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ABSTRACT OF THE DISSERTATION 

 

 

Synthesis of Silver Sulfide Nanowires and Design of Nanodevices towards Physical Intelligence 

and Carcinoma Cytology 

 

by 

 

Renato Aguilera 

Doctor of Philosophy in Chemistry 

University of California, Los Angeles, 2019 

Professor James K. Gimzewski, Chair 

 

Presented in this dissertation are designs and characterizations of nanodevices with 

applications in medical science, information technology, and material design. A broad 

perspective is taken to facilitate unconventional problem solving and creative thinking in pursuit 

of producing disruptive technology. At its core, the devices presented here rely on quantum 

mechanical effects and nanoscale dynamics including the piezoelectric effect, ballistic transport, 

redox state transitions, and quantum confinement, to name a few. The focus is less on chemical 

synthesis and more on physical models to manipulate material properties for practical use. In 

addition, high dimensional materials and complex systems are keenly investigated due to their 

rich dynamics and indeterminacy. Specifically, Ag2S atomic switches and conductive polymers 
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are used in information technology while facile medical devices are developed utilizing 

nanomaterials for their sensitive but well characterized dynamics. Here, nanotechnology is at 

forefront of research where the transition from the nanoscale to the mesoscale induces the 

creative solutions. 

Recent advances towards compute-in-memory technology using topological atomic 

switches allowed for the predictive modeling of traffic flow and fault predicting. The presence of 

intrinsic nonlinear dynamics in volatile atomic switches enabled for the construction of nonlinear 

circuits as envisioned for volatile thermodynamic computing. A hardware implemented cognitive 

computing device using an atomic switch network (ASN) as the processing and memory element 

is capable of accomplishing tasks such as chaotic time series prediction using < 1 milliWatts of 

energy per prediction. Tunable volatility in the active layer within a ~10 nm junction switch is 

paramount and a technique to adaptively control the dynamics through iterative voltammetric 

control loops is presented. 
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LIST OF FIGURES 

Figure 1.1 Network diagram and analogue interface. A circuit schematic is shown in a showing the platinum circuit (green) 

and readout PC interface (blue). The silver network was placed in the central region (boxed) and a closer inspection of the region 

wiring is shown in b. Pre-patterned posts were lithographically placed within the boxed region in c ready for network growth. 

The device was interfaced to a National Instruments PXI—e using a custom device housing. ...................................................... 11 

Figure 4.1 Dissipative power-law behavior indicative of self-organized criticality. The electrical current response of a 

physical and simulated ASN device (see Chapter 5) in a under constant external voltage bias was used to characterize network 

activity. Network switching/activity timescales showed a dissipative power-law response b indicative of a scale-free network.  22 

Figure 4.2. Normalized Lissajous. Each subplot in panel (a) is a Lissajous figure displaying one minute of the ASN's response 

to an 11 Hz sine wave vs. the input at 64 spatially distributed measurement points.  The signal was input at the electrode marked 

with the red box, and the device was grounded at the electrode marked with the black box in the upper left of panel (a).  Specific 

classes of relationships are featured in panels (b-d) and are color coded to match their location in the network in panel (a).   The 

relationships are: (a) initial non-linearity, (b) bipolar switching activity, and (c) unipolar switching activity.  All channels 

eventually converged and proportionally followed the input signal, resulting in the embedded elliptical shape in all.  ................. 24  

Figure 4.3 Raw Voltage traces recorded from ASN support the assertions put forth by the Lissajous plots, highlighting a variety 

of dynamic behaviors present in the network.  ................................................................................................................................ 26 

 

Figure 5.1. Atomic Switch Mechanism Atomic switches are comprised of a Ag|Ag2S|Ag junction. Applied electrical bias causes 

Ag cation migration to the cathode where it is reduced, forming a stable metallic filament, resulting in resistance change. This 

migration is modeled by the filament length w(t), Ag cation mobility μv, and additional stochastic terms. ................................... 31 

Figure 6.1. Simulation of device activation using a 10x10 network with N=126, average ���/����=10-2 and �=10 s-1 under a 

triangle wave input bias of ±2 V at 10 Hz demonstrating a) an initial soft switching (σα =10%) repeated indefinitely until b) a 

transition in behavior from soft (blue, σα =10%) to hard (red, σα =0%) switching. c) Hard switching persists indefinitely with 

σα=0%. This behavior was ubiquitous across all configurations with discrepancies in the bias amplitude/frequency. Experimental 

device activation curves shown as insets for comparison. .............................................................................................................. 35 

Figure 6.2 Effect of network connectivity density. Increasing the number of connections (N) results in decreased RON/ROFF ratios 

in networks with the hard switching response. The sparse connectivity of the network used in Figure 3(c) with respect to physical 
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ASN devices (inset of 3c) generates a comparatively high RON/ROFF ratio, producing the qualitative difference in appearance 

between the results of simulation and experiment. ......................................................................................................................... 36 

Figure 6.3 Network connectivity maps. Simulated internal connectivity at the point where of maximum current passing through 

a network (N=106) without long range connections to clearly reveal conductive pathways in the soft switching, transitional, and 

hard switching state. Warmer color (red) corresponds to higher conductivity/closer to maximum filament growth. In the soft 

switching state the network is made of switches with low conductances, whereas a single dominating pathway is responsible for 

the high current through the system in the transitional state. In the subsequent cycle, the network is in the hard switching regime 

where the dominant pathway seen in the transitional state has destroyed and distributed connections with increased conductance 

are observed.  .................................................................................................................................................................................. 37 

Figure 6.4 – Network connectivity maps.  Simulated internal connectivity of a network (N=106) without long-range 

connections to clearly reveal conductive pathways at multiple points along the activation timeline. Network conductance (blue 

line) over the entire activation sweeps is shown. The maximum conductance observed when the network is transitioning (A) and 

in the hard switching state (B) are the shown to be the same. However, simulation snapshots of the internal connectivity at each 

point show the network taking different routes through phase space in order to reach the highest conductance state. In addition, 

the conductance pathways are more distributed  in the hard switching state. ................................................................................. 38 

Figure 7.1 Spike-time dependent plasticity in a single atomic switch. Continued stimulation of the atomic switch caused 

formation of metallic filaments across the gap/active layer in a. The electrical response became increasingly dominated by 

tunneling mechanisms derived from single atom “contact”. A 300 mV spike 5 ms width voltage train at a period of 100 ms in b 

stimulated the atomic switch to form a single Ag filament. Single atom contact increased conductance to the ON state during 

stimulation while thermodynamic dissolution drove the system back to the OFF state.  In c, the pulse train period was shortened 

to 10 ms allowing multiple filament formations. Measured conductance monotonically increased before reaching a stable 

conductance state. Filament structure and stability modulated the electrical response and emerges as empirically determined as 

Short-Term Potentiation (STP) in b and Long-Term Potentiation (LTP) in c.  .............................................................................. 41 

Figure 7.2 Bi-Stable Switching Spatially overlapping channels A and B can be modified independently by write/rewrite pulses, 

emulating the 2-bit switching functionality of actual device behavior (inset). This simulated 10x10 network (N=219, average 

R��/R��� = 10-3, σα=2.5%) was partitioned with 4 separate 4x4 blocks to serve as electrodes. Spatially defined ON/OFF switching 

was induced by applying write/rewrite voltage pulses (15 V, 10 ms duration) across the channels specified in the figure. 

Measurements of conductance across all 6 possible channels were conducted with 1 V read pulses of negligible period. ............ 42 
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Figure 7.3 - Network connectivity maps.  Simulated internal network configurations (N = 219) at different ON/OFF 

configurations corresponding to results in section 3.3 and Figure 5 describing the formation of feedforward assemblies. In ON 

states of the network, conductances do not distribute uniformly. In fact, the simulation shows that several different configurations 

may correspond to the same ON/OFF channel configuration depending on the history of channel switching. For example, the 

internal configurations responsible for the ON of channel A (red in Figure 5) at the two time points when it is activated, 

before/after the activation/deactivation of channel B (blue), is shown. .......................................................................................... 44 

Figure 8.1 Resistance learning algorithm. Determination of network wide stability/activity under operating conditions was 

conducted using a target resistance learning algorithm. A schematic of the write and verify training scheme, and typical results 

for an individual training trial. a) Sub-threshold measurement pulses establish the parallel resistance of A, followed by b) a larger 

training/write pulse between A and B. c) The parallel resistance of A is recorded and compared to the target after each training 

pulse, when error is minimized the training ceases and the duration of the achieved target state is recorded as the dwell time. .... 47 

Figure 8.2 Dwell times vary widely, but depend on the target resistance. In a, networks are repeatedly trained to 200 kΩ and 

their dwell times are recorded. By repeating the training program many times on different networks, statistical distributions 

suggest that the probability P(D) of a dwell time lasting for duration D follows a power law relationship. Dwell times are 

generally 10 s or less, with occasional states lasting 100 s or more. As inn b, at low target resistances, the final configurations are 

stable, with over 50% of trials resulting in a final state lifetime of 100 s or more. As target resistance increases, the final states are 

proportionately less stable............................................................................................................................................................... 50 

Figure 8.3 Resistance learning algorithm convergence of models. A simulated ASN shows similar behavior in resistance 

training, and network-wide changes in resistance. A parallel resistance training program identical to the experimental one was 

used to successfully train parallel resistance. a) Target resistance was 1000 Ω, error target was 0.1, training pulses were 100 ms in 

250 mV increments, measurement pulses are not necessary in simulation. The effects of resistance training are presented in b), 

which shows the net resistance change in each link from start to finish. The simulation shows network-wide changes in resistance 

even though training pulses were applied exclusively from A to B. ................................................................................................ 52 

Figure 9.1. Higher harmonic generation can be influenced by network connectivity and input amplitude. Harmonic overtones of 

several simulated 10x10 networks with average R��/R��� = 10-2, σα=2.5%, and τ =10 s-1. a) The first 3 harmonic overtones of a 

network with N = 332 showed a threshold voltage for higher harmonic generation. Experimental device curves shown as an inset 

for comparison. b) Harmonic generation as a function of input bias amplitude for a network of intermediate connectivity (N =

229). b’, b’’, b’’’) The network I-V characteristics tend towards hard switching behavior and increased higher harmonic 

generation as a function of input bias amplitude. c) The sum of the first 3 harmonic overtones of several simulated of networks 
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with N = (126; 	229, 332) indicated a shift toward lower threshold voltages with increasing connectivity ascribed to an 

increasingly complex network. ....................................................................................................................................................... 55 

Figure 9.2. Schematic of network simulation used in the waveform generation RC task a), with specific electrodes chosen as 

inputs/outputs (16 output electrodes). RC was implemented using a 10x10 network (N=126, σα=2.5%) with a 5 V, 10 Hz 

sinusoidal input signal and tasked to produce 10 Hz triangle/square and 20 Hz sinusoidal waveforms. b) Mean-squared error 

(MSE) for each task with respect to driving amplitude showed minimal error in triangle/square waveform generation task at 10 V, 

corresponding to the onset of higher harmonic generation, see red curve in b). Performance in the 20 Hz sinusoidal waveform 

generation task decreased when c) the relative amplitude of the average 2nd harmonic intensities of the readouts becomes 

increasingly diminutive. These results correspond to a strong dependence on the 2nd harmonic for 20 Hz sine generation and the 

need for HHG in triangle/square generation as expected by Fourier analysis.  ............................................................................... 57 

 

Figure 9.3. Computation of a sinusoidal wave into various waveforms. The above figure shows several waveforms (sawtooth, 

square, triangle, and cosine) produced using the ASN as a computational device. Each plot contains the desired signal (red) and 

the computed signal (blue) with their accuracy w.r.t. the desired signal shown above the curves. All tasks share an 11 Hz 

frequency for their waveforms and share the same dataset with only differences in the target task. The dataset was approximately 

1 minute long, divided into 2 seconds epochs, and 1 second within each interval was allocated for training and testing. A 1 

second excerpt which best represents device behavior during testing are shown above. ................................................................ 61 

Figure 10.1 Error checking task. Presented is an illustration of the parity check used in data transmission for error checking 

process. The parity of the number of 1's within a 5 bit byte is evaluated with a sliding window 5 bits wide to generate multiple 

tasks. The initial input show an odd parity and evaluated as 0 for the desired target signal. As the 5 bit window moves across the 

signal, the parity changes and reflected in the target signal. The above task was encoded as a voltage pulse sequence into the ASN 

device where each bit was represented by V0 or V1 voltages in a time-separated series. Task complexity increased with increasing 

number of bits per bytes rather than number of bytes as the check was only executed once per byte. ........................................... 65 

Figure 10.2 Encoding optimization using ASN simulation platform. A simulation of the ASN device performing the parity 

check task was conducted to determine optimal operating parameters. Temporal memory quality was evaluated w.r.t. the size of 

the output layer, length of the learning sequence used a, b, and operating time c. Under-learning was observed in a at 0.25 s (blue) 

length data sets as chaotic performance were measured regardless of network size. Over-learning in b at 4.00 s (red) as continued 

increase in the data set length reduced reservoir performance. Subsequent phases of operation c each 1.00 s in duration 

determined optimal operating time. Omitting the transient phase (light blue), subsequent phases monotonically increased 

performance and peaked at 4.00 s (red) while further operation in phase 5 decreased performance.  ............................................ 67 
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Figure 10.3 Error checking of ASN platform. Schematic of RC using ASN devices: Three I/O electrodes are 

selected to form the stimulus/control loop for RC: Boolean input streams are delivered to an individual I/O electrode 

underlying the ASN network (red); a system ground (blue) enables real-time monitoring of current flowing through 

the network controlled by a feedback-driven bias voltage delivered to (green) a nearby location. The ASN was 

stimulated with a statistical survey of pulse widths (nΔt) and pulse heights (nΔV) ranging from 250 ms and 0.01 – 

7.00 V. Testing occurred immediately after resistance training with a fixed weight configuration. The datasets above 

achieved accuracies a,b between 65% and 78% from ~5,000 trials compared to ~50% from a purely stochastic 

reservoir. ......................................................................................................................................................................70 

Figure 11.1. T-maze Task. (top) Schematic of the T-maze task alongside a representative sequence of start, cue, and trigger 

signals delivered to the ASN device during implementation. (bottom) Graphical overlay electrode channel assignments and 

performance for 500 runs of the T-maze task, where over 93% of L/R decisions were correct.  .................................................... 73 

Figure 11.2 T-maze Simulated Results. Mean squared error of task performance decreases with increasing network size. Using 

the maximum number of nodes achievable, target waveforms were faithfully reproduced in response to a temporally shifted 

cue/trigger signal. ........................................................................................................................................................................... 74 

Figure 11.3 T-Maze Task Device Output. ASN device with graphical overlay of electrode channel assignments 

showing a representative sequence of  start, cue, and trigger signal comprising sigmoidal voltage pulses delivered to 

the network via electrodes (to left) used in implementation of the T-maze task (top left). Representative 

experimental input (top) target output (middle) and device output (bottom) signals. .................................................75 

Figure 13.1 Atomic Switch Network Fabrication. a) Atomic switch network devices were fabricated on a SiO2 substrate with 

16 Pt electrodes and an insulating SU-8 layer. Devices are approximately 4 cm2. b) Resultant Ag wires vary in size (<100 nm to 

>1 mm) and create self-assembled networks with complex interconnections (109 cm-2). Electrodes shown have 10 μm diameter 

and 50 μm pitch, and range up to 50 μm diameter with 500 μm pitch. c-d) The density of interconnections can be changed by 

altering the size/pitch of the Cu posts shown c) 1 μm/5 μm d) 1 μm/1 μm. Scale bars = 10 μm. ................................................... 80 

Figure 14.1 Schematic of Diffusion Limited Growth. An initially planar seed site (grey area) is presented in a) where a 

diffusion gradient initiates unidirectional growth, red arrows, towards areas of higher solute concentration, represented by black 

horizontal lines. Growth of the seed site extends site towards high solute concentration but are restricted in b) by the diffusion 

gradient due to localized fluctuations in concentration creating depletion regions. The distended seed site expands multi-

directionally according to the continuity equation. ......................................................................................................................... 84 
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Figure 14.2 Schematic of Depletion Regions due to Varying Chemical Capillary Lengths. High surface tension in a) 

produces a small capillary length and small depletion region between the solution (green) and substrate (blue). Increasing 

capillary lengths produces in b) a larger depletion region than in a) and c) depicts a hydrophilic substrate where the capillary 

length is largest. .............................................................................................................................................................................. 85 

Figure 14.3 Optical Micrographs of Dendrite Growth as a Function of Cu Seed Size. At 7 μm (a) wires predominate, with 

branched structures appearing as (b) seed size is increased to 9 μm. (c) Wires were not observed for deposits from 15 μm seeds. 
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Figure 15.1 Synthesis of Ag decorated polyaniline. An initial organic solution of aniline dimers (yellow) was treated with 

AgNO3 as an oxidizing agent. Disassociation of AgNO3 to its constituent ions Ag+ and NO3
- allowed Ag nanoparticles to form at 

the N-H bond (schematic). Polymerization of the aniline dimers into its emeraldine redox state prompted the encapsulation of Ag 

nanoparticles. The resulting nanocomposite is suspended in an aqueous (blue) solution which was extracted using microfiltration. 
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Figure 15.2 Scanning Electron Images of Synthesized PANI-Ag. Drop casted samples of PANI-Ag on Al substrates was imaged in 

a) to reveal high coverage of dispersed nanofibers. Nanofiber dimensions was measured from image b), with the diameter 

uniformly measuring ~20 nm and lengths up to 1 µm .................................................................................................................... 90 

Figure 16.1 SEM Images of Electrospray Deposited PANI-Ag. Deposition of PANI-Ag using an electrospray system resulted 

in a uniform film of the nanocomposite with a characteristic perforated topology. Magnification in b) show condensed bundles of 

nanofibers and subsequent dimension measurements yielded nanofibers diameters of ~20 nm and lengths ~120 nm. .................. 91 

Figure 16.2 Height and Current Topography of PANI-Ag from cAFM. Height measurements in contact AFM in a) are 

unable to resolve the nanofiber structure due to the highly attractive potential in polymer systems. Deconvolution of a) from the 

current density topography is shown in b) which outlines the nanofiber structure as perforated white structures. Dark ridges 

surrounding the nanofibers indicate formation of nanofiber bundles. ............................................................................................. 93 

Figure 16.3 Voltage Bias Sweeps in cAFM. The AFM probe was held at full contact at a single location on PANI-Ag film. An 

offset 2.0 V voltage was applied while incrementally  sweeping the voltage an addition +/- 300 mV. Cyclic sweeping slowly 

increased overall conductance before an abrupt increase at 2.26 V, indicative of the transition into the emeraldine state. ............ 94 

Figure 18.1 Experimental set-up for the smart-touch fine needle (STFN) a, Experimental set-up for the smart-touch fine 

needle (STFN) a, Optical image of the STFN device composed of a 25G fine needle, PLA polymer housing and connected to 

RG-58/U coaxial BNC cable. b, Design schematic of housing attaches the needle to piezoelectric tube transducer and piezo-
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response measured through 20 AWG twisted pair Cu wire. The twisted pair is frayed to connect to the BNC. c, An illustration 

shows the experimental connection diagram of STFN. d, Schematic diagram of a cross-section of porcine kidney samples 

showing fibrous capsule, cortex and medulla regions. e, An example of force versus needle displacement profile from STFN 

penetrating through the tubules of the kidney sample. Before the estimated point of contact (marked with a solid black arrow) 

between the needle and kidney tissue, the force observed was minimal. After the point of contact (solid black arrow), there is an 

elastic deformation due to fibrous capsule until an abrupt Hertzian penetration (broken black arrow) occurs. Subsequent 

deformation peaks occur (labeled L1 to 5) before full penetration at the point marked as exit (broken black arrow).  .............. 102 

 

Figure 18.2. Piezoelectric Coefficient Calibration. Calibration of the piezoelectric  element was performed using standardized 

weights loaded on a custom built apparatus to determine the d31 coefficient. A statistical number of measurements were taken and 

a least square linear regression algorithm was used to determine the d31 coefficient (4.1 x 10-7
 C / N) for the device.  ............. 103 

Figure 18.3. Porcine Kidney Dissection and Analysis. A post-measurement dissection of the porcine kidney sample was 

conducted to elucidate the mechanical profile of the porcine kidney.  Measured areas are marked with blue ink (i) and conducted 

in ascending order. Dissection normal to the penetration (ii) reveals a hard renal structure (iii) near the incident of penetration and 
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Figure 19.1 Experimental workflow during the typical STFN measurements and distribution of tissue stiffness 

heterogeneity observed for thyroid carcinoma and the healthy thyroid. a-b, Following a standard operating procedure, 

samples were first prepared by attachment and orientation into quadrants, using biocompatible sample holders with calibrated 

grids as illustrated schematically. c, An inked patient sample measured using STFN. Samples were later processed for standard 
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Figure 19.2 Method for determining the presence and location of the nodules in ex vivo human thyroid samples- based on 

needle biomechanical response. a i, Shows the characteristic STFN response for the initial point of contact between the needle 
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Chapter 1 

Overview 

A few simple lines on a chalkboard can incite a room into a reverent silence, stop all 

movement, and its elegance can become part of history as it sheds light on gnostic mysteries 

using the scientific method. This was the scene in my classroom when we retraced the famous 

footsteps of Richard Feynman’s elementary proof of Kepler’s 1st law.  Scientific philosophy is 

the crux of the modern world, owing the Information Technology Era and much of the Green 

Revolution to its discoveries. From the fabrication of silicon wafers and transistors to energy 

efficient diodes, chemical sciences produced extraordinary devices for the new age. The prospect 

of being an engineer of this new age was why I pursued the doctorate of philosophy at the 

University of California at Los Angeles (UCLA). While pursuing my degree, I decided to 

specialize in the Chemistry of Nanotechnology as it is able to work in all levels, from nuclear to 

macroscopic. No other concept thrills me more than applying various techniques of physics to 

create new materials.  

My graduate career has been a platform for converging of multiple fields which offered 

advance solutions to societal challenges such as poverty, education, and public wellness. The 

convergence of my past and future fields of study advanced interdisciplinary solutions to grand 

challenges. The propagation of nanotechnology in the form of electronic devices has allowed 

networks of people to communicate and react to an ever more dynamic world. The result is a 

unilateral globalization with problems being resolved using cross-discipline tools. Examples of 

this within the last decade are the rise in use of biomedical imaging techniques for diagnostics, 
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Google's biologically inspired neural network algorithm for data mining, and intellectual 

property driving industry as well as environmental policies persuading voters. This evolution to 

interdisciplinary solutions is novel and susceptible to mistakes due to miscommunication and 

misuse of resources. For broad societal solutions utilizing the convergence of technology, 

healthcare, and industry there must be: 

1) Standardization of knowledge using collaborative projects between researchers to 

facilitate effective communication 

2) Open access to institutional resources and facilities to facilitate efficient and in-depth 

research 

3) Educational outreach programs to promote the dissemination of collaborative ideas 

and philosphies. 

From my personal experiences, I have always found society valuing my mixed nature. 

My Latin and Filipino heritage has often led me to combine Eastern and Western philosophies 

leading to mixed ideals. Valued and praised for being a convolution of philosophies, my 

leadership and decisions has allowed me to desegregate my environments by unilateral inclusion 

of all eccentrics; though, I have been labeled “different.” Despite identity ambiguity, it is often 

the case that a consensus is reached by incorporating mixtures of opinions and goals. Although I 

have been successful in breaking boundaries, a common difficulty in resolving challenges has 

been the inability to act cooperatively and unclear communication. The culmination of these 

lessons leads me to conclude that combining varying views, disciplines, and philosophies will 

produce unilateral solutions capable of combating poverty. I have attempted to support these 

goals through hybrid research projects, outreach programs, and collaborative research. I have 

actively pursued an interdisciplinary career in my graduate program. 
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1.1  Research Project Overview 

1.1.1 Biomimetic Neuromorphic Computing. The bulk of my work endeavored to physically 

realize brain-like devices utilizing nanotechnology and neuroscience. Nanoscale size limitations 

and quantum mechanical phenomena enabled the design of fullerenes, low-dimensional 

materials, and quantum dots, to name a few, for disruptive technological innovations for the past 

few decades. Utilizing similar phenomena, the designed “atomic switch” derived from 

crosslinked nanowires introduced an alternative design architecture for Beyond-Moore 

computing [1-2]. An atomic switch is a 2-terminal metal-insulator-metal device where the 

insulating region is < 10 nm undergoes transmission tunneling under a voltage bias [3]. 

Observations of a transition from α-monoclinic to β-argentite phase abruptly increases the 

tunneling current to an “ON” state. In addition, thermodynamically driven redox reactions 

modulate the tunneling current due to changes in the surface energy and morphic topology. The 

simplicity of our processing method enables us to utilize these devices as a Turing B-type 

unorganized machine for machine learning. This dissertation shows the holistic design, 

characterization, and implementation of a massively parallel neuromorphic network based on 

metal chalcogenide atomic switch systems. Our imagined end for neuromorphic hardware go beyond 

machine learning and encompasses a goal alluded to by Drs. Martin Trefzer and Julian Miller, which is in 

the scope of artificial life[4]. We should emphasize that we do not aim for artificial life and that our end 

goal is not machine learning, but neuromorphic hardware and neuromorphic computing which can be 

described as somewhere between artificial life and reservoir computing/machine learning. Here, we use 

reservoir computing, a machine learning technique, as a tool to understand our system.  

1.1.2 Bioinformatic Medical Devices. Close collaboration with the UCLA Ronald Reagan Medical 

Center prompted development of smart biopsy needles utilizing the piezoelectric effect and 
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probe microscopy techniques. Increasing usage of atomic force microscopy for cytological 

diagnosis and work by Dr. Paul Hansma [5-6] inspired us to apply nanotechnology techniques 

towards cell type carcinoma diagnosis, specifically human thyroids. The biomechanical 

properties of tumors are indicators for cancer growth, invasion, and metastasis. While palpable 

thyroid lesions are common and mostly benign, differentiating malignant nodules can be 

challenging. We introduce the use of a piezoelectric system called Smart-touch fine needle (or 

STFN) mounted directly onto conventional biopsy needles, to evaluate abnormal tissues, through 

quantitative real-time measurements of variations in tissue stiffness as the needle penetrates 

tissue. Using well-characterized biomaterials of known stiffness and explanted animal tissue 

models, we first established experimental protocols for STFN measures on biological tissues, as 

well as optimized device design for high signal-to-noise ratio. Freshly excised patient thyroids 

with varying fibrotic and malignant potential revealed discrete variations in STFN based tissue 

stiffness/stiffness heterogeneity and correlated well with final histopathology. Our piezoelectric 

needle sensor reveals mechanical heterogeneity in thyroid tissue lesions and provides a 

foundation for the design of hand-held tools for the rapid, mechano-profiling of malignant 

lesions in vivo while performing fine needle aspiration (FNA).  

1.2  Bibliography 

[1] ITRS, "International Technology Roadmap for Semiconductors," 2015. 

[2] M. M. Waldrop, "The chips are down for Moore's law," Nature, vol. 530, pp. 144–147, 2016. 
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[4] M. T. T. Kuyucu, J. F. Miller, A. Tyrrell, "On the properties of artificial development and its use 

in evolvable hardware," presented at the IEEE Symposium onArtificial Life, ALIFE, Nashville, 
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Chapter 2 

Neuromorphic Atomic Switch Networks 

2.1  Background 

 Fundamental work by Carver Mead and colleagues [1] in the development of the concept 

of neuromorphic technology enabled a disruptive paradigm shift in computing technologies. 

Unlike other conceptions of machine learning, neuromorphic computing attempted to completely 

emulate neuron functionality within a physically realizable computing hardware. In doing so, the 

power-efficiency and complexity of neurons can be harnessed without bottlenecking data as in 

CMOS technology [2]. Additionally, neuron clusters in the brain can recognize patterns and are 

capable of performing unconventional computing similar to Alan Turing’s B-machine [3]. The 

evolutionary optimization of the brain in both structure and functionality provides an exciting 

new zeitgeist in a fast stalling technology [4].  

 Current works using learning dedicated computer hardware provide possible throttling 

pass the information bottleneck [5-6]. Additionally, developments of beyond-CMOS devices 

such as magnetic tunneling junctions [7], photoelectronic [8], and memristors [9-11] explored 

computing architectures outside of typical transistor-based models. In 2000, the International 

Center for Materials Nanoarchitectonics (MANA) commenced investigation of viable 

neuromorphic materials utilizing nanowire mechanisms and constraints for material design. 

Specifically, Professor Masakazu Aono developed the atomic switch as a nano-equivalent neuron 

operating under quantum mechanical limits at GHz speeds [12-13]. Aono’s work on atomic 

switches developed the underlying principles for integration and development of nanowires for 

neuromorphic computing elucidating nanowire plasticity and memory capabilities. Single 
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transistor-like atomic switches were introduced into memory storage devices by Nippon Electric 

Company [14] using non-dynamic Cu-TiO2/TaSiO atomic switches for 32 nm CMOS 

technology. However, the plasticity present in neurological functions are inherently non-static 

and dynamic [15-16]. Further development of scalable neuromorphic atomic switch devices 

required a holistic nanoarchitectonic design incorporating dynamic and nonlinear network 

behaviors.  

 An emerging mathematical model developed by Leon Chua sought to integrate CMOS 

technology with nonlinear and chaotic systems [17-18]. In 1971, Chua theorized that, in addition 

to the 3 fundamental elements in the lumped element circuit model, there was a 4th element he 

called the memristor. Complementing the relations provided by the resistor, capacitor, and 

inductor, the memristor was able to relate the magnetic flux with electric charge. In order for 

circuit theory to utilize this 4th element, the model required adaptation of a purely nonlinear 

circuit theory more akin to Turing’s B-machine. Particularly, the model emphasized harnessing 

emerging behaviors due to coupled circuits similar to the ideals of neuromorphic computing. 

Here, we present the fabrication of a physical random neural network via growth of memristive 

atomic switch networks, harnessing phenomenological fractal growth to directly imitate neural 

evolution for neuromorphic computing. 

 Unlike conventional neuromorphic platforms which require meticulous design, atomic 

switch networks (ASN) produced by interconnected nanowires introduce a unique methodology 

of controlled evolution. Meticulous design of a system required a complete model of 

understanding such as the CMOS computer architecture modeled by the universal Turing 

machine. However, it was more practical to develop a scheme of top-down adaptation than by 

bottom-up selective modification towards the desired function due to hardware limitations. A 
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combined effort of theoretical predictions and experimental verification is presented here to 

design a methodology that was physically practical in implementing a computation referred to as 

reservoir computing. A physically realizable recurrent network comprised of gapless-type atomic 

switches with Ag2S as the active material previously demonstrated device tenability as 

functionally compatible neurons [19-21].  

 An analysis of atomic switch networks at the interface of theory and experiment was 

accomplished by implementing theoretical paradigms of computation from the perspective of 

experimental feasibility. Considerations of physical practicality and CMOS compatibility were 

given priority over an ideal model with microscopic details. Reservoir computing was 

implemented on the proposed device to accomplish a series of error checking parity tasks and 

activation control to assess its computational capability. We proposed to answer the following 

questions: 

1. What is the relationship between the dynamical properties of a complex system 

and its computational capability as a reservoir? 

2. How do these dynamical properties emerge in macroscopic tools available to an 

experimentalist? 

2.2  The Atomic Switch 

 Atomic switches were a class of devices that enabled the use of quantum tunneling for 

signal transduction. The first experiment to measure the transition from an electron quantum 

tunneling to single point contact regime was reported in 1987 using a scanning tunneling 

microscope (STM) in ultra-high-vacuum (UHV) on a silver surface  (Möller, 1987). Current-

distance characteristics showed an abrupt increase in conductance, G ~ 
��

��
 ≈ 

�

��
 kΩ, at sufficiently 
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small tip-surface gaps, establishing the quantized unit of conductance. Subsequent theoretical 

analysis verified that at small gap distance the effective tunnel barrier collapses prior to point 

contact via ballistic electron injection   (Lang, 1986).  Later work demonstrated further jumps of 

G ~ �
���

�
	, where � = 1,2,3… , in the conductance occur as the contact area is increased. Such 

observations were not limited to STM experiments; even two macroscopic wires brought in 

contact also displayed this effect, albeit in a less controlled manner. Houten et al. provide an 

excellent review of quantized conduction, which also introduces Landauer’s concept of 

transmission � =	
���

�
∑ ��� , where the term t is the transmission [22]. 

 In 2002, experiments by Terabe et al. found that Ag atoms could be transported through a 

STM tip made of silver coated with silver sulfide and deposited on a surface in a controlled 

manner [23]. The characteristics of this process also occurred via quantized conduction, however 

the mechanism involved ion migration under the influence of an electric field, a process called 

‘electroionics,’ meaning that in addition to electron motion, ion motion also occurs 

simultaneously. Normally, ionic diffusion processes on the macro-scale are considered to be 

slow, but when they are induced on the nanometer scale, they are actually quite fast and can 

occur on a (sub-) nanosecond scale depending on the geometry and dimensions of the junction. 

In 2005, using junctions fabricated using conventional microelectronics, Terabe et al. 

demonstrated atomic switching in silver sulfide junctions with discrete and reversible quantized 

jumps from n = 1 to 10. This was the birth of the “atomic switch”. Since that date, quantized 

conduction has been observed by a number of researchers in a wide range of materials including 

sulfide junctions of copper, tungsten sub-oxides as well as various metal-doped polymers.  
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Aside from the fundamental science of their quantization, the interesting electronic 

features of atomic switches were hysteresis, on/off conduction ratio, switching speed and 

volatility characteristics as well as CMOS compatibility because of their potential in digital 

electronic memory applications. Indeed, NEC recently have incorporated atomic switch 

technology into field programmable gate arrays (FPGAs) [14, 24] where a reduction in device 

footprint, speed and energy consumption was achieved by replacing certain memory tasks, 

normally using transistors, into the circuitry.  

Additional atomic switch functionality was reported in 2011 when studying switching 

near-threshold conditions [25-26]. It was found that atomic switches have an on-off 

memorization property of past switching events. For instance if switching is performed 

infrequently, the switches remain in the on-state only briefly whereas if frequent switching 

events are made in rapid succession then the on-state persists for a longer time. A series of 

careful experiments were able to relate these physical observations to a psychological model of 

learning called the Akinson-Schriffin multi-store model [27]. The essence of the model involves 

sensory memory (SM), short-term memory (STM) and long-term memory (LTM). New 

information arrives to the brain as sensory memory and that information was passed to short-

term memory. In the absence of similar information it was forgotten. However, if the process 

was repeated many times, the information was moved into long-term memory. In terms of bio-

inspiration, the operational characteristics of the atomic switch under threshold switching were 

also related to characteristics of biological synapses. The atomic switch therefore has also been 

called a synthetic synapse where memory was represented by conduction state.  

The next step in creating a 'brain inspired" device was the fabrication of networks of 

synthetic synapses (Atomic Switches). Taking the neocortex as a biologically  inspiration, self-
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assembly was used to  incorporate atomic switches into a dense dendritic tangle of silver 

nanowires resulting in a density of ~108 connections/cm2 [28]. In response to electrical inputs, 

which inject energy into the network, these networks exhibited self-organization and critical 

power-law dynamics and spatio-temporal nonlinear outputs at multiple electrodes.  

2.3  Neuromorphic Atomic Switch Networks 

The clear desire for neuromorphic architectures has led to further investigations and 

developments of different synthetic synapse models. Establishing specific connections between 

patterns of electrical activity and brain function was a difficult task that requires studying general 

features of neuronal structure in order to determine the essential properties required to construct 

a device capable of learning in a physical sense. These features are believed to include at least 

synaptic plasticity, allowing physical reconfiguration of the network to enable functional 

differentiation, and the development of hierarchical structures which all possess correlated 

memory distributed throughout the dynamically coupled synapses. Therefore, learning and 

computational capacity in the brain are connected to dynamic activity and functional 

connectivity. Specifically, a near-critical or “edge of chaos” operational [29] regime has been 

associated with the fast, correlated response to stimulation necessary for computation and 

learning. Developing computational machinery whose operation results from intrinsic critical 

dynamics was a complex task; with Atomic Switch Network (ASN) devices demonstrated such 

functionality.   
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Figure 1.1 Network diagram and analogue interface. A circuit schematic is shown in a showing the platinum circuit (green) 
and readout PC interface (blue). The silver network was placed in the central region (boxed) and a closer inspection of the region 
wiring is shown in b. Pre-patterned posts were lithographically placed within the boxed region in c ready for network growth. 
The device was interfaced to a National Instruments PXI—e using a custom device housing. 

 Utilizing the theoretical concepts presented in the previous section, we designed a 

neuromorphic device (Figure 1.1) by incorporating atomic switches in a highly recursive 

interconnected network. The work of Aono [23, 25-26] established the fundamental principles 

and design of atomic switches. Observation of plasticity and information retention in atomic 

switches enabled us to successfully implement them in neuromorphic hardware for reservoir 

computing [20-21]. A number of materials were available and various functionalities may be 

tuned depending on the active material. Here, metal-chalcogenides were chosen due to their 

ready integration into CMOS technology and capability for spontaneous fractal growth. 
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Chapter 3 

Theoretical Constraints and Consideration of Neuromorphic 

Computing 

The concept of neuromorphic hardware as conceived by Carver Mead [1] intended to 

emulate the problem-solving capability of biology, which has been evolutionary optimized by 

nature. Observations of DNA folding and editing [2] demonstrated the capabilities of 

evolutionary algorithms to enable DNA to execute complex protein interaction and regulation. 

Natural selection has inherently optimized these systems in their task-specific function, thereby 

minimizing energy, maximizing information transfer, and encoding fault-tolerant and adaptive 

behaviors [3]. Neuromorphic hardware attempted to adapt this architectural design within the 

context of circuit theory and analysis. A premier model for computational design was the human-

brain, where complex computation such as speech, multisensory control, and chaotic predictions 

were commonly executed while operating under relatively simple rules.  

3.1  Mathematical Formalism of Neural Networks 
 

 Fundamentally, the brain utilized synaptically interconnected neurons to transfer and 

process information. Each neuron operated under the Hebbian fire-diffuse-fire principal [4-5] 

which activated neurons with a sigmoidal function profile similar to transistors with voltage 

replacing ions in the latter case. Unlike contemporary digital transistors, each neuron was heavily 

coupled to other elements behaving effectively as a history-dependent nonlinear device. Circuit 

network theory has analogous examples of coupled inductive circuits communicating across 

devices, but such circuits were typically designed to eliminate coupled cross-talk and the overall 
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circuit was linearized in its functionality. However, simplification of these interactions invariably 

destroys emergent behaviors observed in complex systems [6-7], which was capable of 

accomplishing complex computation. Nonlinear circuit design and analytical models by Chua [8-

9] attempted to utilize these complex interactions but have limited integration within information 

technology. Instead, machine learning algorithms were implemented in software which mimics 

the design and learning rules of biological systems. Here, a combination of machine learning 

architecture and nonlinear circuit design is briefly presented and discussion was restricted within 

a feed forward network for brevity; however, a formal and comprehensive discussion has been 

previously published [10-11].  

 The neural network machine learning paradigm traditionally attempted to achieve 

learning by modification of network topology and connectivity via adjustments to neuronal 

coupling strength. The general architecture of a neural network was designed similar to the 

human brain - a collection of nodes or neurons interconnected with synapses to other neurons in 

a hierarchal layered structure [12-17]. Neuronal nodes were typically designed to integrate 

incoming signals and transform them using a sigmoidal transfer function. The integration was the 

weighted sum of all signals received by the neuron from a predetermined set of input neurons 

from the previous layer:  

��(�) = 	��	��
� (�)�� ��� (�)�,         (3.1) 

where ��(�) was a vector with elements of the transduced signal of each neuron in layer 0, ��	� 

was a matrix representing the transformation of the driving signal, �� (�) the driving signal, and 

�� was a vector whose elements are the transfer functions of each neuron . The neuron activated 
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according to its designed transfer function, then propagated the signal to its pre-designated 

output neurons in the next layer, i.e. layer 1: 

��(�) = ����
�(�) ≡ �� ���� �� (�)�.             (3.2) 

Here, ����
� was the coupling strength between neuron � in layer 1 and all other neurons. This process 

was repeated from neuron to neuron in a hierarchal structure composed of layers or networks of 

neurons until it arrives at an output neuron layer, represented by ��(�), where the user observes 

and process the final signal ��(�):   

��(�) = 	∏ ��	��
� (�)∀

� ≡ ��	�� (�)	        (3.3) 

��(�) = 	��� 	 �
�(�).	          (3.4) 

The operator ��	represented the overall transformation by the network, and ���  was the design 

matrix in the output layer whose rows were the number of observable parameters and columns 

were the coupling strength to the sensors. While the above assumed a feed forward architecture, 

equations (3.3) and onwards may be generalized for any network if one allows �� to represent any 

network transformation. Learning was achieved by designing the network connections in such a 

way that the output signal was transformed into a desired target signal. Each desired 

computational process corresponded to a desired signal, ��������
���� , for a given input signal, �� (�), 

and network transformation, ��(�).  The synaptic strength of individual connections were 

adjusted in incremental corrective steps according to a learning rule using a training data set until 

the network’s effective function was the desired mathematical operation. Various learning 

techniques exist and depend on network type, connectivity structure, neuronal transfer function, 
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I/O implementation, task complexity, and computational constraints [18-21]. Here, we focused 

on the linear-regression learning rule as it was the typical and simplest learning rule:  

����� 	= ���
�
(�)�

†

	��
�
(�)��

1

��
�
(�)�

†

��������
��������

(�).        (3.5) 

The process was done recursively by using a number of controlled training data sets to determine 

error propagation and correction. Defining a metric for error was nontrivial and clever designs 

and calculations of error existed that can drastically determine learning performance. However, 

we focused on the most commonly used and simplest definition of signal error which was the 

normalized mean squared error (NMSE) and adopted accuracy as a more intuitive measure of 

performance. 

�����≡ 	
��	���������

���� �	��(�)	�
�
�

��(��������
���� �����������

���� �	)��	
   ; ��������≡ 1 �����   (3.6) 

 A network’s computational capability was nearly defined by its network size, size of ��, 

while simultaneously increasing the complexity in learning. Unfortunately, implementing such a 

model using traditional photolithography manufacturing inevitably approached the Abbe 

diffraction limit [22], which was incapable of physically addressing elements on similar scale as 

current software implemented neural networks. Reservoir computing [11, 15] was a 

distinguished computational model for scalable neuromorphic hardware as it does not require 

comprehensive control of the network, omitting the �� in (3.5). Learning algorithms only required 

training on the output layer of neurons, ��� , while the inner “reservoir” neurons, ��, are 

unattended and replaced ��(�) with ��(�) in (3.5) [10-11, 15]. Here, we utilized the reservoir 

computing paradigm as the functional model for computation in our ASN experiments.  
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3.2  Nonlinear Circuits  

Regardless of the network construction or stimulation, a neural network was not capable 

of performing complex calculations if individual neurons behaved linearly [23]. A brief proof of 

the desire for nonlinearity was by contra positive and to logically investigate the behavior of a 

network with purely linear elements. We constrained discussion using the above mathematical 

formalism where systems were represented only by neurons, and any post-processing or 

contributions from instrumentation were represented as an appropriate neuron layer. Let 

individual neurons be defined by the gain of an op-amp circuit to simulate linearity, which 

simply rescales the amplitude of the input signal as in equation (3.7). Suppose the neurons were 

fully connected to every other neuron by a fully populated network, maximizing the rank of the 

transformation matrix ��. Inevitably, a linear combination and convolution of such neurons only 

resulted in a linearly behaving network, regardless of network connectivity: 

���	��(�) = 	��	�� (�) = 	��	�� (�),          (3.7) 

��(�) = 	��� 	 �
�(�) = ��� 	 ��	�

� (�) = 	������� 	�� (�),      (3.8) 

where the transformation in equation (3.7) was replaced by a linear function, while the final 

signal in equation (3.8) was a linear combination of the driving signal with ������� =

	∑ 	��� 	��
�
� .		The above demonstrated linear neurons' limited computational capability and be 

completely defined by the input signal from equation (3.8), while the design matrix �������  

merely scales the input. To enable the network to implement complex computation, a neuronal 

behavior with nonlinear characteristics and robust mathematical formalism was adopted. Chua’s 

nonlinear circuit analysis [24] introduced the concept of memristive systems as a neuron-like 

two-terminal element with characteristic nonlinear and memory qualities. The memristor 
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nonlinearly related the integrated voltage (magnetic flux, � ) with charge and acts similar to a 

charge dependent resistor: 

�� = �	��			��			�(�) =
��

��

��

��
� = � �⁄ .        (3.9) 

The relation was strictly nonlinear and solved differentially, which required holistic circuit 

analysis when the element was incorporated within a network [25]. A memory attribute was 

readily illustrated in the memristor’s dependency on charge accumulation, which was desirable 

to any learning system. Discovery of physical memristor devices [26] and complex circuit 

oscillations depicting chaotic trajectories [27-28] has enabled the construction of nonlinear 

circuits capable of harnessing emergent chaotic behaviors. Observations of neurons physically 

adapted to environmental changes through a recurrent feedback mechanism [23] paralleled the 

oscillatory behavior found in Chua circuits. Likewise, incorporation of a continuous feedback 

enabled adaptive and responsive computing [29]. 
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Chapter 4 

Characterization of Nonlinearity 

4.1  Power-Law Dynamics 

The above mathematical construct illustrated the importance and central role of the 

network connectivity and functional topology described by the transformation �� within the 

machine learning platform (Chapter 3). As described by Maass [1-2], neuroscience concluded 

that a small-world network maximized information transfer while minimizing energy usage. This 

phenomenon was observed throughout the natural world - occurring in cases such as complex 

geological formations, flock behavior, and disease proliferation - and continues to be a central 

topic within chaos and network theory. Heuristic evidence concluded that network design 

ascribed with such features enable optimal performance. A defining characteristic of a small-

world topology was the length distribution of interacting elements to behave as a power-law, i.e. 

the strength of ����
� scales as ���  where d is the interneuron distance:  

������
��������

���∝ ��� 								��						�����(����
�)������(����

�)��∝ ��� 	,    (4.1) 

where the second relation utilized Pontryagin duality, �	 → �× 	� with c as the speed of light, 

and  the Fourier transform of the first. A network adhering to these constraints was capable of 

sustained persistent activity even due to small perturbations [3-5] and was in a 'critical' state 

which allowed for maximal information transfer. 
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Figure 4.1 Dissipative power-law behavior indicative of self-organized criticality. The electrical current response of a 
physical and simulated ASN device (see Chapter 5) in a under constant external voltage bias was used to characterize network 
activity. Network switching/activity timescales showed a dissipative power-law response b indicative of a scale-free network. 

We examined the device for emergent nonlinear properties considered fundamental to 

brain function, which were not observed for individual atomic switches operating in simpler 

geometries - namely recurrent dynamics and the activation of feed forward sub networks. The 

presence of small-world dynamics within the ASN devices were demonstrated by applying a 

constant DC bias (Figure 4.1a) across a particular region of the network. This produced 

persistent, bidirectional fluctuations—both increases and decreases—in network conductivity. In 

the absence of complex structures within the network, conductivity would increase 

monotonically under constant DC bias, as in the case of a single atomic switch. Previously 

reported [6] current fluctuations of this kind are ascribed to recurrent loops in the network that 

create complex couplings between switches, resulting in network dynamics that chaotically 

converge to a semi-steady state even under constant bias. A single switch turning ON did not 

simply lead to an increased potential drop across the next junction in a serial chain, but 

entropically redistributed voltage across many recurrent connections that can ultimately perturb 

the system into a new equilibrium as a net change in network conductivity. These fluctuations 
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were not attributable to uncorrelated flicker noise, as shown by comparing the Fourier 

transformed current responses in Figure 4.1b of the devices to constant voltage before and after 

sulfurization. The formation of atomic switch junctions expanded the degree of correlation in 

current fluctuations, producing small-world 1/f-like behavior across the entire sampled range. 

This behavior was distinct from that of control devices which flattens to white noise and some 

high energy, high frequency fluctuations attributed to arcing between neighboring wires.  

4.2   Lissajous plots 

Lissajous plots are powerful tools to understand the input-output behavior of systems 

excited with periodic signals. A Lissajous plot allows quick identification of relative harmonic 

motion between inputs and outputs such as: phase delays, frequency changes, and other 

nonlinearities. The detailed mathematics of Lissajous plots are described elsewhere[7], but the 

implementation of this analytical technique is straightforward: the output signal is plotted versus 

the periodic input signal. If the resulting plot shows a diagonal line, the signals are proportional. 

An elliptical plot indicates a phase delay between the two signals; the particular case of the circle 

indicates that the signals are in quadrature (a phase delay of pi rads.). Any deformation from 

these shapes indicate that the frequency spectrum of the output does not match the one of the 

input. The strength of the deformation indicates the amplitude of these extra frequencies. For 

sufficiently strong frequencies, that are not present in the input, the curves will intersect 

themselves [8]. 



28 
 

 
Figure 4.2. Normalized Lissajous. Each subplot in panel (a) is a Lissajous figure displaying one minute of the ASN's response 
to an 11 Hz sine wave vs. the input at 64 spatially distributed measurement points.  The signal was input at the electrode marked 
with the red box, and the device was grounded at the electrode marked with the black box in the upper left of panel (a).  Specific 
classes of relationships are featured in panels (b-d) and are color coded to match their location in the network in panel (a).   The 
relationships are: (a) initial non-linearity, (b) bipolar switching activity, and (c) unipolar switching activity.  All channels 
eventually converged and proportionally followed the input signal, resulting in the embedded elliptical shape in all.  

 

The responses of the ASN in Figure 4.2 show non-elliptical Lissajous plots due to the 

inherent non-linear transformations. Each individual plot shows the input voltage plotted on the 

x-axis of all plots versus the corresponding channel output on each y-axis. The plots in Figure 

4.2a are spatially mapped with respect to the physical electrode locations on the device. Here. a 

bipolar 11 Hz sine wave was input at the electrode marked with the red box (Figure 4.2a, upper 

left corner), and the device was grounded at the electrode marked with the black box (Figure 

4.2a, above input, upper left corner).  As expected, the input signal channel displays a direct 

linear relationship.  The ground electrode displays no significant relationship with respect to the 

reference signal and only shows white noise behavior. The data presented spans approximately 

one minute of recorded voltages. The color of the line on each plot corresponds to the relative 

amplitude with respect to the input amplitude (see colorbar, Figure 4.2a).  

Several channels show an ellipsoidal shape (Figure 4.2, panel b-d) indicating that their 

phase is shifted respect to the input phase. These curves are not a perfect ellipses; the 
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deformations are due to the non-linear processing of the ASN discussed in the previous section. 

Slight distortions in the elliptical shape are a consequence of steady dynamical changes to the 

signal's harmonic motion, but the predominant elliptical shape indicates that the system 

eventually settles into a proportional response at a mean signal value ~0 V. Other channels 

present a bowtie plot (Figure 4.2, panel c) that indicates that this channel is undergoing a 

symmetric resistance change in response to the formation and annihilation of atomic switches 

across the network, with a 2.2 x 10-3 V mean amplitude.  Interestingly, yet another set of 

channels present a lopsided bowtie plot (Figure 4.2, panel d) suggesting that the network in the 

neighborhood of those electrodes has a polarity-dependent response, and is undergoing 

rectification. The mean of this channel is the highest of the three at 0.132 V. Careful examination 

of Figure 4.2, panels c and d yields an embedded elliptical shape, which suggests that there were 

two classes of network behavior recorded at that location: non-linearity and proportionality.  

Examination of the raw voltage traces supports this assumption (Figure 4.3): an initial non-linear 

response due to large magnitude switching events eventually converged to a proportional 

response.  
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Figure 4.3 Raw Voltage traces recorded from ASN support the assertions put forth by the Lissajous plots, highlighting a variety 
of dynamic behaviors present in the network.  

 
The variety of behaviors displayed in the Lissajous plots indicate that the ASN is a good 

approximation of a dynamical system  [9].  The localized regions of varying activities and 

behaviors are reminiscent of "edge of chaos" dynamics represented in well-known dynamical 

systems like the brain [4].  The "edge" happens at the transition between random/disordered and 

ordered states. It is suggested that operating in this dynamical regime leads to maximum 

information processing and therefore computational capacity [1].  
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Chapter 5 

Simulation of Atomic Switch Network 

 A complementary study on the effects of global stimulation was done in simulation to 

form a microscopic understanding of the device dynamics. The simulated network was 

comprised of interconnected atomic switches using a modified state equation [1-2]. A current 

controlled memristor model was adopted undergoing ionic drift dynamics at the Ag|Ag2S|Ag 

interface based on previously published works [3-5]. The state variable, � (�), represented the 

doped region produced by migration of Ag+ mobile ions from pure Ag into the Ag2S layer. 

Reduction of Ag+ at the cathode precipitated Ag nanowire formation with its physical 

dimensions determining its impedance and characteristic memristive behavior. The atomic 

switch was observed to have at least two operational regimes characterized by a low and high 

resistance state, ON/OFF respectively. Simple linear super positioning of the two states captured 

memristive behavior eloquently and a state variable � (�) was defined:  

�(�) = ����
� (�)

� �
+ ���� �1

� (�)

� �
���(�).        (5.1) 

Above is the classical Ohm’s law equation with � (�), the characteristic filament length, 

capturing filament formation, and determined using the ionic drift model: 

�� (�)

��
= �μ�

���

� �
�(�)�Ω(� ).          (5.2) 

 A physical restraint was imposed on � (�) to account for finite dimensions through the use of a 

window function Ω: 

Ω(� ) = 	
� (� ��� )

� �
�           (5.3) 
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Modifications were made to the above model to account for nanowires forming Ag|Ag2S|Ag 

interfaces. The formulation for voltage induced α/β phase transition of the Ag2S from monoclinic 

acanthite to the more conductive body centered cubic argentite was introduced as well as 

formation/dissolution of conductive filaments [6]. Applied voltage triggers the α/β phase 

transition creating a more conductive Ag|β-Ag2S|Ag junction and, more importantly, allowed for 

Ag cation migration within the Ag2S in the direction of the electric field. Reduction of Ag 

cations into Ag0 occurs at the cathode thereby creating substructures within the β-Ag2S to 

ultimately form conductive filaments. The removal of the applied voltage no longer induced Ag 

cation migration and the system was allowed to return to its thermodynamically favored 

equilibrium state. A stochastic term and dissolution term incorporated this thermodynamic 

behavior to the system. The term further modeled any variability among the nanowires and the 

structural stability of the Ag filament. Stratonovich integrals were employed to solve for the 

stochastic differential equations. The network was numerically solved as an ordinary differential 

equation using standard Kirchhoff's current laws with each node-node connection considered as 

a single atomic switch. The rate of change in filament length was modeled according to: 

�� (�)

��
= �μ�

���

� �
�(�)�Ω �(� (�) ��) + �(�)       (5.4) 

where μν signifies the ionic mobility [7-8]. The window function, given by:  

Ω=�
� (�)�� ��� (�)�

� �
� �                                                                                             (5.5) 

was included in (5.2) to incorporate the behavior of elements with state variables at the extreme 

limits due to ionic drift [8-9]. The term �μ�
���		

� �
I(t)�Ω  provided the dependence of filament 

growth rate on the electronic flux, while τ(w (t) w �) operated as a dissolution term that served 



34 
 

to return the filament length to its original value	� � due to the thermodynamic stability of the 

high resistance state. Although the dissolution rate constant (τ) has not been extensively 

investigated in the network setting, a numerical survey over three orders of magnitude 

(1	to	1000	s��)	determined the value that best reproduced the prior experimental results for the 

size of the simulated network. Lastly, a stochastic term η(t) accounted for fluctuations in the 

density of available silver ions and the stochastic nature of the filament formation/dissolution 

process in physical ASNs. This term,	defined by: 

 η(t) = α(t)Δw (t)                                (5.6) 

governed the growth rate of filament sizes, where	Δw (t)	represented the change in filament 

length at time t reflecting the amount of electric flux through the switch junction. Here, the 

random variable α(t) introduced a noise factor to the term η(t) that was distributed across the 

network following a random distribution centered at zero with a standard deviation σα. The 

probability distributions for both w �	and	α were examined using simulated network sizes 

ranging from 3x3 to 10x10 arrays with varying degrees of connectivity densities.  

Finally, the connectivity in the simulation was modeled after the known interconnectivity 

of ASNs [10]. Physical networks are grown from copper seeds spatially distributed on the 

substrate, which serve as nucleation sites for the electroless deposition of silver metal under 

diffusion-limited conditions.  This directed self-assembly process generates networks with a 

large distribution of wire lengths, characterized by SEM in the range of 100 nm to over 1 mm. 

The network contains elements of a nearest neighbor network, since the wires are likely to 

connect to those grown from nearby copper seeds (Figure 1.1c-d). They also exhibit 

characteristics of a random network as long wires extend across the entire network, connecting 

distant nodes, and also connecting many nodes at once (Figure 1.1b).  
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Connectivity in the simulation was created by starting with a square lattice of nodes 

mimicking the copper posts in the hardware design. Links connecting nearest neighbors as well 

as distant nodes were then assigned randomly with the total number of connections ranging from 

N=50 to 400. The simulation results reported here represent the typical network response 

observed with connections reassigned for each run.  

 
Finally, the values of the physical parameters such as ionic mobility, RON/ROFF ratio, and average 

gap size were chosen according to experimental literature values as schematically illustrated in 

Figure 5.1 [11-13], leaving the only the network size and wiring density as free parameters. 

Table 5.1 summarizes the range of the values of the parameters explored to produce the results in 

this report. 

 

� �	(�� ) μ���
�������� ���/���� ������ α N 

Ave: 5 

 σ� �
: 0 - 40% 

0.5 × 10��� Ave:	10��	to	10�� 

σon/off : 0 - 40% 

1	to	10� Ave: 0 

 σα: 0 - 30% of	Δw (t) 

50	to	400 

Table 5.1. Parameters used in the simulation were tested over ranges that are physically relevant to the Atomic Switch 
Network system: total gap width (w0); ionic mobility (μv) of Ag+ in Ag2S; ratio of resistances (Ron/Roff) at w = 0 and w = w0; 
filament dissolution rate constant (τ); modulation (α) level of noise in the w(t) term with each time step; and total number of 
connections (N). 

 

 
Figure 5.1. Atomic Switch Mechanism Atomic switches are comprised of a Ag|Ag2S|Ag junction. Applied electrical 
bias causes Ag cation migration to the cathode where it is reduced, forming a stable metallic filament, resulting in 
resistance change. This migration is modeled by the filament length w(t), Ag cation mobility μv, and additional 
stochastic terms. 
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Network simulations were executed in MATLAB through a graphical user interface 

(GUI) that provides control over these parameters in addition to the locations and numbers of 

sources/drains, structure of input waveforms, and magnitude of input signals. The GUI also 

provides direct monitoring of simulated I-V statistics as well as the current, power dissipation 

and conductivity of each link within the simulated network (Figure 5.2). 

 

 

 

 

Figure 5.2 Schematic layout of the MATLAB graphical user interface (GUI) used for ASN simulations. The user interface 
provides control parameters including: network connectivity (N), distribution of w0,  RON/ROFF ratio, locations and numbers of 
sources/drains, as well as the input waveforms and strength of input signals. From the panels at the top right corner one can 
monitor the simulated I-V statistics, current, power dissipation and conductivity of each link. 
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Chapter 6 

Device activation 

Robust, hysteretic switching in ASN devices requires device activation by a symmetric 

triangle wave ramp applied across the network. As net flux through the network increased, 

connections became increasingly polarized and conductive, resulting different behavioral 

regimes (insets of Figure 6.1a-c). A lack of completed metal filaments characterizes the initial 

state in Figure 6.1a (inset) as the ‘soft switching’ regime. Continued sweeping causes the 

formation of a continuously conductive path across the network, with intermediate connections 

operating in a higher conductance state. This transition is observed as a dramatic change in 

conductance, shown in the inset of Figure 6.1b, where network response changes from soft to 

‘hard switching’ as the fraction of strongly memristive elements increases past the percolation 

threshold [1]. Continuous sweeping of the applied bias is known to encourage thickening and 

stabilization of as-formed nanofilaments [2-4], producing behavior that is robust to fluctuations 

in silver ion deposition/dissolution (Figure 6.1c inset). As a result, there is an increased 

likelihood for an element in the network to operate in the strongly memristive regime. 
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To reproduce this activation process, the simulation included the effects of filament 

stability on network response by tuning the distribution of noise factor α(t) while holding input 

bias amplitude and frequency constant. A high noise level (σα >7%) was found to inhibit stable 

transitions, or w(t) from crossing the interfacial barrier in the window function, which enforced 

the soft switching state (Figure 6.1a). Lowering σα enables w(t) to increase past the barrier 

without interruption, inducing the transition from soft to hard switching at the network level 

(Figure 6.1 b-c). Consequently, the noise level serves as a control parameter for the number of 

strongly memristive elements and the soft/hard switching behavior, supporting the conjecture on 

the mechanism behind the different switching behaviors.  

Selecting the appropriate strength of the stochastic term enabled the ASN simulation to 

agree qualitatively with the experimental memristive behavior. While simulation and experiment 

show a quantitative difference in the hard switching regime (Figure 6.1c and inset), specifically 

in the rate of change between the high and low resistance states, stronger agreement with respect 

to Ron/Roff ratio (Figure 6.2) and the rate of resistance state change (Figure 6.1c) was observed in 

a more densely connected simulated network.  

Figure 6.1. Simulation of device activation using a 10x10 network with N=126, average ���/����=10-2 and �=10 s-1 under a 

triangle wave input bias of ±2 V at 10 Hz demonstrating a) an initial soft switching (σα =10%) repeated indefinitely until b) a 
transition in behavior from soft (blue, σα =10%) to hard (red, σα =0%) switching. c) Hard switching persists indefinitely with 
σα=0%. This behavior was ubiquitous across all configurations with discrepancies in the bias amplitude/frequency. 
Experimental device activation curves shown as insets for comparison. 
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Figure 6.2 Effect of network connectivity density. Increasing the number of connections (N) results in decreased RON/ROFF ratios 
in networks with the hard switching response. The sparse connectivity of the network used in Figure 3(c) with respect to physical 

ASN devices (inset of 3c) generates a comparatively high RON/ROFF ratio, producing the qualitative difference in appearance 
between the results of simulation and experiment. 

 

To elucidate the underlying dynamics of the activation process, internal conductance maps of a 

sparse network reveal the conductive pathways responsible for maximum current flow when 

operating in the soft switching, transitional, and hard switching states (Figure 6.3). A single, 

dominant pathway emerged at the transitional state and was destroyed in the subsequent input 

bias sweeps that drove the network into the hard switching state.  
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Figure 6.3 Network connectivity maps. Simulated internal connectivity at the point where of maximum current passing through 
a network (N=106) without long range connections to clearly reveal conductive pathways in the soft switching, transitional, and 
hard switching state. Warmer color (red) corresponds to higher conductivity/closer to maximum filament growth. In the soft 
switching state the network is made of switches with low conductances, whereas a single dominating pathway is responsible for 

the high current through the system in the transitional state. In the subsequent cycle, the network is in the hard switching regime 
where the dominant pathway seen in the transitional state has destroyed and distributed connections with increased conductance 
are observed.  

 

Further examination of functional connectivity over the entire activation process (Figure 

6.4) enabled identification of equivalent regions of network conductance for the transitional and 

hard switching states.  
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Figure 6.4 Network connectivity maps.  Simulated internal connectivity of a network (N=106) without long-range connections 
to clearly reveal conductive pathways at multiple points along the activation timeline. Network conductance (blue line) over the 
entire activation sweeps is shown. The maximum conductance observed when the network is transitioning (A) and in the hard 
switching state (B) are the shown to be the same. However, simulation snapshots of the internal connectivity at each point show 
the network taking different routes through phase space in order to reach the highest conductance state. In addition, the 
conductance pathways are more distributed  in the hard switching state. 

In particular, the network followed different trajectories to achieve values of maximum 

conductance, whereby network conductance was increasingly distributed in nature for the hard 

switching case. In the results described below, both w �	and	α(t) were sampled from Gaussian 

distributions. Parameters of the distribution of w � were selected to reproduce the experimental I-

V curves by matching the bias voltage used in the simulation to our experiment.   
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Chapter 7 

Atomic Switch Plasticity 

In conjunction with optimizing the reservoir’s transformation capability in ��, reservoir 

learning inherently required a memory quality and plasticity for selective information storing [1]. 

A powerful feature of atomic switches and memristive-like devices was the observation of a 

brain-like physical phenomena known as Long-Term Potentiation (LTP) and Short-Term 

Potentiation (STP). Both function and memory has been ascribed to STP and LTP dynamics in 

neurological studies [2-3]. Neuron signal transduction through potentiation spikes showed timing 

dependencies which directly encoded information within the spike’s line shape. Simultaneously, 

brain functionality and behaviors developed as neuron ensembles cooperatively spiked to adopt 

specific emergent behaviors. 
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Figure 7.1 Spike-time dependent plasticity in a single atomic switch. Continued stimulation of the atomic switch caused 
formation of metallic filaments across the gap/active layer in a. The electrical response became increasingly dominated by 
tunneling mechanisms derived from single atom “contact”. A 300 mV spike 5 ms width voltage train at a period of 100 ms in b 
stimulated the atomic switch to form a single Ag filament. Single atom contact increased conductance to the ON state during 
stimulation while thermodynamic dissolution drove the system back to the OFF state.  In c, the pulse train period was shortened 
to 10 ms allowing multiple filament formations. Measured conductance monotonically increased before reaching a stable 
conductance state. Filament structure and stability modulated the electrical response and emerges as empirically determined as 
Short-Term Potentiation (STP) in b and Long-Term Potentiation (LTP) in c.  

These neurological phenomena was observed [4-5] within the active Ag2S region in the 

atomic switch as aggregations of Ag+ cations. Observation of a large impedance change in the 

atomic switch under an external voltage was attributed to a crystal transition of the active 

material Ag2S [6]. This transition gave rise to a weakly memristive behavior prior to the 

formation of Ag filaments across the interface. In the absence of continued applied bias, the 

conductive filaments eventually returned to their stoichiometric, thermodynamically favored 

equilibrium state, reverting the atomic switch to its initial high OFF resistance (Figure 7.1a). 

Continued application of bias voltage resulted in a concurrent increase in electric current through 

the device, which then further drove migration of silver cations toward the cathode. At the 
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cathode mobile silver cations were subsequently reduced to Ag0, forming a highly conductive Ag 

nanofilamentary wire. The completion of this filament resulted in a strong transition to an ON 

state (Figure 7.1a) with a dramatic increase in conductivity (Figure 7.1b). Removal of the applied 

bias resulted in filament dissolution as the device again returns its thermodynamic equilibrium 

state (Figure 7.1b). The completion and dissolution of this filament characterized strongly 

memristive behavior. Continuous application of a bias voltage served to increase filament 

thickness as additional silver cations was reduced, causing thickening of the metallic filament 

(Figure 7.1c). This dynamic process has been shown to alter the dissolution time constant, and 

can be externally controlled by changing the input bias pattern (e.g. pulse frequency). Such 

changes in volatility can be interpreted as short-term or long-term potentiation (STP and LTP).  

7.1  Feedforward Subassemblies  

 

Network plasticity was investigated as a mechanism for the formation of feedforward 

pathways within ASNs, as though they have an inherently recurrent architecture. Previous 

 

Figure 7.2 Bi-Stable Switching Spatially overlapping channels A and B can be modified independently by 
write/rewrite pulses, emulating the 2-bit switching functionality of actual device behavior (inset). This simulated 10x10 

network (N=219, average R��/R��� = 10-3, σα=2.5%) was partitioned with 4 separate 4x4 blocks to serve as electrodes. 

Spatially defined ON/OFF switching was induced by applying write/rewrite voltage pulses (15 V, 10 ms duration) 
across the channels specified in the figure. Measurements of conductance across all 6 possible channels were conducted 
with 1 V read pulses of negligible period. 
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studies on physical ASNs have demonstrated their functionality as a two-bit memory storage 

device with spatially controlled, independent switching channels using pulsed electrical 

stimulation [7].  This experimental result, which used macroscopic electrodes in contact with a 

large area of the network to apply bias voltage stimulation, was also successfully simulated as 

illustrated in Figure 7.2. To comply with the experimental setup, a 10x10 network simulation 

was partitioned such that in each corner, a 4x4 block of nodes served the same purpose as a 

physical device electrode. A channel was defined by selection of one block as the source and 

another as the drain for application of an input bias voltage, with 4 blocks allowing for 6 possible 

channels. As shown in Figure 7.2, suprathreshold training pulses applied across 2 channels 

altered their respective conductances independently, even though the pathways were physically 

overlapping. By monitoring simulated connectivity maps of the other 4 conductance channels 

during this process, dynamical reconfigurations of the network connectivity were observed 

(Figure 7.3). 
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Figure 7.3 - Network connectivity maps.  Simulated internal network configurations (N = 219) at different ON/OFF 
configurations corresponding to results in section 3.3 and Figure 5 describing the formation of feedforward assemblies. In ON 
states of the network, conductances do not distribute uniformly. In fact, the simulation shows that several different configurations 
may correspond to the same ON/OFF channel configuration depending on the history of channel switching. For example, the 
internal configurations responsible for the ON of channel A (red in Figure 5) at the two time points when it is activated, 
before/after the activation/deactivation of channel B (blue), is shown. 

 Thus, nonvolatile memory write/rewrite steps occur concurrently with nontrivial changes 

elsewhere in the network. Different write/rewrite pulse combinations can store information while 

simultaneously allowing the network to evolve through new configurations. Investigations of 

structures and stability of feedforward subassemblies may be conducted by carrying out random 

or targeted deletion of links belonging to a given channel in relation to the strength and duration 

of the external pulses that induced its formation. Scaling the network size increases the number 

of distinguishable network states, allowing for increased memory storage and diversity of 

nonlinear interactions. 
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Chapter 8 

Resistance Training 

 The network’s ability to physically encode information within the filament led us to 

develop a resistance training algorithm to control the network’s memory capabilities. The 

dependency of filament formation on voltage history and charge accumulation illustrated 

memristive behavior within the atomic switch. Circuits utilizing memristive behavior tend to 

have complex trajectories with nondeterministic solutions and classified as Chua circuits [1]. 

Initial conditions and stochastic fluctuations helped determine the circuit’s trajectories and 

operational regime, thereby having statistical control on its operation. The circuit parameters of 

impedance, inductance, and capacitance were used to determine the trajectories of Chua circuits, 

but other driven systems have included filters, op-amps, and other sources for noise. Though the 

atomic switches’ equivalent parameters evolved with operation, impedance change dominated 

most of the activity while periphery parameters were treated using thermodynamic 

approximations [2]. A resistance training algorithm was constructed to tune the network 

operational regime, while using resistance stability as a thermodynamic approximation of the 

periphery parameters in simulated models, see Chapter 5.   
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Figure 8.1 Resistance learning algorithm. Determination of network wide stability/activity under operating conditions was 
conducted using a target resistance learning algorithm. A schematic of the write and verify training scheme, and typical results 
for an individual training trial. a) Sub-threshold measurement pulses establish the parallel resistance of A, followed by b) a larger 
training/write pulse between A and B. c) The parallel resistance of A is recorded and compared to the target after each training 
pulse, when error is minimized the training ceases and the duration of the achieved target state is recorded as the dwell time. 

The resistance training experiments were performed using a precision source measure unit 

(National Instruments 4132) and a high-speed switch matrix (National Instruments 2532) within 

a PXIe unit (National Instruments 8108), enabling rapid resistance measurements between any 

combinations of 16 chosen electrodes. Resistance training was implemented through repetition of 

a two-step process as shown in Figure 8.1. In the first step, an electrode A was selected randomly 

and the resistance between this reference and every other electrode was measured using a small 

(200 mV, 10 ms) bipolar pulse in order to minimize influence on network resistances, as shown 

in Figure 13a. The individual resistances of electrode A with each of the other 15 electrodes, RAj, 

defined the network state by calculating the total resistance between electrode A and the rest of 

the network, as though the paths from electrode A to every other electrode were resistors in 

parallel: 
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 This quantity is hereafter referred to as the ‘parallel resistance'. In the second step, a second 

electrode B was selected randomly, and a large unipolar training pulse (100 ms, >±200 mV) was 

applied to influence the parallel resistance of electrode A, as shown in Figure 8.1b. Using the 

same electrode I/O scheme, the measure/training cycle was repeated until the parallel resistance 

of A reached the target resistance. For all trials the target resistance was predetermined, 

irrespective of the initial network resistance.  

 In order to achieve training, an error function and rule set was devised. This system was 

designed to create sensible and consistent voltage adjustments even when both target resistance 

and parallel resistance error could vary by several orders of magnitude. The error function and 

rule set also correctly accounted for events in which the parallel resistance overshot the target. 

Convergence of the parallel resistance to the target resistance was evaluated using an error 

function: 

�(�) =
�

�
�
�(�)

��

��

�(�)
�.             (8.2) 

Where Rg was the target resistance, and R(i) was the parallel resistance. The error E(i) was 

calculated after each pulse/measure cycle, and adjustments to the training pulse bias were made 

by evaluating the relative change in error �(�) =
�(�)

�(���)
 from one cycle to the next using 

equations (8.3) and (8.4), which are described below.  

 Equation (13) concerned changes in the absolute magnitude of C(i) to evaluate changes in 

the absolute magnitude of the training pulse, V(i). If the previous training pulse resulted in a 
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large decrease in error, |C(i)| would be less than 1. If significantly less than 1, as determined by 

an empirically determined threshold, Cm=0.6, then the training pulse V(i) was considered 

productive and no changes were made. If the previous pulse produced a significant increase in 

error, |C(i)| would be greater than 1. If |C(i)| was greater than  
�

��
 , the pulse was considered 

counterproductive and the training pulse magnitude was reset to a minimum value, Vmin. If |C(i)| 

was between Cm and 
�

��
  (i.e. approximately equal to 1) then the error had not significantly 

changed as a result of the previous pulse, indicating little influence on the parallel resistance. The 

pulse magnitude was then increased by Vinc.  

�(� + 1) = 	

�(�),			if	|�(�)| < ��

����, if	|�(�)| >
�

��

�(�) + ����,			if	�� < |�(�)| <
�

��

       (8.3) 

Next, equation (14) was used to determine the need for changes to the polarity of the training 

pulse. If R(i) and R(i-1) were both greater or both less than Rg then there was no overshoot and 

no need to reverse the bias, which is reflected by positive value for C(i). However if R(i) 

changed enough with respect to R(i-1) that it overshot Rg, C(i)  would be negative. In this case 

the training pulse voltage V(i) was reversed in sign, and its magnitude was automatically reset to 

the minimum pulse bias Vmin. 

���(�(� + 1) = 	 �
�����(�)�,					��	�(�) > 0

�����(�)�, ��	�(�) < 0
�       (8.4) 

 A single pulse/measurement cycle lasted 1.5 s, and the time required to reach the target 

resistance state was defined as the ‘convergence time’. Upon reaching the target resistance, 

training pulses ceased and network resistances were measured every 0.5 s until the parallel 
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resistance decayed away from the target and the error exceeded 0.5 (roughly equivalent to 50% 

error). This duration was defined as the ‘dwell time.’ The entire convergence/dwell time 

sequence constituted a single resistance training trial, an example of which is presented in Figure 

8.1c. When a trial completed, new electrodes would be randomly selected and the training 

process was repeated after a 30 s delay. 

 

Figure 8.2 Dwell times vary widely, but depend on the target resistance. In a, networks are repeatedly trained to 200 kΩ and 
their dwell times are recorded. By repeating the training program many times on different networks, statistical distributions 
suggest that the probability P(D) of a dwell time lasting for duration D follows a power law relationship. Dwell times are 
generally 10 s or less, with occasional states lasting 100 s or more. As inn b, at low target resistances, the final configurations are 
stable, with over 50% of trials resulting in a final state lifetime of 100 s or more. As target resistance increases, the final states are 
proportionately less stable 

 Individual resistance states were the result of conductive silver filaments which bridge 

the Ag|Ag2S|Ag gaps, and each filament was vulnerable to thermodynamically driven 

dissolution. Not surprisingly, a deterministic model of interacting thermodynamic variables was 

not available, and stability of target resistance was hard to predict. Figure 8.2a shows the 

distribution of dwell times for networks at the target resistance (Rg=200 kΩ). The distribution 

suggests a power-law dependency, with dwell times of less than 10 s being most common and 

occasionally lasting 10 times longer. This distribution was found to depend heavily on the target 

resistance value, as shown in Figure 8.2b. When Rg=200 kΩ, <10 s dwell times accounted for 
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72% of trials, but at 2 kΩ, dwell times of 100 s occur in more than 50% of trials. This is the 

expected result given the underlying operational mechanism of individual atomic switches. 

Lower resistances were achieved when an individual switch has a thicker conductive filament 

across the insulating layer, making them more resistant to thermodynamically driven dissolution. 

In the ASN, lower network resistances are more likely to have an abundance of parallel 

filamentary pathways, making the target state more resilient against changes from an individual 

filament. These factors of solved state stability outweigh any effects from repeatedly training the 

network. 

8.1  Simulation Resistance Training 

A numerical simulation was constructed based on experimentally determined parameters 

to model and verify resistance training. Emulating the construction of the device, voltage 

nodes/electrodes were arranged in a square grid and subsequent node-node connections were 

introduced to represent nanowires (Figure 8.3b). Connections were categorized either as short-

range, within a lattice constant, or long-range and randomly assigned to produce characteristics 

of nearest neighbor or random network topologies [2]. The initial strength of each atomic switch 

was randomly sampled following a power-law distribution in equation (4.1) [3] with � = 1.38.  

Resistance training was successfully conducted using the simulated ASN device. 

Network connectivity was created by randomly distributing 250 connections with 10% of the 

links within constrained to a length of a lattice constant within a 5x5 grid. The grid size was 

increased as previously published SEM images showed connections outside the 4x4 area [4-6]. 

Training pulses were administered between two nodes using the scheme described in equations 

(8.1-8.4). Resistance training in the simulated network proceeded as observed in the device 

(Figure 8.1), and could involve a direct approach to the target, or through a series of overshoots. 
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The simulation allowed a complete analysis of every change in resistance in each link, and 

Figure 8.3b showed the net change that occurred in each link during the training process. The 

changes were widespread rather than localized along a single conductive pathway, which 

supports the hypothesis that network training was achieved by global interactions.  

 

Figure 8.3 Resistance learning algorithm convergence of models. A simulated ASN shows similar behavior in resistance 
training, and network-wide changes in resistance. A parallel resistance training program identical to the experimental one was 
used to successfully train parallel resistance. a) Target resistance was 1000 Ω, error target was 0.1, training pulses were 100 ms in 
250 mV increments, measurement pulses are not necessary in simulation. The effects of resistance training are presented in b), 
which shows the net resistance change in each link from start to finish. The simulation shows network-wide changes in resistance 
even though training pulses were applied exclusively from A to B. 
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Chapter 9 

Harmonic Generation Task 

 Resistive switches have recently attracted attention for higher harmonic generation 

(HHG), presented in both single switches and networks [1-2]. Experimental atomic switch 

networks show HHG to be a function of applied input bias amplitude [3]. Here, numerical 

simulation was employed to explore HHG by stimulating a network with a sinusoidal input 

(10Hz) while varying the input amplitude and network connection density (connectivity). For 

each simulated network of a given connectivity, the HHG analysis was performed on data 

collected over 10 cycles of the input signal. The network was then reset to the same initial state 

for the next level of input amplitude. A sharp rise in the ratio of higher harmonic amplitudes to 

the fundamental at a threshold voltage was found in both experiment and simulation (Figure 

9.1a).   
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The network I-V response curves at increasing levels of input bias amplitude (Figure 

9.1b’- b’’’) illustrate the onset of nonlinearity as characterized by HHG in Figure 9.1a-c. As the 

voltage increased past the threshold magnitude, the switching behavior moved progressively 

toward the hard switching regime. The threshold voltage decreased with increased density of 

connections as shown in Figure 9.1c. An increase in connectivity provides more recurrent 

substructures in the network and can be related to the nonlinearity in the integration of electrical 

responses within the system. The decrease in the magnitude of the threshold voltage can be 

Figure 9.1. Higher harmonic generation can be influenced by network connectivity and input amplitude. Harmonic 

overtones of several simulated 10x10 networks with average R��/R��� = 10-2, σα=2.5%, and τ =10 s-1. a) The first 3 

harmonic overtones of a network with N = 332 showed a threshold voltage for higher harmonic generation. Experimental 

device curves shown as an inset for comparison. b) Harmonic generation as a function of input bias amplitude for a 

network of intermediate connectivity (N = 229). b’, b’’, b’’’) The network I-V characteristics tend towards hard 
switching behavior and increased higher harmonic generation as a function of input bias amplitude. c) The sum of the first 

3 harmonic overtones of several simulated of networks with N = (126; 	229, 332) indicated a shift toward lower threshold 
voltages with increasing connectivity ascribed to an increasingly complex network. 
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attributed to an enhanced nonlinearity in the network dynamics where even at lower bias voltage 

levels, the system tends to reside outside of a linear regime. These changes in the behavior of 

HHG suggest a way toward quantitative characterization of functional connectivity within ASNs 

based on their dynamics. As illustrated in Figure 1 and described in Chapter 14, fabrication 

conditions for ASNs allow substantial control over the size, morphology and density of 

interconnects. Simulations may therefore be used to optimize physical networks for specific 

applications.    

9.2  Reservoir computing  

 Higher harmonic generation is potentially of great usefulness in a modern computational 

paradigm utilizing recurrent complex networks, called reservoir computing (RC). The amplitude 

and frequency characteristics of produced higher harmonics may be used to quantitatively 

evaluate the efficiency of a reservoir in different dynamical regimes by accounting for the 

accessible degrees of freedom in higher dimensional representation space. Using voltage time 

traces as outputs, it is shown here that the ASN can effectively serve as a nonlinear reservoir 

capable of performing the waveform generation task (Figure 9.2) considered as a prerequisite to 

perform reservoir computing [5]. 
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 Maximizing the number of output signals is advantageous in the context of RC training. 

Each network node was therefore chosen to serve as an output electrode. By subjecting the 

network to a sinusoidal input at one corner electrode in the form of an input bias voltage, 

multiple waveforms including triangle, square and frequency doubling sinusoidal waveforms 

were constructed through superposition of voltage outputs at each electrode in the simulation. 

The generated waveform r�	(q = 1,2,3) was then a weighted sum of the voltage outputs from 

the electrodes with the weights W�
� 	calculated by linear regression.  

																						r� = ∑ W�
��

��� V�	,						q = 1,2,3																																																																							(9.1) 

where V�		are the output electrode voltages. Reservoir performance was assessed by the quality of 

waveform generation and compared across networks with different parameters by calculating the 

 
Figure 9.2. Schematic of network simulation used in the waveform generation RC task a), with specific electrodes 
chosen as inputs/outputs (16 output electrodes). RC was implemented using a 10x10 network (N=126, σα=2.5%) with a 5 
V, 10 Hz sinusoidal input signal and tasked to produce 10 Hz triangle/square and 20 Hz sinusoidal waveforms. b) Mean-

squared error (MSE) for each task with respect to driving amplitude showed minimal error in triangle/square waveform 
generation task at 10 V, corresponding to the onset of higher harmonic generation, see red curve in b). Performance in the 
20 Hz sinusoidal waveform generation task decreased when c) the relative amplitude of the average 2nd harmonic 
intensities of the readouts becomes increasingly diminutive. These results correspond to a strong dependence on the 2nd 

harmonic for 20 Hz sine generation and the need for HHG in triangle/square generation as expected by Fourier analysis.  
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mean square error (MSE), which quantifies the differences between the target and the generated 

waveforms:  

MSE =
∑ ��������(��)�∑ ����(��)

�
��� �

��
���

�
                         (9.2) 

where y������is the target waveform. W�	represent the weight coefficients to be trained with 

maximum number of outputs	(m = 16) at discrete time indices (tn) over a total length (P) 

from	n = 1	to 9000. To see whether the diverse dynamical regimes of ASN may affect the 

efficiency of RC training, the input gain was varied to access the different characteristics 

generated of the higher harmonics. The weights were calculated independently using the output 

responses from the network at each input voltage amplitude. As the magnitude of the applied 

input voltage was increased, an abrupt onset of HHG (Figure 9.2 b) was observed to influence 

the associated error for the waveform generation tasks. Specifically, the ratio of the second to 

higher harmonics (calculated with unweighted average of network outputs) dropped rapidly with 

increasing voltage (≈8V) as seen in Figure 9.2 c. This bias-dependent reduction in second 

harmonic amplitude was found to correlate directly with the critical voltage where MSE 

increased dramatically in the task of generating a sine wave exhibiting frequency doubling of the 

input signal. As the 2nd harmonic becomes less pronounced compared to the higher harmonics it 

becomes more difficult to isolate in a linear combination of the output signals through linear 

regression. In contrast, an increased ratio of higher harmonics to the second harmonics resulted 

in better performance for the generation of waveforms containing higher harmonic components 

such as square and triangular waveform. While HHG is not a universal parameter designed to 

indicate increased computational performances, it does faithfully explain computational 

performances on specific RC tasks. 
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 The results clearly demonstrate that an ASN can be used as a pattern-generating kernel in 

RC where it can be optimized by adjusting input gain and network connectivity.  Training ASNs 

to carry out more complex tasks requiring multiple, simultaneous inputs/outputs as well as real-

time feedback are currently under investigation [6].   

9.3   ASN Device Waveform Regression 

Simulations of ASNs have indicated that the system has the fundamental capacity to 

perform waveform regression [7]. From simulation results, performance depended on the level of 

higher harmonics produced and the harmonic distortion (Figure 9.2) required for the specific 

task. For example, the cosine task only requires a shift in its periodicity and, therefore, does not 

require extensive higher harmonic generation. Conversely, the square wave task requires 

infinitely distributed harmonics to produce a straight line through wave interference. Further, 

voltage dependent simulations showed increasing device activation controlled these harmonic 

generation. Here, the device was expected to perform in a similar way with task difficulty 

increasing from cosine, triangle, sawtooth, and square due to increasing harmonic requirements. 

Device initialization and activation to achieve the best performance is described in the previous 

section. 

  Experimental performance of various waveform regression tasks using ASN devices are 

presented in Figure 9.3. To implement waveform regression the ASN was stimulated with a 

bipolar sinusoidal voltage, inducing switching activity and placing the network in an active state. 

The output potentials measured at each electrode were then combined using the Moore-Penrose 

linear regression and optimized during a training period [8-10]. Two-second epochs of data were 

used to evaluate the ASN’s computational capability, where one second of data was allocated 

each for training and testing. Performance was measured during a one-second period after 
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training where the ASN accomplished various tasks (Fig. 9.3). The performance of the ASN was 

quantified by calculating the normalized mean squared error between the target and generated 

waveforms [11]. Here, the difference between error and unity was used to calculate accuracy. 

The ASN was capable in achieving up to ~90% accuracy using 62 of the 64 measurement 

electrodes for each task.  Task complexity increased from cosine to square wave due to 

increasing mismatch between the sinusoidal input and the target waveform. In the case of cosine 

generation, the overall waveform of the input is preserved save for a shift in its periodicity. The 

cosine generation was the simplest task where the ASN performed with the highest accuracy, 

~90%.  Note that the cosine regression shown in Fig. 9.3a would not be possible using a grid of 

regular resistors due to their intrinsic linear response. Because individual atomic switches have a 

non-linear memristive response, it is possible to harness that state function into the highly 

recurrent structure of the ASN. The highly recurrent structure allowed higher levels of coupled 

interactions that cannot be captured by a single atomic switch resulting in emergent behaviors. 

Particularly, the network was capable of producing delayed responses and enabled the network to 

shift the phase of the input signal by a half-wavelength, producing a cosine. Figure 9.3b shows 

hardly any mismatch in the triangle generation, achieving a similar ~ 90% accuracy and visually 

validates the performance metric used throughout our analysis. A similar argument is used to 

explain the high performance of the triangle wave when compared to the cosine task. The 

determining factor for reservoir performance is the level of similarity between the target and 

input signal, where the reservoir acts as a transformational operator to minimize dissimilarities. 

In both cases, the target waveform is aesthetically similar to a sinusoidal wave and maintains the 

overall shape of the input signal. Despite steeper edges in the triangle task, the algorithm is able 
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to correct any differences by selectively combining different representations produced by the 

ASN. 

 

Figure 9.3. Computation of a sinusoidal wave into various waveforms. The above figure shows several waveforms (sawtooth, 

square, triangle, and cosine) produced using the ASN as a computational device. Each plot contains the desired signal (red) and 
the computed signal (blue) with their accuracy w.r.t. the desired signal shown above the curves. All tasks share an 11 Hz 
frequency for their waveforms and share the same dataset with only differences in the target task. The dataset was approximately 
1 minute long, divided into 2 seconds epochs, and 1 second within each interval was allocated for training and testing. A 1 
second excerpt which best represents device behavior during testing are shown above. 

 

The ASN generated sawtooth (Fig. 9.3c) waveforms with similar accuracy to previously reported 

simulations of memristive networks at a roughly 90% accuracy  [12]. Despite the requirement to 

produce an instantaneous drop, the ASN delivered the sawtooth waveform with astounding 

accuracy. Figure 6c illustrates significant mismatch between target and generated waveform at 

the turning point leading to a minor drop in accuracy. Basic visual inspection shows the sawtooth 

task retains the overall shape of the sinusoidal input while the square wave task requires 

complete transformation of the input signal into a two-valued function.  
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Figure 9.3d, on the other hand, shows significant mismatch throughout the series. The 

square wave generation was carried out with roughly a 78% accuracy, which was much lower 

than the accuracy of the other tasks. To recreate a straight horizontal line, an infinite series of 

higher harmonics is necessary in order to satisfy the spectral theorem in the algorithm [13]. 

Fourier analysis showed that the square wave task was relatively selective in utilizing the higher 

harmonics to construct the waveform. While the sawtooth and square wave both require an 

infinite series of sinusoidal harmonics, the square wave requires continuous constructive 

interference patterns to produce a horizontal line, which limits it to odd or even harmonics and 

drastically diminishes the regression algorithm. In this case, the ASN was only capable of 

producing a finite number of higher harmonics. However, further post-processing such as setting 

a threshold on the voltage to binarize the data can be performed to expand the device’s response 

to a square wave input, a necessity for reliable Boolean logic computing  [14]. 

It was found that the ASN was capable of replicating computing performances typical of 

reservoirs with 103 output signals [15]. Theoretical studies predicts the performance to scale with 

an increasing number of output signals due to the dependence on the regression algorithm [16]. 

However, how can a reservoir with much fewer output signals outperform reservoirs with output 

signals orders of magnitude higher than the ASN? Further inspection of the mathematical 

formalism [16] show that performance is additionally characterized by the uniqueness of each 

output signal. Obtaining a set of unique signals allows us to linearly combine the output signals 

into a number of unique solutions, where the number of unique solutions scales with the number 

of unique output signals. The larger set of solutions increases the size of the “net” we cast which 

increases the probability and approximation of producing the correct solution. 
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Chapter 10 

Parity test for Digital Error Checking 

As an illustration of the ASN’s utility as a reservoir, the benchmark task of determining 

bit parity was taken to both measure memory quality and network tenability. As outlined in 

Furuta [1-2], the task was a fundamental algorithm in signal processing and error checking. 

Typical data streams of bytes of bits required one bit, the parity bit, to record the parity of the 

overall byte. Information transfer across multiple servers can corrupt data by inverting one bit 

thereby changing the overall parity of the data byte. The parity bit ensured identification of 

corrupted bytes and subsequent repairing to allow for reliable data transfers. Typical data bytes 

are 8 bits long, which our experiment adapted as time-separated binary pulse sequences. 

As such, the reservoir and task needs to be tailored for optimal utility in performing the 

parity test. Simulations of the ASN was highly leveraged for this purpose for its ease of use, 

device editing, and high throughput despite statistically underperforming w.r.t. the ASN device. 

A number of simulations were conducted to determine optimal signal encoding, activation 

regime, and processing time scales. 
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Figure 10.1 Error checking task. Presented is an illustration of the parity check used in data transmission for error checking 
process. The parity of the number of 1's within a 5 bit byte is evaluated with a sliding window 5 bits wide to generate multiple 
tasks. The initial input show an odd parity and evaluated as 0 for the desired target signal. As the 5 bit window moves across the 
signal, the parity changes and reflected in the target signal. The above task was encoded as a voltage pulse sequence into the ASN 
device where each bit was represented by V0 or V1 voltages in a time-separated series. Task complexity increased with increasing 
number of bits per bytes rather than number of bytes as the check was only executed once per byte. 

10.1  Simulated ASN Error-Checking Results 

Implementation of machine learning tasks required the design of an encoding technique 

such that signal transduction stimulates the network into an excited state with the proper 

mathematical transformation. As outlined in Chapter 3, reservoir computation can be represented 

into a mathematical design matrix �� through spectral analysis where its rank and eigenvalue 

determine the complexity of the transformation [3]. However, reservoir size limits the reservoir’s 

computational capability as the rank of the design matrix cannot exceed the readout layer. This 

limitation is typically overcome by ensuring overlap of the design matrix within the desired 

mathematical operating regime by applying constraints to network activity. However, signal 

transduction can perturb the reservoir outside desired activity and clever design of transduction 

was required such that the signal can both encode information while maintaining the reservoir at 

a specific state.  

Encoding of digital information was explored by modulating the signal in either the 

amplitude, frequency, or phase space. For the parity test, digital information was spread among 8 
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bits with each bit in a binary state of either 0 or 1. Bytes of digital information were represented 

as pulse voltages, Gaussian wave packets, and phase shifted sine waves for amplitude, 

frequency, and phase modulation respectively. The binary states 0 and 1 were assigned to preset 

voltage amplitudes (V0, V1), wave packet frequency shifts (f0, f1), and phase shifts (φ0, φ1) and 

the Euclidean distance between the binary states empirically optimized. Inspection of the state 

equation in (3.9) and (5.5) reveals the dependencies of these parameters w.r.t. network activity. 

Indeed, simulation results concluded that the total voltage was the deterministic factor on 

reservoir activity while changes in frequency and phase negligibly perturbed the reservoir. An 

amplitude modulated encoding procedure was adopted for all subsequent experiments with 

voltages ranging from 0.1 to 7.0 V.  

Reservoir activity was initialized in simulations using the resistance training algorithm in 

Chapter 8 [4]. Resistance values with short convergence times were desired as the resistance 

training algorithm invariably encoded unnecessary information from the procedure which limited 

the reservoir’s memory capacity. These states coincided with resistance values within RON or 

ROFF as well as states that had been thermodynamically stable after repeated approaches. 

Introducing a highly stochastic signal while maintaining the resistance state was capable of 

cleansing any information encoded by the resistance training algorithm and was incorporated 

into a post-experiment protocol. Optimal network activity was determined heuristically while 

prioritizing reliability over performance. 
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Figure 10.2 Encoding optimization using ASN simulation platform. A simulation of the ASN device performing the parity 
check task was conducted to determine optimal operating parameters. Temporal memory quality was evaluated w.r.t. the size of 
the output layer, length of the learning sequence used a, b, and operating time c. Under-learning was observed in a at 0.25 s (blue) 
length data sets as chaotic performance were measured regardless of network size. Over-learning in b at 4.00 s (red) as continued 
increase in the data set length reduced reservoir performance. Subsequent phases of operation c each 1.00 s in duration 
determined optimal operating time. Omitting the transient phase (light blue), subsequent phases monotonically increased 
performance and peaked at 4.00 s (red) while further operation in phase 5 decreased performance.  

A typical proportional–integral–derivative (PID) loop algorithm provided a constant 

feedback voltage which maintained target reservoir activity. Constant stimulation by application 

of the driving signal eventually accumulated charge and excited the reservoir outside the target 

resistance state, observed as LTP in Chapter 7. Conversely, STP dynamics concluded that 

inactivity or sub threshold voltages unable to counterbalance the thermodynamic inhibitive 

processes relaxed the system. Stability of the target resistance state was controlled by a PID 
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feedback loop by dedicating one of the I/O nodes for this purpose. The feedback applied a 

constant DC signal for an integral time equal to the training time. Maintenance of the resistance 

state followed identical trends as the resistance training algorithm in section Chapter 7. 

 Optimal training times were determined by maximizing the dwell times at target 

resistances and empirically investigated in simulation. Learning was implemented on the 

reservoir using a number of training data sets, following the mathematics in Chapter 3 and details 

found in Chapter 13. Each training set was followed by a testing data set to determine the 

effectiveness of the learning algorithm using the accuracy in equation (3.6) as a metric of 

success. The procedure of providing a training data set for the learning algorithm and subsequent 

testing of performance was repeated, while constraining reservoir activity using the PID 

feedback loop. 

 The ASN’s performance dependencies w.r.t. data set size and number of learning 

repetition was investigated in simulation to determine optimal dwell times. Simulations of the 

ASN device revealed an occurrence of under-learning at 0.250 s (Figure 10.2a) and over-learning 

at 4.000 s (Figure 10.2b). This was observed as drastic increases in the NMSE at these time 

scales as well as a deterioration of signal propagation. The occurrence of over-learning was 

theoretically predicted as we approached the network’s memory capacity by saturating it with 

training data. Under-learning manifested as fluctuations in performance across various reservoir 

sizes due to limited memory retention times. The over-learning occurred as the learning 

algorithm became ill-posed and over-determined with excessive training sets. Optimum data set 

lengths were discovered to be 1.000 s while optimal total operating time to be 4.000 s (Figure 

10.2c). Subsequent experiments were thus encoded as amplitude modulated data sets 1.000 s in 

length with 0.250 s pulse width and learning applied within a 2.000 s window.   
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10.2  Neuromorphic ASN Device Error Checking Results 

 The optimal parameters found from simulation were implemented on the ASN device and 

investigated for routes of optimization. Identical instrumentations were used as the resistance 

training algorithm while incorporating a PID feedback mechanism for sustaining reservoir 

activity (Figure 10.3a). The error-checking task was implemented over a population 5 devices 

using all possible permutations of the 16 I/O electrodes and followed similar trends as depicted 

in Figure 10.3. Initial experimentation on individual ASN devices were performed to determine 

relevant optimal amplitude and time scales using identical procedures as in simulation. The 

simulation’s predicted optimal parameters were corrected to include amplitude scales of 0.01 – 

7.0 V while other parameters were retained. 
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Figure 10.3 Error checking of ASN platform. Schematic of RC using ASN devices: Three I/O electrodes are 
selected to form the stimulus/control loop for RC: Boolean input streams are delivered to an individual I/O electrode 
underlying the ASN network (red); a system ground (blue) enables real-time monitoring of current flowing through 
the network controlled by a feedback-driven bias voltage delivered to (green) a nearby location. The ASN was 
stimulated with a statistical survey of pulse widths (nΔt) and pulse heights (nΔV) ranging from 250 ms and 0.01 – 
7.00 V. Testing occurred immediately after resistance training with a fixed weight configuration. The datasets above 
achieved accuracies a,b between 65% and 78% from ~5,000 trials compared to ~50% from a purely stochastic 
reservoir. 

 Device performance and reliability was heavily dependent on the device's resistance state 

following their description in Chapter 8. Shorter dwell time devices at correspondingly higher 

resistance states performed with increasing reliability and accuracy, despite implementing 

similar training and operating times with devices at lower resistance states. A bimodal 

distribution of metastable resistance states was found with dwell times that exceeded 100 s for 3 
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different devices that followed similar dynamics to Figure 8.2a. The presence of these metastable 

states and similar power-law behavior indicated the device activating towards a self-organized 

critical state [5-6] with the two resistance states centered at 500 kΩ and 600 kΩ possible chaotic 

attractor states. However, true verification of device criticality required statistical 

experimentation using exact and identical parameters which proved impractical.  

 Continued trials revealed devices initialized outside of the near-critical resistance states 

performed poorly with accuracies below 50%, which prompted subsequent device testing to 

operate within the bimodal states to explore device optimization. Devices initialized below 500 

kΩ (Figure 10.3b) performed at 71.35% ± 6.38% accuracy while those initialized above 600 kΩ 

attained a similar and maximized performance of 73% ± 5%. Despite seemingly small 

differences, this trend manifested throughout all trials alongside a characteristic high dispersion 

in the distribution with kurtosis values of 2.73 and 5.94 for devices at 600 kΩ and 500 kΩ 

respectively. Kurtosis values beyond 3 indicated a non-Gaussian distribution and increasingly 

became dominant below 500 kΩ. Rapid bipolar switching manifesting as abrupt changes in 

current supply was observed below this range and simulation experiments revealed increased 

filaments forming under similar conditions. The non-Gaussian statistics and filament completion 

events indicated a shift in the operational characteristics of atomic switches and decreased 

performance metrics. Consequently, network resistance state became increasingly complex and 

divergent thereby driving network dynamics towards increasingly nonlinear behaviors and 

outside target functionality. Past results [7-8] and similar experiments [9-10] clearly indicated 

the requirement for task-specific network design. Diverging resistance states, dynamic changes 

in atomic switch behaviors, and poor performance concluded the network was being driven 

outside of its error-checking design. 
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 Further experimentation evaluating other device parameters such as stimulation 

amplitude, size, and learning time-scales resulted in minor changes to network performance, 

highlighting the importance of network dynamics. The stability of the network resistance state 

was an evident metric in controlling computational capability and network state. Spontaneous 

organization of 2 convergent resistance states highlights the underlying critical dynamics which 

maximized device performance. Controlling such device dynamics through the use of 

mechanisms such as a feedback loop [10] seems evident for further progress. 
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Chapter 11 

T-maze Decision Making 

The utility of ASNs was further explored through implementation of the well-known T-

maze  [1] task described in Figure 11.1. This delayed choice task involves a cue and trigger 

signal delivered to the ASN, where the cue represents a signal representing ‘left’ or ‘right’ that 

must be remembered and acted upon following the receipt of a subsequent trigger signal. 

Successful performance of the T-maze task revealed an ability to integrate, segregate, store and 

respond to external stimulus. These successful implementations indicate great promise for future 

application of the ASN as a physical platform for RC. Of particular interest are the speed, 

density, and scalability of the ASN, which in concert serve to overcome major hurdles in the RC 

paradigm. 

 

 

Figure 11.1. T-maze Task. (top) Schematic of the T-maze task alongside a representative sequence of start, cue, and trigger 
signals delivered to the ASN device during implementation. (bottom) Graphical overlay electrode channel assignments and 
performance for 500 runs of the T-maze task, where over 93% of L/R decisions were correct.  
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 This RC task, the most challenging of those addressed, represents an extension of those 

previously described that involved a capacity for integration of information and memory storage 

by adding a requisite recall function alongside production of an action signal. Initial simulation 

results exposed a continued trend of maximal performance with increasing number of network 

nodes presented in Figure 11.1(top). The reconstructed signal successfully reproduced the target 

with reasonable levels of performance given the limited network size, un-optimized kernel and 

basic regression method employed as seen in Figure 11.1 (bottom).  

 

Figure 11.2 T-maze Simulated Results. Mean squared error of task performance decreases with increasing network size. Using 
the maximum number of nodes achievable, target waveforms were faithfully reproduced in response to a temporally shifted 
cue/trigger signal. 

   Implementation of the T-maze task using hardware ASN device was achieved in a 16-

electrode configuration as seen in Figure 11.3. Two electrodes were selected to serve as inputs 

for the left and right signals, delivered in the form of sigmoidal bias pulses in a sequence 

comprising start/cue/trigger and tested using the simulator. An additional electrode was assigned 

as ground, or current collector while the remaining 13 electrodes served as nodes/voltage probes 

to monitor the real-time dynamical response of the network. As a result, output signals represent 

the linear combination of voltage readings from all 13 nodes/readouts into 2 channels (left/right). 

Initial success was achieved in the observation of large fluctuations in voltage at the distributed 

voltage probes following delivery of the trigger signal and in the absence of additional 
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stimulation, shown at bottom of Figure 11.3. This result indicated energy storage in the ASN 

device capable of producing the dynamical/echo state property required to execute the T-maze 

task. 

  

 

         

Figure 11.3 T-Maze Task Device Output. ASN device with graphical overlay of electrode channel assignments 
showing a representative sequence of  start, cue, and trigger signal comprising sigmoidal voltage pulses 

delivered to the network via electrodes (to left) used in implementation of the T-maze task (top left). 
Representative experimental input (top) target output (middle) and device output (bottom) signals. 
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 Over 500 trials of the T-maze were run using ASN devices, the results of which are 

summarized in the context of both the individual and combined form of a probabilistic 

performance metric. Overall, the ASN device performed remarkably well given its form as an 

un-optimized hardware reservoir and the use of a generic regression algorithm. Upon looking 

into the details of performance, what can clearly be seen is that when decisions (L/R) are made, 

they are generally correct (94%). While decisions are only made ~48% of the time, these results 

do indicate that the distributed reservoir property of the ASN devices can serve as a functional 

output for this task. Importantly, this reveals that temporal information can be integrated and 

stored spatially. While further investigation is clearly in order to elucidate the dynamical 

properties which underlie the ASN’s capacity to execute the T-maze in the absence of pre-

programming, these results point toward a targeted class of pattern recognition and/or navigation 

tasks for which the ASN is optimally designed.  
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Chapter 12 

Outlook 

We concluded that we were able to use network activity and stability via resistance 

initialization to describe the network state for a thermodynamically driven reservoir, the ASN. 

Due to the task-specificity inherit in machine learning, it was paramount to characterize and 

catalogue a reservoir’s ‘state’ that corresponds to task-specific functionalities. Likewise, results 

in Chapter 9 developed a map for pattern recognition using higher harmonics. Typical reservoir 

characterization in the literature utilized entropy and Shannon theory, which requires repeated 

experiments under identical conditions. Current devices utilizing memristor-like reservoirs are 

difficult to control with such precision, thus, a desire for an alternative characterization of 

reservoir state has been necessary. In general, characterization of reservoir functionality has 

proven difficult for real ‘edge-of-chaos’ systems. Although this requirement has strictly not been 

within the reservoir computing framework, the development of reservoirs with diverse and rich 

functionality expands the framework’s utility. 

 Despite limited addressable electrodes, the ASN device was capable of outperforming 

simulated networks as network complexity, density, and critical dynamics were utilized more 

effectively in the device. We have presented a clear methodology to implement reservoir 

computing on a neuromorphic device by developing observable metrics such as power-law 

behavior, activation of STP/LTP, and resistance state. As outlined in Chapter 3, reservoir 

performance was theoretically predicted to depend on nonlinear dynamics, network topology, 

and task design. The commensurate development of simulations aided in implementing 

theoretical models onto neuromorphic a platform and task evaluation.  
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Chapter 13 

Device Fabrication 

With a density controlled network in mind, our group started using electrochemistry to 

grow a recurrent silver network using copper seeds. Patterned seed networks proved the most 

versatile fabrication method, and utilized a combination of top-down with bottom-up fabrication, 

a powerful fabrication method described as nanoarchitectonics. Network growth occurs through 

an electroless deposition (ELD) reaction through individual atom displacement reactions 

between Ag+ and Cu0 based on respective electric potentials. A spontaneous ELD reaction is 

preferred over an electric one due to the lack of a need for external power and the delicate nature 

of electrochemical reactions. In this particular case, silver atoms are oxidized while copper is 

reduced during the galvanic displacement reaction: 

Cu0(s) + 2Ag+(aq)→ 2Ag0(s) + Cu2+(aq)   Ered= -1.26 V. 

Successful implementations of the ELD reaction above allowed us to design a technique using 

highly patterned top-down photolithography combined with the complex spontaneous growth 

provided from the reaction above. The ASNs were grown using self-assembly of a rhizomic-

dendritic network of highly interconnected silver (Ag) nanowires which were sulfurized to 

provide distributed nanojunctions comprised of inorganic synthetic synapses. ASNs were 

interfaced to input-output electrodes fabricated using conventional micro-lithographic processing 

to create a functional device [1-2] (Figure 13.1a).  Electrodes were fabricated by electron beam 

evaporation following photolithography on the surface of a p-type Si wafer (boron doped, 0-100 

Ω cm-1) insulated by a 500 nm thick thermal oxide layer. Deposition of 4 to 16 Cr/Pt (15/150 



85 
 

nm) electrodes with diameters of 10 to 50 μm at pitches between 50 and 500 μm was followed 

by spin-coating and patterning of an insulating layer of SU-8 deep UV resist, which served to 

expose only point contact regions of the electrodes. Micron diameter cylindrical copper seeds 

were then deposited at areal densities between 1x106 and 2.5x107 seed sites/cm2 for the 

electroless deposition (also referred to as galvanic displacement or cementation) of Ag from Cu 

on the SU-8 layer. Electroless deposition was performed under diffusion-limited conditions using 

50 mM aqueous solutions of AgNO3 [3]. This spontaneous electrochemical reaction produced 

complex networks of metallic silver nanowires shown in Figure 1b.  Previous studies have 

shown that the geometry and spacing of pre-patterned Cu posts provides control over the global 

qualities of the network generating structures ranging from extended nanowires to dendrites and 

fractals [4-5]. The pitch of the Cu posts was found to determine the relative density of the 

network (Figure 12.1c, d) while seed size was used to control the presence of long-range 

connections. Typically, smaller Cu seeds (<3.5 μm) produce many long wires and larger seeds 

(>3.5 μm) produce spatially confined dendritic or fractal structures.  
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The self-assembled silver networks intrinsically contain crossbar-like junctions resulting 

from the three-dimensional nature of the solution deposition process. Upon exposure to sulfur 

gas [6] (10-1 torr at 130 °C for 3 min), the Ag nanowire junctions are functionalized to form thin 

Ag|Ag2S|Ag metal-insulator-metal interfaces which, in the presence of post-processing activation 

with external bias potential, are transformed into “atomic switches”. Electrical characterization 

of the devices was conducted through current-voltage (I-V) spectroscopy using a bipotentiostat 

(Pine Instruments model AFCBP1) in conjunction with either a data acquisition module 

(National Instruments USB 6259) or a multiplexed (National Instruments PXI 1073) source-

measurement unit (National Instruments PXI 4130). The maximum bandwidth of the 

measurement systems is 1 MHz and 10 kHz enabling 2 Ms and 20 ks per second with 16-bit 

resolution. Subsequent data analyses were carried out using MATLAB 2010b (MathWorks) and 

Origin 8.1 (OriginLab Corporation). 

13.1  Reservoir Computing Implementation 

  

Figure 13.1 Atomic Switch Network Fabrication. a) Atomic switch network devices were fabricated on a SiO2 substrate 
with 16 Pt electrodes and an insulating SU-8 layer. Devices are approximately 4 cm2. b) Resultant Ag wires vary in size 
(<100 nm to >1 mm) and create self-assembled networks with complex interconnections (109 cm-2). Electrodes shown have 
10 μm diameter and 50 μm pitch, and range up to 50 μm diameter with 500 μm pitch. c-d) The density of interconnections 

can be changed by altering the size/pitch of the Cu posts shown c) 1 μm/5 μm d) 1 μm/1 μm. Scale bars = 10 μm. 
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 All reservoir experiments were conducted on an 8x8 grid containing an estimated 108 

atomic switch junctions using the 64 electrodes as I/O interface layers. A single electrode was 

selected to inject the electrical input signal, while another electrode was chosen as the counter 

electrode as shown in Figure 10.3a. The control signal delivered a feedback voltage to an 

electrode in proximity to the input electrode. Voltage signals were simultaneously measured 

from the remaining 61 electrodes using the data acquisition module (National Instruments USB 

6259). Reservoir computing was implemented following the mathematics presented in section 2 

with the input layer consisting of only the input electrode and the output layer constructed from 

the 61 measuring electrodes. 

When first designing a purpose-built device to emulate mammalian brain activity, 

dendritic silver structures were desired. However, over time it was realized that the connections 

provided by these structures were unreliable and difficult to reproduce. Through changing the 

size of the copper posts, a morphological transition was found showing that a seed site of 1x1 

µm2 up to 3x3 µm2 leads to fine nanowires. Seeds between 3x3 µm2 and 10x10 µm2 yield a 

mixture of nanowires with branched dendritic structures, while posts larger than 10x10 µm2 

produce only dendrites.  
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Chapter 14 

Design Optimization of the ASN 

 Directed nanowire growth to create dendritic structures followed diffusion limited 

aggregation with Mullins-Sekerka instabilities. For sparse concentrations of AgNO3, diffusion-

limited aggregation (DLA) dynamics prevail where Ag+ cations displace Cu0 atoms in discrete 

non-interacting reactions. Reduced silver atoms accumulate on the surface of the copper posts 

and develop, in a steady-state evolution, metallic nanostructures. Solidification of silver particles 

undergoing DLA obeys the mathematical formulations of Fick’s Law, modified by Mullins-

Sekerka instabilities which describe pattern formation of accumulated metal nanostructures. We 

describe the kinetics of formation using ion clusters to describe the heterogeneity of the 

solution's concentration. Clusters of ions diffuse through the solution, creating a wave of ions 

that initiate the ELD process at the seed. Starting with Fick’s law to describe the diffusion: 

���∇
���� = 	

����

��
; 	���∇

���� = 	
����

��
;       (14.1) 

Here we use DAg and DCu as the diffusion constants for AgNO3 and pure copper 

respectively with as the diffusion potential. As the wave front of silver reacts with copper, 

aggregated silver atoms at the seed sites accumulate, pushing the growth front towards the wave 

front. The solid-liquid interface perturbs the diffusion field, moving slowly and continuously 

renormalizing the ion gradient in solution.  
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Figure 14.1 Schematic of Diffusion Limited Growth. An initially planar seed site (grey area) is presented in a) where a 
diffusion gradient initiates unidirectional growth, red arrows, towards areas of higher solute concentration, represented by black 
horizontal lines. Growth of the seed site extends site towards high solute concentration but are restricted in b) by the diffusion 
gradient due to localized fluctuations in concentration creating depletion regions. The distended seed site expands multi-
directionally according to the continuity equation. 

Growth of the solid-liquid interface, via the non-equilibrium process of electroless deposition, is 

mediated by the continuity equation: 

��� = ��������∇��� �������∇���� ��	.       (14.2) 

The miscibility gap, M, and the normal velocity,��, of the interface, determine the 

population exchange during single displacement reactions with ���� as the fluctuation in 

chemical potential due to concentration heterogeneity.  

Growth of the solid-liquid interface results in the Mullins-Sekerka instability which is 

due to competing dynamics between steady silver nanostructure growth and dynamical 

expansion of the growth front. Once the rate of metal nanostructure growth exceeds the diffusion 

rate, a depletion region emerges that no longer contains enough silver atoms for sustainable 

displacement. Regions adjacent to the initial growth front contain sufficient ion concentration to 

participate in ELD, forming side branches. Depending on the rate of formation, the chemical 

potential at the interface is described by the Gibbs-Thomson boundary condition: 

�(��) = 	 ��ε	.         (14.3) 
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Here, the chemical potential at the interface, μ(r0 ), is dependent on the surface curvature, 

ε, and d0 the characteristic length of the seed. In the simplest case, the value of equation (14.3) 

was approximated to be the value of equation (14.2) during equilibrium. The non-equilibrium 

process at the solid-solution interface determines a characteristic capillary length scale, ��: 

�� = 	
�

�
.           (14.4) 

Where γ is the surface tension. Solutions to equations (14.1) thru (14.4) for a planar 

interface with small perturbations in ionic concentrations are solved in [1].  Extending this model 

for multiple perturbations will show dendritic growth that we experimentally demonstrate in 

controlled fabrication of the ASN. Equations (14.3) and (14.4) show parameters of control over 

the morphology of seed-directed nanowire growth.  

 
Figure 14.2 Schematic of Depletion Regions due to Varying Chemical Capillary Lengths. High surface tension in a) 
produces a small capillary length and small depletion region between the solution (green) and substrate (blue). Increasing 
capillary lengths produces in b) a larger depletion region than in a) and c) depicts a hydrophilic substrate where the capillary 
length is largest. 

The reactivity dependence on curvature can been controlled by varying shape, size, and pitch of 

copper seeds. Surface tension and miscibility gap can be controlled through varying the copper 

spacing and distribution. Understanding DLA under Mullins-Sekerka instability conditions 

provides control and reproducibility over self-organizing nanowire networks. Pattern formation 

due to Mullins-Sekerka instabilities presented here is a linear approximation of the dynamical 

behavior of dendrite formation. Experimental testing confirmed in Figure 14.3 that when the size 

a) b) c) 
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of the copper seed is on the order of 1-5 microns Mullins-Sekerka instabilities are suppressed, 

and the growth of metallic nanowires continues without nucleation of side branches.  

 

 

Figure 14.3 Optical Micrographs of Dendrite Growth as a Function of Cu Seed Size. At 7 μm (a) wires predominate, with 
branched structures appearing as (b) seed size is increased to 9 μm. (c) Wires were not observed for deposits from 15 μm seeds. 
Scale bars = 10 μm. 

In order to explore the concept of fabrication through self-organization, the mathematical 

principles of diffusion limited aggregation (DLA) and ELD are combined to guide a 

nanoarchitectonics approach using the electroless deposition of silver. An extensive experimental 

study of this fabrication method found that the critical parameter for the growth of nanowires 

was the size of the copper seed post which is theoretically predicted in equation (22) due to the 

factors of surface curvature and surface tension [2]. The diverse wire lengths included long-range 

and short-range atomic switches, facilitating both globally and locally distributed patterns of 

switching activity in the ASN. Due to the variation in nanowire diameters, we infer each junction 

to have a variable gap size and subsequent atomic switch size, thereby increasing the number of 

available resistance states to the ASN [3-4].  This fabrication method offers control over network 

density and structure by introducing two important parameters: seed size and spacing, which 

nucleate wire growth.  

14.1  Bibliography 



93 
 

 

[1] J. S. Langer, "Instabilities and pattern formation in crystal growth," Rev Mod Phys, vol. 52, 1980. 

[2] C. M.-O. Audrius  V.  Avizienis, Henry  O.  Sillin,Masakazu  Aono, James  K.  Gimzewski, and  

Adam  Z.  Stieg, "Morphological Transitions from Dendrites to Nanowires in the Electroless 

Deposition of Silver," Crystal Growth & Design, vol. 13, 2013. 

[3] A. V. Avizienis, et al., "Neuromorphic Atomic Switch Networks," PloS one, vol. 7, p. e42772, 

2012. 

[4] A. Z. Stieg, et al., "Emergent Criticality in Complex Turing B-Type Atomic Switch Networks," 

Adv. Mater., vol. 24, pp. 286-293, 2012. 

 

 

  



94 
 

Chapter 15 

Polymer Nanocomposites 

Here we aim to develop additional functional nanomaterials which integrate memory and 

information processing capabilities. Building upon prior work using metal-insulator-metal 

interface materials for neuromorphic hardware, we constructed and assessed hardware-adaptive 

computing devices using inorganic, encapsulated, and polymeric nanomaterials. New materials 8 

developed by Kaner was integrated with existing device platforms (Chapter 13) to enable 

characterization to investigate salient properties such as structural, electrical, and functional 

properties via scanning probe and electron microscopy, conductive probe microscopy, and 

multielectrode array measurement systems. Characterization efforts support materials 

optimization based upon: volatility, frequency response, operational voltages/currents, 

reproducibility, and processing conditions. The goal of this task is to generate a memristive 

polymer hybrid system categorized in terms of functional materials parameters relevant to the 

construction of application-specific reservoirs.  

15.1  Silver Decorated Polyaniline Synthesis  

Polymer hybrid materials are distinguished by their flexibility—literal and figurative. 

They are mechanically soft, structurally tunable and can be incorporated into devices using back-

end encapsulation processes [1]. Polyaniline (PANI) acts similar to a metal, conducting through 

conjugated π-electrons in its protonated emeraldine oxidation state. Hybridizing PANI with 

metal nanoparticles allows the memory time to be tuned based on the amount of charge retained 

by the nanoparticles and their degree of coupling to the polymer backbone [2-3].  
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Figure 15.1 Synthesis of Ag decorated polyaniline. An initial organic solution of aniline dimers (yellow) was treated with 
AgNO3 as an oxidizing agent. Disassociation of AgNO3 to its constituent ions Ag+ and NO3

- allowed Ag nanoparticles to form at 
the N-H bond (schematic). Polymerization of the aniline dimers into its emeraldine redox state prompted the encapsulation of Ag 
nanoparticles. The resulting nanocomposite is suspended in an aqueous (blue) solution which was extracted using microfiltration.  

Synthesis of PANI decorated with metal nanoparticles is prepared by a redox reaction of PANI 

with the metal anions of the oxidizing agent. For gainful comparison between our work with 

atomic switches and decorated PANI, AgNO3 was selected as the oxidizing agent and 

synthesized as a nanocomposite nanofiber following previous work by Kaner [4]. An initial 

solution of an aniline dimer was produced in 18.2 MΩ ultra pure water and polymerized with a 

50 mM solution of AgNO3 to introduced Ag nanoparticles at the N – H bond, producing PANI-

Ag. A molar ratio of AgNO3/PANI of ~1.0 in solution was used to ensure production of 

nanocomposites. Concentrated PANI-Ag was recovered with microfiltration (0.45 μm 

membrane, Millipore) and washed with NaOH and DI water. Subsequent functionalization using 

1.0 M HCl to the PANI solution doped the PANI-Ag to its emeraldine salt. Characterization of 

the product using X-ray photoelectron spectroscopy (XPS) confirmed the bulk presence of 

conductive emeraldine state and a shifted N peak coincided with the expected shift of an attached 

nanoparticle. Topological characterization using scanning electron microscopy confirmed the 

production of nanofibers with areal dimensions of ~20 nm diameter and lengths of ~1 µm. 
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a) b) 

Figure 15.2 Scanning Electron Images of Synthesized PANI-Ag. Drop casted samples of PANI-Ag on Al substrates was 
imaged in a) to reveal high coverage of dispersed nanofibers. Nanofiber dimensions was measured from image b), with 
the diameter uniformly measuring ~20 nm and lengths up to 1 µm 
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Chapter 16 

Electrical Characterization of PANI-Ag 

 The electrical properties of the nanocomposite was investigated using probe microscopy 

to determine nanoscale characteristics. Bulk Au decorated PANI was previously shown to 

achieve conductance switching using a 2-terminal electrode measurement unit [1]. 

Implementation of PANI-Ag nanofibers as a neuromorphic devices requires the active material 

to operate on a similar size scale as the ASN. Individual nanofibers at the ~10 nm scale are 

theoretically predicted to experience quantum confinement similar to nanowires and quantum 

dots. Conductive atomic force microscopy (cAFM) was capable of characterizing nanoscale 

characteristics of a PANI-Ag film deposited on a Pt coated Si(111) substrate. 

 

Figure 16.1 SEM Images of Electrospray Deposited PANI-Ag. Deposition of PANI-Ag using an electrospray system resulted 
in a uniform film of the nanocomposite with a characteristic perforated topology. Magnification in b) show condensed bundles of 
nanofibers and subsequent dimension measurements yielded nanofibers diameters of ~20 nm and lengths ~120 nm. 
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Preparation of the nanocomposite PANI on a conductive substrate for cAFM was 

achieved using electrospray deposition technique. The Pt-Si substrate was prepared by electron 

beam deposition (CHA Mark 40) of an Pt target to fabricate a 100 +/- .2 nm thick layer on a 

Si(111) substrate. A 10 mL nitrogenated solution of PANI-Ag was electrosprayed onto the 

substrate with a 3 kV bias and a nozzle rate of 12 uL/min. A separation of ~3 cm was maintained 

between the nozzle and substrate as the nozzle mechanically scanned across the substrate. 

Subsequent measurement using a Dektak 3030 profilometer revealed a PANI-Ag film with a ~20 

nm thickness and ~120 nm length.   

16.1 Characterization of PANI-Ag via cAFM 

Topological cAFM imaging revealed ~2 nm bands of highly conductive PANI-Ag within 

the nanofibers. A positive 1.0 V bias was applied to the sample during image scan using a Bruker 

Dimension Icon Microscope. Figure 16.2 details the height topography of electrospun PANI-Ag 

forming bundles of nanofibers with similar size distributions found in SEM images in Figure 

16.1b. Maximum distinguishable feature sizes was limited by tip apex deconvolution to ~15 nm 

and unable to topographically resolve the same features as Figure 16.1a. Cross correlation with 

the electric density map was able to enhance image contrast and resolve ~2 nm features. Figure 

16.2b presents the the electric density topography corrected by cross-correlation using the height 

topography. High conductive regions were found within the nanofibers distributed as ~2 nm 

localized spots. Previous work by Kaner [1] show coincidental similar size distribution and 

topology characteristic of the decorating metal nanoparticle. Identification of the highly 

conductive ~2 nm regions were inconclusive using current-voltage and force spectroscopy due to 

highly coupled interactions between the tip apex and surrounding polymer material. Structures 

resembling islands are composed of highly insulating regions surrounding nanofiber bundles. 
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Characteristic sharp peaks in the insulating region indicate an overall structural and chemical 

departure from the PANI-Ag nanofibers. Subsequent reverse sweeps and inverted polarity 

experiments suggest these region are anomalous large gaps between nanofibers, with the 

negative current density comparable to Nyquist noise.  

 
Figure 16.2 Height and Current Topography of PANI-Ag from cAFM. Height measurements in contact AFM in a) are 
unable to resolve the nanofiber structure due to the highly attractive potential in polymer systems. Deconvolution of a) from the 
current density topography is shown in b) which outlines the nanofiber structure as perforated white structures. Dark ridges 
surrounding the nanofibers indicate formation of nanofiber bundles. 

 
The PANI-Ag nanofibers were observed to achieve current densities within the bounds of 

the leucoemeraldine redox state. Reported literature values of emeraldine PANI sheet resistance 

ranges within ~103
 Ω/cm2 from π-π stacking within the phenyl groups [2]. The introduction of 

electron rich nanoparticles enhanced charge carrier dynamics between the metal nanoparticle and 

the conjugated phenyl groups. Observations of decreased sheet resistance ~102 Ω/cm2 while in 

the emeraldine state and ~104 Ω/cm2 in the leucoemeraldine state. Direct measurement of PANI-

Ag nanofibers via cAFM achieved a leucoemeraldine sheet resistance of ~104 Ω/cm2
 as 

calculated from a 21.0 nA collector current and ~15 nm spot size. Subsequent investigation of 

the emeraldine state via bias induced switching were attained using cAFM. Full contact between 
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the AFM probe and PANI-Ag nanofiber and increasing sample bias to 2.30 V resulted in 

increased sheet resistance on the order of ~102 Ω/cm2. Continuous application of bias sweeps up 

to 2.30 V slowly increased current density until the PANI-Ag was partially oxidized at 2.26 V 

and transitioned into the emeraldine. Here, the nonconjugated C-N bond in the initial 

leucoemeraldine switched to a conjugated C=N emeraldine state, facilitating charge donation 

from the metal nanoparticle and the charge transfer process. Additional voltage sweeping 

towards the negative polarity (1.70 V) partially reduces the film and inhibited the C=N bond 

while decreasing the current density. Reverse switching was unattainable due hardware 

limitations.  

  

 

 

16.2  Conclusion 
Polymer nanocomposites were synthesized and characterized to determine the tenability 

of PANI-Ag nanofibers towards neuromorphic computing. Facile synthesis and similar 

Sample bias (mV) + 2 V 

Figure 16.3 Voltage Bias Sweeps in cAFM. The AFM probe was held at full contact at a single location on PANI-Ag film. An 
offset 2.0 V voltage was applied while incrementally  sweeping the voltage an addition +/- 300 mV. Cyclic sweeping slowly 
increased overall conductance before an abrupt increase at 2.26 V, indicative of the transition into the emeraldine state. 
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topological, and electrical characteristics with the atomic switch network enlist the system as a 

promising candidate. Additionally, the general tunability of polymer nanocompsites enables the 

PANI-Ag system to explore alternative stimulation and information transmission options. The 

redox switching process is inherently sensitive to the chemical environment, specifically volatile 

organic compounds and pH environment [3]. By using a similar construction of theory and 

constraints as the ASN, computation through direct transduction of chemical information enable 

the system to physically compute within redox states, rather than digital “0” and “1” states. 

However, further studies are required to meticulously map the switching mechanism and 

determine an equivalent mathematical transfer function. Due to the volatility and exposure 

required in cAFM studies, alternative techniques must be adopted to characterize localized 

nanoscale dynamics. 
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Chapter 17 

Piezoelectric needle sensor reveals mechanical heterogeneity in 

thyroid tissue lesion 

 The utility of nanotechnology afforded us opportunities to directly apply our 

neuromorphic studies towards common use, specifically medical practices. Identification of 

principle parameters that characterizes both nanoscale and mesoscale dynamics was facilitated 

by extending probe microscopy models to biopsy procedures. Here, needle biopsies sample 

tissue ex vivo for cytological analysis. In conjunction with existing bioinformatic models we 

developed a biopsy transducer which characterizes holistic systems, i.e. in vivo tissues, for both 

bulk and local mechanical properties. Tissue stiffness and stiffness heterogeneity provide 

cytological indicators for variant tissue strains. 

17.1.  Background 

Increased tissue stiffness is a widely accepted and actively studied biomechanical 

property of fibrotic tumors and has been linked to several hallmarks of cancer, including 

growth, metabolism, invasion and metastasis[6-8]. Evaluation of a thyroid nodule remains one 

the most common and yet one of the most challenging problems for endocrinologists. Thyroid 

nodules are common with ~ 1% of males and 5% of females having palpable thyroid nodules [1]. 

Among these, a majority (> 90%) of the thyroid nodules are non-malignant or well-differentiated 

papillary and follicular carcinomas [2]. Nevertheless, the remaining ~10% of cases may cause 

significant morbidity and eventually death. Thus, the clinical importance of thyroid nodules rests 

with the need to exclude thyroid cancer. The standard diagnostic modality of evaluating 

malignancy in thyroid nodules involves ultrasound coupled with fine needle aspiration cytology 
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(FNAC) primarily to prevent unnecessary surgeries for benign conditions or avoid missing 

malignant nodules [3]. However, the overall false negative rates (malignant histology of a nodule 

with benign cytology) for FNAC ranging from <1 to 12% [4-5], and indeterminate cytological 

findings, warrant the need for new methodologies to improve diagnostic sensitivity and 

accuracy of thyroid FNAC. 

Biomechanically, thyroid lesions exhibit inhomogeneous elastic behavior as a 

consequence of collagen in the stroma and frequent calcium deposits[9]. Such regions vary by 

orders of magnitude in stiffness behavior from healthy cells[10], and hence vary in haptic feel. 

However, rapid and quantitative methods for measuring tissue stiffness that can be translated 

into clinical settings have not yet been established. Elastography has yielded promising 

results in diagnosis of breast [11-15], liver [16] and pancreatic lesions [17-18] though 

histological confirmation remains the treatment standard.  

Needle based sensors provide greater access to specific bio-component contributions in 

tissue mechanics[19] and bridge the gap between cellular and tissue level measurements at high 

spatial resolution (e.g., different tissue planes or variations of densities within the tissues). 

Needle-tissue interactions have been previously attempted to guide tumor navigation, but it is 

difficult and expensive to micro-fabricate the piezo-sensor (<100μm) used inside a hollow 

needle[19]. The Hansma group used a reference probe technique to measure mechanical 

properties of normal and diseased soft and hard tissues in vivo and in vitro[20]. But the 

technique, mostly employed to measure bone material properties had limited measurement range 

(<600 μm) and the spatial resolution in the mm scale (0.2-2 mm). A combined micronewton-

resolution, tensiometric force probe and micromanipulator was used to measure the variation in 

tissue stiffness (100 µm to mm scale)[21]. However, the thickness of the samples that can be 
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accurately measured significantly limits applicability. Previous studies probed the nature of FNA 

needle penetration during thyroid FNA biopsy for cancer biomarkers [22-23] but yielded only 

qualitative tactile assessment of nodule stiffness using their fingers resulting in operator bias, and 

lack of quality control. Thus, there remains an urgent and unmet need for new and quantitative 

technologies to detect and profile solid tumors such as thyroid lesions, based on their 

biomechanical characteristics. 

Here, we introduce the use of a simplified piezoelectric needle sensor to measure thyroid 

tissue stiffness at unprecedented cellular scale resolutions. To the best of our knowledge, this is 

the first quantitative biomechanical report on stiffness heterogeneity of thyroid lesions. Unlike, 

other commonly used single cell based biomechanical techniques such as the micropipette 

aspiration[24] and atomic force microscopy[25-26], our ‘smart-touch fine needle’ (or STFN) is a 

low cost method that enables quantitative real-time biomechanical analysis of thyroid tissues 

within the cellular microenvironment. The technology is about ten times finer than diffraction 

limit of Ultrasound, Magnetic Resonance Imaging or Computer Tomography, bridging size 

scales from cell, tissue and organ level to reveal distinct nano-mechanics of thyroid tissues from 

different histo-pathologies. Coupled directly onto the conventional fine biopsy needle (25 

Gauge), the smart-touch can be easily adapted to biomechanically evaluate thyroid lesions for 

risk of malignancy or aggressive cancers, and has potential for use in clinics in outpatient 

settings in future.  

Previously, we demonstrated the ability of a piezoelectric force-sensing needle to 

differentiate solid and fluid-filled thyroid nodules[27] biomechanically. Significantly higher 

force variations (1-D force heterogeneity and stiffness heterogeneity) were noted in solid nodules 

compared to fluid nodules or regions corresponding to healthy thyroid tissue. However, these 
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observations were limited to ultrasound neck phantom observations.  Employing next-generation 

needle sensor design in the current study, we introduce the prototype design for STFN mounted 

directly onto conventional needles used during FNAC. Using data obtained via STFN prototype, 

we show that thyroid lesions with varying fibrotic and malignant potential reveal discrete 

variations in tissue stiffness/stiffness heterogeneity, and correlate well with final histopathology 

data. Based on our findings, we believe that STFN provides a solid foundation for development 

of sensitive and low-cost tools that enable rapid and radiation-free stiffness heterogeneity-based 

characterization of malignant lesions in vivo, in thyroid and which is applicable to other soft-

tissue tumors.  
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Chapter 18 

STFN Design and Development 

The STFN device was constructed using additive manufacturing technology (3D printing) 

to allow for inexpensive and flexible exploratory design. A lead zirconate titanate (PZT) ceramic 

piezo cylinder (0.125” (OD), 0.085” (ID), and 0.500” length) from Boston Piezo-Optics, Inc. 

served as a force transducer for measuring biomechanical properties. An ergonomic custom 

CAD designed (SolidWorks 2013) housing unit is prepared using a MakerBot 2 3D printer 

(Figure 18.1a-c). The housing design incorporated several cutouts sized for each device element 

with the appropriate dimensions. Double twined 25 AWG Lakeshore Teflon insulated copper 

wires were attached using conductive silver epoxy for all connections and electrically isolated 

throughout the holder. The printed parts were assembled using fast drying cyanoacrylate. 

Standard Becton Dickinson (BD) 25 Gauge 3.50” fine needle was attached to the piezo via a 

Luer lock as a measurement probe. Vibrational isolation was achieved by using a freestanding 

apparatus where all mechanical contact was pneumatically damped using an inexpensive custom 

vibrational liquid filter. Vibrational damping through liquid media produces a 3 dB filter within 

the low-frequency band <200 Hz. Measurement automation was controlled mechanically using a 

single axis Misumi LX26 actuator, where contact between the STFN device and actuator was 

damped using our vibrational filter. The experimental setup used a custom biocompatible sample 

holder alongside a compact analysis platform (as shown in Figure 19.1a). 

18.1  Instrumentation 

Measurements were taken using National Instruments USB-6259 data acquisition module 

routed from a Stanford Research Systems Low-Noise Current Amplifier. The mechanically 
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induced electric current from the PZT piezo was converted to a voltage signal via a charge 

amplifier and its time trace recorded. The force trace was calculated in real-time through 

standard d31 Piezo tube equation. Needle actuation was controlled through using a linear motion 

actuator. We calculated the position trace of the needle from the Musimi LX26 motor’s known 

stepper size and rate. The optimum actuation speed was calibrated to 8 mm/sec to emulate 

clinical operation. Since needle and sample deformations during the operation were minimal, the 

force trace in combination with the position trace was converted from F(t) to F(x). All data were 

stored in an ASCII format and analyzed using LabView 2015 software. 

 

 

 

Figure 18.1 Experimental set-up for the smart-touch fine needle (STFN) a, Experimental set-up for the smart-touch fine 
needle (STFN) a, Optical image of the STFN device composed of a 25G fine needle, PLA polymer housing and connected to 
RG-58/U coaxial BNC cable. b, Design schematic of housing attaches the needle to piezoelectric tube transducer and piezo-
response measured through 20 AWG twisted pair Cu wire. The twisted pair is frayed to connect to the BNC. c, An illustration 
shows the experimental connection diagram of STFN. d, Schematic diagram of a cross-section of porcine kidney samples 
showing fibrous capsule, cortex and medulla regions. e, An example of force versus needle displacement profile from STFN 
penetrating through the tubules of the kidney sample. Before the estimated point of contact (marked with a solid black arrow) 
between the needle and kidney tissue, the force observed was minimal. After the point of contact (solid black arrow), there is an 
elastic deformation due to fibrous capsule until an abrupt Hertzian penetration (broken black arrow) occurs. Subsequent 
deformation peaks occur (labeled L1 to 5) before full penetration at the point marked as exit (broken black arrow).  
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We chose gravitational force loading because of the elegant simplicity of the approach.  Masses between 

m = 25 g and m = 55 g were weighed using a digital balance, and the resulting gravitational force, Fg, was 

computed using Fg = m g, where g = 9.81 m/s2 is the gravitational constant. The FNE device was mounted 

vertically and then smoothly loaded and unloaded with the calibrated masses. The change in piezoelectric 

charge on gravitational force loading was measured for each of the calibrated masses in Figure 18.2. 

Force (mg) vs. piezoelectric charge was plotted and first order polynomial (linear) fit slope was taken as 

the calibration constant (N/C). Force calibration measurements were done at a preamp gain of 2 nA/V and 

at band pass filter 0.03 Hz-100 kHz. After the calibration procedure, the calibrated masses were again 

loaded, and the force measured by the FNE device was verified to be in agreement with the force 

computed via Fg = m g. 

 

 

Figure 18.2. Piezoelectric Coefficient Calibration. Calibration of the piezoelectric  element was performed using standardized 
weights loaded on a custom built apparatus to determine the d31 coefficient. A statistical number of measurements were taken and 
a least square linear regression algorithm was used to determine the d31 coefficient (4.1 x 10-7

 C / N) for the device.  

 

18.2 Quantitative control experiment of ex vivo tissues 
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To better recapitulate the native tissue microenvironments within thyroid samples, here, 

we chose first to calibrate the device while including the effects of biological environments via 

an ex vivo animal tissue model. A control experiment using porcine kidney samples aided to 

develop a working model of spatial variations versus biomechanical variations in different 

optically identifiable regimes. We obtained a preliminary characterization of the axial forces that 

arise during needle insertion into a freshly excised porcine kidney, in terms of needle-tissue 

penetration, insertion peak force and apparent stiffness, and to attribute observed force peaks to 

specific tissue structure components. 

Excised kidney organs were procured from traditional vendors and prepared using the 

standard procedures highlighted in the Standard Operation section while omitting any clinical 

reference. Figure 18.1d shows a schematic overview of the kidney, where biologically relevant 

features are labeled. A simplified structure of the organ comprises of medulla lobes (1-2 mm), 

various blood vessels (0.5 -1 mm), and connective tissues within the renal region (>5 mm). 

Automation and experimental parameters for needle-tissue interactions were chosen to measure 

the biomechanical characteristics of the medulla and blood vessels due to their similarity in scale 

to typical human tumor nodules. Nominal parameters of needle speed and needle type (diameter 

expressed in wire gauge G; length, and shape) were chosen to simulate clinical methods typical 

for standard fine needle biopsy of thyroid lesions, and to minimize tissue displacement [1]. 

In a typical force-displacement profile (Figure 18.1e), an initial approach of the needle 

towards the sample is characterized by a zero load force on the needle traversing through the free 

air before the estimated point of contact. The region following contact (I), exhibits positive force 

on the needle with initial elastic deformation (I, II) as modeled by the Hertzian formulation[2]. 

Later, a penetrative peak (broken arrow, Figure 18.1e) was observed with characteristic spring-
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like compression and decompression force loads (II, III), shown as a relatively negative peak 

followed by a relatively positive peak.  The spring-like cortex region between penetration and L1 

show uniform negative (repulsive) response, except for the transient response due to spring 

relaxation. Subsequent peaks labeled L1-L5 were positive and attractive areas presumably 

corresponding to the vesicle-like structure of the medulla. The negative regions between peaks 

likely corresponded to hard repulsive tissue such as the major and minor calyx. An atypical hard 

region between L4-L5 corresponded to a region of calcified vessels, verified visually in a 

subsequent dissection (Figure 18.3) of the specimen. We estimated the dimensions of the 

medulla lobe by calculating the width from the full-width-half-maximum of each peak labeled 

L1-L5. The number of force peaks depends of the tissue structures that are encountered. Visual 

inspection of the sample reveals the width of the peaks to be ~2 mm which corroborate with the 

predicted literature value dimensions for kidney tubules. Secondary peaks found in each lobe 

were attributed to connecting blood vessels and similarly analyzed. The calculated width was 

~1.87 mm and ~0.53 mm for the medulla lobe and blood vessels respectively. Based on 

anatomical considerations (Figure 18.1d), results obtained from explanted samples of kidney in 

a non-diseased state, accurately predicted the expected kidney architecture and biomechanical 

properties of the different regions, corroborating with literature values within < 5% [3]. The 

developed analytical model for classifying biomechanical responses based on the identification 

of characteristic points on the needle force-displacement curves was employed for subsequent ex 

vivo patient thyroid sample analysis.  
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Figure 18.3. Porcine Kidney Dissection and Analysis. A post-measurement dissection of the porcine kidney sample was 
conducted to elucidate the mechanical profile of the porcine kidney.  Measured areas are marked with blue ink (i) and conducted 
in ascending order. Dissection normal to the penetration (ii) reveals a hard renal structure (iii) near the incident of penetration and 
exit. 
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Chapter 19 

Protocol development and Measurement ex vivo patient thyroids 

19.1  Ex vivo thyroid sample procurement 

We followed a standard procedural protocol for every attained thyroid sample and 

measurement. Explanted human thyroids samples were procured from the Ronald Reagan UCLA 

Medical Pathology Department in accordance with the IRB protocol. 

19.2  Sample Mounting 

First, the possible areas of interests for biomechanical profiling with the STFN were 

identified, in consultation with the attending physician, for each specimen studied. The initial 

diagnosis and relevant medical data were kept in a blinded secured database for reference. 

Measurements were taken approximately 1 hour after surgical removal while held in an 

environmentally controlled storage unit at 4 C to prevent sample degradation as reported 

previously[1]. Typically, thyroid samples were then placed on our custom sample holder (Figure 

19.1) where the sample was mapped into topographic sections using the holder and a mesh grid. 

Assigned reference ID and a digitally scanned image for each sample were recorded in a secured 

database for future reference. The sample holder with the thyroid specimen was then placed in a 

normal position with the path of the STFN measurement apparatus, allowing for approximately 1 

cm of free translation before contact of the needle with the sample. The initial 1 cm data was 

used for zero-force calibration and determining signal-to-noise ratio.  



116 
 

For sample orientation, precisely oriented maps were prepared for each specimen to 

indicate the area(s) investigated for biomechanical analysis (Figure 19.1b). We used color ink on 

the specimen (Figure 19.2c) to highlight the specific area(s) that have been measured/sampled, as 

follows: Green (Area 1) - Nodule of primary interest (as defined clinically, main factor for 

thyroidectomy); Red (Area 2) – Non-diseased area immediately adjacent to the main nodule 

(area 1); Black (Area 3) – Non-diseased area at least 0.5 cm away from the main nodule (area 1); 

Yellow (Area 4) – Contra lateral thyroid without disease; Purple (Area 5) – Other nodule, if 

present. No more than five nodules/areas were analyzed for each specimen. Tissue sections were 

taken from the corresponding areas that have been measured and indicated as such on the gross 

description. STFN data analysis was performed independently without knowledge of histological 

diagnoses. 

19.3  Histology Analysis 

After STFN measurements, inked samples were formalin-fixed and paraffin-embedded 

according to standard histological procedures. The subsequent histo-pathological examination 

included assessing the type of lesion and standard histo-pathological markers (extent of tumor 

infiltration, fibrosis, necrosis, and lymphocytic infiltration). 
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Figure 19.1 Experimental workflow during the typical STFN measurements and distribution of tissue stiffness 
heterogeneity observed for thyroid carcinoma and the healthy thyroid. a-b, Following a standard operating procedure, 
samples were first prepared by attachment and orientation into quadrants, using biocompatible sample holders with calibrated 
grids as illustrated schematically. c, An inked patient sample measured using STFN. Samples were later processed for standard 
tissue histology.  

 

19.4  Identification of characteristic points on STFN based needle force-displacement 

curves 

First, we measured the non-nodule regions of the thyroid tissue specimens as determined 

by haptic palpations. Real-time force versus needle displacement data from the STFN was 

observed and analyzed to determine the validity of each measurement (Figure 19.2a). We 

developed standard direct-indicators of successful characterization through multiple heuristic 

trials. The Hertzian deformation response (Figure 19.2a, red and black) indicated penetration of 

the needle into the tissue. Simultaneously the STFN response in stiffness deflection (Figure 

19.2a, red and black) characterized tissue granularity, indicating the presence of nodules or other 

extracellular material. Each measurement was repeated 5-10 times on different parts of the same 

nodule for statistical convergence. Subsequent STFN measurements targeted other areas of 

interests such as tumor nodules, cystic nodules, and lymph nodes following identical procedures. 

We inked each measured area for subsequent histological assessment of the thyroid tissue 
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specimens. The order of the procedure was chosen to prevent region-to-region cross-

contamination in histological studies. 

Figure 19.2 Method for determining the presence and location of the nodules in ex vivo human thyroid samples- based on 
needle biomechanical response. a i, Shows the characteristic STFN response for the initial point of contact between the needle 
and the tissue sample (solid black arrows), followed by penetration (marked by broken arrows) into non-tumor and tumor tissues 
shown in red and black curves respectively. Malignant specimens (black) show several broken arrows corresponding to 
secondary interfaces caused by tumors as corroborated by histology.  Within the identified regions of interest (marked with * and 
** for non-tumor and tumor samples respectively), heterogeneity of tissue stiffness is analyzed based on Equation 1 given in a 
(ii). b-c, Show corresponding force-displacement curves from ROI (for non-tumor and tumor samples respectively). 
Representative ex vivo measurements of human thyroid following SOP, show distinct responses between malignant and benign 
samples. 

19.5  Analysis of tissue stiffness and stiffness heterogeneity in patient thyroids 

Using STFN prototype, we analyzed the tissue stiffness and stiffness heterogeneity of ex 

vivo patient thyroid samples including various thyroid histo-pathologies. Our goal was to 

quantify any significant differences in the biomechanical profiles for papillary carcinoma, cystic 

carcinoma, aggressive tall-cell carcinoma, and Hashimoto syndrome carcinoma compared to 
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non-tumor tissue thyroid tissue and adenomatoid cyst-like nodules. Our findings provide the 

initial steps towards a mechanoprofile catalog of variant carcinoma based on localized tissue 

biomechanics. Table 19.1 shows patient characteristics from all ex vivo thyroid samples 

analyzed in the current study. All measurements were done on site to simulate the clinical use of 

the device and reduce possible sources of contamination. Figure 19.2a shows typical force versus 

displacement profiles obtained using STFN.  

19.5.1 Determining the presence and location of the nodules in ex vivo thyroid- based on 

needle biomechanical response: Similar to our control experiment (Figure 18.1e), the initial 

approach regions prior to estimated contact between the needle and the tissue show a near-zero 

loading force (Figure 19.2a) whereas the contact regions show typical Hertzian behavior. The 

point of initial contact between the needle tip and the sample is marked with solid black arrow. 

As seen in Figure 19.2a, the length of the Hertzian region inherently differs from sample-to-

sample, due to variations in size of the thyroid samples. However, our analysis is thyroid size 

independent, as we normalize the data size in our catalog. The points of needle penetration 

(broken arrow, Figure 19.2a) at differing interfaces exhibit spring-like behavior and high 

stiffness. In case of a representative benign sample (Figure 19.2a, red), only a single penetration 

event is noted (broken arrow Figure 19.2a), followed by translation into a relatively homogenous 

non-nodule region. In contrast, the representative malignant sample shows three such events 

(Figure 19.2a, black). The initial penetration corresponds to the transition from non-contact to 

initial contact with the thyroid tissue, while the subsequent penetration peaks correspond to the 

interface from non-nodule to nodule and out of the nodule, as the needle traverses through the 

specimen. A qualitative analysis of the real-time force versus needle displacement profiles 

obtained via STFN readily distinguished between benign and malignant thyroids (Figure 19.2a).  
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Needle-tissue penetration points were readily identifiable for all samples and were used to 

validate the presence or absence of nodules, as well as their positions. Further analysis on 

localized region-of-interest (ROI) determined the intrinsic biomechanical properties of malignant 

(Figure 19.2a*; 19.2b) and benign (Fig 19.2a**; 19.2c) human thyroids. Equally binned 

subsections of data from Fig 19.2a are selected, representing non-tumor and tumor tissue labeled 

with solid arrows. Heterogeneity provides a quantitative description to calculate their force 

heterogeneity. For user validation, the heterogeneity equation is truncated to analyze 40 um 

windows and applied as a sliding function across the ROI in Figure 19.2b-c. Our classification 

analysis uses the full 350 um range of the sectioned data to render quantitative insight presented 

later in Figure 19.4. 

For quantitative analysis of biomechanical variations between malignant and benign 

human thyroids, we measured stiffness heterogeneity as shown in Figure 19.2b-c. The force 

heterogeneity profiles of the benign case show several areas of relatively high heterogeneity 

(illustrated in the representative profile shown in Figure 19.2a, red). This characteristic was 

determined to be the typical composition of normal thyroid tissue due to normal variation in the 

density of hormone glands and blood vessels. In contrast, areas displaying about twice the 

amplitude in heterogeneity characterized the malignant case (in Figure 19.2a, black). We 

attribute the increase in heterogeneity to the likelihood of tissue fibrosis and frequent 

calcifications in thyroid tissues, and which corroborate with histological analysis of the samples 

used in our study (Figure 19.3). Specifically, to examine differences between benign and 

malignant thyroid lesions, we used a non-parametric Wilcoxon rank sum test to compare the 

median tissue stiffness and stiffness heterogeneity differences measured between the two groups, 

with α = 0.05. Our results suggest large and statistically significant differences between median 
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stiffness values obtained for benign (0.05 ± .02 mN/mm) versus malignant thyroid lesions (0.18 

± 0.15 mN/mm) (P = 1.55x10-4) in 12 patient nodules measured. Furthermore, stiffness 

heterogeneity was also found to be statistically higher in malignant compared to benign thyroid 

lesions (3.23 ± 2.49 μN; 1.41 ± 0.43 μN; P =2.22 x 10-5).   

 

Figure 19.3. Heterogeneity Increase due to Fibrosis/Calcifications. Ex vivo STFN measurements of human thyroids showing 
the distribution of tissue heterogeneity responses a observed for thyroid carcinoma and healthy thyroids. Increased tissue stiffness 
heterogeneity observed for malignant thyroid samples compared to non-tumor thyroid samples, corresponds well with malignant 
tissue histology, shown in b displaying increased stroma density shows histology for a non-tumor sample with little intervening 
stroma for comparison.  

 

19.6 Biomechanical identification of variant human thyroid carcinoma 

 Next, we analyzed STFN based stiffness and stiffness heterogeneity measured in several 

thyroid carcinomas prevalent in different populations. A statistical summary of our findings is 

presented in Figure 19.4 (a, b) indicating stiffness heterogeneity (μN) and stiffness (mN/mm) 

respectively, evaluated for multiple non-nodule and nodule regions from all thirteen patient 

samples included in our study. These included the papillary carcinoma, cystic carcinoma, 



122 
 

aggressive tall-cell carcinoma, Hashimoto syndrome carcinoma, and adenomatoid (Table 19.1). 

Information on the specific variant cell-type was acquired using histological reports and cross-

examined with the post-analysis results from STFN measurements.   

Table 19.2 Statistical Analysis of Tumor Variants. STFN data for 76 measurements are statistically analyzed according to 
their corresponding histology reports. Variants of benign samples (Adenomtoid and Normal) show similar qualities while 
malignant samples (others) show drastic variability.  Classification of each variant can be observed through their hetergeneity 
response using principle component analysis.  

No Age/sex Clinical History  Cytological/Histology  

1  45/M  Papillary Thyroid Carcinoma 2.6 cm tumor  Positive for metastatic malignant cells  

2  52/M  Papillary Thyroid Carcinoma 1.2 cm pT3 
pN0  Positive for metastatic malignant cells  

3  64/M  Cystic Papillary Thyroid Carcinoma 0.8 cm  Positive for metastatic malignant cells  
4  47/F  Hyperthyroidism and Thyroid Goiter  Negative for malignancy, cyst lined follicular cells  

5  73/M  Papillary Thyroid Carcinoma 1.7 cm pT3 
N1b  Positive for metastatic malignant cells  

6  29/F  Hashimoto Papillary Thyroid Carcinoma 1.5 
cm pT3 N1a  Positive for metastatic malignant cells  

7  64/M  Cystic Thyroid Goiter with Gout  Negative for malignancy, multinodular goiter  

8  23/F  Hyperparathyroidism post 
parathyroidectomy  

Positive for metastatic malignant tall cells, papillary 
thyroid microcarcinoma pT3Nx  

9  33/M  Papillary Thyroid Carcinoma 1.1 cm  Positive for metastatic malignant tall cells  
10  68/M  Papillary Thyroid Carcinoma 4.5 cm  Positive for metastatic malignant cells  
11  49/F  Papillary Thyroid Carcinoma 1.6 cm  Positive for metastatic malignant cells  

12  69/M  Hashimoto Papillary Thyroid Carcinoma 0.2 
cm  Positive for metastatic malignant cells  

 

Compared to normal thyroid tissue (1.39 ± .47 μN, 31 regions measured from patients with non-

disease), adenomatoid samples showed low heterogeneity (1.34 ± .28 μN; n= 9). Cystic 

carcinomas were identifiable through characteristically low stiffness and heterogeneity (0.79 ± 

.05 μN; n = 5). In contrast, aggressive tall cell carcinoma showed significantly higher 

heterogeneity (6.29 ± 1.10 μN). A similar profile is shown for Hashimoto (5.75 ± 0.81 μN) 

syndrome in heterogeneity but can be differentiated using stiffness.  
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Figure 19.4 STFN based quantitative biomechanical analysis of patient thyroid tissue samples with corresponding 
representative histology. a, Tissue stiffness heterogeneity (uM) and b, tissue stiffness (mN/mm) evaluated for all 13 patient 
samples studied. Data are stratified based on tissue variant types. Variants of benign thyroid samples (normal and adenomatoid) 
show similar biomechanical characteristics compared to malignant samples (others). c, Histology data corresponding to each 
thyroid tissue variant represent normal, adenomatoid, papillary, cystic, tall cell and Hashimoto disease respectively (from i-vi). 

19.6.1 Correlation between thyroid histology and biomechanical characteristics: 

Corresponding structural variations within the different thyroid tissue histology were correlated 

with STFN biomechanical analysis for different thyroid tissue variants (normal, adenomatoid, 

papillary, cystic, tall cell or Hashimoto disease) are shown in Figure 19.4c. Healthy thyroid tissue 

displayed follicular cells uniformly distributed with purple epithelial cells traversed within the 

collagen fibers (as represented in Figure 19.4c-i). Both the collagen fibers and follicular cells 

stained pink, but the cells can be readily identified- forming rotund colloids and surrounded by a 
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layer of epithelial cells. Adenomatoid samples consisted of the same structure as a healthy 

thyroid except for follicular cells consistently forming enlarged colloids. In contrast, papillary 

carcinoma samples show uncontrolled growth of epithelial cells (Figure 19.4c-ii). In case of 

papillary carcinoma, the histological images represent cells undergoing replication with the 

presence of enlarged nuclei and nucleoli. The absence of follicular colloids and increased 

presence of collagen fibers to support growing epithelial are vital features of the ubiquitous 

papillary carcinoma  (Figure 19.4c-iii). Cystic carcinoma samples are difficult to image as the 

broken cyst tend to only create large voids in the sample histological images (Figure 19.4c-iv). 

The high abundance of cell nucleoli is highly indicative of the presence of carcinoma. In the case 

of tall-cell carcinoma (Figure 19.4c-v), the majority of epithelial cells are elongated allowing for 

rapid progression throughout the thyroid and drastically increases the number of collagen fibers. 

Finally, the rare case of Hashimoto carcinoma shown in Figure 19.4c-vi depicts a very staggered 

and heterogeneous structure in the sample but otherwise similar to papillary carcinoma. 

As expected, compared to normal thyroid samples (.06 ± 0.02 mN/mm), adenomatoid 

samples showed low stiffness (.04 mN/mm) likely due to the enlarged hormone glands 

dominating the ROI analysis and a monotonically decreasing trend due to high liquid content. 

Cystic carcinomas were identifiable through characteristically low stiffness and heterogeneity 

(.02 ± 0.00 mN/mm) likely due to a distributed structure of fluid nodules and the reduction of 

transport vessels upon needle insertion into the cyst. Conversely, aggressive tall cell carcinoma 

showed significantly higher heterogeneity (6.30 ± 1.10 μN) due to increased fibrosis and 

calcification from rapid metastasis. A similar profile is shown for Hashimoto syndrome (5.75 ± 

0.81 μN) in heterogeneity but can be differentiated using stiffness (Hashimoto .22 ± 0.02 

mN/mm, Tall Cell 0.41 ± 0.03 mN/mm) due to reduced development of fibrosis while high 
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heterogeneity from Hashimoto syndrome’s inhomogeneous cell distribution. Overall, despite 

several confounding factors including sex, age, development, and the state of health of their 

thyroids, STFN measurements of stiffness and stiffness heterogeneity readily identified 

malignant cases from benign cases based on either extremely high or low heterogeneity and 

stiffness (Figure 19.5).  

 

Figure 19.5. Varied STFN Responses of Thyroid Carcinoma and Healthy Thyroid. Representative ex vivo measurements of 
human thyroid show clear distinctive response between malignant and benign samples. Benign measurements from adenomtoid 
and normal (healthy) thyroid depict low heterogeneity within the tissue i, where the heterogeneity is measured at a random 
location on the tissue. Measurements on malignant samples (Papillary to Hashimoto) depict high heterogeneity likely due to 
calcification around the nodule ii. 

 

Moreover, the heterogeneity of healthy and adenomatoid samples was observed to differ by a 

factor of 2 from each of the malignant cases. Distinguishing between the variant types of 

carcinoma also show similar ratios between each type but requires the auxiliary use of stiffness 

for some degenerate cases such as tall-cell and Hashimoto, where their heterogeneity profiles are 
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similar. Using heterogeneity and stiffness in concert, the analysis yielded stiffness with 

differences by a factor of two thereby enabling biomechanics based identification between the 

two cases. Our study provides the direct evidence for diagnostic potential for fine needle force 

sensing approaches to obtain quantitative biomechanical analysis of tissues. Our work provides 

direct evidence for the applicability of tissue biomechanics in assessing benign versus malignant 

thyroid lesions. More importantly, it also indicates the usefulness of biomechanical analysis in 

evaluating the aggressiveness of malignant lesions as a complementary approach for early 

diagnosis. STFN based stiffness and/or heterogeneity together reliably identified the different 

variants using heterogeneity (Figure 19.5b) as validated by gold standard histological findings. 

 

19.7 Conclusions and outlook  

Biomechanics plays an important role in normal and pathological tissue function. Tissue 

stiffness has been studied extensively within the field of cancer for diagnostic purposes using 

various imaging modalities. However, none of the currently available imaging modalities or 

biomechanical approach allows depth-independent yet direct quantitative assessment of 

biomechanical variations within the tissue microenvironments for early detection and 

management of thyroid cancers. Our ex vivo thyroid study illustrates the capabilities of STFN as 

a mechano-profiling tool for tissue diagnosis. STFN provides an exclusive and novel approach to 

assess localized high resolution (cellular level) and quantitative biomechanical variations in 

thyroid tissues. The findings presented in the current ex vivo thyroid study, suggest the high 

potential for the STFN approach to be translated into an in vivo diagnostic device. Despite 

limited patient population size, the results provide a solid foundation for further diagnostic 

assessment of quantitative tissue biomechanics in vivo to evaluate the risk of malignancy in 
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thyroid lesions in a larger validation study in future. The technique can also be applied to lung, 

liver, pancreatic, or prostate cancer. This label-free technique enables complementary tumor 

tissue sampling required for genomic profiling and treatment planning, as needed. As a hand-

held, low cost technology, STFN could be ideal for diagnostic screening of solid tumors in 

medically underserved communities in USA and low resource settings worldwide, with minimal 

or no access to pathology labs or experts.   
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Chapter 20 

 

Final Remarks 

 

 Implementation of nanotechnological techniques towards neuromorphic devices and 

bioinformatics provided novel platforms in “artificial life”. Although a somewhat maniacal term, 

the concept of “artificial life” is a simple extension of machine learning. While machine learning 

attempts to biomimetically achieve information processing, artificial life applies biological 

models towards non-biological physical systems[1-2]. Directed research in artificial life adopts 

methodologies similar to an evolutionary process where problems are posed by setting 

evolutionary constraints rather than using a wholly reductionist physical model. Applications of 

artificial life typically utilizes machine learning algorithms to classify behaviors and control 

parameters for material design of self-assembly  [3-4], inception of mathematical [5], or 

linguistics[6]. The research I completed during my doctorate program inevitably converged unto 

this ubiquitous concept and developed into a concept our collaborators currently refer to as 

“thermodynamic computing.”  

The concept of thermodynamic computing was conceived with close collaboration with 

Dr. Todd Hylton (University of California, San Diego), Dr. Stanley Williams (Hewlett-Packard 

Labs), my advisor (Dr. James K. Gimzewski), and my research group (Gimzewski Lab) [7]. The 

concept stems from the application of machine learning paradigms towards physical systems to 

facilitate material manipulation through transduction of information directly into the system. 

Similar to artificial life, thermodynamic computing constrains a physical system to pose a 

problem. A simple example is the travelling salesman problem, where, given a list of cities, the 
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salesman attempts to find the shortest possible route between each city and returns to their origin. 

Here the problem may be posed as a circuit by constraining impedance values to represent the 

intercity distance while electrical nodes represent the city identification. Application of a bias 

voltage at a specific node poses a specific iteration of the problem and measurement of the 

electric current at various nodes solves the problem. Although the solution is realizable as a 

digital algorithm, a similar solution can be achieved using non-electronic systems such as 

microfluidics, DNA transcription, or quantum entanglement. The process yields a material 

encoded with a simple algorithm represented by channels, base pairings, or triplet states using 

the previous examples. Similarly, a problem may be posed to reduce traffic flow, control gene 

expression, or excite specific energy states provided environmental forces constrain the system 

to approach those solution trajectories.  

Investigations in this dissertation are preliminary results towards realization of 

thermodynamic computing, where we have designed systems that physically deform or adapt to 

environmental constraints and developed the mathematical axioms to determine their trajectories. 

Specifically: The relationship between the dynamical properties of a complex system and its 

computational capabilities and characteristics; Control parameters for computation dynamics 

which emerge in macroscopic tools – as detailed within Chapter 2. In addition to these very 

preliminary results, artificial life algorithms [5] enable a generalized criteria to determine the 

above points for a novel scientific method. 
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