all subfigures of Fig. 6.5, the steepest slope

β̄ is 5.2 implying thar T ≤ β̄(M + 2N +
√
M − r + 2N)/1000. We can conclude that the

runtime of Algorithm 4 is in the order of O(M + 2N +
√
M − r + 2N).

In Table 6.1, we report typical runtimes associated with restoring connectivity using both

Algorithm 4 and EGDO algorithm. The runtime of EGDO algorithm is denoted by TE in

the table. It can be observed that the runtime of EGDO algorithm is typically 2 to 4 times

higher than that of Algorithm 4.

Table 6.1: Line slope measures in seconds fitting Fig. 6.5 data.

M 20 30 40 50 60 70 80 90 100 110
β 4.1 3.6 3.8 4.1 4.2 5.2 4.3 4.3 4.5 4.6
TE 0.92 1.12 1.45 1.73 1.89 2.13 2.09 2.35 2.51 2.55
T 0.54 0.61 0.68 0.74 0.78 0.77 0.83 0.61 0.67 0.61

81

50 60 70 80
0.5
0.6
0.7

T(
s)

M = 20

70 80 90
0.5
0.6
0.7
0.8

T(
s)

M = 30

70 80 90 100
0.6

0.7

T(
s)

M = 40

80 90 100 110

0.65
0.70
0.75

T(
s)

M = 50

100 110 120 130

0.7

0.8

T(
s)

M = 60

110 120 130
0.7

0.8

T(
s)

M = 70

110 120 130
0.7

0.8

T(
s)

M = 80

120 130 140
0.5

0.6

T(
s)

M = 90

120 130 140 150
0.6

0.8

T(
s)

M = 100

130 140 150 160
0.5

0.6

0.7

T(
s)

M = 110

Figure 6.5: Capturings of the runtime of Algorithm 4 versus M + 2N +
√
M − r + 2N .

82

Chapter 7

Conclusion

7.1 Summary of Main Contribution

This dissertation studied two problems, network connectivity establishment and mainte-

nance, and therefore can be divided into two parts. The first part is composed of Chapter

2, 3 and 4, and the second part consists of Chapter 5 and 6.

In the first part, we investigated robust connectivity establishment in two-tiered hetero-

geneous network graphs through systematic placement of advantaged nodes. The main

contribution of this part is a class of near-optimal yet low complexity algorithms that solves

this problem, and the corresponding numerical validations. Our algorithms were developed

utilizing a so-called hexagonal coordinate system (HCS) in which we developed an extended

algebra. We formulated and solved (within bounds) an NP-hard problem addressing graph

connectivity. Further, we developed a class of geometric distance optimization (GDO) algo-

rithms approximating the original problem. Experimental results showed the effectiveness

of our proposed GDO algorithms measured in terms of advantaged node cost and robust-

ness of connectivity in sparse networks in comparison with variants of exhaustive search and

83

Steiner minimum tree (SMT) algorithms. Our experimental results also offered a couple of

additional important insights. First, it was commonly observed that our proposed GDO al-

gorithms lost their advantages in comparison with SMT algorithms past a density threshold

value due to the higher density of nodes. Second, below the specific sparsity threshold, our

proposed algorithms used smaller numbers of AN nodes if we applied HCS representation to

SMT algorithms in order to improve robustness.

In the second part, we studied connectivity maintenance scenarios in which an initially

connected network consisting of pre-deployed and intermediate nodes was exposed to mo-

bility. Two types of node mobility scenarios were considered. The first scenario analyzed

the bounds of mobility when pre-deployed nodes moved at small scales. The bounds of

node mobility preserving connectivity were derived through analysis and verified by simu-

lations. The second scenario considered the movement of pre-deployed nodes beyond the

bounds of the first scenario thereby breaking connected links and partitioning the connected

network. This scenario then considered relocating the existing intermediate nodes in order

to reestablish connectivity. Beside the analysis of mobility bound in the first scenario, the

main contribution of this part is that for the first time, a general formulation of network

maintenance problem, in a network we only have partial control, was proposed in the form

of an optimization problem. This problem was later proven to be NP-complete. Then, we

considered a practical location-aware special case scenario. We solved the problem of the

practical scenario in polynomial time and analyzed the complexity of our solution. We also

presented comprehensive performance evaluation results of our proposed algorithm.

84

7.2 Future Work

7.2.1 Connectivity Establishment and Maintenance in More Het-

erogeneous Network

In Chapter 2, we introduced the connectivity model where we assumed the intermediate

nodes and the gateway nodes are the same. Nowadays, the diversity of devices in wireless

networks grows fiercely. Each type of device has different communication capabilities. When

dealing with such complex network environment, the assumption we imposed before is not

quite practical. The network connectivity establishment and maintenance problem with the

following conditions is left unexplored.

1. Intermediate nodes has different types. Each type has different communication range;

2. The number of intermediate nodes of different types are limited;

These two conditions imply the nature of the problem is still a knapsack problem, which is

NP-hard. In order to establish robust connectivity, the future work should use the formula

R = (12n+7)r with different values of n to approximate the communication range of different

types of intermediate nodes. After connectivity is established, the maintenance problem with

pre-deployed nodes become mobile is also left unexplored. In this case, which node should be

relocated and how to rearrange the network topology is a more sophisticated yet interesting

problem.

7.2.2 Formation Control in Multi-agent System

In Chapter 5 and 6, we investigated the scenario when we were able to maneuverer the

intermediate nodes to restore connectivity. A similar scenario not fully researched in multi-

85

agent systems is formation control. When there is such a network consisting of isolated

mobile agents and intermediate facilities accommodating connectivity, and the mobile agents

want to move to their new locations while keeping global connectivity along the way, the

intermediate nodes (or a central hub) should provide a proper motion sequence. In another

word, the intermediate nodes need to design a connected graph process so as to make the

mobile agents reach their destinations, assuming the final topology can be connected with

the same number of intermediate nodes. The deliverable of this research project should be a

protocol deciding which node should move and providing its new location during each time

period. To develop such a motion protocol is an interesting but unexplored problem.

7.2.3 Communication Energy Optimization

In Chapter 2, we assumed the communication radius of all the intermediate nodes are the

same and fixed. In practice, this implies the wireless antennas are working at a fixed trans-

mitting and receiving power. However, after a connected network is established, the wireless

nodes may not need to work at the fixed power to guarantee connectivity. Based on the

distance between different pairs of connected nodes, the antennas may be able to reduce the

communication power but still maintain a connected network. Furthermore, with the given

number of intermediate nodes, by modifying their locations locally, an optimal topology

consuming the least overall communication power could be found. The problem of optimiz-

ing overall communication power by modifying node positions and probably even network

topology is interesting but left unexplored.

86

Bibliography

[1] Jeroen Hoebeke, Ingrid Moerman, Bart Dhoedt, and Piet Demeester. An overview of
mobile ad hoc networks: Applications and challenges. Journal-Communications Net-
work, 3(3):60–66, 2004.

[2] Yuanjiang Huang, José-Fernán Mart́ınez, Juana Sendra, and Lourdes López. Resilient
wireless sensor networks using topology control: A review. Sensors, 15(10):24735–24770,
2015.

[3] Yuri Levin and Adi Ben-Israel. A heuristic method for large-scale multi-facility location
problems. Computers & Operations Research, 31(2):257–272, 2004.

[4] Quanhong Wang, Glen Takahara, Hossam Hassanein, and Kenan Xu. On relay node
placement and locally optimal traffic allocation in heterogeneous wireless sensor net-
works. In Local Computer Networks, 2005. 30th Anniversary. The IEEE Conference
on, pages 8–pp. IEEE, 2005.

[5] Mohamed Younis and Kemal Akkaya. Strategies and techniques for node placement in
wireless sensor networks: A survey. Ad Hoc Networks, 6(4):621–655, 2008.

[6] Y. Thomas Hou, Yi Shi, Hanif D. Sherali, and Scott F. Midkiff. On energy provisioning
and relay node placement for wireless sensor networks. Wireless Communications, IEEE
Transactions on, 4(5):2579–2590, 2005.

[7] K. Xu, Q. Wang, H. Hassanein, and G. Takahara. Optimal design of wireless sensor
networks: minimum cost with lifetime constraints. Proc. IEEE WiMob, 5, 2005.

[8] Senni Perumal and John S Baras. Aerial platform placement algorithm to satisfy con-
nectivity and capacity constraints in wireless ad-hoc networks. In Global Telecommuni-
cations Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages 1–5. IEEE, 2008.

[9] Guo-Hui Lin and Guoliang Xue. Steiner tree problem with minimum number of steiner
points and bounded edge-length. Information Processing Letters, 69(2):53–57, 1999.

[10] E. L. Lloyd and G. Xue. Relay node placement in wireless sensor networks. IEEE
Transactions on Computers, 56(1):134–138, Jan 2007.

[11] Donghui Chen, Ding-Zhu Du, Xiao-Dong Hu, Guo-Hui Lin, Lusheng Wang, and Guo-
liang Xue. Approximations for steiner trees with minimum number of steiner points.
Journal of Global Optimization, 18(1):17–33, 2000.

87

[12] Xiuzhen Cheng, Ding-Zhu Du, Lusheng Wang, and Baogang Xu. Relay sensor placement
in wireless sensor networks. Wireless Networks, 14(3):347–355, 2008.

[13] Dingzhu Du, Lusheng Wang, and Baogang Xu. The euclidean bottleneck steiner tree and
steiner tree with minimum number of steiner points. In Computing and Combinatorics,
pages 509–518. Springer, 2001.

[14] Jian Tang, Bin Hao, and Arunabha Sen. Relay node placement in large scale wireless
sensor networks. Computer communications, 29(4):490–501, 2006.

[15] Quanhong Wang, Kenan Xu, Hossam Hassanein, and Glen Takahara. Minimum cost
guaranteed lifetime design for heterogeneous wireless sensor networks (WSNs). In Per-
formance, Computing, and Communications Conference, 2005. IPCCC 2005. 24th IEEE
International, pages 599–604. IEEE, 2005.

[16] E. N. Gilbert. Random Plane Networks. Journal of the Society for Industrial and
Applied Mathematics, 9(4):533–543, December 1961.

[17] Ning Li and Jennifer C. Hou. Topology control in heterogeneous wireless networks:
Problems and solutions. In INFOCOM 2004. Twenty-third AnnualJoint Conference of
the IEEE Computer and Communications Societies, volume 1. IEEE, 2004.

[18] Jianping Pan, Y. Thomas Hou, Lin Cai, Yi Shi, and Sherman X. Shen. Topology control
for wireless sensor networks. In Proceedings of the 9th Annual International Conference
on Mobile Computing and Networking, MobiCom ’03, pages 286–299, New York, NY,
USA, 2003. ACM.

[19] Bin Hao, Jian Tang, and Guoliang Xue. Fault-tolerant relay node placement in wireless
sensor networks: formulation and approximation. In High Performance Switching and
Routing, 2004. HPSR. 2004 Workshop on, pages 246–250. IEEE, 2004.

[20] X. Han, X. Cao, E. L. Lloyd, and C. C. Shen. Fault-tolerant relay node placement
in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing,
9(5):643–656, May 2010.

[21] Gaurav Gupta and Mohamed Younis. Fault-tolerant clustering of wireless sensor net-
works. In Wireless Communications and Networking, 2003. WCNC 2003. 2003 IEEE,
volume 3, pages 1579–1584. IEEE, 2003.

[22] Jonathan L. Bredin, Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Daniela Rus.
Deploying sensor networks with guaranteed fault tolerance. IEEE/ACM Transactions
on Networking (TON), 18(1):216–228, 2010.

[23] Guoqiang Mao. Connectivity of Communication Networks. Springer, 2017.

[24] Homayoun Yousefi’zadeh, Hamid Jafarkhani, and Javad Kazemitabar. A study of con-
nectivity in MIMO fading ad-hoc networks. Journal of Communications and Networks,
11(1):47–56, 2009.

88

[25] Sanaz Barghi, Hamid Jafarkhani, and Homayoun Yousefi’zadeh. MIMO-assisted MPR-
aware MAC design for asynchronous WLANs. IEEE/ACM Transactions on Networking,
19(6):1652–1665, 2011.

[26] Xiaolong Li and Homayoun Yousefi’zadeh. Robust EKF-based wireless congestion con-
trol. IEEE Transactions on Communications, 61(12):5090–5102, 2013.

[27] Ahmed S. Ibrahim, Karim G. Seddik, and K. J. Ray Liu. Connectivity-aware net-
work maintenance and repair via relays deployment. IEEE Transactions on Wireless
Communications, 8(1):356–366, 2009.

[28] J. P. Macker, W. Chao, R. Mittu, and M. Abramson. Multi-agent systems in mobile ad
hoc networks. In MILCOM 2005 - 2005 IEEE Military Communications Conference,
Oct 2005.

[29] J. Fink, A. Ribeiro, and V. Kumar. Robust control for mobility and wireless commu-
nication in cyberphysical systems with application to robot teams. Proceedings of the
IEEE, 100(1):164–178, 2012.

[30] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo. Coverage control
for mobile sensing networks. IEEE Transactions on robotics and Automation, 20(2):243–
255, 2004.

[31] Tahiry Razafindralambo and David Simplot-Ryl. Connectivity preservation and cover-
age schemes for wireless sensor networks. IEEE Transactions on Automatic Control,
56(10):2418–2428, 2011.

[32] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc wireless networks.
Wireless networks, 8(5):481–494, 2002.

[33] Guoliang Xing, Chenyang Lu, Xiaohua Jia, and Robert Pless. Localized and configurable
topology control in lossy wireless sensor networks. Ad Hoc Networks, 11(4):1345–1358,
2013.

[34] F. O. Aron, T. O. Olwal, A. Kurien, and M. O. Odhiambo. Energy efficient topology
control algorithm for wireless mesh networks. pages 135–140, Aug 2008.

[35] M. C. De Gennaro and A. Jadbabaie. Decentralized control of connectivity for multi-
agent systems. In Proceedings of the 45th IEEE Conference on Decision and Control,
pages 3628–3633, Dec 2006.

[36] M. Franceschelli, A. Gasparri, A. Giua, and C. Seatzu. Decentralized laplacian eigen-
values estimation for networked multi-agent systems. In Proceedings of the 48h IEEE
Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control
Conference, pages 2717–2722, Dec 2009.

89

[37] Peng Yang, Randy A. Freeman, Geoffrey J. Gordon, Kevin M. Lynch, Siddhartha S.
Srinivasa, and Rahul Sukthankar. Decentralized estimation and control of graph con-
nectivity for mobile sensor networks. Automatica, 46(2):390–396, 2010.

[38] Lorenzo Sabattini, Nikhil Chopra, and Cristian Secchi. Decentralized connectivity main-
tenance for cooperative control of mobile robotic systems. The International Journal of
Robotics Research, 32(12):1411–1423, 2013.

[39] Kai Ding, Homayoun Yousefi’zadeh, and Faryar Jabbari. A robust advantaged node
placement strategy for sparse network graphs. IEEE Transactions on Network Science
and Engineering, 2017.

[40] Kai Ding and Homayoun Yousefi’zadeh. A systematic node placement strategy for
multi-tier heterogeneous network graphs. In 2016 IEEE Wireless Communications and
Networking Conference, pages 1–6, April 2016.

[41] Majid Raissi-Dehkordi, Karthikeyan Chandrashekar, and John S. Baras. UAV place-
ment for enhanced connectivity in wireless ad-hoc networks. Technical report, 2004.

[42] Thomas Clouqueur, Veradej Phipatanasuphorn, Parameswaran Ramanathan, and Ke-
wal K Saluja. Sensor deployment strategy for target detection. In Proceedings of the
1st ACM international workshop on Wireless sensor networks and applications, pages
42–48. ACM, 2002.

[43] Dario Pompili, Tommaso Melodia, and Ian F. Akyildiz. Deployment analysis in under-
water acoustic wireless sensor networks. In Proceedings of the 1st ACM international
workshop on underwater networks, pages 48–55. ACM, 2006.

[44] E. S. Biagioni and G. Sasaki. Wireless sensor placement for reliable and efficient data
collection. In 36th Annual Hawaii International Conference on System Sciences, 2003.
Proceedings of the, pages 10 pp.–, Jan 2003.

[45] S. Toumpis and G. A. Gupta. Optimal placement of nodes in large sensor networks under
a general physical layer model. In 2005 Second Annual IEEE Communications Society
Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON 2005.,
pages 275–283, Sept 2005.

[46] K. Xu, H. Hassanein, G. Takahara, and Q. Wang. Relay node deployment strategies
in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing,
9(2):145–159, Feb 2010.

[47] Yunxia Chen, Chen-Nee Chuah, and Qing Zhao. Sensor placement for maximizing
lifetime per unit cost in wireless sensor networks. In MILCOM 2005 - 2005 IEEE
Military Communications Conference, pages 1097–1102 Vol. 2, Oct 2005.

[48] Hanan Shpungin and Michael Segal. On minimizing the total power of k-strongly con-
nected wireless networks. Wireless Networks, 16(4):1075–1089, 2010.

90

[49] Jian Tang, Bin Hao, and Arunabha Sen. Relay node placement in large scale wireless
sensor networks. Computer communications, 29(4):490–501, 2006.

[50] Michael M. Zavlanos and George J. Pappas. Potential fields for maintaining connectivity
of mobile networks. IEEE Transactions on Robotics, 2007.

[51] D.V. Dimarogonas and K.H. Johansson. Bounded control of network connectivity in
multi-agent systems. IET Control Theory & Applications, 4(8):1330–1338, 2010.

[52] Z. Han, A. L. Swindlehurst, and K. J. R. Liu. Optimization of MANET connectivity
via smart deployment/movement of unmanned air vehicles. IEEE Transactions on
Vehicular Technology, 58(7):3533–3546, Sept 2009.

[53] Michael M. Zavlanos, Magnus B. Egerstedt, and George J. Pappas. Graph-theoretic
connectivity control of mobile robot networks. Proceedings of the IEEE, 99(9):1525–
1540, 2011.

[54] S. Alireza Motevallian, Changbin Yu, and Brian D.O. Anderson. Robustness to the loss
of multiple nodes in the localizability of sensor networks. IFAC Proceedings Volumes,
44(1):7836–7841, 2011.

[55] Shiguang Wang, Xufei Mao, Shao Jie Tang, Xiang Yang Li, Jizhong Zhao, and Guojun
Dai. On movement-assisted connectivity restoration in wireless sensor and actor net-
works. IEEE Transactions on Parallel and Distributed Systems, 22(4):687–694, 2011.

[56] Mustafa Y. Sir, Izzet F. Senturk, Esra Sisikoglu, and Kemal Akkaya. An optimization-
based approach for connecting partitioned mobile sensor/Actuator Networks. 2011
IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS
2011, pages 525–530, 2011.

[57] Demetri P. Spanos and Richard M. Murray. Robust connectivity of networked vehicles.
In Decision and Control, 2004. CDC. 43rd IEEE Conference on, volume 3, pages 2893–
2898. IEEE, 2004.

[58] Michael M. Zavlanos and George J. Pappas. Controlling connectivity of dynamic graphs.
In Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC’05.
44th IEEE Conference on, pages 6388–6393. IEEE, 2005.

[59] Nathan Michael, Michael M. Zavlanos, Vijay Kumar, and George J. Pappas. Maintain-
ing connectivity in mobile robot networks. In Experimental Robotics, pages 117–126.
Springer, 2009.

[60] Lorenzo Sabattini, Cristian Secchi, Nikhil Chopra, and Andrea Gasparri. Distributed
control of multirobot systems with global connectivity maintenance. IEEE Transactions
on Robotics, 29(5):1326–1332, 2013.

[61] Hasan A. Poonawala and Mark W. Spong. On maintaining visibility in multi-robot-
networks with limited field-of-view sensors. In American Control Conference (ACC),
2017, pages 4983–4988. IEEE, 2017.

91

[62] Meng Ji and Magnus Egerstedt. Distributed coordination control of multiagent systems
while preserving connectedness. IEEE Transactions on Robotics, 23(4):693–703, 2007.

[63] Yongcan Cao and Wei Ren. Distributed coordinated tracking via a variable structure
approach-part i: Consensus tracking. In American Control Conference (ACC), 2010,
pages 4744–4749. IEEE, 2010.

[64] Michael M. Zavlanos and George J. Pappas. Distributed connectivity control of mobile
networks. IEEE Transactions on Robotics, 24(6):1416–1428, 2008.

[65] Derya Aksaray and Dimitri N. Mavris. Maintaining connectivity for networked mobile
systems in the presence of agent loss. In AIAA Guidance, Navigation, and Control
(GNC) Conference, page 4886, 2013.

[66] Feng Xiao, Long Wang, and Tongwen Chen. Connectivity preservation for multi-agent
rendezvous with link failure. Automatica, 48(1):25–35, 2012.

[67] Nilanjan Chakraborty and Katia Sycara. Reconfiguration algorithms for mobile robotic
networks. In Robotics and Automation (ICRA), 2010 IEEE International Conference
on, pages 5484–5489. IEEE, 2010.

[68] A. S. Ibrahim, K. G. Seddik, and K. J. R. Liu. Connectivity-aware network maintenance
and repair via relays deployment. IEEE Transactions on Wireless Communications,
8(1):356–366, Jan 2009.

[69] Mohammad Rafiee and Alexandre M Bayen. Optimal network topology design in multi-
agent systems for efficient average consensus. In Decision and Control (CDC), 2010 49th
IEEE Conference on, pages 3877–3883. IEEE, 2010.

[70] Olivier Dousse, François Baccelli, and Patrick Thiran. Impact of interferences on connec-
tivity in ad hoc networks. IEEE/ACM Transactions on Networking (TON), 13(2):425–
436, 2005.

[71] Yicheng Lin, Wei Yu, and Yves Lostanlen. Optimization of wireless access point place-
ment in realistic urban heterogeneous networks. In Global Communications Conference
(GLOBECOM), 2012 IEEE, pages 4963–4968. IEEE, 2012.

[72] T. Zhang and K. Ding. A new proof of honeycomb conjecture by fractal geometry
methods. Frontiers of Mechanical Engineering, 8(4):367–370, 2013.

[73] T. Zhang and K. Ding. Hierarchical fractal structure of perfect single-layer grapheme.
Frontiers of Mechanical Engineering, 8(4):371–382, 2013.

[74] Ivan Stojmenovic. Honeycomb networks: Topological properties and communication
algorithms. IEEE Transactions on parallel and distributed systems, 8(10):1036–1042,
1997.

[75] Ding-Zhu Du and Panos M. Pardalos. Handbook of combinatorial optimization: supple-
ment, volume 1. Springer Science & Business Media, 2013.

92

[76] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows. 2014.

[77] Ning Li and Jennifer C. Hou. Improving connectivity of wireless ad hoc networks. In
Mobile and Ubiquitous Systems: Networking and Services, 2005. MobiQuitous 2005.
The Second Annual International Conference on, pages 314–324. IEEE, 2005.

[78] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical journal,
23(2):298–305, 1973.

[79] Chris Godsil and Gordon F Royle. Algebraic graph theory, volume 207. Springer Science
& Business Media, 2013.

[80] J. Lofberg. YALMIP: a toolbox for modeling and optimization in MATLAB.
In 2004 IEEE International Conference on Robotics and Automation (IEEE Cat.
No.04CH37508), pages 284–289, Sept 2004.

[81] Erling D. Andersen and Knud D. Andersen. The MOSEK interior point optimizer
for linear programming: an implementation of the homogeneous algorithm. In High
performance optimization, pages 197–232. Springer, 2000.

[82] Jan Fiala, Michal Kočvara, and Michael Stingl. Penlab: A matlab solver for nonlinear
semidefinite optimization. arXiv preprint arXiv:1311.5240, 2013.

[83] Harsha Nagarajan, Sivakumar Rathinam, Swaroop Darbha, and Kumbakonam Ra-
jagopal. Algorithms for synthesizing mechanical systems with maximal natural fre-
quencies. Nonlinear Analysis: Real World Applications, 13(5):2154–2162, 2012.

[84] Harsha Nagarajan, Peng Wei, Sivakumar Rathinam, and Dengfeng Sun. Heuristics for
Synthesizing Robust Networks with a Diameter Constraint. 2014, 2014.

[85] Harsha Nagarajan, Sivakumar Rathinam, and Swaroop Darbha. Synthesizing Robust
Communication Networks for Unmanned Aerial Vehicles With Resource Constraints.
Journal of Dynamic Systems, Measurement, and Control, 137(6):061001, 2015.

[86] Alexander Domahidi, Eric Chu, and Stephen Boyd. ECOS: An SOCP solver for embed-
ded systems. In Control Conference (ECC), 2013 European, pages 3071–3076. IEEE,
2013.

[87] Farid Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Pro-
gramming, 95(1):3–51, 2003.

[88] Miguel Sousa Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applica-
tions of second-order cone programming. Linear Algebra and its Applications, 284(1-
3):193–228, 1998.

[89] Jonathan L Gross and Jay Yellen. Graph theory and its applications. CRC press, 2005.

[90] Douglas Brent West et al. Introduction to graph theory, volume 2. Prentice hall Upper
Saddle River, 2001.

93

[91] Damon Mosk-Aoyama. Maximum algebraic connectivity augmentation is NP-hard. Op-
erations Research Letters, 36(6):677–679, 2008.

94

Appendices

A A Brief Introduction to Algebraic Graph Theory

Graphs are usually used to model the relations between objects. The objects could be

people in social networks, sensors in wireless sensor networks, mobile devices in mobile

wireless networks, protein structures, etc. The relations between them could be connected

or not connected, directional interacted and weighted interaction. Node(or Vertex in some

references) Edge are the two building blocks of a graph, which often denoted as G(V,E)

where V is the node set and E is the edge set. If the direction of edges are specified, then

the graph G is called directed graph or digraph, as shown by A.1a. Oppositely, if the direction

of edges are not specified, then the graph is called undirected graph, as shown by A.1b. In

(a) Directed graph (b) Undirected graph

Figure A.1: Directed graph v.s. undirected graph

95

the research are of network flows, a weight is usually associated to each edge. The weights

are usually real numbers representing materials flowing from one node to another. If not

specified, the weights are regarded as all 1. This an arbitrary choice. We should keep in mind

that the weights always have impacts to some of the results derived under the assumption

of a weightless graph. Another concept we need to get familiar with is status. The status

of a node can be the position of the node, velocity, voltage level, energy level, amount of

currency stored, etc. Later when we need to describe the dynamics of a network graph with

state space, the concept of node status will be in use.

If the set V and E evolves with respect to time, for instance, the position of one or more

vertices changes, or some edges would disappear and appear under some condition, then the

graph G is referred to as dynamic graph. The topology of a graph can be described by a

symmetric matrix, namely, adjacency matrix. Given an undirected graph G(V,E) with n

nodes vi, where i = 1, 2, . . . , n, the adjacency matrix A ∈ Rn×n , with aij being its elements,

is defined as

aij =


0, if vi and vj are not connected

1, there exist an edge between vi and vj

D = diag{d1, d2, . . . , dn} is the degree matrix of graph G, where di =
∑n

j=1 aij represents

the degree of vi. One may wonder why we need to represent a graph with matrix, which is

likely to drag us into the swamp of linear algebra. Before we plunge into linear algebra, let’s

talk about the motivation, from the point view of electrical engineering.

One may recall the excitement when Fourier Transform was first introduced in studying

signal processing. After suffering the calculation of convolution for a few weeks, we were

given the new tool to easily compute convolution between two signals in time domain by

doing multiplication in frequency domain. Similarly, integral of a signal is done by division

in frequency domain and differentiation by multiplication. What’s more, we can analyze

96

(a) Two identical graphs with 5 nodes. (b) Two identical graphs with 8 nodes.

Figure A.2: Isomorphism

signals in frequency domain and efficiently filter out noisy or unrelated signals, which is

hardly doable in time domain. By and large, all these nice features came from observing the

same object from a quite different view. Another example in is duality, such as prime and

dual problems in linear programming, and controllability and observability in linear systems.

Coming back to graphs, a graph can be really complex if the number of nodes and edges be-

comes large. In that case, some features of the graph are difficult to analyze by barely looking

at the topology. What was worse, two identical graphs may show as different topology. For

example, in Fig. A.2, we show two pairs of identical graphs with different topologies. Fig.

A.2a shows a graph with 5 nodes. The layout on the left hand side is a pentagon, each node

is connected to 2 edges and all edges has no cross in 2D space. The graph on the right hand

side has the same node and edge set. But the edges are going across each other. The left

one is called ‘Planar Graph’ or graph embedded in 2D space [89]. Fig. A.2b show a graph

that can be realized with a bipartite. Here ‘bipartite’ represents a graph whose node set

can be divided into two subsets. The nodes within each subset are not neighbors but each

node is connected to at least one node in the other set [90]. This concept is widely used in

neuron network. By looking at the two graphs in Fig. A.2a for a few minutes, we are able to

recognize their identity. However, the fact that Fig.A.2b shows two identical graphs is not

obvious to us. Limitations of analyzing graphs in topology domain motivates the work of

97

developing a different tool. Matrix and linear algebra turned out to be an effective one. This

tool, named “algebraic graph theory”, calls for analyzing properties of a graph by studying

the spectrum of its corresponding adjacency matrix and Laplacian matrix.

A.1 Adjacency Matrix

Adjacency matrix is the most fundamental matrix in algebraic graph theory. Its definition

is as following.

aij =


0, if vi and vj are not connected

wij, there exist an edge between vi and vj

(A.1)

wij is the weight on edge (vi, vj). Usually, when representing connectivity condition only,

the weight on each edge is binary. When it comes to digraphs, wij represents the weight on

the edge going into node vi. The adjacency matrix for Fig. A.1a is given in (A.2)

Aa =



0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0



(A.2)

98

The adjacency matrix for Fig. A.1b is given in (A.3). One should notice the adjacency

matrix for digraph is not necessarily symmetric.

Ab =



0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

1 0 0 0 0 1 0 1 0

0 0 0 0 1 0 1 0 0

0 0 0 1 0 1 0 0 0

0 1 0 0 1 0 0 0 1

0 0 1 0 0 0 0 1 0



(A.3)

The following remark is one of the most interesting and useful property of adjacency matrix.

Remark. The number of walks of length l in a graph G, from vi to vj is the element at the

position (i, j) of the matrix Al.

Let’s take Fig. A.2b as an example and look at this property. The adjacency matrix of the

99

left graph in Fig. A.2b is

A =



0 1 0 1 1 0 0 0

1 0 1 0 0 1 0 0

0 1 0 1 0 0 1 0

1 0 1 0 0 0 0 1

1 0 0 0 0 1 0 1

0 1 0 0 1 0 1 0

0 0 1 0 0 1 0 1

0 0 0 1 1 0 1 0


By inspection, we found there are 6 paths of length 3 from node v5 to v3, and the element

A(5, 3) is 6.

A3 =



0 7 0 7 7 0 6 0

7 0 7 0 0 7 0 6

0 7 0 7 6 0 7 0

7 0 7 0 0 6 0 7

7 0 6 0 0 7 0 7

0 7 0 6 7 0 7 0

6 0 7 0 0 7 0 7

0 6 0 7 7 0 7 0



A.2 Laplacian Matrix

In algebraic graph theory, a more important matrix than adjacency matrix is Laplacian

matrix, defined as L = D−A, where D is the degree matrix. In this dissertation, we use Sn+

100

to represent the set of symmetric positive semidefinite(PSD) matrices of dimension n. Being

a real symmetric matrix, L carries the following properties that are related to our class.

1. Due to its real symmetry, all eigenvalues of L, ordered such that λ1 ≤ λ2 ≤ · · · ≤ λn,

are real numbers.

2. According to Gershgorin’s theorem, all eigenvalues of L are at least zero. Conse-

quently, we have L ∈ Sn+, with a complete orthonormal eigenspace, referred to as

{u1, u2, . . . , un}. This is also easy to see through the quadratic form

xTLx =
∑

(vi,vj)∈E

(xi − xj)2

3. L1 ≡ 0, therefore λ1 = 0 and 1 is an eigenvalue-eigenvector pair of any Laplacian

matrix. Here 1 is the vector of all ones.

4. ∀ui(note that u1 = 1), we have uTi uj = 0(i 6= j) and uTi ui = 1. In particular, for i ≥ 2,

ui ∈ 1⊥.

5. The second smallest eigenvalue, λ2, is also known as the algebraic connectivity of a

graph. λ2 > 0 if and only if the graph is connected.

6. Since λ2 is the smallest eigenvalue except 0, λ2 can be calculated through Raleigh

quotient

λ2 = uT2Lu2 = min
u∈1⊥,u6=0

uTLu

uTu

The first property is trivial. We give Gershgorin’s theorem as a reference below for the

second property.

101

Theorem A.1 (Gershgorin’s Theorem). Every eigenvalue of a matrix M ∈ Rn×n, with mij

being its elements, satisfies

|λi −mii| ≤
∑
j 6=i

|mij| i ∈ {1, 2, . . . , n}

B Missing proofs in Chapter 5

B.1 Proof of Lemma 1

Lemma 1. The eigenvalue λ2 > 0 if and only if ∃W such that W TLW is positive definite

where W = [w1, w2, . . . , wn−1] ∈ Rn×(n−1) with wTi 1 = 0 ∀i ∈ {1, 2, . . . , n− 1} and wTi wj = 0

∀i 6= j.

Proof. For any graph, the Laplacian matrix L is a positive semidefinite matrix. It can

be proven that the eigenvector corresponding to λ1 = 0 is 1 and L has an orthonormal

eigenspace. Therefore, we claim λ2(L) > 0 if and only if wTLw > 0 for any vector w ∈ 1⊥.

To prove this assuming ui is the eigenvector corresponding to λi(L) with i > 1, we have

ui ⊥ 1. On one hand, λi > 0 implies uTi Lui > 0. On the other hand, the dimension of

the vector space 1⊥ = {u|u ⊥ 1} is at most (n − 1). Therefore, if we can find a full-rank

matrix W = [w1, w2, . . . , wn−1] ∈ Rn×(n−1) with wTi 1 = 0, then any eigenvector u ∈ 1⊥ is in

span(W) and can be expressed as

u =
n−1∑
i=1

αiwi (B.4)

where αi ∈ R and not all αi’s are zero. Thus, uTLu > 0 if and only if W TLW � 0. We

conclude that λ2(L) > 0 if and only if W TLW � 0.

102

B.2 Proof of Theorem 5.1

Theorem 5.1. In the case of the smallest safety margin, an edge can tolerate a maximum

mobility distance of δ = r/2 for any given value of n satisfying R = (12n+ 7)r.

Proof. It can be seen in Fig. 5.1b that the smalles safety margin δ = 2R− |JK| where |JK|

denotes center-to-center Euclidean distance between node J and K. We calculate |JK| in

4JKT with |KT | = r. Since |TY | and |KX| are parallel and equal, |TY | = R. Thus,

|JT | = |JY |+ |Y T | = 2R. Applying the Law of Cosines to 4JKT implies

|JK|2 = |JT |2 + |TK|2 − 2|JT ||TK| cos
π

3
(B.5)

= 4R2 + r2 − 2Rr

and

δ = 2R− |JK| = 4R2 − |JK|2

2R + |JK|
= r ·

1− r
2R

1 + |JK|
2R

(B.6)

Define

z =
r

2R
=

1

2(12n+ 7)
, 0 < z ≤ 1

14
, (n = 0, 1, 2, · · ·) (B.7)

Let δ = r · f(z) with

f(z) =
1− r

2R

1 + |JK|
2R

=
1− r

2R

1 +
√
4R2+r2−2Rr

2R

=
1− z

1 +
√

1 + z2 − z
(B.8)

To find the maximum of f(z) on its domain, we take derivative

f ′(z) =
−(1 +

√
1 + z2 − z)− (1−z)

2
√
1+z2−z

(1 +
√

1 + z2 − z)2
< 0 (B.9)

103

Thus, f(z) is monotonically decreasing over its domain implying max f(z) = 1/2 at z = 0.

We conclude that a maximum mobility distance of r/2 can be tolerated for any given value

of n satisfying R = (12n+ 7)r.

B.3 Proof of theorem 5.2

We prove that Problem 5.1 is NP-hard by showing that there exists a polynomial reduction

from a known NP-complete problem to Problem 5.1.

In [91], it is proven that the maximum algebraic connectivity augmentation problem in its

deision version and as stated below, is NP-complete.

Problem B.1. Given an undirected graph G(V,E), let Gc(V,Ec) denote the complementary

graph of G where Ec = {(vx, vy)|vx, vy ∈ V, (vx, vy) /∈ E}. Then, the maximum algebraic

connectivity augmentation problem is defined as follows.

Instance: Given a non-negative integer k and a non-negative threshold τ .

Problem: Is there a subset S ⊆ Ec of cardinality |S| ≤ k such that the graph H(V,E ∪ S)

satisfies λ2(H) ≥ τ?

To better assist the proof, we also put Problem 5.1 in its decision version here.

Problem B.2. Given an undirected graph G(V,E) with two types of nodes belonging to

sets V0 and V1, let the known positions of nodes in V0 be denoted as P ∈ RM×2 and the

nodes in V0 form a disconnected graph. Denote the positions of nodes in V1 as Q ∈ RN×2

and let 2R represent the communication radius of a node. Further, let L be the augmented

Laplacian matrix with cij’s representing the existence of edges {(vi, vj)|vi ∈ V0, vj ∈ V1} and

fij’s representing the existence of edges {(vi, vj)|vi, vj ∈ V1}.

Instance: Given a disconnected network G(V0 ∪ V1, E) as described above.

Problem: Is there a set of cij’s and fij’s as well as Q values that satisfy the constraints in

104

Problem 5.1?

Theorem 5.2. Problem 5.1 is NP-hard.

Proof. To prove the NP-hardness of Problem 5.1, we need to show its decision version,

Problem B.2, is a reduction from Problem B.1. One may notice that the most significant

distinction between these two problems lies on the norm constraints (5.7) and (5.8) in Prob-

lem 5.1. In order to construct an equivalent instance to Problem B.1, we choose R as follows.

R =


1/(1− cij)2, for R in (5.7)

1/(1− fij)2, for R in (5.8)

(B.10)

In this case, constraints (5.7) and (5.8) are automatically satisfied. Then, the optimization

Problem 5.1 becomes the following feasibility problem.

min
C,F

0

S.T. W TLW � 0

2 ≤ fii ≤ 5, ∀i ∈ 1, 2, . . . , N

cij ∈ {0, 1}

fij ∈ {0, 1}

This above feasibility problem has a solution if and only if the following optimization problem

105

is feasible.

min
C,F

−θ

S.T. W TLW � θ · IM+N−1

2 ≤ fii ≤ 5, ∀i ∈ 1, 2, . . . , N

cij ∈ {0, 1}

fij ∈ {0, 1}

θ ≥ 0

To be consistent with Problem B.1, we can change the objective function into a maximization

problem by considering its opposite value. Along with Lemma 1 and property (6) in Section

5.2.1, the above optimization problem equals to

max
C,F

λ2(L) (B.11)

S.T. 2 ≤ fii ≤ 5 ∀i ∈ 1, 2, . . . , N (B.12)

cij ∈ {0, 1} (B.13)

fij ∈ {0, 1} (B.14)

λ2 ≥ 0 (B.15)

This above optimization problem is in the standard form of a maximum algebraic connec-

tivity problem, with an extra constraint (B.12).

We choose k = M+N−1 and τ be an arbitrarily small positive number. With the equivalent

transformations illustrated, the maximum algebraic connectivity problem can be reduced to

an instance of Problem B.2 with R chosen as in (B.10). The extra constraint (B.12) enforces

that Problem B.2 is at least as hard as a standard maximum algebraic connectivity problem,

106

which concludes the proof.

B.4 Proof of Theorem 5.3

Theorem 5.3. Constraint (5.7) is equivalent to a following LMI, given the large positive

number Ω.

4R2 + Ω(1− cij) (pi − qj)

(pi − qj)T I2×2

 � 0 (5.12)

∀j ∈ {1, 2, . . . , N} & ∀i ∈ {1, 2, . . . ,M}

Proof. The transformation from constraint (5.7) to (5.12) contains two steps. First, we show

constraint (5.7) is equivalent to the following inequality.

||pi − qj||2 ≤ 4R2 + Ω(1− cij) (B.16)

In (B.16), when cij = 1, the edge (vi, vj) ∈ E. This inequality becomes ||pi − qj||2 ≤ 4R2

which implies the distance between client node vi and intermediate node vj is less than

2R. When cij = 0, there is no edge between vi and vj. Since Ω is a large positive number

(Ω ≈ ∞), inequality (B.16) becomes ||pi − qj||2 ≤ ∞, which is always true if the nodes are

allowed to move within a fixed boundary field.

Next, we show (B.16) is equivalent to (5.12). Relying on Schur Complement,

 A B

BT C

 � 0⇔


C � 0,

A−BC−1BT � 0

(B.17)

107

Let A = 4R2 + Ω(1− cij), C = I2×2 � 0, and B = (pi − qj). If (B.16) holds, we have

A−BC−1BT = 4R2 + Ω(1− cij)− (pi − qj)(pi − qj)T ≥ 0

Since both conditions are satisfied, we conclude that inequality (B.16) holds if and only if

the LMI condition of (5.12) is satisfied.

B.5 Proof of Theorem 5.4

Theorem 5.4. Given a network graph with M pre-deployed clusters and N intermediate

nodes, suppose the primitive graph consisting of only M pre-deployed nodes has a Laplacian

matrix L0 with rank(L0) = r. Then, the trace of matrix F in the augmented Laplacian matrix

L, defined by Eq. (5.4), satisfies the following inequality.

Tr(F) ≤M − r + 2N − 2 (5.16)

Proof. From algebraic graph theory, we know that (M − r) is equal to the number of con-

nected components of V0. Given a disconnected network with (M−r) components consisting

of M pre-deployed clusters and N intermediate nodes, the connected graph with the least

number of edges is a spanning tree. Therefore, we need to construct a spanning tree with

(M − r+N − 1) edges in order to establish connectivity for a graph with (M − r) +N com-

ponents. Among these edges, at least (M − r) edges need to be connected to pre-deployed

nodes, which is to say that at least (M − r) elements in matrix C are equal to 1. This hap-

pens when all components formed by the pre-deployed clusters are terminals and connected

to only one intermediate node. In this case, the remaining (N − 1) edges are connected to

the nodes of set V1. Hence, there are (N − 1) fij’s equal to 1.

The trace of matrix F can then be calculated noticing that each cij = 1 increases the total

108

vertex degree of V1 by 1 while each fij = 1 increases the total vertex degree of V1 by 2.

According to the Handshaking theorem, we have

Tr(F) =
N∑
j=1

dj = (M − r) + 2(N − 1), vj ∈ V1

However if some of the pre-deployed nodes in V0 are not terminal, then more than one

intermediate nodes are connected to them. In this case, some of the fij’s are altered by the

same number of cij’s reducing Tr(F). Thus, the above case with all pre-deployed components

being terminal is an upper bound on Tr(F), i.e.,

Tr(F) ≤M − r + 2N − 2

109

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Overview of Connectivity Establishment in Heterogeneous Networks
	Overview of Mobile Network Connectivity Maintenance
	Literature Review
	Node Placement Strategies
	Connectivity Maintenance Strategies

	Connectivity Model and Hexagon Coordinate System
	Connectivity Model
	Hexagonal Coordinate System
	Operation Definitions in HCS
	Orientation of Distance Vector

	Advantaged Node Placement Algorithm
	NP-hard Problem Statement and Exhaustive Search Algorithm
	NP-Hard Problem Statement
	Exhaustive Search Algorithm

	Heuristic Algorithm 1: GDO algorithm
	Heuristic Algorithm 2: EGDO algorithm
	Analysis of Complexity
	Complexity of Solving the Optimization Problem
	Complexity of EGDO Algorithm
	Complexity of GDO Algorithm

	Experimental Results
	Comparison with Exhaustive Search Algorithm
	Performance Comparison of SMT and EGDO Algorithm
	Experiment on Robustness - Partial and Global Robustness Tests
	Inspection of Cluster Density Threshold Value
	An Comparison of SMT and EGDO in HCS

	Maintaining Connectivity in Mobile Network
	Analysis of Mobility Bound under Small Scale Node Mobility
	Connectivity Maintenance under Large Scale Node Mobility
	Graph Theoretic Analysis
	Problem Statement
	Solution Alternatives

	Location-Aware Connectivity Maintenance under Large Scale Node Mobility
	Problem Formulation
	Complexity Analysis

	Simulation Results of Connectivity Maintenance Problem
	Experimental Results
	Small Scale Perturbation
	Large Scale Node Mobility

	Conclusion
	Summary of Main Contribution
	Future Work
	Connectivity Establishment and Maintenance in More Heterogeneous Network
	Formation Control in Multi-agent System
	Communication Energy Optimization
	Bibliography
	Appendices
	A Brief Introduction to Algebraic Graph Theory
	Adjacency Matrix
	Laplacian Matrix

	Missing proofs in Chapter 5
	Proof of Lemma 1
	Proof of Theorem 5.1
	Proof of theorem 5.2
	Proof of Theorem 5.3
	Proof of Theorem 5.4

