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Abstract: Depression is a common mental illness characterized by sadness, lack of interest, or
pleasure. According to the DSM-5, there are nine symptoms, from which an individual must present
4 or 5 in the last two weeks to fulfill the diagnosis criteria of depression. Nevertheless, the common
methods that health care professionals use to assess and monitor depression symptoms are face-to-
face questionnaires leading to time-consuming or expensive methods. On the other hand, smart
homes can monitor householders’ health through smart devices such as smartphones, wearables,
cameras, or voice assistants connected to the home. Although the depression disorders at smart
homes are commonly oriented to the senior sector, depression affects all of us. Therefore, even though
an expert needs to diagnose the depression disorder, questionnaires as the PHQ-9 help spot any
depressive symptomatology as a pre-diagnosis. Thus, this paper proposes a three-step framework;
the first step assesses the nine questions to the end-user through ALEXA or a gamified HMI. Then, a
fuzzy logic decision system considers three actions based on the nine responses. Finally, the last step
considers these three actions: continue monitoring through Alexa and the HMI, suggest specialist
referral, and mandatory specialist referral.

Keywords: smart home; PHQ-9; depression pre-diagnosis; HMI

1. Introduction

According to the World Health Organization, depression is a common mental disease
around the world. About 5% of depressed individuals are adults, and 5.7% are senior peo-
ple [1]. Besides, depression increased by 60% during Coronavirus disease (COVID-19) [2].
Recurrent and moderate to severe intensity depression have serious health conditions and
can lead to suicide [1]. Young adults and people older than 60 years may be the most
vulnerable group [1,2].

The Patient Health Questionnaire 9 (PHQ-9) is a short, self-administered questionnaire
and a mental health depression screener based on the Diagnostic and Statistical Manual
of Mental Disorders, fifth edition (DSM-5) [3,4]. Nevertheless, the common methods that
health care professionals use to assess and monitor depression symptoms are face-to-
face questionnaires leading to time-consuming or expensive methods [5]. Thus, efforts
require taking advantage of what is accessible to the end-user to provide information to the
health care professional. Proposals include using a smartphone and smartwatch to classify
depression, physical activity, mood, social activity, sleep, and food intake [5] or the use of a
smartphone to assess the PHQ-9 [6].
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Smartphones or wearables, like smartwatches, are often used by single individuals
as an extension of their life; they are devices that can help detect and monitor depressive
symptoms [5,7,8]. On the other hand, smart homes have been arising due to the Internet
of Things; for instance, modern household appliances have increased the comfort level of
householders [9–12]. Chatbots are used to track mood and help users deal with depres-
sion [13,14]; thus, voice assistants as Siri or Alexa have become appealing for individuals.
It has been reported that end-users prefer to interact with technology rather than health
professionals [15].

COVID-19 impacted daily life and increased anxiety, depression, and suicide because
individuals were clustered at homes or as a secondary effect of economic disruption [16].
In addition, their restrictions included zero interaction with other users by closing schools,
universities, recreational facilities, or workplaces [2,17,18]. As a response, technologies
at smart homes accelerated due to their necessity for daily activities such as work, study,
or socializing [19]. Moreover, smart homes can help the health care sector by monitor-
ing householders’ health through smartphones, wearables, cameras, or voice assistants
connected to the home [10,20–23].

The structure of this paper is as follows: Section 2 presents the literature review regard-
ing depression, the PHQ-9 questionnaire, and the smart homes as enablers for depression
pre-diagnosis. Section 3 presents the three-step methodology used for this paper. Section 4
describes the proposed framework by step. Section 5 shows the proposed framework
results and its linkage with gamified HMIs oriented for depression pre-diagnosis at home.
Section 6 discusses the proposal with its advantages and limitations. Finally, Section 7
details the conclusions and future work.

2. Literature Review

Depression is a common mental illness characterized by sadness, lack of interest,
or pleasure. It may also be accompanied by somatic characteristics such as disturbed
sleep and appetite, tiredness, and poor concentration. Its effects on a patient’s physical,
mental, and social well-being can lead to disability and cause a huge burden for healthcare
systems and society. According to the World Health Organization (WHO), this illness
affects approximately 3.8% of the 280 million people [1].

Consequently, depression is not exclusive to the older population; it can happen at any
age leading to poor quality of life (QoL) and affecting the economically active population, as
reported by Müller et al. [24]. They found that the self-reported mental distress, including
depression and anxiety, was highly related to the days of incapacity to work through
questionnaires and scales. Furthermore, this research reported that depressive patients
presented 27 times more specific days of incapacity to work than healthy workers, leading
to an economic burden of the disease due to its management costs.

According to the DSM-5, the diagnosis considers symptoms, behavioral changes,
and the effect of these factors in someone’s life. Hence, there are nine symptoms: sleep
disturbance, interest/pleasure reduction, guilt feelings or thoughts of worthlessness, energy
changes, concentration impairment, appetite or weight changes, psychomotor disturbances,
suicidal thoughts, and depressed mood. In addition, an individual must present 4 or 5 (one
of them being depressed mood or loss of interest or pleasure) in the last two weeks to fulfill
the diagnosis criteria [25].

A specialist must perform the diagnosis based on the criteria through a guided in-
terview. However, many questionnaires and scales have been developed due to the
importance of identifying early cases; these cannot diagnose the patient. However, they can
spot depressive symptoms and be used as screening or pre-diagnosis methods. In addition,
suicidal thoughts are an important factor to consider; they are assessed in interviews and
questionnaires. Based on the WHO reports, 700,000 people die due to suicide each year,
therefore, the importance of its prompt diagnosis and management [1].
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2.1. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5)

This manual has been used as the base for mental diseases since 1952 when its first
edition was released [26]. It helps to standardize diagnosis for research, treatment, and
prognosis across different physicians, hospitals, and countries. For its development, more
than 160 researchers and physicians were gathered to reach a consensus for the criteria of
the different disorders based on the most updated information and studies [27]. However,
this manual does not include information about treatment or management. It can only be
used for diagnosis, prognosis, and assessment of treatment effectiveness [27].

2.2. Patient Health Questionnaire 9 (PHQ-9)

The PHQ-9 consists of 9 Likert-type questions (0 to 3). The total punctuation ranges
from 0 to 27, and it allows to classify the symptomatology in no depression (0–4), mild
depression (5–9), moderate depression (10–14), moderately severe depression (15–19),
and severe depression (20–27). This tool was developed in 1999 by Robert Spitzer, Janet
Williams, and Kurt Kroenke, and since then, it has been translated and validated in many
languages and countries. The items in the questionnaire are listed below (Table 1). The
shaded section means that if there are at least four or more selected answers thus, there is
an existence of a depressive disorder.

Table 1. Patient Health Questionnaire (PHQ-9).

Over the Last 2 Weeks, How Often Have You
Been Bothered by Any of These

Following Problems?
Not at All Several Days More than Half

the Days Nearly Every Day

1-5
1. Little interest or pleasure in doing things 0 1 2 3

2. Feeling down, depressed, or hopeless 0 1 2 3
3. Trouble falling or staying asleep, or sleeping

too much 0 1 2 3

4. Feeling tired or having little energy 0 1 2 3
5. Poor appetite or overeating 0 1 2 3

6. Feeling bad about yourself—or that you are a
failure or have let yourself of your family down 0 1 2 3

7. Trouble concentrating on things, such as
reading the newspaper or watching television 0 1 2 3

8. Moving or speaking so slowly that other
people could have noticed? Or the

opposite—being so fidgety or restless that you
have been moving around a lot more than usual?

0 1 2 3

9. Thoughts that you would be better off dead, or
of hurting yourself. 0 1 2 3

Furthermore, this screening tool includes an item to assess the effect of the symp-
toms in the individual’s QoL and relationship with others and an item assessing suicidal
tendencies. The suicidal item or item nine must be considered an important factor for man-
agement and possible hospitalization of the patient [25,28]. The approximated application
time is 5 min, it is usually self-administered, but it could also be administered through an
interview in person or by telephone [28].

The questionnaire has been translated and validated in different languages and coun-
tries. Most of them have found it with adequate internal consistency, reliability, and
excellent correlation with other scales such as the Beck Depression Inventory. For example,
in the meta-analysis by He et al., considering a cut-off point of 10, they reported a pooled
sensitivity of 0.88 and specificity of 0.86, compared with the structured and semi-structured
interviews for diagnosis of depression [29]. The 2019 study by McCord and Provost in a
university in the US reported the internal consistency of this tool with Cronbach’s Alpha
of 0.76 [30].
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In June 2021, National Health and Nutrition Examination Survey (NHANES) program
released a dataset corresponding to the 2017–2018 cycle and from 2019 to March 2020
answers of the PHQ-9 [31,32].

2.3. Smart Homes

A Smart Home (SH) monitors and manages home electronics and appliances through
an Internet connection [33]. These devices or social products include thermostats, cam-
eras, voice assistants, lights, doorbells, household appliances [9,20,34,35], and provide
homeowners information on how much energy they have used on certain equipment or
systems [11]. Moreover, an SH collects and analyzes data about the home environment,
communicates that data to users and service providers, and improves the ability to manage
various domestic systems through social products [12].

In addition, Marikyan et al. [10] classified the SHs into four groups based on the
technology services:

1. Surveillance home: Householders receive alerts about possible natural disasters or
security interventions. Besides, the SH gathers data from the environment to detect
burglary threats.

2. Assistive home: This home type promotes the householders’ well-being through
action recognition. Hence, three types of services are offered:

a. Senior oriented
b. Child oriented
c. Overall health-oriented

3. Detection and multimedia home: This home type detects and collects information
from videos and photos of householders’ daily lives.

4. Ecological awareness home: Householders monitor and control their energy supply
against demand through special sensors and automatic monitoring systems. Thus,
this home type promotes environmental sustainability.

a. Smart Home Energy Management Systems have advanced IoT devices to con-
vert a traditional home into an energy-aware home to reduce energy consump-
tion and promote money savings [36].

However, a fifth type of home should be added, the Gamified SH. This type of home
uses socially connected products [20,21,35,37–43] that profile end-users based on their
personality traits, type of gamified user, and energy user [9,34,44,45] to propose tailored
interfaces that help them understand the benefits of becoming pro-environmental or energy-
aware. Figure 1 depicts an example of this type of home.

Fuzzy Logic and Smart Homes for Detection of Depressive Disorders

The computer scientist, Lotfi Zadeh from the University of California Berkeley, pro-
posed in 1965 the fuzzy set theory as a class of sets based on membership grades from 0 to
1 [46]. The fuzzy set has inference rules that do not require a mathematical model of the real
system but rather rules generated by experts, polls, or consensus-building [47,48]. Hence,
fuzzy logic (FL) was created to model uncertainty based on linguistic words and sentences,
known as linguistic variables, to associate them with human logic rather than the use of
numerical values. The process begins with the fuzzification step that classifies in fuzzy sets
the variables with an uncertainty metalinguistic degree. Following, the experts propose the
linguist inference rules with an antecedent IF and a consequent THEN. Finalizing with the
defuzzification step is the final process that determines the output values through fuzzy
inference methods such as the Mamdani and the Sugeno inference [48].

Multi-sensor data fusion is a framework that collects information from multiple
sensors to make inferences and create functions that compensate, process information,
communicate, and integrate to provide quantitative measurements consistently [20,42,47].
The multi-sensor data fusion bases its concept on human beings’ and animals’ fundamental
tasks, using multiple sensors to survive and track possible threats. Furthermore, this
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system relies on the decision-making stage because the information collected from the
sensors requires a decision based on the sensed data.
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Wlodarczyk et al. [49] proposed SWRL-F as an FL extension of the Semantic Web
Rule Language because no precise information can be used. Hence, the knowledge repre-
sentation in SWRL was simplified. Thus, their SWRL-F ontology constructed fuzzy rules
in SWRL using Web Ontology Language. Thakur et al. [50] proposed a fuzzy inference
system for diagnosing depression through the PHQ-9 to get the correct level of severity
of depression among patients. They collected data from 50 patients from hospitals in
Bangladesh. Leon et al. [51] proposed the SENTIENT project to identify early signs of
depressive disorders in senior householders to ease affective support and care. A system-
atic review concluded that SHs influence senior users’ QoL, but low technology readiness
requires diversification [52]. VandeWeerd et al. [53] deployed the HomeSense project in
the community of older adults in The Villages, Florida. This ambient health and wellness
platform monitors the age of senior people to recognize any relevant event that may affect
their QoL. In [20], they used a voice assistant and cameras to track the householders’ daily
mood to improve their QoL by promoting social inclusion and physical exercise. The
multi-sensor system was used within the SH to identify the senior householders’ emotions.

The depression disorders at SHs are currently oriented to the senior household-
ers [20,39,50–53]; however, depression affects all of us [1,2]. Hence, experts need to di-
agnose the depression disorder; questionnaires as the PHQ-9 help spot any depressive
symptomatology as a pre-diagnosis.

Therefore, using artificial intelligence (AI) decision systems like adaptive neuro-fuzzy
inference systems (ANFIS), fuzzy logic, or neural networks can provide reliable information
about end-users behavior because AI techniques emulate human making decisions [47,54].
In addition, AI platforms have been used to ease conversation and social support within
communities to assess digital health interventions [55,56]. Thus, it is possible to think of
an integrated and complex system that monitors householders’ mental health to help as a
pre-diagnostic depression symptom and send that information to the clinicians.

2.4. Gamification for Treatment Depression

Gamification uses game elements and game-design techniques in real context envi-
ronments [57]. In [58], they performed a systematic review to identify how gamification
and serious games were applied to support the treatment of depression. The gamification
elements included scores, goals, and progress levels. For example, Lukas et al. [59], pro-
posed a gamified smartphone-based intervention to reduce depressive symptoms. Thus,
the gamification elements considered goals, progress levels, and a total number of views.
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Hungerbuehler et al. [60], considered story and feedback gamification elements for their
chatbot proposal.

The Octalysis framework [57] helps as a guideline to develop gamified applications
through two types of motivations to fulfill specific activities, for instance, avoid house-
holders’ depression at home. Therefore, the communication between interfaces and the
end-user is from a tailored human machine interface (HMI) within a gamification structure
that includes feedback and adjustments based on the user’s level of depression to teach,
motivate, and engage them to perform specific goals that avoid isolation or depression.
Hence, Table 2 lists the two types of gamification structures used in this research. In
extrinsic motivation, people are motivated because they want something they cannot get,
and acquiring it infers outer recognition. For intrinsic motivation, the activity is rewarding
by itself.

Table 2. Extrinsic and intrinsic motivations used in gamification.

Extrinsic Motivation Intrinsic Motivation

Challenges Notifications
Levels Messages
Dashboard Tips
Statistics Community
Profile picture or avatar Collaboration
Points, badges, leaderboard Competition

Consequently, to the best of the authors’ knowledge, proposals consider the house-
holders to monitor any depression symptomatology at SHs using the PHQ-9, either through
voice assistants or tailored human–machine interfaces (HMIs), has not been proposed.

Therefore, the research question proposed in this research was:

• What characteristics should an HMI framework consider helping the healthcare work-
ers pre-diagnose depression using SHs as enablers?

To answer the research question, this paper proposes a three-step framework that
assesses the nine questions to the end-user through ALEXA or a gamified HMI. Then, a
fuzzy logic decision system considers three actions based on the nine responses: continue
monitoring through Alexa and the HMI, suggest specialist referral, and mandatory spe-
cialist referral. These actions can only be seen by the healthcare system and/or to the end
user’s emergency contact. Besides, a statistical analysis was performed on the NHANES
dataset [30,31] to get the depression severity by age group as a guideline for the specialist
to know how the householder behaves compared to the national dataset; in other words,
if the householder has an expected behavior, is outside the expected behavior, or has an
abnormal behavior compared with the NHANES dataset.

3. Material and Methods

The NHANES dataset that had the (PHQ-9) answers [31,32] were melted with the
Demographic Variables and Sample Weights (P_DEMO) [61,62] to get the gender and age
of each observation and perform further statistical analysis. Then, the SEQN or ID from the
P_DEMO was compared to add the three additional variables to the PHQ-9 dataset. Thus,
the melted dataset had 8965 observations and 13 variables; the last variable was the total
score of the nine questions. Any observations with NA and the tenth question (DPQ100)
were deleted as the DPQ100 required a healthcare professional to answer. The scope of this
research is related to the depression symptomatology pre-diagnosis. Therefore, the cleaned
dataset had 7882 observations. Table 3 depicts the code and description of each variable
from the melted dataset.
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Table 3. Code and description of the melted dataset.

Code Description

SEQN Respondent sequence number.
RIAGENDR Gender of the participant.

RIDAGEYR
Age in years of the participant at the time of
screening. Individuals 80 and over were coded
at 80 years of age.

DPQ010 to DPQ090 Represent each question described in Table 1.
Total Total score up to 27.

The software employed during this research were:

• The statistical analysis and data cleaning considered the SPSS v. 25 and R-studio v. 1.4.1106.
• The fuzzy logic decision systems used LabVIEW v. 20.0.1.

Thus, the statistical analysis considered the cleaned dataset and consisted in:

• Demographic characteristics of the sample (mean age, male and female proportion,
and median PHQ9 scores), for normally distributed data, the mean and standard
deviation were reported. The median and interquartile range were reported for
non-normally distributed data.

• Setting the normal, expected, and abnormal depression thresholds for each age group,
by obtaining the 3, 25, 50, 75, and 97 percentiles.

• The associations between age group and depression severity and sex and depression
severity were determined. These associations were achieved with a frequency ta-
ble and a chi-squared analysis; if the chi-squared analysis was found significant, a
Crammer’s V was performed to obtain the strength of the association. Furthermore, a
Spearman’s correlation test was performed between age and PHQ9 score.

• Items 1, 2, and 9 are crucial, because according to DSM, to make a depression diagnosis,
4 of the nine questions have to be positive, and at least one of the five must be items 1
or 2 [25,28]. Moreover, if item 9 is positive, the psychological referral is mandatory.
In order to assess the distribution and association of these items in the different
age groups and sex, frequency tables and chi-squared tests were performed with
Crammer’s V test whenever it applied.

• p-values below 0.05 were considered statistically significant.
• Cramer’s V results were interpreted as follows: 0.0–0.1 negligible; 0.1–0.2 weak;

0.2–0.4 moderate; 0.4–0.6 relatively strong; 0.6–0.8 strong; 0.8–1.0 very strong [63].

3.1. Fuzzy Logic Decision System

Figure 2 shows the PHQ-9 algorithm used for the fuzzy logic decision system. This
algorithm considers that if the nine answers had a score of less than ten and item nine
had a “not at all” response, the action is to continue monitoring. On the contrary, if the
score was greater than or equal to 10 and the ninth item was zero, the action is to consider
depressive symptomatology. Nevertheless, if the ninth answer was greater or equal to 1, it
is mandatory.

Two fuzzy logic decision systems were proposed. The first fuzzy logic decision system
examined item 9 and the total score in the input system; the output system reflected the
decisions explained in Figure 2: Continue monitoring, mental health specialist referral, and
mental health specialist referral is mandatory. This decision system had 20 rules.

The second FL decision system considered the percentile score divided by age group
starting with 20 to 29 years old, 30 to 39 years old, 40 to 49 years old, 50 to 59 years old,
60 to 69 years old, and ending with 70 to 80 years old age group for the input system. The
output system was the same as the first FL decision system. This decision system had
18 rules. The fuzzy logic decision system was modeled in LabVIEW v. 20.0.1.
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3.2. Human Machine Interface

In [21], some of the authors of this research proposed SH gamified HMIs for energy
reductions. Hence, based on the premise of considering socially connected products at SHs
such as connected thermostats, smart refrigerators, smart lightings, or smart TVs [9,38],
a novel interface was proposed to take advantage of this type of HMIs to survey the
householders the nine questions from the PHQ-9. Hence, the householders would not feel
obligated to answer, and they could answer the survey if they want to, or even request
Alexa to ask the questions instead of reading them.

Figure 3 depicts the interaction in the SH to monitor householders and run the pre-
diagnosis PHQ-9. There are six types of interactions involved in this diagram: user-house,
house-product, product-product, product-user, product-interface, and user-interface. This
diagram reflects how the end-user is continuously in touch with the household appliances
and elements. Thus, the interaction between the house and the product knows the profile
usage at home, besides these appliances can be linked with the voice assistant as Alexa
or the mobile phone to provide the interaction between products. Therefore, through the
multi-sensor system, Alexa and the HMI can communicate with the end-user providing
this interaction of product-user. The relevant part of this structure is the product–user
interaction because the fuzzy logic decision system provides the actions required to pre-
diagnose any depressive symptoms and, therefore, request a health care specialist.
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4. Proposed Framework

Figure 4 shows the proposed framework for the depressive pre-diagnosis in the SH
environment. This framework has three steps:
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Knowledge base step: During this step, the NHANES dataset and P_DEMO were
collected. The statistical analysis was performed to understand the depressive symptoma-
tology better and take three actions based on the total score and question 9. Besides, the
expected behavior by age group was proposed, so the health care professional can quickly
review if the householder’s answers are with the national database or if the householder
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is behaving unexpectedly. In addition, the gamified elements for depression depicted in
Table 2 were analyzed to propose them on the HMI.

Fuzzy logic step: This step has two parts. The first part considers question 9 and
the total score to display which three actions were required to consider. The second part
uses the age and the age group to display the type of behavior based on the three actions
explained in the previous section.

Evaluation step: This step evaluates the interaction between the user and the house-
hold appliances to provide the interaction between product–product, product–user, and
product–interface to help the health care professional better understand how the house-
holder is behaving regarding the depressive symptomatology. This step provides continu-
ous feedback to the user and the knowledge base to continue monitoring the end-user and
pre-diagnose any householder’s depression.

5. Results

This section provides the results of each step and the HMI proposal in an SH Context.
First, the knowledge base step provides the statistical analysis performed in the PHQ-9
and P_DEMO datasets. Then, the fuzzy logic decision system step provided the two types
of decision systems and proposed rules for the depression pre-diagnosis. During this
step, a LabVIEW program was suggested to interact with the ALEXA or HMI PHQ-9
questionnaire and the actions required based on the input values. Then, the evaluation
step showed the results of the LabVIEW front panel and its connection to the HMI into an
SH environment.

5.1. Knowledge Base Step: Statistical Analysis

The melted and cleaned database from NHANES PHQ-9 [31,32] and P_DEMO [61,62]
containing 7882 observations were explored to obtain the main characteristics of the sample.
The sample included 3865 (49%) males and 4017 (51%) females, with a mean age of
50.73 (s.d.: 17.42) and a median PHQ-9 score of 2 (IQR: 0–5). The division of PHQ-9
scores by age group reported a similar distribution with a median of 2, IQR of 0–5 or 0–6,
third percentile of 0, and 97th percentile of 14, 15, or 16 (See Table 4).

Table 4. PHQ-9 percentile score divided by age group.

Score Percentile
Age Group

20–29 30–39 40–49 50–59 60–69 70–80

P3 (Expected low limit) 0 0 0 0 0 0
P25 (Expected) 0 0 0 0 0 0
P50 (Median) 2 2 2 2 2 2
P75 (Expected) 5 4 5 5 5 4
P97 (Expected high limit) 14 15 15 16 16 14.67

Table 5 shows the depression severity by gender. The analysis reported a higher
prevalence of depressive symptoms in women. A chi-squared test was performed to assess
the association between gender and depression severity, and a weak association was found
(p-value = 1.46 × 10−17; Crammer’s V = 0.104).

Table 5. Depression severity by gender.

Depression Severity Male Female

No 3033 2790
Mild 553 780
Moderate 180 296
Moderately severe 69 108
Severe 30 43
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In depression severity by age group, a spearman correlation was performed using the
age and PHQ-9 scores. No correlation was found between both variables (p-value = 0.000038;
Rho = −0.046). A chi-squared test was performed to assess the association between age
group and presence of depression, and a weak association was found (p-value = 1.23 × 10−68;
Crammer’s V = 0.197) (See Table 6).

Table 6. Depression by age group.

Score Percentile
Age Group

20–29 30–39 40–49 50–59 60–69 70–80

No Depression 861 920 941 964 1143 994
Total Depression 336 289 869 397 402 316

Due to the importance of item 9 in the questionnaire, since it assesses suicidal or
self-harm thoughts, the distribution on its presence was explored by sex, age group, and
depression severity. No association was found between sex or age group and suicidal
thoughts in this sample (p-value = 0.545; p-value = 0.226, respectively); however, a relatively
strong association was found between depression severity and presence of suicidal or self-
harm thoughts (p-value = 0; Crammer’s V = 0.476).

Items 1 and 2 are crucial, because according to DSM, to make a depression diagnosis,
4 of the 9 questions must be positive, and at least one of the 5 must be items 1 or 2. These
two items include depressive mood and reduced pleasure. Talking about question 1, a
negligible association was found between its presence and sex or age group (p-value = 0.012,
Crammer’s V = 0.028; p-value = 0.000085, Crammer’s V = 0.058, respectively). In question 2,
a negligible association was found between it being positive and sex (p-value = 0.000028,
Crammer’s V = 0.047), and no association was found between it being positive and age
group (p-value = 0.086).

5.2. Fuzzy Logic Decision System Step

Figure 5 shows the two types of FL decision systems created. Figure 5a shows the
first FL decision system, the input and output rules used for Question 9. The input
variables considered the four-scale answer depicted in Table 1 as the membership functions.
The output variables were the three actions to perform depending on Question 9 and
the total score. Figure 5b shows that the input variables considered the total score and
the membership functions were the depression severity. Figure 5c shows the second FL
decision system; the input variables considered for the age and the membership functions;
Figure 5d shows the input variables considered by each age group and the type of behavior
for the membership functions. In both Figure 5c,d, the output variables were the same as
the first FL decision system. Besides, Table 7 shows the FL rules employed for the first
decision system, and Table 8 depicts the FL rules for the second decision system.

Figure 6a depicts the block diagram used for the LabVIEW project. This diagram
linked both FL decision systems to provide a single front panel. Figure 6b displays the
front panel.

This proposal adds the nine questions and based on the last question and the total
score, the actions are displayed on the lower part of the panel. Besides, considering the age
and the total score, the expectation of depression by age group is displayed.
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Table 7. First FL decision system rules.

Rule IF AND THEN

1 Q9 is “Not at all” TotalScore is “No depression” Action is “Continue monitoring”
2 Q9 is “Not at all” TotalScore is “Mild depression” Action is “Continue monitoring”
3 Q9 is “Not at all” TotalScore is “Moderate depression” Action is “Specialist referral”
4 Q9 is “Not at all” TotalScore is “Moderately severe depression” Action is “Specialist referral”
5 Q9 is “Not at all” TotalScore is “Severe depression” Action is “Specialist referral”
6 Q9 is “Several days” TotalScore is “No depression” Action is “Specialist referral is mandatory”
7 Q9 is “Several days” TotalScore is “Mild depression” Action is Specialist referral is mandatory
8 Q9 is “Several days” TotalScore is “Moderate depression” Action is Specialist referral is mandatory
9 Q9 is “Several days” TotalScore is “Moderately severe depression” Action is Specialist referral is mandatory
10 Q9 is “Several days” TotalScore is “Severe depression” Action is Specialist referral is mandatory
11 Q9 is “More than half the days” TotalScore is “No depression” Action is “Specialist referral is mandatory”
12 Q9 is “More than half the days” TotalScore is “Mild depression” Action is Specialist referral is mandatory
13 Q9 is “More than half the days” TotalScore is “Moderate depression” Action is Specialist referral is mandatory
14 Q9 is “More than half the days” TotalScore is “Moderately severe depression” Action is Specialist referral is mandatory
15 Q9 is “More than half the days” TotalScore is “Severe depression” Action is Specialist referral is mandatory
16 Q9 is “Nearly every day” TotalScore is “No depression” Action is “Specialist referral is mandatory”
17 Q9 is “Nearly every day” TotalScore is “Mild depression” Action is Specialist referral is mandatory
18 Q9 is “Nearly every day” TotalScore is “Moderate depression” Action is Specialist referral is mandatory
19 Q9 is “Nearly every day” TotalScore is “Moderately severe depression” Action is Specialist referral is mandatory
20 Q9 is “Nearly every day” TotalScore is “Severe depression” Action is “Specialist referral is mandatory
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Table 8. Second FL decision system rules.

Rule IF AND THEN

1 Age is “20–29” 20–29 is “Expected” Action is “Continue monitoring”
2 Age is “20–29” 20–29 is “Outside expected” Action is “Specialist referral”
3 Age is “20–29” 20–29 is “Abnormal” Action is “Specialist referral is mandatory”
4 Age is “30–39” 30–39 is “Expected” Action is “Continue monitoring”
5 Age is “30–39” 30–39 is “Outside expected” Action is “Specialist referral”
6 Age is “30–39” 30–39 is “Abnormal” Action is “Specialist referral is mandatory”
7 Age is “40–49” 40–49 is “Expected” Action is “Continue monitoring”
8 Age is “40–49” 40–49 is “Outside expected” Action is “Specialist referral”
9 Age is “40–49” 40–49 is “Abnormal” Action is “Specialist referral is mandatory”
10 Age is “50–59” 50–59 is “Expected” Action is “Continue monitoring”
11 Age is “50–59” 50–59 is “Outside expected” Action is “Specialist referral”
12 Age is “50–59” 50–59 is “Abnormal” Action is “Specialist referral is mandatory”
13 Age is “60–69” 60–69 is “Expected” Action is “Continue monitoring”
14 Age is “60–69” 60–69 is “Outside expected” Action is “Specialist referral”
15 Age is “60–69” 60–69 is “Abnormal” Action is “Specialist referral is mandatory”
16 Age is “70–80” 70–80 is “Expected” Action is “Continue monitoring”
17 Age is “70–80” 70–80 is “Outside expected” Action is “Specialist referral”
18 Age is “70–80” 70–80 is “Abnormal” Action is “Specialist referral is mandatory”
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5.3. Evaluation Step

Figure 7 shows some results on the LabVIEW front panel. The answers were based on
the NHANES datasets. For instance, Figure 7a shows the answers received from SEQN
109441. This individual is 20 years old and had a score of 5, which is the same as mild
depression; thus, the actions required for this individual are to continue monitoring, and
this individual is under the expected national behavior. On the contrary, Figure 7b displays
the SEQN 109342 for a 43-year-old individual with moderately severe depression. This
individual answered, “several days” for the ninth question, and the system immediately
moved toward the “health specialist referral is mandatory”. This individual behavior is
not normal, and it is totally outside the expected behavior. Figure 7c shows an example for
a 26-year-old individual with suicidal tendencies due to question 9; however, based on the
total score and the age, this individual is outside the expected behavior. Finally, Figure 7d
depicts the information for a 54-year-old user with a total score of 16 but with no suicidal
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thoughts; therefore, the action is to suggest a specialist referral but not in a mandatory
manner; besides, this user is outside expected behavior but not abnormal behavior.
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Furthermore, Table 9 exemplifies five of the 7882 observations, including the LabVIEW
dashboard results. The full observations are available at [64].
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5.4. Human Machine Interface in a Smart Home Context

Figure 8 depicts the proposal of a gamified HMI in an SH context. This interface
shows how to use interfaces that include connected products such as the thermostat,
television, refrigeration, or lighting. This interface focuses mainly on the quick survey so
the householder can answer either by clicking one of the four options of each question of
the PHQ-9 or by selecting the option of “Talk to ALEXA”. Figure 8a shows the homepage,
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the extrinsic gamified elements that consider the challenges, the statistics, the picture
profile, the points, and the leaderboard. On the contrary, the intrinsic gamified elements
are related to the notifications, the tips, the choice perception by either talking to ALEXA
or contacting the doctor, and by answering the survey. Figure 8b displays an example of
this survey; thus, question 9 is asked. Therefore, once the householder answered the first
question, the second question was displayed, and so on, until the tenth question. Hence,
in both ways, the end-user can answer the questionnaire. However, this interface did not
provide information to the householder regarding his/her mental health score. Therefore,
the psychologist or psychiatrist needs to analyze the result to provide further actions to
avoid any suicidal thoughts. Besides, this type of interface aims to engage the end-user in
activities to achieve specific goals. For instance, this interface was connected to a thermostat
where the householder interacted with the device and became energy aware [38].
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6. Discussion

The characteristics that an HMI framework needs to consider to help the healthcare
sector in the pre-diagnosis of depression using SHs as enablers are as follows:

1. A knowledge base gathers the population with depression symptomatology through
available PHQ-9 answers to relate them with the proposal and identify if the house-
holder is within the range of expected depression or requires more attention. During
this step, the most common gamification elements for depression are collected.

2. A fuzzy logic step that helps as a decision system triggers three actions: continue
monitoring, specialist referral, and specialist referral is mandatory. Furthermore, three
expected behaviors are analyzed: expected, outside expected, or abnormal behavior.

3. The evaluation step assesses the interaction between the householder and depression
by taking advantage of household appliances through gamified interfaces. The inter-
face uses gamification elements to help as an enabler for helping in the pre-diagnosis
of depression. The elements are divided into extrinsic and intrinsic. Moreover, this
pre-diagnosis runs into a feedback and adjustment environment; hence, the house-
holder receives points by answering the survey, contacting the doctor, and interacting
with ALEXA or through video call. In [20], it is proposed to use video callings as
social connectors to avoid social isolation or depression.

This proposal considered the NHANES PHQ-9 [31,32] and P_DEMO [61,62] datasets
to build the three-step framework. For the first phase of the knowledge base, a statistical
analysis was explored to obtain the main characteristics of the dataset and determine
based on the age group the acceptable limits for expected behavior, outside behavior, and
abnormal behavior of depression symptomatology. Then, the FL decision systems were
built during the second step based on the statistical analysis and the algorithm depicted in
Figure 2. Finally, the evaluation phase consisted in analyzing the database and comparing
the results with the dashboard depicted in Figure 6. Besides, an HMI that considers the
household appliances and takes advantage of the home page of this HMI is proposed.
Hence, the HMI uses this home page of the SH interface to provide the PHQ-9 survey in
two modalities: through the HMI or ALEXA.

This paper proposes a novel approach by considering the SH environment and house-
hold devices to monitor the householder. This depressive symptomatology monitoring is
directly proposed considering either the HMI questionnaire or through ALEXA. Due to the
increase and acceptance of voice assistants, this option is preferred for individuals who feel
more comfortable talking rather than interacting with mobile phones or tablets. This pro-
posal is novel in terms of considering all the householders above 20 years old instead of just
focusing on the senior users that the literature review had widely indicated [20,40,51–54].
Besides, depression is not exclusive to the older population [1]; depression can happen at
any age, leading to poor QoL and affecting the economically active population [1,2]. The
age range was considered for this proposal due to the sample analyzed in the PHQ-9 and
P_DEMO datasets [31,32,61,62].

In addition, COVID-19 had accelerated anxiety, depression, and suicide due to eco-
nomic and face-to-face restrictions. Therefore, this proposal aims to use smart homes as
enablers for depression pre-diagnosis through the PHQ-9 assessment on HMI and help
the health care system and professionals detect any symptoms of depression at home to
improve the QoL of the householders.

However, this proposal has its limitation regarding which type of user could interact,
for instance, with the HMI [5,7,8]. Consequently, research suggests that certain personality
traits are open to using new gadgets or new technology as the openness or extraversion per-
sonality trait. However, for the neuroticism personality trait is complicated to accept new
technology [34,44]. Moreover, to propose gamified interaction for depressed householders,
further research is required to propose tailored activities that improve their mental health.
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7. Conclusions

Employing fuzzy logic decision system allows the healthcare systems to monitor the
householder’s health and avoid suicidal thoughts or depressive disorders. Furthermore,
depending on the total score and the ninth item, this system compared the total score with
the NHANES dataset to provide insights into the health care sector. Thus, it makes it easy to
review if the householder is behaving according to the national metrics or requires further
actions. Hence, this proposal is designed to be implemented in SHs by considering all
end-users (non-typical and typical users). However, further research is needed to develop
and fully test the interface, for instance, by enrolling a representative sample of subjects to
evaluate using this HMI continuously.

This research aims to propose the integration of ALEXA and gamified HMI to assess
the PHQ-9 and provide a pre-diagnosis of depression symptomatology to help the health
care system and professionals detect any symptoms of depression at home. Besides, this
proposal considers three actions based on the total score and the suicidal item: to continue
monitoring through the HMI and ALEXA, health care specialist referral, and mandatory
specialist referral. In addition to this integration, a statistical analysis was performed
to provide the dashboard information that helps as a comparison for the specialist. For
instance, the householder can have a score of 16 but can have an outside expected behavior
or abnormal behavior. This conduct is related to the age group provided by the NHANES
dataset. Another aspect to include in further research is to include, if possible, the use
of household appliances and cameras to track householders’ activities and compare their
activities with their responses. For instance, the householder could feel with poor appetite;
however, the refrigerator could register and compare how many times the householder
opened the refrigerator and check with the camera if the householder ate more or less than
two weeks ago. Another example is checking if the individual is having trouble falling or
staying asleep, or feeling tired. Besides, ALEXA or another voice assistant can track the
householder’s voice to identify possible changes in their modulation if the householder is
speaking slower or faster than a couple of weeks ago.

Although this proposal includes all types of users above 20 years old (non-typical and
typical users), to validate this proposal meticulously in the real end-user market, these
future actions are required:

• Evaluate and improve the proposed application with different scenarios and target
populations. For instance, there are sectors with chronic diseases such as rheumatoid
arthritis that commonly have depression. With this proposal, evaluate their perfor-
mance through their treatment to analyze if this proposal helps in improving their
depression symptomatology. Besides, the proposal should be evaluated outside con-
trolled environments and in several countries in which any cultural factor needs to
consider the framework.

• Update the framework and HMI by including SWRL technologies as they have more
robust rules than FL. However, this research did not propose SWRL or SWRL-F be-
cause the objective was to generate a conventional knowledge base. Afterward, future
work will explore the use of these rules, and their optimization will be evaluated.

• Submit this proposal into medical protocols to assess the system in a pilot study with
real users.

• Include, if possible, the camera tracking to develop facial recognition and compare the
answers with the camera feedback.

• Employ ALEXA in combination with cameras or other household appliances to ana-
lyze householders’ patterns and compare their behavioral patterns with their survey
answers. For example, the perception of depression is important. Thus, if the end-user
is feeling depressed, but the actions reflect the opposite, a message could be displayed
through the gamified interfaces. Moreover, ALEXA could talk to the householders
and explain how they have been acting to cheer them up.
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