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Abstract

We introduce a new heterogeneous CPU+GPU-enhanced DFTB approach for the routine and 

efficient simulation of large chemical and biological systems. Compared to homogeneous 

computing with conventional CPUs, heterogeneous computing approaches exhibit substantial 

performance with only a modest increase in power consumption, both of which are essential to 

upcoming exascale computing initiatives. We show that DFTB-based molecular dynamics is a 

natural candidate for heterogeneous computing, since the computational bottleneck in these 

simulations is the diagonalization of the Hamiltonian matrix, which is performed several times 

during a single molecular dynamics trajectory. To thoroughly test and understand the performance 

of our heterogeneous CPU+GPU approach, we examine a variety of algorithmic implementations, 

benchmarks of different hardware configurations, and applications of this methodology on several 

large chemical and biological systems. Finally, to demonstrate the capability of our 

implementation, we conclude with a large-scale DFTB MD simulation of explicitly solvated HIV 

protease (3974 atoms total) as a proof-of-concept example of an extremely large/complex system 

which, to the best of our knowledge, is the first time that an entire explicitly solvated protein has 

been treated at a quantum-based MD level of detail.
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Graphical Abstract:

1. INTRODUCTION

Over the past decade, the scientific community has witnessed an unprecedented growth in 

the use of massively parallelized computing to provide critical mechanistic insight in 

numerous research applications. Computational chemistry, in particular, has benefited 

greatly from these technological advances, since predictive simulations of complex systems 

(particularly condensed phase systems in realistic environments) are now possible with 

modern computational hardware. The majority of these calculations have been carried out on 

homogeneous computing architectures where a single type of processor (i.e., CPUs or GPUs 

exclusively) is harnessed for the entire computational simulation. However, in recent years, 

significant attention has focused on heterogeneous computing as a promising path for 

meeting exascale goals and requirements, with machines capable of performing a million 

trillion floating-point calculations per second.1–3 Indeed, two of the most powerful US 

supercomputers—Oak Ridge National Laboratory’s “Summit” and Lawrence Livermore 

National Laboratory’s “Sierra” (both of which went into production recently in 2018)—were 

specifically designed with heterogeneous CPU+GPU architectures as early predecessors to 

approach exascale computing.4 Compared to homogeneous computing, these heterogeneous 

architectures exhibit substantial performance with only a modest increase in power 

consumption, both of which are essential to exascale computing initiatives.5–7 As such, to 

enable and take advantage of these upcoming computational advancements, future 

simulations of large, complex chemical and biological systems will need to adapt and 

efficiently utilize these heterogeneous architectures.

Although heterogeneous computing is less common in time-independent applications of 

quantum chemistry, a specific area that would significantly benefit from these computational 

advances is ab initio-based molecular dynamics (AIMD).8–10 This particular computational 

area is a natural candidate for heterogeneous (and exascale) computing, since one of the 

computational bottlenecks in these simulations is the diagonalization of the Hamiltonian 

matrix, which is performed several (typically a hundred or thousand) times during a single 
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molecular dynamics (MD) trajectory. In addition to its suitability for heterogeneous 

computing, AIMD is also more widely applicable (compared to classical MD or time-

independent quantum chemistry) for calculating dynamical chemical processes such as 

reactive processes, polarization, and hydrogen bonding in condensed phases.11–13 To this 

end, we have augmented the DFTB+ software package14 to utilize heterogeneous CPU

+GPU hardware for accelerating Born–Oppenheimer MD calculations in extremely large 

chemical and biological systems. Our motivation for modifying the DFTB+ package to use 

heterogeneous computing is twofold: (1) The DFTB formalism scales favorably with system 

size, and additional computational advances will allow simulations of systems of even 

greater complexity (some of which are presented in this work) on heterogeneous exascale 

computers. (2) We already have significant familiarity and experience with this open-source 

software package for large chemical/material systems,15–18 and the techniques presented in 

this work can be used in future methodological developments such as large-scale 

nonadiabatic dynamics calculations.

In this work, we present a variety of algorithmic implementations, benchmarks of different 

hardware configurations, and applications of our heterogeneous CPU+GPU-enhanced 

approach for DFTB simulations of large chemical and biological systems. The specific 

algorithms examined in this work are comprised of three different iterative Hamiltonian 

diagonalization techniques (DivideAndConquer, QR, and RelativelyRobust methods) that 

have been parallelized with heterogeneous CPU+GPU techniques. In addition to comparing 

the computational performance of each of these algorithms, we evaluate their computational 

efficiency on several different modern hardware configurations that include conventional 

CPUs and heterogeneous CPU+GPU combinations with massively parallelized K80 and 

P100 GPUs. Finally, we present critical scaling tests for all of these configurations and 

conclude with a large-scale DFTB MD simulation of explicitly solvated HIV protease 

(comprised of 3974 atoms) as a proof-of-concept example of an extremely large/complex 

system used in structure-based drug design, which, to the best of our knowledge, is the first 

time that an entire explicitly solvated protein (as opposed to small peptides) has been treated 

at a quantum-based MD level of detail.

2. THEORY AND METHODOLOGY

Before proceeding to the algorithmic techniques used in our heterogeneous CPU+GPU-

enhanced approach for parallelizing Hamiltonian diagonalization, it is useful to briefly 

review the density functional tight binding (DFTB) formalism. The DFTB method is based 

on the Taylor series expansion of the DFT Kohn–Sham (KS) total energy, EKS, with respect 

to electron density fluctuations ρ(r) = ρ0(r) + δρ(r), where ρ0(r) is a reference density of 

neutral atomic species. Due to the complexity of the chemical systems in this work, we have 

chosen to use the third-order expansion of the KS energy, referred to as DFTB3.19,20 We 

commence with the unmodified KS total energy

EKS = ∑
i

occ
ψi|−

1
2 ∇2 + V ext|ψi + EH + EXC + EII (1)
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where ψi are the KS orbitals, Vext is the external potential, EH is the Hartree energy, EXC is 

the exchange-correlation (XC) energy, and EII is the ion–ion interaction energy. Rewriting 

eq 1 in terms of ρ(r) and expanding up to third order, we obtain the DFTB3 energy:

EDFTB3 = ∑
i

occ
ψi|H0|ψi + 1

2 ∑
AB

M
γABΔqAΔqB

+ 1
3 ∑

AB

M
ΔqA2ΔqBΓAB + ErepAB

= EBS + Eγ + EΓ + Erep

The first term in eq 2, EBS, corresponds to the band structure energy (i.e., the sum over the 

occupied orbital energies) obtained from the diagonalization of the non-self-consistent 

Hamiltonian, H0, evaluated in DFTB by

H0 = ϕμ|T + veff ρA
0 + ρB

0 |ϕv , μ ∈ A, v ∈ B (3)

where {ϕi} forms a minimal Slater-type atomic basis, T  is the kinetic energy operator, ρI
0 is 

the reference density of neutral atom I, and veff is an effective Kohn–Sham potential. As 

shown in eq 3, only two-center elements are treated within the DFTB framework, which are 

explicitly calculated using analytical functions as per the LCAO formalism. The 

Hamiltonian and overlap matrix elements are pretabulated for all pairs of chemical elements 

as a function of the distance between atomic pairs. Thus, no integral evaluation occurs 

during the simulation, which significantly improves the computational efficiency of the 

DFTB approach. The second term in eq 2, Eγ, is the energy due to charge fluctuations, 

where γAB is an analytical function of interatomic distance and the Hubbard parameter U. 

The third term, EΓ, captures the dependence of the Hubbard parameter as a function of the 

atomic charge, which improves the description of systems with localized charges. The last 

term, Erep, is the distance-dependent diatomic repulsive potential, which includes core–

electron effects, ion–ion repulsion, and a portion of exchange-correlation effects. The 

pairwise repulsive functions are obtained by fitting to DFT calculations using a suitable 

reference structure and, like the matrix elements, are pretabulated. By applying the 

variational principle, we obtain the Kohn–Sham equations

∑
B

∑
v ∈ B

M
cvi Hμv − εiSμv = 0, ∀A, μ ∈ A, i (4)

where the DFTB Hamiltonian is given by

Hμv = ϕμ|H0|ϕv + Sμv∑
ξ

N
Δqξ

1
2 γαξ + γβξ

+ 1
3 ΔqAΓAξ + ΔqBΓBξ + Δqξ

6 ΓξA + ΓξB

(5)

with μ ∈ A and υ ∈ B. Because the atomic charges are dependent on the one-particle wave 

functions, ψi, eq 5 must be solved iteratively until self-consistency is reached.
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Hamiltonian Diagonalization.

Since the Hamiltonian and overlap matrix elements are pretabulated within the DFTB 

approach, the bottleneck in DFTB-based MD simulations is the diagonalization of the 

Hamiltonian matrix in eq 5, which typically is performed numerous times along an MD 

trajectory. Diagonalization of the Hamiltonian is a generalized symmetric-definite 

eigenvalue problem of the type

A ⋅ z = λB ⋅ z (6)

where A and B are both real and symmetric, and B is positive-definite. Equation 6 can easily 

be reduced to a standard symmetric eigenvalue problem (A·z = λz) using a Cholesky 

factorization, which can further be reduced to a tridiagonal form in order to ease 

diagonalization. The eigenvalues and eigenvectors can then be computed with any standard 

diagonalization routine. Within DFTB+, there are three diagonalization routines, hereafter 

referred to as eigensolvers, based on standard LAPACK routines:21 QR, DivideAndConquer, 

and RelativelyRobust, which we briefly review below. For the QR and RelativelyRobust 

eigensolvers, only the Cholesky factorization and reduction-to-standard-form algorithm 

utilize the GPUs, while the DivideAndConquer routine is replaced entirely by a GPU-

enabled routine.

QR.

The QR eigensolver is based on QR factorization, which factorizes an m × n tridiagonal 

matrix T as the product of an orthogonal matrix Q and an upper triangular matrix R

T = Q R
0 , if m ≥ n (7)

where Q is an m × m matrix, and R is an n × n matrix. The diagonalization is then 

performed via the standard QR algorithm:22–24

The matrices T(k) converge to a triangular matrix, the Schur form of T, with the eigenvalues 

on the diagonal and σk is a shift value chosen to accelerate convergence. Since the T(k) 

matrices are similar, these eigenvalues are also the eigenvalues of T.

DivideAndConquer.

This eigensolver is based on a divide-and-conquer approach of recursively breaking down a 

problem into two or more subproblems until these become simple enough to solve directly. 

(Note: The DivideAndConquer eigensolver described in this section should not be confused 

with the similarly named [but unrelated] Divide-and-Conquer technique pioneered by Yang 
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and Lee25 for linear-scaling quantum calculations.) This algorithm is highly successful 

because of deflation, which occurs when an eigenpair of a submatrix of a tridiagonal matrix 

is an eigenpair of a larger matrix. As for all of the eigensolver routines, the first step is 

reduction to a block-tridiagonal form:

T =

⋱ 0 0 0
U1 0 0 0

⋱ β 0 0
0 0 β ⋱
0 0 0 U2
0 0 0 ⋱

(8)

Unlike the QR eigensolver, the divide-and-conquer approach uses the fact that a tridiagonal 

matrix is “almost” block diagonal:26

B =

⋱ 0 0 0
T1 0 0 0

⋱ 0 0 0
0 0 0 ⋱
0 0 0 T2
0 0 0 ⋱

(9)

The eigenvalues and eigenvectors of B are then those of T1 and T2, and solving for these 

two smaller problems is almost always faster than solving the original problem all at once. 

First, we write T as a block diagonal matrix plus a correction:

T =

⋱ 0 0 0
T1 0 0 0

⋱ 0 0 0
0 0 0 ⋱
0 0 0 T2
0 0 0 ⋱

+

0 0 0 0 0 0
0 0 0 0 0 0
0 0 β β 0 0
0 0 β β 0 0
0 0 0 0 0 0
0 0 0 0 0 0

(10)

The remaining steps are to (1) solve for the eigenvalues of T1 and T2, which can be 

accomplished by recursively calling the divide-and-conquer algorithm, and (2) build the 

eigenvalues and eigenvectors of the original matrix T.

RelativelyRobust.

The previously described eigensolvers, QR and DivideAndConquer, take O(n3) time, where 

n is the size of the matrix, due to the use of explicit orthogonalization of the eigenvectors. 

The main advantage of the RelativelyRobust method is the ability to numerically compute 

orthogonal eigenvectors in O(n2) time.27,28 Within this approach, the dot product between 

eigenvectors is inversely proportional to the relative gap between eigenvalues. In other 

words, if the eigenvalues are far apart from each other, then the eigenvectors are orthogonal. 
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In practical terms, one can compute the eigenvectors independently (since they are nearly 

orthogonal), allowing for straightforward and efficient parallelization.

When eigenvalues are clustered together, the RelativelyRobust method shifts the matrix 

toward the clustered eigenvalues so that they appear farther apart. However, it is not enough 

to just shift the matrix—it is also required that the new representation be robust to small 

elemental perturbations so that the new eigenvalues are similar to the original matrix. In 

other words, if the matrix element xi is perturbed to xi(1 + εi), then, for j = 1, 2, …, n,

|δλj|
|λj|

= O ∑
i

εi (11)

|sin∠ vj, vj + δvj | = O
∑iεi

relgap λj, λk ∣ k ≠ j (12)

where relgap(λj, {λk|k ≠ j}) is a measure of the spread of the eigenvalues. Such a 

representation is called a Relatively Robust Representation (RRR). The conditions in eqs 11 

and 12 ensure that the eigenvalues and eigenvectors of the factorization are very similar to 

those of the original matrix. Before giving the complete algorithm, we mention two notes: 

(1) A positive (or negative) definite matrix is always an RRR, and (2) it is not always 

possible to find an RRR for all eigenvectors, but it is possible to find a partial RRR. The 

RelativelyRobust eigensolver is the most efficient of the three eigensolvers, both with the 

CPU implementation and the GPU–CPU implementation, as shown in the following 

sections.

3. COMPUTATIONAL DETAILS

Our initial computational benchmarks were performed on ice supercells of increasing size, 

as shown in Figure 1. For our large-scale DFTB Born–Oppenheimer molecular dynamics 

simulations, the ligand-bound (holo) HIV protease structure was obtained from the Protein 

Data Bank (PDB ID: 1HVR).29 Since the initial structure determined by X-ray cryptography 

does not have hydrogen atoms, we used the standard setup procedures with the Amber 

program to add the missing atoms and minimize the structure.30 We also solvated the 
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structure with explicit water molecules within a 3 Å thick external layer of the protein using 

AMBER GAFF to provide initial coordinates.31 Additional Cl− ions were included to 

charge-neutralize the overall system.30 All calculations were performed at the DFTB3 level 

of theory19,20 with the DFTB+ program14 in conjunction with the 3ob-3-1 parameter set and 

the corresponding Hubbard derivatives.31–33 We also included DFT-D3 dispersion34,35 

effects to accurately describe London dispersion interactions, which are prevalent in these 

large biochemical systems. Linear algebra routines from the MAGMA library36 were 

substituted for LAPACK routines (where available) in the DFTB+ source code. The 

geometry was initially relaxed with nonperiodic boundary conditions (i.e., a cluster 

geometry) such that all forces were less than 0.001 eV/Å, which provided the initial 

geometry for equilibration. NVT simulations were performed with a Nosé–Hoover 

thermostat37 at 50, 100, 150, 200, 250, and 300 K until the system was equilibrated. Finally, 

an NVE simulation was performed for 2 ps, from which all computed properties were 

sampled. The time step used in all of our DFTB-based MD simulations was 0.5 fs.

The interaction energy of HIV protease and XK263 was calculated in the presence of three 

selected protein regions, as shown in Figure 2. The selected peptide regions compose the so-

called “eye” (residues 22–36), “loop” (residues 72–91), and “flap” (residues 43–58) 

sections. All of the C-terminals and N-terminals of the three protein regions are at least 10 Å 

away from XK263. Hydrogen atoms were added by the teLeap algorithm on both the C-

terminal and N-terminal to complete protein regions with the AMBER package.38 After 

computing a total of 2 ps simulation time, the interaction energies were calculated with an 

interval of 0.1 ps and subsequently averaged.

4. RESULTS

Timing Benchmarks.

To evaluate the speed-up gained from our heterogeneous CPU+GPU implementation, we 

performed single-point energy calculations on periodic ice supercells of increasing size 

(shown previously in Figure 1). In Figure 3, we compare the performance of the CPU, P100 

GPU, and K80 GPU for a single diagonalization with the DivideAndConquer eigensolver. 

While both types of GPUs provide significant speed-up, the P100 calculations are the most 

efficient, with almost linear growth. For this reason, all subsequent GPU-enhanced 

calculations were performed with 4 NVIDIA P100 GPUs and 24 Intel Xeon E5-2680v3 

CPUs (the homogeneous CPU-only calculations were performed with the same 24 cores). To 

compare the relative performance of each of the DFTB+ eigensolvers, we plot the wall time 

for the single-point energy calculation for each eigensolver in Figure 4. While all three 

GPU-enhanced implementations benefit from the GPU enhancements, we find that the 

heterogeneous version of the RelativelyRobust solver provides the most speed-up. It is 

interesting to note that only a portion of the diagonalization subroutines in this solver uses 

GPU-enabled routines (i.e., only the Cholesky factorization and reduction-to-standard-form 

algorithm in the RelativelyRobust solver utilize the GPUs), with the DivideAndConquer 

method utilizing a larger portion of the GPU. In other words, there is a delicate balance in 

offloading specific numerical operations between the CPU and GPU, which should be 

carefully accounted for in any type of heterogeneous computing environment. For the 
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purposes of the DFTB-based MD simulations discussed below, the significant speed-up 

gained by offloading only a portion of the diagonalization in the RelativelyRobust algorithm 

shows extreme promise for DFTB-based simulations of larger, more complex systems.

Large-Scale DFTB-Based MD Simulations of Explicitly Solvated HIV Protease.

In this section, we utilize our heterogeneous CPU+GPU approach on a prototypical example 

of drug design with the HIV protease (HIVp) biological system, as shown in Figure 5. 

Broadly speaking, structure-based drug design is the creation of ligands on the basis of the 

structural information on their biomolecule targets to develop ideal drug candidates for 

clinical trials. The intricate interaction between the ligand and its surrounding protein is one 

of the key factors in drug design, since binding affinity predominantly affects drug potency. 

Although the overall ligand-binding affinity can be obtained from experiment, 

computational tools (such as the heterogeneous CPU+GPU approach utilized here) provide a 

detailed understanding into binding mechanisms that are critical to drug development, which 

can significantly save time and effort during the expensive drug discovery process. Here, we 

focus on XK263, a computer-designed chemical compound, which is composed of a ketone 

group that binds with HIVp via hydrogen bonding, as a demonstration of an application of 

our CPU+GPU-heterogeneous approach for drug design. HIVp cleaves premature 

polypeptides to create protein subunits of an infectious mature HIV39 and is currently one of 

the major drug targets for AIDS treatments. In terms of scientific interest, the HIVp protein 

is comprised of highly flexible “flap” regions and has served as a model system for various 

protein dynamics and ligand binding studies. Unlike most traditional peptidomimetic 

antiretroviral drugs, XK263 also has different kinetic binding mechanisms that may be of 

interest in future drug design.40

Figure 6a compares the performance of the CPU against our heterogeneous CPU+GPU 

implementation for the initial steps of the DFTB-based molecular dynamics for the entire 

solvated HIVp + XK263 system (a total of 3974 atoms). It is worth noting that, even in these 

initial steps, the CPU+GPU heterogeneous approach already shows a sizable speed-up 

(~25% faster after the first 20 steps alone), and longer simulations are expected to show even 

larger performance gains as the DFTB energies and gradients are repeatedly computed over 

time. Figure 6b plots the total Born–Oppenheimer DFTB energy for the same biological 

system over a total period of 2 ps (384 h of wall-clock time). Both simulations utilized the 

DivideAndConquer eigensolver on 24 Intel Xeon E5-2680v3 CPUs and 4 NVIDIA P100 

GPUs (the standard hardware configuration of a single GPU-enabled node on the Comet 

supercomputer41). We have chosen this particular computational resource for two reasons: 

(1) this specific hardware configuration is readily available to the general researcher (via the 

XSEDE research allocation Web site42), and (2) while we only propagate the dynamics of 

HIVp for only 2 ps as a proof-of-principle demonstration, we emphasize that this calculation 

was carried out on one single node, which demonstrates that our efficient CPU+GPU 

heterogeneous approach can be easily used for routine calculations of large systems with 

only moderate computing resources (and we anticipate that the use of heterogeneous 

exascale hardware described previously1–3 will enable even longer simulations of more 

complex systems).
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It is interesting to note that, while classical MD simulations are commonly used to probe 

biological systems, our CPU+GPU-enhanced DFTB approach was able to provide additional 

dynamical insight that could not have been obtained with classical MD alone. For example, 

we initially used the AMBER classical MD package to run an equilibration calculation for 

both HIVp and XK263 (using the Amber99SB and GAFF force fields, respectively); 

however, we found that the equilibrium geometry obtained with AMBER was qualitatively 

different than the equilibrium conformation(s) that were sampled with our CPU+GPU-

enhanced DFTB approach. While the classical force field was able to find an equilibrium 

geometry between XK263 and the Asp25 catalytic residue (which is characterized by strong 

hydrogen bonds), this specific geometry is not the most stable conformation. In particular, 

our large-scale CPU+GPU-enhanced DFTB calculations were able to efficiently sample 

various conformations of other important residues in the eye regions (Leu23, Ala28, and 

Val32; cf. Figure 2) that are characterized by weaker nonpolar interactions between the 

aromatic ring of XK263 and these nonpolar residues, which were not well-captured by 

classical MD. More specifically, Figure 7 depicts local minima having energies of −23.9, 

−50.9, and −52.8 kcal/mol at 0.3, 0.6, and 1.7 ps, respectively, which correspond to the 

various positions of the XK263 ligand as it enters/leaves the “flap” region (which effectively 

acts as a gate for drug binding) in HIVp (cf. Figures 2 and 5). As mentioned previously, the 

first local energy minimum at 0.3 ps is characterized by hydrogen bonds between the Ile50/

Ile149 groups of the flap and the ketone group in XK263 (in addition to other bonding 

interactions between the Ile47/Ile50 and naphthalene-2-ylmethyl groups). However, it is 

important to note that, while a static energy minimization for the initial structure can coax 

the system into the first local energy minimum at 0.3 ps, a more significant arrangement of 

the nonpolar residues (which can only be obtained from a dynamics calculation) was 

required to bring the complex to the other local minima at 0.6 or 1.7 ps (see Figures SI-1 and 

SI-2 in the Supporting Information). In fact, the most favorable binding interactions were 

obtained after 1 ps (cf. Figure 7 and Table 1), whereas the loop region only confines XK263 

in the binding pocket (without forming any highly specific binding interactions), resulting in 

a weaker intermolecular attraction (~ −16 kcal/mol) compared to other regions in the HIVp 

complex. We also note that chemical modifications of the naphthalene rings in XK263 to 

create new and stable attractions with the loop region may also further enhance binding with 

HIVp (see Figure SI-3 in the Supporting Information), which we save for future 

computational studies. Nevertheless, our heterogeneous CPU+GPU-enhanced DFTB 

approach provides an efficient and accessible methodology (which is more accurate than 

conventional MD) for probing the energetic/dynamical effects in binding studies and drug 

development. Most importantly, our computational approach encompasses two significant 

advantages for probing large chemical and biological systems: (1) the CPU+GPU-enhanced 

DFTB approach is an efficient, quantum-based approach for large systems that does not rely 

on empirical force-field parameters, and (2) it has a significant advantage over conventional 

hybrid QM/MM approaches, since it is able to treat the entire system on the same theoretical 

footing and bypasses the requirement of manually (and arbitrarily) choosing the QM and 

MM regions, which can typically introduce uncontrolled artifacts/errors in large chemical/

biological systems.
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CONCLUSION

In closing, we have introduced a new heterogeneous CPU+GPU-enhanced DFTB approach 

for the routine and efficient simulation of large chemical and biological systems. We have 

specifically chosen to implement this heterogeneous computing approach, since CPU+GPU 

architectures have started to attract immense scientific attention, particularly as a promising 

path toward energy-efficient exascale computing initiatives.4 In terms of practical 

calculations that would immensely benefit from this computing approach, we show that 

DFTB-based molecular dynamics is a natural candidate for heterogeneous computing, since 

the computational bottleneck in these simulations is the diagonalization of the Hamiltonian 

matrix, which is performed several times during a single molecular dynamics trajectory. To 

thoroughly test and understand the performance of our heterogeneous CPU+GPU approach, 

we have examined a variety of algorithmic implementations, benchmarks of different 

hardware configurations, and applications of this methodology on prototypical large 

chemical and biological systems. Among the three GPU-enhanced Hamiltonian 

diagonalization routines examined in this study (QR vs DivideAndConquer vs 

RelativelyRobust), we find that the heterogeneous version of the RelativelyRobust solver 

provides the highest computational performance. Although the RelativelyRobust 

diagonalization routine utilizes a smaller portion (but still quite sizable) of the GPU than the 

DivideAndConquer method, we show that there is a delicate balance in offloading specific 

numerical operations between the CPU and GPU, which should be carefully accounted for 

in any type of heterogeneous computing environment.

Among the chemical applications examined in this study, we concluded with a large-scale 

DFTB MD simulation of explicitly solvated HIV protease (comprised of 3974 atoms) as a 

proof-of-concept example of an extremely large/complex system used in structure-based 

drug design—which, to the best of our knowledge, is the first time that an entire explicitly 

solvated protein has been treated at a quantum-based MD level of detail. This extremely 

large-scale calculation demonstrates the efficiency of our heterogeneous computing 

approach and further emphasizes the importance of DFTB-based dynamics (as opposed to 

static geometry optimizations) for probing large biological systems. Specifically, while it is 

common to carry out a quantum-mechanical optimization of biological structures initially 

obtained from classical MD or molecular docking methods,43–45 we show that this 

conventional strategy can miss important conformations, and the use of efficient and 

accurate dynamical approaches, such as the CPU+GPU-enhanced DFTB approach used 

here, can be essential. Moving forward, we anticipate that this heterogeneous CPU+GPU 

computational capability can also be used for other complex chemical/material systems that 

require long-time quantum-based dynamics, such as protein dynamics that need quantum-

based methods for intricate binding interactions, nonadiabatic calculations of large, 

coherent, light-harvesting systems,46 or even multicomponent structural materials such as 

complex alloy systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample structures of the three-dimensional supercells of ice used in the timing benchmarks.
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Figure 2. 
3D structure of HIV protease and XK263. Left panel: HIV protease and three selected 

regions: eye (gray), flap (yellow), and loop (green). Right panel: Close-up view of the 

binding pocket of HIVp. Residues that have close contact with XK263 are labeled with one-

letter amino acid letter codes.
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Figure 3. 
Comparison of the wall time for a single Hamiltonian diagonalization as a function of the 

number of atoms in each supercell of ice for the CPU, CPU/K80, and CPU/P100 

implementations. While both types of GPUs offer speed-up over the CPU version, the P100 

was consistently more efficient than the K80 and was used in all subsequent calculations.
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Figure 4. 
Comparison of the wall time for a single-point DFTB3 energy calculation as a function of 

the number of atoms in each supercell of ice for the CPU and CPU/GPU (P100) 

implementations of the three eigensolvers. As expected, all three eigensolvers are faster on 

the GPU, with RelativelyRobust being the most efficient.
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Figure 5. 
Ligand-bound (holo) structure of HIV protease complexed with XK263. (left) The protein is 

shown in a ribbon style (red) with the ligand (colored by element) in the binding pocket. The 

entire complex is surrounded by explicit molecules within 3 Å of the protein. (right) The 

protein, ligand, and water are all shown as atoms to emphasize the large size of this system.
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Figure 6. 
(a) Performance comparison between the CPU and our heterogeneous CPU+GPU 

implementation for the initial steps in the DFTB-based molecular dynamics of a solvated 

HIVp+XK263 system. (b) Total DFTB energy of the same biological system obtained from 

our CPU +GPU-enhanced DFTB code. The DFTB-based molecular dynamics were carried 

out on 24 Intel Xeon E5-2680v3 CPUs and 4 NVIDIA P100 GPUs on the XSEDE Comet 

supercomputer.
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Figure 7. 
Plot of calculated interaction energies between XK263 and three HIVp regions. The total 

interaction energy is subdivided into blue (eye region + XK263), red (flap region + XK263), 

gray (loop region + XK263), and yellow (HIVp + XK263) distinct interactions. Low energy 

confirmations are only achieved after 1 ps of simulation time.
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Table 1.

Calculated Interaction Energies between Selected Protein Regions and XK263 in kcal/mol
a

protein regions ⟨E1⟩ ⟨E2⟩

HIVp + XK263 −141.1 ± 5.4 −144.6 ± 4.5

eye + XK263 −39.0 ± 14.4 −46.8 ± 2.9

flap + XK263 −21.9 ± 9.0 −27.0 ± 3.3

loop + XK263 −15.9 ± 1.0 −15.3 ± 0.8

a
⟨E1⟩ and ⟨E2⟩ are the average interaction energies for 0–2 and 1–2 ps of simulation time, respectively.
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