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Determining Protein Complex Structures Based
on a Bayesian Model of in Vivo Förster
Resonance Energy Transfer (FRET) Data*□S

Massimiliano Bonomi‡§¶, Riccardo Pellarin‡, Seung Joong Kim‡, Daniel Russel‡,
Bryan A. Sundin�, Michael Riffle�, Daniel Jaschob�, Richard Ramsden�**,
Trisha N. Davis�, Eric G. D. Muller¶�, and Andrej Sali‡¶

The use of in vivo Förster resonance energy transfer
(FRET) data to determine the molecular architecture of a
protein complex in living cells is challenging due to data
sparseness, sample heterogeneity, signal contributions
from multiple donors and acceptors, unequal fluoro-
phore brightness, photobleaching, flexibility of the linker
connecting the fluorophore to the tagged protein, and
spectral cross-talk. We addressed these challenges by
using a Bayesian approach that produces the posterior
probability of a model, given the input data. The poste-
rior probability is defined as a function of the depen-
dence of our FRET metric FRETR on a structure (forward
model), a model of noise in the data, as well as prior
information about the structure, relative populations of
distinct states in the sample, forward model parame-
ters, and data noise. The forward model was validated
against kinetic Monte Carlo simulations and in vivo ex-
perimental data collected on nine systems of known
structure. In addition, our Bayesian approach was vali-
dated by a benchmark of 16 protein complexes of known
structure. Given the structures of each subunit of the
complexes, models were computed from synthetic
FRETR data with a distance root-mean-squared devia-
tion error of 14 to 17 Å. The approach is implemented in
the open-source Integrative Modeling Platform, allow-
ing us to determine macromolecular structures through
a combination of in vivo FRETR data and data from other
sources, such as electron microscopy and chemical
cross-linking. Molecular & Cellular Proteomics 13:
10.1074/mcp.M114.040824, 2812–2823, 2014.

Mapping the organization and function of the cell requires
characterization of the structure and dynamics of biological
assemblies (1, 2). However, the construction of models con-
sistent with experimental data is often hampered by data
sparseness due to incomplete measurements, data noise due
to measurement errors, data ambiguity due to multiple copies
of the same component in the assembly, and data mixture
due to multiple structural states in a compositionally and
conformationally heterogeneous sample.

Traditional modeling aims to find a single structural model
by minimizing the difference between the data computed from
the model and the experimental data. The noise in the data is
typically not modeled accurately and thus biases the estimate
of model precision. In contrast, Bayesian structural modeling
(3, 4) interprets experimental data more objectively by explic-
itly accounting for data noise and prior knowledge about the
system. Here, we developed a Bayesian approach that con-
verts data from in vivo Förster resonance energy transfer
(FRET)1 spectroscopy into quantitative distance restraints
suitable for structural modeling. The approach is available as
part of the open-source Integrative Modeling Platform (IMP)
(5, 6). IMP is a platform for integrative structure determination
of macromolecular assemblies, based on a variety of experi-
mental data, such as electron microscopy images and density
maps, chemically cross-linked residue pairs, small angle x-ray
scattering profiles, and various proteomics data (2, 7–10).

FRET is a powerful technique for studying protein–protein
interactions both in vitro and in living cells (11, 12). FRET
occurs when two spectrally matched fluorescent molecules
are in close proximity and excitation energy is transferred
from the donor to the acceptor fluorophore through nonradia-
tive dipole–dipole coupling (Fig. 1A). The efficiency of this
process (13) is a common experimentally derived variable of in
vitro single-molecule experiments (14). It has been used to
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probe distances over the range of 1 to 10 nm, resulting in
spatial restraints for modeling the structure of the studied
complex (15, 16).

Compared with in vitro FRET, in vivo FRET measurements
present several additional challenges (17) (Fig. 1B) that mainly
originate from the use of donor–acceptor pairs of color vari-
ants of the green fluorescent protein (GFP) (18, 19). Despite
significant progress (20), these proteins are not ideal FRET
partners, and four sources of noise that affect in vitro FRET
are amplified. First, the unequal brightness of the two fluoro-
phores can lead to different saturation levels in the donor and
acceptor images. Second, the emission and excitation wave-
lengths of the GFP variants are broad and lead to contami-
nation of the emission from energy transfer with light derived
from direct emission from both donor and acceptor (direct
acceptor excitation and spectral cross-talk). Third, in the case
of the common FRET pair CFP–YFP, YFP is photobleached
with exposure to the CFP excitation light and thus becomes
gradually inactive during data collection. Fourth, fluorescent
proteins are often attached to the tagged protein by means of
long, flexible linkers that increase the structural variability of
the system. In addition, some complexes may be composed
of proteins that do not have 1:1 stoichiometry, and this com-
plicates the interpretation of FRET data in terms of distances
between individual components. Many of these problems can
be overcome with the use of an experimental approach that
measures fluorescence lifetimes of FRET donors (21). How-
ever, in many situations in live cells in which a complex is in
low abundance, fluorescence lifetime measurements are not
feasible (22).

The measurement of additional observables has been pro-
posed to supplement the FRET efficiency as a way to address
some of these problems (23). Among these observables is the
FRETR index (24–26), a ratio that measures the fluorescence
intensity at donor excitation and acceptor emission wave-
lengths relative to a calculated baseline expected in the ab-
sence of FRET. Our Bayesian approach computes this ob-
servable for a given structure while accounting for all sources
of uncertainty of the in vivo FRETR data listed above, as well
as for the presence of multiple distinct conformations in the
sample (28, 29).2 As a result, we can now use FRETR data to
determine the molecular architectures of protein complexes in
vivo.

Computational Methods and Experimental Procedures—

The FRETR Index—FRETR (24, 25) is an index of relative
FRET in cells, based on the measurement of fluorescence
intensities IYFP, IFRET, and ICFP by an epifluorescence micro-
scope configured with three filter set combinations. In this
work, we used filter sets from Chroma® that yielded the YFP
(excitation filter at �ex � 500 nm, emission filter at �em � 535
nm), FRET (�ex � 430 nm, �em � 535 nm), and CFP (�ex � 430
nm, �em � 470 nm) images. The baseline fluorescence de-
tected in the FRET image that is not the result of FRET is
quantified by the spillover factors Sd and Sd, measured in two
separate experiments where YFP and CFP are expressed
individually. The Sd factor quantifies the cross-talk between

2 Bonomi, M., Pellarin, R., Spill, Y., Nilges, M., DeGrado, W., and
Sali, A., in preparation.

FIG. 1. In vivo FRET microscopy. A, two proteins of interest are tagged with pairs of colored variants of GFP, typically CFP and YFP. When
CFP is illuminated (�ex � 430 nm) and the two fluorophores are sufficiently close, energy transfer occurs and fluorescence is measured at both
CFP (�em � 470 nm) and YFP (�em � 535 nm) excitation wavelengths. The efficiency of energy transfer can be used to measure the distance
between the two proteins. Typically, only the protein termini of each subunit are tagged with GFP; the total number of FRETR data points per
complex that can be used in structural modeling is thus N(2N � 1), where N is the number of subunits in the complex. B, a quantitative use
of in vivo FRET data is complicated by data sparseness, multiple conformations, signal contributions from multiple donors and acceptors,
uneven fluorophore brightness, photobleaching, flexibility of the linker connecting the fluorophore to the tagged protein, and spillover of donor
and acceptor fluorescence.

Bayesian Modeling of in Vivo FRET Data
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donor and acceptor emission spectra in the filter sets, and the
Sa factor quantifies the direct excitation of the acceptor. In an
experiment in which YFP and CFP are co-expressed and
energy transfer is measured, FRETR measures the fold-in-
crease in the intensities in the FRET image relative to a com-
puted and expected baseline.

FRETR�
IFRET

Stot
, (Eq. 1)

where Stot � Sd � ICFP�Sa � IYFP.
Bayesian Model of FRETR Data—The Bayesian approach (3,

4) estimates the probability of a model given information
available about the system, including prior knowledge and
newly acquired experimental data. In the multi-state modeling
of FRETR data, the model M consists of a set of N modeled
structures X � {Xk}, their relative populations in the sample
{wk}, and additional parameters defined below. The posterior
probability p(M�D, I) of model M, given data D and prior
information I, is

P�M�D, I�� P�D�M, I� � P�M�I�, (Eq. 2)

where the likelihood function p(D�M, I) is the probability of
observing data D given M and I, and the prior p(M�I) is the
probability of model M given I. To define the likelihood func-
tion, one needs a forward model f(X) that predicts the data
point that would have been observed for structure(s) X and a
noise model that specifies the distribution of the deviation
between the observed and predicted data points. The Bayes-
ian scoring function S(M) is defined as S�M� � �log
�p�D�M, I�·p�M�I�	 which ranks alternative models the same as
the posterior probability.

Forward Model—An ensemble of CFPs and YFPs that are
continuously excited by external radiation can return to the
ground state through different independent decay pathways,
including fluorescence and energy transfer from excited do-
nors to non-excited acceptors. Following Förster theory (13),
the rate of energy transfer between donor i and acceptor j is

conveniently written as kij
ET �

kd
F

Qd
�R0

Rij
�6

, where Rij is the dis-

tance between the two fluorophores and R0 is the Förster
radius. The donor fluorescence quantum yield Qd is the ratio
between the fluorescence rate kF

d and the total rate of decay
and is proportional to the donor brightness. In general, R0

depends on the orientation factor �2 of the interacting dipoles.
We adopt the common assumption that donor and acceptor
sample their orientations randomly on the time scale of the
measurement (30), so that �2 � 2/3. This is considered par-
ticularly valid for fluorescent proteins attached by long, flexi-
ble linkers to targeted proteins. The linkers do not adopt a
fixed conformation. Finally, the MD simulations described in
“Results” showed that the linkers were sufficiently long to
allow for orientational averaging during the time of image
acquisition.

In the limit of rapid de-excitation and slow excitation rate
(SI), the donor and acceptor fluorescence intensities are
Id
F � Qd � kd

X � g�X� and Ia
F � Qa � 
ka

X � �A	 � kd
X � ��D	 � g�X���

where g�X� � ¥
i

1
1 � Fi

�Di	 quantifies the donor fluorescent

intensity in terms of CFP and YFP concentrations and relative
proximities. Fi is computed from the Förster expression that
relates the rate of energy transfer and distance Rij between
the two fluorophores i and j (13): Fi � ¥

j
�R0/Rij�

6�Aj	 � [D] and [A]

are the CFP donor and YFP acceptor concentrations, respec-
tively, and kX

d and kX
d are their excitation rates. The FRETR

forward model (supplemental Fig. S1A) is

f�X, Ida, kda� � 1 �
kda � 
�D	 � g�X��

Ida � g�X� � �A	
, (Eq. 3)

where Ida is the ratio of CFP and YFP fluorescence in two
FRET images when each fluorescent protein is expressed
individually at equal levels in separate cells. This quantity is
treated as a free parameter, but its value is restrained by the
experimental measurement (Ida

exp and �Ida
exp). kda � kd

X,430/ka
X,430

is the ratio between donor and acceptor excitation rates at
�ex � 430 nm; it is determined by the ratio between CFP and
YFP absorption cross-sections at 430 nm. However, because
each fluorescent protein has a different absorption spectrum
and the excitation wavelength varies with the filter set, kda is
treated as a free parameter and is inferred along with the
coordinates and the other unknown parameters.

Multi-state Forward Model—For FRET measurements of
complexes within living cells, the observed FRETR may arise
from multiple conformations of the complex. In such a case,
FRETR should be expressed in terms of partial contributions
resulting from the individual conformations Xk and propor-
tional to their relative populations wk. The single-state forward
model (Eq. 3) can be generalized to take into account multiple
states.

f�
Xk, wk�, Ida, kda� � 1 �
kda � 
�D	 � �g�X�
�

Ida � �g�X�
 � �A	
, (Eq. 4)

where �g�X�
 � ¥kwkg�Xk�.
Photobleaching—YFP fluorophores are photochemically

destroyed by prolonged exposure to radiation at wavelengths
near the CFP absorption peak. For in vivo measurements, the
observed FRETR is thus averaged over multiple copies of the
system in which photobleached fluorophores do not contrib-
ute to the signal. Thus, the same multi-state forward model
described above (Eq. 4) can be used, except that wk corre-
sponds to the proportion of molecules that are both non-
photobleached and in state Xk.

Likelihood Function—The likelihood function p(D�M, I) for
dataset D � {dn} of NF independently measured FRETR values
is a product of likelihood functions p(dn�{Xk, wk}, Ida, kda, �n)
for each data point. Because the observed FRETR values were
strictly positive and unbounded, we modeled the uncertainty
with a log-normal distribution:

Bayesian Modeling of in Vivo FRET Data
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p�dn�
Xk, wk�, Ida, kda, �n� �
1

dn�n�2�

� exp � �
log2�dn/f�
Xk, wk�, Ida, kda��

2�n
2 �. (Eq. 5)

To account for varying levels of noise in the data, each data
point has an individual uncertainty �n.

Prior—The prior distribution p(M�I) is a product of priors on
the state coordinates Xk, relative populations wk, forward
model parameters Ida and kda, and uncertainties �n. The priors
on the coordinates p(Xk) include terms to maintain the correct
stereochemistry of the system, to avoid steric clashes be-
tween components, and to incorporate information other than
FRETR data. The priors p(wk) are uniform distributions over the
range from 0 to 1, with the constraint ¥k wk � 1. The priors
p(�n) are unimodal distributions (31):

p��n��0� �
2�0

���n
2 exp�� �0

2

�n
2�, (Eq. 6)

where �0 corresponds to an unknown experimental uncer-
tainty; the heavy tail of the distribution allows for outliers
(supplemental Fig. S1C). The prior p(�0) is a uniform distribu-
tion over the range from 0.001 to 0.01. If all FRETR values are
measured with the same filter sets and fluorescent proteins,
the same values of Ida and kda can be used for all data points.
The prior p�Ida�Ida

exp, �I da
exp� is a normal distribution in which Ida

exp

and �Ida
ex are the average and standard error of the experimen-

tal measurements. The prior p(kda) is a uniform distribution
over the range from 1 to 15, based on typical ratios of CFP to
YFP absorption cross-sections (32).

To facilitate sampling of the posterior distribution, we elim-
inate its dependence on the uncertainties �n by integrating the
likelihood function and prior p(�n �0) with respect to �n. Thus,
the marginal likelihood function (supplemental Fig. S1B) is

p�dn�
Xk, wk�, Ida, kda, �0�

�
�2�0

�dn
�

1
log�dn/f�
Xk, wk�, Ida, kda��

2 � 2�0
2
.

(Eq. 7)

A detailed description is provided in the supplemental
material.

Kinetic Monte Carlo—KMC simulations (33, 34) were per-
formed on in silico models of multiple CFP donors and YFP
acceptors (one CFP–one YFP, two CFP–one YFP, and one
CFP–two YFP). At each KMC step, one of the following reac-
tions was randomly chosen on the basis of their rates: (a)
excitation of either a single non-excited YFP (kx

a) or (b) CFP
(kX

d); (c) de-excitation of a single excited YFP by either fluo-
rescence (kF

a) or (d) other pathways; or (e) de-excitation of a
single excited CFP by fluorescence (kF

d), (f) energy transfer to
a non-excited YFP (kET

ij), or (g) other pathways. The rate of
decay via pathways other than fluorescence was defined by
the CFP and YFP quantum yields of fluorescence Qd and Qa,

which were both set at 0.5. The factor kET
ij was equal to

kd
F

Qd
� �R0

Rij
�6

where the Förster radius R0 was set at 4.9 nm. kF
d

and kF
a were set (35) at 0.4 ns�1. Simulations were run for

multiple values of kd
X,430 and ka

X,430, and ka
X,500 was calculated

from supplemental Eq. S1. The distance between CFP and
YFP was varied between 3 and 10 nm in steps of 0.5 nm. For
each choice of the parameters, FRETR was calculated from
Eq. 1 based on the results of three 0.1-s KMC runs used to
simulate imaging experiments with 0.1-s exposures. The in-
tensities in the CFP, FRET, and YFP images were calculated
from the number of reactions of a given type occurring during
the simulations. Based on experimental measurements, Sd

and Sa were set at 0.831 and 0.249, respectively. To account
for photobleaching, YFPs were randomly labeled as inactive
during the acquisition of the CFP image (with the probability
set at 0.3) and then removed from the list of possible reac-
tions. FRETR was thus calculated by averaging quantities over
3200 independent KMC simulations.

Molecular Dynamics—MD simulations were performed
with GROMACS4 (36) and PLUMED (37, 38), using the
AMBER99SB-ILDN (39) all-atom force field. An implicit sol-
vent based on the Generalized Born formalism combined with
the Still method (40) for calculating the Born radii was used.
Temperature was controlled by the Bussi–Donadio–Parrinello
(41) thermostat. A cutoff of 1.5 nm was used for electrostatic
and Lennard–Jones interactions. The parallel tempering algo-
rithm (42) was used to accelerate sampling.

Parallel Tempering Simulation of GFP and Linker—The
crystal structure of recombinant wild-type green fluorescent
protein (PDB code 1GFL (43)) was used as a template. Mod-
eler 9v8 (44) was used to model the C-terminal residues
(HGMDELYKGA) present in the GFP sequence, but not in the
crystal structure, and the GlyAla motif at the N terminus. The
first 7 and the last 14 residues were treated as flexible seg-
ments based on the fluctuations observed in a preliminary MD
run. The positions of the other heavy atoms of the protein
were restrained by a harmonic potential, with the spring con-
stant equal to 9 � 103 kJ � mol�1 � nm�2. 32 replicas were
distributed over a temperature range from 300 to 500 K.
Simulations were carried out for an aggregate time of 1 	s.

Combined Parallel Tempering and Metadynamics Simula-
tions of Polyprolines—The polyproline constructs YFP–
(PRO)n–CFP with n � (0, 5, 10, 15, 20) were simulated through
a combination of parallel tempering and metadynamics (45–
47). 16 to 40 replicas were used to span a temperature range
from 300 to 600 K. A collective variable measuring the number
of prolines in cis and trans conformations was used to accel-
erate proline cis–trans isomerization. For an n-mer peptide,
this collective variable was defined (48) as � � ¥i�1

n�1 cos
i

where the torsional angle 
 formed by the quadruplet C�–C–
N–C� was equal to 0° for the cis isomer and to 180° for the
trans isomer. The well-tempered (49) variant of metadynamics
was used, with a bias factor equal to 30 and an initial depo-
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sition rate of 1 kJ � mol�1 � ps�1. YFPs and CFPs were not
simulated at atomistic resolution; only the residues belonging
to the flexible N- and C-terminal fragments defined in the
previous paragraph were explicitly modeled. The fluorescent
proteins were instead represented as virtual atoms defined in
the fixed reference frame of the first and last modeled resi-
dues. Restraints on all distances between virtual and other
atoms were used to enforce steric repulsion. A reweighting
algorithm (50) was applied to obtain the unbiased distribution
of distances between the two virtual atoms representing the
center of the fluorophores. Simulations were carried out for an
aggregate time ranging from 1 to 8 	s.

Parallel Tempering Simulations of Other Proteins—The
NMR structures of the THP12-carrier protein from yellow meal
worm (PDB code 1C3Y (51)) and the fourth LIM domain of
PINCH protein (PDB code 1NYP (52)), as well as the crystal
structures of the human TBP-associated factor hTAF(II)28/
hTAF(II)18 heterodimer (here abbreviated as TAF28-TAF18)
(PDB code 1BH8 (53)) and the ferrodoxin:thioredoxin reduc-
tase (PDB code 1DJ7 (54)), were used as templates. Modeler
was used to model the flexible linkers at the N and C termini.
Preliminary short MD simulations at 300 K were carried out to
measure the fluctuations in terms of distance-root-mean-
square (dRMS) deviation from the native state. A restraint on
the dRMS was then used during the parallel tempering sim-
ulations to avoid unfolding at high temperatures. The terminal
flexible residues were not considered in the dRMS calcula-
tion. Multiple replicas (from 16 to 64) were used to span a
temperature range from 300 to 600 K. YFPs and CFPs were
not simulated explicitly (see previous paragraph).

Benchmark—The benchmark was carried out with the
open-source IMP (5, 6), version develop-c47408c. The bench-
mark results and scripts are available online. The method was
tested on 11 ternary and 5 quaternary complexes of known
structure, selected from 3D Complex (55). For each pair of
subunits in the complex, simulated data were generated for all
combinations of the N and C termini of the pair, correspond-
ing to 12 and 24 data points for ternary and quaternary
complexes, respectively. Low- and high-noise datasets were
generated by setting �0 equal to 0.001 and 0.01, respectively.
The average of 50 different random extractions from the mar-
ginal likelihood distribution (Eq. 7) was used to simulate the
average from repeated experiments, with the typical standard
deviation equal to 0.04 and 0.19 for low- and high-noise data,
respectively. The typical standard deviation for in vivo data is
0.15. Different percentages (100% and 50%) of the total
amount of data were used to assess the role of data sparse-
ness in modeling accuracy. To model linker flexibility, a
Gaussian mixture model was fit on a set of 5000 probes of
radius equal to 10 Å using 10 Gaussian components. The
conformation of each subunit was obtained from the crystal
structure of the entire complex; it was represented with C�

atoms for each residue and treated as an independent rigid
body. An excluded volume potential was used to avoid steric

clashes between subunits. Coordinates, forward model, and
likelihood parameters were sampled via a Gibbs sampling
scheme combined with a simulated annealing Monte Carlo
algorithm. A Monte Carlo move of each rigid subunit con-
sisted of a random rotation and translation of at most 17° and
1.0 Å, respectively. A Monte Carlo move of the forward model
parameters kda, Ida, and �0 consisted of a random perturba-
tion of at most 0.3, 0.3, and 0.001, respectively. Temperature
was varied between 1.0 and 5.0 kBT. The initial positions were
randomized in a cubic box with dimensions of 100 Å. For each
structure and choice of parameters, 20 independent simu-
lated annealing Monte Carlo runs were performed. A total of
2560 tests were conducted, each for a total of 3 � 107

simulated annealing Monte Carlo steps (supplemental
Fig. S9).

In Vivo FRETR Measurements—Saccharomyces cerevisiae
strains expressing the YFP and CFP tagged proteins were
grown and imaged as previously described (25). The fluores-
cent proteins were linked to the target proteins through un-
structured linkers. Exposure times were either 0.08 or 0.1 s for
each image, allowing for a prolonged sampling of an ensem-
ble of proteins such that each can adopt different relative
orientations of the fluorescent proteins. Expression of all con-
structs was driven by the strong TEF promoter. Importantly,
all constructs were engineered with a nuclear localization sig-
nal, resulting in two advantages. First, the uniform nuclear fluo-
rescence was used as an indication of proper protein folding,
and second, nuclear localization allowed the cytoplasm to be
used to measure a local background in the cell. All constructs
were integrated into the host genome to ensure uniform cell-to-
cell gene expression. Plasmids used for integrating the con-
structs are described in supplemental Table S1.

Image analysis was performed with FRETSCAL, an inte-
grated collection of MATLAB scripts with a graphical user
interface. FRETSCAL identifies an area of interest (AOI) within
the images and calculates FRETR for each AOI. FRETSCAL
has user-controlled selection criteria that (i) define the size of
the AOI, (ii) set a maximum pixel intensity of the AOI to ensure
that selected AOIs are within the linear range of the image
acquisition CCD camera, (iii) set a minimum signal-to-back-
ground ratio, (iv) set a maximum cutoff value for the width of
a Gaussian fit of the intensity values within the AOI, and (v)
define other parameters that automate AOI selection and
analysis. The software is open source and is available online
at the MATLAB Central website.

A single value of FRETR is calculated as a ratio of the mean
background subtracted value of the whole nuclear region in
the FRET image divided by the projected value if there was no
energy transfer. The projected value is calculated from the
corresponding nuclei in the YFP and CFP images of the same
field. The projected value is the sum of the mean background
subtracted value of the whole nuclear region in the YFP image
multiplied by the YFP spillover factor plus the mean back-
ground subtracted value of the whole nuclear region in the
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CFP image multiplied by the CFP spillover factor. The spill-
over factors are determined as described above under the
FRETR heading.

All images used in this study are available online from the
YRC Public Image Repository. In addition, a composite image
is shown that displays the FRETSCAL output. In the online
composite image, the nuclei that satisfied the selection crite-
ria used in FRETSCAL are framed in yellow. The correspond-
ing background pixels are shown in gray.

RESULTS

Our Bayesian approach for determining a macromolecular
architecture from in vivo FRET data is based on a microscopic
interpretation (forward model) of the experimental observable
FRETR in terms of structural models and other parameters. It is
thus crucial to first assess the validity of the forward model. To
do so, we began with computational validation by means of
KMC simulations (33, 34) of in silico models of multiple CFP
donors and YFP acceptors. We then proceeded with compari-
sons of FRETR predictions from molecular dynamics simula-
tions to in vivo experimental data that were collected from yeast
cells expressing constructs of CFP and YFP separated by any
one of nine defined linkers and protein structures. Finally, the
accuracy of structural modeling using synthetic FRETR data and
the structures of each individual subunit was assessed via com-
parison of native molecular architectures of 16 protein com-
plexes with their models computed with our Bayesian
approach.

Kinetic Monte Carlo Validation of the Forward Model—
Based on the physics of fluorescent molecules, we derived
master equations that express the excitation and emission of
an ensemble of FRET donors and acceptors as visualized with
a fluorescent microscope (supplemental Eqs. S2A and S2B).
The FRETR forward model (Eq. 4) is derived from an approx-
imate solution of these master equations in the limit of rapid
de-excitation and slow excitation rate. As a validation of this
approximation, the value of the FRETR predicted by Eq. 4 was
compared with the results of KMC simulations governed by
the master equations S2A and S2B. The KMC simulations
described the evolution of an in silico model of multiple CFP
donors and YFP acceptors and computed FRETR in every
excitation/de-excitation regime. For this comparison, we rep-
resented CFP and YFP as dimensionless points whose dis-
tance and other parameters were varied (“Computational
Methods and Experimental Procedures”).

FRETR changed smoothly with the distance between a
single CFP and YFP over the range from 3 to 10 nm (Fig. 2).
When the CFP excitation rate kX

d was much smaller than its
fluorescent rate kF

d (kX
d/kF

D � 0.05), excellent agreement was
found between FRETR from the forward model and KMC
simulations, with deviations of less than 1% under all condi-
tions (supplemental Fig. S2A).

FRETR was also computed from KMC simulations of sys-
tems of two CFPs and one YFP (supplemental Fig. S3A) and

of one CFP and two YFPs (supplemental Fig. S3B). The be-
havior of FRETR differs in the two cases. When multiple do-
nors surround a single acceptor, adjacent donors compete for
non-excited acceptors. In contrast, a relative abundance of
acceptors increases the chance of energy transfer. However,
the effect on energy transfer is shaped by the relative rates of
excitation and emission of the donor and acceptor (supple-
mental Fig. S3C). In the limit of rapid de-excitation and slow
excitation rate, the agreement between the forward model
and KMC simulations was still excellent in both cases, with
deviations of less than 1% under all conditions (supplemental
Figs. S2B and S2C).

In all the KMC simulations mentioned above, we included
the effect on YFP photobleaching during the experiment. To
examine this effect directly, we investigated a model system
of multiple YFP acceptors. As expected, with fewer acceptors
available because of photobleaching, energy transfer was
attenuated at all CFP–YFP distances (compare value in sup-
plemental Fig. S4A with that in supplemental Fig. S4B); again,
the FRETR computed by the forward model, which included
the effect of YFP photobleaching (supplemental Fig. S4C),
agreed with that from the KMC simulations that included
photobleaching (supplemental Fig. S4B).

These comparisons demonstrate that the approximate ex-
pression for FRETR given by the forward model (Eq. 4) agrees
well with more complex (and far more computationally expen-

FIG. 2. KMC validation of the forward model. FRETR was calcu-
lated from KMC simulations of a system consisting of one CFP donor
and one YFP acceptor. CFP and YFP were represented as dimen-
sionless points that correspond to the centers of the fluorophore.
FRETR was computed with varying distance between fluorophores,
donor excitation rate kd

X/kd
F, and donor/acceptor excitation rate ratio

kda � kd
X,430/ka

X,430 (circles and squares). kd
F was set (35) at 0.4 nm�1.

The YFP photobleaching ratio during the acquisition of the CFP image
was set at 0.3. In the regime of low excitation and fast de-excitation
(kd

X/kd
F � 0.05), the value of FRETR predicted by the forward model

(lines) was in excellent agreement with KMC simulations (error anal-
ysis in supplemental Fig. S2).
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sive) simulations based on a more comprehensive physical
treatment.

In Vivo Experimental Validation of the Forward Model—We
further validated the FRETR forward model by comparing the
predictions from MD simulations to in vivo experimental data
that we collected on nine proteins of known structure that
were expressed in S. cerevisiae (supplemental Table S1).
These nine systems included a tandem YFP–CFP; YFP–
[Pro]n–CFP in which n was equal to 5, 10, 15, or 20 prolines;
and four constructs in which CFP and YFP were attached to
the N or C termini of proteins of known structure. The latter
four constructs were as follows: (i) YFP-THP12-CFP; (ii) YFP-
Lim4-CFP; (iii) YFP -TAF28-CFP co-expressed with TAF18;
and (iv) FTR117-CFP co-expressed with FTR74-YFP. Finally,
a control measurement on the co-expressed but unlinked YFP
and CFP pair showed no energy transfer (FRETR � 1.04). In
each case hundreds of images of hundreds of cells were
acquired. A sample set of images is shown in Fig. 3A. All the
images used in the dataset are available online at the YRC
Public Image Repository. Automated processing of the im-
ages was accomplished with the software FRETSCAL. The
large number (n � 200) of identified AOIs provided a strong
statistical foundation for the FRETR measurements used in the
Bayesian analysis.

In comparing our forward model against experimental data,
we took into account the dependence of the measured FRETR

on the presence of multiple conformations in the sample. To
do so, we used MD simulations combined with advanced
sampling techniques to explore the conformational landscape
of the test structures. Although polyproline peptides have
often been employed as a spectroscopic ruler, several exper-
imental (56–58) and computational (48, 57) studies have
questioned the role of polyproline as a “rigid rod” in a single
dominant conformation. Prolyl isomerization from the trans to
cis isomer, whose activation energy is on the order of 10 to 20
kcal/mol (59, 60), converts the left-handed polyproline II helix
(PPII) to the more compact right-handed polyproline I helix
(PPI). Thus, a heterogeneous population of structures with
distinct patterns of cis and trans isomers of proline is ex-
pected to be present in a cell.

The conformational landscape of polyprolines in solution
was predicted by all-atom MD simulations in implicit solvent
using parallel tempering (42) and metadynamics (45, 46).
These techniques allow (i) exhaustive sampling by accelerat-
ing proline trans-cis isomerization and (ii) estimates of the
equilibrium relative populations {wk} of the conformers (Eq. 4).
The polyproline II helix was favored over the polyproline I helix
across all lengths studied (supplemental Fig. S5), in agree-
ment with previous computational (48) and experimental re-
sults (61). The conformational landscape of the other con-
structs was also explored using similar computational
approaches. Finally, simulations of the tandem YFP–CFP
showed that the linkers at the N and C termini were sufficiently

long to allow for orientational averaging of the fluorophores on
the time scale of the FRET experiment (supplemental Fig. S6).

To compare the FRETR forward model with experimental
data, we calculated the weighted average of g(X), which de-
pends on the model coordinates (Eq. 4), as the ensemble
average over the MD conformations (supplemental Figs. S7A
and S7B). We inferred the forward model parameters kda and
Ida, along with the uncertainty �0, by maximizing the posterior
distribution, which was defined based on all nine data points
using the mean experimental value kexp

da � 6.0 and standard
error �I

exp
da � 2.0. Using the inferred parameters (kda � 7.7,

Ida � 6.6, and �0 � 0.05), we found good agreement between
the forward model and measured FRETR values (Fig. 3B,
white and black bars, respectively), except for one outlier,
TAF28-TAF18. When the procedure was repeated without the
outlier (Fig. 3B, gray bars), the inferred parameter values kda �

7.5 and Ida � 6.2 changed minimally, and the data uncertainty
�0 dropped from 0.05 to 0.03, as expected upon removal of
an outlier data point. Thus, the forward model and associated
parameters can effectively account for the influence of com-
ponents of wide-field fluorescence microscopy, such as in-
stalled filter sets and illumination intensity, on the measure-
ment of the efficiency of fluorescence energy transfer. The
FRETR forward model can accurately relate FRETR values and
fluorophore distances.

Finally, to improve the computational efficiency of the for-
ward model, we fit an efficient Gaussian mixture model to the
expensive all-atom MD simulations of the linker (SI), without a
significant decrease in the accuracy of the forward model
(supplemental Fig. S8).

Benchmark of Modeling Accuracy—The accuracy of the
molecular architectures modeled based on synthetic FRETR

data, given the knowledge of the structure of each subunit,
was mapped with the aid of known structures for 16 protein
complexes of three and four subunits (55). For this bench-
mark, we used synthetic FRETR data that were computed by
first applying our FRETR forward model (Eq. 4) to all pairs of N
and C termini of each subunit in the native structures and then
adding noise (Eq. 7). The accuracy was defined as the C�

dRMS deviation between the native structure and the most
probable model found by the sampling algorithm in IMP,
averaged on 20 independent runs. The use of synthetic data
in this benchmark allowed us to map the accuracy of struc-
tural modeling from FRETR data as a function of the level of
data noise and sparseness, with (supplemental Table S2) and
without (supplemental Table S3) taking the linker flexibility into
account. A flowchart explaining the different steps of the
benchmark is presented in supplemental Fig. S9. It is con-
ceivable, however, that the accuracy of models computed
from real FRETR data might be worse than that from the
simulated data, despite our effort to include noise in the
simulated data. Real FRETR data for the FTR117-FTR74 case
were not used as a benchmark case, because the flexibility
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and the resulting demand on sampling made it difficult to run
the benchmark a very large number of times.

When 100% of the data points were used, the accuracy of
the predicted structure of the complex was 13.9 Å and 14.8 Å
for ternary and quaternary complexes, respectively. This ac-
curacy was marginally reduced to 16.1 Å and 17.4 Å when

noisy data were used. The weak dependence on the noise
level resulted from the small standard error of FRETR obtained
by averaging FRETR over many (�100) independent experi-
ments. In contrast, the accuracy was strongly dependent on
data sparseness. When only 50% of the data points were
used, the accuracy decreased to a range from 20.4 Å to 21.5

FIG. 3. Experimental validation of the forward model. FRETR values were determined for nine proteins of known structure. The proteins
were stably expressed in S. cerevisiae with nuclear localization signals (see “Computational Methods and Experimental Procedures”). A, a
sample of captured images. A 4� enlargement of one region shows the FRETR values determined by FRETSCAL. B, FRETR values measured
in vivo on nine proteins of known structure (black bars) compared with the values predicted by the forward model (white bars). The Bayesian
parameters were inferred by maximizing the posterior probability on the set of nine measurements. The fit was repeated excluding the outlier
data point (TAF28-TAF18) and yielded similar results (gray bars), demonstrating the ability of the Bayesian approach to tolerate outliers. Red
error bars indicate experimental standard error and inferred uncertainty.
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Å, depending on the number of subunits and the noise level.
This result emphasizes the need to compile as much informa-
tion as possible from in vivo measurements.

Because FRETR data provide information about the dis-
tance between the protein termini, we expected much greater
accuracy in determining the positions of the terminal residues
(dRMST in supplemental Tables S2 and S3). Indeed, the ac-
curacy was 5.2 Å to 9.3 Å for ternary complexes and 7.1 Å to
11.6 Å for quaternary complexes, depending on the noise
level.

Finally, the accuracy was also affected by the linker flexi-
bility (supplemental Table S3). In particular, the positions of
the tagged termini were inferred with greater accuracy
(��dRMST
 � 2.2 Å) when the simulated data were created
and the sampling was performed without the linker flexibility.
However, the inclusion of the linker flexibility had a relatively
small effect on the accuracy (��dRMS
 � 1.1 Å). Thus, the
presence of a flexible linker, while allowing orientational av-
eraging of the fluorophores (supplemental Fig. S6), does not
dramatically affect the accuracy of our approach.

DISCUSSION

Many observables have been introduced to quantify in vivo
FRET (23). Fluorescence lifetime microscopy overcomes
many of the problems associated with epifluorescence mi-
croscopy, but it is technically challenging and applicable only
for complexes with a robust fluorescence signal (21, 22, 62–
65). Many FRET indexes have successfully processed steady-
state epifluorescence images to yield significant insights into
the dynamics of protein associations in live cells (22, 23, 66).
However, this work represents the first case in which the
supporting theory and structural predictions from a FRET
metric have been modeled and tested both in silico, with
molecular dynamic simulations, and in vivo, with benchmark
protein complexes.

Although our Bayesian approach could be adapted to in-
corporate other FRET metrics, or even FRET efficiencies de-
rived from fluorescence lifetime microscopy, we chose the
metric FRETR. To our knowledge this is the only live-cell FRET
metric in which structural arrangements predicted from in vivo
measurements were directly confirmed in vitro by means of
single particle analysis. FRETR measurements of the 
-tubulin
complex in yeast predicted the location of the N and C termini
of two proteins, Spc97 and Spc98, in the complex (25). Fluo-
rescent proteins linked to these ends were later directly visu-
alized at the predicted locations via electron microscopy (67).
FRETR has also been used to analyze the structure of the
yeast spindle pole body (24, 68) and cohesion architecture
(69), and more recently the organization of the yeast kineto-
chore (26). Of course FRETR also has limitations, and it is
most appropriate for experimental conditions in which the
proteins in a complex are uniformly tagged with a fluorescent
protein, gene expression is tightly regulated and typically
driven from native promoters, and free unincorporated pro-

teins do not interfere with the FRET measurements (17, 23–
25). We showed that our FRETR forward model is accurate,
first by comparing the predicted value (Eq. 4) with that com-
puted from KMC simulations of an in silico model of multiple
CFP donors and YFP acceptors. Excellent agreement was
found for typical conditions of fluorescence microscopy,3

where CFPs and YFPs were not saturated by the incident
illumination. In addition, KMC simulations on systems of mul-
tiple donors and acceptors (supplemental Fig. S3) illustrated
the expected asymmetry of the one CFP–two YFP and two
CFP–one YFP experiments and suggested that data from
experiments in which the positions of YFP and CFP are
swapped provide independent and thus useful information
and should not be averaged (24).

We also validated the forward model using experimental
data by comparing predicted FRETR to in vivo data collected
on nine proteins of known structure, including fluorescent
proteins separated by polyproline peptides of different
lengths (Fig. 3B). Accurate modeling of the experimental data
required explicit modeling of multiple conformations in the
sample (supplemental Figs. S5 and S7). Although in this study
the relative populations {wk} were predetermined by MD sim-
ulations, in general they can be inferred along with the coor-
dinates of the system and other parameters using multi-state
Bayesian scoring functions (27–29).

We demonstrated that the Bayesian approach is robust
with respect to the presence of outlier data points. Collecting
FRETR data in living cells requires tagging a complex with
CFP–YFP pairs that might perturb the system and affect its
structure. As a result, a data point might not correctly repre-
sent the native structure of the complex and thus might be
inconsistent with other information, including other FRETR

measurements. For example, the FRETR value predicted for
TAF28-TAF18 was significantly different from the observed
one (Fig. 3B). This discrepancy might arise from several other
factors besides structural changes due to the insertion of the
fluorophores, such as non-converged MD simulations and
inaccuracy of the molecular mechanics force field. Impor-
tantly, for each data point, an uncertainty parameter is either
inferred or marginalized (31), allowing those points that are
not consistent with the bulk of the data to be properly down-
weighted in the construction of the model.

The results of the benchmark (Fig. 4 and supplemental
Table S2) indicated the importance of using multiple data
points to model a structure. Synthetic FRETR data between all
pairs of subunit N and C termini determined the structure of
ternary and quaternary complexes with an accuracy of �15 Å

3 For example, when collecting data for the yeast spindle pole
body, 1.5 mW of light from the source illuminates the sample, corre-
sponding to a photon per fluorophore every �50 ns. The excitation
rate is of course smaller than implied by this photon flux (kd

X/kd
F �

0.05), because the YFP and CFP absorption cross-sections are typ-
ically much smaller than the fluorophore area.
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(C� dRMS), whereas using only 50% of the data decreased
the accuracy to �20 Å. The greatest structural uncertainty is
in the orientation between the subunits. The accuracy can
thus be improved if further data are collected. Typically, only
the protein termini of each subunit are tagged with GFP;
the total number of FRETR data points per complex that can
be used in structural modeling is thus N(2N � 1), where N is
the number of subunits of the complex. However, in principle
fluorescent proteins can be inserted at positions other than
the protein termini, although such insertions might be more
likely to alter the structure of the complex.

Like any search-based approach, our method requires a
sufficiently thorough configurational sampling algorithm.
Here, we used advanced sampling techniques, including
Gibbs sampler MC with simulated annealing (70) and MD
combined with parallel tempering and metadynamics (47). We
explicitly assessed whether sampling was sufficiently thor-
ough by demonstrating the convergence of the model as a
function of the number of sampled models (supplemental
Fig. S7).

Compared with other methods that mostly deal with in vitro
FRET data (15, 16), our approach treats all noise sources that
characterize measurements in living cells, accounts for sam-
ple heterogeneity, and is robust to outlier data points. Fur-
thermore, our approach is more general, because it allows the
use of in vivo data collected in both bulk experiments, where
multiple CFP and YFP contribute to the measured FRETR, and
single-molecule experiments (71), in which a single CFP–YFP
pair is present; in the latter application, the observed FRETR is

not the ratio of average intensities in the different images (Eq.
4), but the average of FRETR measured on samples in which
the YFP is either active or photobleached.

Finally, we implemented our method in IMP, an open-
source platform for integrative structural modeling of macro-
molecular systems (5). Through IMP, FRETR data can be
combined with information obtained via other methods, such
as electron microscopy, chemical and cysteine cross-linking,
small angle x-ray scattering, proteomics, and other theoretical
or statistical analyses, in an integrative or hybrid approach (5,
72). The uncertainty in the orientation of the subunits based
on FRETR data alone could thus be resolved by considering
additional complementary data, even if sparse and noisy. The
Bayesian approach is expected to be even more useful in
integrative modeling than modeling based on FRETR data
alone, because data from different experiments can in princi-
ple be properly weighted and thus seamlessly integrated.
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