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THE SEMIGROUP OF METRIC MEASURE SPACES
AND ITS INFINITELY DIVISIBLE PROBABILITY
MEASURES

STEVEN N. EVANS AND ILYA MOLCHANOV

ABSTRACT. A metric measure space is a complete, separable met-
ric space equipped with a probability measure that has full sup-
port. Two such spaces are equivalent if they are isometric as metric
spaces via an isometry that maps the probability measure on the
first space to the probability measure on the second. The result-
ing set of equivalence classes can be metrized with the Gromov—
Prohorov metric of Greven, Pfaffelhuber and Winter. We consider
the natural binary operation [H on this space that takes two metric
measure spaces and forms their Cartesian product equipped with
the sum of the two metrics and the product of the two probability
measures. We show that the metric measure spaces equipped with
this operation form a cancellative, commutative, Polish semigroup
with a translation invariant metric. There is an explicit family of
continuous semicharacters that is extremely useful for, inter alia,
establishing that there are no infinitely divisible elements and that
each element has a unique factorization into prime elements.

We investigate the interaction between the semigroup structure
and the natural action of the positive real numbers on this space
that arises from scaling the metric. For example, we show that for
any given positive real numbers a, b, ¢ the trivial space is the only
space X that satisfies aX BHbX = cX.

We establish that there is no analogue of the law of large num-
bers: if X1,X5,... is an identically distributed independent se-
quence of random spaces, then no subsequence of }L Z:l X con-
verges in distribution unless each X}, is almost surely equal to the
trivial space. We characterize the infinitely divisible probability
measures and the Lévy processes on this semigroup, characterize
the stable probability measures and establish a counterpart of the
LePage representation for the latter class.
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1. INTRODUCTION

The Cartesian product G [] H of two finite graphs G and H with
respective vertex sets V(G) and V(H) and respective edge sets E(G)
and E(H) is the graph with vertex set V(G H) := V(G) x V(H) and
edge set

E(GOH) = {((¢"h).(¢",h) : (' g") € E(G), he V(H)}
v {((g: 1), (9, h")) - g € V(G), (W', h") € E(H)}.

This construction plays a role in many areas of graph theory. For
example, it is shown in [Sab60] that any connected finite graph is
isomorphic to a Cartesian product of graphs that are irreducible in
the sense that they cannot be represented as Cartesian products and
that this representation is unique up to the order of the factors (see,
also, [Viz63, Mil70, Tmr71, Wal87, [AFDFQ0, [Tar92]). The study of
the problem of embedding a graph in a Cartesian product was initi-
ated in [GWS85], [GWS84]. A comprehensive review of factorization and
embedding problems is [Win87].

If two connected finite graphs G and H are equipped with the usual
shortest path metrics r¢ and rg, then the shortest path metric on the
Cartesian product is given by rgxg = r¢ @ ry, where

(TG @TH)((gla hl): (9”7 h”)) = 7ﬁG(gla g”) + TH(hI> h”)a
(¢', 1), (¢",h") e G x H.

We use the notation @ because if we think of the shortest path metric
on a finite graph as a matrix, then the matrix for the shortest path
metric on the Cartesian product of two graphs is the Kronecker sum of
the matrices for the two graphs and the @ notation is commonly used
for the Kronecker sum [SH11].

It is natural to consider the obvious generalization of this construc-
tion to arbitrary metric spaces and there is a substantial literature in
this direction. For example, a related binary operation on metric spaces
is considered by Ulam [Mau8&1, Problem 77(b)] who constructs a met-
ric on the Cartesian product of two metric spaces (Y, ry) and (Z,7z)
via (v, 2), (", 2")) = A/ry (Y, y")2 + rz(2', 2")? and asks whether it
is possible that there could be two nonisometric metric spaces U and
V' such that the metrics spaces U x U and V' x V are isometric. An ex-
ample of two such spaces is given in [Fou71]. However, it follows from
the results of [Gru70, Mos92] that such an example is not possible if U
and V' are compact subsets of a Euclidean space.
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On the other hand, a classical result of de Rahm [dR52] says that a
complete, simply connected, Riemannian manifold has a product de-
composition My x M7 x - - - x My, where the manifold M is a Euclidean
space (perhaps just a point) and M;, i = 1,..., k, are irreducible Rie-
mannian manifolds that each have more than one point and are not
isometric to the real line. By convention, the metric on a product of
manifolds is the one appearing in Ulam’s problem. This last result was
extended to the setting of geodesic metric spaces of finite dimension in
[FLOS].

Ulam’s problem is closely related to the question of cancellativity
for this binary operation; that is, if Y x Z’ and Y x Z" are isometric,
then are Z’ and Z” isometric? This property clearly does not hold in
general; for example, £*(N) x (2(N) and /*(N) (where N := {0,1,2,...})
are isometric, but £2(N) and the trivial metric space are not isometric.
Moreover, an example is given in [Her94] showing that it does not
even hold for arbitrary subsets of R. However, we note from [BP95]
that there are many compact Hausdorff topological spaces K with the
property that if L' and L” are two compact Hausdorff spaces such that
K xL"and K x L" are homeomorphic, then L’ and L” are homeomorphic
(see also [Zer01]).

Returning to the binary operation that combines two metric spaces
(Y, ry) and (Z,rz) into the metric space (Y x Z,ry @ryz), it is shown in
[Tar92] that if a metric space is isometric to a product of finitely many
irreducible metric spaces, then this factorization is unique up to the
order of the factors. However, there are certainly metric spaces that
are not isometric to a finite product of finitely many irreducible metric
spaces and the study of this binary operation seems to be generally
rather difficult.

In this paper we consider a closely-related binary operation on
the class of metric measure spaces; that is, objects that consist of a
complete, separable metric space (X,ryx) equipped with a probabil-
ity measure px that has full support. Following [Gro99] (see, also,
[Ver98, Ver03l, Ver04]), we regard two such spaces as being equivalent
if they are isometric as metric spaces with an isometry that maps the
probability measure on the first space to the probability measure on
the second. Denote by M the set of such equivalence classes. With a
slight abuse of notation, we will not distinguish between an equivalence
class X € M and a representative triple (X, rx, px).

Gromov and Vershik show that a metric measure space (X, rx, px) is
uniquely determined by the distribution of the infinite random matrix
of distances

(rx (&, §j))(z’,j)eNxN7
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where (&;)gen is an ii.d. sample of points in X with common dis-
tribution px, and this concise condition for equivalence makes metric
measure spaces considerably easier to study than metric spaces per se.
A probability measure ) on the cone R := {(74;) jenxn} of distance
matrices is the distribution of a distance matrix corresponding to a
metric measure space if and only if it is invariant and ergodic with re-
spect to action of the infinite symmetric group and for all £ > 0 there
exists integer N such that

_#Hj 1< j<n,minigen iy < €}
(1.1) Q{(”ﬁ') €R: I n B 6}
>1—¢,
see [Ver03].

Definition 1.1. Define a binary, associative, commutative operation
on M as follows. Given two elements J = (Y,ry,puy) and Z =
(Z,rz,pz) of M, let YH Z be X = (X, rx, ux) € M, where
e X =Y x Z,
e ry =1y @®ry, where (ry ®rz) (v, 7)), (", 2") = rv(,y") +
rg(,2") for (', 2)), (', 2") e Y x Z,
® Lx = [y @ piz.

The distribution of the random matrix of distances for Y Z is the
convolution of the distributions of the random matrices of distances for
Y and Z. The equivalence class £ of metric measure spaces that each
consist of a single point with the only possible metric and probability
measure on them is the neutral element for this operation, and so
(M,#) is a commutative semigroup with an identity. A semigroup
with an identity is sometimes called a monoid.

Remark 1.2. We could have chosen other ways to combine the metrics
ry and rz to give a metric on Y x Z that induces the product topology
and results in a counterpart of [ that is commutative and associative.
For example, by analogy with Ulam’s construction we could have used
one of the metrics ((v/,2'), (y",2")) — (ry(y/,y")P + rz(z’,z”)p)% for
p > 1 or the metric ((v/,2'), (v, 2")) — rv (¥, y") v rz(,2"). We do
not investigate these possibilities here.

We finish this introduction with an overview of the remainder of the
paper.

We show in Section [2| that if we equip M with the Gromov-Prohorov
metric dgp, introduced in [GPW09| (see Section (12| for the definition
of dgpy), then the binary operation { : Ml x M — M is continuous
and the metric dgp, is translation invariant for the operation H. We
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recall from [GPWOQ9] that (M, dgp,) is a complete, separable metric
space. Moreover, the Gromov—Prohorov metric has the property that
a sequence of elements of M converges to an element of M if and only
if the corresponding sequence of associated random distance matrices
described above converges in distribution to the random distance ma-
trix associated with the limit. In Section 2 we also introduce a partial
order < on M by declaring that Y < Z it Z = Y HAX for some X e M
and show for any Z € M that the set {¥ e M : Y < Z} is compact.

A semicharacter is a map x : M — [0,1] such that x(YH Z) =
X(YV)x(Z) for all Y, Z € M. We introduce a natural family of semichar-
acters in Section [3] This family has the property that lim, ,, X, =
X for some sequence (X,)nen and element X in M if and only if
lim, o x(&,) = x(X) for all semicharacters x in the family. Us-
ing the semicharacters, we characterize the existence of the limit
limy, o [H;_y X for some sequence (X, )nen, and show that if the limit
exists, then [H,_, X} converges to the same limit for any rearrange-
ment (X )qen of the sequence. We also use the semicharacters to prove
that (M, H) is cancellative.

We show in Section {4 that the irreducible elements (that is, those
which cannot be decomposed as a nontrivial H combination of elements
of M) form a dense, Gs subset I < M. We give several examples of
irreducible elements; for instance, all totally geodesic metric measure
spaces are irreducible. Furthermore, there are no nontrivial infinitely
divisible metric measure spaces (an element X € M is infinitely divisible
if for every n > 2 it can be decomposed as the FH-sum of n identical
summands).

We establish in Section [5 that (M, H) is a Delphic semigroup as
studied in [Ken68| [Dav69]. By appealing to general results for Delphic
semigroups, we confirm that each metric measure space is either irre-
ducible or has an irreducible factor and then that any element of M\ {€}
has a representation as either a finite or countable [ combination of ir-
reducible elements. We further show that this representation is unique
up to the order of the “factors”. The uniqueness does not follow from
the Delphic theory and is based on a result showing that irreducible
elements are prime (an element X € M\{} is prime if X < YA Z
implies that X < Y or X < Z). The latter result is analogous to a key
fact in elementary number theory that can be proved using Euclid’s
algorithm and leads to the uniqueness of prime factorizations for the
positive integers: if an integer p > 2 is such that the only divisors of
p are 1 and p (the usual definition of p being prime and the analogue
of the irreducibility property in our setting), then given any positive
integers a and b such that p divides ab it must be the case that either
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p divides a or p divides b (the analogue of primality in our setting) —
see, for example, [And94, Corollary 2-3, Theorem 2-5].

In Section [6] we investigate the counting measure on the family I of
irreducible elements that is obtained by taking an element of M and
assigning a unit mass to each irreducible element (counted according to
multiplicity) in its factorization. We show that this mapping from ele-
ments of Ml to counting measures on M concentrated on I is measurable
in a natural sense.

Given X € M and a > 0, we define the rescaled metric measure space
aX := (X,arx, px) € M. We show in Section [7] that if (aX) @ (bX) =
cX for some X € M and a,b,¢c > 0, then X = &, so the second
distributivity law certainly does not hold for this scaling operation.

We begin the study of random elements of M in Section |8 by defin-
ing a counterpart of the usual Laplace transform in which exponential
functions are replaced by semicharacters. Two random elements of M
have the same distribution if and only if their Laplace transforms are
equal. A random element in M can be viewed, via its decomposition
into irreducibles, as a point process on the set I of irreducible elements
of M.

We introduce the appropriate notion of infinitely divisible random
elements of M in Section [9] and obtain an analogue of the classical
Lévy—Hincin—It6 description of infinitely divisible real-valued random
variables. Our approach to this result is probabilistic and involves
constructing for any infinitely divisible random element a Lévy process
that at time 1 has the same distribution as the given random element.
Our setting resembles that of nonnegative infinitely divisible random
variables and so there is no counterpart of a Gaussian component in
this description. Also, there is no deterministic component because the
only constant that is infinitely divisible is the trivial space £.

Using the scaling operation on M we define stable random elements
of M in Section [10} We determine how the Lévy-Hincin-It6 descrip-
tion specializes to such random elements and also verify that there is
a counterpart of the LePage series that represents a stable bounded
metric measure space as an “infinite weighted sum” of independent
identically distributed random elements in M with a suitable indepen-
dent sequence of coefficients.

The representation of random elements of M as point processes on
the set T of irreducible spaces makes it possible in Section (11| to intro-
duce a thinning operation that takes an element of M and produces
another by randomly discarding some of the irreducible factors. Lévy
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processes on M necessarily have nondecreasing sample paths with re-
spect to the partial order <, but by combining thinning with the addi-
tion of independent random increments one can produce Markov pro-
cesses with sample paths that are not monotone. Also, thinning can
be used to define a notion of discrete stable random elements in M.

For ease of reference we summarize some facts about the Gromov—
Prohorov metric in Section Many of our arguments can be carried
through using alternative metrics on M or its subfamilies such as the
D-metric studied in [Stu06]. Lastly, in Section |13| we obtain a bound
on the Laplace transform of nonnegative random variables that was
useful in Section Bl

2. TOPOLOGICAL AND ORDER PROPERTIES

Lemma 2.1. The operation M x M — M is continuous. More
specifically, of X;, Vi, i = 1,2, are elements of M, then

dep: (X H X, Vi H Ye) < dape( X1, W) + dape (X, Vo)

Proof. Let ¢x, and ¢y, be isometries from X; and Y; to a common
metric measure space Z;, ¢ = 1,2. The combined function (¢x,, ¢x,)
(resp. (dy,, Py,)) maps X; x Xy (resp. YY) x Y3) isometrically into
Z1 x Zy. The result now follows from Lemma [12.1 ]

A proof similar to that of Lemma using Lemma establishes
the following result.

Lemma 2.2. The metric dgp, s translation invariant for the operation
H. That is, if X1, X5, Y are elements of Ml, then

dep (X1 HY, X, HY) = dape(X1, Ay)
In particular,
dap: (X1 Xy, X1) = dape (X5, E) .

Definition 2.3. Given X = (X, rx, ux) € M, write diam(X) for the
(possibly infinite) diameter of the metric space X; that is,

diam(X) := sup{ryx(z/,2") : 2/, 2" € X}.
The next result is obvious.

Lemma 2.4. The diameter is an additive functional on (M,H); that
18,

diam(X BHY) = diam(X) + diam())
for all X, e M.
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Remark 2.5. The function diam is not continuous even on the family K
of compact metric measure spaces. For example, let X, = ({0, 1}, 7, 1),
where 7(0,1) = 1, 4, {0} = 1 — = and p,{1} = +. Then, X, converges
to the trivial space &, whereas diam(X,,) = 1 4 0 = diam(&).

Lemma 2.6. The function diam s lower semicontinuous on M. That
is, if the sequence X, — X in M as n — oo, then diam(X) <
lim inf, o, diam(AX,,).

Proof. Suppose that the sequence X, converges to X, (f,i”))keN
are i.i.d. in X, with the common distribution ux,, and (&x)en
are ii.d. in X with the common distribution px. Observe for
any k that maxlgkjgk(rxn(@("),fj(-")) converges in distribution to
max<;<j<k(rx (&, &;)). It suffices to note that max;<;«j<x(rx, (§§”>, fj(-n)))
is increasing in k and converges almost surely to diam(X,,) as k — o
and that max;<;<j<k(rx (&, &;)) is increasing in k and converges almost
surely to diam(X') as k — 0. O

Definition 2.7. Define a partial order < on M by setting )V < Z if
Z=YHX for some X € M.

The symmetry and transitivity of < is obvious. The antisymmetry
is apparent from Lemma below. This partial order is the dual of
the Green or divisibility order (see [Gri0ll Section 1.4.1]). The identity
£ is the unique minimal element.

Lemma 2.8. If X <Y < Z, then dgp.(X,Y) < dgp:(X, Z).

Proof. In view of Proposition [3.6(a) and Lemma [2.2] it suffices to as-
sume that X = &. If Z = YV, then (12.1)) yields that

dape(Z,E) = inf inf{e >0: puy @ uy{(y’,v'):

ye)y,veV
ry(y,y') +rv(v,0') = e} <€}

> inf inf{e >0: puy @ u{(y,v") :rx(y,y) = e} <e}
yeY,veyY

= dGPr(yag) .
[

An element of a semigroup with an identity is a wnit if it has an
inverse and a semigroup with an identity is said to be reduced if the
only unit is the identity (see [Cli38] Section 1].

Corollary 2.9. The semigroup (M,H) is reduced.

Proof. Suppose that £ = XYHY, then £ < X < £ and the antisymmetry
of the partial order < gives that £ =X = ). U
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Lemma 2.10. a) For any compact set S M, the set | J;.{Y €
M:Y < Z} is compact.
b) For any compact set S © M, the set {(V,Z) e M?*: Z€S, Y <
Z} is compact.
¢) The map K from M to the compact subsets of M defined by
K(X):={YeM: Y <X} is upper semicontinuous. That is,
if < M is closed, then {X e M : K(X)n F # &} is closed.
Equivalently, if X,, — X, and Y, € K(X,) converges to ), then
Ve K(X).
Proof. (a) We first show that | Jz{Y € M : Y < Z} is pre-compact.
Given ¢ > 0, we know from [GPWO09, Theorem 2] that there exist
K >0 and 6 > 0 such that for all Z € S
pz Q@uz{(Z,2"Ye Z x Z :rz(2,2") > K} <¢
and
pziz' € Z ugl"e Z iry(,2") <e} <6} <e.
If Y < Z for some Z € S, then, by definition, there is a YW € M such
that Z2 = YHW, and so
py @ puy{(y',y") €Y xY :ry(y,y") > K}
< (v ® piv) ® (i ® (154", (0, w")) € (¥ x V) x (W x W) -
ry (Y, y") + rw (W', w") > K}
=uzQ@uzi{(z',2"Ye Z x Z :rz(7,2") > K}
<e.
Similarly,
iy €Y tuy{y" e Y iy (v, y") < e} <6}
=y @ uw{(y, W) eY x W
py @ pw (" W) €Y x Wy (y',y") < e} < 6}
< iy ® (Y u) €Y X W : iy ® (" ") € Y x W
ry (Y, y") + rw(w',w") < e} <6}
=uziz € Z:ug{" e Z :ry(, ") < e} <6}
<e.
It follows from [GPWO09, Theorem 2] that | Jz.{Y € M : Y < Z} is
pre-compact.
We now show that | J;.{Y € M : Y < Z} is closed, and hence
compact. Suppose now that (V,)nen is a sequence in |J{Y € M :

Y < Z} that converges to a limit ).,. For each n € N we can find Z, € S
and W, € | Jz{Y e M : Y < Z} such that Z, = Y, HW,. From the
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above we can find a subsequence (n(k))en, 20 € S and W,, € M such
that limy . Zn) = Zo and limg_,o Wiy = We. By the continuity
of the semigroup operation established in Lemma [2.1

Vo BWee = lim (Vo) B8 Wary) = lim 2,y = Zoo,

which implies that YV, < Z4 € S (and also Wy, < Z4 € S). Therefore,
UzesiY e M : Y < Z} is closed and hence compact.

(b) Because {(¥,Z) e M?: Z €S, Y < Z} is a subset of the compact
set (UzeslY € M 1 Y < Z}) x S, it suffices to show that the former
set is closed, but this follows from an argument similar to that which
completed the proof of part (a).

(c) This is immediate from (b). O

3. SEMICHARACTERS

Following the standard terminology in semigroup theory, a semichar-
acter is a map x : M — [0, 1] such that x(YH Z) = x(V)x(2) for all
YV, ZeM.

Definition 3.1. Denote by A the set consisting of the empty set and

the arrays A = (a;;)1<i<j<n € RELZ) for n > 2. For each A € A define a

semicharacter x4 by setting xo =1 and

(3.1) xal(X,rx,px)) = J exp (- > aijT‘X(ﬂ?ia%)> ps" (da)

" 1<i<j<n
if A# . Note that y4(X) > 0 for all A€ A and X € M. We often
need the particular semicharacter

32) (@)= [ exp(-rxon, 22) (o

XQ

defined by taking as A € A an array with the single element 1.

As we recalled in the Introduction, a metric measure space
(X, rx, jtx) is uniquely determined by the distribution of the infinite
random matrix of distances (rx (&, &;)) @ j)enxn, where (§;)gen is an i.i.d.
sample of points in X with common distribution px. The next lemma
follows immediately from this observation and the unicity of Laplace
transforms.

Lemma 3.2. a) Two elements X, € M are equal if and only if

xa(X) = xa(Y) for all A€ A.
b) If Y < X, then xa(X) = xa(Y) for all A€ A.
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n/

Remark 3.3. Note that if A’ € RSQ) and A" € R(f ), then x4 xar = X4,

n’+n”
where A € RS ") is given by
_ a;j, I<i<gj<gn
Qij = " / < . ’ "
ai—n’,j—n” n+1\l<]<n+n

It follows that {x4 : A € A} is a semigroup with identity yg = 1.

Remark 3.4. Not all semicharacters of M are of the form x4 for some
A e A. For example, if A € A and 8 > 0, then X — x4(X)? is a
(continuous) semicharacter. If X has two points, say 0 and 1, that
are distance r apart and pux({0}) = (1 —p) and ux({1}) = p for some
0 < p < 1, then taking A to be the array with the single element a we
have xa(X) = (1 —p)? + p? + 2p(1 — p) exp(—ar) and it is not hard
to see from considering just X of this special type that for § # 1 the
semicharacter Xﬁ is not of the form y 4/ for some other A € A.

It follows from Lemma [2.4] that X +— exp(— diam (X)) is a (discon-
tinuous) semicharacter on M. Also, if A € A and b > 0, then

(J nexp( 2 aijrx(xi,:vj)> /L?{‘(d:ﬂ))

I<i<j<n

is a (discontinuous) semicharacter. These last two examples are con-
nected by the observation that

o=

t—00

exp(— diam (X)) = lim (L exp (t7x (21, 72)) /L?(Q(da:))

Lemma 3.5. A sequence (X,)nen converges to X € M if and only if
lim,, o0 XA (Xn) = xa(X) for all A€ A.

Proof. For n € N let ( ,g")) reny be an 1.i.d. sequence of X,-valued ran-
dom variables with common distribution py,, and let ({x)reny be an
ii.d. sequence of X-valued random variables with common distribu-
tion px. It follows from [GPW09, Theorem 5] that &, converges to X’ if

and only if the distribution of (rx, (51-("), §§")))1<i<j<m converges to that
of (rx(&,&;))1<i<j<m for all m € N. The result is now a consequence of

the equivalence between the weak convergence of probability measures

on ]RSQ) and the convergence of their Laplace transforms. 0

In the usual terminology of semigroup theory, part (a) of the follow-
ing result says that the semigroup (M) is cancellative (see [Gri0l]
Section I1.1.1]).
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Proposition 3.6. a) Suppose that Y, Z2', Z" € M satisfy YHZ' =
YEZ" then 2/ = 2". [ Y@AZ < V@A Z", then 2’ < Z".
b) Consider sequences (X, )neny and (Vy)nen in M. Set Z, := X,
V.. Suppose that X := lim,,_, X, and Z = lim,,_, Z, exist.
Then, Y = lim,_,o YV, exists and Z2 =X H).

Proof. a) For each semicharacter x4, A € A, we have xa())xa(Z2') =
Xa(X) = xa(Y)xa(Z2") and so xa(Z') = xa(Z"), which implies that
Z' = Z". In case of the inequality, YH Z'EHW = Y H Z”, so that
Z'mW = Z” and hence Z' < Z".

b) By Lemma[2.10)(a), the sequence (J,)nen is pre-compact. Any subse-
quential limit YV, will satisfy Z2 = XYHYy. It follows from part (a) that
Y = lim,,_,e YV, exists and Z = X HY in view of Lemma (a). O

Remark 3.7. Tt is a consequence of Proposition[3.6[a) and the discussion
in Section 1.10 of [CP61] that the semigroup (M,H) can be embedded
into a group G as follows. Equip M x M with the equivalence relation
= defined by W, X) = (), Z2) if WHZ = XYHY. It is not hard to see
that = is indeed an equivalence relation, the only property that is not
completely obvious is transitivity. However, if (U,V) = (W, X) and
W, X) = (), Z), then, by definition, UHX = VEHW and WH Z =
X HY so that

UBZ)B(XEW) = UBX)EWHE Z)
=(VEW)HEXRBRY) =VEHY)BXEBEW),

from which we see that UEHZ = VAHY and hence (U, V) = (), Z). The
elements of the group G are the equivalence classes for this relation.
We write [ for the binary operation on G and define it to be the
operation that takes the equivalence classes of (W, X’) and (), Z) to
the equivalence class of (WHY, X HZ). It is clear that this operation
is well-defined, associative and commutative. The identity element is
the equivalence class of (£,€) and the inverse of the equivalence class

of (¥, Z) is the equivalence class of (Z,)).

It will be convenient for us to have various ways of measuring how far
a metric measure space X is from the trivial space £. The most obvi-
ous such measure is simply the Gromov—Prohorov distance dgp, (X, E).
Note from Lemmal[2.1|that dgp,(X1EBXs, ) < dap, (X1, E) +dapr(Xo, E)
for X, Xy € M. It follows from Lemma that a sequence (X),)nen
is such that dgp,(X,,E) — 0 if and only if y4(&,) — 1 for all A€ A
and so Da(X) := —log xa(X) is also a measure of how far X is from
E. Observe that Da(X HXz) = Da(X)) + Da(Xs) for Xy, Xy € M. To
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simplify notation, we set
(3.3) D(X) := —log x1(&X).

It is a consequence of Lemma below that dgp,(X,,E) — 0 if and
only if D(X,,) — 0.

The equivalence between convergence in the Gromov-Prohorov dis-
tance and convergence in distribution of the corresponding random
distance matrices implies that if we set

(3.4) R(X) = JXQ(TX(atl,xQ) A1) 1€ (dz),

then dgp, (X, E) — 0 if and only if R(AX,,) — 0. It is clear that R(X;
Xy) < R(X)) + R(X,) for Xy, Xy € M. One last quantity that is useful
for measuring how far bounded metric measure spaces are from £ is the
diameter. Recall from Lemma [2.4] that diam (X, B X,) = diam(X;) +
diam(Xy) for Xy, Xy € M. The following result establishes a number of
relationships between these various objects.

Lemma 3.8. a) For each A € A, there exist constants a = b > 0
such that, for all X € M,

X1 (X)" < xa(X) < xa(X)°
and hence
bD(X) < DA(X) < aD(X).
b) For each X € M,

c¢) There ezist constants C > ¢ > 0 such that for each X € M
c(D(X) A1) < R(X) < C(D(X) A l).
d) For each X € M, dgp,(X,E) < diam(X), D(X) < diam(X)
and R(X) < diam(X).

Proof. Consider the the first inequality in part (a) for A € A n R().
The triangle inequality yields that

n
Z airx (Ti, 75) < CZ rx(xy, z;)
i=2

1<i<j<n

for a certain constant c¢. Therefore,

) | ( . exp(—cm(a:,y))m(dy))nl jix(do)
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. ( [ ewterstem)xian) MX(dy)> 7
> (1 (X)) DD

where the two last inequalities follow from Jensen’s inequality.

Regarding the second inequality in part (a), there exist 1 < i’ <
j < n such that 0 < ayy =: o. Because ZKKK” airx (T, x;) =
arx(zy,x;), we have x4(X) < xo(X). If @ = 1, then xo(X) < x1(X),
whereas if @ < 1, then y,(X) < x1(X)® by Jensen’s inequality. There-
fore, xa(X) < Xa(X) < xa (X))

For the first inequality in (b), we begin by recalling which says
that

/

dap: (X, E) = in)f( inf{e >0: pux{ye X: rx(x,y) =} <e}.
TE

Suppose that dgp, (X, E) < v where 0 < v < 1. There is then an x € X
such that pux{y € X : rx(z,y) = v} < . Hence, by the triangle
inequality

RO = [ Cclnim) 1))

X2

N

|| rtem) e 4 1) )

N

2 JX(TX(%Q) A1) pix(dy)

<2[yuxiy e X+ rx(z,y) < vp+puxfye X rx(z,y) = 9}
< 4y,
and the inequality follows.

Turning to the second inequality in part (b), suppose that R(X) <
where 0 < v < 1. There must then be an z € X for which §, (rx(z,y) A
1) pux(dy) <~ and hence eux{y € X : rx(z,y) =2 e} <vyfor0<e <1,
Take € = /7 to see that ux{y € X : rx(z,y) = 7} < /7, as

required.
Part (c) is immediate from Lemma|l3.1] and part (d) is obvious. O

Proposition 3.9. a) The sequence ([H;_y Xi)nen converges in M
if and only if iy, pooo, men i1 Xe = €.
b) The sequence ([ _y Xi)nen converges in M if and only if
Dkeny D(Xk) < 00 or, equivalently, if and only if Y, R(Xx) <
0.
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¢) The sequence (FH;_y Xi)nen converges in M if and only if there
exists Z € M such that H;_, X < Z for all n € N, in which
case lim,, o FH,_ X < Z.

d) Suppose that (V,)nen is a sequence in M such that Yo = V1 =

«-. Then, lim,_,o Y, exists.

e) Suppose that (X, )nen is a sequence such that lim,,_,o {H,_, Xk =
Y for some Y € M. Suppose further that (X))nen is a sequence
that is obtained by re-ordering the sequence (X, )nen. Then,
lim, o0 [Hy_o Xf = Y also.

f) The sequence ([H;_, Xi)nen converges to a bounded metric mea-
sure space if and only if Y . diam(A;,) < co.

g) A sufficient condition for the sequence (FHy_y Xi)nen to con-
verge in M is that Y, . dape(X, E) < 00 and a necessary con-
dition is that lim,, . dgp (X, E) = 0.

Proof. (a) By the completeness of (M, dgp,), the convergence of
Hi_o Xk as n — oo is equivalent to

lim dgp, ( X, )(k> = 0.
e k=0 k=0

However, if m < n, then Lemma [2.2] gives

dapr ( Xm/‘%) = dgpr < Xk,f)) .
k=0 k=0 k=m+1

(b) It suffices to prove the claim for D because the claim for R will
then follow from Lemma [3.8|c).
Suppose that >,  D(&)) < 0. For m < n,

dgpr< Xk,5> <\CD< Xk>

k=m+1 k=m-+1

A\ (Z D“’”)

for some constant C' by parts (b) and (c¢) of Lemma [3.8] It is then a

consequence of part (a) that Z:o X, converges as n — o0.
Conversely, if lim, o [H;_o X = Y exists, then >  D(Xy) =

D(Hy_o &) — D(Y) by Lemma 3.5

(c) Suppose that [H,_,Xx < Z for all n € N. It follows from

Lemma [3.2{(b) that >3, D(Xy) = D(HH;_y &) < D(Z) for all n e N,

and so part (b) gives that [H;_, A} converges as n — co. We note that
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an alternative proof of this direction can be given along the lines of the
proof of part (d).

Conversely, suppose that lim, . [H;_, Xx =: Y exists. We know
from one direction of part (b) that >, D(X;) < oo so that
D bemi1 D(Xk) < oo and hence, by the other direction of part (b),
limy, oo [Hy i1 Xk =2 Vi exists for all m € N. We have {H;" , A%
YV,, = Y for all m € N and hence 7,?:0 X, < Y for all m e N. We note
that Proposition [3.6[(b) can be used to give an alternative proof of this
direction.

(d) By Lemma [2.10)(a) any subsequence of (V,)nen has a further sub-
sequence that converges. For any A € A, the sequence (xa(Vn))nen is
nondecreasing by Lemma [3.2|b) and hence convergent. By Lemma[3.5
all of the convergent subsequences produced in this manner converge
to the same limit, and so the sequence (), )nen itself converges to that
limit.

(e) Tt follows from Lemma that >, .y Da(X,) = Da(Y). It is
well-known that all rearrangements of a convergent sequence with non-
negative terms converge to the same limit. Thus, ), Da(X)) =
Yinen Da(Xn) = Da(Y), implying that limy, e xa (oo A) = xa(Y)
and hence, by Lemma [3.5] that lim, . FH,_, X, = V.

(f) Suppose that lim, o [H;_, X = Y, where Y is bounded. Since
Hr o X <Y, Xp o diam(X) = diam(H],_, &%) < diam(}), and so
D ey diam(X,) < co.

Conversely, suppose that Y diam(X,) < oo. It follows from
Lemma [3.8(d) that Y, . D(X,) < o0 and hence H]}_, &) converges
to Y eM as n — oo.

The diameter is lower semicontinuous by Lemma and so
diam()) < liminf ), diam(X}) < oo.

(g) This part is immediate from part (a) and the observation that
dGPr(Xna ‘9) < dGPr(Z:m+1> g) < ZZ:erl dGPr(Xka g) by Lemma
and Lemma 2.1 Alternatively, the result follows from part (b) and

Lemma [3.8|(b). O

Remark 3.10. Proposition [3.9(e) gives that if (X;)ses is a countable
collection of elements of M, then the existence of lim,,_, Z:o X, for
some listing (s, )neny implies the existence for any other listing, with the
same value for the limit. We will therefore unambiguously denote the
limit when it exists by the notation 4, ¢ Xs. Moreover, a necessary
and sufficient condition for [, 4 & to exist is that ) o D(X,) < co.

We finish this section with a technical result that will be used to
handle certain measurability issues in Section [f] We use the notation
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VE* for YV € M and n € N to denote V - -- BV, where there are n
terms and we adopt the convention that this quantity is £ for n = 0.

Corollary 3.11. a) For alln € N, the set {(X,Y) € M? : Y <
X'} is closed.
b) The function M : M? — N defined by M(X,)) = max{n € N :
YVE < XY is upper semicontinuous and hence Borel.

Proof. Part (a) is immediate from Proposition [3.6(b) for n = 1. If
n =2 let YIEW, = X for all k. If X, —» X and Yy — ), then
VI — YE and the statement again follows from Proposition (b)

For part (b), {(X,Y) e M? : M(X,Y) = n} = {(X,Y) e M? : YH" £
X'} is a closed set for all n € N by part (a), and this is equivalent to
the upper semicontinuity of M. O

4. IRREDUCIBILITY AND INFINITE DIVISIBILITY

Definition 4.1. An element X € M is srreducible if X # £ and Y < X
for Y € M implies that Y is either €& or X' (see [CIi38, Section 1]). We
write I for the set of irreducible elements of M.

It is not clear a priori that I is nonempty. For example, the semi-
group R, with the usual addition operation has no irreducible elements
in the sense of the general definition in [Cli38]. The following two re-
sults show that I is certainly nonempty.

Proposition 4.2. The sets I and M\I are dense subsets of Ml. More-
over, the set 1 is a Gs subset of M.

Proof. 1t is easy to see that M\I is a dense subset of M: for any X € M
and Z € M\{€} the elements X, := X H (+Z) belong to M\I and
converge to X as n — 0.

We next show that I is dense in M. As in the proof of [GPW09,
Proposition 5.6], the subset of F < M consisting of compact metric
measure spaces with finitely many points is dense in M. If we are
given a finite metric measure space (W, ry,, uw ), then convergence of a
sequence of probability measures in the Prohorov metric on (W), ry/) is
just pointwise convergence of the probabilities assigned to each point
of W. The set of probability measures that assign positive probability
to all points of W is thus just the relative interior of the (#W — 1)-
dimensional simplex thought of as a subset of R#*" equipped with
the usual Euclidean topology. Suppose that (W, ry ) is isometric to
(U %V, ry@ry) for some nontrivial finite compact metric spaces (U, 1)
and (V,ry) — if this is not the case, then (W, rw, u,) is already irre-
ducible. The probability measures on U x V' that are of the form py®puy
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form a (#U —1) 4+ (#V — 1)-dimensional surface in the (#U x #V —1)-
dimensional simplex of probability measures on U x V' and, in particu-
lar, the former set is nowhere dense. Thus, even if (W, ry/) is isometric
to (U x V,ry @ry), any probability measure on W that is the isomet-
ric image of a probability measure on U x V' of the form uy ® py is
arbitrarily close to probability measures on W that are not isometric
images of probability measures of this form, and it follows that I is
dense in M.

We now show that the set I is a Gs. This is equivalent to showing
that M\I is an Fj,.

Let x1 be the semicharacter defined by (3.2)). Recall that x;(X) =1
if and only if X = &. For0<5<%set

Le:={XeM:3Y <X, x1(X)" " < x1(¥) < xa(X)}

Note that Lo 2 L. for ¢ < ¢” and J,_. 1 L. = M\[, so it suffices

to show that the L. are closed. Suppose that (X,)nen is a sequence
of elements of IL. that converges to X € M. For each n € N there
exist ), and Z, in M such that X, = Y, H Z, and x1(X,)' ¢ <
x1(Vn) < x1(X,)°. By Lemma [2.10[a) and Proposition [3.6(b), there is
a subsequence (ng)ren such that limg_o V,,, = Y and limy_,o Z,, = Z
for Y, Z € M such that X = YEHZ. Thus, Y < X and y,(X)'° <
x1(Y) < x1(X)%, so that X € L., as required. O

A theorem of Alexandrov, see [Kec95, Theorem 3.11], says that a
subspace of a Polish space is Polish in the relative topology if and
only if it is a Ggs-set; therefore, the space I with the relative topology
inherited from M is Polish.

Remark 4.3. 1t is not difficult to construct concrete examples of irre-
ducible elements of M.

We first recall that a metric space (W, ry) is totally geodesic if for any
pair of points w’, w"” € W there is a unique map ¢ : [0, ry (w', w”)] - W
such that ¢(0) = w', ¢(rw(w',w”)) = w" and rw(P(s), p(t)) = |s — t|
for s,t € [0,y (w',w")]; that is, any two points of W are joined by a
unique geodesic segment.

Any nontrivial closed subset X of a totally geodesic, complete, sep-
arable metric space W is irreducible no matter what measure it is
equipped with because such a space (X, ry) cannot be isometric to a
space of the form (Y x Z,ry @ rz) for nontrivial Y and Z. To see
this, suppose that the claim is false. There will then be four distinct
points a,b,c,d in X that are isometric images of points of the form
W, 2, ", 2), ,2"), (y',2") in Y x Z. Suppose that (X,ry) is a
closed subset of the totally geodesic, complete, separable metric space
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(W, rw). We have

<

rw(a,b) = riy (e, d),

(a,c) =rw(b,d),
) =
)

r
=rw
-

w(a,b) + ry (b, d),
(a,c) +rw(c,d),
(a,b) + rw(c,a),

d
d
(b> c)

TW(ba C) = TW(ba d) + TW(C> d)

It follows from the third and fourth equalities that b and ¢ are on the
geodesic segment between a and d. We may therefore suppose that
(W,rw) is a closed subinterval of R and, without loss of generality,
that a < b < ¢ < d. The fifth and sixth equalities are then impossible.

There are many totally geodesic, complete, separable metric spaces.
A Banach space (X, ||||) is totally geodesic if and only if it is strictly
conver; that is, © # y and |2'| = |2"]| = 1 imply that |az’ + (1 —
a)r”| < 1 for all 0 < a < 1 [Bea85, Section 3.I.1]. Strict convexity
of (X,||) is implied by uniform convezity; that is, for every ¢ > 0
there exists a § > 0 such that |[2'| = |2"| = 1 and |2’ — 2"| = ¢
imply ||#H < 1 — 4. Any Hilbert space is uniformly convex and the
Banach spaces LP(S,S,\), 1 < p < oo, where A is a o-finite measure,
are uniformly convex [Bea85, Section 3.I1.1]. Also, any real tree is, by
definition, totally geodesic and any ultrametric space is isometric to a
subset of a real tree.

and

Definition 4.4. An element of a semigroup is said to be infinitely
divisible if, for each, n > 2, it can be represented as the sum of n
identical summands.

Proposition 4.5. There are no nontrivial infinitely divisible metric
measure spaces.

Proof. Suppose that X = (X,rx,ux) is a nontrivial infinitely divisi-
ble metric measure space. Thus, for every n € N we have X = xX&5"
for some metric measure space X, = (X,,rx,,lx,). We may sup-
pose that Xo = X, rx, = rx and pux, = px, and that for all
n € N there is an isometry ¢,,+1 from X, equipped with rx, to
X2, equipped with ry, ., @rx,,, such that the push-forward of py,
by Gnp1 18 px,,, @ ptx,,,- Let &, ¢ € N, be independent iden-
tically distributed random elements of X with common distribution
px. Define (&1, ..., &nian), n € N, i € N, recursively by & = &
and (&n41i2k—1,Ent1.2k) = Pnns1(&nir) for k€ {1,...,2"}. The &,
ieN, ke{l,...,2"} are random elements of X,, with distribution py,,,



20 S.N. EVANS AND I. MOLCHANOV

7x, Enik, Enjk) = Txpi1 Ent16,26—1> Ent1ji2b—1) F X000 (Ens1,i2k, Ent1,.2k),
and consequently 7x (&, &) = Y20, 7x, (it éngt)-

For i # j the nonnegative random variable rx (&;,§;) is clearly infin-
itely divisible. These random variables are not almost surely zero and
they are identically distributed. Their common distribution does not
have a nontrivial deterministic component because that would mean
that for some ¢ > 0 we would have rx(§;,¢;) = c for all i # j,
which is impossible because almost surely for all € N we must have
infien j2i7x(&,&) = 0 if (§p)nen is an independent identically dis-
tributed sequence of random elements of X with common distribution
px. In particular, these random variables are not bounded, because a
bounded infinitely divisible random variable is almost surely constant.
It follows that the metric rx is unbounded.

Let v be the Lévy measure associated with the common infinitely
divisible distribution of rx(¢;,&;) for ¢ # j. This is a (nontrivial)
measure on R, := (0,00) that satisfies SRH(@" A 1) v(dr) < oo and it
is the limit as n — oo of the measures

N
S P{rx, (Guit Euie) € -} = 2 f Lrx, (y.2) € -} 12 (dy, d2),
k=1 X2

n

where the limit is in the sense of vague convergence of measures on

R++'
For K > 0, set
277.
RE(i, ) == > (rx, (Snik: &) A K.
k=1

As n — oo, RE(i,j) converges almost surely to an infinitely divisible
random variable R¥ (i, j) with

E[RN (i, j)] = f (x A K) v(dz) < o,

Ry

and RE(i,7) = rx(&,&) for all K sufficiently large almost surely.
The random matrix (rx(&;,&;))ijen satisfies the necessary and suffi-
cient condition to be the matrix of pairwise distances for a sam-
ple from a metric measure space, and it follows easily that the same
is true of the random matrix (R* (i, j)); jen. Because the random ma-
trix (R® (i, j)): jen is infinitely divisible, the underlying metric measure
space that gives rise to this matrix of pairwise distances is also infin-
itely divisible. We may therefore suppose without loss of generality
that the random variables rx(;, ;) are integrable.



METRIC MEASURE SPACES 21

It is clear from Fubini’s theorem that
Elrx(y,&;)] = J rx(y,z) px(dz) < oo, px-a.e. ye X.
X

Because rx is unbounded, the function y — {, rx(y, z) ux(dz) is also
unbounded, and since px has full support, each of the random variables
E[rx(&,&)|&], @ # j, are unbounded. These random variables are
equal for a fixed ¢ as j varies and as ¢ varies the common values are
independent and identically distributed. Moreover,

Elry(6.6) &) = Zf (G ) i, (d2)

for all n € N, and so E[rx(&;,&;)|&] is infinitely divisible and, being
unbounded, this random variable cannot be constant almost surely.
Given € > 0, set

I =1 {f rx, (&nik, 2) pix, (dz) > 5} :
Xn

For ¢ sufficiently small, Zi:1 I+, converges almost surely as n — o0
to a nontrivial random variable J; that has a Poisson distribution.
Moreover, for &', &” > 0 and i # j, 3z | ]Z;k]}i;k = 0 for all n sufficiently
large almost surely by the independence of {&,; : n € N, 1 < k < 27}
and {&,x :neN, 1 <k<2"}.

By the triangle inequality,
| e a) = [ I 2) - 00 i, @)
n X
= | rx. (¥, 2) px, (dz) —rx, (v, ")
and hence

() f r (4 2) px, (d2) — f rn (4 2) pix, (d2).

n n
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Therefore, if §, rx, (v, 2) px,(d2) > " and { rx,(¥",2) px, (d2) <
g’ for ¢’ > &"” > 0, then rx, (v, y") > & —£". Thus,

on

rx (&, &) = Z 7, (&niks Eng)

k=1

Z nik\* n]k TXn(émkagnjk)

Z nik\+ n]k (&J _5”>

and so on the event {3 mkffwk 0}

(£Z7£J 8 _6 Z nik

Consequently,

rX(Sia gj) = 5‘]18
for all ¢ # j almost surely. This, however, is impossible because if
(&n)nen 1s an independent identically distributed sequence of random

elements of X with common distribution px, then almost surely for all
i € N we must have infen ;i rx(&,&) = 0. O

Remark 4.6. In the case of bounded metric measure spaces, a simpler
and more direct proof of Proposition is to note that if X x5
for all n, then the push-forward of the probablhty measure u 2 by the
map (2',2") — rx(2’,2") is an infinitely divisible probability measure
supported on [0, diam(X’)] and hence it must be a point mass at zero
because any infinitely divisible probability measure with bounded sup-
port is a point mass and if that point mass was not at zero, then the
distribution of (rx(&;,&;)): jen for an ii.d. sequence (&;)ken with com-
mon distribution px would certainly not satisfy the condition (|1.1]).

5. ARITHMETIC PROPERTIES

The theory of Delphic semigroups was developed in [Ken68), [Dav69]
to generalize the decomposability properties of probability distributions
with respect to convolution to an abstract setting. In the following we
show that (M,H) is a Delphic semigroup. Let us associate with each
converging sequence (X, )peny in M its limit L((X,)). If Y, < X, for
all n, then (V,)nen is a subset of Jzo{Y € M : Y < Z} for the
compact set S := (X,)nen and so it is compact by Lemma [2.10|(a)
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Thus, (Vn)nen admits a convergent subsequence, so that the condition
(A") from [Dav69] holds.

For each A € A, the function D4y = —log x4 is a continuous homo-
morphism from (M, ) to (R, +). In particular, the function D from
has this property. By Lemma [3.§]a), for each A € A and each
e > 0 there is § > 0 such that, for any X € M satisfying D(X) < ¢
one has Dy(X) < e. If (Ag)ken is a countable subset of A, such that

(Ar)ken O ]Rgf) is dense in ]Rgf) for all n > 2, then the values D4(X)
uniquely determine X', so that the homomorphisms Dy, satisfy the con-
dition (H) of [Dav69]. By [Dav69, Theorem 3|, the semigroup (M, H)
is sequentially Delphic; in particular, it satisfies the (CLT) condition
that requires that the limit of any converging null-array is infinitely
divisible. By [Ken68, Theorem II|, each element X # &£ of (M,[H) is
either irreducible or has an irreducible factor or is infinitely divisible.
The last is impossible by Proposition [£.5] so the next result holds.

Proposition 5.1. Given any X € M\{E}, there exists Y € 1 with
y< .

The prime numbers are the analogue of irreducible elements for the
semigroup of positive integers equipped with the usual multiplication.
The key to proving the Fundamental Theorem of Arithmetic (that ev-
ery positive integer other than 1 has a factorization into primes that is
unique up to the order of the factors) is a lemma due to Euclid which
says that if a prime number divides the product of two positive integers,
then it must divide one of the factors. For general commutative semi-
groups, the term “prime” is usually reserved for elements that exhibit
the generalization of this property (see, for example, [Cli38]). Accord-
ingly, we say that an element X € M\{&} is prime it X < Y H Z for
Y, Z e M implies that X < Y or X < Z. Prime elements are clearly
irreducible, but the converse is not a prior: true and there are commu-
tative, cancellative semigroups where the analogue of the converse is
false.

Before showing that the notions of irreducibility and primality coin-
cide in our setting, we need the following elementary lemma which we
prove for the sake of completeness.

Lemma 5.2. Let &y, €01, €10, 11 be random elements of the respective
metric spaces Xoo, Xo1, X10, X11- Suppose that the pairs (§o0,&01) and
(&10,&11) are independent and that the pairs ({00, &10) and (o1, &11) are
independent. Then, &, &o1, 10, E11 are independent.

Proof. Suppose that fi;; : X;; = R, i,j € {0,1}, are bounded Borel
functions. Using first the independence of (£no,&01) and (&10,&11), and
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then the independence of (£, £10) and (€p1, &11), we have

E[ foo(&00) fo1 (§o1) f10(&10) f11(11)]
= E[ foo(&o0) fo1 (€o1)IE[ f10(&10) f11(€11)]
= E[ fo0(&00) JE[ fo1 (§o0) JE[ f10(&10) JE[f11(§11)]

as required. O

Proposition 5.3. All irreducible elements of M are prime. Moreover,

if (Vn)nen s a sequence of elements of M such that lim, . [H;_y V& =
Y exists and X €1 is such that X < Y, then X < Y, for some n € N.

Proof. Consider the first claim. Suppose that X € M is irreducible and
X < YH Z for some Y, Z € M.

From Proposition (a) we have YH Z = W HAX for some unique
W e M. From the remarks at the end of [Tar92], we may suppose that
there are metric spaces (Y, ry+), (X', rx/), (X", rx») and (Z",rz») such
that (Y, Ty) = (Y’ X X’,?”y/ (—B’I“X/), (Z, Tz) = (X” X Z”,T’Xﬁ (—BTZN),
(X,rx) = (X' x X" rx@rxs) and (W,rw) = (Y x Z" ryr @1rgr), so
that (Y x Z,ry®@rz) = (W x X,ry@rx) = (Y x X' x X" %< Z" 1y @
rx @ rxr @ry) (see also [Wal87] for an analogous result concerning
the existence of a common refinement of two Cartesian factorizations
of a (possibly infinite) graph and [AFDFQ(Q] for the case of finite metric
spaces). It follows from Lemmathat there are probability measures
tyr, pixr, pxr and pgze such that py = py @ uxr, pz = pxr @ pgr,
px = pxr @ pxr, pw = pyr @ pizn, and py Q@ pz = pw @ px =
uy/®,uX/®an®,uZu. ThU.S, y = y/X”, Z = X/Z”, X = X’X”,
W =YHZ" and YHZ = WHX = Y'HX'BX"HZ". This contradicts
the irreducibility of X unless X’ = £ or X” = £, in which case X < Z
or X < )Y, thus establishing the first claim of the proposition.

Turning to the second claim, let (V,)nen, YV € M and X € I satisfy
the hypotheses of the claim. By Proposition [3.6(b), for each n € N we
have Y = HZ:O Y. B Z,, for some unique Z,, € M. If there is non e N
such that X < ), then, by the first part of the proposition, X < Z,
for all n € N. By Proposition [3.6(b), this means that Z, = XY @W,, for
some unique W, € M and hence xa(Z,) < xa(X) for all A € A, see
Lemma [3.2(b). However, lim,, e xa(FHy_o Y) = xa(Y) for all A€ A
and so lim, , xa(Z,) = 1 for all A € A, implying that y(X) = 1
for all A € A. This, however, is impossible, since it would imply that
X=E¢L O

The next result is standard, but we include it for the sake of com-
pleteness.
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Corollary 5.4. Suppose for X € K and distinct Yy, ...,YV, € I that
Ve <X fork=0,....,n. Then, {H,_,Yi < X.

Proof. The proof is by induction. The statement is certainly true for
n = 0. Suppose it is true for n = r and consider the case n = r+1. We
have X = E11;=0 Y. .EHW, for some W, € Ml by the inductive assumption.
Because V11 < X = H,_, Y EW,, it follows from Proposition
that either Y,,; < Vi for some k£ with 1 < k < r or Vi1 < W,.
The former alternative is impossible because Yy, ..., V., V41 € I are
distinct. Thus, V.1 < W, and we have W, = Y, ;1 EH W, for some
W, 11 € M. This implies that X = [, _, Yi H Yr41 B W41 and hence
H};i(l) Y, < X, completing the inductive step. O

Theorem 5.5. Given any X € M\{E}, there is either a finite sequence
(XN, or an infinite sequence (X,)*_, of irreducible elements of M
such that X = Hivzo X, in the first case and X = lim, o [H;_, Xk in
the second. The sequence is unique up to the order of its terms. FEach
wrreducible element appears a finite number of times, so the representa-
tion s specified by the iwrreducible elements that appear and their finite

multiplicities.

Proof. As (M, H) is a Delphic semigroup, [Ken68, Theorem III] yields
that each X € M admits a representation as the sum of irreducible ele-
ments. Note that each element of the sum appears only a finite number
of times, since otherwise the sum would diverge by Proposition [3.9(b).

We now turn to the uniqueness claim. This may fail because X" has
two different representations as a finite sum of irreducible elements,
one representation as a finite sum and another as a limit of finite sums,
or two different representations as a limit of finite sums. We deal with
the last case. The other two are similar and are left to the reader.
Suppose then that two sequences (X )nen and (X)) )nen represent X
An argument similar to one above shows that any particular irreducible
element appears a finite number of times in each sequence. Suppose
that ) € [ appears M’ times in (X! ),eny and M"” times in (X),en with
M' # M". Assume without loss of generality that M’ > M”. We
have YEM' @ 2/ = X = YEM" [ 2" where Z', 2" € M are such that
Y & 2" and Y £ Z”. Using Proposition (a), YEM =M gzt — zZ"
By Proposition [5.3] Y is prime, so that it divides one of the factors
in the representation of Z” meaning that so )V < Z”, contrary to the
assumption. ]

Remark 5.6. It is an easy consequence of Theorem that, for the
partial order <, every pair of elements of M has a join (that is, a least
upper bound) and a meet (that is, a greatest lower bound), and so M
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with these operations is a lattice. It is not hard to check that this lattice
is distributive (that is, the meet operation distributes over the join op-
eration and vice versa). Furthermore, the Gromov-Prohorov distance
between X and ) equals the maximum of the distances between the
meet of X and Y and either X or ).

Remark 5.7. Given f : 1 — [0, 1], the map y : M — [0, 1] that sends
X to[], f(X,), where Xy, X1, ... are as in Theorem is a semichar-
acter.

The following result will be a key ingredient in the characterization
of the infinitely divisible random elements of M in Theorem [9.1]

Corollary 5.8. If & : R, — M s a continuous function such that
O(s) < P(t) for 0 < s <t <o, then & =E.

Proof. Suppose that ® is a function with the stated properties. If
® #£ £, then there exist 0 < u < v < o0 such that ®(u) < P(v).
It follows from Theorem that there exists ) € I such that the
multiplicity of ) in the factorization of ®(v) is strictly greater than
the multiplicity of ) in the factorization of ®(u). Define M : Ry — N
by setting M (s), s = 0, to be the multiplicity of ) in the factorization of
®(s). This function is nondecreasing and so there must exist u <t < v
such that M (t—) < M(t+). Thus, ®(t —c)BYH---HY < O(t+¢) for
all € > 0, where there are M (t+) — M (t—) summands in the sum, and
this contradicts the continuity of ® by Lemma 2.8 and Lemma2.2l O

The following result is an immediate consequence of the absence of
infinitely divisible metric measure spaces.

Corollary 5.9. If & : R, — M is a function such that ®(s)EH ®(t) =
O(s+t) for 0 < s,t <oo, then ® =E.

Remark 5.10. Although Corollary says there are no nontrivial ad-
ditive functions from R, to M, there do exist nontrivial superadditive
functions; that is, functions ® : Ry — M such that ®(0) = £ and
O(s)HP(t) < P(s+1t) for 0 < s, < 0. For example, take X' € M\{€}
and set ®(t) = XH---HX for n <t <n+ 1, n e N, where the sum
has n terms and we interpret the empty sum as £. We have

(s) B () = @(|s]) BO(|t]) = O(|s] + [¢]) < P(s +1).

However, by Corollary there are no nontrivial continuous superad-
ditive functions. Furthermore, there are no superadditive functions ®
such that ®(t) # & for all ¢ > 0.

There are also nontrivial subadditive functions; that is, functions
® : R, — M such that ®(0) = € and ®(s) HP(t) = P(s + ) for
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0 < s,t < . For example, it suffices to take some X € M\{€} and
set ®(t) = & for t > 0. However, there are no continuous subadditive
functions because if ® is such a function and Y € I is such that Y <
®(t), then it follows from ®(5)HP(5) = @(t) that Y < (%) and hence
Y < ®(5) for all n € N, but this contradicts the continuity of ® at 0.

6. PRIME FACTORIZATIONS AS MEASURES

Theorem guarantees that any X € M has a unique representation
as X = [, V™, where the ), € I are distinct, the integers my
are positive, and we define the empty sum to be £. Since [, ymk
converges, dgp:(Vi, £) — 0 as k — oo in case of an infinite factorization,
so that the number of )} outside any neighborhood of £ is finite. It is
natural to code such a factorization as the measure W(X) := >, mydy,
on M that is concentrated on I and assigns mass my to the point )
for each k.

Denote by 91 the family of Borel measures N on M such that
N(M\I) = 0 and N(B) € N for every Borel set B that does not inter-
sect some neighborhood of £. Any N € 91 can be represented as the
positive integer linear combination of Dirac measures

N = Z mk(Syk
k

for distinct ), € I and positive integers my, where the sum may be
finite or countably infinite depending on the cardinality of the support
of N. Given N e 91 with such a representation we define a unique

element of M by
S(N) = YE™,
k

if the sum converges (recall from Proposition [3.9(e) that the con-
vergence of the sum is independent of the order summands). Thus,
Y(U(X)) = X for all X € M.

It is possible to topologize 91 with the metrizable w”-topology of
[DVJ03, Section A2.6]. This topology is the topology generated by
integration against bounded continuous functions that are supported
outside a neighborhood of £. The resulting Borel o-field coincides
with the o-field generated by the N-valued maps N — N(B) Borel
measurable, where B is a Borel subset of Ml that is disjoint from some
neighborhood of &, see [DV.J03, Theorem A2.6.111].

Proposition 6.1. The map ¥ : Ml — Dt is Borel measurable.

Proof. The set {(X,)) e M? : Y < X} is closed by Corollary [3.11{(a)
and the set I is G by Proposition It follows that the set B :=
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{(X,Y)e M?: Y <X, Yel}isaGs subset of M? and, in particular,
it is Borel.

For any X' € M, the section By :={Y e M: (X,))eB} ={YeM:
Y < X, Y € I} is countable (indeed, it is discrete with & as its only
possible accumulation point).

By [Kec95, Exercise 18.15], the sets T,, := {X € M : #B» = n},
n =1,2,...,00, are Borel and for each n there exist Borel functions

(9571))0@-@ such that:

« 6" T, - M,

o the sets {(X,)) : X € T,, Y = 6 (X)}, 0<i < n, n =

1,2,...,00, are pairwise disjoint,
e By ={A"M(X):0<i<n}for XeT,, n=12... 0
Recall the Borel function M from Corollary[3.11|(b). For X € T,,, the

set {(6(X), M(X,6" (X)) : 0 < i < n} is a listing of the elements
of the set {¥ € I : ¥ < X} along with their multiplicities in the
prime factorization of X'. The functions X > (6(X), M (X, 6 (X)),
XeT,, 0<i<n,n=1,2,...,00, are measurable and so

) (x
X U(X 2 M (X, 6, (X))8y00

for X € T,, provides a measurable map from M to I, see [DV.J0S|
Proposition 9.1.X]. O

Remark 6.2. The map V is not continuous for the w#-topology. In fact,
any X € (M\I)\{€} is a discontinuity point, as the following argument
demonstrates. Because I is dense in I, it is possible to find a sequence
X, € I that converges to X. Therefore, V(&) = dx,, whereas W (X)
has total mass at least two and the distance between any atom of W(X)
and the point A, is bounded away from zero uniformly in n.

We omit the straightforward proof of the next result.

Lemma 6.3. The set {N € 9 : X(N) is defined} is measurable and the
restriction of the map X to this set is measurable.

7. SCALING

Given X € M and a > 0, set aX := (X, arx, pux) € M. This scaling
operation (a,X) + aX is jointly continuous by Lemma and it
satisfies the first distributivity law

(7.1) a(XAHY) = (aX)H(aY) for X,Y eM and a > 0.
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The semigroup (M, H) equipped with this scaling operation is a con-
vex cone. The neutral element £ is the origin in this cone; that is,
lim,oaX = & for all X € M, which follows from Lemma . Note
that diam(aX') = adiam(X’) for X € M and a > 0.

It is immediate from (7.1)) that )V € I if and only if a) € I for all
a>0

Remark 7.1. The Gromov-Prohorov metric is not homogeneous for
this scaling operation; that is, dgp,(aX,a)) is not generally equal to
adgp(X,)) for a > 0 and X,) € M. Moreover, it is not possible to
equip M with a homogeneous metric that induces the same topology
as dgpr. To see that this is so, first note that for each n > 2 there
exists X, € M € {€} such that dgp,(cX,,E) < n~t for all ¢ > 0; for
example, take X,, to be a two-point space with unit distance between
the points and respective masses n~! and 1 — n~!. For any sequence
(€n)nen, we have dgp,(c, X, E) — 0, while if 0 is a homogeneous metric,
then §(c, X, E) = 0(cp Xy, cn€) = c,0(X,, E) does not converge to zero
if ¢,, — oo sufficiently rapidly.

We have seen that (M, <) is a distributive lattice. There is a large
literature on lattices that are equipped with an action of the additive
group of the real numbers (see, for example [Kap48| [Pie59, [Hol69)]).
Using exponential and logarithms to go back and forth from one setting
to the other, this work can be recast as being about lattices with an
action of the group consisting of R, , = (0, o) equipped with the usual
multiplication of real numbers. Unfortunately, one of the hypotheses
usually assumed in this area translates to our setting as an assumption
that X < aX’ for a > 1. The following result shows that this is far
from being the case and also that scaling operation certainly does not
satisfy the second distributivity law.

Proposition 7.2. Let X be a metric measure space.

a) If ¥ < aX for somea # 1, thena >1 and X = [H,_,a *Z,
where Z is defined by the requirement that aX = X H Z.
b) If (aX)H (bX) = cX, for some a,b,c >0, then X =&.

Proof. (a) Suppose that X # £ is such that X < aX’ for a # 1. Recall
the function R(X) from (3.4). Because R(X) < R(aX) and R(aX)
is monotone as function of a € R, it must be the case that a > 1.
We have X = a™'ZHa 'X. Iterating, we have X = [H,_,a*Z
a"X. Since xi(a"X) — 1, we have a "X — & by Lemma [3.5] By
Proposition (b) or Proposition (C), limy, o0 [Hy_, a ¥ Z exists.
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(b) Suppose that (aX') H (bX) = ¢X for some a,b,c > 0. Since
R(cX) = R((aX)H (bX)) = (R(aX) v R(bX)), we have a v b < ¢. An
irreducible element ) € T appears in the factorization of X guaranteed
by Theorem if and only if ¢) € I appears in the factorization of
c¢X, and similar remarks hold for the factorizations of aX and bX.
Then ¢y < aX or ¢y < bX. Assume the first, so that °Y < X, s0
that €) appears in the factorization of X'. Iteration yields (£)")Y < X
for all n > 1, so that the spaces ((£)"))nen all belong to the prime
decomposition of X which then diverges by Proposition (g) 0
Remark 7.3. While it is possible to introduce a notion of convexity for
subsets of M using the addition and scaling in an obvious way, the
absence of the second distributivity law makes the situation entirely
different from the vector space case. For instance, a single point {X'}
is not convex for X # £ and its convex hull is the set of spaces of the
form e X' H---Ha,X for ai,...,a, = 0 such that a; +--- +a, = 1.
It is a consequence of Remark for a; = -+ = a, = n~! that this
latter set is not even pre-compact.

Remark 7.4. The map that sends a € R,, to the automorphism
X — aX of (M,H) is a homomorphism from (R, ,, %) to the group
of automorphisms of (M, H). We can therefore define the semidirect
product Ml x R, to be the semigroup consisting of the set Ml x R, ,
equipped with the operation [#] defined by

(X, a)#(V,b) := (X H (a)),ab).
This semigroup has the identity element (£, 1) and is noncommutative.
The semidirect product of the group (G,H) considered in Remark
and the group (R, ., x) can be defined similarly. It would be interesting

to extend the investigation of infinite divisibility in Section [J] to this
semigroup and group, but we leave this topic for future study.

8. THE LAPLACE TRANSFORM

A random element in M is defined with respect to the Borel o-algebra
on M generated by the Gromov—Prohorov metric.

Lemma 8.1. Two M-valued random elements X and Y have the same

distribution if and only if E[xa(X)] = E[xa(Y)] for all A€ A.

Proof. By Lemma the set of functions {x, : A € A} generates
the Borel o-algebra on M. From Remark [3.3] this set is a semigroup
under the usual multiplication of functions and, in particular, it is
closed under multiplication. The result now follows from a standard
monotone class argument. 0
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Remark 8.2. Recall from Section [0 the set 9 of N-valued measures that
are concentrated on I and the associated measurable structure. Follow-
ing the usual terminology, we define a point process to be a random el-
ement of M. By Proposition [6.1] any M-valued random element X can,
in the notation of Section [6] be viewed as a point process N := ¥(X)
such that ¥(N) = X. If we write N = >, mydy, on I, then

E[x4(X)] = Ela(S(¥(X)] = B [[ Txa(Yi)™ |

The right-hand side is the expected value of the product of the func-
tion y4 applied to each of the atoms of N taking into account their
multiplicities and hence it is an instance of the probability generating
functional of the point process N, see [DVJ08, Equation (9.4.13)].

Remark 8.3. A fairly immediate consequence of Lemma is that
there is no analogue of a law of large numbers for random elements of
M in the sense that if (Xy)gen is an i.i.d. sequence of random elements
of M that are not identically equal £, then %Hz;é X} does not even
have a subsequence that converges in distribution. Indeed, for A € A

with A e Rgf) we have

v (1) - (2 (30
k=0
_ 1
= T}glc}o <fMJ - exp <_ﬁ Z CLUT)((ZL'Z, {L‘])>

1<i<j<m

< @ (dx) P{X, € d)(})n

1
= exp ( — T}E%On(l — JMJ _exp <_5 Z aijrx(xi,xj))

1<i<j<m
x u§"(dr) P{X; € dX}))

. ( [[ =

1<i<j<m

— oxp (- Sy fM sz rx (21, 22) pE2(da) P(X, € dX}) |

1<i<j<m
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If some subsequence of % Z’;é X converged in distribution to a limit
Y, then we would have

[ ] (
" Ii<jsm

= exp (— Z a”f f rx(z1, 22) p¥2 (dz) P{X, € d?('}) )
1si<gysm

The right-hand side is the exponential of a linear combination of a;;
and so corresponds to the Laplace transform of a deterministic random
vector. By the unicity of Laplace transforms for nonnegative random
vectors, this implies that

J N§2{(91792) eY?: ry (Y1, Y2)
M

ai;Ty (Vi yj)) u@m(d@/) P{Y € d)}

# [ rxtene uan) BX, € ) | PIY € )
— 0,

and hence there is a constant ¢ > 0 such that for P{Y € -}-almost all
Y € M we have 7y (y1,%2) = ¢ for u$*-almost all (y;,1) € Y2, but
this is impossible for a nontrivial metric space (Y, ry) and probability
measure py with full support.

9. INFINITELY DIVISIBLE RANDOM ELEMENTS

A random element Y of M is infinitely divisible if for each positive
integer n there are i.i.d. random elements Y,,..., Y,, such that Y
has the same distribution as [H,_, Y.

An M-valued Lévy process is a M-valued stochastic process (X;)i=o
such that:

L4 X() = g,

e t — X, is cadlag (that is, right-continuous with left-limits);

e given 0 =ty < t; < ... < ,, there are independent M-valued
random variables Z, , Z,4, - - -, 24,41, such that the distribu-
tion of Z, 4, ,, only depends on ¢, 1 — ¢, for 0 <m <n—1
and Xy, = Xy, HZyy,,, H---HZy, 1, for 0<k <l <n.

An account of the general theory of infinitely divisible distributions
on commutative semigroups may be found in [BCR84]. The following
result is the analogue in our setting of the classical Lévy—Hincin—Ito
description of an infinitely divisible, real-valued random variable.
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Theorem 9.1. a) A random elementY of M is infinitely divisible

if and only if it has the same distribution as Xy, where (Xy)i=o
18 a Lévy process with distribution uniquely specified by that of
Y.

b) For eacht > 0 there is a unique random element AX, such that
Xt - Xt_ AXt

c) For each t > 0, X; = [H,_,, AX,, where the sum is a well-
defined limit that does not depend on the order of the summands.

d) The set of points {(t, AX;) : AX; # E} form a Poisson point
process on Ry x (M\{E}) with intensity measure AQv, where A
is Lebesgue measure and v is a o-finite measure on M\{E} such
that

(9.1) J(D(X) A1) () < .

e) Conversely, if v is a o-finite measure on M\{E} satisfying (0.1]),
then there is an infinitely divisible random element Y and a
Lévy process (Xy)i=o0 such that (a)-(d) hold, and the distribu-
tions of this random element and Lévy process are unique.

Proof. Write D for the set of nonnegative dyadic rational numbers. It
follows from the infinite divisibility of Y and the Kolmogorov extension
theorem that we can build a family of random variables (X;),ep such
that:

L4 X() = g,

e X, has the same distribution as Y,

o Given qp,...,q, € D with 0 = ¢ < ¢1 < ... < @n, there are
independent M-valued random variables Zyq,, Zg 4, - - - s Zig,,_14,

such that the distribution of Z,, ..., only depends on ¢p+1—gm
for 0<m<n—1and X, = X, BZgq,,, H---HZg 4 for
0 <k << n. In particular, X, <X, for p,¢g e D with p < gq.

We claim that if p € D, then
(9.2) lim X, =X,, as.

alp, €D
To see that this is the case, note that if p,q € D with p < ¢, then
X, = X, HZ,, and it suffices to show that limg, sep dap:(Zyg, E) = 0
almost surely.
By Lemmal[3.5] it will certainly suffice to show that limg, sep D(Zyg) =

0 a.s. However, note that if we set 7y = 0 and 7, = D(Z, ) for
r € D\{0}, then the R,-valued process (T}),ep has stationary inde-
pendent increments. It is well-known that such a process has a cadlag
extension to the index set R, and hence, in particular, lim, o rep 7, = 0.
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Lemma applied to (X,),ep gives that it is possible to extend
(X,)pen to a Lévy process (X;)i=o. This establishes (a). Moreover, for
each t > 0 there is a unique M-valued random variable AX; such that
Xy = X HAX,, and X; = [, ., AX,, where the sum is well-defined
by Proposition [3.9(e). This establishes (b) and (c).

A standard argument (see, for example, [Kal02, Theorem 12.10])
shows that the set of points {(t,AX;) : AX; # &£} form a Poisson
point process on R. x (M\{£}). The stationarity of the “increments”
of (X¢)i=0 forces the intensity measure of this Poisson point process to
be of the form A® v, and the fact that >, _ _, D(AX,) is finite for all
t = 0 implies (9.1)), see, for example, [Kal02, Corollary 12.11]. This
establishes (d).

We omit the straightforward proof of (e). O

Following the usual terminology, we refer to the o-finite measure v in
Theorem as the Lévy measure of the infinitely divisible random ele-
ment Y or the Lévy process (X;)s>0. The next result is immediate from
Theorem [0.1], the multiplicative property of the semicharacters x 4, and
the usual formula for the Laplace functional of a Poisson process.

Corollary 9.2. If Y is an infinitely divisible random element of M
with Lévy measure v, then the Laplace transform of Y is given by

03 Bl =0 (- [0 u)r@)). aca
Remark 9.3. In the notation of Theorem [9.1] the random measure

D dax,

0<t<1

is a Poisson random measure on M with intensity measure v and we
have Y = X; = [{H,_,<; AX;. The push-forward of this random mea-
sure by the map ¥ of Proposition is a Poisson random measure
on the space 9 of N-valued measures that are concentrated on I. The
intensity measure of this latter Poisson random measure is the push-
forward @) of the Lévy measure v by W. The “points” of the latter
Poisson random measure are usually called clusters in the point pro-
cesses literature, while @ itself is called the KLM measure, see [DV.J0S|
Definition 10.2.IV]. Let N be the point process on I obtained as the
superposition of clusters; that is, N = >/, W(AX,) is the sum of
the N-valued measures given by each individual cluster. This point
process on I is called the Poisson cluster process in the Poisson point
process literature. The infinite divisibility of Y implies the infinite di-
visibility of the point process U(Y) and the equality ¥(Y) = N is an
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instance of the well-known fact that infinitely divisible point processes
are Poisson cluster processes. Furthermore, corresponds to the
classical representation of the probability generating functional of an
infinitely divisible point process specialized to the space I, see [DV.J0S|
Theorem 10.2.V]. On the other hand, if M is a Poisson cluster process
on I such that (M) is almost surely well-defined, then (M) is an
infinitely divisible random element of M, and our observations above
show that all infinitely divisible random elements of Ml appear this way.

We end this section with a deterministic path-regularization result
that was used in the proof of Theorem 9.1}

Lemma 9.4. Suppose that Z: D — M is such that 2(0) = £, Z(p) <
Z(q) for p,qg € D with 0 < p < q, and limyy, e Z(q) = E( ) for all
p e D. Then, Z(t) := limgy 4en Z(q) exists for all t € Ry. Moreover,
the function = : Ry — M has the following properties:
(p) for peD,
(t) for s,te Ry with s <t
t— Z(t) is cadlag,
for p,q e D with 0 < p < q, there is a unique O(p,q) € M such
that E(q) - “( ). @(pa )7 _ _
e for 0 < s < t, there is a unique O(s,t) € M such that Z(t) =
2(s)EO(s,t) and O(s,t) = limy, alt, paebd O (P, ),
o for each t > 0 there is a unique AZ(t) € M such that Z(t) =
limg, Z(s) HAE(),
¢ Yuies DIAZ(0) < D(O(w,0)) for all 0 < u <o,
o the sum [, ., AZ(s) is well-defined for all t =0,

o Z(t) = Hyosey AZ(s) for all t = 0.

Proof. 1t follows from Proposition [3.9(d) that limg sen Z(q) =: =(t)
exists for all ¢t = 0.

It is clear that =(p) = Z(p) for p € D and that Z(s) < =(t) for
s,t € R, with s < t. It is also clear that ¢ — Z(t) is right-continuous.
By Proposition B.9(c), E(t—) := limy, =(s) exists for all ¢ > 0 and
Z(t—) < Z(t) for all t>0.

The existence and uniqueness of O(s,t) such that =(t) = Z(s)
O(s,t) and the fact that O(s,t) = lim,, gt p.eep O(p, q) follow from
Proposition [3.6{(b).

It is a consequence of Proposition [3.6(b) that AZ(t) exists and is
well-defined.

Forany 0 <u<wvandu <t <--- <t, <v we have AZ(t;

M AZ(t,) < O(u,v). Hence, by Proposition ( ), FHoeser AZ(S)
is well-defined.

e o o o
[1
“
A

~—
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It is clear that [,_,., AZ(s) < E(¢) for all ¢ > 0 and so we can
use Proposition to define a unique function ® : R, — M such that
2(t) = () By s, AZ(s) for all ¢ = 0. The function ® is continuous
and ®(s) < ®(t) for 0 < s < t. Also, ®(0) = E. Corollary [5.§ gives
that & = &, completing the proof of the lemma. O

10. STABLE RANDOM ELEMENTS

A M-valued random element Y is stable with index a > 0 if for any
a,b > 0 the random element (a + b)iY has the same distribution as
asY' B baY”, where Y’ and Y” are independent copies of Y. Note
that a stable random element is necessarily infinitely divisible. If Y
is stable and almost surely takes values in the space of bounded met-
ric measure spaces, then its diameter is a nonnegative strictly stable
random variable.

There is a general investigation of stable random elements of convex
cones in [DMZ08]. In general, not all such objects have Laplace trans-
forms that are of the type analogous to those described in Corollary[9.2]
For example, there can be Gaussian-like distributions. However, no
such complexities arise in our setting.

Theorem 10.1. Suppose that Y is a nontrivial a-stable random ele-
ment of M. Then, 0 < o < 1 and the Lévy measure v of Y obeys the
scaling condition

(10.1) v(aB) =a"v(B), a>0,

for all Borel sets B < M. Conversely, if v is a o-finite measure on
M\{E} that obeys the scaling condition for 0 < o < 1 and satisfies
(9.1), then v is the Lévy measure of an a-stable random element.

Proof. 1f (X;);=0 is the Lévy process corresponding to Y, then it is not
difficult to check that the process (afiXat)gg has the same distribu-
tion as (X;);=0, and the scaling condition for v follows easily. Since
ry (&1, &) is a nonnegative stable random variable of index «, we nec-
essarily have v € (0, 1). The remainder of the proof is straightforward
and we omit it. O

Remark 10.2. One of the conclusions of Theorem is that there
are no nontrivial a-stable random elements for o« > 1. This is also a
consequence of the following argument. If Y was a nontrivial a-stable
random element and (Yyg)ren was a sequence of independent copies
of Y, then na Z;(l) Y, would have the same distribution as Y and
hence % Z;é Y would certainly converge in distribution as n — oo,
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but this contradicts Remark where we observed that there is no
analogue of a law of large numbers in our setting.

We finish this section with an analogue of the classical LePage rep-
resentation of stable real random variables.

Theorem 10.3. The following are equivalent for a random element Y
of M.

a) The random element Y is a-stable.

b) The random element Y is infinitely divisible with a Lévy mea-
sure v that is of the form v(B) = af; n(t71B)t=*Ddt for
all Borel sets B < M\{E}, where 7 is a probability measure on
M\{E} such that

(10.2) J f r3(z,y) %2 (dzy, dzo) m(d2) < oo,
M\{&} J Z2

In particular, 7 assigns all of its mass to metric measure spaces
Z for which

(10.3) J % (z,y) pS2(d21, dzg) < 0.
72
c) The random element Y has the same distribution as

1
(10.4) HTn " Z,,
neN
where (') nen s the sequence of successive arrivals of a homoge-
neous, unit intensity Poisson point process on Ry and (Zy)nen
is a sequence of i.i.d. random elements in M\{E} with common

distribution m such that (10.2)) holds.

Proof. Suppose that Y is a-stable with Lévy measure v. We know
from Theorem that v satisfies the scaling condition and the
integrability condition ((9.1]).

For any X € M\{£} the function ¢ — D(tX) is strictly increasing
and sup,., D(tX) = —log(r$*{(z1,20) € X% : 11 = 1y}) with the
convention —log(0) = co. Set

Vo :={X e M\{€} : sup D(tX) > 1}

and
Vi={X e M\{E}: 2% <sup D(tX) <2 1)
t>0

for k = 1. The sets Vy, k € N, are disjoint, their union is M\{£}, and
X € Vi, for some k € N if and only if tX € Vi for all t e Ry .
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Define 7 : M\{E} — R as follows. For X € Vy, set 7(X) := inf{t >
0: D(t7'x) < 27%}. Observe that 7(sX) = s7(X) for all X € M\{&}
and s € R, and that D(7(X)71x) = 27% for X € V;. Note that
it 7(X)7'X = 7(V)7'Y, then {tX : t > 0} = {tY : t > 0}, whereas
if 7(X)7'X # 7(V)7'Y, then {tX :t > 0} n{tY : ¢t >0} = F. In
other words, the set {7(X) 11X : X € M\{E}} is a cross-section of orbit
representatives for the action of the group R, on M\{&}.

For each k € N, the maps X — (7(X)'X,7(X)) and (Y, t) — tY
are mutually inverse Borel bijections between the Borel sets V; and
Sk x Ry, where Sy := {X € V : 7(X) = 1}. Let 7 be the push-
forward of v by the map X +— (7(X)™'X,7(X)) and define a measure
pr on S by pr(A) = 0(A x [1,00)). Since

pe(Sk) = D(Sk x [1,00)) < v{X e M\{E} : D(X) = 27"},
it follows from that the total mass of pj, is finite.

The scaling property of v is equivalent to the scaling property
V(A x sB) = s *v(A x B) for s € R, and Borel sets A < S and

B < R,,. Thus, if we let  be the measure on R, given by 0(dt) =
at=(@+t) gt then

(A x [b,o0)) = V(A x b[1,0))
=b"D(A x [1,00))
= pr(A) < 6([b, 0))

for A € Si. Therefore the restriction of 7 to Sy x R, is pr ® 6 and
hence the restriction of v to Vi is the push-forward of pp ® 6 by the
map (Y, t) — t).

We can think of p; as a measure on all of V. For ¢, € R, ,, let n;
be the measure on V; that assigns all of its mass to the set ¢Sy and
is given by nx(A) = c¢pr(ci ' A). We have

Tk ®9{(yat) : ty € B} = Jnk(t_lB)at—(a+1) dt
= fcgpk(ckltlB)at(a“) dt

= ka(s_lB)ozs_(aH) ds
= pr ®O{(V,t) : t)Y € B}
= V(B)v
and so 7 is a finite measure with total mass c¢{px(Sk) that has the

property that the push-forward of 7, ® 6 by the map (), t) — t) is the
restriction of v to Vy.
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We can regard 7, as being a finite measure on all of M\{£} and,
by choosing the constants ¢, k € N, appropriately we can arrange for
T := Y en Tk to be a probability measure. We have

o8]
(B) = a J T(1B) D gy
0

for all Borel sets B € M\{&}.
It follows from (9.1)) that

o0
f f (D(tZ) A )= 2(dZ) di < .
0 JM\{&}
By Lemma [3.8] for any o-finite measure A on M the integral

oo}
J f (D(tZ) A Dt \(dZ) dt
0 JM\{£}
is bounded above and below by constant multiples of
f J (tr5 (1, 22)) A DD 182z, dzy) MdZ) d.
M\{€} J 22
The latter integral is a constant multiple of
|| st g am) aaz)
M\{€} J 22

because
J'OO —(a+1) dt = 1 @
) ((tr) A 1)t _oz(l—oz)r :
for any r > 0.

This completes the proof that (a) implies (b). The proof that (b)
implies (a) simply involves checking that the measure v satisfies the
scaling property and the integrability property . The former
is obvious and the latter follows from the argument immediately above.

The proof that (a) and (b) are equivalent to (c) requires showing that
v is a measure satisfying the conditions of (b) if and only if the points
of a Poisson random measure on M\{€} with intensity v have the same

1

distribution as the random set (I'y, “Z,)nen. However, if (Z,, ') nen

are as in (c), then they are the points of a Poisson random measure

on (M\{£}) x Ry, with intensity 7 ® A, where A is Lebesgue measure,
1

and 80 (Zy, T'n ®)pen are the points of a Poisson random measure with
intensity m ® @, where the measure 6 is as above. O

Remark 10.4. The probability measure 7 in Theorem is not unique.
However, in the proof that (a) implied (b) the 7 that was constructed
was concentrated on a set T with the property that for all X € M\{€}
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there is a unique t € R, such that tX € T. If part (b) holds with a 7
that is supported on a set U with this property, then 7 is the unique
probability measure concentrated on U that leads to a representation
of v in the manner described in the theorem.

Remark 10.5. It follows readily from Theorem that a bounded
metric measure space is a-stable if and only if it admits a representation
of the form (10.4) where (Z,).en is any sequence of i.i.d. random
elements in M such that diam(Z,) = 7 almost surely for a suitable

constant v. An alternative proof of this fact can be carried out using
[DMZ08|, Theorems 3.6 and 7.14].

Example 10.6. We can construct an a-stable random element Y by
considering the LePage series in which the Z,, are copies of some com-
mon nonrandom bounded metric measure space. In this case on the

_1
set of full probability where », I'n* < 0, Y is the infinite Cartesian
product Y := Z% equipped with the random metric

rv((20), (20) = S T r (2, 20)

neN

and the probability measure py := pu$®.

11. THINNING

Recall the map ¥ that associates with each X € M an N-valued
measure on I. For p € [0,1], the independent p-thinning of an N-
valued measure N := 3, mydy, is defined in the usual way as N® :=
D &kdy,, where &, k € N, are independent binomial random variables
with parameters m; and p. In other words, each atom of IV is retained
with probability p and otherwise eliminated independently of all other
atoms and taking into account the multiplicities.

Applying an independent p-thinning procedure to the point process
N := ¥(X) generated by random element X in M yields an M-valued
random element X® := Y(N®) that we call the p-thinning of X.
Note that the X® < X, X© = & XM = X and for 0 < p,q < 1 the
random element (X®)(@ has the same distribution as the random ele-
ment X9 It is possible to build an M-valued strong Markov process
(Xt)i=0 so that the conditional distribution of X, ; given {X; = X’}
is the e~ '-thinning of X’; each irreducible factor of X is equipped with
an independent exponential random clock that has expected value 1
and the factor appears in the decomposition of X; into irreducibles
provided its clock has not rung by time t.
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Also, if X and Y are independent random elements and X® and
Y ® are constructed to be independent, then X® BHY® has the same
distribution as (X @ Y)®. It follows from this last property that, for
fixed Ae A and 0 < p < 1, the map

X Elxa(X)] = [0 =p+pxadh))

is a semicharacter, where the product ranges over the factors that ap-
pear in the factorization of X into a sum of irreducible elements of
M (repeated, of course, according to their multiplicities). This is a
particular case of the construction in Remark [5.7]

The thinning operation can be used to construct M-valued stochas-
tic processes that are not necessarily increasing or decreasing in the
< partial order by combining the [ addition of independent random
increments with thinning; that is, the semigroup of the process is the
Trotter product of the semigroup of a Lévy process and the semigroup
of the Markov process introduced above that evolves in such a way that
the value of the process at time ¢ is the e *-thinning of its value at time
0.

Furthermore, the thinning procedure is the key ingredient for defin-
ing a notion of discrete stability analogous to that in [DMZI11]. A
random metric measure space X is said to be discrete stable of index
a if X coincides in distribution with thl/a) Xé(lft)l/a) for 0 <t <1,
where X; and X, are independent copies of X. By an application
of general results from [DMZII] it is possible to conclude that such
an X corresponds to a doubly stochastic (Cox) Poisson process on I
whose random intensity measure is stable. The simplest example is
X := VAN where Y € I and N is an N-valued discrete a-stable ran-
dom variable; any such random variable N has a probability generating
function of the form E[s"] = exp(—c(1—s)%), s € [0, 1], where ce R, ;.

12. THE GROMOV-PROHOROV METRIC

We follow the definition of the Gromov-Prohorov metric in [GPW09].
Recall that the distance in the Prohorov metric between two proba-
bility measures p; and pe on a common metric space (Z,ry) is defined

by
déZY’TZ)(,ul, pe) :=1inf{e > 0 : p1 (F) < po(F*) + €, VF closed},
where
Fe:={z€Z:ry(z7) <e, for somez € F}.

An alternative characterization of the Prohorov metric due to Strassen
(see, for example, [EK86, Theorem 3.1.2] or [Dud02l, Corollary 11.6.4])
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is that

déZT’TZ)(/“,/Lz) =infinf{e > 0: 7{(2,2) € Z x Z :rz(z,7') = e} < &},

where the infimum is over all probability measures 7 such that 7(- x
Z) =py and w(Z x ) = po.

The following result is no doubt well-known, but we include it for
completeness. Recall that if (X, rx) and (Y, ry) are two metric spaces,
then ry @ ry is the metric on the Cartesian product X x Y given by

T,X (_B Ty((l’,, yl)7 (ﬂj”, y/l)) — T,X(gjl’ x/l) + TY(y,, yll).

Lemma 12.1. Suppose that p; and ps (resp. vy and vy) are probability
measures on a metric space (X,rx) (resp. (Y,ry)). Then,

d%)r(xY,rx@ry)('ul ® vy, pa @ vy) < dngTX)(Nla fi2) + d%??w)(’/h va).

Proof. This is immediate from the observation that if o and [ are
probability measures on X x X and Y x Y, respectively, such that

af(@',2")e X x X irx(a/,2") =4} <~y
and
Bl ") eY xY iry(y,y") =8} <0
for 7,0 > 0, then
a®B{((«",y), (z",y")) € (X xY) x (X xY)

crx(a ")+ ry (YY) =y + 0}
< v+ 0,

where, with a slight abuse of notation, we identify the measure a ® 3
on (X x X) x (Y xY) with its push-forward on (X x Y) x (X xY)
by the map ((2",2"), (', y")) — ("), («",y")). O

The next lemma is also probably well-known.

Lemma 12.2. Suppose that py and ps are two probability measures
on a metric space (X,rx) and v is a probability measure on another
metric space (Y,ry). Then,

diy VO (1 @ v, 1 @ v) = A (1, ).
Proof. 1t follows from Lemma that
Ay I g @ v,y @ v) < iy ™ (s ) + ™ (v,)
X,r
= d%r X)(M1;M2)-
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On the other hand, suppose that 7 is a probability measure on (X x
Y) x (X xY) such that 7(- x (X xY)) = 11 ®v, 7((X xY) x ) = o ®@v
and

(', y), (2",4") € (XXY)x(XXY) s rx (@, a") +rv (Y, y") Z e} < e

for some ¢ > 0. If p is the push-forward of 7 by the map
(2", y), (2", y")) — (2',2"), then it is clear that p(- x X) = p,
p(X % ) = uy and

p{((2,2") e X x X :rx(a',2") = e} <,

and hence

d%))r{,rx)(ul’ ,UQ) < dgr(XY’TXGBTY)(Ml R,y ® y).

O

The Gromouv-Prohorov metric is a metric on the space of equivalence
classes of metric measure space (recall that two metric measure spaces
are equivalent if there is an isometry mapping one to the other such that
the probability measure on the first is mapped to the probability mea-
sure on the second). Given two metric measure spaces X = (X, rx, fx)

and Y = (Y,ry,uy), the Gromov-Prohorov distance between their
equivalence classes is
d X — inf ¥r2) —1 —1
ape(X, V) = inf dp 7 (ux o oy py 0 ¢y ),
(¢x,9v.2)

where the infimum is taken over all metric spaces (Z,rz) and isometric
embeddings ¢x of X and ¢y of Y into Z, and px o¢y' (vesp. uy o¢y')
denotes the push-forward of X by ¢x (resp. puy by ¢y). It is easy to
see that

(12.1) dgp(X,E) = in)f(inf{a >0: ux{ye X : rx(z,y) > e} <e}.
xe

13. INEQUALITIES FOR LAPLACE TRANSFORMS

In this section we prove two inequalities about Laplace trans-
forms of nonnegative random variables that were used in the proof

of Lemma [3.8

Lemma 13.1. There are constants ', k" > 0 such that for any non-
negative random variable & we have

k' ((—log(E[exp(=¢)])) A 1) S E[§ A 1] < £"((—log(E[exp(=£)])) ~ 1).
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Proof. Consider the first inequality. Recall that 1 —exp(—u) < u for all
u € R. Furthermore, there is a constant v > 0 such that 1—u > —vlogu
for e7! < uw < 1. Thus,

E[¢ A 1] > 1 — E[exp(—(€ A 1))]
= (= log(E[exp(—(§ A 1))]))-
It will therefore suffice to show that there is a constant 4 > 0 such that
—log(E[exp(—(¢ A 1))]) = 0((— log(E[exp(=¢)])) A 1)
= 0(—log(E[exp(—=&)] v e™1))
or, equivalently, that
Elexp(—(¢ A 1))] < E[exp(=)] v e )P = E[exp(=)] v .
That is, we need to show that we can choose § > 0 such that if
(13.1) E[exp(—(¢§ A 1))] > e,
then
Efexp(—(§ A 1))] < E[exp(—¢)]°.
Moreover, since
E[exp(—(§ A 1))] = E[exp(—€)1{€ < 1}] + e7'P{§ > 1}

and

Elexp(—¢)] = Elexp(=¢)1{¢ < 1}],
it will be enough to establish that

e IP{¢ = 1} e o
Efexp(—)1{E < 17] ~ lexp(=OHE < LT

Suppose that (13.1]) holds. In that case
e’ < Efexp(—(£ A 1))]

= E[exp(—€)1{¢ < 1}] + e7'P{¢ > 1}
<1-P{=1}+e'P{E =1},

(13.2) 1+

so that 5
1—e"
P{&>1
{5 } < 1 _ 671
and
o0 _ o1
Elexp(=OME <1} > ———~

Therefore ((13.2)) will hold when
el(1—e?) ef(1l—et) - <e‘5 — 6_1)6_1

1+ -
e —el e —el 1—e!
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or, after some rearrangement, when
5 INS
s (e 0 et
el < | ———
1—el

5 _
e " —e

T ol—e

This is certainly possible by taking ¢ sufficiently small. Numerically,
the upper bound on satisfactory values of ¢ given by this argument is
approximately 0.51012.

Now consider the second inequality in the statement of the lemma.
Recall that —log(1 —u) = u for 0 < u < 1. Moreover, there is a
constant 0 < 8 < 1 such that exp(—u) < 1— fu for 0 < u < 1. We
have

or, equivalently,
1

e

(—log E[exp(—¢)]) A 1 = — log(E[exp(—¢)] v e ')

—log(E[exp(—¢) v e '])
— log(E[exp(—(¢ A 1)])
1 —Efexp(—=(§ A 1)]
PE[E A 1],

where we used Jensen’s inequality for the first inequality. 0

A\

>
=
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