
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Finding the bad in good code : automated return-oriented programming exploit discovery

Permalink
https://escholarship.org/uc/item/323998jb

Author
Roemer, Ryan Glenn

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/323998jb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Finding the Bad in Good Code:
Automated Return-Oriented Programming Exploit Discovery

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Computer Science

by

Ryan Glenn Roemer

Committee in charge:

Professor Stefan Savage, Chair
Professor Hovav Shacham, Co-Chair
Professor Geoffrey Voelker

2009

Copyright

Ryan Glenn Roemer, 2009

All rights reserved.

The thesis of Ryan Glenn Roemer is approved,

and it is acceptable in quality and form for publi-

cation on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2009

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vi

List of Tables . vii

Acknowledgements . viii

Abstract of the Thesis . x

Chapter 1 Introduction . 1

Chapter 2 Evolution: From Stack-Smashing to Return-Oriented Program-
ming . 5
2.1 Traditional Stack-Smashing and Defenses 5
2.2 W⊕X and Return-to-Libc 6
2.3 Return-Oriented Programming on x86 7

Chapter 3 SPARC Architecture Overview 9
3.1 Registers . 9
3.2 Register Banks . 10
3.3 The Stack and Subroutine Calls 11
3.4 Buffer Overflows and Return-to-Libc 11

Chapter 4 Return-Oriented Programming on SPARC 14
4.1 Finding SPARC Instruction Sequences in libc 16
4.2 Constructing SPARC Gadgets 17
4.3 Crafting a Return-Oriented Program 17
4.4 Gadget Abstractions and Practical Return-Oriented Pro-

gramming . 18

Chapter 5 SPARC Gadget Catalog . 20
5.1 Memory . 21

5.1.1 Address Assignment 21
5.1.2 Pointer Read . 21
5.1.3 Pointer Write . 22

5.2 Assignment . 22
5.2.1 Constant Assignment 22
5.2.2 Variable Assignment 23

5.3 Arithmetic . 24

iv

5.3.1 Increment, Decrement 24
5.3.2 Addition, Subtraction, Negation 25

5.4 Logic . 26
5.4.1 And, Or, Not . 26
5.4.2 Shift Left, Shift Right 27

5.5 Control Flow . 27
5.5.1 Branch Always . 29
5.5.2 Branch Equal; Branch Less Than or Equal; Branch

Greater Than . 29
5.5.3 Branch Not Equal; Branch Less Than; Branch Grea-

ter Than or Equal 30
5.6 Function Calls . 32
5.7 System Calls . 34

Chapter 6 Automated Gadget Searching 36
6.1 Gadget Search Tool . 37
6.2 Search Queries . 38

6.2.1 Arguments . 38
6.2.2 Instructions . 42
6.2.3 Sequences, Gadgets, and Gadget Lists 45

6.3 Search Algorithm . 46
6.3.1 Gadget Matching 46
6.3.2 Instruction Sequence Matching 47

Chapter 7 Vulnerability Analysis . 50
7.1 Measurement Methodology 50
7.2 First Binary Group, Untrained 52

7.2.1 Results . 53
7.3 First Binary Group, Trained 57

7.3.1 Methodology . 58
7.3.2 Query Modifications and Training 58
7.3.3 Results . 61
7.3.4 Results Comparison 64

7.4 Second Binary Group . 66
7.4.1 Results . 66

7.5 Lessons and Implications for Automated Gadget Searching 69

Chapter 8 Conclusion . 71

Bibliography . 73

v

LIST OF FIGURES

Figure 3.1: SPARC Stack Layout . 12

Figure 4.1: Return-Oriented Program . 15

Figure 5.1: Pointer Read (v1 = *v2) . 21
Figure 5.2: Pointer Write (*v1 = v2) . 22
Figure 5.3: Constant Assignment (v1 = 0x********) 23
Figure 5.4: Constant Assignment (v1 = 0x00******) 23
Figure 5.5: Variable Assignment (v1 = v2) 24
Figure 5.6: Increment (v1++) . 24
Figure 5.7: Addition (v1 = v2 + v3) . 25
Figure 5.8: And (v1 = v2 & v3) . 26
Figure 5.9: Shift Left (v1 = v2 << v3) . 28
Figure 5.10: Branch Always (jump T1) . 29
Figure 5.11: Branch Equal (if (v1 == v2): jump T1, else T2) 31
Figure 5.12: Function Calls (call FUNC) . 33
Figure 5.13: System Calls (syscall NUM) . 35

Figure 7.1: Group 1 (Untrained) Matches by Number of Restores 54
Figure 7.2: Group 1 (Trained) Matches by Number of Restores 62
Figure 7.3: Group 2 Matches by Number of Restores 67

vi

LIST OF TABLES

Table 7.1: Gadget Query Set . 51
Table 7.2: Group 1 (Untrained) Matches . 55
Table 7.3: Group 1 (Trained) Matches . 63
Table 7.4: Group 1 Untrained vs. Trained Matches 65
Table 7.5: Group 2 Matches . 68

vii

ACKNOWLEDGEMENTS

This work began as a course group project, and I grateful to my lab part-

ner, Erik Buchanan, for his extraordinary efforts in manually patching together our

original buffer overflow payloads, assisting with static assembly code analysis, and

writing related support tools for our research. I also thank Rick Ord for his helpful

discussions and insight regarding SPARC internals for this work, and Brian Kan-

tor and Bill Young for accommodating and supporting the varied and sometimes

difficult hardware needs of the project. I am indebted to my committee members,

Hovav Shacham, Stefan Savage, and Geoffrey Voelker, for their enormous amount of

assistance, feedback, and encouragement throughout the development of this work.

Finally, I am forever grateful to Robin Chin for her support and patience

throughout the duration of graduate school.

The text of this thesis, in full or in part, is a reprint of the following material

with the full permission of all co-authors of the paper:

• Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage, “When

Good Instructions Go Bad: Generalizing Return-Oriented Programming to

RISC,” In Proceedings of the 15th ACM Conference on Computer and Com-

munications Security 2008, pages 27-38. ACM Press, Oct. 2008.

Chapter 1, in part, is a reprint of the material as it appears in the Proceedings

of the 15th ACM Conference on Computer and Communications Security 2008, by

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The thesis

author was the primary investigator and author of the reprinted portions of this

paper.

Chapter 2, in part, is a reprint of the material as it appears in the Proceedings

of the 15th ACM Conference on Computer and Communications Security 2008, by

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The thesis

author was the primary investigator and author of the reprinted portions of this

paper.

Chapter 3, in part, is a reprint of the material as it appears in the Proceedings

of the 15th ACM Conference on Computer and Communications Security 2008, by

viii

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The thesis

author was the primary investigator and author of the reprinted portions of this

paper.

Chapter 4, in part, is a reprint of the material as it appears in the Proceedings

of the 15th ACM Conference on Computer and Communications Security 2008, by

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The thesis

author was the primary investigator and author of the reprinted portions of this

paper.

Chapter 5, in part, is a reprint of the material as it appears in the Proceedings

of the 15th ACM Conference on Computer and Communications Security 2008, by

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The thesis

author was the primary investigator and author of the reprinted portions of this

paper.

ix

ABSTRACT OF THE THESIS

Finding the Bad in Good Code:

Automated Return-Oriented Programming Exploit Discovery

by

Ryan Glenn Roemer

Master of Science in Computer Science

University of California San Diego, 2009

Professor Stefan Savage, Chair

Professor Hovav Shacham, Co-Chair

This thesis investigates the pervasiveness and widespread applicability of

“return-oriented programming”—an exploit technique whereby W⊕X system pro-

tections are evaded by careful stack injections (without code) that cause a vulnerable

program to execute pre-existing sequences of runtime code, which in the aggregate

form arbitrary computations.

In this thesis, we demonstrate that this attack is not limited to the x86 ar-

chitecture, its original platform of introduction, and can be fully implemented on an

architecture as completely different as SPARC. We present automated search tools

that effectively and efficiently find full or partially Turing-complete return-oriented

“gadget” sets in arbitrary binaries using a dedicated and extensible query language.

We discuss our results from searching thousands of previously unknown binaries and

find that potentially exploitable return-oriented gadgets are prevalent in the wild.

Finally, we pose that the risks from return-oriented programming are fundamental

x

and general—our data indicates that the threat of finding a Turing-complete gadget

set in an arbitrary binary is correlated simply with instruction count, and not any

unique or special aspects of the target program.

xi

Chapter 1

Introduction

The conundrum of malicious code is one that has long vexed the security

community. Since we cannot accurately predict whether a particular execution will

be benign or not, most work over the past two decades has instead focused on

preventing the introduction and execution of new malicious code. Roughly speaking,

most of this activity falls into two categories: efforts that attempt to guarantee the

integrity of control flow in existing programs (e.g., type-safe languages, stack cookies,

XFI) and efforts that attempt to isolate “bad” code that has been introduced into the

system (e.g., W⊕X, ASLR, memory tainting, virus scanners, and most of “trusted

computing”).

The W⊕X protection model typifies this latter class of efforts. Under this

regime, memory is either marked as writable or executable, but may not be both.

Thus, an adversary may not inject data into a process and then execute it simply

by diverting control flow to that memory, as the execution of the data will cause a

processor exception. While it is understood that W⊕X is not foolproof [20, 9, 10], it

was thought to be a sufficiently strong mitigation that both Intel and AMD modified

their processor architectures to accommodate it and operating systems as varied as

Windows Vista [11], Linux [19, 16], Mac OS X, and OpenBSD [13, 14] now support

it.

However, in 2007 Shacham demonstrated that W⊕X protection could be en-

tirely evaded through an approach called return-oriented programming [18]. In his

1

2

proof-of-concept attack, new computations are constructed by linking together code

snippets (“gadgets”) synthesized by jumping into the middle of existing x86 instruc-

tion sequences that end with a “ret” instruction. The ret instructions allow an

attacker who controls the stack to chain instruction sequences together. Because the

executed code is stored in memory marked executable (and hence “safe”), the W⊕X

technique will not prevent it from running.

On the surface, this seems like a minor extension of the classic “return-to-

libc” attack, one that depends on an arcane side effect of the x86’s variable length

instruction set and is painful and time-consuming to implement, yielding little real

threat. However, we contend that this impression is incorrect on a number of levels.

First, we argue in Chapter 4 that return-oriented programming creates a new

and general exploit capability (of which “return-to-libc” is a minor special case) that

can generically sidestep the vast majority of today’s anti-malware technology. The

critical issue is the flawed, but pervasive, assumption that preventing the introduction

of malicious code is sufficient to prevent the introduction of malicious computation.

The return-oriented computing approach amplifies the abilities of an attacker, so

that merely subverting control flow on the stack is sufficient to construct arbitrary

computations. Moreover, since these computations are constructed from “known

good” instructions, they bypass existing defenses predicated on the assumption that

the attacker introduces new code.

Second, we will show in Chapter 5 that the return-oriented model is not lim-

ited to the x86 ISA or even variable-length instruction sets in general. We describe

return-oriented attacks using the SPARC ISA and synthesize a range of gadgets

from snippets of the Solaris C library, implementing basic memory, arithmetic, logic,

control flow, function, and system call operations. As the SPARC ISA is in many

ways the antithesis of the x86— fixed length, minimalistic RISC instructions, numer-

ous general-purpose registers, and a highly structured control flow interface via the

register window mechanism—we speculate that the return-oriented programming

model is generally applicable across both instruction set architectures and operating

systems.

Third, while previous efforts at finding gadget libraries have been laborious

3

and complex (usually involving static assembly code analysis), in Chapter 6 we intro-

duce an automated return-oriented exploit discovery tool. Our tool uses customizable

and extensible “gadget” queries to search a target binary for a catalog of gadgets

that can be readily used in return-oriented exploits. Moreover, such searches are

fast —typically on the order of a couple minutes.

Finally, we contend that return-oriented vulnerabilities, in the form of both

partial and fully Turing-complete gadget sets, are widespread.1 Our core return-

oriented programming thesis is that given a sufficient corpus of code in a target

binary, arbitrary computation is possible. Put another way, we argue that code

size determines the likelihood of finding return-oriented exploits, and past certain

instruction count thresholds, there are good chances of discovering a usable and

possibly Turing-complete gadget set in an arbitrary binary. With this thesis in

mind, we discuss our experiences performing automated gadget searches on nearly

2,000 binaries and libraries in Chapter 7. Our results provide strong support for our

thesis, with substantial portions of our binary groups (at various instruction count

ranges) yielding full or partially Turing-complete gadget sets.

Thus, we pose that the return-oriented programming exploit model is us-

able, powerful (Turing-complete), and generally applicable, leaving a very real and

fundamental threat to systems assumed to be protected by W⊕X and other code

injection defenses. Moreover, we suggest that the barrier to discovering and utiliz-

ing return-oriented exploits is significantly lowered with automated return-oriented

programming tools— perhaps even to the point of equivalence with shellcode injec-

tion —the very attack vector that W⊕X set out to thwart in the first place.

In the remainder of this paper, we will provide a brief historical background

of vulnerabilities and defenses leading up to W⊕X, an overview of the SPARC archi-

tecture and applying return-oriented principles to SPARC, and a discussion of our

manual search for SPARC gadgets and resulting gadget catalog. We then describe

our automated gadget search tool and experimental results from running the tool

1 As described in more detail in subsequent chapters, the exploitation of a return-oriented
vulnerability necessarily presupposes an initial entry vector into a vulnerable program, such as a
heap or buffer overflow. The presence of return-oriented gadgets alone in a binary is not sufficient
to actually compromise the runtime stack, etc. of the target.

4

on many binaries, and conclude with the thoughts on the future implications of the

return-oriented programming model.

Acknowledgement

This chapter, in part, is a reprint of the material as it appears in the Pro-

ceedings of the 15th ACM Conference on Computer and Communications Security

2008, by Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The

thesis author was the primary investigator and author of the reprinted portions of

this paper.

Chapter 2

Evolution: From Stack-Smashing

to Return-Oriented Programming

The development of program subversion attacks and defenses have histori-

cally been a cat and mouse game. Early stack buffer overflow attacks that focused

on injecting bad code to cause malicious behavior were followed by defenses that

identified and mitigated the code itself. In response, attackers turned towards means

other than explicit code injection to bring about the same malicious behavior in vul-

nerable programs. It is the latest of these techniques, return-oriented programming,

which we examine as a fundamental challenge to the notion that defenses against

bad code can ultimately protect against bad runtime behavior.

2.1 Traditional Stack-Smashing and Defenses

Unchecked buffer overflows have a well-documented history [7] as the most

common and pervasive form of software vulnerability for non-type-safe software

(e.g., C/C++). Originally, buffer overflow exploits simply overwrote one or more

stack frames with a new return address to divert program control to executable

code placed on the stack during the same overflow (“stack-smashing”) [1]. Exploit

techniques quickly evolved from basic stack-smashing to exploiting the heap [6],

malloc()/free() errors [2], integer overflows [3], and pointers [17].

5

6

Defenses to these attacks are broadly classified as (1) stack-smashing preven-

tion, or (2) non-executable stack protection. The first approach attempts to prevent

the initial buffer overflow with, e.g., pointer integrity checks or stack “canaries” to

detect if the stack has been smashed [7].

The second approach accepts the possibility of a buffer overflow, but limits

the ability of the attacker to execute malicious code. W⊕X is a version of this

defense that ensures that process memory is either writable or executable, but not

both (hence “W⊕X”). Systems implementing W⊕X (in some manner) include Solar

Designer’s StackPatch [19], PaX on Linux [16], WˆX on OpenBSD (introduced in 3.3

[13], and expanded to x86 in 3.4 [14]), and non-executable stacks on Solaris/SPARC

[12] (introduced in Solaris 2.6). This thesis focuses only this second defense (preven-

tion of bad code injection), specifically examining the non-executable stack protection

on Solaris/SPARC.

2.2 W⊕X and Return-to-Libc

While W⊕X prevents execution of code injected on the stack, buffer over-

flow and related attacks can nonetheless compromise program control through other

means. Attacks can still cause stack frames to modify registers (including the pro-

gram counter, the stack pointer, and the frame pointer) in a way as to effectively

control a process. For example, if an attacker can overflow a stack frame, they can

set the return address of the frame to point to other executable code (outside of

the process), such as a loaded library function. When the stack frame returns, the

code set by the attacker is run, and the program is effectively hijacked without the

attacker injecting any executable code on the stack.

The classic form of this attack overflows a stack buffer to cause a return from

the stack frame to point the program counter to a function in libc, the standard

C library, and is commonly known as a “return-to-libc” attack. Libc is a popular

target for attacks because: (1) it provides a plethora of useful functions, including

many wrapped system calls (e.g., system(), exec(), fork()), and (2) virtually

every program on a Unix-like system will load libc. Solar Designer published the

7

first widely acknowledged return-to-libc exploit on Linux/x86 in 1997 [20], which

has subsequently spread widely on the x86 and other platforms.

2.3 Return-Oriented Programming on x86

Most return-to-libc attacks overflow a few stack frames and divert program

control to a libc function like system() or exec(). While simple and effective, this

approach depends on the presence of the called function(s) in the target library, and

that the program registers are set to a usable state for the function call. Extending

the attack beyond a single function jump, exploit designers have used additional stack

frames to jump into short sequences of libc code to set up registers for a subsequent

return into a full libc function (on x86-64 [9] and SPARC [10]).

In 2007, Shacham extended this concept into a class of return-to-libc attacks

that relied entirely on short instruction sequences without any direct function calls

[18]. Shacham’s technique demonstrated that short sequences of code in a library like

libc could be aggregated to provide the full power of arbitrary computation during an

exploit without ending in the usual system or function call. By combining instruction

sequences into intermediate units of computation, an attacker could construct a

payload of several exploit stack frames (each pointing to an instruction sequence)

that would effectively become an arbitrary “program”.

Shacham combed the entire instruction byte stream of libc on x86/Linux and

identified “useful” instruction sequences followed by a return instruction. The short

instruction sequences were grouped together to form a catalog of “gadgets,” each

performing a useful unit of computation. The catalog includes gadgets for memory

operations (load/store), basic arithmetic and logic operations (add, subtract, not,

and, shift, etc.), control flow (unconditional and conditional jumps), and system

and function calls. An attacker with access to the gadget catalog could construct a

specific buffer overflow payload comprised of gadgets that cause the program counter

to return to a specific libc instruction sequence for each exploited stack frame, after

the initial stack overflow. Shacham noted that his collection of x86 gadgets was

Turing-complete, and provided, in essence, a stripped-down programming paradigm,

8

facetiously dubbed “return-oriented programming”.

Shacham further posed that unique aspects of the relatively unstructured x86

architecture specifically aided the return-oriented attack. Shacham conjectured that

modifying the x86 architecture to be more RISC-like could provide potential avenues

for defense. We explore this claim in the following two chapters, looking at buffer

overflows on the SPARC instruction set architecture in Chapter 3 and find that the

return-oriented programming attacks on SPARC are indeed feasible in Chapter 4.

Acknowledgement

This chapter, in part, is a reprint of the material as it appears in the Pro-

ceedings of the 15th ACM Conference on Computer and Communications Security

2008, by Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The

thesis author was the primary investigator and author of the reprinted portions of

this paper.

Chapter 3

SPARC Architecture Overview

The SPARC platform differs from Intel x86 in almost every significant ar-

chitectural feature. Crucially, it shares none of the properties of the x86 on which

Shacham relied for his attack. SPARC is a load-store RISC architecture, whereas the

x86 is memory-register CISC. SPARC instructions are fixed-width (4 bytes for 32-bit

programs) and alignment is enforced on instruction reads, whereas x86 instructions

are variable-length and unaligned. The SPARC is register-rich, whereas the x86 is

register-starved. The SPARC calling convention is highly structured and based on

register banks, whereas the x86 uses the stack in a free-form way. SPARC passes

function arguments and the return address in registers, the x86 on the stack. The

SPARC pipelining mechanism uses delay slots for control transfers (e.g., branches),

whereas the x86 does not.

Although the rest of this chapter only surveys the SPARC features relevant

to stack overflows and program control hijacking, more detailed descriptions of the

SPARC architecture are variously available [21, 22, 15].

3.1 Registers

SPARC provides 32 general purpose integer registers for a process: eight

global registers %g[0-7], eight input registers %i[0-7], eight local registers %l[0-7],

and eight output registers %o[0-7]. The SPARC %g[0-7] registers are globally

9

10

available to a process, across all stack frames. The special %g0 register cannot be set

and always retains the value 0.

The remaining integer registers are available as independent sets per stack

frame. Arguments from a calling stack frame are passed to a called stack frame’s

input registers, %i[0-7]. Register %i6 is the frame pointer (%fp), and register %i7

contains the return address of the call instruction of the previous stack frame. The

local registers %l[0-7] can be used to store any local values.

The output registers %o[0-7] are set by a stack frame calling a subroutine.

Registers %o[0-5] contain function arguments, register %o6 is the stack pointer (%sp),

and register %o7 contains the address of the call instruction.

3.2 Register Banks

Although only 32 integer registers are visible within a stack frame, SPARC

hardware typically includes eight global and 128 general purpose registers. The 128

registers form banks or sets that are activated with a register window that points to

a given set of 24 registers as the input, local, and output registers for a stack frame.

On normal SPARC subroutine calls, the save instruction slides the current

window pointer to the next register set. The register window only slides by 16 regis-

ters, as the output registers (%o[0-7]) of a calling stack frame are simply remapped

to the input registers (%i[0-7]) of the called frame, thus yielding eight total register

banks. When the called subroutine finishes, the function epilogue (ret and restore

instructions) slides back the register window pointer.

SPARC also offers a leaf subroutine, which does not slide the register window.

For the purposes of this thesis, we focus exclusively on non-leaf subroutines and

instruction sequences terminating in a full ret and restore.

When all eight register banks fill up (e.g., more than eight nested subroutine

calls), additional subroutine calls evict register banks to respective stack frames.

Additionally, all registers are evicted to the stack by a context switch event, which

includes blocking system calls (like system I/O), preemption, or scheduled time quan-

tum expiration. Return of program control to a stack frame restores any evicted

11

register values from the stack to the active register set.

3.3 The Stack and Subroutine Calls

The basic layout of the SPARC stack is illustrated in Figure 3.1. On a sub-

routine call, the calling stack frame writes the address of the call instruction into

%o7 and branches program control to the subroutine.

After transfer to the subroutine, the first instruction is typically save, which

shifts the register window and allocates new stack space. The top stack address

is stored in %sp (%o6). The following 64 bytes (%sp - %sp+63) hold evicted local

/ input registers. Storage for outgoing and return parameters takes up %sp+64 to

%sp+91. The space from %sp+92 to %fp is available for local stack variables and

padding for proper byte alignment. The previous frame’s stack pointer becomes the

current frame pointer %fp (%i6).

A subroutine terminates with ret and restore, which slides the register

window back down and unwinds one stack frame. Program control returns to the

address in %i7 (plus eight to skip the original call instruction and delay slot). By

convention, subroutine return values are placed in %i0 and are available in %o0 after

the slide. Although there are versions of restore that place different values in the

return %o0 register, we only use %o0 values from plain restore instructions in this

thesis.

3.4 Buffer Overflows and Return-to-Libc

SPARC stack buffer exploits typically overwrite the stack save area for the %i7

register with the address of injected shell code or an entry point into a libc function.

As SPARC keeps values in registers whenever possible, buffer exploits usually aim

to force register window eviction to the stack, then overflow the %i7 save area of a

previous frame, and gain control from the register set restore of a stack frame return.

In 1999, McDonald published a proof-of-concept return-to-libc exploit on So-

laris 2.6 / SPARC [10], modeled after Solar Designer’s original exploit. McDonald

12

Address Storage

Low Memory

%sp Top of the stack

%sp - %sp+31 Saved registers %l[0-7]

%sp+32 - %sp+63 Saved registers %i[0-7]

%sp+64 - %sp+67 Return struct for next call

%sp+68 - %sp+91 Outgoing arg. 1-5 space for caller

%sp+92 - up Outgoing arg. 6+ for caller (variable)

%sp+
Current local variables (variable)

%fp-

%fp Top of the frame (previous %sp)

%fp - %fp+31 Prev. saved registers %l[0-7]

%fp+32 - %fp+63 Prev. saved registers %i[0-7]

%fp+64 - %fp+67 Return struct for current call

%fp+68 - %fp+91 Incoming arg. 1-5 space for callee

%fp+92 - up Incoming arg. 6+ for callee (variable)

High Memory

Figure 3.1: SPARC Stack Layout

13

overflowed a strcpy() function call into a previous stack frame with the address of

a “fake” frame stored in the environment array. On the stack return, the fake frame

jumped control (via %i7) to system() with the address of “/bin/sh” in the %i0 in-

put register, producing a shell. Other notable exploits include Ivaldi’s [8] collection

of various SPARC return-to-libc examples ranging from pure return-to-libc attacks

to hybrid techniques for injecting shell code into executable segments outside the

stack.

Acknowledgement

This chapter, in part, is a reprint of the material as it appears in the Pro-

ceedings of the 15th ACM Conference on Computer and Communications Security

2008, by Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The

thesis author was the primary investigator and author of the reprinted portions of

this paper.

Chapter 4

Return-Oriented Programming on

SPARC

Like other modern operating systems, Solaris includes an implementation of

W⊕X [12], supported by page-table hardware in the SPARC processor. In this chap-

ter we answer in the affirmative the natural question: Is return-oriented programming

feasible on SPARC?

Shacham’s original techniques make crucial use of the diversity of unintended

instructions found by jumping into the middle of x86 instructions —which simply

does not exist on a RISC architecture where all instructions are 4 bytes long and

alignment is enforced on instruction read. Furthermore, as discussed in Section 3,

the SPARC platform is architecturally as different from the x86 as any mainstream

computing platform. None of the properties that Shacham relied on in designing x86

gadgets carry over to SPARC.

Nevertheless, using new methods we demonstrate the feasibility of return-

oriented programming on SPARC. Our main new techniques include the following:

• we use instruction sequences that are suffixes of functions: sequences of in-

tended instructions ending in intended ret-restore instructions;

• between instruction sequences in a gadget we use a structured data flow model

that dovetails with the SPARC calling convention; and

14

15

• we implement a memory-memory gadget set, with registers used only within

individual gadgets.

Figure 4.1: Return-Oriented Program

A return-oriented program is really a carefully packed exploit string buffer.

Once delivered via a stack overflow, the program operates as illustrated in Figure 4.1.

Packed exploit frames contain register values that influence program control to jump

into short instruction sequences in a target binary, in the most common case, a

loaded library like libc. Once a given instruction sequence finishes and returns, the

next exploit frame loads new register values and jumps to a different instruction

sequence in the target binary. By piecing together instruction sequences, we form

gadgets that perform a small unit of computation (constant assignment, addition,

etc.). And, by assembling various gadgets, we construct a return-oriented program,

capable of Turing-complete computation. (Figure 4.1 also depicts gadget variable

storage and the function call gadget stack frame, which will be explained later).

16

To provide sufficient background in return-oriented programming on SPARC,

we initially examine the Solaris C Standard Library to discover and describe a Turing-

complete set of SPARC gadgets using only manual code analysis. In later chapters

of this thesis, we will describe automated search tools that can quickly discover

usable gadgets with heuristic queries and comment on the ubiquity of return-oriented

attacks in various target binaries.

4.1 Finding SPARC Instruction Sequences in libc

We examine Solaris libc for “useful” instruction sequences, considering the

effective “operation” of the entire sequence, the persistence of the sequence result (in

registers or memory), and any unintended side effects. We perform our experiments

on a SUN SPARC server running Solaris 10 (SunOS 5.10), with a kernel version

string of “Generic 120011-14”. We use the standard (SUN-provided) Solaris C library

(version 1.23) in “/lib/libc.so.1” for our research, which is around 1.3 megabytes

in size.

Our search relies on static code analysis (with the help of some Python scripts)

of the disassembled Solaris libc. The library contains over 4,000 ret, restore ter-

minations, each of which potentially ends a useful instruction sequence. Unlike

Shacham’s search for unintended instructions and returns on x86, we are limited to

real subroutine suffixes due to SPARC instruction alignment restrictions.

When choosing instruction sequences to form gadgets, our chief concern is per-

sisting values (in registers or memory) across both individual instruction sequences

as well as entire gadgets. Because the ret, restore suffix slides the register window

after each sequence, chaining computed values solely in registers is difficult. Thus, for

persistent (gadget-to-gadget) storage, we rely exclusively on memory-based instruc-

tion sequences. By pre-assigning memory locations for value storage, we effectively

create variables for use as operands in our gadgets.

For intermediate value passing (sequence-to-sequence), we use both register-

and memory-based instruction sequences. For register-based value passing, we com-

pute values into the input %i[0-7] registers of one instruction sequence / exploit

17

frame, so that they are available in the next frame’s %o[0-7] registers (after the

register window slide). Memory-based value passing stores computed / loaded val-

ues from one sequence / frame into a future exploit stack frame. When the future

sequence / stack frame gains control, register values are “restored” from the specific

stack save locations written by previous sequences. This approach is more compli-

cated, but ultimately necessary for many of our gadgets.

4.2 Constructing SPARC Gadgets

At a high level, a gadget is a combination of one or more instruction sequences

that reads from a memory location, performs some computational operation, and

then either stores to a memory location or takes other action. Our goal is to construct

a catalog of gadgets capable of simple memory, assignment, mathematical, logic,

function call and control flow operations. We review our useful instruction sequences

found from static analysis of a target binary (libc) and group together sequences to

collectively form a given gadget.

We describe our gadget operations in a loose C-like syntax. In our model,

a variable (e.g., v1) is a pre-designated four-byte memory location that is read or

modified in the course of the instruction sequences comprising the gadget. Thus, for

“v1 = v2 + v3,” an attacker pre-assigns memory locations for v1, v2 and v3, and

the gadget is responsible for loading values from the memory locations of v2 and

v3, performing the addition, and storing the result into the memory location of v1.

Gadget variable addresses must be designated before exploit payload construction,

reference valid memory, and have no zero bytes (for string buffer encoding).

4.3 Crafting a Return-Oriented Program

Once we have a Turing-complete set of gadget operations, we turn to creating

a return-oriented program, which is just a stack buffer overflow payload composed

of fake exploit frames that encode the instruction sequences forming gadgets and

designate memory locations for gadget variables. Each exploit frame encodes saved

18

register values for input or local registers used in an instruction sequence, including

the future stack pointer (%i6) and the return address (%i7) for the next sequence.

Because a string buffer overflow cannot contain null bytes, we ensure that all ad-

dresses (e.g., gadget variables, fake exploit stack frames, target instruction sequence

entry points) are encoded without zero bytes. The exploit payload is passed via an

argument string to a vulnerable application, where it overflows a local stack buffer

and overwrites a previous frame’s stack pointer and return address to hijack con-

trol to the exploit stack frames, beginning execution of the attacker’s instruction

sequences.

4.4 Gadget Abstractions and Practical Return-Or-

iented Programming

In Chapter 5, we enumerate a Turing-complete set of gadgets that perform a

useful collection of basic computational operations. While the address entry points

and restored register values can be coded by hand into a string buffer exploit payload

(and indeed we did so in our original research), the complexity of a return-oriented

program is limited by the practical difficulties of such an exercise.

In 2008, Buchanan, et al. [4] introduced an approach to abstracting return-

oriented program creation. The authors wrote an application programming interface

(API) that provides C functions for setting gadget variable values and calling gadget

operations. The C API then provides means to easily pack up a string buffer exploit

payload that can hijack a vulnerable program to run the return-oriented program

attack.

The authors further abstracted the exploit process by creating a compiler that

views the C API as an instruction set architecture in its own right, where each API

gadget operation is analogous to an assembly instruction. The compiler implements

a subset of the C programming language, and translates each line of code into gadget

variable and operation C function calls using the C API.

Using these multiple abstraction layers, complicated return-oriented programs

such as a basic selection sort can be easily constructed in a high-level C-like language,

19

then passed through the compiler to the API to an ultimate complex string buffer

exploit payload that can effectively invoke arbitrary behavior in a target vulnerable

program. Thus, although this thesis focuses on a low-level portion of the world

of return-oriented programming— the gadget catalog search—the security threat

from a discovered set of gadgets for a given target binary is real, as once API and

compiler abstraction layers are hooked into a new set of underlying gadgets, complex

and powerful return-oriented attacks can be quickly and easily created.

Acknowledgement

This chapter, in part, is a reprint of the material as it appears in the Pro-

ceedings of the 15th ACM Conference on Computer and Communications Security

2008, by Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The

thesis author was the primary investigator and author of the reprinted portions of

this paper.

Chapter 5

SPARC Gadget Catalog

In this chapter, we describe an exemplary set of SPARC gadgets found by

manual investigation of the Solaris standard C library. Chapter 6 expands this

discussion to automatically discovering gadget catalogs with our new general-purpose

search tool.

Our collection loosely mirrors Shacham’s x86 gadget catalog [18], and is sim-

ilarly Turing-complete on inspection. An attacker can create a return-oriented pro-

gram comprised of our gadgets with the full computational power of a real SPARC

program. We emphasize that our collection is not merely theoretical; every gadget

discussed in this chapter has been successfully implemented in a higher-level gadget

C API and exploit compiler and tested in real return-oriented exploits [4].

We describe our gadget operations in terms of gadget variables, e.g., v1, v2,

and v3, where each variable refers to a addressable four-byte memory location. In

our figures, the column “Inst. Seq.” describes a shorthand version of the effective

instruction sequence operation. The column “Preset” indicates information encoded

in an overflow. E.g., “%i3 = &v2” means that the address of variable v2 is encoded

in the register save area for %i3 of an exploit stack frame. The notation “m[v2]”

indicates access to the memory stored at the address stored in variable v2. The

column “Assembly” shows the target binary (libc) instruction sequence assembly

code.

20

21

5.1 Memory

As gadget “variables” are stored in memory, all gadgets use loads and stores

for variable reads and writes. Thus, our “memory” gadgets describe operations using

gadget variables to manipulate other areas of process memory. Our memory gadget

operations are mostly analogous to C-style pointer operations, which load / store

memory dereferenced from an address stored in a pointer variable.

5.1.1 Address Assignment

Assigning the address of a gadget variable to another gadget variable (v1 =

&v2) is done by using the constant assignment gadget, described in Section 5.2.1.

5.1.2 Pointer Read

The pointer read gadget (v1 = *v2) uses two instruction sequences and is

described in Figure 5.1. The first sequence dereferences a gadget variable v2 and

places the pointed-to value into %i0 using two loads. The second sequence takes

the value (now in %o0 after the register window slide) and stores it in the memory

location of gadget variable v1.

Inst. Seq. Preset Assembly

%i0 = m[v2]

%i4 = &v2 ld [%i4], %i0

ld [%i0], %i0

ret

restore

v1 = m[v2]

%i3 = &v1 st %o0, [%i3]

ret

restore

Figure 5.1: Pointer Read (v1 = *v2)

22

5.1.3 Pointer Write

The pointer write gadget (*v1 = v2) uses two sequences and is described in

Figure 5.2. The first sequence loads the value of a gadget variable v2 into register

%i0. The second sequence stores the value (now in %o0) into the memory location

of the address stored in gadget variable v1.

Inst. Seq. Preset Assembly

%i0 = v2

%l1 = &v2 ld [%l1], %i0

ret

restore

m[v1] = v2

%i0 = &v1-8 ld [%i0 + 0x8], %i1

st %o0, [%i1]

ret

restore

Figure 5.2: Pointer Write (*v1 = v2)

As the second instruction sequence indicates, we were not always able to find

completely ideal assembly instructions in our target binary (libc). Here, our load

instruction (ld [%i0 + 0x8], %i1) actually requires encoding the address of v1

minus eight into the save register area of the exploit stack frame to pass the proper

address value to the %i0 + 0x8 load.

5.2 Assignment

Our assignment gadgets store a value (from a constant or other gadget vari-

able) into the memory location corresponding to a gadget variable.

5.2.1 Constant Assignment

Assignment of a constant value to a gadget variable (v1 = Value) ideally

would simply entail encoding a constant value in an exploit stack frame that is

23

stored to memory with an instruction sequence. However, because all exploit frames

must pack into a string buffer overflow, we have to encode constant values to avoid

zero bytes. Our approach is to detect and mask any constant value zero bytes on

encoding, and then later re-zero the bytes.

Our basic constant assignment gadget for a value with no zero bytes is shown

in 5.3. Non-zero hexadecimal byte values are denoted with “**”.

Inst. Seq. Preset Assembly

v1 = 0x********

%i0 = Value st %i0, [%i3]

%i3 = &v1 ret

restore

Figure 5.3: Constant Assignment (v1 = 0x********)

For all other constants, we mask each zero byte with 0xff for encoding, and

then use clrb (clear byte) instruction sequences to re-zero the bytes and restore the

full constant. For example, Figure 5.4 illustrates encoding for a value where the most

significant byte is zero.

Inst. Seq. Preset Assembly

v1 = 0xff******

%i0 = Value | st %i0, [%i3]

0xff000000 ret

%i3 = &v1 restore

v1 = 0x00******

%i0 = &v1 clrb [%i0]

ret

restore ...

Figure 5.4: Constant Assignment (v1 = 0x00******)

5.2.2 Variable Assignment

Assignment from one gadget variable to another (v1 = v2) is described in

Figure 5.5. The memory location of a gadget variable v2 is loaded into local register

24

%l6, then stored to the memory location of gadget variable v1.

Inst. Seq. Preset Assembly

v1 = v2

%l7 = &v1 ld [%i0], %l6

%i0 = &v2 st %l6, [%l7]

ret

restore

Figure 5.5: Variable Assignment (v1 = v2)

5.3 Arithmetic

Arithmetic gadgets load one or two gadget variables as input, perform a math

operation, and store the result to an output gadget variable’s memory location.

5.3.1 Increment, Decrement

The increment gadget (v1++) uses a single instruction sequence for a straight-

forward load-increment-store, as shown in Figure 5.6. The decrement gadget (v1--)

consists of a single analogous load-decrement-store instruction sequence.

Inst. Seq. Preset Assembly

v1++

%i1 = &v1 ld [%i1], %i0

add %i0, 0x1, %o7

st %o7, [%i1]

ret

restore

Figure 5.6: Increment (v1++)

25

5.3.2 Addition, Subtraction, Negation

The addition gadget (v1 = v2 + v3) is shown in Figure 5.7. The gadget uses

the two instruction sequences to load values for gadget variables v2 and v3 and store

them into the register save area of the third instruction sequence frame directly, so

that the proper source registers in the third sequence will contain the values of the

source gadget variables. The third instruction sequence dynamically gets v2 and v3

in registers %i0 and %i3, adds them, and stores the result to the memory location

corresponding to gadget variable v1.

Inst. Seq. Preset Assembly

m[&%i0] = v2

%l7 = &%i0 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v2 ret

restore

m[&%i3] = v3

%l7 = &%i3 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v3 ret

restore

v1 = v2 + v3

%i0 = v2 (stored) add %i0, %i3, %i5

%i3 = v3 (stored) st %i5, [%i4]

%i4 = &v1 ret

restore

Figure 5.7: Addition (v1 = v2 + v3)

The subtraction gadget (v1 = v2 - v3) is analogous to the addition gadget,

with nearly identical instruction sequences (except with a sub operation). The nega-

tion gadget (v1 = -v2) uses three instruction sequences to load a gadget variable,

negate the value, and store the result to the memory location of an output variable.

26

5.4 Logic

Logic gadgets load one or two gadget variable memory locations, perform a

bitwise logic operation, and store the result to an output gadget variable’s memory

location.

5.4.1 And, Or, Not

The bitwise and gadget (v1 = v2 & v3) is described in Figure 5.8. The first

two instruction sequences write the values of gadget variables v2 and v3 to the third

instruction sequence frame. The third instruction sequence restores these source

values, performs the bitwise and, and writes the results to the memory location of

gadget variable v1.

Inst. Seq. Preset Assembly

m[&%l3] = v2

%l7 = &%l3 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v2 ret

restore

m[&%l4] = v3

%l7 = &%l4 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v3 ret

restore

v1 = v2 & v3

%l3 = v2 (stored) and %l3,%l4,%l2

%l4 = v3 (stored) st %l2,[%l1+%i0]

%l1 = &v1 + 1 ret

%i0 = -1 restore ...

Figure 5.8: And (v1 = v2 & v3)

The bitwise or gadget (v1 = v2 | v3) works like the and gadget. Two in-

struction sequences load gadget variables v2 and v3 and write to a third instruction

sequence frame, where the bitwise or is performed. The result is stored to the memory

27

location of variable v1.

The bitwise not gadget (v1 = ∼v2) uses two instruction sequences. The first

sequence loads gadget variable v2 into a register available in the second sequence,

where the bitwise not is performed and the result is stored to the memory location

of variable v1.

5.4.2 Shift Left, Shift Right

The shift left gadget (v1 = v2 << v3) is similar to the bitwise and gadget,

with an additional store instruction sequence in the fourth frame, as described in

Figure 5.9. The gadget variable v2 is shifted left the number of bits stored in the

value of v3, and the result is stored in the memory location of gadget variable v1.

The shift right gadget (v1 = v2 >> v3) is virtually identical, except performing a

srl (shift right) operation in the third instruction sequence.

5.5 Control Flow

Our control flow gadgets permit arbitrary branching to label gadgets in a

return-oriented program. In contrast to real programs, the control flow of a return-

oriented program is entirely determined by the value of the stack pointer. Because

the restored %i6 value of an exploit frame always defines the next gadget to run,

our “branching” operations perform runtime modifications of the register save area

of %i6 in our exploit stack frames.

Unconditional branches are easy to implement. Another exploit frame’s saved

%i7 register points to a simple ret, restore instruction sequence (our gadget equiv-

alent of a nop instruction). On return, the stored frame pointer indicates the next

exploit frame and the return address points to the next instruction sequence.

Conditional branches are more complicated. First, we use instruction se-

quences to write ahead into the register save area of future exploit frames for values

needed later. Next, we use an instruction sequence containing “cmp reg1, reg2,”

which sets the condition code registers (and determines branching behavior). We

then execute an instruction sequence containing a SPARC branch instruction (mir-

28

Inst. Seq. Preset Assembly

m[&%i2] = v2

%l7 = &%i2 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v2 ret

restore

m[&%i5] = v3

%l7 = &%i5 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v3 ret

restore

%i0 = v2 << v3

%i2 = v2 (stored) sll %i2,%i5,%l7

%i5 = v3 (stored) and %l6,%l7,%i0

%l6 = -1 ret

restore

v1 = v2 << v3

%i3 = v1 st %o0, [%i3]

ret

restore

Figure 5.9: Shift Left (v1 = v2 << v3)

29

roring the gadget branch type), to conditionally set a memory or register value to

either the taken or not taken exploit frame address. All SPARC branches have a

delay slot. Annulled branches have the further property that the delay slot instruc-

tion only executes if the branch is taken. We use this property by choosing annulled

branch instruction sequences that effectively produce a value of either the taken or

not taken exploit frame address. The last frame in the instruction sequence sim-

ply restores the value of %i6, and performs a harmless ret, restore, branching to

whatever gadget frame was set into %i6 by the previous annulled branch instruction

sequence.

We use the terms “T1” and “T2” to refer to two different targets / labels, which

are really entry addresses of other gadget stack frames. “T1” corresponds to the taken

(true) target address and “T2” is the not taken (false) address. Our branch labels

are nop gadgets, consisting of a simple ret, restore instruction sequence, which can

be inserted at any point in between other gadgets in a return-oriented program.

5.5.1 Branch Always

The branch always gadget (jump T1) uses one instruction sequence consisting

of a ret, restore, as shown in Figure 5.10. The address of a gadget label frame is

encoded into the register save area of %i6.

Inst. Seq. Preset Assembly

jump T1
%i6 = T1 ret

restore

Figure 5.10: Branch Always (jump T1)

5.5.2 Branch Equal; Branch Less Than or Equal; Branch

Greater Than

Our branch equal gadget (if (v1 == v2): jump T1, else T2) uses six in-

struction sequences, as described in Figure 5.11. Frames 1 and 2 write v1 and v2

30

values into the register save area of frame 3 for %i0 and %i2. Frame 3 restores %i0

and %i2, compares the dynamically written-ahead values of v1 and v2, and sets the

condition code registers. Frame 4 contains the T2 address in the save area for %i0,

and stores the T1 address (minus one) in %l0. The condition codes set in frame 3

determine the outcome of the be (branch equal) instruction in frame 4. If v1 == v2,

then one is added to T1-1 and T1 is stored in %i0, else %i0 remains preset to T2.

Frame 5 stores the selected target value of %i0 into frame 6 in the memory location

of %i6. After frame 6 restores %i6 and returns, control is “branched” to the set

target.

The branch less than or equal gadget (if (v1 <= v2): jump T1, else T2)

uses six instruction sequences and is essentially identical to the branch equal gadget,

except that instruction sequence / frame 4 uses a branch less than or equal SPARC

instruction (ble). Similarly, the branch greater than gadget (if (v1 > v2): jump

T1, else T2) is virtually identical to the branch equal gadget, except for using a

branch greater than SPARC instruction (bg).

5.5.3 Branch Not Equal; Branch Less Than; Branch Greater

Than or Equal

Gadgets for the remaining branches are obtained via simple wrappers around

the branch gadgets in the previous section. Our branch not equal gadget (if (v1

!= v2): jump T1, else T2) is equivalent to the branch equal gadget with targets

T1 and T2 switched: if (v1 == v2): jump T2, else T1. The branch less than

gadget (if (v1 < v2): jump T1, else T2) is equivalent to branch greater than

with reordered variables: if (v2 > v1): jump T1, else T2. The branch greater

than or equal gadget (if (v1 >= v2): jump T1, else T2) is equivalent to a similar

reordering: if (v2 <= v1): jump T1, else T2.

31

Inst. Seq. Preset Assembly

m[&%i0] = v1

%l7 = &%i0 ld [%i0], %l6

(+2 Frames) st %l6, [%l7]

%i0 = &v1 ret

restore

m[&%i2] = v2

%l7 = &%i2 ld [%i0], %l6

(+1 Frame) st %l6, [%l7]

%i0 = &v2 ret

restore

(v1 == v2)

%i0 = v1 (stored) cmp %i0, %i2

%i2 = v2 (stored) ret

restore

if (v1 == v2): %i0 = T2 (NOT EQ) be,a 1 ahead

%i0 = T1 %l0 = T1 (EQ) - 1 sub %l0,%l2,%i0

else: %l2 = -1 ret

%i0 = T2 restore

m[&%i6] = %o0

%i3 = &%i6 st %o0, [%i3]

(+1 Frame) ret

restore

jump T1 or T2
%i6 = T1 or T2 ret

(stored) restore

Figure 5.11: Branch Equal (if (v1 == v2): jump T1, else T2)

32

5.6 Function Calls

Virtually all public return-to-libc SPARC exploits already target libc function

calls. As our target library for this chapter is libc, we easily provide similar abilities

with our function call gadget. For gadget collections targeting binaries other than

libc, the function call gadget may call any function that is available at runtime to

the target binary.

In an ordinary SPARC program, subroutine arguments are placed in registers

%o0-5 of the calling stack frame. The save instruction prologue of the subroutine

slides the register window, mapping %o0-7 to the %i0-7 input registers. Thus, for

our gadget, we have two options: (1) set up %o0-5 and jump into the full function

(with the save), or (2) set up %i0-5 and jump to the function after the save.

Unfortunately, the first approach results in an infinite loop because the initial save

instruction will cause the %i7 function call instruction sequence entry point to be

restored after the sequence finishes (repeatedly jumping back to the same entry

point). Thus, we choose the latter approach, and set up %i0-5 for our gadget.

A related problem is function return type. Solaris functions return with ei-

ther ret, restore (normal) or retl (leaf). Because retl instructions leave %i7 un-

changed after a sequence completes, any sequence in our programming model with

leaf returns will infinitely loop. Thus, we only permit non-leaf subroutine calls, which

still leaves many useful functions including printf(), malloc(), and system().

The last complication arises if a function writes to stack variables or calls

other subroutines, which may corrupt our gadget exploit stack frames. To prevent

this, when we actually jump program control to the designated function, we move

the stack pointer to a pre-designated “safe” call frame in lower stack memory than

our gadget variables and frames (see Figure 4.1). Stack pointer control moves back

to the exploit frames upon the function call return.

Our function call gadget (r1 = call FUNC, v1, v2, ...) is described in

Figure 5.12, and uses from five to ten exploit frames (depending on function argu-

ments) and a pre-designated “safe” stack frame (referenced as safe). The gadget can

take up to six function arguments (in the form of gadget variables) and an optional

33

return gadget variable. Note that “LastF” represents the final exploit frame to jump

back to, and “LastI” represents the final instruction sequence to execute. The final

frame encodes either a nop instruction sequence, or a sequence that stores %o0 (the

return value register in SPARC) to a gadget variable memory location.

Inst. Seq. Preset Assembly

m[&%i6] = LastF

%i0 = LastF st %i0, [%i3]

%i3 = &%i6 ret

(safe) restore

m[&%i7] = LastI

%i0 = LastI st %i0, [%i3]

%i3 = &%i7 ret

(safe) restore

Optional : Up to 6 function arg seq’s (v[1-6]).

m[&%i] = v

%l7 = &%i[0-5] ld [%i0], %l6

(safe) st %l6, [%l7]

%i0 = &v[1-6] ret

restore

Previous frame %i7 set to &FUNC - 4.

call FUNC
ret

restore

Opt. 1- Last Seq.: No return value. Just nop.

nop
ret

restore

Opt. 2 - Last Seq.: Return value %o0 stored to r1

r1 = RETURN VAL

%i3 = &r1 st %o0, [%i3]

ret

restore

Figure 5.12: Function Calls (call FUNC)

34

5.7 System Calls

On SPARC, Solaris system calls are invoked by trapping to the kernel using

a trap instruction (like “trap always,” ta) with the value of 0x8 for 32-bit binaries

on a 64-bit CPU (which comports with our test environment). Setup for a trap

entails loading the system call number into global register %g1 and placing up to six

arguments in output registers %o0-5.

Our system call gadget (syscall NUM, v1, v2, ...) uses three to nine

instruction sequences (depending on the number of arguments) and is described in

Figure 5.13. The first instruction sequence loads the value of a gadget variable num

(containing the desired system call number) and stores it into the last (trap) frame

%i0 save area. Up to six more instruction sequences can load gadget variable values

v1-6 that store to the register save area %i0-5 of the next-to-last frame, which will

be available in the final (trap) frame as registers %o0-5 after the register slide. The

final frame calls the ta 8 SPARC instruction and traps to the kernel for the system

call.

Acknowledgement

This chapter, in part, is a reprint of the material as it appears in the Pro-

ceedings of the 15th ACM Conference on Computer and Communications Security

2008, by Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. The

thesis author was the primary investigator and author of the reprinted portions of

this paper.

35

Inst. Seq. Preset Assembly

Write system call number to %i0 of trap frame.

m[&%i0] = num

%l7 = &%i0 ld [%i0], %l6

(trap frame) st %l6, [%l7]

%i0 = &num ret

restore

Optional : Up to 6 system call arg seq’s (v[1-6]).

m[&%i] = v

%l7 = &%i[0-5] ld [%i0], %l6

(arg frame) st %l6, [%l7]

%i0 = &v[1-6] ret

restore

Arg Frame: Trap arguments stored in %i[0-5]

nop
ret

restore

Trap Frame: Invoke system call with number stored

in %i0 with %0[0-5] as arguments.

trap num

%i0 = num mov %i0, %g1

(stored) ta %icc, %g0+8

%o0 = v1 bcc,a,pt %icc,

%o1 = v2 4 Ahead

%o2 = v3 sra %o0,0,%i0

%o3 = v4 restore

%o4 = v5 %o0,0,%o0

%o5 = v6 ba cerror

nop

ret

restore

Figure 5.13: System Calls (syscall NUM)

Chapter 6

Automated Gadget Searching

The 19 gadgets comprising the gadget catalog described in Chapter 5 were

discovered over the course of nearly three weeks of manual assembly code analysis of

the specific Solaris Standard C library binary we targeted. However, such a discovery

approach is clearly not scalable— for libc alone on the Solaris/SPARC platform,

there are many variants of versions and producers, adding to the fact that not all

Solaris binaries necessarily load libc.

Thus, the gadget catalog in Chapter 5 is really a starting point for two follow-

on questions: (1) How widespread is the return-oriented attack across other versions

of libc and entirely different Solaris binaries and libraries? (2) How can one quickly

(but roughly) determine if a given binary is vulnerable to a return-oriented attack?

With these questions and issues in mind, we present a gadget search tool that au-

tomates the gadget discovery process to enable rapid heuristic analysis of return-

oriented vulnerabilities in arbitrary Solaris binaries and libraries.

This chapter describes the use, design, and limits of the search tool. Chapter 7

discusses our vulnerability measurements over several large sets of Solaris binaries

and libraries using the search program and supporting reporting tools.

36

37

6.1 Gadget Search Tool

We introduce “traitor,” a search tool for discovering return-oriented “gad-

gets” and “instruction sequences” in an arbitrary target binary. traitor is written

entirely in Python and presently only implements assembly code analysis for the

SPARC instruction set. Modules for other instruction set architectures (like x86 or

PowerPC) could be developed and added to the tool.

The traitor program takes as input a target binary and a gadget query

file. The gadget query file specifies the assembly instruction sequences that comprise

return-oriented gadgets in a permissive manner (allowing regular expressions and

alternative “fall-back” queries). traitor then loads in the assembly of the target

binary and heuristically matches gadget queries over the entire target instruction

corpus, and reports all matched gadgets.

Search query specifications and the matching algorithm are described in more

detail in the subsequent sections of this chapter. However, it is important to note

that the accuracy of gadgets discovered by traitor depends on the quality and cor-

rectness of both the query and the search algorithm. While the search algorithm

correctness is an implementation detail of traitor, the quality of the query specifi-

cation is ultimately the responsibility of the search tool user. From our experience

testing and performing vulnerability measurements with traitor, we pose that our

queries and the underlying search algorithm are positively correct to the extent that

if traitor reports a gadget matching a given search query, then the reported in-

struction sequences could be used in a subsequent return-oriented attack or wrapped

into a practical return-oriented API / compiler exploit tool. However, even with

proper queries, traitor is vulnerable to false negatives (missing potentially usable

instruction sequences for a gadget). Because traitor is a heuristic tool, we made the

design decision to take a conservative approach to some aspects of gadget matching

(described later), at the expense of excluding otherwise viable gadgets.

38

6.2 Search Queries

A search query specifies a general notion of what the assembly instruction

sequences that comprise a given gadget should look like. The query specification for

traitor is simply a Python file containing objects and collections that correspond

to Python query classes.

A search query consists of a “library” which contains multiple “gadget lists”.

A gadget list is a collection of alternative queries for essentially the same gadget,

so that if traitor fails to find one version, it can revert to backup gadget queries.

Naturally, a gadget list contains multiple “gadget” queries. The gadgets are com-

posed of “sequence” queries, which are further composed of “instruction” objects.

Instruction queries specify an assembly opcode search term and contain multiple

“argument” objects — the most basic query unit.

The query language aims to allow a user to specify any arbitrary gadget

with enough precision to guarantee that a match in a target library for a properly

specified query should be usable in a return-oriented exploit. In this fashion, the

query language permits extensible vulnerability analysis for unknown gadgets as

well as new target binaries or libraries.

The traitor tool suite includes a basic query specification file, “query.py,”

containing search queries for 19 core gadgets from our original gadget catalog in

Chapter 5. traitor was in fact developed against the target libc binary used in

our original manual gadget search, although “query.py” contains broader backup

queries than those that are known to match the target libc. For a rough performance

comparison, our manual target libc search for gadgets took around three weeks of

effort, while traitor replicates the search in less than 500 seconds running on a

server-grade computer.

6.2.1 Arguments

Basic Arguments

The starting point for a gadget search query is the argument. An argument

is simply an object that takes a regular expression string for a match. For example:

39

A("%i1")

A("%(i[0-5]|l[0-7])")

A(".*")

would all match the register %i1. (Note that the Argument class is aliased to A).

In this fashion, a search query can specify any assembly instruction argu-

ment, from registers to immediate values. Argument declarations can be used in an

instruction query to match an entire instruction. For example:

I("add", [A(".*"), A(".*"), A(".*")])

matches any of the following instructions:

add %i1, %i2, %i3

add %i0, %i2, %i0

add %l1, 0x12, %l2

(Note that the Instruction class is aliased to I).

When declared as a variable, an argument object has the additional property

that the same argument object instance must match the same piece of assembly

code at both the instruction and sequence level. Thus, if we restructure the example

instruction query as:

ARG1 = A(".*")

I("add", [ARG1, A(".*"), ARG1])

then the first and third arguments must be the same. This means of the three

previous example matched instructions, now only

add %i0, %i2, %i0

matches (because %i0 is the same for the first and third arguments).

Arguments “Plus”

We also provide an augmented Argument class, ArgumentPlus (aliased to AP).

This special argument class takes a register pattern, such as “%i[0-7]” and appends

an extra pattern to allow an extra hexadecimal number to appear in the matched

results. For example, the query:

40

ARG1 = AP("\%i[0-7]")

would match all of the following assembly code snippets:

%i0

%i1 + 0x1

%i1 + 0xdecafbad

which is particularly useful for memory instructions like loads and stores that often

access memory at a register-stored address plus a numerical offset.

The special aspect of this argument class is that for “same argument match-

ing,” only the register portion is compared for the match. Thus, revising a previous

query:

ARG1 = AP("\%i[0-7]")

I("ld", [M(ARG1), ARG1])

would successfully match all of the following:

ld [%i0], %i0

ld [%i1 + 0x123a], %i1

by allowing the extra numerical part on matching, but ignoring it for the same ar-

gument requirement. Thus, the augmented argument class permits flexibility for

matching, but provides the necessary structure to ensure control flow through des-

ignated registers.

Memory Arguments

The basic argument object can handle most argument forms (e.g., registers,

immediate values, labels) without incident. However, memory-based arguments have

a special wrapper class, MemoryWrapper (aliased to M), which wraps an argument

object to match arguments comporting with the SPARC assembly memory format.

For example, using variable-matching and a memory wrapper, we can specify a query:

ARG1 = A(".*")

I("ld", [M(ARG1), ARG1])

which would match instructions like:

41

ld [%i0], %i0

but not:

ld [%i0], %i1

ld [%i0], %o0

because the first and second registers are different.

Cross-Sequence Arguments

Variable matching allows argument object queries to all get the same match

within a sequence query, but a query may need to specify an argument query across

different sequences. However, the register window slides on every return, such that

an input register in one exploit frame / sequence becomes an output register in the

next.

To address this challenge, the input / output wrapper class, InOutWrapper

(aliased to IO), wraps an argument object to permit a regular expression that matches

an input (%i) register in one sequence to match the same regular expression in the

next, but adjusted to the output (%o) register.

Thus, we can create an example query (aliasing Gadget to G and Sequence

to S) as follows:

ARG1 = A(".*")

G([

S([I("ld", [M(A("%i.*")), IO(ARG1)]),

I("ret"),

I("restore"),

]),

S([I("ld", [IO(M(ARG1), "o"), A("%o.*")]),

I("ret"),

I("restore"),

]),

])

which would match a first sequence (with %i0 matched for the input / output wrapper

on ARG1):

42

ld [%i0], %i0

ret

restore

and a second sequence (now matching %o0 for the input / output wrapper on ARG1):

ld [%o0], %o1

ret

restore

As the above example shows, the input / output wrapper can be used to not only

wrap basic argument query objects, but memory wrapper objects as well, enabling

more specific and powerful querying.

6.2.2 Instructions

The next abstraction level is the instruction query object, which is intended to

match assembly instruction lines in the target binary. An instruction query consists

of an opcode (regular expression) and one or more argument query objects. Thus, a

basic instruction query like:

I("add(|cc)", [A("%i.*"), A("0x[0-9]"), A("%i.*")])

would match any of the following:

add %i1, 0x1, %i1

addcc %i1, 0x4, %i2

Intermediate Instructions and Depth Limits

Instruction queries specify a match of one line of assembly code in the target

binary. However, the query object has additional parameters that can affect the

search algorithm with respect to additional instruction queries.

One issue with conducting matches on instruction sequence queries is whether

to allow intermediate, non-matching instructions between matches. For instance, if

the query sequence:

S([I("ld", [M(A("%o.*")), A("%i.*")]),

I("ret"),

I("restore"),

])

43

encounters the following assembly code:

ld [%o0], %i0

sub %i1, %i2, %i3

ret

restore

should it allow the intermediate “sub” instruction and consider the assembly se-

quence a match?

The search algorithm (discussed in detail in Section 6.3) permits intermediate

instructions that pass a number of criteria. On the query side, one parameter that

can be specified at the instruction query level is how many intermediate instructions

to allow until the next matched instruction. This parameter, called the “depth,”

defaults to zero, disallowing any intermediate instructions. So our example query

above would not match the assembly code. However, setting the depth parameter to

one or more would allow the “sub” instruction as a non-matching intermediate, e.g.:

S([I("ld", [M(A("%o.*")), A("%i.*")], depth=2),

I("ret"),

I("restore"),

])

would produce a sequence match. Thus, by using the depth parameter a traitor

user can control the potential runtime of the search (by limiting depth between

instructions), and enforce instruction proximity (e.g., requiring that a matched ret

is immediately followed by a restore).

Destination Register Protection

The next complication with intermediate (non-matching) instructions is when

an otherwise permissible intermediate instruction overwrites a destination register

used by an earlier matching instruction in a sequence. For example, consider the

situation where our query:

ARG1 = A("%i.*")

S([I("ld", [M(A("%o.*")), ARG1]),

I("st", [ARG1, M(A("%o.*"))]),

I("ret"),

44

I("restore"),

])

encounters the following assembly code:

ld [%o0], %i0

sub %i1, %i2, %i0

st %i0, [%o1]

ret

restore

The variable ARG1 successfully matches register %i0 for both the ld and st instruc-

tions. However, the value loaded into %i0 by the ld is not correctly stored in the st

instruction because the intermediate sub instruction overwrites the value in %i0.

To address this situation, instruction queries take an additional parameter to

designate how many subsequent matching instructions to protect a destination reg-

ister (if there is one). By default instruction queries protect destination registers for

every subsequent instruction in a sequence query. Thus, our above example would

not match, because by default the destination register for the ld instruction is pro-

tected all the way through the last instruction query in the sequence. If destination

register protection is set to -1, then there is no protection against any subsequent

matching or non-matching instructions. If protection is set to zero, then the desti-

nation register is protected up to, but not including, the next matching instruction.

With this query feature, the query writer can specify at a very granular level how far

to protect destination registers so as to allow a good degree of balancing the goals of

maximizing possible matches and ensuring that assembly code matches are indeed

usable sequences.

Branch Instructions

The basic instruction query can handle all instruction searches except for

branches. As discussed in Section 5.5, the branch instructions likely sought for a

return-oriented attack are annulled branches that branch forward two instructions.

Accordingly, the branch instruction query, takes an opcode query, an opcode annulled

query (typically “a”), and a branch displacement integer (with a default value of two

45

instructions). The resulting query gives the query writer control over the attributes

of branch instructions used in a return-oriented control flow operation with a high

degree of precision.

6.2.3 Sequences, Gadgets, and Gadget Lists

Looking above the instruction query level, a sequence query is a list of one or

more instruction queries. A sequence query can take an additional parameter that

limits the number of returned results for queries that have the potential to return an

excessive number of results.

Similarly, a gadget query is a list of one or more sequence queries. A gadget

query can also specify a parameter to globally limit the maximum number of assembly

code sequences a sequence query can match.

For a given gadget, it is often the case that one form of a gadget query will

find no matches in a target binary, while an alternate (but functionally equivalent)

gadget query would match. To address this situation and provide fallback flexibility

for traitor, the gadget list abstraction is provided. A gadget list query comprises

one or more gadget queries, such that matching any one of the individual queries is

considered an overall “match” for a given gadget.

For example, the variable assignment gadget (see Section 5.2.2) requires one

ld followed by a st instruction, but these could occur over one or two instruction

sequences. Thus a gadget list of two gadget queries would be appropriate for this

situation as follows (note GadgetList is aliased to GL):

REGS = "%(i[0-5]|l[0-7])"

ARG1 = A(REGS)

GL([

G([

S([

I("ld(|uw)", [M(A(REGS)), ARG1]),

I("st(|w)", [ARG1, M(A(REGS))]),

I("ret"),

I("restore"),

]),

]),

46

G([

S([

I("ld(|uw)", [M(A(REGS)), IO(ARG1)]),

I("ret"),

I("restore"),

]),

S([

I("st(|w)", [IO(ARG1, "o"), M(A(REGS))]),

I("ret"),

I("restore"),

]),

]),

])

6.3 Search Algorithm

At a high level, traitor takes two inputs: a disassembled target binary and a

search query. The disassembled target binary is internally re-disassembled to gather

additional information from the machine code binary representation. The assembly

instruction corpus and search query objects are then passed to a matching engine

which searches the instruction list for query matches starting at the argument level

and building all the way up to the full gadget queries.

As a single instruction sequence query can yield assembly code matches that

overlap, it is easy to see that the runtime of the actual search has the potential

to quickly become intractable. Consequently, the search algorithm is built around a

number of design decisions and heuristics that attempt to ensure that the search runs

are computationally feasible and produce valid assembly code results. Additionally,

as Section 6.2 describes, the query classes provide parameters at various abstraction

levels that facilitate filtering and limiting the actual searches performed by traitor.

6.3.1 Gadget Matching

The basic target of a search is a gadget, which is a series of instruction se-

quences that matches a gadget query. Multiple gadget queries may be wrapped in a

gadget list for a given search, in which case the reporting tools for traitor report

47

a gadget “match” if any of the gadget queries result in at least one match. In either

case, the basic algorithm for a single gadget query search is as follows:

Each instruction sequence query in the gadget query is matched to assembly

code instruction sequences in the target binary. Section 6.3.2 describes this process

in detail.

Each set of assembly code sequences matching a sequence query is then lim-

ited down to a maximum number specified at either the sequence or gadget query

level. The underlying issue is that for multi-sequence gadget queries, if a large num-

ber of assembly code sequences match the individual sequence queries, the overall

complexity can quickly become intractable when testing all possible sequence com-

binations.

However, a converse problem is that too few matched assembly code sequences

can possibly make a gadget search fail when there were in fact underlying sequences

to match the full gadget. Accordingly, a heuristic approach is used to intelligently

choose the “best” assembly code sequence candidates up to the limit value. The

search algorithm thus prefers argument queries that are input / output wrapper

objects and then tries to find the widest dispersion of different register values. In

this manner, the heuristic attempts to give as many options (within the sequence

search result limits) for cross-sequence compatibility.

All permutations of the assembly code sequence matches for each sequence

query comprising the overall gadget query are then inspected. Sequence combinations

are mainly checked to verify that any input / output argument wrapper constraints

are met. If the query constraints are met, then the given assembly code sequence

combination is a valid match, and should be usable in a return-oriented exploit for

the given gadget.

6.3.2 Instruction Sequence Matching

The heart of the search algorithm for traitor lies in the instruction sequence

search. The matching engine takes each sequence query, searches through the list of

assembly code instructions for the target binary for matches, and produces a list of

zero or more assembly code instruction sequences matches. The sequence matching

48

algorithm is as follows:

The list of assembly code instructions is searched linearly front-to-back, look-

ing for matches for the last instruction query in the sequence query. When the last

instruction query is matched to an assembly code instruction, a recursive search

begins, moving backwards through the list of instruction queries comprising the se-

quence query. Because there may be multiple overlapping assembly code sequence

matches that terminate at the same last assembly code instruction, a list of all possi-

ble assembly code sequences is returned. At this point, the only requirement is that

all individual instruction queries are matched for a given sequence. The limiting

factor on how far back from the last matching instruction to recursively search is the

sum of all instruction query depth parameters. In this manner, the search space for

a given entry point last instruction is dramatically reduced. In the common case—

four instruction queries, two with a depth of five, two with a depth of zero— the

search space from each last matching instruction is 14 instructions. For a reasonable

target code corpus containing 4,000 restore suffixes, this yields a total search space

of about 50,000 instructions for an average sequence query.

Each set of possible matching sequences is then checked for compliance with

the query parameters and return-oriented program constraints. Each sequence is first

checked against all instruction query depth limitations. Next, all intermediate (non-

query-matching) instructions are checked against a list of disallowed instructions.

Instructions in this list include memory operations, branches, traps, jumps, func-

tion calls, etc. The disallowed list is over-inclusive, but ensures that no unintended

memory access, traps or control flow operations occur.

Argument queries are then checked for matched instruction arguments to

validate that same-variable requirements (e.g., two arguments must match the same

register) are met. For each instruction query that has enabled destination register

protection, the matched destination registers are examined to ensure that no later

intermediate instruction overwrites a protected destination register.

At this point, each remaining instruction sequence should be valid— capa-

ble of being used in a return-oriented exploit, provided the original query was cor-

rectly constructed. As an optimization step, identical sequences— sequences result-

49

ing in identical machine code for each instruction —are removed, so that only unique

matches remain. The main reason to return multiple matching assembly code se-

quence matches in the first place is to permit greater leeway in matching constraints

across sequences, so one identical sequence adds no additional benefit over another.

As an additional optimization, sequence match results for a given query are cached,

using the query as a lookup key. Because many sequence queries are reused across

several gadgets, this provides a speedup for the core traitor search task— conduct-

ing the recursive instruction sequence searches.

The list of assembly code sequence matches that pass all of the above tests

and filters are returned for gadget matching, as described in Section 6.3.1.

Chapter 7

Vulnerability Analysis

The traitor search tool and default gadget query was designed against the

Solaris 10 libc we originally targeted in our manual analysis from Chapter 5. How-

ever, the value and wider impact of traitor depends on its ability to find and

identify gadgets in arbitrary target libraries and binaries, and not those that are

already known to have a Turing-complete gadget set. Thus, this chapter utilizes

traitor on a large number of Solaris SPARC binaries and describes the gadget

search results, as well as metrics and implications for return-oriented programming

as a general threat.

7.1 Measurement Methodology

Our basic approach is to run traitor on a large number of target binaries,

searching for a core list of 19 gadgets (as gadget list queries). The target gadget

query set is taken from our gadget catalog described in Chapter 5 and is enumerated

in Table 7.1.

Our default query file (“config.py”) contains several gadget list queries for

each of the 19 gadgets we seek, ranging from condensed “optimal” gadget queries

to much more permissive, but “clunky” queries. In most cases, this means that the

tightest gadget queries involve many fewer instruction sequences than the permissive

ones. Most gadget list queries have two to four individual gadget queries, with our

50

51

Table 7.1: Gadget Query Set

Gadget Example

0 Nop

1 Memory Load v1 = *v2

2 Memory Store *v1 = v2

3 Assignment v1 = v2

4 Constant Assignment v1 = 0x00******

5 Increment v1++

6 Decrement v1--

7 Negation v1 = -v2

8 Addition v1 = v2 + v3

9 Subtraction v1 = v2 - v3

10 And v1 = v2 & v3

11 Or v1 = v2 | v3

12 Not v1 = v2

13 Branch Always jump T1

14 Branch Equal if (v1 == v2): jump T1, else T2

15 Branch LTE if (v1 <= v2): jump T1, else T2

16 Branch LT if (v1 < v2): jump T1, else T2

17 Function Call call FUNC

18 System Call trap NUM

52

most difficult gadget searches rounding things out with five queries for the bitwise

not gadget and seven queries for the system call gadget. We relaxed the requirements

for some of our system call gadget queries by allowing the sequence to not properly

return for the next gadget. This means that system call gadget matches for these

queries can only be used to trap to a call like exec, which does not return, or the

exploit writer is willing to allow the return-oriented program to crash after the system

call. All in all, the default query file provides a reasonable amount of flexibility for

finding the 19 core gadgets. For the original target libc, we match at least one gadget

query for each of the 19 base gadget list queries, and within each gadget list, most

individual gadget queries are matched as well. We describe our results with this

early query file on other binaries in the subsequent sections of this chapter.

In addition to the basic search program, our search tool suite provides sup-

porting scripts and programs that facilitate downloading and disassembling large

numbers of target binaries. Our reporting and aggregation tools run traitor on the

disassembled target binaries, produce individual target search reports, and aggregate

all search reports for a given binary group into a single, comprehensive report.

Our experiment consists of three stages. First, we download and search a

number of target binaries using the default search query for our original target libc.

Second, we “re-train” the gadget search queries on this group of binaries and compare

resulting matches. Finally, we assess traitor’s performance on a new group of

previously unknown target binaries using our improved and trained set of search

queries.

7.2 First Binary Group, Untrained

Our target binaries are downloaded from the Sun Freeware website [5]. Our

first binary group consists of 224 packages. We extract and disassemble binaries and

libraries (basically everything in “bin/” and “lib/” that is a valid SPARC Solaris

compiled binary) from the packages, yielding 969 individual target binaries.

Because restore instructions are the basis of each gadget, the total number

of instructions and restores are used as our base metric for evaluating matches for

53

a given target binary. Roughly speaking, if our conjectures that (1) return-oriented

exploits are generally possible on binaries of sufficient size, and (2) traitor can find

a reasonable subset of all possible exploits are valid, then as the number of restore

and total instructions in a target binary increases, the likelihood that traitor finds

more gadgets from our core list of gadgets should increase as well.

7.2.1 Results

Our search of the 969 binaries took around six hours to complete on a quad

processor 3.0 GHz machine with 16 GB of memory. For most of the core gadget set,

we had multiple individual gadget queries for each aggregating gadget list query. All

together, our search run used 54 specific gadget queries for the core 19 gadgets in our

search set. For individual binary searches, the shortest search took 0.1 seconds for

a target comprising 9 restores / 122 instructions, and the longest took 16 minutes

for a rather large target with 30,335 restores / 1,316,921 instructions. As our

first binary group has a disproportionate number of small instruction-count binaries,

an instructive metric is to look at the search time per instruction. The minimum

per-instruction search time was 0.0003 seconds, the maximum was 0.0010 seconds,

and the average was 0.0005 seconds. The overall number of instructions in a given

target binary did not correlate with higher or lower per-instruction times within

these ranges, suggesting that, at least for this target group, traitor search times

scale linearly in total instruction count.1 Thus, the average search times and our

minimum to maximum times indicate that traitor can be efficiently run against

arbitrarily-sized binaries.

Our results for the initial pass on the first binary group are illustrated in

Figure 7.1. The x-axis identifies the number of restores in the given target binary,

and the y-axis shows the number of matches against the 19 possible gadget queries.

The query results are sorted along the x-axis by number of restores from smallest (9)

to largest (30,335). The x-axis distribution shows that most of the target binaries in

our first group are very small, with less than 100 restore instructions and 20,000

1 This is true provided that traitor has sufficient runtime memory. Search times exponentially
increase if the target instruction set is so large as to cause the traitor process to swap to disk.

54

0 

2 

4 

6 

8 

10 

12 

14 

16 

9  11  13  15  19  23  29  48  64  80  98  141  181  233  285  424  623  844  1598 5984 

M
at
ch
es
 

Restores 

Figure 7.1: Group 1 (Untrained) Matches by Number of Restores

total instructions. (By comparison, the libc targeted in our manual search had over

4,000 restore instructions and 150,000 total instructions).

Looking at Figure 7.1 we note that every query we ran has at least two

matches. These correspond to our two “trivial” gadgets, the nop and branch always,

which are identical and comprised of ret, restore sequence. Every binary we tested

has such a sequence.

Past the trivial matches, Figure 7.1 illustrates increased numbers of matches

as the number of restores rises. The maximum number of matched gadgets was 14

out of 19, with an average of 2.56 gadgets matched per query (although this number is

depressed because of the substantial number of small binaries in our binary group).

Thus, although our untrained pass was unable to match all 19 core gadgets, the

results do generally indicate that traitor can match gadgets in arbitrary binaries

and will find more distinct gadgets as the size of the target binary code corpus

increases.

Table 7.2 explores the search results in more detail. The table provides the

number of target binary matches for each of the 19 gadget searches. The first data

55

Table 7.2: Group 1 (Untrained) Matches

Restores Range All (9-30335) 9-347 351-597 614-892 922-2705 2855-7971 10164-30335

Num. Binaries All (969) 729 69 59 68 30 14

Complete 0 0 0 0 0 0 0

Min. Matches 2 2 2 2 2 2 2

Max. Matches 14 7 8 9 9 14 11

Avg. Matches 2.56 2.09 3.13 3.49 4.66 4.67 5.86

0 Nop 969 100% 729 100% 69 100% 59 100% 68 100% 30 100% 14 100%

1 Memory Load 38 4% 1 0% 0 6 10% 17 25% 9 30% 5 36%

2 Memory Store 1 0% 0 0 0 1 1% 0 0

3 Assignment 113 12% 18 2% 23 33% 21 36% 34 50% 10 33% 7 50%

4 Const. Assn. 107 11% 21 3% 21 30% 22 37% 29 43% 9 30% 5 36%

5 Increment 27 3% 1 0% 7 10% 3 5% 6 9% 5 17% 5 36%

6 Decrement 6 1% 0 0 3 5% 0 3 10% 0

7 Negation 3 0% 0 0 0 0 3 10% 0

8 Addition 43 4% 2 0% 1 1% 6 10% 18 26% 9 30% 7 50%

9 Subtraction 31 3% 2 0% 1 1% 4 7% 11 16% 7 23% 6 43%

10 And 20 2% 2 0% 1 1% 0 15 22% 2 7% 0

11 Or 17 2% 2 0% 0 1 2% 5 7% 5 17% 4 29%

12 Not 0 0 0 0 0 0 0

13 Branch Always 969 100% 729 100% 69 100% 59 100% 68 100% 30 100% 14 100%

14 Branch Equal 25 3% 0 1 1% 2 3% 10 15% 6 20% 6 43%

15 Branch LTE 2 0% 0 0 0 0 1 3% 1 7%

16 Branch LT 4 0% 0 0 0 2 3% 1 3% 1 7%

17 Function Call 106 11% 13 2% 23 33% 20 34% 33 49% 10 33% 7 50%

18 System Call 0 0 0 0 0 0 0

56

column shows results for all 969 binaries in the first binary group, providing absolute

number of matches and percentages. The average number of matched gadgets across

the entire group was 2.56 gadgets out of 19. However, as the subgroups in the

additional columns illustrate, the significant number of small binaries in the binary

group artificially brings down the average.

The second through seventh data columns split the binary group into subsets

by number of restores. The first subgroup with number of restores from 9-

347 comprises the vast bulk of the overall group with 729 binaries out of 969 total

searched. Unsurprisingly, this group has very few matches aside from the 2 trivial

gadgets and an average matched result of 2.09.

The other (third through seventh) data columns split the remaining binaries

into much smaller subgroups (between 14 and 69 binaries each). Searches by traitor

on these subgroups yield more matches, both in terms of different gadgets with at

least some binary matches, as well as the average number of gadgets matched per

subgroup with increases from 3.13 to 5.86 across the subgroups. The minimum

number of matched gadgets for a target binary for all subgroups was 2, indicating that

(1) some binaries either don’t have sufficient code diversity in instructions leading up

to ret, restore sequences, (2) better, more general queries need to be provided to

traitor, and/or (3) traitor has fundamental limitations on certain binaries. On

the other side, the maximum number of matches ranged from 7-11 gadgets out of 19

for all subgroups, which comprises a substantial portion of the core gadget set.

One of the core aspects of the return-oriented programming attack is imple-

menting gadgets that together form a Turing-complete set and thus show that the

attack is capable of any computation that can be performed by the underlying sys-

tem. As our original set of 19 gadgets is Turing-complete, and we also check the

matches for individual binaries for a Turing-complete subset of the 19 core gadgets

(since no binary matched all of them). We use a very rough approximation for

assessing Turing-completeness by requiring:

1. all of the memory load, memory store, variable assignment and constant as-

signment gadgets,

57

2. either:

(a) two of the negation, addition, and subtraction gadgets, or

(b) the ‘and’ and ‘not’ gadgets or the ‘or’ and ‘not’ gadgets; and

3. one of the three conditional branch gadgets.

We pose that this is a reasonable criteria for a truly “useful” gadget set, as a higher

level exploit abstraction (like an API or compiler) could be integrated on top of a

binary with these gadgets.2 Binaries with gadget matches meeting this operational

definition are counted in the “Complete” row of Table 7.2. As the table shows, for

our untrained search on the first binary group, we were unable to get any matches.

Nonetheless, even a subset of a “complete” set would still be useful to an attacker.

Thus, although there are certain gadgets (the not and system call gadgets)

that were not matched and we found no “complete” set across the entire binary

group, traitor was successful in finding a subset of the core gadgets in a good

number binaries, and in many cases a sizable number of gadgets within a single

binary.

7.3 First Binary Group, Trained

The search pass on the first binary group discussed in Section 7.2 used the

default query configuration that was developed against a single binary, the target

libc used for our gadget collection in Chapter 5. While our results in Section 7.2

did show traitor to be effective in discovering gadgets, a natural follow-on issue

is to what degree the search results for the first binary group can be improved by

specifically training the gadget search queries.

In this section, we discuss our results for improving the gadget set query on

a second pass of the same binary group.

2 We also note that although the function call gadget is not necessary to this definition, it one
of the most often matched gadget in every one of our aggregate search runs.

58

7.3.1 Methodology

We first analyzed the aggregate results from Section 7.2 and identified the

specific gadget queries that seemed to yield few results. We chose several reasonably-

sized binaries to use as our retraining code bases, and began modifying and adding

specific queries for each core gadget list query.

We tried and tested various modified queries in traitor’s interactive mode

against our training binaries and original target libc. In most cases, we expanded

the existing queries to be broader. We verified that the modifications to our original

queries were at least as broad as the original query. We also added anywhere from

0-4 extra gadget queries to each gadget list query in the core search set. And, we

modified the core traitor search code to add a new query class.

Our analysis and query modifications took about two days to finish. Our

custom revisions to the traitor search engine were completed in around four hours.

Thus, at a high level, the relative ease with which traitor enables training queries

and even tweaking the underlying search engine demonstrates the overall flexibility

and (as our results will show) power of the automated search approach.

7.3.2 Query Modifications and Training

Our preliminary analysis of the first binary group results revealed that many

of the gadget queries were more restrictive than need be. The first query aspect

we expanded was to transform memory argument queries such as “%i[0-7]” that

matched registers only (e.g., “[%i0]”) into “register plus immediate” queries of type

ArgumentPlus that would additionally match mixed register-intermediate arguments

like “[%i0 + 0x1],” “[%i0 + 0xaf12],” etc. Our analysis showed that a great

number of memory accesses are with arguments of this mixed type.

Gadgets that include sequences with mixed register-intermediate arguments

for memory instructions have to be encoded to “undo” the addition operations. But,

in most cases, this is a simple operation implemented under the hood by an abstrac-

tion layer like the previously discussed exploit API or compiler. And, ultimately,

some of the gadgets in our original manual libc catalog did require analogous encod-

59

ings. It was during this phase of our training experiment that we actually modified

the traitor search engine code base to add the ArgumentPlus query class.

Fortunately, the rest of our query training did not require changing the un-

derlying engine. General techniques we used to produce better results included:

• Pad “Nop” Frames for Output Registers: Exploit frames generally use

the input and local registers for directly encoded registers, as both types are

restored from the stack to the register window on an incoming return. However,

the output registers are also available in a given stack frame context— they

just have to be set by the previous frame (as the input register before the

window slide). Accordingly, we actually can use output registers for a given

exploit frame (in a gadget query) by padding an extra “nop” frame before it.

Recall that our “nop” frames are just a ret-restore suffix, and we can simply

encode the input registers in the “nop” frame, and they will be available as the

output registers in the next frame.

• Use Output Registers Within Sequences: A similar technique is to use

the output registers within a sequence. The key is to realize that although

we cannot set the output register values to restore from the stack (without

padding), many registers in our queries do not need preset values. For instance,

if a sequence has a first instruction write to a destination register, then a second

instruction stores that same register to memory, the actual preset value of the

register is irrelevant. Accordingly, we can permit the argument query in this

case to use input, local or output registers.

• Use Global Registers: Although all of the gadgets in the catalog in Chapter 5

and queries up until the training phase relied exclusively on input, local, and

output registers, our analysis of sample binaries revealed common use of a

specific global register, %g1. %g1 is “special” in that as a global register, its

value does not change from sequence to sequence as it is outside of the sliding

register window. Another way to look at %g1 is that it is like the basic eax,

etc. registers on the Intel x86 platform.

60

We formulated a sequence query to set the %g1 register, which we then incorpo-

rated into several new gadget queries. If the %g1 set query is successful, then

we can expand our queries for critical instruction queries (such as a branch

match, etc.) to also include %g1 as a potentially useful register. We note in

passing that a set %g1 sequence query yielded no results in our original target

libc, and hypothesize that the use of %g1 may be different across compilers, as

its use is largely optional versus conventional input, local and output registers.

We also modified and added queries specific to certain gadgets in the course

of binary analysis:

• Or Gadget: From simple static analysis of some example binaries in the

first binary group, we determined that a number of “or” instruction sequences

occur in the following two forms: (1) or <reg>, %g1, <reg>, and (2) or %g1,

<reg>, %g1, where “<reg>” is an ordinary input, local or output register. This

realization led us to develop the %g1 register technique above to use %g1 for

our “or” gadget queries to increase the number of or gadget matches.

• Not Gadget: The not gadget is quite elusive and our original gadget from

libc was quite implementation specific. It is thus not too surprising that our

first pass on the first binary group yielded no matches for the not gadget. In

our training analysis, we discovered that very few “not” instructions actually

occur in our target corpus (likely due to the fact not is a synthetic instruction

on SPARC). Thus, we looked to equivalent operations, and found the most

likely candidates to be “xnor” and “andn”. Performing specific static analysis

on example binaries in the first target group, we were able to find matches in

specific binaries using the %g1 register technique. Our resulting queries met

with some success in both the first and second binary groups (although less

than 50 matching binaries in each case).

• System Call Gadget: The system call gadget proved to be the most difficult

gadget for traitor. Both the first and second pass on the first binary group

failed to yield any matches. Our research and static assembly analysis revealed

61

that the specific trap we were searching for, “ta 0x8,” does not occur in any

of the binaries in our search group in any context. Moreover, virtually all traps

were “ta 0x3,” which is the flush register window trap, and even those only

numbered around 40 total across all binaries. Thus, at a fundamental level,

the system call gadget was impossible for the 969 gadgets in our first search

group and we postulate that it is likely to be rare in other binaries, except for

those like libc, which provide the conventional entry point wrappers for system

calls.

7.3.3 Results

As will be discussed in more detail in Section 7.3.4, the trained queries per-

formed much better on the first binary group than the previous untrained results

presented in Section 7.2.1.

The second pass trained search took just over 11 hours to complete, increasing

the total search time for the previous search run by about five hours. However, this

is an expected change as the number of specific gadget queries for the core set of

19 gadget lists was increased from 54 in the first pass to 83 in the trained search.

Essentially, we increased our likelihood of getting gadget matches by throwing more

queries at the target binaries.

For individual target binary searches, our fastest search took 0.16 seconds for

the same 9 restores / 122 instruction target from the previous section. Our longest

search took 28 minutes for our largest target binary, which contains 30,335 restores

/ 1,316,921 instructions. The minimum per-instruction search time was 0.0005 sec-

onds, the maximum was 0.0017 seconds, and the average was 0.0007 seconds— fairly

comparable to the untrained search pass, and quite reasonable given the increased

total number of queries in the second search.

Our results for the second, trained pass on the first binary group are presented

in Figure 7.2. Like before, every search produced at least two gadget matches for

our trivial gadgets (nop and branch always). Figure 7.2 shows a similar correlation

to Figure 7.1 in that the number of distinct gadget matches for a target binary

increases as the number of restores increases. A quick visual inspection of Figure 7.2

62

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

9  11  13  15  19  23  29  48  64  80  98  141  181  233  285  424  623  844  1598 5984 

M
at
ch
es
 

Restores 

Figure 7.2: Group 1 (Trained) Matches by Number of Restores

reveals that the query training did significantly increase both the number of binaries

with more than the trivial two matches and the number of gadgets matched for

binaries within the search group. The maximum number of matched gadgets for a

single binary was 18 out of 19 in this run. (As discussed previously, there were no

matches for the system call gadget for either the untrained or trained search passes

on the first binary group). Thus, our trained search shows that the return-oriented

exploits we described in Chapters 5-6 are demonstrably not limited to a single target

library, as we have now automatically discovered gadget sets in other binaries that are

gadget-for-gadget equivalent to the original target libc catalog presented in Chapter 5

(excepting the system call gadget).

Table 7.3 describes our second pass search results in greater detail. The

average number of gadget matches for binaries in the entire search group was 3.8

out of 19 total. As noted previously, this average skews downward due to the large

number of small binaries in our search group that have few matches.

For the segmented subgroups, the first subgroup (9-347 restores) maintained

a very low average of 2.55 gadget matches, while comprising most of the binaries in

63

Table 7.3: Group 1 (Trained) Matches

Restores Range All (9-30335) 9-347 351-597 614-892 922-2705 2855-7971 10164-30335

Num. Binaries All (969) 729 69 59 68 30 14

Complete 27 3% 0 2 3% 3 5% 9 13% 8 27% 5 36%

Min. Matches 2 2 2 2 2 2 2

Max. Matches 18 12 13 13 15 18 16

Avg. Matches 3.80 2.55 6.42 7.75 9.00 6.50 8.50

0 Nop 969 100% 729 100% 69 100% 59 100% 68 100% 30 100% 14 100%

1 Memory Load 210 22% 62 9% 40 58% 42 71% 48 71% 11 37% 7 50%

2 Memory Store 210 22% 62 9% 40 58% 42 71% 48 71% 11 37% 7 50%

3 Assignment 230 24% 74 10% 46 67% 44 75% 48 71% 11 37% 7 50%

4 Const. Assn. 184 19% 59 8% 33 48% 39 66% 37 54% 10 33% 6 43%

5 Increment 145 15% 28 4% 31 45% 27 46% 42 62% 10 33% 7 50%

6 Decrement 83 9% 10 1% 11 16% 16 27% 30 44% 9 30% 7 50%

7 Negation 78 8% 8 1% 12 17% 16 27% 25 37% 10 33% 7 50%

8 Addition 106 11% 12 2% 17 25% 23 39% 38 56% 9 30% 7 50%

9 Subtraction 84 9% 10 1% 14 20% 17 29% 26 38% 10 33% 7 50%

10 And 47 5% 5 1% 3 4% 8 14% 25 37% 5 17% 1 7%

11 Or 58 6% 7 1% 5 7% 11 19% 22 32% 8 27% 5 36%

12 Not 47 5% 1 0% 4 6% 7 12% 20 29% 8 27% 7 50%

13 Branch Always 969 100% 729 100% 69 100% 59 100% 68 100% 30 100% 14 100%

14 Branch Equal 37 4% 2 0% 1 1% 4 7% 14 21% 9 30% 7 50%

15 Branch LTE 4 0% 0 0 0 2 3% 1 3% 1 7%

16 Branch LT 9 1% 1 0% 2 3% 0 3 4% 2 7% 1 7%

17 Function Call 214 22% 59 8% 46 67% 43 73% 48 71% 11 37% 7 50%

18 System Call 0 0 0 0 0 0 0

64

the search group (729 of 969). All other subgroups performed much better, with

average gadget matches ranging from 6.42 to 9.0. Thus, for a much larger portion of

our search subgroups, we are getting sizable portions of the core gadget set, and for

some subgroups, we average half of the core set for the entire subgroup. The maxi-

mum number of gadget matches across all subgroups ranged from 12-19, indicating

that for any binary size, there are at least some that have the vast majority of the

gadget set (and in many cases are just missing two of the three branch gadgets and

system call gadget).

The trained query also produced much better qualitative results in terms of

our loosely-defined Turing-completeness criteria, with 27 binaries producing “com-

plete” gadget sets. And, looking at the sized subgroups, particularly above the 900

restore instruction count, the percentage of complete gadget sets increases from

13% to 36% for the largest binary subgroups.

Thus, traitor is likely to find a good number of gadgets for binaries with

over 350 restores, and a 25% or better chance of finding a “complete” gadget set for

binaries over the 2700 restore mark for the specific targets in our first binary group.

Ultimately, Figure 7.2 and Table 7.3 demonstrate that for at least this sampling of

almost one thousand binaries, the number of restores is directly correlated with

the likelihood and magnitude of return-oriented exploits in an arbitrary binary.

7.3.4 Results Comparison

Table 7.4 compares the original search pass to our second (trained) search

of the first binary group. The last two table columns present the absolute increase

in binaries with gadget matches and percentage improvement for the second search.

As Table 7.4 illustrates, running the improved, trained queries on the first binary

group had a significantly positive impact on the number of gadget matches. Aside

from the two trivial gadgets (that already had 100% matches) and the system call

gadget (with no matches), every gadget category in the remaining 16 gadgets had

at least a 48% improvement and 14 of those gadgets had 100%+ improvement. In

terms of absolute numbers of matches, aside from the system call gadgets and the

two “difficult” branch gadgets (branch less-than-or-equal and branch less-than), the

65

Table 7.4: Group 1 Untrained vs. Trained Matches

Search Untrained Trained Change (+)

Num. Binaries 969 969

Min. Matches 2 2 0 0%

Max. Matches 14 18 4 29%

Avg. Matches 2.56 3.80 1.24 48%

0 Nop 969 969 0 0%

1 Memory Load 38 210 172 453%

2 Memory Store 1 210 209 20900%

3 Assignment 113 230 117 104%

4 Const. Assn. 107 184 77 72%

5 Increment 27 145 118 437%

6 Decrement 6 83 77 1283%

7 Negation 3 78 75 2500%

8 Addition 43 106 63 147%

9 Subtraction 31 84 53 171%

10 And 20 47 27 135%

11 Or 17 58 41 241%

12 Not 0 47 47 –

13 Branch Always 969 969 0 0%

14 Branch Equal 25 37 12 48%

15 Branch LTE 2 4 2 100%

16 Branch LT 4 9 5 125%

17 Function Call 106 214 108 102%

18 System Call 0 0 0 0%

66

second trained search pass yielded at least 37 individual binary matches for every

remaining gadget category in the core set of 19.

All in all, the results from our second search pass demonstrate that: (1) we

can effectively retrain and augment the core set of queries to produce significant

percentage increases in nearly all gadget categories, (2) the absolute number of second

pass matches for almost every gadget is substantial with half of the categories getting

at least 100 matched binaries out of 969, and (3) training traitor is quick and

effective— our improved search results came from only two day’s worth of query

training and code modifications to the core traitor search engine.

7.4 Second Binary Group

Our second binary group is comprised of an additional 220 packages down-

loaded from the Sun Freeware website [5]. The group contains 863 binaries and has

an instruction count roughly similar to the first binary group. For our measure-

ments, we ran the “trained” query from Section 7.3 on all the individual binaries in

our second group.

7.4.1 Results

Our search of the 863 binaries had a total run time of around seven and a

half hours. Our fastest single binary search was 0.16 seconds for a 6 restores /

215 instruction target, and our slowest was 45 minutes for a large 30,314 restores

/ 1,871,604 instruction target. For per-instruction times, the minimum was 0.0005

seconds, the maximum was 0.0014 seconds, and the average was 0.0007 seconds—

nearly identical to the per-instruction times for the trained search on the first binary

group.

Figure 7.3 shows gadget matches for the second binary group. It appears that

the improvements made to our query set in Section 7.3 are generally applicable. The

maximum number of gadget matches for a given binary was 18 out of 19, matching

the best performing binary search in the first binary group. The density of 3+ gadget

matches (across the x-axis) and magnitude of number of matches (across the y-axis)

67

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

6  9  10  11  12  14  16  21  28  46  67  109  179  258  422  570  933  3299 

M
at
ch
es
 

Restores 

Figure 7.3: Group 2 Matches by Number of Restores

in Figure 7.3 shows a clear relationship between the number of restore instructions

in a target and the number of gadgets likely to be found.

Table 7.5 describes our search results for the second binary group in detail.

The average number of gadget matches for all binaries in the search group was 3.73

out of 19 total, quite similar to the 3.8 average from the first binary group.

The segmented subgroups in the second binary group had a good portion of

small binaries, but overall, less binaries in the “large” subgroups when divided along

similar restore count ranges. Like the first binary group, the first “small” subgroup

of 685 targets in our second binary group had low overall and specific gadget match

averages. For the larger remaining subgroups, the results were impressive (even if

for a smaller sampling in each subgroup). Average gadget matches for the remaining

groups increased from 6.27 to 16.25 going from small to large. The maximum number

of matches in the remaining subgroups was similarly high — from 13 to 18 out of 19

gadgets total.

We also found a good number of binaries with “complete” sets in the second

binary group, with 24 overall sets. For segmented subgroups over 900 restores,

68

Table 7.5: Group 2 Matches

Restores Range All (6-30314) 6-350 377-598 602-874 933-2747 2812-7977 8880-30314

Num. Binaries All (863) 685 83 32 48 11 4

Complete 24 3% 0 3 4% 2 6% 11 23% 4 36% 4 100%

Min. Matches 2 2 2 2 2 2 15

Max. Matches 18 12 13 16 15 16 18

Avg. Matches 3.73 2.63 6.27 7.94 9.73 10.00 16.25

0 Nop 863 100% 685 100% 83 100% 32 100% 48 100% 11 100% 4 100%

1 Memory Load 183 21% 60 9% 50 60% 20 63% 39 81% 10 91% 4 100%

2 Memory Store 181 21% 60 9% 50 60% 20 63% 39 81% 8 73% 4 100%

3 Assignment 216 25% 94 14% 50 60% 21 66% 39 81% 8 73% 4 100%

4 Const. Assn. 176 20% 65 9% 44 53% 22 69% 35 73% 6 55% 4 100%

5 Increment 104 12% 26 4% 17 20% 17 53% 33 69% 7 64% 4 100%

6 Decrement 68 8% 6 1% 18 22% 9 28% 26 54% 5 45% 4 100%

7 Negation 59 7% 10 1% 9 11% 14 44% 16 33% 6 55% 4 100%

8 Addition 76 9% 9 1% 20 24% 10 31% 28 58% 5 45% 4 100%

9 Subtraction 61 7% 10 1% 10 12% 15 47% 16 33% 6 55% 4 100%

10 And 31 4% 1 0% 9 11% 7 22% 7 15% 3 27% 4 100%

11 Or 61 7% 13 2% 18 22% 6 19% 15 31% 6 55% 3 75%

12 Not 34 4% 4 1% 1 1% 5 16% 16 33% 4 36% 4 100%

13 Branch Always 863 100% 685 100% 83 100% 32 100% 48 100% 11 100% 4 100%

14 Branch Equal 33 4% 0 7 8% 2 6% 16 33% 4 36% 4 100%

15 Branch LTE 10 1% 0 1 1% 1 3% 6 13% 1 9% 1 25%

16 Branch LT 4 0% 0 0 1 3% 1 2% 1 9% 1 25%

17 Function Call 195 23% 74 11% 50 60% 20 63% 39 81% 8 73% 4 100%

18 System Call 0 0 0 0 0 0 0

69

traitor found complete sets in 23%, 36% and 100% of the binaries in the respective

groupings. Thus, although admittedly not an enormous sampling (with only around

100 binaries), considering the “complete” results for the trained query on both the

first and second binary groups, there is at least a strong suggestion that traitor

has a decent likelihood of finding Turing-complete gadget sets in arbitrary binaries

at various instruction count thresholds.

Alternately, we can make the softer claim that in light of our three search

runs on two binary groups, there is decent evidence that traitor can effectively find

significant subsets of our core 19 sought gadgets in previously unknown binaries. The

results from the second binary group show a definite positive correlation between the

likelihood of gadgets and the restore count in a given target binary.

7.5 Lessons and Implications for Automated Gad-

get Searching

The search experiments in this chapter provide us with interesting information

about the nature of many of our gadgets. Although general query generalizations

were able to improve our search results in most cases, several gadgets required specific

analysis, considering issues such as the common case for certain instructions in the

target code base, and possibly compiler-dependent instruction generation differences.

In all cases except the system call gadget, we were able to broaden our gadget

queries after examining example target binaries, and offer that similar binary-specific

training may be successful for other targets outside our two search groups.

Ultimately, we were unsuccessful in finding any matches for the system call

gadget due to a dearth of usable “ta” instructions with the correct trap code. We

argue that this probably is rooted in the fact that SPARC binaries to not typically

trap to the kernel, instead relying on wrapper functions in libraries like libc (where we

found our original system call gadget matches). It may be possible to find a general-

purpose system call gadget in the future by looking to trap instructions other than

ta.

Our experience in running traitor on large search sets demonstrates that an

70

automated approach to return-oriented gadget searches is both quick and practically

feasible. For the main binary we trained on in the first binary group, we were able

to raise the number of gadget matches from 10 to 16. Using this improved query on

the entire binary group, we achieved the improved results discussed in Section 7.3.3.

And, the same trained query performed equally well on an unknown binary group,

as shown in Section 7.4.1.

Given the speed with which we were able to train the original query and

even augment the traitor search code, we pose that discovering and implementing

full return-oriented programming attacks on new and unknown binaries is not only

possible, but increasing likely as the target code size increases. We also point out that

searching with traitor is fast—our longest search on an extremely large binary only

took 45 minutes on a single server-class computer. Together, our results evidence

that traitor is powerful, general, extensible, and efficient.

Finally, we note that all our experiments in this chapter focus on single bi-

naries in isolation. In reality, an attacker looking to implement a return-oriented

exploit can not only use the core code of a vulnerable program, but any dynamically

loaded libraries, such as libc, as well. Considering all the “good” code that is loaded

by a typical program at runtime, we conclude with the observation that combining

available code bases for return-oriented attacks makes it very likely that a “complete”

set, or at least a useful subset, of gadgets will be found in any arbitrary program

Chapter 8

Conclusion

Like many historically widespread vulnerabilities and exploits that were ini-

tially thought to be limited in pervasiveness or applicability, we offer that return-

oriented programming is evolving from its original specific and singular applications

to a generally applicable and practical threat across computer systems believed to

be protected by W⊕X.

In this thesis, we have described porting the return-oriented model from the

x86 to the radically different SPARC architecture. Our resulting SPARC gadget set

for our target Solaris libc binary is Turing-complete on inspection and eminently

capable of use in practical and extensible attacks [4].

More importantly, we have introduced a tool, traitor, which automates the

previously painstaking task of performing static assembly code analysis on target

binaries to discover usable return-oriented gadgets. traitor provides an efficient

search algorithm and extensible query language to permit users to find Turing-

complete gadget sets in previously unknown binaries in minutes instead of weeks

or months.

Our experiences running traitor on many target binaries have provided much

insight into the future directions and impacts of return-oriented programming gen-

erally. First, our results for searching nearly 2,000 binaries empirically demonstrates

that traitor can find full or partially Turing-complete gadget sets for a substantial

portion of the target search set. Second, traitor can be quickly tuned to specific

71

72

binaries either through query modifications and/or enhancing the underlying search

algorithm code and produce significantly improved search results. Finally, looking

to our results broken down across instruction count thresholds, we see good exper-

imental support for the return-oriented thesis—as target code size increases, so do

the chances for discovering a usable and/or Turing-complete gadget set in an ar-

bitrary binary. Moreover, we point out that our measurements looked at isolated

binaries without considering dynamic libraries loaded. In the wild, an attacker fo-

cusing on a specific binary can not only use the core binary code, but all dynamically

loaded libraries (e.g., libc), which we argue makes the likelihood of finding a full or

useful-enough return-oriented gadget set in an arbitrary binary very good.

Against the backdrop, we pose that the return-oriented programming model

is powerful and extensible, and with our present research, efficiently and generally

applicable to wide array of programs (that already have some entry vector vulnera-

bility). We offer that it is time to reconsider the fundamental notions of the W⊕X

defense model as automated tools dramatically increase the ease with which “bad”

computations can be performed solely with “good” code in vulnerable programs

and empirical data provides a glimpse of the true and possibly pervasive extent of

return-oriented exploits in programs in the wild.

Bibliography

[1] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 49(14),
Nov. 1996. http://www.phrack.org/archives/49/P49-14.

[2] Anonymous. Once upon a free()... Phrack Magazine, 57(9), Aug. 2001. http:

//www.phrack.org/archives/57/p57-0x09.

[3] blexim. Basic integer overflows. Phrack Magazine, 60(10), Dec. 2002. http:

//www.phrack.org/archives/60/p60-0x0a.txt.

[4] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions
go bad: Generalizing return-oriented programming to RISC. In P. Syverson and
S. Jha, editors, Proceedings of CCS 2008, pages 27–38. ACM Press, Oct. 2008.

[5] S. Christensen. Sunfreeware.com. http://www.sunfreeware.com/.

[6] M. Conover. w00w00 on heap overflows, 1999. http://www.w00w00.org/files/
articles/heaptut.txt.

[7] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole. Buffer overflows:
Attacks and defenses for the vulnerability of the decade. In Proceedings of the
DARPA Information Survivability Conference and Expo, volume 02, page 1119,
Los Alamitos, CA, USA, 2000. IEEE Computer Society.

[8] M. Ivaldi. Re: Older SPARC return-into-libc exploits. Penetration Testing,
Aug. 2007.

[9] S. Krahmer. x86-64 buffer overflow exploits and the borrowed code chunks
exploitation technique, Sept. 2005. http://www.suse.de/∼krahmer/no-nx.

pdf.

[10] J. McDonald. Defeating Solaris/SPARC non-executable stack protection. Bug-
traq, Mar. 1999.

[11] Microsoft. KB 875352: A detailed description of the Data Execution Prevention
(DEP) feature in Windows XP Service Pack 2, Windows XP Tablet PC Edition

73

http://www.phrack.org/archives/49/P49-14
http://www.phrack.org/archives/57/p57-0x09
http://www.phrack.org/archives/57/p57-0x09
http://www.phrack.org/archives/60/p60-0x0a.txt
http://www.phrack.org/archives/60/p60-0x0a.txt
http://www.sunfreeware.com/
http://www.w00w00.org/files/articles/heaptut.txt
http://www.w00w00.org/files/articles/heaptut.txt
http://www.suse.de/~krahmer/no-nx.pdf
http://www.suse.de/~krahmer/no-nx.pdf

74

2005, and Windows Server 2003, Sept. 2006. http://support.microsoft.com/
KB/875352.

[12] A. Noordergraaf and KeithWatson. SolarisTM operating environment security,
Jan. 2000.

[13] OpenBSD Foundation. OpenBSD 3.3 release, May 2003. http://www.openbsd.
org/33.html.

[14] OpenBSD Foundation. OpenBSD 3.4 release, Nov. 2003. http://www.openbsd.
org/34.html.

[15] R. P. Paul. SPARC Architecture, Assembly Language Programming, and C.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[16] PaX Team. Homepage of the PaX Team. http://pax.grsecurity.net/.

[17] J. Pincus and B. Baker. Beyond stack smashing: Recent advances in exploiting
buffer overruns. IEEE Security and Privacy, 2(4):20–27, 2004.

[18] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc
without function calls (on the x86). In Proceedings of CCS 2007, pages 552–61.
ACM Press, Oct. 2007.

[19] Solar Designer. StackPatch. http://www.openwall.com/linux.

[20] Solar Designer. Getting around non-executable stack (and fix). Bugtraq, Aug.
1997.

[21] SPARC Int’l, Inc., Englewood Cliffs, NJ, USA. The SPARC Architecture Manual
(Version 9), 1994.

[22] SPARC Int’l, Inc. System V Application Binary Interface, SPARC Processor
Supplement, 1996.

http://support.microsoft.com/KB/875352
http://support.microsoft.com/KB/875352
http://www.openbsd.org/33.html
http://www.openbsd.org/33.html
http://www.openbsd.org/34.html
http://www.openbsd.org/34.html
http://pax.grsecurity.net/
http://www.openwall.com/linux

	Signature Page
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Abstract of the Thesis
	Introduction
	Evolution: From Stack-Smashing to Return-Oriented Programming
	Traditional Stack-Smashing and Defenses
	WX and Return-to-Libc
	Return-Oriented Programming on x86

	SPARC Architecture Overview
	Registers
	Register Banks
	The Stack and Subroutine Calls
	Buffer Overflows and Return-to-Libc

	Return-Oriented Programming on SPARC
	Finding SPARC Instruction Sequences in libc
	Constructing SPARC Gadgets
	Crafting a Return-Oriented Program
	Gadget Abstractions and Practical Return-Oriented Programming

	SPARC Gadget Catalog
	Memory
	Address Assignment
	Pointer Read
	Pointer Write

	Assignment
	Constant Assignment
	Variable Assignment

	Arithmetic
	Increment, Decrement
	Addition, Subtraction, Negation

	Logic
	And, Or, Not
	Shift Left, Shift Right

	Control Flow
	Branch Always
	Branch Equal; Branch Less Than or Equal; Branch Greater Than
	Branch Not Equal; Branch Less Than; Branch Greater Than or Equal

	Function Calls
	System Calls

	Automated Gadget Searching
	Gadget Search Tool
	Search Queries
	Arguments
	Instructions
	Sequences, Gadgets, and Gadget Lists

	Search Algorithm
	Gadget Matching
	Instruction Sequence Matching

	Vulnerability Analysis
	Measurement Methodology
	First Binary Group, Untrained
	Results

	First Binary Group, Trained
	Methodology
	Query Modifications and Training
	Results
	Results Comparison

	Second Binary Group
	Results

	Lessons and Implications for Automated Gadget Searching

	Conclusion
	Bibliography

