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ABSTRACT OF THE DISSERTATION

Graph-Based Data Fusion Methods

by

Geoffrey Sankar Iyer

Doctor of Philosophy in Mathematics
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Professor Andrea Bertozzi, Chair

As data of all kinds becomes more readily available, there is an increasing demand for

algorithms that can jointly process data from multiple sources, also called modalities. In the

current state-of-the-art the are many such algorithms, but for the most part each method

is made with a specific application in mind. In this work we aim to create more general

and data-driven methods for various multimodal machine learning problems. We approach

this difficult problem from the standpoint of graph methods, as graph representations are

historically robust to many possible data formats, while maintaining sufficient information

to produce state-of-the-art results.

The first problem considered here is a segmentation problem in the case of co-registered,

multimodal datasets. Here we perform data fusion on the level of graph representations,

specifically concentrating on finding and using the unique information that each modality

may bring to the overall scene. From the fused graph we implement standard image seg-

mentation techniques.

We also consider here a matching problem between arbitrary datasets. Once again,

graph representations are used to preserve relevant topological information while filtering out

specific formatting details. We then match graph nodes using spectral information. By using

the Nyström extension eigensolver to quickly calculate approximate graph eigenfunctions,

and by using a hierarchical matching algorithm narrow the matching search space, we obtain

a runtime and space complexity that is, to the best of our knowledge, superior among the
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state-of-the-art.
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CHAPTER 1

Introduction

For any event or scene of interest, there are a wide variety of possible sensors, measurement

techniques, or experimental setups with which one may gain relevant data. However, it is

rare for any single acquisition method to provide sufficient information to fully explain the

process in question. Therefore, in pursuit of a more perfect understanding, it is generally

desirable to collect information from many different sources, also called modalities, and

create algorithms that can jointly process all of the input data. For example, in the area

of speech recognition, integrating audio data with a video of the speaker results in a much

more accurate classification [PNG03,SBR16]. Similarly, in medicine, it is possible to fuse the

results of two different types of brain imaging to create a final image with better resolution

than either of the originals [LVY12,SSJ16].

To properly take advantage of a more robust set of data, multimodal methods must in

some way tackle the difficulty of correlating information between modalities that may not

share a common output format. This space of research is commonly referred to as data

fusion, and is the overarching topic of this dissertation. In the current state of the literature,

the majority of data fusion algorithms are created with specific applications, models, or

datasets in mind, and are therefore often not useful in a more general sense [LAJ15]. In

this work we instead focus on more data-driven fusion methods through use of graphs. The

graph structure is particularly well-suited to this type of problem, as it gives a representation

of the data that preserves all relevant topological and geometric information, while at the

same time removing much of the specific formatting. Thus, as we will show in throughout

this dissertation, we are able to approach many common fusion problems in a very general

setting, allowing for straightforward application to a diverse group of datasets.
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The original work in this thesis is derived from one publication and two submitted

manuscripts. In chapter 3 we present our work on segmentation of co-registered multi-

modal datasets [ICB17] [ICB18b], which contains a novel method of fusing data based on

graph weights, as well as an application of previously developed segmentation methods to

this new setting. Chapter 4 discusses the manuscript [ICB18a], covering a new hierarchical

algorithm for graph matching that makes significant improvements in performance over the

current state-of-the-art. In addition to this original work, we also present a background of

common concepts in spectral graph theory in chapter 2.

1.1 Co-registered Image Segmentation

As a first foray into multimodal data fusion, we focus on the case of co-registered datasets,

with applications towards segmentation. By co-registered, we mean that each modality con-

tains the same number of observations, and these obversations share a common indexing.

For example, this is often the case in multimodal timeseries data, as in most experiments all

sensors will capture new data at the same time. Another common example of co-registered

data, and the one we will focus on most in this paper, is in multimodal images, where the

same scene may be captured by many different sensors. In figure 1.1 we show an example

multimodal dataset from the 2015 IEEE Data Fusion Challenge [CRG16] (abbreviated as

DFC2015), which consists of an optical and a lidar (elevation) image of a residential neigh-

borhood in Belgium. This particular dataset is interesting because of the large amount of

non-redundancy between the two images. By using the lidar data, one can easily differ-

entiate the roofs of the buildings from the adjacent streets, even though they are roughly

the same color. Conversely, the optical data allows one to separate the many different ob-

jects at ground-level, even though they appear the same in the lidar modality. Therefore one

would expect that an algorithm that processes the two sources together would produce much

more accurate segmentation results than could be obtained by dealing with the modalities

separately. We will revisit this dataset in section 3.3 to show that this is indeed the case.

Our method first creates a graph representation of each separate modality, then merges

2



(a) DFC2015 optical data (b) DFC2015 lidar data

Figure 1.1: DFC2015 Input Data

these representations using the co-registration assumption (3.2.1). From this, we get a

single graph that constitutes a fusion of the original input information. We then proceed

to perform feature extraction and segmentation on this graph using various well-established

methods. Specifically, we extract features of the graph by finding the eigenvectors of the

graph Laplacian (2.2), then use these features as inputs to the Spectral Clustering (3.2.2) and

Graph MBO (3.2.3) algorithms. Finally, in 3.3 we show the results of the method applied

to several optical/lidar datasets in various different contexts.

1.2 Fast Graph Matching

In addition to considering data fusion in the co-registered above, in this thesis we are also

interested in problems where the data comes with minimial or no pre-defined registration.

In pursuit of this goal, we first formulate and solve a matching problem based on graph

representations of our data. A fundamental problem in theoretical computer science, graph

matching has been applied to many different topics in computer vision and pattern recogni-

tion, such as object recognition [BMP02, BBM05], shape matching [BBM05, SSD98, HH99],

and video indexing [SBV00].
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The study of graph matching originally began with the graph isomorphism problem,

which attempts to find an exact isomorphism between two given graphs. This problem is

interesting in that it is one of the few problems in NP not known to be in P or NP-complete,

with the recent state-of-the-art solving the problem in quasipolynomial time [Bab15,ABD17].

However, as most real-world applications involve graphs where no exact isomorphism exists,

the majority of attention over the last 30 years has shifted towards inexact matching prob-

lems. The most general of these is the inexact subgraph matching problem, which searches

for an embedding of a small graph into a larger that minimizes the difference between the

original graph and it’s image. Much more difficult that the graph isomorphism problem,

all subgraph problems problem are clearly NP-complete, as they can be thought of as a

generalization of the Hamiltonian cycle problem. It is on this style of problem that we focus

our attention in this paper, as the greater generality of inexact subgraph matching allows

for wider applications.

While all graph matching problems involve optimizations over discrete constraints, most

state-of-the-art methods attack the problem via some continuous relaxation. Each algorithm

then finishes with a discretization step, recovering the sought after matching. However,

this discretization step presents a significant problem in terms of time complexity, as the

most common tool in the discretization of continuous solutions is the Hungarian Algorithm

[W55], which solves a linear assignment problem in O(N3) time. Although these methods

have proven to be both robust and accurate, the issue of runtime provides some serious

restrictions in application to modern datasets. For example, current state-of-the-art graph

representations of human brains use O(106) nodes and O(108) edges [RKM13], a figure that

is entirely intractible for current matching methods.

To combat this issue, we introduce in this paper two hierarchical algorithm for graph

matching, called Hierararchical One-to-One Spectral Matching (HOSM), and Hierarchical

Many-to-Many Spectral Matching(HMSM). The crux of our algorithm involves dividing the

full graph matching problem into many subproblems, thereby circumventing the runtime

issues of classical matching methods. In the end we are able to obtain a time and space

complexity that significantly outperforms the current state-of-the-art, while still maintaining

4



reasonable accuracy. After a review of other graph matching techniques in section 4.1, we

explain our method in section 4.2, and give experimental results both on synthetic and real-

world data in section 4.3. Lastly, we show in section 4.4 several applications of this algorithm

to common machine learning problems.
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CHAPTER 2

Background

In this chapter we present a general survey of the theory most relevant to our work. In each

of our applications, we represent data via a graph G = (V,E), where V = {v1, . . . , vN} is

the set of graph nodes and E is the set of edges. In this paper, all graphs will be undirected

and weighted. We represent this via a symmetric |V | × |V | weight matrix W , also called the

similarity matrix, where wij is the weight of the edge joining the nodes vi, vj. For each node

vi ∈ V we define the degree of the node

di =
∑
j

wij, (2.1)

and let D be the diagonal matrix consisting of the di.

2.1 Graph Similarity Matrix

Given a graph G = (V,E), we create the weight matrix W based on some weight function

w : V × V → R≥0. The goal of the weight function is to represent similarity between graph

Figure 2.1: Example weighted graph
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nodes. wij should be a large value if vi, vj are similar, and a small value if not. A common

choice for weight function is a radial basis function of type

w(x, y) = exp

(
−d(x, y)2

σ2

)
, (2.2)

where d(x, y) is a distance measure on the set of nodes V , and σ is a scaling parameter.

For example, if the graph nodes V are derived from points in a Euclidean space Rn, then a

reasonable choice for d(x, y) would be the standard Euclidean distance. As another exam-

ple, when creating graphs based on hyperspectral data, or another high-dimensional input

source, a vector angle measure could give a better representation of the underlying scene. In

chapter 3 we discuss how to extend common choices for graph weight functions to the case

of multimodal data.

Note that it is not necessary to have a complete graph, that is, a graph with nonzero

weights on all edges. Many applications use sparse similarity matrices in order to decrease

computation time. For example, a k-nearest neighbors graph only gives a nonzero weight

between vertices vi, vj if vi is among the nearest neighbors of vj, or vice versa. A mutual k-

nearest neighbors graph instead includes an edge between vi, vj if both vertices are k-nearest

neighbors of each other. Another possible method for sparsifying the graph is to apply a

threshold to the edge weights, although this does require calculating the entire |V | × |V |

weight matrix, which may become too computationally expensive.

2.2 Graph Laplacian

One major tool in the study of graphs is the graph Laplacian. There are many versions of

the graph Laplacian considered in the literature, but we limit our focus here to the most

common three:

• The unnormalized Laplacian L = D −W,

• The symmetric Laplacian Ls = I −D− 1
2WD−

1
2 ,

• The random-walk Laplacian Lrw = I −D−1W.
7



One common way to view the graph Laplacian is as an approximation to the standard

Laplace-Beltrami operator on manifolds. Given a smooth manifold, one can choose a dis-

cretization and define the graph Laplacian using the manifold distance on these points.

Under reasonable assumptions on the discretization structure, as well as the weight function

w(x, y), each of the Laplacians above has been shown to converge to the Laplace-Beltrami

operator as the mesh size goes to zero [Xu04,DRW10].

The graph Laplacian L can easily be shown to have the following properties [Lux07],

[Chu97]:

1. L is symmetric and positive semi-definite.

2. The smallest eigenvalue of L is 0, with corresponding eigenvector 1|L|.

3. The multiplicity of the eigenvalue 0 is equal to the number of connected components

of the graph G.

In addition, the Laplacians Ls, Lrw have the following properties

1. Ls is symmetric and positive semi-definite.

2. Lrw is positive semi-definite.

3. λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigenvector of Ls

with eigenvector D
1
2u.

4. The multiplicity of the eigenvalue 0 is equal to the number of connected components

of the graph G.

2.2.1 Laplacian Eigenmap Embedding

One common use of the graph Laplacian is as a tool for dimension reduction and data

representation. Given a graph G = (V,E) with weight matrix W as above, we consider the

problem of embedding the graph into Rm for some m ≥ 1, with the goal of having similar

8



graph nodes stay as close together as possible. To this end we define the following objective

function

1

2

∑
i,j

‖yi − yj‖2wij (2.3)

where yi ∈ Rm is the embedded image of the i-th graph node vi. In the special case where

m = 1 (an embedding onto a line), we have that

1

2

∑
i,j

‖yi − yj‖2wij =
1

2

∑
i,j

(yi − yj)2wij (2.4)

=
1

2

∑
i,j

(
y2i + y2j − 2yiyj

)
wij (2.5)

=
1

2

(∑
i

y2i di +
∑
j

‖yj‖2 dj − 2
∑
i,j

yiyjwij

)
(2.6)

= yT (D −W ) y (2.7)

= yTLy, (2.8)

where y =
(
y1, . . . , y|V |

)
is the vector giving the full embedding.

Based on this, we define the minimization problem for the case m = 1 as

argminyTDy=1
yTD1=0

yTLy, (2.9)

with the generalization to arbitrary m being

argminY TDY=I
Y TD1=0

tr
(
Y TLY

)
, (2.10)

where Y ∈ R|V |×m is the matrix with yi as the i-th row. Here the yTDy = 1 requirement

serves the dual purpose of removing an arbitrary scaling factor from the solution (preventing

the trivial solution y = 0), as well as assigning importance to individual graph vertices

based on their degree. The second constraint yTD1 = 0 removes the other trivial solution

of collapsing all vertices to a single point by forcing the embeddings to be orthogonal to the

constant vector. In a sense, this constraint can be thought of as removing a translational

invariance from y. And of course, the corresponding constraints in the arbitrary m case

perform the same task in this higher dimensional setting.
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(a) v2 (b) v3 (c) v4 (d) v5 (e) v6

Figure 2.2: Laplace-Beltrami eigenfunctions on the disc

It is then shown in [BN03] that this energy is minimized by letting the solution matrix

Y be the matrix of eigenvectors corresponding to the smallest non-zero eigenvalues of the

generalized eigenproblem

Ly = λDy. (2.11)

It is further shown in [Lux07] that this is the same as the eigenvectors of the random-walk

graph Laplacian

Lry = λy. (2.12)

In many ways, the applications of the graph Laplacian resemble those of the classical

Laplace-Beltrami operator on manifolds. Just as Laplace-Beltrami eigenfunctions contain

information about the symmetries and geometry of the underlying manifold, the graph Lapla-

cian has the same use in the discrete case. Similar to classical Fourier analysis, the associated

eigenvalue quantifies the “frequency” of the eigenfunction. In manifolds without boundary

or with appropriate boundary conditions the first eigenfunction is always constant, with

eigenvalue 0, and the low-value eigenfunctions correspond to the low-frequency symmetries

of the manifold. In figures 2.2 and 2.3 we show a comparison of the first few non-trivial

eigenfunctions of the Laplace-Beltrami operator on the unit disc, and of the graph Laplacian

on a discretization. As we will explain further in chapter 3, these eigenfunctions are very

useful in graph segmentation and classification problems.
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(a) v2 (b) v3 (c) v4 (d) v5 (e) v6

Figure 2.3: Graph Laplacian eigenfunctions on discrete disc

2.3 Nyström Extension

As discussed above, the eigenfunctions of the graph Laplacian are deeply connected with the

geometric information of the graph. However, solving an eigenproblem on a complete graph

with N nodes is an O(N3) process, which greatly limits the applicability of this theory. To

combat this issue, we apply the Nyström Extension to find approximate eigenfunctions in

significantly reduced time.

The classiscal Nyström Extension [Nys30, PTV92, Art79] is a technique for finding nu-

merical approximations to eigenfunctions of the form∫ b

a

W (x, y)φ(y)dy = λφ(y). (2.13)

Approximating this integral by discretizing to a set of n evenly-spaced points ξ1, . . . , ξn yields

the equation

b− a
n

n∑
j=1

W (x, ξj)φ̂(ξj) = λφ̂(x), (2.14)

where φ̂ here is our approximation to the eigenfunction φ. Setting x = ξi for i = 1, . . . , n

gives a system of linear equations

b− a
n

n∑
j=1

W (ξi, ξj)φ̂(ξj) = λφ̂(ξi) i = 1, . . . , n. (2.15)

This system of equations can be reframed as an eigenvalue problem of size n× n

W Φ̂ = nΦ̂Λ, (2.16)
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where W ij = W (ξi, ξj). Solving this eigenproblem gives us n approximate eigenfunctions

φ̂1, . . . , φ̂n defined on the subdomain {ξ1, . . . , ξn}. We then substitute back into (2.14) to

extend these functions to the full domain

φ̂i(x) =
1

nλi

n∑
j=1

W (x, ξj)φ̂(ξj) (2.17)

to obtain n approximate eigenfunctions for the original statement of the problem in (2.13).

Following the example of [WS01, BF12, FBC04, BFC02], we adapt the theory above to

the discrete case for use in our graph problems. Specifically, we can calculate n approximate

eigenfunctions of an N × N weight matrix W by solving an n × n eigenproblem and using

the Nyström extension. As above, we choose n sample graph nodes, and re-index the matrix

W as

W =

 A B

BT C,

 (2.18)

where A ∈ Rn×n gives the graph weights within the n sample nodes, B ∈ Rn×(N−n) is the

weights between the n sample nodes and the remaining N−n nodes, and C ∈ R(N−n)×(N−n) is

the weights within the unsampled nodes. If we diagonalize A = UΛUT , then the approximate

eigenfunctions from (2.17) are

Ū =

 U

BTUλ−1.

 (2.19)

Using these approximation of W associated to Ū is given by

Ŵ = ŪΛŪT

=

 U

BTUλ−1

Λ
[
UT Λ−1UTB

]

=

 A B

BT BTA−1B

 (2.20)

In particular, using the Nyström extension, we avoid calculating C, and approximate it with

BTA−1B. The quality of this approximation is defined by the extent to with C is spanned

by the rows of B.
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There remains one detail to finish calculating the approximate eigenfunctions, as the

matrix Ū is not orthogonal. Here we follow the method presented in [FBC04]. Let A1/2

denote the symmetric positive definite square root of A, define S = A + A−1/2BBTA−1/2,

and diagonalize it as S = USΛSU
T
S . Then Ŵ is diagonalized by the matrix

V =

 A

BTA−1/2

USΛ
−1/2
S , (2.21)

and V V T = I, as desired.

In this paper, we are specifically interested in the eigenfunctions of the symmetric graph

Laplacian Ls = I − D− 1
2WD−

1
2 . For this we apply the Nyström theory above to the nor-

malized weight matrix D−
1
2WD−

1
2 . It is, however, very computationally expensive to find

the degree matrix D, as this involves calculating each of the N2 graph weights. Instead we

approximate D using Ŵ from (2.20). That is, we let D̂ be the diagonal matrix

diag(D̂) = Ŵ1N

=

 A1n +B1N−n

BT1n +BTA−1B1N−n,

 (2.22)

and perform Nyström on the normalized matrix(
D−

1
2WD−

1
2

)
ij

=
Wij√
didj

(2.23)

There are many other possible methods to quickly calculate graph Laplacian eigenvectors

over large datasets. One highly-effective method is to sparsify the graph, as explained in

section 2.1, and apply a sparse eigensolver such as the Lanczos method [Lan50, Saa11], or

the related Rayleigh-Chebyshev method [And10].
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CHAPTER 3

Co-registered Image Segmentation

In this chapter we present our algorithm for segmentation of co-registered datasets. This

algorithm inputs a group of co-registered datasets along with a relevant distance metric on

each individual set, then performs data fusion and feature extraction on the input. Then

using the newly calculated features we apply several segmentation algorithms to achieve the

final result. The graph representation of data is in particular quite useful here, as we can

make comparisons between graphs in situations where the raw data may not be directly

comparable.

3.1 Related Work

One very simple algorithm for multimodal image fusion is to simply take a weighted average

of the different modes. Unfortunately, this method is often too naive to produce meaningful

results. In many cases there are various objects and regions that occur in multiple images

but with opposite contrast, which would cancel out in an averaged image. However, this

basic idea is still worth consideration, so long as the blending step is treated with more care.

In [MLY17] the authors use structural patch decomposition to perform roughly the same

task, but with much better results, and in [STC12] the authors address the same problem

with probabilistic methods. In each of these cases, the end product is an image that contains

the most relevant features from each modality. Classical segmentation algorithms can then

be performed on this fused image to create the desired results. Somewhat related is the

multimodal kmeans method presented in [YTL12], which minimizes a weighted average of a

standard kernel K-means energy on each modality to achieve a segmentation on the data.
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Another common way to fuse images is to transform each modality with some processing

algorithm, then merge the data in the new feature space. In [Pie03] the authors follow this

methodology, using a multiresolution (MR) transformation to process information in each

modality. The benefit of this algorithm is that the transformation is fully invertible, meaning

that once the data has been synthesized in the feature space, the inverse transformation can

be applied to recover the fused image. In [CBC07,MS07] the authors follow the same overall

strategy, using Independent Component Analysis (ICA) as the initial processing algorithm.

Each of the above methods first fuses the different modalities (into either a new image,

or into a new set of features), then uses this fused data to create a final segmentation. But

another valid method is to instead segment each modality first, then combine the different

classifications into a final result. Both [TDC15] and [RKD15] create a hierarchical segmen-

tation of each modality (a chain of segmentations ranging from very coarse to very fine),

then blend these segmentations using some decision algorithm. A related field of study is

segmentation combination. Given multiple segmentations of the same image (possibly ob-

tained from different modalities), the goal is to obtain a consensus segmentation by somehow

fusing the different inputs. In [FAV11] the authors accomplish this through general ensemble

clustering methods, and in [WJR08] this is done by using probabilistic methods and random

walks.

In regard to spectral graph theory, these methods have been very successfully applied

to data clustering problems and image segmentation [CBS05,GS06,SM00]. Graph-cut algo-

rithms are quite flexible. All that is required is a well-chosen affinity function to describe the

similarity between different graph nodes. In [LPB15, DMH14], the authors create a sparse

graph by using a k-nearest neighbors jointly over each input modality, and use an RBF SVM

classifier on the resulting eigenvectors to achieve a final classification. In [EKB15] the authors

create one graph Laplacian matrix for each modality, and find a single set of eigenvectors

that approximately diagonalizes all Laplacians simultaneously. In general, graph cuts can

even be used to minimize a wide variety of energy functions [KZ04], allowing for the use of

unsupervised [HSB15,WMB14] or semi-supervised methods [MKB13]. The standard theory

behind this is described in [Moh91], with a tutorial on spectral clustering given in [Lux07].
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Figure 3.1: [CBS05] Spectral segmentation with multiscale graph decomposition.

In figure 3.1 we show an example result from [CBS05], where multiple graph cuts at different

scales are simultaneously created then merged to better compromise between the overall

representation and the fine detail of an image.

Although not entirely related to the work presented here, we give special mention to

several domain adaptation and manifold learning techniques that depend on similar graph

theory as our research. Given several input modalities viewed as R-manifolds, the goal of

these algorithms is to create maps from each manifold to a common R-space - called a

latent space - where structurally similar data in the original manifolds will map to nearby

points in the latent space. These algorithms are well covered in the survey article [LPC14],

but we shall mention a few that are based on graph spectral information. In [WM11] the

authors create a large graph with similarity information from every pair of data points, both

within and between modalities, and solve an eigenproblem on this graph to create the latent

space embedding. In both this paper and in [YC13], SVM is then used on the latent space

to transfer a known classification on one modality to the others. [TC15] applies a similar

framework, adding kernel method to the similarity calculation to create a method more
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robust to nonlinearities.

3.2 The Method

In this section we explain the theory behind the algorithm. First, in section 3.2.1 we cover the

fusion step of the algorithm, in which we process each input modality together to create one

weighted graph representing the entire dataset. We then exhibit two segmentation methods

that we apply to the graph object. The first, spectral clustering 3.2.2, is an unsupervised

method that can be used to quickly obtain a reasonable set of “proof-of-concept” results.

The second, graph MBO 3.2.3, is a semisupervised method that more carefully handles the

energy minimization to obtain a stronger final result.

3.2.1 Multimodal Graph Weights

Let k be the number of input modalities. For each 1 ≤ ` ≤ k, we have a dataset, which

we will label X`, as well as a relevent distance function dist`. From this we create a graph-

representation of each X` using the standard Gaussian-based weight function described in

(2.2)

wl(x, y) = exp

(
−dist`(x, y)2

σ2
`

)
, (3.1)

giving us a weight matrix W` associated to each input modality. To ensure the different

weight matrices are reasonably comparable, we choose the scaling factor σ` based on the

standard deviation of distances in the corresponding modality.

σ` = std
(
dist`(x, y) |x, y ∈ X`

)
. (3.2)

Having created the individual graph representations of our modalities, we then use the

co-registration assumption to form a single fused graph representing the entire input. For

notation, let N = |X1| = · · · =
∣∣Xk

∣∣, and have x`i denote the element of index i in X`.

Furthermore, denote the full collection of elements of index i as xi =
{
x`i | 1 ≤ ` ≤ k

}
. We

then define the fused graph similarity matrix by creating a notion of distance the collections
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xi

dist (xi, xj) = max

(
dist1

(
x1i , x

1
j

)
σ1

, · · · ,
distk

(
xki , x

k
j

)
σk

)
, (3.3)

and using this notion of distance in the standard Gaussian scheme (2.2)

Wij = exp
(
−dist (xi, xj)

2) . (3.4)

Note that this is equivalent to comparing the individual graph weight matrices and choosing

the minimum value for each edge weight

Wij = min
(
W `
ij | 1 ≤ ` ≤ k

)
. (3.5)

The purpose of choosing the maximum of input distances to combine the individual dist`

is to emphasize the unique information that each dataset brings. By using the maximum

of all distances (i.e. the minimum of all similarities) two data points xi, xj are considered

similar only when they are similar in every dataset. For example, in figure 1.1 the gray road

and the gray rooftops are considered very similar in the RGB modality, but quite different

in the lidar modality. Therefore, under this norm the two areas will be given a low similarity

score, as desired. Of course, there are many other choices for combining the individual dist`,

but both through heuristics and via experiments we have found the maximum to be the most

effective. With any graph-based method, the choice of graph weights is always one of the

leading concerns. For this reason, we have studied several different variations of equation

(3.3), and we present our results in the section 3.4.

Note that if each dist` on X` is a formal metric, then dist defined on X will be as well.

Furthermore, if we assume that each each X` is embedded in some R-space and that dist` is

induced by a norm on X`, then dist(·, 0) will be a norm on the concatenated set
(
X1, . . . , Xk

)
.

One benefit of this approach to forming fused graph weights is that it allows us to adapt the

treatment of each modality based on our knowledge of that particular source. For example,

if a given modality is known to be represented poorly in Euclidean space (the Swiss Roll data

is a well-known example) we can choose a metric more suited to that particular manifold.

In the context of the work presented here, which focuses primarily on image segmentation,
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we have found that the standard Euclidean distance or the vector angle distance produces

the best description of the input data in section 3.3.

3.2.2 Spectral Clustering

To implement the first segmentation method, spectral clustering, we rephrase the data clus-

tering problem as a graph-cut-minimization problem of the similarity matrix W . A more

detailed survey of the theory can be found in [Lux07]. Here we state only the results neces-

sary to implement the algorithm.

Given a partition of the graph nodes V into subsets A1, A2, . . . , Am, we define the nor-

malized graph cut, abbreviated as the NCut.

NCut(A1, . . . , Am) =
1

2

m∑
i=1

W (Ai, A
c
i)

vol(Ai)
. (3.6)

Where

W (A,B) =
∑

i∈A,j∈B

wij, (3.7)

vol(A) =
∑

i∈A,j∈A

wij = W (A,A). (3.8)

Heuristically, minimizing the NCut serves to minimize the connection between distinctAi, Aj,

while still ensuring that each set is of a reasonable size. Without the vol(Ai) term, the optimal

solution often contains one large set and m− 1 small sets.

Solving the graph min-cut problem is equivalent to finding an N ×m indicator matrix

h, where

hij =


1 if xi ∈ Aj

0 else

. (3.9)

Here the columns of h correspond to the m different classes. Each row of h will contain a

single 1, which represents the class given to that data point. It has been shown in [GH94]

that explicitly solving this problem is an O(|V |m
2

) process. As this is infeasible in most

cases, we instead introduce an approximation of the graph min-cut problem that we will
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solve using the symmetric graph Laplacian (as presented in 2.2). The main tool here is the

following fact (proven in [Lux07]).

Theorem 3.2.1. For a given graph-cut A1, . . . , Am, define h as above, then

NCut(A1, . . . , Am) = Tr
(
hTLsh

)
. (3.10)

As explained above, it is infeasible to find the h that minimizes the NCut. However,

one may note the similarity between this energy minimization problem and the Laplacian

embedding problem presented in (2.10). Up to some choices in scaling, the NCut problem

can be thought of as a discretization of the constraints on the embedding problem. With this

in mind, we make the choice to relax the problem to arbitrary orthogonal matrices. That is,

we find

argminY ∈Rn×mTr
(
Y TLsY

)
where Y TY = I. (3.11)

Similar to the Laplacian embedding in section 2.2.1, this problem is solved by choosing

Y to be the matrix containing the m eigenvectors of Ls corresponding to the m smallest

eigenvalues. Thus our solution to the relaxed NCut problem is an embedding V → Rm.

To discretize this to a solution for the original min-cut problem, we then implement some

classification algorithm on the embedded images of the graph nodes. Specifically, for spectral

clustering we use k-means on the eigenvectors Y to create our final classification into m

classes h. Although k-means is unlikely to give an optimal classification, it is quite easy to

implement, and the final results are strong enough to give a proof-of-concept.

3.2.3 Semisupervised Graph MBO

In this section we describe how to use eigenvectors of the graph Laplacian to segment data

in a semisupervised setting. By “semisupervised”, we mean that the final classification of a

small amount of data points (roughly 5% of all data) is used as an input to the algorithm.

Following the example set in [GMB14, MKB13, MGB14], we formulate the problem as a

minimization of the Ginzburg-Landau functional.
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For the definition of the energy function, we use an N ×m assignment matrix h, similar

to the h in (3.9). As before, the final output of the algorithm will be a matrix h where

each value is either 0 or 1, with a single 1 in each row. However, for intermediate steps of

the algorithm h will be real-valued. Heuristically, the value hij represents the strength of

association between element xi and class j. For notational convenience we let hi represent

the i-th row of h. With this notation, we define the energy function

E(u) = ε · Tr
(
hTLsh

)
+

1

ε

∑
i

W (hi)

+
∑
i

µ

2
χ(xi)

∥∥∥hi − ĥi∥∥∥2
L2

. (3.12)

The first term of (3.12) is Dirichlet Energy, similar to 3.2.2. The second term is the multiwell

potential

W (ui) =
m∏
k=1

1

4
‖ui − ek‖2L1

, (3.13)

where ek is the k-th standard basis vector. These two terms together produce an approxi-

mation of the classical real Ginzburg-Landau functional, and it has been shown in [GB12]

that they converge to the (graph) total-variation norm

TV (h) =
∑
i,j

wij |hi − hj| (3.14)

as ε→ 0. The last term includes the fidelity, where ĥ represents the semisupervised input,

χ(xi) =


1 if xi is part of fidelity input

0 else

, (3.15)

and µ is a tuning parameter.

The gradient descent update associated to this energy is given by

∂h

∂t
= −εLsh−

1

ε
W
′
(h)− µχ(x)(h− ĥ). (3.16)
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Similar to [MKB13,GMB14,MMK17], we propose to minimize this via an MBO algorithm.

If hn represents the n-th iterate, then to calculate hn+1 we first diffuse

hn+
1
2 − hn

dt
=− Lshn+

1
2 − µ(hn+

1
2 − ĥ)

+ (1− χ(x))(hn − ĥ). (3.17)

Then threshold each row

hn+1
i = er where r = argmaxjh

n+ 1
2

ij . (3.18)

This method effectively splits the energy into two parts and minimizes each alternatively.

The diffusion step (3.17) handles the semisupervised Dirichlet Energy (terms 1 and 3 in

(3.12)), and the thresholding minimizes the potential function W (term 2 in (3.12)). Note

that for the diffusion equation (3.17) we use an implicit method to guarantee stability, as can

be more clearly seen after changing coordinates in equation (3.22). The stopping criterion

for this algorithm is based on the difference between two consecutive iterates hn, hn+1. In

section 3.3, we stop the algorithm when hn and hn+1 agree on 99.99% of data points.

The diffusion calculation can be done very efficiently by using the eigendecomposition of

Ls (the feature vectors described in 3.2.2). If we write

Ls = UΛUT (3.19)

and change coordinates

hn = Uan (3.20)

χ(x)(hn − ĥ) = Udn (3.21)

then the diffusion step reduces to solving for coefficients

an+1
k =

(1 + µdt)ank − µdt · dnk
1 + µdt+ dtλk

. (3.22)

where λk is the k-th eigenvalue of Ls, in ascending order. Note that because we have λk ≥ 0

for all k, this update step is guaranteed to be stable, regardless of the choice of parameters

µ, dt.
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As already discussed in section 2.3, only a small number of leading eigenvectors and

eigenvalues need to be calculated in order to achieve a good accuracy. Therefore, in the

eigendecomposition (3.19), we choose a number n� N of eigenvectors to use, and truncate

U to a rectangular matrix. By using the Nyström extension we are then able to calculate an

approximate U with significantly reduced computation time.

3.3 Experiment

3.3.1 Data Fusion Challenge 2015 Images

As a first test for the algorithm, recall the DFC2015 data presented in figure 1.1. This set

consists of remote sensing images in both the optical and lidar modalities, and is interesting

because of the unique information brought by each source.

In figures 3.2a, 3.2b, 3.2c, we show three example eigenvectors of the graph Laplacian.

As explained in 3.2.2, these vectors can be thought of as feature of the dataset, and looking

at them will give us a rough idea of the final segmentation. Notice how in 3.2a the dark-gray

asphalt is distinct from both the nearby grass (which is at the same elevation), and the

roofs of the buildings (which are a similar color). This shows at the feature level that the

algorithm is successfully using both the optical and the lidar data when determining what

pixels can be considered similar. Based on this example vector, the classification algorithm

then separates those regions in the final results. One can note the similarities between each

of the example eigenvectors and the final classifications 3.2f, 3.2e.

For this image, we choose to segment the data into 6 classes. As the data does not come

with any ground truth attached, the number 6 was chosen based purely on personal opinion.

The classes given in the semisupervised term (fig 3.2d) are roughly: tall buildings, mid-level

buildings, asphalt (bright), asphalt (dark), white tiles, and grass. The exact choice of fidelity

pixels was made by either manually choosing locations, or by characteristics of the data (ex:

the 1% of pixels at highest elevation). Most importantly, these classes can all be separated

using either color or lidar (or both).
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(a) Example eigenvector 1 (b) Example eigenvector 2

(c) Example eigenvector 3 (d) Semisupervised Input

(e) MBO segmentation (f) Spectral clustering segmentation

Figure 3.2: DFC2015 features and segmentations
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As should be expected, the spectral clustering method (fig 3.2f) does not select exactly

the same 6 classes that we have manually identified. As this algorithm is unsupervised, there

is no way of encoding our human preference into the method. Therefore, the choice of exactly

how to divide the different groups of pixels is made in accordance with only the graph min

cut energy. In the end, this algorithm can still pick out the major features of the dataset,

but the specific decisions of exactly which classes to combine and which to separate does

not agree with our human intuition. By instead using a semisupervised algorithm such as

graph MBO (fig 3.2e), we can input a small amount of information (in this case, 7% of total

pixels) in order to align the energy minimization with our human expectations. Therefore,

the final result aligns quite well with initial expectations.

When choosing the exact parameters for the algorithm, there are two factors to consider.

The choice of dt is a tradeoff between the runtime of the program and theaccuracy of the

final result, and the choice of µ dictates our level of confidence in the semisupervised input

(fig 3.2d). For this particular example, we choose dt = 0.1 and µ = 103.

For comparison, we also show the results of several more naive algorithm. To emphasize

the importance of using both modalities in the classification, we show in figure 3.3a the result

of spectral clustering on the RGB data alone, and in figure 3.3b the similar result for the

lidar data. As discussed earlier, neither modality contains sufficient information to separate

the chosen classes alone, and this can be clearly seen in the results.

In figures 3.3c, 3.3d we display the result of two multimodal methods more naive than

the one presented here. Figure 3.3c shows the result of k-means applied directly to the

concatenated (4-dimensional) dataset, without any preprocessing. As can be seen from the

result, a direct application of k-means is not well suited towards handling information from

disparate sources. In this particular example, the segmentation overvalues the information

from the lidar modality, and therefore overclassifies the buildings based on height. This

in turn results in a poor classification of the different ground-level features, as the RGB

information is not well-used. For figure 3.3d, we extract graph Laplacian eigenfunctions

from each modality separately, then concatenate these eigenfunctions for the k-means step.

Similar to our example with k-means, this method is insufficient to properly combine the
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(a) RGB data only segmentation (b) Lidar data only segmentation

(c) Direct k-means (no preprocessing) (d) Calculate eigenvectors separately

Figure 3.3: Other methods on DFC2015 for comparison. (a) Spectral clustering on RGB

data, (b) Spectral clustering on lidar data, (c) k-means on concatenated (4-dimensional)

dataset, (d) Calculate eigenvectors on RGB and lidar separately, and k-means on the con-

catenation.

RGB and lidar information. Unlike our max-norm method, concatenating the individual

eigenvectors makes no effort to find which dataset is more relevant in separating the various

objects. Therefore, while the dataset input to k-means technically has sufficient information

to classify the data as desired, there is also enough superfluous information to result in a
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(a) Umbrella optical data (b) Umbrella lidar data (c) Semisupervised Input

(d) Example eigenvector 1 (e) Example eigenvector 2 (f) Example eigenvector 3

(g) Spectral clustering seg-

mentation

(h) MBO segmentation (i) Direct k-means

Figure 3.4: Umbrella data results

poor classification.

3.3.2 Umbrella Data

In fig 3.4 we show the results of the method applied to another optical/lidar set (found

in [SHK14]), which we will refer to as the umbrella data. Similar to the DFC2015 set,

the umbrella data serves as a good example because it cannot be easily analyzed using

one modality alone. The umbrellas and the background walls are nearly the same shade of

white, and can only be distinguished in the lidar data. Meanwhile, the different pieces of the

background all lie at nearly the same depth, and can only be separated by color. As was the
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case with the DFC2015 data, the final classifications 3.4g, 3.4h can be understood by looking

at the individual feature vectors. In figure 3.4d, we see very clearly the difference the major

features of the dataset: the front umbrella, the back umbrella, and the background wall.

Figures 3.4e, 3.4f show more of the small details of the data, separating the many different

background objects.

As was the case with the DFC2015 data, we chose to segment this image into 6 classes

based primarily on personal opinion. The classes represented in the semisupervised input

are: the front umbrella, the back umbrella, the wooden cabinet in the corner, and various

different colors of background objects (fig 3.4c). Similar to the results from the DFC2015

dataset, we can find many major features in the spectral clustering result (fig 3.4g), but

the exact details of the classification do not match our expectations. In particular, the

foremost umbrella of this set is overclassified, which in turn forces the algorithm to combine

the background objects into a small number of classes. In the graph MBO result (fig 3.4h),

we give include the class of 5% of pixels as part of the input, and as such the classification

fits the original data much more closely.

In figure 3.4i we again show the result of applying k-means directly to the concatenated

dataset. As seen before, this naive algorithm struggles to make use of all the information

present in the different modalities. In this example, the issue can be seen most clearly in the

failure to separate the two umbrellas. k-means succeeds in separating many objects based

on their RGB value, but the fact that the two umbrellas are grouped into the same class

shows that the lidar information is not properly valued.

3.3.3 Data Fusion Challenge 2018 Images

For a more in-depth test of the algorithm, we look at the images from the Data Fusion

Challenge 2018 (abbreviated DFC2018). A much more robust dataset, the DFC2018 consists

of 50 bands of hyperspectral data covering wavelengths 380-1050nm, Multispectral-LiDAR

data at 3 different wavelengths (1550nm, 1064nm, and 532nm), intensity rasters for each

LiDAR band, a Digital Surface Model (DSM) of the area, and finally, ground truth data for
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roughly 30% of input pixels. The data covers an area of size 600m× 2400m at a resolution

of 0.25m per pixel, for a total of nearly 6,000,000 pixels.

Featured in this dataset are a wide variety of different materials. The accompanying

ground truth labels 20 different classes, including different plants, water, various types of

pavement, and some metal objects. We merge these 20 original classes into 10 final classes

(see table 3.6), as ground truth data separates some objects with remarkably comparable

spectral signatures (for example, roads, major throughfares, and highways are considered

different classes in the original input). Still, amongst the 10 final classes we are given the

opportunity to show the strength of our algorithm in considering the entire input set while

differentiating between classes, as there is no one modality that fully separates all 10 classes.

As explained in 2.3, one difficulty in dealing with such a diverse dataset is the efficacy of

the Nyström eigenvectors. Recall that as part of the MBO update step (3.22) we perform

a coordinate change using the Graph Laplacian eigenvectors U (3.20). As we only calculate

(an approximation of) the most influential eigenvectors, rather than the entire matrix, this

coordinate change an = UThn represents a loss of overall information. Essentially, we are

projecting the full data onto the space spanned by the chosen eigenvectors. Therefore, it is

important that each class is well represented in our choice of Nyström landmark nodes. To

accomplish this, we use the ground truth labels given to select a few nodes from each class.

We also increase the total number of Nyström eigenvectors from 100 to 200.

The application of our algorithm to the dataset is also complicated by the size of the

image. This particular example is more than an order of magnitude bigger than the oth-

ers, and the space complexity of building the graph becomes a big issue, even when using

the Nyström method (section 2.3) to reduce the matrix size. We handle ths computation

by running the algorithm many times over patches of size 100,000 pixels. To provide the

semisupervised input for the graph MBO, we choose ≈ 0.1% of the ground truth data (with

an equal distribution between class labels) and add a copy of it to each run of the algorithm.

For the input parameters of the MBO, we use dt = 0.1 and µ = 103. Using the ground truth

data, we can get a quantitative evaluation of the quality of our algorithm. For the pixels

that are labeled in the ground truth, we correctly classify 80%.
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(a) Hyperspectral data (RGB bands)

(b) 1064nm intensity raster

(c) Digital Surface Model

(d) Ground Truth

(e) MBO segmentation (using ≈ 0.1% of ground truth as semisupervised input)

Figure 3.5: DFC2018 Data
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Label Name Validation Set Size Graph MBO Accuracy (%)

Grass 169204 88.23

Artificial turf 2736 100.00

Trees 74494 97.61

Sidewalks and bare earth 154099 71.19

Buildings 1053764 83.76

Roads and other paved areas 460150 65.45

Railways 27748 96.33

Unpaved parking lots 587 99.15

Cars and trains 47768 89.66

Stadium seats 27296 96.19

Figure 3.6: DFC2018 Classes and MBO Accuracy

3.3.4 Data Fusion Challenge 2013 Images

For a more quantitative evaluation of our method, we apply our multimodal graph MBO algo-

rithm to the images from the Data Fusion Challenge 2013 [DMH14], and draw a comparison

to the results of [LPB15]. The datasets distributed for the contest include a hyperspectral

image and a lidar-derived digital surface model (DSM) of the University of Houston campus

and its neighboring area, both at a spatial resolution of 2.5m. The hyperspectral image con-

sists of 144 bands in the 380-1050 nm range (figure 3.7a), and corresponding co-registered

lidar data represents the elevation in meters above sea level (figure 3.7b).

Along with the the input data, training and validation sets were created by the Data

Fusion Technical Committee, labeling 2832 pixels for the training set, and 15029 pixels for

the testing set (figures 3.7c, 3.7d, respectively). The pixels were separated into 15 classes,

as is detailed in table 3.1. As shown, both land cover and land use classes were considered,

including natural objects (e.g., grass, tree, soil, and water), and man-made objects (e.g.,

road, highway, and railway). Note that the Parking Lot 1 class included parking garages

at ground level and in elevated areas, and Parking Lot 2 corresponded to parked vehicles.
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For each class, the size of training and validation sets was made constant (when possible)

to include about 200 and 1000 samples, respectively. It is noteworthy that a large cloud

shadow was present during the acquisition of the HSI; as a result, no training samples were

selected in this region. However, a significant number of validation samples were collected

to test the efficacy of various algorithms in dealing with cloud shadow.

We show in figure 3.7e the results of our multimodal graph MBO algorithm on this data,

with per-class accuracies and a comparison against [LPB15] given in table 3.1. Although our

algorithm generally has good results, we specifically struggle to classify a piece of highway

near the right-hand side of the image. By comparing the hyperspectral and lidar data,

one can see that this section of road is actually a bridge over railway below, and it is for

this reason that our algorithm gives poor results in this area. To maintain generality and

applicability to situations other than image processing, we do not use positional data in our

algorithm. Therefore each of the higher-elevation pixels at the top of the bridge are treated

as separate objects, and misclassified as buildings.

3.3.5 Jade Plant Data

Found in the same paper as the umbrella data [SHK14], we test the method against another

optical/lidar scene of a jade plant, shown in figures 3.8a, 3.8b. As with all examples shown

here, there is a large amount of non-redundancy between the two input images. In particular,

in this example the optical image is quite homogeneous, as it is mostly composed of shades

of brown. Therefore, one would expect the addition of the lidar data to greatly aid the

segmentation.

In figures 3.8c, 3.8d, we once again show a few example eigenvectors extracted from the

input data. As before, we can see in each eigenvector some pieces of the final classifications

3.8e, 3.8f.
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(a) Hyperspectral data (RGB bands)

(b) Lidar data

(c) Training Samples

(d) Validation Samples

(e) MBO segmentation

Figure 3.7: DFC2013 Data

3.4 Choice of Norm to Combine Modalities

Recall from section 3.2.1, we create our multimodal edge weights by calculating the distance

between nodes in each modality, applying the appropriate scaling, and choosing the largest

distance found, and applying a radial basis function to this distance (equations (3.3) and
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Label Name GGF [LPB15] Our method

Healthy Grass 82.91 80.74

Stressed Grass 99.34 87.16

Synthetic Grass 100.00 100.00

Trees 99.34 98.95

Soil 100.00 99.03

Water 95.10 98.15

Residential 90.86 90.14

Commercial 95.63 92.68

Roads 89.33 74.84

Highway 92.76 69.68

Railway 96.58 90.45

Parking 1 91.93 85.81

Parking 2 74.39 81.02

Tennis Court 100.00 99.77

Running Track 98.73 100.00

Overall Accuracy (%) 94.00 88.56

Average Accuracy (%) 93.79 89.90

κ 0.935 0.877

Table 3.1: Results of our method and of [LPB15] on DFC2013 data

(3.4)). In this section we concern ourself specifically with the choice of function for combining

the distances found in each modality. As the distance functions dist`, 1 ≤ ` ≤ k are a part of

the input to our algorithm, we then naturally have for each pair (xi, xj) k different distance

values, one for each modality. Let

dij =

(
dist1(x

1
i , x

1
j)

λ1
, . . . ,

dist(xki , x
k
j )

λk

)
. (3.23)
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(a) Jade plant optical data (b) Jade plant lidar data (c) Example eigenvector 1

(d) Example eigenvector 2 (e) Spectral clustering seg-

mentation

(f) MBO segmentation

Figure 3.8: Jade plant data results

Note that choosing the maximum between the k different values is the same as applying the

L∞ norm in Rk. In other words, we can change the notation of equation (3.3)

dist(xi, xj) = ‖dij‖∞ . (3.24)

We explain in section 3.2.1 our reasoning for choosing this particular method of combining

individual modality distances, but it is worth some investigation into other possible methods.

One very natural generalization of the distance function chosen is to replace ‖·‖∞ with a

different choice of Lp norm. That is, we could alter equation (3.3) and define

wij =exp
(
−‖dij‖p

)
(3.25)

= exp

−(∑
`

(
dist`(xi, xj)

σ`

)p)1/p
 , (3.26)

for some choice of 1 ≤ p ≤ ∞. The question then arises, if we choose a different Lp norm,

what difference should we expect in the final result? In this section we aim to answer this

question, both on the level of heuristics, as well as with some more concrete observations.
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The most obvious heuristic is that choosing a large p causes the edge weights to be

heavily affected by individual outliers among modalities, whereas choosing a small p will

provide more of an averaging effect over all the modalities. In this paper we choose to use

the L∞ norm because we expect each modality to separate some, but not all, of the objects.

In other words, we believe that two pixels should be considered similar only if they are similar

in every modality, and a single difference shown across all modalities is worth consideration.

However, for a different application - for example, when working with noisy data - it may

be desirable to a smaller value of p to obtain more of an average over the input data.

These heuristics give an idea of the quality of difference between two choices of norms,

but it is also desirable to understand the quantity of difference. If we change our choice of p

norm, how much change can we expect in the graph weights, and in the resulting graph cut?

Unsurprisingly, this answer is highly dependent on the number of modalities. From classical

measure theory in Rk, we have that for 1 ≤ p ≤ q ≤ ∞

‖dij‖p ≤ ‖dij‖q ≤ k1/p−1/q ‖dij‖p . (3.27)

That is, the difference between Lp norms here depends on the number of input modalities.

So when working with relatively few modalities, a different choice of p norm will not make a

large difference in the distance between points (and therefore the graph weights). However,

as the number of modalities increases, it is possible to have large differences in the graph

weights as a result of changing p. For example, we show in figures 3.9a, 3.9b we show a small

synthetic dataset where the optimal graph cut changes drastically based on the norm used

to create the graph weights. The dataset consists of 20 points in 3D, representing 3 different

modalities, grouped into 4 clusters of 5 points. In each image we segment the points into

two classes based on the minimal graph NCut (calculated without approximations), where

in figure 3.9a the graph weights are calculated using the 1-norm, and in 3.9b the weights are

calculated using the ∞-norm. As can be seen in the results, it is possible for the grouping

of points to change entirely based on the change of distance function.
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(a) 1-norm Segmentation (b) ∞-norm Segmentation

Figure 3.9: Optimal graph NCut of synthetic dataset under two different of norm for combin-

ing distances from individual modalities. Data represents input from 3 1-dimension modali-

ties.

3.4.1 Theorem and Proof

In addition to a synthetic example, we also present a theoretical statement on the variability

of graph cuts based on the distance function. We begin with some notation to simplify the

statement of the theorem. Suppose we have n points x1, . . . , xN in some R-space. We’re

interested in distances between points in different norms. So let

dpij = ‖xi − xj‖p (3.28)

Dp =
{
dpij : 1 ≤ i < j ≤ N

}
(3.29)

In other words, for each choice of p there are
(
N
2

)
values that we are interested in. More

specifically, we are interested in the ordering under ≤ for each of these sets Dp, as the graph

weights are depend on the relative size of the different dpij rather than on the absolute size.

As we show below, if the ambient dimension is large enough it is possible to simultaneously

control the orderings in more than one Dp by properly choosing the x1, . . . , xN .
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Theorem 3.4.1. For any 1 ≤ p < q ≤ ∞, it is possible to choose the x1, . . . , xN ∈ RN to

simultaneously produce any arbitrary ordering under ≤ on both Dp and Dq.

Proof. It suffices to give a proof for the case p = 1, q = ∞, as the Lp norm on RN is a

decreasing function of p, and therefore any inequalities in the case p = 1, q =∞ will hold in

the general case 1 ≤ p < q ≤ ∞ as well.

To construct the x1, . . . , xN that produce the distances we desire, we first begin with the

standard basis vectors

xi = ei 1 ≤ i ≤ N (3.30)

then proceed to make small edits to the xi to achieve the desired order. Note that before

making any changes, d1ij = 2, d∞ij = 1 for all i, j. To properly order the L1 distances, we

makes the following type of adjustment where necessary:

xnewi = xoldi + ε · ej for some ε < 1, (3.31)

as pictured in figure 3.10a. This decreases d1ij by ε, increases d1i` by ε for ` 6= j, and does not

affect d∞`k for any `, k.

Once the L1 distances are properly set, we can fix the L∞ distances as follows:

xnewi = xoldi + ε · ej − ε · ei for some ε < 1, (3.32)

as pictured in figure 3.10b. This decreases d1ij by 2 · ε, decreases d∞ij by ε, and does not affect

d∞`k for any `, k.

Given these two possible moves, it’s relatively simple to achieve the desired ordering of

distances by using progressively decreasing values of epsilon. At each step one can choose

epsilon sufficiently small so that the changes from the previous steps are not affected. For

example, if one could use ε = 2−k for the kth move.

38



(a) Move 1 (b) Move 2

Figure 3.10: Moves from 3.4.1

3.5 Summary

In conclusion, graph-based methods provide a straightforward and flexible method of com-

bining information from multiple datasets. By considering the similarity between points in

each individual dataset, we reduce the information from each modality into something more

directly comparable. This in turn gives us a model that is more data-driven, using the infor-

mation obtained from each modality without needing to know the details about the source

from which the data was captured. Therefore the same algorithm could be applied in many

different scenarios, with different types of data.

Once we have calculated and compared the different weight matrices, we can then create

the graph Laplacian of the data and extract features in the form of eigenvectors. These

features can then be used as part of many different data-segmentation algorithms. For this

paper, we use k-means on the eigenvectors as a simple proof-of-concept, and graph MBO

as a more in-depth approach. The main computational bottleneck is in calculation of the

eigenvectors, for which we have made several approximations to improve the speed of our

algorithm. After this step, there are many different viable classifications in the literature.

A future area of interest is to further investigate the possible choices for multimodal

graph weights and to create a more solid theoretical background for these choices. When
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choosing to use graphs in machine learning problems the foremost concern is the quality of

the data representation in graph form, and therefore it is this segment of our algorithm that

merits the most study.
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CHAPTER 4

Fast Graph Matching

In this chapter we present our algorithms on graph matching. Given two undirected, weighted

graphs, we search for a matching between nodes that minimizes the difference between

corresponding edges. Although the formal statement of this problem is NP-hard, we use the

Laplacian embedding from section 2.2.1 to approximate and quickly minimize the matching

energy. Then, using our matching algorithms, we show several possible applications to real-

world machine learning problems.

4.1 Related Work

Extensive surveys of graph matching methods can be found in [Ven15,FPV14,CFS04]. These

algorithms are commonly categorized as exact or inexact based on the approach used. Exact

methods search for a true isomorphism of (sub)graphs, using either heuristics or additional

given information to narrow the search space [Ull76, SFS03]. As explained above, the dif-

ficulty of the exact matching problem forces these methods to have limited applications,

falling well short of the needs of modern pattern recognition or computer vision. For this

reason, the majority of research done in recent years is focused on inexact graph matching.

Within the category of inexact graph matching there are a wide variety of approaches, such

as tree searches [SSA04], or a reduction to bipartite graph matching [BW03]. However, the

most common approach is to relax the discrete constraints of the problem to the continuous

case in order to recast the problem as a non-convex optimization.

One common relaxation of constraints is to the set of doubly stochastic matrices, the

convex hull of the set of permutation matrices. In this formulation, each potential match
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Figure 4.1: [LQ14] A comparison of several matching algorithms.

between graph nodes is given a probability rather than a strict choice of 0 or 1. After the

cost function is minimized in this new set, a discretization step is then performed to obtain

the final solution. In [GR96] the authors introduce the Graduated Assignment (GA) algo-

rithm, minimizing the first-order Taylor series approximation to the graph cost function by

iteratively solving the corresponding linear assignment problem via the softassign algorithm.

Both [LQ14] and [VCL15] impliment a similar procedure, using a Franke-Wolfe method to

minimize the Taylor approximation, with the Hungarian algorithm and a stardard linesearch

for each iteration. This approach is extended to many-to-many graph matching problems

in [ZBV10], and to hypergraph matching in [YQL17]. This same continuous relaxation is

also used in several fixed point methods, such as [LHS09] where the authors project the

partial solution back to the discrete space at each timestep, or [LHL16] where the authors

define a partial doubly stochastic projection function that can quickly map the gradient to

the desired solution space. Lastly, in [ZBV09] the authors introduce the PATH algorithm, in

which the matching is formulated as a convex-concave programming problem which is solved

by interpolating between two approximate simpler formulations. In figure 4.1 we reproduce

a figure from [LQ14] comparing the matching results of GA ( [GR96]), PATH, ( [ZBV09]),

and GNCCP ( [LQ14]).

Another major group of inexact graph matching methods is spectral techniques, which

can be thought of as a relaxation of the constraints to the space of orthogonal matrices.

This approach was first introduced in [Ume88], where each potential match between nodes
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Figure 4.2: [CK04] Two graphs and a comparison of eigenspaces.

is given an affinity score by comparing their positions in each graph eigenspace. The final

match can then be obtained by solving a linear assignment problem using the affinity scores.

In [KC02,CK04] the authors extend this method to graphs of unequal size, and in [KSM09]

the authors introduce an unsupervised method based on histrograms to better align the

eigenvectors, ensuring that the eigenspaces are truly comparable. In figure 4.2 we show

an example of two graphs and the corresponding eigenspace comparison from [CK04]. In

[LH05,CSS07] the authors instead create affinity scores between edges of each graph, avoiding

the issue of aligning different eigenspaces but squaring the size of the problem.

4.2 The Method

In this paper we approach the graph matching problem via spectral methods, similar to

[Ume88,KSM09], but with considerable changes to the matching process to reduce both the

time and space complexity of the problem. In this section we formally introduce the matching

problem in 4.2.1, the spectral approach to a solution in 4.2.2, and our specific contributions

in 4.2.3, 4.2.4, and 2.3. Finally, we give a theoretical computation of our algorithm runtime

in 4.2.5. Short overviews of our HOSM and HMSM algorithms can be found in Algorithms

1, 2, respectively.
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4.2.1 The Weighted Graph Matching Problem (WGMP)

Let G1 = (X1,W1), G2 = (X1,W2) be undirected, weighted graphs. Here X1, X2 repre-

sent the nodes of G1, G2 (respectively), and W1,W2 are the corresponding matrices of edge

weights. Let |X1| = M , and |X2| = N . Without loss of generality we will assume M ≤ N .

The goal of the WGMP is to find an injection ρ : X1 → X2 that minimizes the squared

difference of edge weights:

argminρ

M∑
i=1

M∑
j=1

(W1(i, j)−W2(ρ(i), ρ(j)))2 . (4.1)

It is often easier to view the map ρ as an injection of the indices {1, 2, . . . ,M} → {1, 2, . . . , N}.

Corresponding to this, there is an N ×M permutation matrix P where Pei = eρ(i) for each

1 ≤ i ≤ M (here ei is the ith standard basis vector). With this notation we can rephrase

the minimization problem as

argminP
∥∥W1 − P TW2P

∥∥2
F
. (4.2)

Finding an exact solution to this problem is NP-Hard [AKK12]. Instead, we look for an

approximate solution via the methods presented in [Ume88, KSM09]. In particular, we use

a form of the Laplacian embedding presented in section 2.2.1 to solve a relaxed formulation

of the matching problem.

4.2.2 The relaxed WGMP and the graph Laplacian

As the WGMP is too difficult to solve exactly, we instead introduce a relaxed version of the

problem which is much more reasonable. Specifically, instead of choosing P a permutation

matrix as in 4.2, we look for an orthogonal matrix

Q∗ = argminQQT=I

∥∥W1 −QTW2Q
∥∥2
F
. (4.3)

This problem was solved theoretically in [Ume88] using the Laplacian embedding. For each

graph G` (` ∈ {1, 2}) notate the graph Laplacian

L` = D` −W`, (4.4)
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and let L` = U`Λ`U
t
` , be the eigendecomposition of the Laplacian, where the eigenvalues

Λ` are monotone increasing along the diagonal. Then the spectral graph matching theorem

from [Ume88] states that if each L1, L2 has distinct eigenvalues, the optimal Q from (4.3) is

given by

Q∗ = U2SU
T
1 . (4.5)

Here S is a diagonal matrix with values ±1 to account for the sign ambiguity in eigenvectors

between U2 and U1 (explained in detail in 4.2.3). This equation is also a slight abuse of

notation, as the matrix dimensions do not properly correspond in the case where |X1| 6= |X2|.

In fact, similar to chapter 3, for practical purposes we never calculate the full eigenvector

matrices U1, U2. Instead, we choose a number n ≤ min(|X1| , |X2|) and truncate both U1

and U2 to the n columns corresponding to the n smallest eigenvalues. In terms of the energy

minimization, this approximation does not significantly change the quality of solution, and as

explained in section 2.3 this allows us to vastly improve both the time and space complexity

of our algorithm.

Note that this solution is easy to describe in the context of the Laplacian embedding

(section 2.2.1. If we temporarily assume that S = I in equation (4.5), then our optimal

Q∗ = U2U
T
1 . From the viewpoint of our embeddings

φ1 : G1 → Rn, φ2 : G2 → Rn, (4.6)

this product U2U
T
1 compares the images of nodes in X1, X2 via the standard dot product in

Rn. Instead of an exact 0 or 1 representing exact matches, this gives a “similarity score”

between each pair of nodes in X1 × X2. In section 4.2.4, we explain how we convert this

relaxed solution into an exact matching between graphs.

4.2.3 Eigenvector Alignment

To properly compare the Laplacian embeddings φ1, φ2 in (4.6), some work is required to

ensure that the different eigenvectors are properly aligned. Because of the inherent sign

ambiguity in the eigenvectors U1, U2, there are in fact 2n possibilities for each of the Laplacian
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embeddings φ1, φ2. Furthermore, because of numerical instability and small perturbations

between datasets, the ordering of eigenvalues based on ≤ may not provide the optimal match

between eigenvectors. Therefore, to ensure a reasonable comparison between graphs we must

take steps to align our eigenvector matrices. For this reason, we introduce an extra term to

the theoretical solution to the relaxed WGMP (4.5) and include a possible permutation of

columns for one eigenvector matrix.

Q∗ = U2SPU
T
1 . (4.7)

Here the matrix S accounts for the possible sign difference between eigenvectors, and P

accounts for any permutation of columns of UT
1 .

This problem of finding an optimal S, P has already been approached from multiple

angles. In [Ume88] the authors omit S entirely by replacing each U` (` ∈ {1, 2})) with |U`|

in equation 4.5. This allows for a quick handling of issue, but also ignores a great deal of

information by removing signs, and doesn’t address the problem of P at all. In [KSM09] the

authors consider the histograms of each eigenvector in U1, U2, as these are invariant under

the ordering of graph nodes in X1, X2. Each pair of histograms is compared, both with and

without a sign flip, and an optimal matching is chosen, thus deciding both S and P . The

main advantage of this method is that it is completely unsupervised. Additionally, as the

histograms can be constructed with any number of bins, it allows comparisons even in the

case where |X1| 6= |X2|.

Here we propose a semi-supervised method of aligning eigenvectors. Given a small number

of known matches, we can concretely compare different alignments and choose the optimal

one. Suppose we are given J known matches between X1 and X2. For simplicity, we reindex

the graphs so that the matched nodes are the first J in each set. Let Û1, Û2 be the J × n

matrices obtained by truncating U1, U2, respectively. The rows of these matrices give the

Laplacian embeddings of our J matched points (before eigenvector alignment). We then

calculate the similarity matrix

R = ÛT
2 Û1. (4.8)
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Here, the ijth element of |R| gives the similarity between eigenvector i of Ũ2 and eigenvector

j of U1, and the sign of Rij is the same as the sign difference between these eigenvectors.

From this similarity matrix, we create a final alignment of eigenvectors by applying the

Hungarian algorithm, which in O(n3) time finds the bijection ψ : {1, . . . , n} → {1, . . . , n}

that maximizes

M∑
i=1

∣∣Ri,ψ(i)

∣∣ . (4.9)

For our final choice of alignment, let P be the permutation matrix associated to this ψ, and

have S be the diagonal matrix of ±1 corresponding to the signs of Ri,ψ(i).

Algorithm 1: HOSM algorithm overview

Data: Graphs G1, G2

Result: A one-to-one matching ρ : G1 → G2

Calculate graph Laplacian eigenvectors U1, U2 for G1, G2 via Nyström’s method,

section 2.3

Find eigenvector alignment matrices S, P , section 4.2.3

Create subsampled graphs G̃1, G̃2, section 4.2.4

Let Ũ1, Ũ1 be the rows of U1, U2 corresponding to nodes G̃1, G̃2

Define similarity scores between subsampled graphs Q̃ = Ũ2SPŨ
T
1

Create match ρ̃ : G̃1 → G̃2 via Hungarian algorithm on Q̃

forall nodes x̃ ∈ G̃1 do

Let H1 ⊆ G1 the nodes in G1 corresponding to x̃. Similar for H2 ⊆ G2 and ρ̃(x̃)

Have Û1, Û2 the rows of U1, U2 corresponding to H1, H2

Calculate the similarity scores Q∗ = Û2SPÛ
T
1

Create match ρ on the subset H1 via Hungarian algorithm on Q∗

Combine individual matches into final result ρ : G1 → G2
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Algorithm 2: HMSM algorithm overview

Data: Graphs G1, G2

Result: Matching functions ρX1→X2 : G1 → G2, ρX2→X1 : G2 → G1

Calculate graph Laplacian eigenvectors U1, U2 for G1, G2 via Nyström’s method,

section 2.3;

Find eigenvector alignment matrices S, P , section 4.2.3;

Create subsampled graphs G̃1, G̃2, section 4.2.4;

Let Ũ1, Ũ1 be the rows of U1, U2 corresponding to nodes G̃1, G̃2;

Define similarity scores between subsampled graphs Q̃ = Ũ2SPŨ
T
1 ;

forall nodes x̃ ∈ G̃1 do

Choose a set of several nodes Ax̃ ⊆ G̃2 that are the most similar to x̃ (according to

Q̃);

Let H1 ⊆ G1 the nodes in G1 corresponding to x̃;

Let H2 = ∪ỹ∈Ax̃
(nodes in G2 corresponding to ỹ) .;

Have Û1, Û2 the rows of U1, U2 corresponding to H1, H2;

Calculate the similarity scores Q∗ = Û2SPÛ
T
1 ;

forall nodes x ∈ H1 do

Let ρX1→X2(x) be the node in y ∈ H2 with the largest similarity score

(according to Q);

Repeat algorithm with X1, X2 interchanged to create ρX2→X1 ;

4.2.4 Hierarchical Matching

Based on sections 2.2, 4.2.3, we have created an N ×M matrix

Q∗ = U2SPU
T
1 (4.10)

where Q∗ij represents the similarity between node i of X2 and node j of X1. To create a final

match between graphs based on this Q∗, the classical solution is to apply the Hungarian

algorithm to find the injection ρ : {1, 2, . . . ,M} → {1, 2, . . . , N} that solves the maximization
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problem

ρ = argmaxψ

M∑
i=1

Q∗ψ(i),i. (4.11)

The major benefit of using the Hungarian algorithm is that it results in the optimal one-to-

one matching based on the input data, but the O(N3) runtime presents a major problem

when dealing with larger datasets. To address this we introduce a hierarchical algorithm for

graph matching that solves the problem by making many smaller matches, thereby circum-

venting the N3 issue. The key step in the hierarchical matching algorithm is the creation of

smaller subsampled graphs G̃1, G̃2 of size K � N . The goal is for G̃1, G̃2 to represent the

same geometrical structure as G, H, with significantly reduced size. One common way to

this is to iteratively choose the graph node of highest degree, then use a nearest-neighbors

algorithm to delete all nearby nodes. However, even this method requires an O(N2) calcu-

lation of graph node degrees, which is still quite slow. Instead, we use here the approximate

node degrees we already calculated as a step in the Nyström extension, given in equation

(2.22).

Using the subsampled graphs G̃1, G̃2, we then apply one of two matching algorithms: Hi-

erararchical One-to-One Spectral Matching (HOSM), and Hierarchical Many-to-Many Spec-

tral Matching(HMSM). For HOSM, we first select the part of Q∗ related to our two subsam-

pled graphs G̃1, G̃2 and form a match on this level using the Hungarian algorithm to convert

these similarity scores into an exact match. Then, for each match i→ j in the subsampled

graphs, we run the classical graph matching algorithm between the corresponding clusters

in the original graph. So in total the HOSM method applies the Hungarian algorithm K + 1

times. We create 1 match of size K, and K matches of size N
K

.

In HMSM, we sacrifice the injectivity property of the graph match in order to increase

the speed of the method. Instead of forming an exact match between subsampled graphs

G̃1, G̃2, we select a few matches with largest similarity scores for each node in each graph.

Similar to HOSM above, these can be thought of as matches between clusters on the level

of the original graphs G1, G2. To create a final match, we compare each node in G1 to all

the nodes in the clusters it is matched to, and choose the match with the largest similarty
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score, and similar for each node in G2. In the end, we have two functions

ρX1→X2 : G1 → G2 ρX2→X1 : G2 → G1 (4.12)

giving for each node in G1 one highly-correlated node in G2, and vice-versa.

Overall, the hierarchical method is significantly faster than the original O(N3) algorithm,

and allows us to work with much larger datasets. We provide a more in depth analysis of

the computational complexity of the algorithm in 4.2.5, as well as experimental results in

4.3.2.

4.2.5 Theoretical runtime computation

Combining the material presented above, we now give a theoretical bound on the time

complexity of our HOSM algorithm, proving that our method outperforms O(N2). To

simplify our calculations, we will assume in this section that both graphs are of size N . As a

quick reminder of notation, we will let L denote the number of graph Laplacian eigenvectors

to be calculated (using the Nyström method in 2.3), and K denote the size of the subsampled

graphs detailed in 4.2.4.

Based on [FBC04], the runtime of the Nyström method is

O(n3) +O(L ·N). (4.13)

Here, the optimization of the choice of n is based on a choice of speed vs. accuracy. In

our practical applications (section 4.3) we have found that it suffices to calculate only a

small number of eigenvectors to achieve reasonable results, and even in large cases such as

N = O(105) we often have n ≈ 100.

In the graph subsampling step, we use a basic k-nearest neighbors calculation for each

cluster to determine which points it should contain. This reduces to sorting a list of size N

once for each of K clusters, giving a runtime of

O(K ·N log(N)). (4.14)
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Lastly, the matching method uses the Hungarian algorithm to create create 1 match of

size K, and K matches of size N
K

, resulting in a runtime of

O
(
K3 +

N3

K2

)
. (4.15)

Without putting too much effort into understanding the details of the implied constants

in each of these bounds, we can obtain a very simple bound on the overall runtime by

choosing K = O
(
N

3
5

)
, giving us a final runtime of

O(L3) +O(L ·N) +O(N
8
5 log(N)) +O(N

9
5 )

= O(N
9
5 ), (4.16)

where in the last equation we assume that L is small relative to N .

A bound on the runtime of HMSM involves very similar calculation. The only change is

in the matching algorithm, where we replace the Hungarian algorithm (4.15) with a simple

maximum, resulting in a runtime of

O(n3) +O(n ·N)

+O(K ·N log(N)) +O
(
K2 +

N2

K

)
. (4.17)

Choosing K = O(
√
N) here gives an asymptotic runtime of O(N

3
2 log(N).

4.3 Experimental Results

In this section, we evaluate the performance in large graph matching of our HOSM and

HMSM algorithms. In 4.3.1 we show through a simple example the ability of our method

to recognize and match salient features in datasets, and in 4.3.2 we experimentally calculate

the algorithm runtime, as well as draw comparisons in matching error against other leading

algorithms. Finally, in section 4.3.3 we show the results of our algorithm on a real-world

dataset.
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4.3.1 Toy example of hierarchical match

We begin by showing the results of our graph matching algorithm on a synthetic dataset,

which is pictured in figure 4.3. Here the nodes of the graphs G1, G2 are represented by 2-

dimensional datasets X1, X2, and the weight matrices W1,W2 are determined via a classical

RBF kernel applied to the 2-norm, as in 2.2.

E1(i, j) = ‖X1(i)−X1(j)‖22 (4.18)

W1(i, j) = −exp

(
E1(i, j)

std(E1)2

)
, (4.19)

and similarly for W2. The matching is then calculated using the our HOSM method in

4.2.4, with the match on the subsampled level begin shown in figures 4.3d, 4.3e, 4.3f. This

example has datasets of size N = 1500, with K = 50, so that the subsampled data has size∣∣∣G̃1

∣∣∣ =
∣∣∣G̃2

∣∣∣ = 30.

The purpose of this example is to show that the matching algorithm can recognize similar

shapes in data that has been altered in a smooth-enough manner. Both sets X1, X2 contain

a tight cluster of points, as well as longer line segment. In figures 4.3c, 4.3f we see the final

result of the algorithm, where each match is represented by a line connecting the two points

in question. As we can see in the figure, the algorithm successfully matches the objects based

on their shape, as we desired.

4.3.2 Runtime and error calculation

In this set of experiments we implement our algorithm on random synthetic graphs, giving

a practical estimation of runtime to complement our theoretical bound in section 4.2.5, as

well as comparing the resulting graph matching error against established methods.

First, we show our results on algorithm runtime in figures 4.4, 4.5 over a selection of

random graphs of a variety of sizes. For each graph size, we run the method 60 times and

give the average time in seconds in figures 4.4a, 4.5a. We also present the same data in a

log-log plot in figures 4.4b, 4.5b to give an estimate of the asymptotic complexity of the

method. Supporting our ideas from 4.2.5, our experiment estimates the runtime for HOSM
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Example hierarchical matching on synthetic data. (a) Dataset X1. (b) Dataset

X2. (c) Hierarchical match result. (d) Subsampled data X̃1. (e) Subsampled data X̃2. (f)

Classical match on subsampled data

at roughly O(N1.6), and for HMSM at O(N1.4). For a comparison, we present in table 4.1 a

short review of other state-of-the-art methods and their associated runtimes.

We next present in table 4.2 a comparison of matching error with several established

methods. Similar to section 4.3.1 we create example graphs from synthetic 2-dimensional

datasets X1, X2 via an RBF kernel, as in equations (4.18), (4.19). We then apply 7 different

methods for graph matching, and for each we calculate the matching energy as in equation

(4.2). As computing the matching error this way is an expensive operation, we limit the size

of our graphs to N = 300 in each of these experiments.

The methods used are as follows: Rand chooses the match uniform randomly, providing

a basis for comparison. PATH is a convex-concave algorithm presented in [ZBV09], and

FastPFP is a fixed-point method shown in [LHL16]. The remaining 4 models are ours, with
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Method Asymptotic runtime Graph size considered

IPFP [LHS09] O(N4) O(101)

FastGA [GR96] O(N3) O(102)

Umeyama [Ume88] O(N3) O(102)

PATH [ZBV09] O(N3)/iteration O(102)

FAQ [VCL15] O(N3)/iteration O(103)

FastPFP [LHL16] O(N3)/iteration O(103)

Knossow1,2[KSM09] O(N2) O(104)

HOSM O(N1.8) O(104) or O(105)

HMSM1 O(N1.5 log(N)) O(105)

1 Not a 1-to-1 match.

2 Only considers sparse graphs.

Table 4.1: Theoretical runtime and largest size of graph considered over current state-of-

the-art large graph matching algrotihms.

(a) (b)

Figure 4.4: Average runtime of HOSM over 60 trials for graphs of size 2,000 to 20,000. (a)

Raw data. (b) Log-log plot with line of best fit.

54



(a) (b)

Figure 4.5: Average runtime of HMSM over 60 trials for graphs of size 16,000 to 160,000.

(a) Raw data. (b) Log-log plot with line of best fit.

different choices of the hierarchical matching method from section 4.2.4. Note that choosing

K = N eschews the hierarchical portion of the algorithm and directly creates and uses the

similarity matrix Q∗ from (4.7).

Our first experiment uses a similar “line segment + cluster” dataset as in figure 4.3. We

use this experiment to measure the ability of algorithms to match graphs that are similar

topologically, but not truly isomorphic. In the next experiment each graph contains two

clusters of similar composition, testing the eigenvector alignment step of the spectral methods

(section 4.2.3). We then give three examples covering the case of exactly isomorphic graphs

with various levels of added noise. Lastly, we address the case of subgraph isomorphism,

where |G1| = 150, |G2| = 300, and G2 contains as a subgraph an exact copy of G1.

As can be seen from the data, our algorithms are competitive with the state-of-the-art in

each experiment. Most importantly, for many of the experiments the hierarchical matching

algorithms (those with K = N/10) show comparable error rate with the other algorithms,

proving that our choice of approximations preserves the quality of the final match.
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Experiment Rand PATH FastPFP HOSM
K=N

HOSM
K=N/10

HMSM

K=N
*

HMSM

K=N/10
*

Line segment + cluster 1.390e+4 639.61 1381.6 585.36 1023.4 328.62 632.76

Two clusters 3.059e+4 27.28 6.538 6.1398 20.176 4.9154 8.1589

Isomorphic graphs 1.460e+4 5.2652 14.527 0.000 364.49 0.000 119.28

Isomorphism + 10% perturbation 1.441e+4 94.706 83.413 72.206 535.05 76.272 155.26

Isomorphism + 20% perturbation 1.426e+4 363.13 287.54 278.29 826.99 292.02 451.21

Subgraph isomorphism 1.260e+4 786.80 785.35 6.4151 193.76 39.406 151.68

* Not a 1-to-1 match

Table 4.2: Matching error comparison over several experiments. Methods implemented are

(a) Rand, a uniform random match, (b) PATH, presented in [ZBV09], (c) FastPFP, presented

in [LHL16], (d,e) HOSM, presented in this paper, with various choices of subsampled graph

size, (f,g) HMSM, presented in this paper, with various choices of subsampled graph size.

4.3.3 Stanford Bunny experiment

In this section we show the results of our algorithm applied to the Stanford Bunny dataset

[TL94]. The set consists of several 3D point clouds showing the surface of a rabbit as viewed

from different angles, and is publicly available (thanks to the Stanford Computer Graphics

Library) at

http : //graphics.stanford.edu/data/3Dscanrep/.

We show in figure 4.6 the 3D realization of two of these sets with a direct view (0◦-angle) in

figure 4.6a, and a 45◦-angle view in figure 4.6b. These figures contain 40,256 and 40,097 data

points, respectively, falling well within the reasonable range of our matching algorithms. We

convert these point clouds into weighted graphs using the same RBF kernel as described in

(4.19), then proceed to match the figures using our HOSM and HMSM methods. To visualize

the results, we give in figures 4.7a, 4.8a, and 4.9a hand-made colorings of one angle of the

bunny, then in figures 4.7b, and 4.8b, 4.9b we use the various matching functions created to

transfer the coloring to the second angle.

Figures 4.7 and 4.8 give the two matching functions (neither of which is one-to-one)

calculated by HMSM. In figure 4.7 we begin with a coloring on the 45◦-angle dataset, then
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(a) (b)

Figure 4.6: Stanford Bunny Dataset. 3D point clouds representing the surface of a rabbit as

viewed (a) from directly in front (angle of 0◦), and (b) with a 45◦ rotation.

perform a match from 0◦ to 45◦. The coloring on the 0◦ set is then determined by pulling

back the coloring on the 45◦ through this match. Figure 4.8 shows the same operation

performed in the opposite direction. As can be seen in the figure, the overall results of the

match are quite good, with only small errors in each direction.

In figure 4.9 we show the one-to-one match found by HOSM. Compared to the results

of the many-to-many method we see more errors in this case, which speaks to the increased

difficulty of finding a reasonable one-to-one match in a situation such as this where no exact

match exists. This difficulty is especially apparent when looking at the ears of the bunny.

Each ear is a distinct feature of the figure, but between the two angles the number of data

points per ear is quite different. In particular, there are are many fewer data points in the

rear ear (light blue) of the 45◦-angle set than in the 0◦-angle set. Since we require the match

to be one-to-one, there not enough available blue points to properly color the back ear in

the target data, which is the major cause of the erroneous coloring here.
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(a) (b)

Figure 4.7: Representation of HMSM match on Stanford Bunny. (a) A coloring of the 45◦-

angle dataset. (b) The transfer of the coloring onto the 0◦-angle dataset via color(i) =

color(ρ0◦→45◦(i)).

(a) (b)

Figure 4.8: Representation of HMSM match on Stanford Bunny. (a) A coloring of the 0◦-

angle dataset. (b) The transfer of the coloring onto the 0◦-angle dataset via color(i) =

color(ρ45◦→0◦(i)).
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(a) (b)

Figure 4.9: Representation of HOSM match on Stanford Bunny. (a) A coloring of the 45◦-

angle dataset. (b) The transfer of the coloring onto the 0◦-angle dataset via the match

found.

4.4 Graph Matching Applications

In this section we show several application of our graph matching algorithm to real-world

machine learning problems. In 4.4.1 we introduce a method for change detection on co-

registered sets based on cparing the results of a graph match to the natural indexing on

sets. In 4.4.2 we show an example of knowledge transfer derived from pulling any relevant

information through a graph match.

4.4.1 Change detection using graph matching

One possible application of our graph matching algorithm is in change detection. Suppose

we are given datasets X1, X2 representing the same event, captured at different times or

with different sensors. One should expect that the two datasets represent roughly the same

information, but an interesting question is to find when this is not the case, and in which

specific parts of the data do we see this difference. Speaking more mathematically, it is

reasonable to expect that the topology of the two dataset would be roughly similar, and
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that any topological differences would be the points of interest for which we search. Graph

representations of our data are particularly suitable for this purpose, as they preserve relevant

topological information while simultaneously filtering out specific formatting details of each

sensor. Based on these ideas, we haved formed a change detection algorithm for co-registered

datasets - that is, datasets that share a common indexing. By comparing the matching

found by our graph algorithm to the inherent indexing, we are able to locate and highlight

the regions where the two datasets do not agree.

The exact algorithm is as follows: given datasets X1, X2 of size N , we create graphs

G1, G2 by choosing relevant weight functions for each datasets. We then apply our matching

algorithm to find a permutation

ρ : {1, 2, . . . , N} → {1, 2, . . . , N} (4.20)

We can then measure the degree of change at each graph node by comparing the inherent

indexing against the graph match permutation.

Change in X1 at node i = ‖X1(i)−X1(ρ(i))‖

Change in X2 at node i =
∥∥X2(ρ

−1(i))−X2(i)
∥∥ (4.21)

As a first example, we show in figure 4.10 a synthetic dataset consisting of two one-

dimensional timeseries. Following our discussion above, we create the two sets with enough

common structure to make graph matching a reasonable option, but with one significant

difference between the two sets. After performing a graph match, we calculate the quantity

of change at each node via (4.21) and display the results in fig 4.10b. As desired, the new

feature added to modality 2 is highlighted as a change.

We next apply the algorithm to a real-life dataset with a synthetic change, with the results

shown in figure 4.11. Here we use for the dataset X1 (fig 4.11a) an image of an indoor scene

of 261 × 378 pixels, and for the set X2 (fig 4.11d) we apply a continuous transformation

to each pixel, as well as add a significant artifact in the upper-left corner. This choice

of X2 mimics the discussion above, where the change in the majority of pixels represents

the perturbations caused from using a different sensor, and the red square represents some
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(a) Input data (b) Scaled norms

Figure 4.10: Change detection appplied to synthetic timeseries data. (a) The input data,

roughly equal for times t ∈ [0, 10], and showing increasing change over t ∈ [10, 20]. (b)

Differences as calculated in (4.21)

information detected by one sensor and not by the other. The intermediate steps of the

algorithm in figures 4.11b, 4.11e show how the matching algorithm permutes the pixels of

X1 to agree with the topology of X2, and vice versa. As expected there is very little change

between the original input data and its permuted version, except for the added square in

the corner. Therefore, in the final results in figures 4.11c, 4.11f, we see the square artifact

highlighted, and relatively little other change found.

For a real-world example of this algorithm, we apply our method to the 2010 Data Fusion

Contest data [LPG12], with results shown in figure 4.12. The dataset consists of SPOT

satellite images of Gloucester, UK, taken before and after a flood event in November 2000.

The SPOT satellite uses three channels to capture light from the spectral range 0.50µm to

0.89µm (green to near-infrared), which we display in false color in figures 4.12a (before flood),

and 4.12d (after flood). As can be seen from the figures, there is a significant topographical

change between the two datasets where the river overflowed and spilled onto the nearby land.

This is evident in the intermediate figures 4.12b, 4.12e, as the algorithm is forced to make

significant changes to permute the pixels of X1 to resemble X2, and vice versa. In our results

in figures 4.12c and 4.12f we see that our algorithm successfully highlights these areas.

61



(a) Image X1 (b) X1(ρ(i)) (c) ‖X1(i)−X1(ρ(i))‖

(d) Image X2 (e) X2(ρ−1(i)) (f)
∥∥X2(ρ−1(i))−X2(i)

∥∥
Figure 4.11

(a) Image X1 (before flood) (b) X1(ρ(i)) (c) ‖X1(i)−X1(ρ(i))‖

(d) Image X2 (after flood) (e) X2(ρ−1(i)) (f)
∥∥X2(ρ−1(i))−X2(i)

∥∥
Figure 4.12: Example change detection on DFC 2010 data
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4.4.2 Knowledge transfer via graph matching

For another potential application of our graph matching algorithm, we present here method

for knowledge transfer. Given two datasets with roughly similar topology, we are able to

transfer any known knowledge about one set to the other by performing a graph match.

Notate our two sets X1, X2, with pre-existing information on X1. Using our HMSM method

to create a matching function ρ2→1 : X2 → X1, we can transfer the information on X1 to X2

by letting

label(X2(i)) = label (X1(ρ2→1(i))) (4.22)

A first example of this method has already been shown in this paper in the Stanford

bunny experiment (section 4.3.3). In figures 4.7, 4.8 we begin with a pre-defined coloring

on one dataset, and transfer it to the other. As a second example, we apply our algorithm

in a remote sensing context, with results shown in figure 4.13. The input data consists of

68 bands of hyperspectral data taken of a desert area, split into several patches. We display

the RGB bands of two of these patches, which we will call X1, X2, in figures 4.13a, 4.13b.

Along with the hyperspectral data we are given a classification of image X1 into 6 classes,

shown in figure 4.13c. The results of the transfer is then shown in figure 4.13d.

4.5 Summary

In conclusion, we have proposed a method for inexact matching of large graphs that signifi-

cantly improves on the space and time complexity of existing methods, allowing us to work

with much larger graphs. By applying a hierarchical scheme to our matching algorithm, we

are able to ignore a large percent of unlikely matches. Furthermore, extensive experiments

show that the approximations made in the course of our method do not significantly affect

the accuracy of the match. Future plans include a more thorough investigation of the graph

subsampling step in 4.2.4, as well as attempts to improve the flexibility of the hierarchical

matching algorithm.
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(a) Image X1 (b) Image X2

(c) Ground Truth classification of X1 (d) Transfer to X2

Figure 4.13: Knowledge transfer on remote sensing data
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