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EPIGRAPH

To Christ our Lord

I caught this morning morning’s minion, king-

dom of daylight’s dauphin, dapple-dawn-drawn Falcon, in his riding 

Of the rolling level underneath him steady air, and striding

High there, how he rung upon the rein of a wimpling wing

In his ecstasy! then off, off forth on swing,

As a skate’s heel sweeps smooth on a bow-bend: the hurl and gliding

Rebuffed the big wind. My heart in hiding

Stirred for a bird, – the achieve of, the mastery of the thing!

Brute beauty and valour and act, oh, air, pride, plume, here

Buckle! AND the fire that breaks from thee then, a billion

Times told lovelier, more dangerous, O my chevalier!

No wonder of it: shéer plód makes plough down sillion

Shine, and blue-bleak embers, ah my dear,

Fall, gall themselves, and gash gold-vermilion.

Gerard Manley Hopkins (1844-1889)
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ABSTRACT OF THE DISSERTATION

DynOMICS: a total microfluidic-AI system for genome-wide E. coli transcriptional

dynamics and heavy metal biosensing

by

Garrett Cook Graham

Doctor of Philosophy in Bioengineering

University of California San Diego, 2019

Professor Jeff Hasty, Chair

Recent developments in the field of quantitative biology have demonstrated that genetic

networks rely upon information encoded in their temporal dynamics, rather than beginning and

ending steady-states, to govern their behavior. However, until now, there has been no tool with which

to continuously observe genome-wide transcriptional dynamics without terminating the subject

population. In response to this need, we developed DynOMICS, a total microfluidic and machine

learning system that can monitor the state of gene expression across the E. coli genome in real time.

xvi



We demonstrate its effectiveness as a field-deployable sensor, showing that it can learn the dynamic

genomic signatures of heavy metal stress in both actual urban waters from several American cities

and in samples from a toxic mining spill. By harnessing the microfluidics to a state-of-the-art deep

neural network and an associated explanatory artificial intelligence (XAI) algorithm, we demonstrate

its potential as a scientific instrument. We show that, in combination with DynOMICS, we can use

deep learning networks to learn and understand bacterial transcriptional dynamics on a genome-scale.

The combination of advanced microfluidics and AI-XAI is the first of its kind and is a powerful tool

for quantitatively interrogating the E. coli genome.
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Chapter 1

Introduction

1.1 Dynamics in genetic networks

The advent of synthetic and systems biology have revealed the extent to which life encodes

and responds to information encoded in the dynamics of genetic networks and their stimuli, rather

than relying solely upon steady-state signals [45]. Since synthetic biology’s inception in 2000

with the publication of Michael Elowitz’s represillator and Jim Collin’s toggle switch, the field has

demonstrated time and again that dynamic behavior is essential to understanding living systems

[35, 31, 87, 50]. Systems biology, in contrast with synthetic biology, has the scale to capture global

cellular parameters, which endows it with powerful predictive capabilities [62]. However, few

omics-based modeling approaches are built on dynamics, usually due to a lack of data and a dearth

of frameworks with which to build dynamic models [14] . Indeed, it has been shown that, even

in systems where the contributions of dynamic behavior are negligible, the ability to study such

systems dynamically greatly increases the information content of the experimental results [70].

Despite of the importance of capturing time series data, the current measurement technologies

for the study of biological dynamics suffer from a variety of drawbacks [96]. RNAseq, qPCR, and

flow cytometers only provide snapshots of fixed cells, requiring many separate measurements, usually

from many separate experiments, to create a meaningful understanding of anything more than a
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handful of genes. Fluorimetric plate reader and batch culture experiments, while able to produce

time series data, are limited in the number of genes that can be simultaneously studied. In addition,

these techniques usually rely on non-chemostatic environments, which renders them limited in their

experimental capabilities. Finally, microfluidic technologies, especially combined with microscopy,

offer a method to measure cells at high resolution within a chemostatic environment; however, these

approaches are notoriously low-throughput, limited to very few genes-of-interest.

Thus, further advances in quantitatively understanding cellular function requires new experi-

mental technologies that are not only high-throughput, but are capable of generating meaningfully

long time series-data at appropriate resolutions [89, 45].

1.2 Toxic heavy metals and their threat to American water sup-

plies

Concurrent with the rise of quantitative biology, heavy metal contamination has grown to

be one of the United States’ preeminent public health threats over the last decade. While more

complicated and specific definitions exist, heavy metals are commonly defined as a large class of

elemental metals that have a high atomic weight and are at least five times the density of water

[107]. Heavy metals are found naturally in the earth’s crust, usually in relatively low concentrations,

but are concentrated to toxic levels via human activity. Mining, various industrial activities, and

aging water supply infrastructures are the most common sources by which humans are exposed to

these metals [90]. As a result of these pollutant sources, the World Health Organization (WHO) has

identified toxic heavy metals as a significant international public health threat; no less than four

heavy metals (arsenic, cadmium, lead, and mercury) made the WHO’s list of the top ten chemicals

most threatening to public health [118].

While heavy metal contamination may seem like a remote and distant threat to many Ameri-

cans, and while it is true that the most frequent exposure to toxic heavy metals occurs in low-to-middle

income countries, it constitutes a growing threat to the United States drinking and agricultural water
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supplies [58]. Over the past five years alone, the contamination of US water supplies by heavy metals

has lead to dozens of public health and environmental emergencies, profoundly affecting the health

and livelihoods of hundreds of thousands of Americans [92]. In the most commonly cited case, that

of Flint, Michigan, an estimated 140,000 people were exposed to dangerously high levels of lead

and other metals, via their drinking water for over a year [92]. Even today, the city is still grappling

with the health and societal consequences of the disaster [102]. Heavy metal contamination is not

limited just to Flint: a 2016 investigation by Reuters found that there were close to 3,000 additional

regions of the US with lead levels in their drinking water that were at least twice as high as Flint’s

[86]. This threat is likely to only grow more severe in the coming decades, as more and more heavy

metals leach out of corroded pipes in aging water supply infrastructures [113].

Heavy metals are not just a threat to America’s drinking water supply. Agricultural water

sources and natural waterways are also threatened by the accumulation of decades and, in some areas,

centuries of mining and agricultural activity. In 2019, the Associated Press used publicly-available

records to determine that, at average daily flows, over 50 M gallons of toxic mine tailings still flow

into and contaminate American waterways every day [23]. In worst-case scenarios, large-scale spills

have occurred when dams and other barriers holding back reservoirs of mine tailings, coal ash, and

contaminated waste water fail, injecting huge concentrations of toxic heavy metals into local rivers

[55].

One recent such spill was the Gold King Mine Disaster, which occurred outside of Silverton,

CO on August 5, 2015 [28]. The Gold King Mine, which was abandoned in 1923, had accumulated

a large amount of contaminated groundwater inside of it, a consequence of acid mine drainage

[34]. Acid mine drainage occurs when large-amounts of bedrock are exposed by the actions of

mining. When metal sulfides in the rock are exposed to a combination of water and oxygen, the

water can acidify, which in turn leaches other metal ions out of the surrounding rock [10]. These

metals often include heavy metals, such as cadmium, arsenic, copper, zinc, iron, chromium, and

lead [21]. The 2015 spill occurred when environmental cleanup crew, composed of Environmental

Protection Agency (EPA) personnel and contractors, accidentally caused a dam plugging the mine’s

3



Figure 1.1: The Gold King Mine Disaster. An EPA cleanup crew, tasked with decontaminating the
mine after an accumulation of decades of acid mine runoff, accidentally caused the retaining dam
to burst. Millions of gallons of water rushed into the Animas and then the San Juan River, turning
both of them yellow and toxic [109, 110].

entrance to fail (Fig. 1.1). All of the mine’s waste water poured into Cement Creek, and then into the

Animas River, followed by the San Juan River, turning them bright yellow and contaminating their

waters (Fig. 1.2).

While the long-term impacts of the disaster throughout all effected waterways are still being

studied, the short-term impacts were devastating to regional peoples. The thousands of members of

the Navajo Nation, through which the San Juan flows, had to shut off irrigation from the river to their

crops and livestock in the days after the spill [3]. In the +40 C August temperatures, the damage to

crops and livestock health was widespread and significant. While some farms received water that

was delivered by the US EPA, many remote farms did not. As of the writing of this document, there

are still ongoing lawsuits between the Navajo and the EPA over compensation [5].

Heavy metal toxins have long posed a threat to international and American water supplies

and public health. Ironically, even as our nation’s environmental protection and conservation laws

have improved and will continue to do so, heavy metal contamination is guaranteed to occur more

and more frequently in the coming years, as water supply infrastructure and abandoned mining and

industrial sites age.
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Figure 1.2: Sampling the toxic plume from the San Juan River. The plume made its way down-
stream to Mexican Hat, Utah approximately four days after the spill. The author drove overnight
from San Diego to Mexican Hat in order to sample the plume for the purposes of this project.

1.3 Genome-scale microfluidic biosensors

Much of the agricultural damage incurred by the Gold King Mine Disaster could have

been prevented by better metal sensing technologies. At the time of the spill, the only way to

adequately determine the level of contamination in the river water was to send personnel from the

states’ environmental protection departments to the contaminated waterways and manually collect

samples in specially pre-treated scientific containers. From there, the field specialists were required

to transport the samples, on ice, to facilities with inductively coupled plasma mass spectrometers

(ICP-MS) and other analytical chemistry equipment [98]. This process resulted in two-to-four day

gaps between sampling and results. Since during that time it was unknown whether the water was

safe for agricultural use, the farmers who depended on the San Juan River were forced to cut off

their irrigation systems and pumps. The result was that these farmers had to watch as their crops

withered and their livestock dehydrated and sickened, not knowing whether the water was still safe

for use [3].

Much of this damage could have been avoided by continuous, on-site heavy metal detection

technology. In fact, the scope of most of the heavy metal-related public health crises around the

US in recent years would have been drastically reduced by an increase in sampling frequencies and
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detection capabilities. Since real-time detection via automatable and remote chemical sensors is

costly, the aforementioned analytical chemistry technology needed for detection remains confined to

labs, often hundreds or even thousands of miles away from the sites where they are needed. The

problem of heavy metal detection begs for a cheaper and faster solution.

Biosensors have long been hypothesized as a cheaper and more rapid sensing alternative to

analytical chemistry methods for detecting contamination in water supplies, especially contamination

by heavy metals [100]. While it is rare to find heavy-metal sensing genetic systems in multicellular

organisms, many kinds of microbial life evolved genetic defenses to detect, capture, and export heavy

metals from within their own cells [116, 51, 15]. Using these systems, multiple specific sensing

strains can be engineered to detect a suite of toxins. In addition, once engineered, microbes have

the advantage of being inexpensive to produce. Contamination can be detected in minutes-to-hours,

rather than days [73].

Microfluidic devices offer one potential path towards building field-deployable, in-line heavy

metal detection systems. They have numerous advantages over other biosensing device paradigms,

notably a massive reduction in both size and cost. However, constructing a field-deployable biosensor

capable of detecting multiple toxins would require either a single multitoxin-detecting strain or the

isolated loading of unique sensing strains. In addition, it would require ensuring a level of robustness

that most lab-based microfluidic platforms utterly lack. Until now, all microbial biosensors have

either been single-toxin, single-strain, constrained to the lab, and/or batch culture-based [60, 26, 61].

Genome-scale microfluidic instruments, devices capable of tracking the dynamics of thou-

sands of genes at a time, offer one way of building a versatile biosensor, as well as a way to study

the dynamics of gene networks. These devices could leverage biology’s natural ability to sense

and respond to environmental stimuli. As non-specific sensors, they could potentially sense any

substance or stimulus that perturbs the observed portion of an organism’s genome, as long as the

response pattern is learned from training data. Over the past five years, much progress has been

made in constructing and using genome-scale devices in the lab. Notable devices include Sebastien

Maerkl’s yeast chemostat array and Savas Tay’s mammalian neuronal stem cell chip [32, 121].
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However, no one has come forth with a satisfactory bacterially-based device, wherein isogenic

colonies are allowed to grow in a chemostat environment for days or weeks [115]. The possibilities

that such a device would present, not only as a solution to the heavy metal-detection problem, but

also to the gap in our abilities to study genome-scale dynamics, are tantalizing.

1.4 Promise of machine learning in the quantitative life sciences

Since its inception, the field of artificial intelligence has been inextricably linked with the

quantitative life sciences. Artificial neural networks and their progeny, deep neural networks, were

first described by neurophysiologist Warren McCullough and mathematician Walter Pitts in their

seminal 1943 paper ”A Logical Calculus of Ideas Immanent in Nervous Activity”. The paper, which

was published in the Bulletin of Mathematical Biophysics, attempted to demonstrate how networks of

biological neurons operate by replicating them with electrical circuits that were capable of executing

logic functions [81] (Fig. 1.3). Indeed, computer science and quantitative biology’s kinship extends

much further, with biological systems fascinating some of the most notable pioneering computer

scientists (see Alan Turing’s 1952 paper ”The Chemical Basis of Morphogenesis” for the first

quantitative attempt to explain pattern formation in biological systems).

Over the last two decades, computer science has experienced a massive increase in computing

and algorithmic power, especially in the field of artificial intelligence (AI) [108]. Concurrently, the

biological sciences have seen an increase in their abilities to gather magnitudes more experimental

data in less time than ever before; the rise of -omics technologies embody this fact [105, 112, 44].

As data sets grow ever more complicated, the ability for machine learning algorithms to model

arbitrarily complex functions has given researchers the power to discover patterns hidden deep

within these data [24]. Most recently, in the past five years, deep neural networks have demonstrated

astounding capabilities that were, until now, solely the realm of humans [69]. Notable examples

include Google Deepmind’s AlphaGo and AlphaStar projects [13].

Machine learning, however, has not yet been able to deliver fully on its potential to facilitate
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Figure 1.3: The first neural network. This figure is the original from McCullough and Pitts’ 1943
paper that introduced the concept of neural networks and laid the foundation for the field of artificial
intelligence. McCullough, as a neurophysiologist, endowed his artificial network some of the same
shapes as actual biological neurons.
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Figure 1.4: Machine learning and the black box problem. A massive challenge confronting the
field of AI today is to understand how and why complex, high-performance AI algorithms make
the decisions that they do. Until these models are interpretable, their use will be limited. Originally
from [47]

scientific discovery. The primary reason for this limitation is because of what is known as the

”black box problem”. The black box problem refers to the fact that, in general, the more powerful

an algorithm’s ability to model complex phenomenon, the more obscure and nonintuitive the

algorithm’s inner-workings are to human operators 1.4. While artificial intelligence has shown itself

to be extremely proficient at discovering the ”what” of scientific phenomena, we humans are still

left struggling to understand its ”why”.

Hence, the rise of deep neural networks, AI’s ultimate black-box algorithms, has motivated a

push to develop explainable artificial intelligence (XAI) techniques [4]. The quantitative life sciences

have recently seen some excellent efforts to create XAI in service of research, but these techniques

are either model-specific or limited in their applicability because of non-uniqueness or computational

complexities [78, 119, 122].

Thus, the combination of a computationally-efficient, model-agnostic XAI method with

a high-throughput, dynamic -omics experimental technology could represent a significant leap

in our ability to quantitatively understand genomes. As such, we find our project in a unique

position where, by judiciously combining high-throughput microfluidics with advanced data analysis,

machine learning, and explainable artificial intelligence, we could not only create a new avenue for

interrogating genomic dynamics, but could also build a field-deployable heavy metal toxin detector

that is orders of magnitude faster than any currently available method.
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Chapter 2

Construction of a specific microfluidic

biosensor for the detection of heavy metal

contamination in drinking water

2.1 Development of a multi-strain biosensor microfluidic device

and an accompanying loading protocol

In order to realize a commercially viable, field-implementable microfluidic biosensor, it was

first necessary to develop techniques to load multiple engineered sensor strains and lyophilize them

in situ for facilitating long-term storage and transport. The original biosensor device design, as

depicted in Figure 2.1, was not suitable to either advanced multistrain loading or lyophilization. In

order to achieve these goals, a radical redesign of the basic biosensor device was necessary.

In order to achieve long-term storage capability via freeze-drying and multistrain loading, it

was necessary to introduce reservoirs into the strain arrays. The reservoirs would act to increase the

number of individual cells associated with each array and thereby increase the possibility that, after

freeze-drying, at least one viable individual remains in the array upon rehydration. Additionally, it

10
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Figure 2.1: The evolution of biosensor microfluidic design and implementation. (a) A finite
element analysis (FEA) mesh, built from a computer animated design (CAD) of a biosensor
microfluidic device. This design, which is a powerful experimental tool, proved impractical for
practical biosensing purposes due to its weakly visible FL requiring a research-grade inverted
fluorescent microscope. (b) A multi-layer biosensor prototype microfluidic chip with strain FL
visible as a consequence of induction with 1 uM sodium arsenite. (c) A three-dimensional model
of the biosensor gill trap design. This design increases the colony density with respect to the
device’s z-axis, which effectively increases the FL intensity of an array of traps on the device. This
intensity increase enables optical detection with lower-quality, less-expensive optics. (d) An array
of arsenic-sensing E. coli fluorescing in the presence of 1 uM sodium arsenite. The green indicates
strain FL and the red indicates the presence of sodium arsenite in the media.

11



a b c d

e f g

Figure 2.2: Finite element analysis (FEA) modeling of biosensor microfluidic designs. (a) A
three-dimensional mesh of a standard main flow channel with side traps. (b) The velocity profile for
laminar water flow in the main channel of the same design. (c) The flow velocity profile in the side
traps of the same design. Note that the scale has been reduced to highlight the differences in low-
velocity flow regimes within unobstructed traps. (d) The concentration profile for a rate-limiting
nutrient (here assumed to be an essential amino acid for E. coli) based on a reaction-diffusion model
within the same device, roughly simulating the consumption of such a nutrient by a bacterial colony
within the trap. This kind of FEA model allows an experimentalist to approximately determine
whether a design is worth building and testing by filtering out designs with obvious flaws. (e) A gill
trap-based biosensor device design featuring a large reservoir behind the traps for freeze dry-revival.
(f) A gill trap-based biosensor device design featuring a much smaller reservoir behind the traps
for freeze dry-revival. (f) The final evolution of a multistrain, lyophilizable biosensor chip design
that was subsequently successfully built and tested. This design featured the novel bottle-necked
reservoirs and feeder channels, which have served as the foundations for all subsequent biosensor
designs.

was thought that these reservoirs could act as a loading region, either fluidically via port-loading or

mechanically via hand- or robot-guided strain spotting.

Initially, the existing biosensor gill chip design was taken and modified by placing a large

rectangular reservoirs behind the existing trap areas, in order to act as a deposition area, as depicted

in Fig. 2.2e and 2.2f. The gill traps’ dimensions were left unchanged, while the reservoirs varied in

depth from 200-1600 µm. These devices were built and tested experimentally with arsenic-sensing

strain pLB-As3 for effects on growth rate and toxin-sensing ability. Due to the tendency of laminar

flow to spread flow velocities evenly in a manner proportional to the cross-sectional area through

which the fluid is flowing, larger reservoirs performed poorly with regards to populating gill traps,

while smaller reservoirs performed better.

Since the process of designing, experimentally testing, and redesigning microfluidic devices
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is extremely time-consuming, a computer-based design and modeling pipeline was created in order

to efficiently design and rapidly vet more efficacious devices. To verify that such a pipeline could

indeed work, three-dimensional models of the aforementioned reservoir devices were first analyzed

using finite-element analysis (FEA) software (COMSOL Multiphysics v4.3a). When the models

correctly predicted that shallower reservoir depth would allow for better trap-seeding via lower

laminar through-flow, three-dimensional models of candidate reservoir devices were then built and

analyzed via COMSOL, as seen in Fig. 2.2. By narrowing the reservoir width from 1600 µm to 200

µm, I found that the flow velocities at the reservoir corners near the gill trapping regions were greatly

reduced (see analogous regions in Fig. 2.2e and f). I concluded that minimizing the width of the

cell deposition reservoir would minimize flushing of colonies growing in nearby trapping regions.

I subsequently modified the gill chip to allow seeding of the cell traps by narrow upstream strain

reservoirs (see lower left of Fig. 2.2g).

Prior to the purchase and incorporation of the spotting robot discussed in Chapter 3, which

would allow for high throughput, single-step loading of strains via physical deposition of bacterial

microcolonies (”spotting”), a fluidic-based multistrain loading protocol was designed and tested.

The novel strain reservoirs can be filled with cryopreserved cells via injection through the loading

ports/channels that feed into the corners of the reservoirs. After in situ lyophilization of the chips, the

loading ports are then sealed with a quick-curing PDMS variant (Dow Corning Sylgard 170). Upon

device use, the cells revive by media flow from the main channel into the narrow cell reservoirs. Cells

washed from the reservoirs seed the gill traps by flowing from small “feeder” channels connected to

the reservoirs at the rear of the traps. These feeder channels, another novel microfluidic design, allow

the backs of the traps to be seeded with revived cells from the upstream reservoir while maintaining

low laminar flow through the trapping channels. This low laminar flow prevents cell washout from

both the feeder channels themselves and from the attached gill traps. Reservoir and feeder channel

dimensions can be modified to account for various cell-spotting techniques.

In order to successfully culture multiple independent biosensor strains, a 16-strain and

an 18-strain biosensor chip were designed, built, and successfully tested for multistrain loading
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and freeze-drying (see Fig. 2.3). The chips’ dimensions conformed both to the constraints of the

biosensor’s optical detection systems and to the constraints of its strain requirements. The previously

described multistrain port-loading technique was successfully tested with the device (see Fig. 2.4

and Fig. 2.5). An additional air-drying and chemical bonding-based method was developed and

tested before being abandoned in favor of robot-based spotting.

2.1.1 Development of a commercially-viable lyophilization protocol for long-

term storage of biosensor microfluidic devices

In parallel to the developments described in the preceding subsection, a lyophilization tech-

nique was designed and tested to enable easy, non-refrigerated long-range transport of biosensor

chips. Such a capability would enable field-implementation of the biosensor, as opposed to if the de-

vice required laboratory-based strain-loading, culture, and climate-controlled transport to the testing

site. In order to ensure maximum chance of revival after lyophilization, a range of cryoprotectants

suitable for engineered biosensor strains and for microfluidic geometries was formulated from a

combination of literature-based protocols, current industrial practices, and experimentation.

Via literature searches, candidate cryoprotectants known to reliably preserve engineered E.

coli strains during and after freeze-drying and during rehydration were identified.

The cryoprotectant-growth medias include:

1. 2.5% Luria-Bertrani Broth (LB) (w/v) + spectinomycin

2. 2.5% LB + 0.4 %glucose (w/v) + spectinomycin;

3. 2.5% LB + 0.4 %sucrose + spectinomycin;

4. 2.5% LB + 0.4 %trehalose + spectinomycin;

5. M9 + 0.4 %glucose + spectinomycin;
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Figure 2.3: A lyophilizable, multistrain biosensor microfluidic device. (a) An instance of the
biosensor design initially derived through iterative FEA analysis, successfully growing a loaded
with a biosensor strain that is fluorescing in the present of 1 uM sodium arsenite. (b) A 16-strain full-
biosensor chip design with loading ports (cyan) and lyophilization reservoirs visible (rectangles).
The arrays in this device were based on the successful design in (a).

To test these cryoprotectants, biosensor strains were grown overnight to stationary phase.

The strains were then double-washed in cryoprotectant and concentrated to 50x their batch culture

concentration. After lyophilization in a commercial freeze-dryer for 12 hr, the strains were stored

in anaerobic, nitrogen-flushed, desiccated, and light-free packaging at room temperature to protect

from viability-reducing oxidative and photo-oxidative reactions.

Relative cryoprotectant efficacy was determined via plate reader revival experiments per-

formed 24hr, 1 week, 2 weeks, 4 weeks, and 8 weeks after lyophilization. Cells were revived via

rehydration and resuspension in 200µl of revival medium within their respective microplate wells.

The plates were then immediately placed into a Tecan Infinite M200 Pro plate reader, where growth

rates were monitored over the following 48 hours.

Revival media included:

1. M9+0.4% glucose+spectinomycin

2. Trace Select M9+0.4% glucose+spectinomycin
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Figure 2.4: Multistrain, in-chip freeze-drying. (a) A 16-strain biosensor chip with cryoprotected,
independently-loaded, and lyophilized strains. The loading ports have not yet been sealed with
silicone elastomer. (b) A different lyophilizable biosensor device with loading ports sealed with
quick-curing PDMS, which is visible as black material blocking the loading port columns.
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Figure 2.5: A 16-strain biosensor chip with cryoprotected, independently-loaded, lyophilized,
and revived strains. (a) A transmitted light view of the strain arrays and sealed loading ports. (b)
Reservoir FL that occurrs upon revival.
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Figure 2.6: Batch cryoprotectant testing in Escherichia coli. Over 32 combinations of different
growth, cryoprotectant, and revival medias were tested for their freeze-dry revival efficacy for
durations ranging from 1 day to 8 weeks. The plots in this figure depict four of the best combinations.
The first media combination listed is the cryoprotectant media; the two in parentheses are the
growth and revival medias, respectively. Thus, LB+Glu (LB/M9) indicates that the cells were
freeze-dried in Luria-Bertrani Broth plus 0.4% glucose after being first grown to confluence in LB;
they were revived using M9 minimal media.
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+11 h post-revival
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Figure 2.7: Intra-chip revival of lyophilized Escherichia coli biosensor strains. (a) A strain array
half an hour after rehydration with growth media. (b) Robust growth in the same array eleven hours
after rehydration.
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3. Trace Select M9+0.4% glucose

4. HM9 (nitrate) + 0.4

and were selected to be representative of the growth media used in the final device. Strains

protected with optimal cryoprotectants showed little difference in viability between cryoprotectants

after two months of preservation.

The best cryoprotectants, including LB + 0.4% glucose and LB + 0.4% sucrose (see Fig. 2.6),

were used to perform on-chip lyophilization with successful shelf-lives of at least eight weeks and

probably greater.

A biosensor chip loaded with biosensor strain pLB-Amm3 (LABBS31), lyophilized with

optimal cryoprotectants, and protectively packaged according to the protocol above was even

transported to the Mojave Desert and exposed to rough conditions for 48 hours, followed which it

was stored indoors at room temperature for an additional 72 hours. Temperatures to which the chip

was exposed ranged from near-freezing up to +35C. All reservoirs of lyophilized ammonia-sensing

strains revived following rehydration with media.

All on-chip revival occurred via rehydration in Trace Select M9+0.4% glucose+spectinomycin,

HM9 (ammonia) + 0.4% glucose, and HM9 (nitrate) + 0.4% glucose via de-gas driven chip wet-

ting and subsequent gravity- or pump-driven flow. Initial signs of revival occurred on time scales

equivalent to those from the plate reader experiments.

The described protocols constituted novel methods to load multiple, specifically-engineered

biosensor strains and lyophilize them on-chip, neither of which, to the author’s knowledge, had been

done previously. These new protocols render the biosensor device potentially field-implementable

and, thus, commercially viable.
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Figure 2.8: Response of an engineered biosensor strain to single-toxin induction. A single
biosensor strain, engineered to sense arsenic, reliably fluoresces in response to induction by arsenic
and does not fluoresce when induced with any of five other single metal toxins. The responses in
this figure appear orderly and trivial to interpret.

Figure 2.9: Response of an engineered biosensor strain to multi-toxin induction. The previous
figure depicted the same strain responding to single-toxin inductions. When induced with multiple
toxins simultaneously, the strain’s responses become more difficult to interpret. In order to use all
information made available by the biosensor strains to determine which metals were present, we
employed machine learning classifiers.
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2.1.2 Multiclass, multilabel machine learning-classification of biosensor data

Motivation and Multiclass, multilabel machine learning

While the response of a single strain to induction by single toxins appears trivial to interpret,

as depicted in Fig. 2.8, responses of sensor strains to multi-toxin inductions can be non-intuitive, as

seen in Fig. 2.9

The ability to discriminate between contamination with single or multiple toxins is a desirable

quality for any biosensor, since heavy metal contamination usually involves multiple metals presented

simultaneously. This phenomenon occurs as a result of the contamination’s causal mechanism, which

is usually a strongly non-neutral pH that leaches metal ions out of the water’s surroundings, and was

seen prominently in recent water contamination events in Flint, Michigan and the Gold King Mine

Spill outside of Durango, Colorado in August 2015.

Since discrimination and classification constitute supervised learning problems, a biosensor

with multiple specifically engineered strains is an ideal application for the implementation of

machine learning classifiers. Creating a classifier involves training computer models to correctly

assign instances, such as a heavy metal induction, to a correct class or set of classes (such as ”contains

arsenic” with a single toxin induction or ”contains mercury, lead, and copper” with a multi-toxin

induction), as seen in Fig. 2.10.

In the following section I describe how I implemented a process for engineering and extracting

features from biosensor fluorescent time-series data; trained, tested, and validated the performance

of a variety of machine learning algorithms, including a novel accuracy metric for the multiclass,

multilabel setting; created a method for selecting an optimized suite of sensor strains for a variety of

applications; and validated the long-term performance of the sensor via the quantification of sensor

drift.
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Figure 2.10: A graphical analogy for machine learning classification. In any classification problem,
the goal is to train a classifier to correctly assign the maximum number of labels to any instance.
Here, the instances are represented by circles. Their ground truth label (or label set, in the multiclass
case) is represented by their color or colors. Correctly classifying an instance is represented by the
assignment of a circle into the square of the same color. An incorrect classification is represented
by an assignment of a circle to a square of an incorrect color. Binary classification involves only
two classes, represented here by either red or blue, and an instance can only ever belong to one
class. Multiclass classification involves instances pertaining to three or more possible classes; an
instance can still only belong to one class. Multiclass/multilabel classification involves instances
pertaining to three or more classes, in which an instance can belong to one or more of the classes
simultaneously. In the multiclass/multilabel, even simply determining a classifier’s performance
can be nontrivial.
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Figure 2.11: Five distinct features used in biosensor classifier construction. The features, slope,
subslopes, integral, and detrended slope and integral, were used in training and testing machine
learning classifiers to discriminate between multitoxin inductions. Slope uses the linear regressively-
fit slope, here fit over a three hour window. Subslopes uses the same linear regressively-fit slope,
but here fit on sub-intervals of the same time window, which gives a more complete picture of the
dynamics during this interval. The integral feature calculates the numerical integral over the same
time window. The detrended slope and integral features first detrends the mean fluorescent intensity
using the extrapolated baseline before calculating slope and integral; the extrapolated baseline is
calculated by linear regressively-fitting a line to the baseline trace over a certain pre-induction time
window and then extrapolating that line over the full induction window.
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Feature Engineering

A critical step in supervised learning is the identification of a feature set that preserves signal

information while reducing noise and, if possible, reduces the dimensionality of the data without

excessive information-loss. To achieve this goal, I engineered and extracted a set of features, as seen

in Figure 2.11, from the biosensor strains’ fluorescent responses for use in classifier training and

testing. To do so, I first calculated the “slope” feature of the strain response over the full exposure

window by performing a linear regressive fit to the FL time-series values during that time (Fig. 2.11a).

Then I divided the full exposure window into three one-hour subwindows and calculate a “subslope”

feature for each time window in the same manner (Fig. 2.11b). Third, I calculated the “integral”

feature as the numerical integral under the FL response curve (Fig. 2.11c). Next, I generated two

additional “detrended” features by calculating a linear regressive fit to a “baseline” 3-h window of

the response trace prior to the tracer dye pulse and extrapolating it forward through the induction

window (Fig. 2.11d). I calculated the “detrended slope” feature by subtracting this baseline from the

FL response within the induction window and then performing a linear regressive fit (Fig. 2.11e).

Finally, I calculated the “detrended integral” feature as the numerical integral under the detrended

GFP response curve (Fig. 2.11f).

Classifier training

Random forests (RFs), support vector machines (SVMs), and neural networks (NNs) are

common supervised machine learning algorithms used in multiclass/multilabel classification. Each

algorithm has unique advantages and disadvantages for both implementation and classification,

depending largely on the data set of interest. I implemented and cross-validated all three varieties of

classifiers on both small-device and mid-scale device data, with anywhere from 14-32 strains. All

three outperformed a random classifier on the dataset by a statistically significant margin. RFs and

NNs showed the most promise at classifying the biosensor data, as shown by the classifier metric

comparisons in Table ??.
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Random forest classifiers are supervised machine learning algorithms built on aggregate

collections of decision tree classifiers, developed in 2001 by Leo Breiman and Adele Cutler. RFs are

especially suited to small data sets, which can be loosely defined as data sets where the dimensionality

of the feature vector is roughly the same order of magnitude as the number of examples. A decision

tree, the canonical example of a “weak learner” classifier, is fit to a dataset by passing each element

of an instance’s feature vector through a sequence of if-then rules. The optimal rule is decided upon

by which decision rule yields the largest information gain at that node, which is usually measured by

the accuracy the tree’s classification ability up until that node. Decision trees can be grown to their

maximum depth to perfectly fit all data in a training set, but allowing unconstrained growth can lead

to overfitting.

Thus, it is usually necessary to constrain maximum tree depth and the maximum number of

leaf nodes. However, adding these constraints usually severely restricts a decision tree’s classification

ability, reducing it to barely outperforming a random classifier; this type of classifier is known as

a “weak learner”. A random forest is a collection of many “weak learner” decision trees. Each

decision tree in a random forest is trained by randomly subsetting, with replacement, examples from

the training set and training the tree on that subset, within the algorithm depth and node constraints.

Combining many “weak learner” trees creates a “strong learner,” which avoids overfitting the training

set while simultaneously performing well when classifying irregular data. Additionally, random

forests do not require that data is standardized to mean 0 and variance 1 prior to training and testing,

which results in a significant computation time-gain over SVMs and NNs. The number of trees in

the forest is usually defined by the user.

My decision trees were implemented from the open-source library scikit-learn’s Ensem-

ble module’s RandomForestClassifier() class (scikit-learn v0.17.1). Classifiers were 4-fold cross-

validated over the two-dimensional hyperparameter surface corresponding to number of leaf nodes

and tree depth, where maximum leaf node number was tested across the range [21,210] and maximum

tree depth was allowed to vary across [22,210]. Maximum multiclass/multilabel Fβ score was used

to evaluate forest performance. The hyperparameters associated with the forest possessing the
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maximum average F1 score across its folds were reported. Generally, random forest classifiers

performed the best on the feature sets. This result is expected, given the relatively small number of

data points as compared with feature vector dimensionality.

Support vector machines classify data by separating classes via an optimally-separating

maximum-margin hyperplane in the feature space or a higher- or lower-dimensional derivative thereof.

The algorithm was originally proposed in 1963 by Alexey Chervonenkis and Vladimir Vapnik and

received more renewed attention in 1992 when application of the kernel trick allowed SVMs to

classify using kernel functions, which are a type of positive-definite functions that can be designed

to map a point into a higher-dimensional space. Depending on whether a data set is seperable or not,

this mapping usually allows the algorithm to compute a hyperplane that separates the data classes in

the higher-dimensional space. The data and the hyperplane, once fit, can be transformed back to

the original feature space. The algorithm utilizes a small number of vectors close to the decision

boundary to compute the optimal hyperplane parameters. Additionally, this classification method

incorporates advantages of both regression and k-nearest neighbors classification, while dealing with

non-linearly separable data in a computationally efficient manner. However, it usually performs

poorly with small data sets.

I utilized scikit-learn’s SVM module’s C-Support Vector Classification class, implemented

in my parallelized cross-validation module to optimize for the classifier’s hyperparameters. Using a

radial basis function-kernel, with hyperparameters C and γ optimized by searching between [20,220]

and [2−15,21], respectively. Again, maximum average multiclass/multilabel F1 score was used

to discriminate the optimal parameters. As expected, while SVMs fit and trained on the data

significantly better than a random classifier implemented with the class prior probabilities, it was

outperformed by both random forests and neural networks.

Artificial neural networks, referred to alternatively as neural networks or multilayer percep-

trons, were developed in 1950s and 1960s and became popular in the 1980s with technological

advances and with the discovery of the backpropagation weight-optimization algorithm. Originally

proposed as an attempt to mimic the brain’s neural circuitry, a neural network is formed of the

27



following: an input layer of nodes, where each node corresponds to an element of a feature vector;

one or more hidden layers of nodes, which may have more, less, or an equal number of nodes as the

input layer; and an output layer, corresponding to the predicted label. When an instance requiring

classification is passed from the input layer to the first hidden layer, its elements are multiplied

by a unique set of weights depending on which node it is being passed to. The weight elements

are then summed and passed through an activation function to produce a scalar output for that

specific node in the hidden layer. That hidden layer then becomes the input layer for the next hidden

layer and the process is repeated. Finally, depending on the classification context, the combined

sums are passed from the final hidden layer to the output layer, where a post-processing function is

applied. In order to train a NN, stochastic gradient descent or a comparable minimization method is

used to optimize the node weights based on a selected cost function, which can include a weight

regularization function. Neural networks are able to adeptly learn nonlinear class structures and to

update themselves in real-time as additional data points become available, making them an excellent

choice for the biosensor.

A neural network was implemented using the beta version of scikit-learn v.0.18.0’s neural

network module’s MultiLayer Perceptron (MLP) Classifier. Each class label was limited to using a 3-

layer multilayer perceptron utilizing the rectified linear activation function, L2-weight regularization,

the limited-memory Broyden-Fletcher-Goldfarm-Shanno weight optimization method, and inversely

varied the learning rate proportional to the square root of the time step. All data was scaled to have

mean 0 and variance 1 prior to training the classifier or predicting the point’s class. Surprisingly, the

neural network appeared to compare favorably with or outperform random forests across all feature

sets. This result was unexpected, since random forests generally perform better when classifying

data with small training sets.

Classifier performance

The performance of each version of the trained classifiers is best represented by the F1 score,

which is a measure of the test’s accuracy computed as a weighted average of its precision and recall.
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Figure 2.12: Multiclass, multilabel classifier performance visualization on biosensor data. This
figure represents a random forest classifier classifying multitoxin inductions. Correct assignment
of a label to an induction is represented by a shaded circle being placed into larger circle of the
same color. For instance, a triple toxin induction with arsenic, lead, and mercury would result
in each of a small red circle, blue circle, and black circle being placed in the larger red arsenic,
black lead, and red mercury circles, respectively. A misclassification event, where an induction is
incorrectly assigned to the wrong class, is depicted by a smaller multicolored circle, representing
the true classes for that induction, placed in the larger circle representing the class to which the
induction has been incorrectly assigned.
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Table 2.1: F1 scores for both random forest (RF) and support vector machine (SVM) classifiers
trained on the full feature set and individual features, including and excluding the existence of a
“water” class. The highest F1 scores for RF and SVM classifiers are boldfaced. Rows are sorted by
highest-to-lowest RF F1 score to identify the most valuable features to successful classification.

Feature Set Water Class RF SVM
Included? F1 score F1 score

Full No 0.789 0.646
Slope No 0.789 0.759
Detrended slope No 0.760 0.755
Subslopes No 0.759 0.645
Slope Yes 0.745 0.695
Full Yes 0.744 0.545
Detrended slope Yes 0.724 0.725
Detrended integral No 0.706 0.695
Subslopes Yes 0.668 0.633
Detrended integral Yes 0.587 0.619
Integral No 0.447 0.513
Integral Yes 0.262 0.378

Table 2.1 displays F1 scores for both RF and SVM classifiers trained on the full feature set and

individual features, including and excluding the existence of a “water” class in addition to six classes

for the primary toxins and one class for the secondary toxins. Generally, classification is improved

by including the “slope” feature in the feature set and minimizing the number of sorting bins by

excluding the “water” class. The highest-performing classifier, with an F1 score of 0.789 (boldfaced),

uses RFs, excludes the water class, and uses either the “full” set of features or only the “slope”

feature. The highest-performing SVM classifier, with a slightly lower F1 score of 0.759 (boldfaced),

also excludes the “water” class and uses only the “slope” feature. In scenarios where it is important

not only to discriminate between individual toxins present but also to discriminate between individual

toxins and pure water, the highest-performing RF and SVM classifiers had slightly lower F1 scores

of 0.745 and 0.725, respectively.

In addition to determining which feature set maximizes classifier performance, the F1 scores

in Table 2.1 allow us to rank the contribution of each individual feature to the overall performance

of the classifier. Rows in Table 2.1 are sorted by highest-to-lowest RF F1 score, and this ordering

reveals a crude ordering of decreasing feature value as “full”/“slope,” “detrended slope,” “subslopes,”

“detrended integral,” and “integral.”

Generally, RF classifiers outperformed SVM classifiers on the data set, which is unsurprising
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given its relatively sparse nature. SVM classifiers, however, generally outperform RFs on larger

datasets. Therefore, we expect the performance of SVM classifiers to gain on RF classifiers as more

training examples are generated. Overall, given the extremely challenging nature of multi-label,

multi-class classification problem, the classifiers have performed exceptionally well.

As a consequence of operating on, by machine learning standards, a relatively small data set,

it was necessary to establish a baseline for classifier performance in order to truly discern whether

classification was indeed occurring, or whether classifier performance was a spurious artifact of this

particular data set. To establish such a baseline, we reasoned that a user could expect a machine

learning algorithm that correctly and generalizably classifies data to significantly outperform a

random classifier classifying the same data set. We therefore constructed a random classification

algorithm that first calculates the class prior probabilities for each label and then randomly assigns

or does not assign these labels to each test instance, according to the labels’ calculated priors. The

random classifiers acting on both Y01 and synthetic water data both had non-zero F1 scores. Thus,

the metrics from the random classifiers serve to establish the necessary baselines.

Additionally, another problem emerged while classifying unstandardized data using the

MLP classifier. The machine learning community widely recognizes MLPs as being unable to

classify unstandardized data in a meaningful way; however, when classifying unstandardized data,

we saw that the MLPs’ F1 scores increased slightly above the F1 scores for their associated random

classifiers. This result prompted us to derive a new multilabel, multiclass metric, which we have

named multilabel accuracy (MLA). For N classified data points, c labels, ~T and ~P representing

the total set of ground truth label vectors and predicted label vectors, respectively, and~t and ~p

representing the same for a given data point, respectively, we define the MLA as:

A
[
~T ,~P

]
= 1+

N
∑
i

2(~t ·~p)−~1 · (~t +~p)

N · c

Whereas the canonical F1 score only takes into account true positives, the MLA metric

rewards both true positives and true negatives. Thus, a successful machine learning algorithm will
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see a positive, significant increase in both metrics over the metrics produced by a random classifier.
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Chapter 3

Explainable multiclass machine learning on

genomic time series with applications to the

detection of heavy metal contamination

3.1 Introduction

While Chapter 2 demonstrates the effectiveness of engineering a specific heavy metal biosen-

sor, the goal of the DynOMICS system was to build a general system that could learn a variety of

dynamic E. coli transcriptional response patterns in order to detect substances of interest (Fig. 3.1).

To accomplish this, we used the well-known E. coli fluorescent transcriptional library that was

built by the Uri Alon lab in 2006 [120]. A Singer ROTOR cell-handling robot was used to load

the library from agar plates into the microfluidic chips, where they were kept fluidically isolated in

uniquely-indexed cell traps.

Once a microfluidic chip had been loaded with the library, media and waste lines were

plugged into its inlet and outlet ports (see Fig. 3.1a). Fresh media, driven by gravity, would flow

into the media inlet, which is denoted by the star at the top of the device. Having entered the chip,

the media would then flow into a manifold channel structure, passing the cell spotting and trapping
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Figure 3.1: An overview of the DynOMICS system. (a) A schematic of a 2K-strain DynOMICS
microfluidic chip: This CAD design schematic of a DynOMICS 2K-strain microfluidic chip shows
the general channel and cell region organization, as viewed from above the device. (b) A view of
a DynOMICS’ chip’s flow channels and colony regions: This CAD-generated three-dimensional
image is an accurate representation of the structure and flow patterns of a DynOMICS microfluidic
chip. At each channel branching, the media flow patterns are explicitly depicted with white arrows.
(c) The interior of a DynoMICs device: This photograph is of one of our three custom-built
DynOMICS devices, showing the optical, electrical, and computer systems housed inside. (d)
A dye-loaded PDMS DynOMICS chip and TL/FL images from DynOMICS optics: At the top
of this image is a photo of one of our fabricated PDMS chips, with a US quarter placed on its
surface for scale. Media inlet and outlet lines are connected to both of the chip’s ports. The chip
itself has been vacuum loaded with blue dye. At the bottom is a comparison of a fluorescence
image taken at 4x magnification on a lab-grade Nikon microscope and the same image taken using
our DynOMICS device. (e) An example of a DynOMICs time series: DynOMICS is capable of
producing thousands of similar time series in a single experiment. Here, cadmium inductions are
denoted by the grey regions of the plot. The averaged response of several redundant positions for
the cadmium-sensitive strain zntA is depicted by a blue line.
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regions along the way. In flowing past the cell traps, the colonies were thereby supplied with a fresh

supply of nutrients, while waste products and excess cells were transported away. The media, excess

cells, and waste products exited the chip through a series of combining outlet channels, eventually

arriving at the waste port, which is denoted by a many-pointed star at the base of the schematic.

A more detailed view at the structure of channels and cell trap regions can be seen in Fig. 3.1b.

Media enters the major manifold channels (blue) from a series of branching channels that originate

from the media inlet. As the media flows down the major channels, it filters through minor manifold

channels (yellow), passing the cell trapping regions (red). The cells, which are spotted by the

cell-handling robot into the large, red, circular regions, exchange fresh nutrients for waste products

at the interface of the cell trap and minor channel.

During the course of an experiment, each microfluidic chip was housed inside one of our

DynOMICs ”boxes”, as can be seen in Fig. 3.1c. On the right of the picture, at the bottom of the box,

is the camera, which is identifiable as the red and black box. Atop the camera is its lens assembly,

a black cylinder. The camera and the lens assembly point upwards, towards the stage mount and

transmitted-light diffuser housing at the top-right of the box. This optical assembly has results in a

microscope with 0.5x magnification and a numerical aperture of 0.048, which is approximately twice

that of a normal 0.5x microscope. The wide field of view and high numerical aperture allow the

camera to take high-resolution photographs, as can be seen in Fig. 3.1d. On the left side of the box

is the power supplies, electrical hardware, and computer board that coordinate the device’s imaging,

data processing, and biological-support systems.

The combination of the 2K microfluidic chip and custom experiment platform gave us the

ability to image the on-chip cells with high temporal and spatial resolution for several days to several

weeks throughout the course of an experiment (Fig. 3.1d). While our standard imaging period was

once every ten minutes, the device was capable of taking an image every four minutes. This temporal

resolution is a significant improvement in the ability to study E. coli transcriptional dynamics.

After building and optimizing this much larger and more complex microfluidic device, we

utilized it to produce tens of thousands of time series data. An example of one of these series, an
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averaged response trace of the strain zntA to cadmium, is shown in Fig. 3.1e. The huge volume of

dynamic, noisy transcriptional expression data necessitated that we develop an analysis strategy that

combined techniques from both standard data science and from new methods in machine learning

and artificial intelligence. In this chapter, we discuss the methods that we developed and employed in

order to explore, classify, and understand the dynamic transcriptional data produced by DynOMICs.

3.2 Methodology

3.2.1 Experiments of interest

All initial supervised learning tasks were performed on features subsetted from the standard-

ized set of experiments with the following experiment indices: 1711, 1726, 1742, 1778, 1784, 1794,

1798, 1808, 1822, 1823, 1824, 1835, 1836, 1838, 1844, 1848, 1924, 1952.

The experiments with the following indices were included inductions with with San Juan

River water samples: 1838, 1844, 1848. Those inductions and their subsequent recovery periods on

lab-grade MilliQ-filtered DI-H2O were dropped from the training data.

Similarly, the following urban water experiments were withheld entirely from the training

data set:

1. 1864: Chicago

2. 1867: San Diego

3. 1872: New York

4. 1874: Seattle

5. 1883: Miami
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Figure 3.2: The data extraction regions of a standard DynOMICS cell trap. In these subfigures, the
green light-bulb shaped region is the trap cavity, where a colony would be spotted and subsequently
grown. The red teardrop outline represents the external walls of this particular trap design, which
was originally a member of the dynomics cones v 2 0 device. The white regions in each subplot
is the named data extraction region. Note that the bulb plume region is actually entirely external
to the microfluidic trap. Instead, it resides within the channel where it is used to monitor biofilm
formation.
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3.2.2 Data preprocessing and feature engineering

Once the variability problems had been stabilized for the microfluidic designs and biofilm

mitigation, all data for analysis and supervised learning was selected to come from the bulb 1 region

of our device’s microfluidic traps. Figure 3.2 displays the thirteen trap regions from which signal

data was extracted post-registration and flat field correction. The inset legend explains the logic

behind the enumeration of each region: regions of the trap closer to the channel (which, in this case,

are located at the bottom of each subfigure) have lower numbers, while regions of the trap further

from active laminar flow have higher numbers. The reasons for this choice was that the bulb 1 region

displayed responses that were of greater relative magnitude and of shorter relaxation times than did

the bulb2 region of the traps (Fig. 3.3b).

Flat-field correction

In order to correct for the uneven intensities that are the result of optical vignetting, all images

were first flat-field corrected according to the automated pipeline discussed in the previous chapter

(Fig. 3.4a). This occurred prior to data being extracted from any image.

Flat field correction was performed by converting the images into 16-bit grey scale numpy.ndarrays.

Then, the following element-wise operations were performed:

C = m∗ R−D
F ′−D′

(3.1)

where R is the raw image to be flat-field corrected (Fig. 3.5a), D is the dark-current image for that

device, taken at the same exposure settings as R (Fig. 3.5b), F ′ is the flat-field image for that device,

not necessarily taken at the same exposure setting as R (Fig. 3.5c), and D′ is the dark-current image

for the same device, taken at same exposure as F ′. Finally, m is the mean value for all values in the

array (F ′−D′).

The reasoning behind why this equation works is as follows. By subtracting the dark-current

from the raw image, you remove the effects of any hot pixels or regions of the cameras charge-
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(a)

(b)

Figure 3.3: Response variation by cell trap region. Exp. 1249 demonstrates how the regions of
the microfluidic traps closer to the open channel display much more pronounced responses, most
likely due to that region’s cells being in a more active growth state. The highlighted trajectories
in (a) are the same as depicted in (b). The obvious difference in amplitudes guided us towards a
derivative-based feature from the front of the cell traps.
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(a) (b)

Figure 3.4: Optical vignetting in both transmitted and fluorescent channels of the DynOMICS
optical system. (a) Severe vignetting of the transmitted light images. (b) The vignetting of the
fluorescent channel’s images was far less severe, but still enough to introduce bias to strains’ signals,
depending on their position on the device.

coupled device (CCD) array that may be unduly influenced by thermal noise. Then, by dividing

through by (F ′−D′), the dark-current corrected image (R−D) is scaled to the interval [0,1]. Since

each pixel is scaled by its own dark-current corrected flat-field intensity, this step has the effect of

actually correcting the vignetting caused by imperfect optics. The final step of multiplying by m

scales the image back up to the interval [0,216] (see Fig. 3.5d).

Background signal removal

After substantial experimentation and thought, all such data were preprocessed in the follow-

ing manner prior to any analysis or further processing:

x(t, si) =
xbulb1
(t, si)
− xbackground

(t, si)

xbackground
(t, si)

(3.2)

where t refers to the current time point, si refers to the strain in device position i, xbulb1
(t, si)

is the

flat-field corrected fluorescent signal from the bulb1 region of position i at time t, and xbackground
(t, si)
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(a) (b)

(c) (d)

Figure 3.5: The DynOMICS automated flat-field correction process. (a) A raw TL image. The
optical vignetting is apparent from the bright center and shadowed edges. (b) The TL dark current
image. Taken on the same DynOMICs box and at the same exposure setting as the raw TL image,
this image is taken with the camera’s shutter closed. Since the shutter is closed, the only signal
intensities that the camera’s CCD integrates are from thermal noise or malfunctioning ”hot pixels”.
(c) The TL flat field image. Taken with a clean glass diffuser plate as its subject, this image is a
featureless representation of the bias due to vignetting. (d) The FFC’ed TL image. The same image
as in (a), but now with the vignetting eliminated. The process for fluorescent channel images is
analogous, but with a fluorescent quartz plate as its flat field image’s subject.
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refers to the flat-field corrected local background fluorescent signal at position i at time t.

The reasoning behind this preprocessing step is as follows. By subtracting the local back-

ground signal, we eliminate any local or regional fluctuations that are of an additive (or, analogously,

subtractive) nature. Then, by dividing by the same background signal, we form a measure of the

amplification of the signal over the local background. This final division is one method by which we

reduce the box-to-box variability that inevitably occurs.

The result of this background correction was to produce a vector ~xt representing the

background-corrected fluorescent signals of all device positions at time t:



x(t, s0)

x(t, s1)

...

x(t, s2174)

x(t, s2175)


= ~xt (3.3)

Z-scoring by time point

Experiments on different boxes nearly always had different mean fluorescent background

values. In addition, most experiments experienced at least some global fluorescent drift as a result of

the maturing of the strains and their adjustment to our HM9 minimal media.

In order to account for intra-box fluorescent background intensity differences and global

fluorescence drift, we used the following per time point z-score:

~xt− xt

σ~xt

=~x′t (3.4)

where~xt is the vector of the background-corrected fluorescent signal for all occupied strain

positions at time t; xt is the mean value for the vector at the same time point; and σ~xt is the standard

deviation of~xt .
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Exponential smoothing

Since we ultimately wanted to use a first derivative-based feature, we first smooth the signal

prior to calculating the first finite-difference. The smoothing prevents the amplification of noise in

the differentiation step. To smooth, we implemented the Holt-Winters second-order exponentially

weighted moving average (HWMA), which de-noises the data based on the history of both the

trajectory and the history of the trajectorys derivative. We chose to use the HWMA over other

smoothing methods because it is rear-facing only, which means that it smooths the current time point

based only on the previous time points. This is as opposed to other methods, which require future

time points to adequately smooth the current time point. HWMA, therefore, is uniquely suited to

real-time sensing applications in which dramatic changes in the derivative of the trajectory can occur

[68].

The HWMA is calculated at each time point as follows:

~x′′1 =~x′1

~̇x′′1 =~x′1−~x′0
...

~x′′t = α~x′t +(1−α)(~x′′t−1 +~̇x′′t−1)

~̇x′′t = β(~x′′t −~x′′t−1)+(1−β)~̇x′′t−1

(3.5)

where~x′′t is the smoothed version of~x′t , and ~̇x′′t is that point’s first-finite difference. Given that

samples were taken at a consistent frequency, ~̇x′′t then becomes an approximation for the derivative of

the trajectory at time t. α and β are weights that were empirically chosen from the interval [0,1] and

were constant for all experiments. α can be thought of as the relative importance placed on the most

recent values, as opposed to values from further in the past. Similarly, β is the relative importance

placed upon the function’s most recent approximation of the first derivative.
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First finite difference

The penultimate feature-engineering step was to take the first finite difference. This goal can

be accomplished by either directly calculating the first finite difference or by taking the recorded

approximations of the first derivative from the output of the HWMA function and using them as the

first finite difference. Both methods were tested and seemed to result in close approximations of

each other. The basic method for calculating the first finite difference is explicitly listed below:

~̇xt =~x′t−~x′t−1 (3.6)

Intuitively, the first finite difference is an excellent candidate for any sort of machine learning

model because it is what the human brain instinctively monitors when looking for changes in strain-

promoter behavior [6]. Any significant modification in the mean or variance of the first derivative

of a given promoter while induced or uninduced could signify that the promoter is sensitive to that

particular modification of its environment. The engineering of a first derivative-approximation feature

amounts to distilling out the pure changes in the original feature’s behavior, while effectively filtering

out any noisy changes that could be due to extraneous local or global environmental influences.

Vector normalization

Finally, the final step that was used in obtaining our finished features for machine learning

was to normalize each vector by itself. Since most derivatives had the characteristic that, for the

majority of time points t, they were ẋ(t, si) << 1, normalizing each time point by the mean of itself

had the effect of making the new, normalized vector’s norm equal to 1. First derivative values that

were close to 0 remained close to 0, while

(
2175

∑
2175
i=0 ẋ(t, si)

)
·~̇xt = ~̇Xt (3.7)

The reason this step was an important final member of our feature engineering pipeline is

because of the relatively high-dimensionality of our feature vectors. High-dimensionality means
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that our 2176-dimensional feature vector is affected by the Curse of Dimensionality [41]. Scaling

the mean of the vector helps to increase the volume lying between different regions of the feature

space. Our intention in doing this normalization is to increase the volumetric separations between

uninteresting features that remain close to zero and features that occasionally make excursions away

from the baseline.

3.2.3 Additional data preprocessing

In addition to the data preprocessing and feature engineering that were explicitly enumerate

in the previous subsection, other steps were often taken when training and testing any machine

learning algorithms. These additional steps all dropped some portion of the final feature set, but only

after the features had been calculated using the entire original experiments. Dropping these time

points before calculating the features would have introduced potential discontinuities to any features

approximating the first-derivative.

Trimming grow-up phase and end phase time points from feature sets

All experiments included transient periods over the first several days of the experiment. These

transients were caused by the colonies’ recoveries post-spotting shock, their growth-to-effluence

within their individual traps, and their second recovering following the switch to minimal HM9

growth media. In addition, since most experiments were run until the microfluidic chips were

deemed unusable due to clogging by biofilms, the final hours of most experiments did not yield

high-quality water data. Since the beginnings and the ends of the experiments represented non-

steady state local and global growth conditions, the features from these periods were dropped

prior to analysis and machine learning. This trimming was always done using the same built-in

dynomics.Experiment.trim growth() and dynomics.Experiment.trim tail() methods, with the default

being to trim up until eighteen hours before the first induction and then dropping all features

occurring four hours after the final non-water induction.
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Dropping bad, unwanted, and special inductions

Inductions of poor quality or that had imaging or user errors associated with them were

flagged as unusable, as denoted in the good induction flag column of the experiment’s induc-

tion record table in the MySQL database that stored all of our experimental data. These inductions

were subsequently dropped post-feature processing. In addition, inductions using undetectable met-

als, such as arsenic, mercury, and antimony, and special inductions that introduced any non-standard

inducers were dropped from the feature set post-processing.

All features were processed and cached in permanent memory. Only the cached features

were used for any further analysis.

3.2.4 Implementation of Lubansky data differentiation

During the comparison of different 2k chip microfluidic designs for variability reduction, we

implemented a method for numerically deriving the first derivatives directly from the experimental

data itself. This method, which was first described by Lubansky et al. in their 2006 paper, trans-

forms the problem of calculating the smooth first derivative of noisy, potentially irregularly-spaced

experiment data into numerically solving an integral equation of the first kind [72].

yC(x) =
∫ x

x′=x0

(x− x′) f (x′)dx′+ y0 +(x− x0)r0 (3.8)

When discretized, this equation becomes

yC = Bf+1y0 +(xM−1x0)r0 (3.9)

where “B is an ND×NK matrix of known numerical coefficients arising from the approxima-

tion of the integral in [Eq. 3.8] by numerical quadrature such as the trapezoidal or the Simpsons rule;

1 is a column vector with each element equal to 1” [72]. Here, ND is the number of original data

points and NK is a discretizing integer.
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The authors’ solution accomplishes this task via Tikhonov regularization, using a general

form of “leave-one-out” cross-validation to choose the regularization parameter λ [38]. For further

details on the method, interested parties should refer to the original paper.

Among the many advantages to this method of calculating smoothed first derivatives is that

places minimal arbitrary assumptions on the nature of the data. This lack of assumptions can be

especially useful when dealing with scientific data, where the researcher wants to avoid biasing any

results by imposing their beliefs on the analysis of the data.

To the author’s best knowledge, this algorithm has never before been implemented in an

open-source language. Therefore, the implementation of this algorithm in Python represents a novel

contribution to the scientific computing community. The module is available on GitHub for general

use [43].

3.2.5 Initial supervised learning with random forests

In our preliminary exploratory efforts, we used scikit–learn’s implementations of random

forest classifiers [2]. This algorithm was chosen for its versatility, ease of implementation, and

consistently competent classification performance [22].

Random forests are composed of ensembles of decision trees. Each decision tree, however,

is constructed using a random subset of the training data; after the tree is constructed, the subset

of training data is replaced. Additionally, during the construction of a tree, each split is chosen not

from all the features in the subset of training data, as it would be with a normal decision tree, but

with a randomly chosen subset of the features. Splits are typically decided using the Gini impurity

index, which seeks to maximize the information gained at each branching.

As a consequence of the method of their construction, random forests represent an excellent

realization of the concept of bootstrap aggregating, or bagging, to deal with the bias-variance trade-

off [39]. While this construction strategy slightly increases the bias of the overall classifier, it greatly

decreases the variance once the predictions of each individual member tree are combined (Fig. 3.6).
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Figure 3.6: A visualization of the decicion boundaries of random forest classifiers classifying
on specific sensor data. The above plots show the classification results produced by two random
forest (RF) classifiers on reduced-dimension mercury and water induction data. This data was
produced by our small biosensor with its engineered sensor strains. The raw data, which has been
preprocessed via principal component analysis (PCA) and principal coordinate analysis (PCoA),
is color-coded according to which class it represents. Blue dots represent time points where only
water is present, while red dots represent time points where the strains are exposed to mercury. In
the right-hand column, the prediction boundaries of the two associated RF classifiers can be seen.
Areas colored blue indicate that the RFs predict any samples falling in those areas to be classified
as water, while red indicates the prediction of mercury’s presence. The varying intensities of each
color indicates the strength of the prediction: dark indicates a high probability, while a light shading
indicates much less certainty in those predictions.
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3.2.6 Statistical distance distribution searches for the identification of arsenic-

and mercury-sensitive promoters

Upon the failure of initial random forest learners to properly classify arsenic and mercury

feature sets, a search was undertaken to identify any strains that were potentially sensitive to either

of those metals. These searches were performed by first building distributions of statistical distances

between a strain-position’s baseline behavior in the time period before an arsenic or mercury

induction and its subsequent behaviour during the induction. Then, the resulting distributions were

then compared to the equivalent distributions from the control strains lacZ and U139.

While both the Wasserstein and Cramér distances were implemented as distance metrics, we

eventually came to rely solely upon a version of the Cramér distance known as the energy distance.

The energy distance, for two random vectors X and Y with cumulative distribution functions (CDF)

F and G, respectively, is defined as:

1
2

√∫
∞

−∞

(F(x)−G(x))2 dx (3.10)

Note that 3.10 is only true when
∫

∞

−∞
F(x)dx =

∫
∞

−∞
G(x)dx. In our case, since we are

dealing with cumulative distribution functions,
∫

∞

−∞
F(x)dx = 1 for all CDFs F , which satisfies the

preceding requirement. Also, note that this function is a true distance metric, whereby it satisfies the

four required characteristics of such a metric: nonnegativity (D2(F,G)≥ 0), symmetry, identity of

indiscernibles, and that the triangle inequality holds for all relevant CDFs [117].

In our case, we defined two random variables W and M. These random variables represent

measurable functions from the experimental outcome space to the ground truth label of water and

our inducer-of-interest (usually a metal, hence the M), respectively. W and M have the cumulative

distribution functions F and G, respectively, representing the strain-position’s empirical behavior in

the uninduced and induced states. The energy distance could then be calculated as

1
2

D2(F,G) =
1
2
(
2E‖W −M‖−E‖W −W ′‖−E‖M−M′‖

)
(3.11)
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Figure 3.7: The response and baseline derivative distributions of a cadmium-sensitive strain. The
two distributions displayed in this figure are the strain zntA’s induced and uninduced derivative
distributions. The blue bins represent zntA’s behavior under normal growth conditions. The orange
bins represent the strain’s behavior during exposure to cadmium. By measuring the energy distances
between many of these distributions, we can build a distribution of energy distances to compare
with the analogous energy distances of the control strains.

These distances were calculated for each strain-position with only itself for each single

induction-of-interest (Fig. 3.7). That distance then was a member of the set of statistical distances

for that strain-position. The reason for performing this operation on an induction-by-induction basis

was that, even for a single strain, collating all of that strain-positions behavior data for all inductions-

of-interest across all experiments could result in a meaningless distance. Since baseline behaviors

and induction behaviors could differ from experiment-to-experiment and even from induction-to-

induction within the same experiment, it was important that we compare only the strain-position’s

induction behavior with the baseline behavior that immediately preceded the induction (Fig. 3.8).

Once calculated and plotted, the energy distance distributions for every strain-position on chip
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were manually inspected and compared with the control strains’ aggregated distance distributions

(the control strains being the aforementioned U139 and lacZ). This procedure was done for all

arsenic inductions and all mercury induction, with both energy and Wasserstein metrics; in total,

7,980 distance distribution comparison plots were inspected.

distributions of distributions
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Figure 3.8: Cumulative distribution functions (CDFs) of induced and uninduced strain behaviors.
The two CDFs displayed above are formed from the strain zntA’s features during the pre-induction
and intra-induction time periods. Here, the energy distance is calculated as a function of the
distances between induced (orange) and uninduced (blue) curves; those distances are represented
by the region shaded green.

3.2.7 Leave-N-out cross-validation

During any and all classifier hyperparameter fitting or performance generalization evaluations,

leave-n-out cross-validation was used to prevent overfitting and ensure the generalizability of the

results [25].
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Cross-validation (CV) is a routinely-used method in machine learning to estimate how well

a classifier will perform when presented with data from outside of its training set [64]. During a

single round of cross-validation, a subset of the data, known as the test set, is removed from the

data set and held in reserve. The remaining portion of the data, now known as the training set, is

then used to train the model. After training is complete, the new model is then run on the test set

and the results are scored using a predeterimined evaluation metric, such as accuracy, precision,

recall, AUROC, etc. Typically, many rounds of cross-validation is performed, with the mean of

their scores calculated afterwards. This gives a more realistic accounting of how such a classifier

would generalize to data outside of the data set in hand [106]. Cross-validation would be largely

useless, however, if each round used the same training and testing sets. Thus, there are multiple

methods by which to generate distinct training and test sets, the most popular of which is k-fold

cross-validation. In k-fold cross-validation, the samples are randomly shuffled and then sorted into k

subsets
{

s1,s2,s3, ...,sk

}
. In the first CV round, s1 is designated to be the test set and training then

proceeds on the remaining k−1 sets. In the second round, s2 is selected as the test set and training

proceeds on the remaining sets. This process continues until every set si has served as the training

set. When the process is complete, the k scores are then averaged together and taken to represent the

expected value of the classifier’s score on unseen data (Fig. 3.9).

k-fold cross-validation, however, relies upon the assumption that each individual sample is a

realization of an independent and identically distributed random variable. In the case of samples

drawn from time series data, this assumption no longer holds, since each timepoint is dependent

upon the time points that have preceded it.

In case of time series data, then, it can be necessary to use leave-n-out cross-validation. In

leave-n-out cross-validation, the test set is selected to be the minimally-independent unit; in the case

of this project, that minimally-independent unit was one experiment, since the time points of one

experiment are independent from the time points of another experiment.

Throughout this project, leave-n-out cross-validation in the case where n = 1 indicates that a

single experiment would serve as the test set, while the remaining experiments then served as the
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test set training set

full data set

round 1 

round 2 

round 3 

round 4 

Figure 3.9: A depiction of four-fold cross-validation. The example above represents four-fold
cross-validation on a data set containing twenty samples. Prior to starting, the data set is shuffled
to randomize the order of the samples (not shown). Then, four subsets of five samples each are
selected. These are the test sets and are highlighted by a green box. During each cross-validation
round, the test set is held in reserve and the remainder of the data, known as the training set and
highlighted by red boxes, is used to train the classifier. The classifier’s performance is then checked
on the test set before proceeding to the next round of cross-validation.
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Figure 3.10: A depiction of leave-one-out cross-validation. In the course of this project, we heavy
utilized leave-one-out cross-validation to prevent overfitting and to predict classifier generalizability.
In a single CV round, all data pertaining to a single experiment would be designated as the test set,
which are highlighted by the green boxes. The data that pertained to the remaining experiments
were then designated to be the teset set. Training and testing with the classifier would proceed and
then a new experiment’s data would be designated as the next test set. In this way, we prevented the
leak of information between training and test sets, which is essentially in this context if we were to
accurately estimate how well our classifiers would perform on never-before-seen data.
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training set. In the case of leave-1-out cross-validation, we would perform eighteen total rounds,

since there were eighteen experiments in our standardized training set.

For all hyperparameter searches, we used leave-n-out cross-validation with n > 1. In these

cases, the order of the experiments in the experiment set were first randomly shuffled and then

divided into 18
n = k distinct subsets. k rounds of CV were then performed in order to evaluate the

generalizability of the hyperparameter set (Fig. 3.10).

3.2.8 Classifier evaluation metrics for imbalanced datasets

The problem of imbalanced classes: ie, why accuracy is a poor performance metric

As noted in the previous, there are many separate evaluation metrics for determining how

well or poorly a classifier performs on a given data set. In the general case, when a data set is

composed of roughly equal parts of different classes, most evaluation metrics will give an easily

interpretable account of classifier performance. However, in the case of a data set with large class

imbalances, these metrics become more difficult to interpret.

For instance, in the case of an extreme imbalance, suppose a data set were composed of

9,999 examples of a class A and just one example of class B. In that case, a dummy classifier that

simply labels any sample passed to it as class A will have an accuracy score of 99%. Conversely,

a learner that always correctly classifies the single class B sample and occasionally misclassifies

samples from the set of Class A would be less accurate than the dummy classifier.

This project, by necessity, is one with large class imbalances. Since our on-chip cells require

up to twelve hours to recover from exposure to heavy metals, our between 85.2% and 88.9% of the

samples in our data sets were labeled as H2O (Fig. 3.11). The specific percentage varied depending

upon which set of metals desired to predict and would consequently include in the classification data

sets for training and testing.
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H22
85.2%

AV(III)
1.3%Cd(II)

2.5%
Cr(VI)

1.3%Cu(II)
1.5%

)H(III)
1.6%

Hg(II) 1.3%
3b(II) 1.6%
6b(III) 1.4%

Zn(II) 2.1%

Figure 3.11: The imbalanced class composition of our data set. This pie chart represents the
composition of our data set by class. While 85.2% of the data set is composed of pure water, the
remaining 14.8% is composed of a set of nine metals: lead, antimony, zinc, arsenic, cadmium,
chromium, copper, iron and mercury. Of these metals, cadmium is the most frequent class,
comprising 2.5% of the total data set.
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Multiclass Fβ function as an evaluation metric

As a result of the severe class imbalances within our data set, we used a performance measure

that works well in an imbalanced setting: the F1 score. The F1 score is the harmonic mean of the

classifier’s precision and recall (Fig. 3.12). Precision, for a classifier and a given class, is defined

as the number of true positives divided by the total number of samples that are classified as the

class-of-interest. In the following definitions, T P indicates true positives, FP means false postitves,

and FN means false negatives.

Pr :=
T P

T P+FP
(3.12)

Recall, denoted as Re below, is the number of true positives divided by the total number of

samples of the given class present in the data set.

Re :=
T P

T P+FN
(3.13)

For imbalanced classes, the F1 metric is a logical choice, since evaluating a classifier with it

forces the classifier to seek out members of the minority class while not becoming overzealous and

classifying members of the other class as the rarer one. The F1 score is a member of the Fβ metric

family, which is defined as

Fβ =

(
Re−β +Pr−β

2

)−β

(3.14)

In the case where β = 1, the metric becomes

F1 = 2 · Pr ·Re
Pr+Re

(3.15)

In the case of multiclass problems, there are two frequently-used variants of the F1 score: the

F1-macro and the F1-micro scores. The F1-macro measure is calculated by calculating the F1 score

for each individual class separately and then taking their mean. The F1-micro score is calculated by
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taking the total number of true positives, false positives and false negatives post-classification and

then calculating the total F1 score directly from them [104].

Each version has their advantages and disadvantages. The F1-macro, denoted above as FM
1 ,

treats each class’ score with equal weight, thereby preferring classifiers that perform better on rarer

classes in data sets with large class imbalances. The F1-micro score, denoted by Fµ
1 , on the other

hand, rewards better all-around, per-instance performance; this quality rewards classifiers that treat

all classes equally, which is preferable in a setting where classes are equally balanced. In the case

where a rarer class is exceedingly difficult to classify correctly, the Fµ
1 will incentivize the perverse

classification strategy of always incorrectly classifying that rare, difficult-to-detect class as the

majority class, as a consequence of how it is calculated [71].

As a result of the nature of our data set, the FM
1 metric was used in all hyperparameter

searches.

3.2.9 Supervised learning with extreme gradient boosted trees (XGBoost)

Extreme gradient boosted trees (XGBoost) are a tree ensemble method invented by Tianqi

Chen in 2014. As opposed to random forests, which build their ensembles using bootstrap aggregating

and additional randomization strategies, XGBoost builds its tree ensembles in an additive manner.

Instead of each tree being built in isolation from the others, as with random forests, XGBoost builds

the next tree in the ensemble by finding the tree that optimizes the current ensemble’s objective

function, when added to that ensemble [111]. This strategy can be thought of as building the next tree

such that it does its best to minimize the existing model’s error, while respecting any regularization

requirements that are present (Fig. 3.13.

XGBoost has become extremely popular over the last five years and has been used to win

several notable machine learning contests (see Kaggle’s contest results, for instance). We chose it as

the next type of learner to train because of its abilities to deal proficiently with high-dimensional,

nonlinear data sets such as ours.

All XGBoost functions were implemented in Python. All hyperparameter searches and
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Figure 3.13: A conceptual depiction of an XGBoost learner. In this XGBoost classifier, the next
tree in the ensemble is trained in such a way as to try and eliminate the error of the previous trees.
This strategy sets it apart from random forests, in which every tree is trained independently [91].

cross-validation rounds were parallelized and run on the multicore in-lab server. Hyperparameter

optimization took place both by hand and with a Bayesian optimizer. Implementation of the Bayesian

optimizer will be discussed in the next section.

Hand-tuning of XGBoost learners

We optimized the hyperparameters of the initial XGBoost learners by hand based on recom-

mendations by several data scientists [57]. The general process, which yielded competent learners,

is enumerated below. At each step, we used early stopping to reduce over-fitting. In addition,

at each step we used leave-one-out cross-validation and then averaged the results after each full

cross-validation round to produce the final score for a specific parameter set.

1. We optimized the number of trees for a learning rate of 0.1;

2. Then, we used a grid search to optimize the maximum tree depth and the minimum child

weight over reasonable ranges of both parameters. If any values at an extreme limit of a

range were selected, the grid-search was repeated over a appropriately-shifted ranges of both

parameters;

3. Grid search was then used to find the optimal value for the regularization parameter γ;

4. The number of trees in the ensemble was then re-tuned with early-stopping;
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5. We performed a grid search to optimize the subsample and column-sample-by-tree parameters;

6. The final classifier parameter set was then cross-validated over the entire experiment set to

produce the final evaluation metric score and multiclass confusion matrix.

In machine learning, the hand-tuning of hyperparameters is typically the realm of experts and

is specific to the type of learning algorithm and intrinsic characteristics of the data set in question. It

should be noted that such hyperparameter tuning can be useful when the researcher is seeking to

rapidly explore a classifier space. However, it is inherently inferior to other search methods, such

as random search and Bayesian optimization, the latter of which will be discussed in the following

section.

3.2.10 Bayesian optimization of classifier hyperparameters

Training single machine learners involves the fitting of many low-level parameters, which are

unique to the training data in question. Examples of these parameters are the weights for a logistic

regressor or the splitting criteria for the branches of a single decision tree. For today’s supervised

machine learning algorithms, these low-level parameters always have associated with them a (usually

convex) objective function to be optimized [16]. Thus, the problem of training a single machine

learner usually reduces to searching for the global minimum of the objective function, which can be

done via numerical approximations of the gradient of the objective function [93]. Examples of these

optimization methods are ordinary gradient descent, used for logistic regression learners, subgradient

descent, used for support vector machines, and stochastic gradient descent, which is used to train

artificial neural networks.

Machine learning algorithms, however, usually have several or, sometimes, many additional

parameters that must be set prior to the training process [30]. The optimization of these high-level

parameters, known as hyperparameters, is one of, if not the, single most important steps to producing

a maximally-functioning machine learner for a given data set [88]. However, unlike the low-level

parameters learned during the training process, these high-level parameters rarely have a clear
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objective function with a computable landscape associated with them. This fact makes learning the

optimal hyperparameters for any supervised learning problem is usually an impossible task.

Traditionally, in order to find an optional set of hyperparameters, researchers have resorted

to exhaustive searches. Typically, these take the form of a grid search, whereby candidate learners

are constructed using n-dimensional tuples of candidate hyperparameters from an n-dimensional

grid [54]. Each candidates’ performance is then estimated by fitting them using cross-validation.

This approach is sometimes viable for low-dimensional hyperparameter spaces; for instance, finding

the optimal values of C and γ for a support vector machine can usually be accomplished efficiently

with a traditional grid search.

However, grid search, being a form of exhaustive search, is an inefficient and, therefore,

time consuming method. As a result of these limitations, grid search rarely yields the optimal

hyperparameter combinations for higher-dimensional spaces [17]. This problem is yet another

example of the ”curse of dimensionality”. In 2012, Bergstra and Bengio showed both empirically

and theoretically that a random search of the hyperparameter space was more efficient than either

hand-tuning the hyperparameters or optimizing them through a grid search [17]. Since then, however,

sequential model-based optimization (SMBO) methods have come to the forefront of hyperparameter

optimization, of which Bayesian optimization has become the most widely regarded [56]. Unlike grid

search, which, upon completion of a function evaluation, simply moves to the next hyperparameter

tuple in its queue, SMBO methods utilize the history of their evaluations to inform their next choice

of hyperparameters.

Out of SMBO methods, Bayesian optimization, has become widely regarded as the most

efficient search strategy for optimizing hyperparameters [103]. Using Bayesian statistics to find

solutions to costly problems, whether these problems cost time or money, had existed since the 1970s

[82] [83]. Its application to machine learning since 2012 has contributed to significant advances in

the field.

In any optimization problem, we seek a global minimizer xmin ∈ X some objective function

f :
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Figure 3.14: Grid search versus random search strategies for classifier hyperparameter optimization.
This figure depicts why random search is more efficient than a straightforward grid search. The
space of hyperparameters is large and only a small fraction of the space actually results in higher
evaluation scores for the classifiers, as represented by the green curve on the top of each subfigure.
While a grid search spends most of its time in low-scoring areas of the space, a random search is
more likely to efficiently stumble upon a high-scoring region of the space [59].

xmin = argmin
x∈X

f (x) (3.16)

In our case, X is our space of candidate hyperparameters and f is an evaluation metric of our

choosing. In the course of this project, the f = F1−macro most frequently, for the reasons discussed

previously.

In order to most efficiently direct the search for xmin, any Bayesian optimization algorithm

forms what is known as a surrogate model to approximate f . In addition to a surrogate model, the

Bayesian optimizer also uses an acquisition function αn : X → R that directs exploration of the

hyperparameter space by recommending the next set of hyperparameters xn+1 for evaluation. To

find xn+1, αn uses the surrogate model’s prior probability distribution. Upon calculating the new

output f (xn+1) = yn+1, the optimizer incorporates
(
xn+1,yn+1

)
into the search history Dn. Finally,

it updates the surrogate model’s probability distribution using the posterior probability distribution,

which is calculated using Dn+1 (Fig. 3.15). This process is repeated until a stopping criteria has

been met [66] [33] [40].
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Algorithm 1: Bayesian optimization

1: for n ¼ 1; 2; . . . ; do
2: select new xnþ1 by optimizing acquisition function !

xnþ1 ¼ arg max
x

!ðx;DnÞ

3: query objective function to obtain ynþ1

4: augment data Dnþ1 ¼ fDn; ðxnþ1; ynþ1Þg
5: update statistical model
6: end for

One problem with this minimum expected risk
framework is that the true sequential risk, up to the
full evaluation budget, is typically computationally
intractable. This has led to the introduction of many
myopic heuristics known as acquisition functions, e.g.,
Thompson sampling (TS), probability of improvement,
expected improvement (EI), upper confidence bounds,
and entropy search (ES). These acquisition functions
trade off exploration and exploitation; their optima are

located where the uncertainty in the surrogate model is
large (exploration) and/or where the model prediction is
high (exploitation). Bayesian optimization algorithms
then select the next query point by maximizing such
acquisition functions. Naturally, these acquisition func-
tions are often even more multimodal and difficult to
optimize, in terms of querying efficiency, than the
original black-box function f . Therefore, it is critical
that the acquisition functions be cheap to evaluate or
approximate: cheap in relation to the expense of
evaluating the black box f . Since acquisition functions
have analytical forms that are easy to evaluate or at least
approximate, it is usually much easier to optimize them
than the original objective function.

A. Paper Overview
In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that
we aim to disentangle the multiple components that
determine the success of Bayesian optimization imple-
mentations. In particular, we focus on statistical modeling

Fig. 1. Illustration of the Bayesian optimization procedure over three iterations. The plots show the mean and confidence intervals estimated with

a probabilistic model of the objective function. Although the objective function is shown, in practice, it is unknown. The plots also show the

acquisition functions in the lower shaded plots. The acquisition is high where the model predicts a high objective (exploitation) and where the

prediction uncertainty is high (exploration). Note that the area on the far left remains unsampled, as while it has high uncertainty, it is correctly

predicted to offer little improvement over the highest observation [27].

Shahriari et al. : Taking the Human Out of the Loop: A Review of Bayesian Optimization

150 Proceedings of the IEEE | Vol. 104, No. 1, January 2016

Figure 3.15: The learning process of a Bayesian optimizer. These three panels represent three
sequential learning steps taken by a Bayesian optimizer as it searches for optimal hyperparameter
value. The dashed line is the actual form of the objective function, which is unknown to the
optimizer, but which the optimizer seeks to learn. The solid black line is the posterior mean of
the optimizer; ie, it is the optimizer’s model of the objective function. The blue regions are the
confidence bounds associated with the posterior distribution. As new observations are added, the
optimizer’s acquisition function alternates between exploration and exploitation to try and learn
the location of the best hyperparameter values. After each observation, the optimizer updates its
posterior distribution with the new information. The posterior distribution then becomes the prior
distribution for the next step in the sequence [94].
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Figure 3.16: A generic recurrent neural network (RNN). This figure demonstrates how a recurrent
neural network is unfolded through time to form a deep neural network. An RNN’s node’s built-in
memory unit allows that node to essentially be a single deep learning network. By leveraging
information about prior inputs, RNNs can learn patterns that are far too complex for other machine
learning algorithms [80].

For both XGBoost and the deep neural network classifiers implemented in the course of this

dissertation, the popular Bayesian optimization library hyperopt was used to conduct the searches

[18]. A general search harness was created and used for both the XGBoost and deep learning

classifiers. In both cases, a search was conducted using randomized leave-three-out cross-validation

over a total of 1000 hyperparameter candidate sets.

3.2.11 Supervised deep learning with long short-term memory recursive neu-

ral networks

Given the inherent temporal nature of our data, classification algorithms that can utilize

sequence context to augment classification performance would be especially advantageous. Long

short-term memory recurrent neural networks (LSTM), a variety of deep neural network, are widely

recognized to be the best performer for context-dependent problems and are heavily employed in

speech recognition, dictation, text interpretation and generation, and the prediction and classification

of time series data [67]. Famous examples of LSTM-RNN-based learners are Google DeepMind’s

AlphaGo and AlphaStar, both of which outperformed the top human experts in the board game go

and the real-time strategy video-game Starcraft II [99, 13]. Both of these problems were ground

breaking at the time and relied heavily on LSTM-RNN deep learners.
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Recurrent neural networks, the family of deep neural networks to which LSTM-RNNs belong,

are a ”class of artificial neural networks where connections between nodes form a directed graph

along a temporal sequence” (Fig. 3.16) [80]. Long short-term memory networks were invented

in 1997 to overcome the problem of exploding and vanishing errors that plagued recursive neural

networks during training [53]. Nodes in a feed-forward neural network (FFNN) are composed of

an activation function that uses the product of weights and the node’s inputs to compute the node’s

output. As opposed to the nodes of an FFNN, nodes in an LSTM-RNN have four interacting interior

layers:

1. cell state: the cell state is the node’s memory. It is a vector that holds information between

inputs and is updated by a combination of information from the forget gate and the input gate.

2. forget gate: the forget gate is the layer of the node that decides, based on its weights, the

node’s last output, and the node’s current input, which portions of the current cell state to set

to 0 (ie, to forget).

3. input gate: the input gate uses the last output and the current input to decide which components

of the cell state to update.

4. output gate: the output gate combines the last output, current input, and updated cell state to

decide what the node should output to the next layer.

To build our deep learning network, we used the Python APIs of the popular libraries

tensorflow and keras [7, 29]. A general training harness was constructed and passed to our Bayesian

optimization harness, which then performed the hyperparameter and network architecture search

over 1000 search instances. The entire optimization search took approximate ten days. The result

was a stateless LSTM-RNN (ie, the LSTM-RNN would reset the cell state to 0 between inputs)

with a 80-node LSTM-RNN layer, followed by a 763-node feed-forward layer, and finally a 7-node

output layer utilizing a softmax activation function. Regularization strategies were utilized during

training to avoid overfitting.
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Figure 3.17: A long short-term memory recurrent neural network (LSTM-RNN) node. This
diagram represents a single LSTM-RNN node, where ct is its cell state, Ft is the forget gate, It
is the input gate, Ot is the output gate, ot is the output, and ht is the hidden state (equivalent to
the output, but stored for the next calculation). Joining flow lines indicate concatenation. Orange
circles indicate pointwise addition or multiplication. σ indicates a sigmoid activation function and
tanh indicates a hyperbolic tangent activation function. In this diagram, the previous time point,
t−1, informs the node’s current output via the operations of the forget, input, and output gates
upon the input, cell state, and hidden state. For an excellent introduction to LSTM-RNNs, see [84].
[80].

Cloud hardware and server

All training of LSTM-RNN learners, including the Bayesian hyperparameter optimization

search, was performed on a cloud-based Paperspace virtual Linux Ubuntu server with 8 CPUs, 30

GB RAM, 250 GB of storage space, and an NVIDIA Tesla V100 GPU, which itself had 16 GB

RAM. All backpropagation steps were executed on the GPU.

Feature creation, pre-caching, and data generator implementation

In order to avoid additional computational and, more important, memory load during training,

all features were generated and cached on-disc before training began. Since the LSTM-RNN was

stateless (ie, reset its cell state between discrete inputs), the input features were (num timesteps)×

(num strain positions) matrices, with an associated class label that was the label of the middle

time point [19]. Thus, each input can be thought of as time window, where each row represents a
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single time point of an experiment and each column is the time series of length num timesteps of

a specific strain-position (Fig. 3.18). For this project, the length num timesteps was always odd;

therefore, there was always an equal number of time points before and after the middle point in each

window. As a result, each time window could be thought of as representing that middle point and

was accordingly labeled with the point’s class. Since the number of time points to be used as an

input was also a hyperparameter in need of optimization, a range of time windows were generated

and cached in permanent memory. We then implemented a range of custom Python generator classes

and incorporated into the training harnesses [1, 114]. In any training or prediction call, a new

instance of the generators would be passed to a model and would load the pre-cached features and

labels on-the-fly [12]. At the end of these calls, the data would be dumped from memory, thereby

preventing out-of-memory errors.

Standardized experiments

The Bayesian hyperparameter optimization and subsequent LSTM-RNN training were

performed solely on data from the 18 standardized experiments. No data from either the urban water

samples nor the San Juan River samples were included in either case. The only metals used in either

case were cadmium, lead, copper, chromium, iron, and zinc.

Classification of urban water samples

All predictions on urban water sample experiments were made using a multiclass, single-label

LSTM-RNN that had been fit on the eighteen standardized experiments. Its hyperparameters were

the optimal set identified by the Bayesian optimization search, with the softmax activation function

being retained in the final layer. The softmax was retained as the activation function because it

enables multiclass, single-label classification:

σ(z)i =
ezi

∑
K
j=1 ez j

, z = (z1, . . . ,zK) ∈K (3.17)
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Figure 3.18: LSTM-RNN feature engineering and explainable AI (XAI) workflow. The feature
engineering via time-windowing is clearly visible here, where a single column of the ”Processed
data” array becomes its own array, centered around tn. In this case, just as with our actual LSTM,
the time window includes five time points before and after tn. Those features are then used to
train our deep learners and, in addition, to help train our XAI learner, which we refer to as the
”Explainer”.

69



In Eqn. 3.17, K is the number of classes [42]. This function forces all values to nearly equal

0 or to nearly equal 1, while requiring that the entire function sum to unity. These properties force

the softmax function to effective predict a single class at each output.

Eighteen rounds of training and predictions were performed using early stopping to prevent

overfitting, with each of the eighteen standardized experiments serving once as the early stopping

routine’s test set. Predictions were then averaged.

Classification of San Juan River samples

Since the San Juan River water samples represented a multiclass, multilabel classification

task, the LSTM-RNN’s output layer’s activation function was changed from the softmax function to

the sigmoid activation function. Prediction tests were then performed in the same manner as for the

urban water samples.

Unlike the softmax function (Eqn. 3.17), the sigmoid activation function’s outputs are

independent of one another (ie, not constrained to sum to unity):

σ(z) =
1

1+ e−z (3.18)

Since they are constrained to the interval (0,1), they make an excellent choice in a multiclass,

multilabel classification problem where probabilities of presence can sum to more than 1 [48].

3.2.12 Explainable artificial intelligence (XAI) with Shapley additive expla-

nation values

Over the past two decades, our abilities to introspect and interpret complex machine learning

algorithms have become more and more obfuscated as the same algorithms have grown ever more

powerful [63]. The causes of complaints and warnings surrounding our inability to explain the basic

reasoning of even moderately complex AI algorithms are more than mere aesthetics; in the areas

of medicine, law enforcement, criminal justice, and warfare, the ability to understand why an AI is
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Figure 3.19: A conceptual depiction of the AI complexity-interpretability trade-off. The conceptual
scatter plot on the right shows the current AI black-box dilemma. Generally, as AI performance
increases, our ability to understand how and why they come to the conclusions that they do generally
decreases [47].

making the recommendations it is could literally be a matter of life and death [49, 77]. AI cannot be

given a carte blanche to make decisions with such potentially grave and final consequences.

Similarly, while complicated scientific AI algorithms can be remarkable in their abilities to

learn complex patterns from noisy data sets, their value is greatly reduced because of their inherent

resistance to introspection [78]. While relatively-less complicated AI models, such as decision tree

ensembles, offer more intuitive ways to interrogate individual feature contributions,

As a result of the need for explainable artificial intelligence (XAI), the past three years has

witnessed an explosion in the number of XAI algorithms, with each model temporarily claiming

supremacy over its predecessors [9]. In 2017, however, Lundberg and Lee published an XAI model,

based on cooperative game theory, that unified and advanced several of the leading popular methods.

Their framework, which they refer to as Shapley Additive Explanations (SHAP), is based on the

Lloyd Shapley’s work in game theory and calculates a unique set of additive feature importance

measures for a given model and data set [75].

Shapley values were introduced in 1953 as a solution to the question of how to distribute
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gains obtained through a coalitional game to the participating players, assuming that those players

all cooperate with each other [95]. If one desires a ”fair” distribution or payment rule, then it ought

to possess the following properties:

1. symmetry: symmetry requires that if two players contribute equally to the game, then their

payouts must be equal. This property is essential to our concept of fairness;

2. efficiency: efficiency requires that the sum of distribute gains must be equal to the gain of

the coalition. In other words, there cannot be anything left undistributed, indicating that all

players have received their maximum possible payment;

3. linearity: also called the ”law of aggregation” by Shapley, linearity requires that if two

independent coalitional games are combined, then the sum of their two total gains must equal

the distributed gains summed player by player. This property is required in order for Shapley

values to be calculated for a machine learner’s features.

Shapley demonstrated that, for a unique coalitional game, there exists only one value, ϕi(v),

that satisfies all three of these criteria:

ϕi(v) = ∑
S⊆F\{i}

|S|! (|F |− |S|−1)!
|F |!

(v(S∪{i})− v(S)) (3.19)

where i refers to the ith player, v is the coalitional worth function, F is the total coalition of

players, and S is a subset of N that does not contain player i [52].

Lundberg and Lee extended the scope of Shapley values to machine learning models by

introducing the paradigm of explanation models. For a specific machine learner f , they define an

explanation model g to be a function of binary variables that is an ”interpretable approximation of

the original model”; that is, g closely approximates f , but in such a way that it is interpretable [75]:

g(z′) = ϕ0 +
M

∑
i=1

ϕiz′i (3.20)
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where ϕi ∈ R and M is the number of simplified binary features z′. By equating the machine

learning model in question to a coalitional game, they showed that it is possible to use Eqn. 3.19

to calculate unique Shapley values for each feature for any given input sample. By leveraging

this model-agnostic approach, essentially every machine learning model in existence becomes

explainable.

We trained our XAI models over both our XGBoost and LSTM-RNN learners, using Lund-

berg and Lee’s Python library shap [74].

Model-specific SHAP algorithms

In order to introspect the tree ensemble learners that trained on the standardized experiments,

we utilized shap’s TreeExplainer. TreeExplainer leverages the structure of the component trees to

greatly increase the calculation of the model’s SHAP values [76]. Analysis of these SHAP values

was conducted in Jupyter Notebooks on a 2012 Mac Pro with 24-cores and 48 GB RAM.

Similarly, the SHAP explainer models for the LSTM-RNN deep learners was built using

shap’s DeepExplainer algorithm [75, 97]. All training was conducted on the aforementioned cloud

server, in order to utilize the server’s GPU. As a result of the algorithm’s memory requirements,

another custom generator class was created and training was only performed on an experiment-

by-experiment basis. Training a separate explanation model on each experiment is not a problem,

however, as a consequence of the Shapley values’ linearity property, as described in List 3.2.12. All

calculated SHAP values were cached in permanent memory for subsequent analysis.

Analysis of SHAP values (combining redundant strains, etc.)

When analyzing the SHAP values from both XGBoost and LSTM-RNN learners, the ex-

planation models for each experiment were aggregated into a meta-explanation model. Since the

inputs to the LSTM-RNN models were 2-D time windows, rather than 1-D vectors representing

a single time point, the SHAP explanation model returned a 2-D matrix of corresponding SHAP

values. Recall that, for a machine learning model f and its corresponding explanation model g,
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that the sum of the SHAP values at a given time point will closely approximate the output of f

(see Eqn. 3.19). Thus, in order to assign a single SHAP value to each time point in the experiment,

the explanation model’s (num timesteps)× (num strain positions) matrix output were summed

row-wise to produce a 1× (num strain positions) row vector. This row vector then represented the

SHAP values of each strain-position for the given time point.

Also, since a certain subset of reference strains occupied redundant positions, we analyzed

the XGBoost and LSTM-RNN explanation models in two separate ways. In the first method, we

analyzed each strain-position as an independent feature, regardless of whether the strain occupied

redundant positions or not.

In the second method, we took each redundant strains’ positions’ SHAP values and calculated

their means on a strain-by-strain basis. In addition, we calculated the mean each redundant strains’

positions’ features. By carefully tracking indices in a number of different arrays, we were able

to drop all redundant strain-positions from both the SHAP values and the feature sets; we then

concatenated together the single-strains’ SHAP and feature values with the redundant strains’ newly

calculated mean SHAP values and mean features.

3.3 Results and discussion

3.3.1 Flat-field correction

The automated flat field correction pipeline effectively corrected all optical vignetting in our

DynOMICs optical systems. This result was checked in a variety of ways.

First, we performed a visual inspection in both the fluorescent and transmitted fields of pre-

and post-correction images (Fig. 3.5a and Fig. 3.5d). While these corrections appeared satisfactory

for all three DynOMICs devices, we inspected pre- and post-correction heatmaps of the local

background intensities across the device. These heatmaps revealed that, while some variation still

persisted, it was markedly reduced, especially in the transmitted light channel (Fig. 3.20a and
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Fig. 3.20b).

Finally, for each DynOMICs device, we calculated the mean and standard deviations of the

intensities for a series of images of static microfluidic devices, identical to the images in Fig. 3.5a

and Fig. 3.5d. These statistics confirmed that the standard deviations in the FFC-corrected images

were less than the mean of the variance of the strain-positions’ FL and TL trajectories (Table 3.1).

This indicated to us that the remaining optical vignetting could no longer bias our time series data.

3.3.2 Data preprocessing and feature engineering

In any task involving data analysis and machine learning, the preprocessing of the data

and subsequent feature engineering (or absence of it) represents the most influential part of the

process. Choices made here can either selectively mask information and amplify noise or, far more

preferably, silence noise in the data in order to better emphasize features with high information

content. While deep learning neural networks have demonstrated the ability to work with raw

data and extract their own standardized features, an ability known as representation learning, most

machine learning algorithms do not posses this capability [69]. Our project faced the daunting

obstacles of a combination of fluidic, thermal, electrical, and biological noise sources. Indeed, we

even had to account for rasterization-induced noise that was caused by the diurnal thermal expansion

and contraction of the building in which the DynOMICs devices were housed. Thus, it was critical

to our project that we engineer meaningful features.

Table 3.1: A statistical summary of the effects of flat-field corrections. This table presents the
means and variances of the images, both from before and from after flat field correction. The
reduction of both transmitted light and fluorescence channels’ variances to well below the mean
strain variances in those channels satisfied us that the flat field correction was performing well.

variance mean
background TL 9,488 31,880

strain TL 911 23,541
background TL-FFC 614 24,847

background FL 465 2,701
strain FL 2,829 2,709

background GFP-FFC 352 1,538
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Comparing raw and flat-field corrected
background TL data

(a)
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Comparing raw and flat-field corrected
background GFP data
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Figure 3.20: Heatmaps of both raw and flat field corrected TL and FL backgrounds by device
position. (a) The TL signal quality improved significantly after the automatic FFC pipeline was
implemented. These two heatmaps, which show the near-total elimination of TL vignetting, are
comparable for all three of the DynOMICs boxes. (b) The quality of fluorescence data improved
as well, albeit only slightly. There is a minimal amount of vignetting in the center of the raw
fluorescence map; this vignetting is eliminated in the flat field corrected fluorescence heatmap.
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Figure 3.21: A comparison of the raw and processed fluorescent signals. Our feature engineering
eliminates a significant amount of intra-experiment variability by rendering the raw signal into
a first derivative-like feature. This variability is due to differing hardware between DynOMICs
devices, among other sources.

Through a combination of domain knowledge and experimentation, we successfully en-

gineered meaningful features that were based on the first derivative of the time series data. A

comparison of raw traces and engineered features from two different DynOMICs boxes anecdotally

demonstrates how the feature processing pipeline eliminates differences due to hardware, collapsing

otherwise incomparable trajectories onto one another (Fig. 3.21).

3.3.3 Implementation of Lubansky data differentiation

The Python implementation Lubansky differentiation served as an excellent sanity-check that

we were not biasing our data via assumptions implicit in our feature engineering methods (Fig. 3.22).

Since the Lubansky method relies minimal assumptions about the nature of the data and does not

need regularly sampled data for successful differentiation, it is an excellent option for any researcher

in need of derivative-based features.

However, since the output of our feature extraction pipeline proved so similar to the output

of Lubansky differentiation performed on the same raw data, we decided to forego the lengthy

process of converting our Python implementation to an implementation in C and subsequently
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Figure 3.22: First derivatives of Lubansky differentiated experimental data. The left-side panel
displays the strain’s raw fluorescent signal (blue) and the smoothed signal that results from nu-
merically integrating the calculated first derivative (orange). The plot to the right displays the
Lubansky-calculated first derivative of the raw experimental data. One remarkable property of this
technique is that the researcher makes no explicit assumptions as to the nature of the data or the
noise. The only assumption that is made is the one imposed by the Tikhonov regularization step:
that the simplest solution is the correct solution.

optimizing that code. Converting and optimizing would have created computational speed increases

that would have allowed for efficient use of Lubansky differentiation. In addition, since Lubansky

differentiation requires an entire experiment’s data set in order to differentiate that data, it is not

suitable for a real-time sensor application. Therefore, we made the decision to continue relying upon

our aforementioned feature extraction pipeline for the remaining analysis and machine learning.

3.3.4 Initial supervised learning with tree ensemble learners

Our initial attempts to use machine learning classifiers to detect heavy metal inductions in

our data were met with mixed success. As shown in Fig. 3.23, results from random forest classifiers

suggested that our classifiers could readily detect cadmium, zinc, copper, and iron.

However, detection of lead and chromium was barely better than random guessing, while

detection of arsenic and mercury was on par with and sometimes, when using the F1-micro evaluation

metric, performed worse than random guessing. As discussed in the Methodology section, performing
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Figure 3.23: Resulting recall scores of optimized random forest classifiers. This confusion matrix
displays the cross-validated recall scores for the optimized classifiers. We successfully classified
four metals without feature selection. However, while both hexavalent chromium , Cr(VI), and
divalent lead, Pb(II), appeared to be detected, the results were so weak that they were dropped
from further classification by random forests. Instead, we determined that only rigorous feature
selection enabled effective classification by these tree ensemble learners. Note that the color bar is
logarithmic.
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Figure 3.24: The strain ykgJ responding to Pb(II). ykgJ is just one of several strains, including the
promoter strain representing the σ-factor gene rpoH, that were reliably sensitive to lead. Chromium
had even more strains that responded reliably to it. Therefore, we found it odd that our classifiers
performed so poorly on these metals. Their poor performance on these metals called into question
whether they truly could not detect arsenic or mercury, or if it were simply that the signals of the
relevantly responsive strains were being drowned out by noise.

worse than random guessing while using the F1-micro function as the evaluation metric would only

occur if the learner could truly not perform any better than random guessing.

We thought these results were odd for several reasons. In the case of lead and chromium,

we had manually identified several reliably responding strains for each (Fig. 3.24). That we

could infrequently classify chromium correctly, but never lead, we thought was strange, given the

identification of the lead-sensitive strains. especially since the E. coli genome contains the ars and

mer operons. While our E. coli GFP promoter library did not possess any promoters from either

of these operons, we thought that our classifiers would be able to detect at least a transcriptional

perturbation in other promoter sets from the activation of both ars and mer operons [120].

The fact that the exploratory classifiers were failing to reliably detect lead and chromium,

which both had responsive strains, cast doubt on whether arsenic and mercury were truly undetectable.

One plausible hypothesis was that they were detectable, but that their signals were too weak to

be picked out of such a high-dimensional, noisy data set. If this scenario was indeed true, then
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classification performance would be able to improve with a more powerful machine learning

algorithm or with better feature selection or with both a more powerful classifier utilizing a more

informative suite of features.

In order to test this hypothesis, we decided to first test a more powerful classifier, since this

approach is usually less time-consuming than identifying more informative features (the machine

learning equivalent to finding a ”needle in a haystack”). For our next classifier, we selected the tree

ensemble classifier algorithm known as extreme gradient boosted trees (XGBoost). XGBoost has

a reputation as being one of the most capable non-deep learning AI algorithms. In addition, it is

inherently somewhat interpretable due to its component trees. Therefore, we decided to use it to

attempt binary classification on these four most difficult-to-detect metals: chromium, lead, arsenic,

and mercury.

After subsetting each of these metals down to the simplified binary case of metal versus water,

only chromium was successfully detected (Fig. 3.25). Even then, detection was poor at best, barely

outperforming a dummy classifier pursuing a strategy of guessing according to class frequencies in

the two-class data set. As a consequence of this outcome, the enhanced feature selection strategy

appeared to be our only option for guaranteeing that our inability to reliably detect these metals was

not a false negative.

3.3.5 Statistical distance distribution searches for the identification of lead-,

arsenic- and mercury-sensitive promoters

In order to rule out the possibility that Pb-, As- and Hg-responsive strains were being

overlooked by the exploratory classifiers, we plotted and then manually inspected the energy distance

distributions for every strain. This approach allowed us to inspect, simultaneously, all inductions

across all experiments for a given metal. In the case of strains with redundant positions, we combined

their energy distances into a single distribution.

Strains that were known to reliably respond to specific metals were plotted and compared
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Figure 3.25: The exploratory tree ensemble classifiers failed to detected lead in a binary unopti-
mized classification setting without feature selection. We found this result surprising, since lead
was known to have several reliably-responding strains. Cadmium, on the other hand, was detected a
small percentage of the time. This result suggested that cadmium classification performance could
improve with better feature selection. The combination of these two results cast doubt on whether
the classifiers’ failures to detect arsenic and mercury were false negatives, similar to lead, where
the classifiers were not able to identify responsive strains, or actually true negative results. This line
of reasoning was reinforced by the fact that the ars and mer operons are the only two metal-sensing
operons in the E. coli genome dedicated to detecting metals without biological function. While
neither operon had representative strains on-chip, we assumed that the classifiers could at least
observe a transcriptional perturbation resulting from the activity of these operons.
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against the behavior of two control strains: the promoter-less, negative control strain U139 and

positive control strain lacZ (Fig. 3.26). Each of those strains occupied multiple positions in the

original version of the Alon E. coli GFP promoter library, for the express purpose of serving as

redundant controls [120].

We visually inspected each energy distance distribution for all of the 1,807 unique on-chip

strains across all relevant experiments and inductions. We performed this inspection for lead,

chromium, arsenic and mercury induction behaviours. While we identified several additional strains

that were potentially lead or chromium-sensitive, none were identified for arsenic or mercury

(Fig. 3.28).

To be certain that this result was indeed true, we finally plotted the trajectories of every strain

during all arsenic and mercury inductions (Fig. 3.29). The result was that we manually inspected

16,800 different distributions and trajectories for mercury and arsenic sensitivities. In the end, we

were confident that no strain exhibits a consistently detectable genomic response to either arsenic or

mercury.

One possible reason for the seeming obliviousness of the observed portion of the E. coli

genome to induction by arsenic and mercury is the special role that these two metals have played

in the evolution of E. coli metal tolerance. Arsenic and mercury are the only two metals that play

no biological role within E. coli that nevertheless have operons exclusively dedicated to detecting,

chelating, and exporting these two metals; these operons are the ars and mer operons, respectively

[27]. Other heavy metals without discernible biological roles in the species are sensed and exported

via dual-purpose pathways, evolved for managing concentrations of physiologically-relevant metals

such as iron and zinc [79]. One example of this species of pathway is the znt operon in E. coli, which

manages intracellular zinc concentrations. While znt appears to evolved primarily for zinc, which

is an essential metal in E. coli, the operon is also responsible for sensing, capturing and exporting

cadmium, a purely toxic metal that plays no known role in an living organism [20, 37].

Indeed, further literature searches revealed that the tested concentrations of arsenic and

mercury, while at or above the safety limits set by the Environmental Protection Agency, are still

84



0 1 2 3 4 5 6 7
(neUgy distance EetZeen Easeline and

induction EehavioU distUiEutions

0

10

20

30

40

# 
oI

 in
st

an
ce

s

zntA
lacZ
U139

(neUgy distance EetZeen
lacZ, U139, and zntA's Easeline and Cd(,,) Uesponse EehavioUs

zntA

lacZ

U139

Figure 3.27: A comparison of induced-uninduced energy distances between a metal-sensitive
strain and the on-chip control strains. The energy distance distributions that co-plotted here are an
efficient and intuitive method for simultaneously evaluating a strain’s sensitivity to a single metal
across all of that metal’s inductions across all eighteen standardized experiments. Here, the control
strains neatly overlap with one another, indicating the equivalency of behaviours indicative of metal
insensitivity. The cadmium-sensitive strain zntA, however, has an energy distance distribution that
is markedly different than those of the control strains’. By examining approximately 8,000 of these
plots, we were able to identify candidate responding strains for Pb, Cr, As, and Hg across our entire
data set.
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well below reported minimum inhibitory concentrations (MIC) for E. coli [101]. Arsenic was tested

at a maximum of 0.4 µM, while its reported MIC in some E. coli strains is 1.75 mM; mercury was

tested at a maximum of 0.8 µM, while its reported MIC is 3 µM on minimal media [101] [8]. Since

these concentrations are so much lower than the MIC for most E. coli strains, it is unlikely that the

extremely efficient ars and mer operons encountered any difficulties in rapidly effluxing the toxic

metal ions from the cells. However, most of the reported MIC were determined via testing on agar

plates or in batch cultures, so further testing would be required in order to determine these metals

respective MIC in microfluidic environments.

3.3.6 Supervised learning with extreme gradient boosted trees (XGBoost)

Once it had been determined that there were indeed no strains sensitive to arsenic and mercury,

all arsenic, mercury, and antimony labels were dropped from the data set and we proceeded with

classification on the remaining metals. These metals were iron, copper, zinc, cadmium, chromium,

and lead.

Once we had finished manually tuning the XGBoost hyperparameters, we were possessed

two different classifiers with varying properties. The first classifier was composed of 22 manually

selected feature strains, comprising 118 unique device positions. These strains had been observed in

the course of the project to respond with varying degrees of reliability to the metals-of-interest. The

resulting classifier represented our best baseline against which to compare classifiers constructed

from the entire library and represented the eventual specific sensor that could be constructed by

beginning with a nonspecific sensor and learning the stimuli-of-interest.

The behavior of this best-case classifier can be evaluated by inspecting the confusion matrices

in Fig. 3.30. Note that these matrices are in log-scale format, as opposed to the later matrices of

the LSTM-RNN, which are depicted using a linear scale. The relatively high degree of similarity

between the training and testing matrices in these plots indicates that the manual hyperparameter

tuning process, while probably not optimal, still managed to prevent overfitting on the training

sets. The confusion matrices were created via the aforementioned leave-one-out cross-validation
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Figure 3.30: A summary of the performance of an XGBoost classifier using handpicked strains.
These confusion matrices represent the performance of a manually tuned XGBoost classifier using
handpicked strains as features, as opposed to the full library. The hand-tuning did an excellent job
at avoiding overfitting, as can be discerned by the relatively high degree of similarity between the
training and testing matrices. However, in the case of toxic metals, it would be desirable to have
higher recall scores, since recall is a good metric for how frequently the classifier fails to detect the
presence of a specific metal. In the case of toxic metals, sacrificing precision for recall is preferable
(ie, better safe than sorry). Note that all shading is done via a log scale and that all numbers were
rounded to three decimal places, in order to preserve legibility. These classifiers were created by
using leave-one-out cross-validation and taking the mean of the results.
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procedure that gives a fair estimation of how well such as classifier would generalize to new data.

The XGBoost classifier represented by Fig. 3.30 is performs far better than random, but still

falls short of what we the performance levels we would like to see for a multi-metal field-deployable

sensor. For instance, the test recall for cadmium is 58.8%, indicating that the sensor detects the

presence of the metal nearly three-fifths of the time that it is actually present. However, it is only

able to do the same for lead approximately 2.5% of the time, which is less than ideal. These results

are better than an optimized XGBoost classifier that was trained on the entire library, without feature

selection. Although still better than random, this classifier has all around far worse recall and

precision scores. As a result, we moved to testing the long short-term memory recurrent neural

networks as a candidate sensor AI.

3.3.7 Supervised deep learning with long short-term memory recursive neu-

ral networks

While deep learning networks require specialized hardware and, usually, longer durations of

time to train and optimize, it was well worth the time invested. The optimized LSTM-RNNs, using

a surrounding time window of ± 1 hour, proved themselves to incredibly adept at detecting heavy

metal stress while using the full library. Comparing the confusion matrices in Fig. 3.31, we can see

that its performance far outstrips that of even the best-case XGBoost learner (see Fig. 3.30). Notice

that while Fig. 3.30 is using a log scale color scheme to emphasize the cell values, Fig. 3.31 is not!

In addition to using confusion matrices, we visualized each classifier’s performance using

the prediction versus-time plots seen in Fig. 3.32. In each experiment’s plot, the top row, labeled

”Actual”, indicates which substance is present in the sensor throughout the course of an experiment.

A colored bar indicates the presence of a metal (as denoted by the color codes in the legend), while

no color indicates that the cells were growing on pure HM9 minimal media at the time. The second

row, labeled ”Predicted”, indicates the real-time prediction of the deep learning network as it is

passed the never-before-seen experiment’s data. A color match indicates that the LSTM-RNN is
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Figure 3.31: The classification results for an LSTM-RNN. These confusion matrices represent
the cross-validation results of our optimized LSTM-RNN classifiers. Note that these matrices are
plotted using a linear shading scale, rather than a log scale as in Fig. 3.30. The recall and precision,
as compared with those of the best-case XGBoost classifiers, are dramatically improved. Although
recall is not perfect, the LSTM-RNN rarely (at most 1% of the time) mistakes any metal for water
when the metal is actually present, as can be observed in the left-hand column of the recall matrix.
This result is an especially desirable one for a sensor: even if it is wrong about which metal is
present, it is still detecting that something is contaminating the water. Similarly, the high rate of
precision for water, at approximately 98%, is another desirable sensor quality, as it indicates a low
false positive rate.
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Figure 3.32: Deep learning network predictions on standardized experiment data as a function of
time. These four experiments are a subset of the eighteen standardized experiments that made up
the majority of our data. Each plot was produced by training an LSTM-RNN on all experiments
except the depicted one, and then by testing the resulting classifier on the experiment in question.
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predicting the correct metal, while a color mismatch indicates an incorrect prediction. The third

row, ”Correct class?”, indicates time points with a correct prediction with green and incorrectly

classified time points as red. Finally, the fourth row, which is labeled ”User at risk?”, indicates

whether the classifier correct in predicting whether a point is water/not-water. For instance, in Exp.

1808, the classifier mislabels time points at the beginning and end of the first cadmium induction. If

the concentration of cadmium were high, that mislabeling could potentially put someone relying on

that water source temporarily at risk. Similarly, in Exp. 1838, we see that the classifier mislabels

water as potentially copper later on in the experiment. While copper is not necessarily dangerous to

humans, this false positive could cause a user to temporarily suspend their use of the water supply. A

protracted false positive could, in the wrong situation, lead to a critical water shortage.

The recall scores for the extremely toxic metals cadmium, lead, and chromium are 78%,

33%, and 51%, respectively. A closer inspection of the LSTM-RNN’s predictions as a function of

time, depicted in Fig. 3.32 reveals that the harder-to-sense metals are never, in fact, not detected

when presented to the sensor. Instead, the lower recall scores come from time points similar to those

of the chromium induction in Experiment 1835, where the classifier has difficulty distinguishing

the exact time when the transition from water to cadmium occurs and vice versa (Fig. 3.32). These

results were consistent across all eighteen of the standardized experiments.

Classification of urban water samples

As a consequence of the varying water chemistries of different municipalities around the

United States, it was by no means guaranteed that the standardized experiment-trained LSTM-RNN’s

performance would hold when made to predict on data from the urban water experiments. However,

its performance once again was excellent (Fig. 3.33). Its only faulty predictions occurred when

confusing lead in San Diego’s water supply for copper. This result is possible due to its much higher

concentrations of calcium carbonate solutes and dissolved solids, as compared to the other municipal

water samples. Since many of these solutes are known to interact biologically, it is possible that they

had some sort of impact upon the transcriptional profile of the E. coli genome in the presence of lead.
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Figure 3.33: Deep learning network predictions on urban water samples as a function of time.
Here we see the predictions of an LSTM-RNN that has been presented with the urban water sample
experiments. Each experiment is labeled with the name of the city whose water the E. coli library
is being grown on and to which we added lead and cadmium. These experiments were classified
by the LSTM-RNNs depicted in Fig. 3.32. Each prediction represents the mean of eighteen cross-
validation rounds, each round of which used a different of the standardized experiments as an
early-stopping verification data set. Overall, the deep learners were proficient at detecting the
presence of spiked-in lead contamination in these samples, despite the varying water chemistries.
San Diego appeared to present the classifiers with the largest challenge, most like as a result of its
high concentrations of calcium carbonates and dissolved solids. Even then, it still predicted the
presence of a metal the vast majority of the time that lead was actually presence. These results
suggest that the DynOMICs system would, at the very minimum, serve as an excellent binary
water/not-water sensor.
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Classification of San Juan River samples

The LSTM-RNN was then exposed to repeated inductions by samples of San Juan River

water taken from the Gold King Mine Spill plume as it traveled through Utah. In these cases,

however, the output layer of the network was swapped from a softmax function to a sigmoid function,

effectively allowing the LSTM-RNN to become a multiclass, multilabel classifier (as opposed to

only predicting a single class at each time point, as it had done with both standardized and urban

water experiments).

The resulting probability predictions, as seen in Fig. 3.34, are in extremely close agreement

with the concentrations that were determined by an ICP-MS analysis of the samples. In the figure, the

probabilities for the metals begin to increase starting exactly one hour before we introduced the river

water, which corresponds precisely to the LSTM-RNN’s features’ time window. Simultaneously,

the probability of pure water being present begins to drop. Once the classifier has enough evidence,

it slowly rapidly determines that iron is the most likely constituent in the sample. This prediction

corresponds exactly with the chemical analysis of the water, which showed that iron’s concentrations

were approximately 100 times higher than the next most-ubiquitous metal, zinc. While these

experiments do not indicate that the DynOMICs system, in its current state, could have been used as

a real-time sensor in the days after the 2015 disaster, it still serves as a promising proof-of-concept.

3.3.8 Explainable artificial intelligence (XAI) with Shapley additive explana-

tion values

XGBoost SHAP values

Once we had demonstrated the efficacy of the DynOMICs devices as heavy-metal sensors

on a variety of water samples from the field, we explored its potential as a scientific instrument for

studying the transcriptional dynamics of the E. coli genome. We did this by using a cutting edge

explainable artificial intelligence (XAI) method known as Shapley additive explanatory values or

SHAP [75]. The results were both affirming and revealing. We first examined the overall effect that
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Figure 3.34: Deep learning network predictions on San Juan River samples containing contam-
ination from the Gold King Mine Spill as a function of time. These trajectories represent the
predictions of a multiclass, multilabel LSTM-RNN on samples, collected contemporaneously in
the field, from the San Juan River that contain contaminants from the 2015 Gold King Mine Spill.
Created by averaging together the predictions from three different inductions over three experi-
ments, we see the relative probabilities change in a logical and intuitive way. As the probability
of water decreases, the probabilities of all other metals rise. This process continues until the
classifier has enough information to begin distinguishing which metals it believes are more likely
to be present (rather than simply predicting not-water). Comparison with the concentrations in the
inset bar graph, which are the actual concentrations of these samples as determined via analytical
chemical analysis, shows that the classifier appears to predict the presence of iron correctly. While
its predictions for the presence of zinc and cadmium are far less confident, they still are greater
than water’s probability. In order to actually distinguish itself as a field-worthy multilabel sensor,
the DynOMICs system would need to undergo further development. However, this result is an
encouraging preliminary finding.

96



0.00 0.05 0.10 0.15 0.20 0.25 0.30
mean(|SHAP value|) (average impact on model output magnitude)

argF_0803

zntA_1365

cueO_1706

cueO_0179

zntA_0277

zntA_0554

zntA_1781

ybiN_0206

zntA_0895

metB_0403

zntA_1089

zntA_1983

cueO_0341

zntA_0001

zntA_0415

zntA_0347

zntA_1227

zntA_1503

zntA_1514

zntA_0139

SHAP for XGBoost: summary plot by position

H2O
Pb(II)
Cd(II)
Zn(II)
Cr(VI)
Fe(III)
Cu(II)

Figure 3.35: A SHAP XAI’s summary of the XGBoost feature importances by device position.
In this figure, we see a succinct summary of a SHAP learner’s findings with regards to how
XGBoost would decide to classify various classes. Each distinct row along the vertical axis is
non-empty device position, ranked in descending order from most impactful to least. The names
are a concatenation of the strain name and the device position number; ie, ”zntA 0139” is the zntA
strain located in device position 139. Each color represents a different class’ mean of the absolute
value of the SHAP scores for that specific strain. The purpose of taking the mean of the absolute
value of the SHAP scores is that some strains have large negative SHAP scores, indicating that they
contribute strongly to predicting the absence, rather than the presence, of specific classes. This
plot acts as an excellent sanity-check, since we see that the most of the listed strains are either
zntA or cueO, both of which were reliable multi-metal- and copper-responsive strains, respectively.
Already, though, we begin seeing several previously-unknown strains upon which the classifier
relied to predict a variety of metals, including iron, cadmium, and chromium.
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each kind of classifier attributed to each feature. We did this both by position, where we examined

the contribution of each non-empty device position across all experiments, and by strain, where we

took the mean SHAP values of any redundant strains’ positions.

The summary by device position served as an excellent sanity-check (Fig. 3.35). The first

seven most important positions are filled by redundant zntA positions, which is known to show a

strong response to both cadmium and zinc, while also demonstrating a weaker response to a variety of

the other metals. This kind of response profile made the strain our most reliable multi-metal indicator.

The eighth position of the top twenty strains is occupied by a member of the cueO positions. cueO is

the only promoter from the copper-sensing cue operon in the Alon GFP library. Thus, it is logical

that the cueO positions present in the plot are shown to be overwhelming contributors when it comes

to copper detection.

Although these kinds of reliable metal sensing strains dominate the by-position SHAP

rankings, already we can see new strains whose designated sensitivities we had yet to notice. metB

and argF showed up throughout these SHAP analyses, for both classifiers, as sensitive to chromium

and iron, respectively (Fig. 3.35).

However, comparing the SHAP values on a strain-by-strain basis, rather than a position-

by-position basis, makes it easier to notice strains with more subtle responses (Fig. 3.36). Upon

examining the same form of summary plot, we see that zntA is indeed chosen by the classifier as an

excellent multi-metal sensor. metB rises to the rank of second most-impactful strain, as a result of its

sensitivities to cadmium and chromium. Notice, too, that two lead-sensitive strains are immediately

obvious. This result was surprising because of the difficulty with which XGBoost classified that

metal. It also suggests that SHAP is a potentially excellent method by which to perform feature

selection, in order to build a better heavy metal sensor.

LSTM-RNN SHAP values

In order to compare the observations of the two types of classifiers, we trained a separate

SHAP learner on the finished standardized experiments’ LSTM-RNN. The by-position summariza-
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Figure 3.36: A SHAP XAI’s summary of the XGBoost feature importances by strain. In contrast
to Fig. 3.35, this figure depicts a SHAP learner’s analysis of the XGBoost classifier’s feature
attributions by individual strains. To accomplish this, each redundant strain’s various positions
were averaged together in a time point-by-time point way. Doing so reduces the clutter caused by
redundant strain positions and allow us to analyze the contributions of strains that inhabit single
positions within the microfluidic device. While several of the metal sensing strains remain, such as
zntA and cueO, other cellular processes begin to be made visible. For instance, many promoters of
the met operon contribute to sensing lead, zinc, chromium, and cadmium. Similarly, a promoter
from the arg operon is relied upon. Both of these operons are responsible for synthesizing essential
amino acids (methionine and arginine, respectively), which heavy metals are known to deleteriously
chelate.
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Figure 3.37: A SHAP XAI’s summary of the LSTM-RNN feature importances by strain. The XAI
summary depicted here is of the features with the most impact upon the prediction process of an
LSTM-RNN learner. While only sharing the strains zntA and ykgM in common with the XGBoost
learner, both classifiers nevertheless rely upon some of the same operons, including the met and
cys operons. Additionally, these summary plots seem to suggest that the two different classifiers
take different paths to reaching the same prediction decisions. While XGBoost appears to rely
more heavily on single-metal responders, the deep learner appears to prefer using strains whose
predictive abilities are distributed evenly across many of the classes.
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tion results were similar those of the XGBoost learner, but with an even heavier reliance on the

redundant zntA positions. However, the by-strain analysis was remarkably different, with an almost

completely non-overlapping set of the twenty most-impactful strains (Fig. 3.37). A closer inspection

of the raw signals of many of these strains showed that they were indeed sensitive to their attributed

metals. Frequently, though, the experimental data was so noisy that their responses were not clearly

visible. It seems that the deep learner was quite capable of cutting through the noise of the data set to

find truly responsive strains. LSTM-RNNs are well-known for this ability and are favored in many

problems where the researcher may not have enough domain knowledge to engineer meaningful

features.

One of the stranger results from this analysis was that cueO did not appear in this list, as

we would have intuitively expected it to do (recall its inclusion in Fig. 3.36). To understand why

this occurred, we checked if cueO was used in deciding whether copper were present or not. The

LSTM-RNN indeed relied heavily upon the strain in making decisions on copper, as was evidenced

by its sudden accumulation of large SHAP values at the beginning of the copper inductions, followed

by a loss of the same values after the induction ended. What appeared to have been happening

instead is that the LSTM-RNN was discounting cueO’s usefulness because of its specificity with

regards to copper. Note that, while some strains that the deep learner considers the most useful have

oversized utilities for specific classes (such as zntA for water and cadmium), the majority of these

strains have fairly equally distributed impact attribution values across classes. It is probably that

cueO’s lack of sensitivity to other metals, as noted by the XGBoost learner in Fig. 3.36, rendered it

less useful to the LSTM-RNN’s decision style, which seems to prefer equally-weighted inputs from

many multi-metal-sensitive strains (Fig. 3.37).

Comparison between the two

Delving deeper into how each learner made decisions on a time point-by-time point basis

revealed novel insights into both E. coli transcriptional dynamics in response to heavy metal stress

and how each of these learning algorithms made its decision.
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Figure 3.38: A SHAP XAI’s summary of the XGBoost feature importances for cadmium detection.
In addition to all-class summary plots such as Fig. 3.37, we examined more detailed summary plots
on a class-by-class basis. Here we see the SHAP XAI’s calculated strain impacts on the detection
of cadmium for our XGBoost learner . These plots allow us to see which feature values in particular
contribute to which cadmium-related decisions. For instance, the tree ensemble learner interprets
higher first derivative feature values for zntA, as denoted by the red points in the second row from
the top, as indicating that cadmium is more likely present in the strains’ growth media. Conversely,
the strain in the upper row, ubiE, displays an entirely different kind of impact on the model. Instead
of higher derivative values implying cadmium’s presence, they actually inform the classifier of
cadmium’s probable absence from the media; low values for the same strain’s features make it
likely that cadmium is indeed present. This kind of information demonstrates how DynOMICs is a
unique scientific instrument, capable of capturing transcriptional dynamics data that few, if any,
other technologies could gather with the same resolution.
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Figure 3.39: An LSTM-RNN SHAP XAI’s attribution plots for cadmium predictions. This plot,
the LSTM-RNN equivalent to Fig. 3.38, reveals the remarkably different paths that the two kinds
of algorithms can take to reaching the same detection conclusions. While only sharing three strains
in common (zntA, dmsA, and ykgM), they actually appear to rely on genes with similar cellular
functions. For instance, the znu operon, which the LSTM-RNN learner relies on the determine
cadmium’s presence/absence, is involved in the same DNA repair and stress-induced mutagenesis
pathways as ykgM [11]. Thus, it is plausible that these AI are learning two different dynamic
representations of the same cellular processes.
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Cadmium served as an excellent starting point, since it was the metal with the highest recall

scores for the LSTM-RNN learner (Fig. 3.31). In addition, it produced interesting results from

both learners. In the case of the XGBoost SHAP learner, it found that previously unnoticed strain,

ubiE, was the most impactful overall in predicting cadmium’s presence and absence (Fig. 3.38). We

were surprised by this result, given zntA’s extremely consistent responses to the metal. Upon closer

inspection, we observed that ubiE acted as a negative reporter: time points with higher derivative

values (indicated by the red dots in Fig. 3.38) lessened the likelihood of cadmium being present,

while a low derivative value increased the likelihood of predicting cadmium. In biological terms,

ubiE would exhibit dynamic transcriptional behavior in the absence of cadmium, but then cease

transcriptional activity in its presence. This result is notable in that it most likely would not be

found with scientific instruments other than the DynOMICs system, since finding it relies purely on

detecting changes in the statistical characteristics of that gene’s transcriptional dynamics.

Comparing the LSTM-RNN’s SHAP learner to that of XGBoost’s showed large differences

between the two, at least with respect to which strains they considered the most impactful. In

both cases, the XAI learner’s monitored zntA closely; however, their similarities did not extend far

beyond that strain. Except for two other genes (dmsA and ykgM), each XAI relied upon a completely

disjoint set of seventeen strains of their twenty most-impactful in order to detect cadmium. A closer

inspection of the functions of the two disjoint sets, though, demonstrated some interesting links

between the two. For instance, the LSTM-RNN relied upon multiple genes from the znu operon for

its decisions. Multiple studies have observed the znu operon and ykgM to be closely involved in

DNA repair and mutagenesis [11] [65]. In addition, the znu operon In addition to these similarities,

both XAI observed that the XGBoost learner and the LSTM-RNN learned each utilized promoters

from the met operon. The met operon is known to be up-regulated in under cadmium stress as a

result of the cadmium-induced amino acid limitations within the cell [37]. Anecdotally, methionine

has been studied extensively as a treatment for cadmium poisoning in humans and animals; it is

thought to be an effective treatment because of its ability to effectively chelate unbound cadmium

[46] [36] [85]
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Thus, while the XAI reveal large differences in how each of the machine learning classifiers

come to their respective conclusions in the classification of cadmium, the differences are not as large

as they first appear. The known functional relationships between the two promoter sets indicate

that the machine learning classifiers, rather than learning specific transcriptional behaviors, may be

learning two different representations of the coordinated cellular functions associated with response

to cadmium stress. That they seem to be recognizing the same phenomena from two different

perspectives is promising, as it potentially provides two different avenues by which to observe

transcriptional dynamics.

3.4 Conclusion

Machine learning has long held promise to help untangle and understand the intricate data

arising from biological experiments, especially those studies that examine noisy gene expression

data. However, until recently there has not been a straightforward and universal method by which

to introspect and understand the process by which an artificial intelligence learns and recognizes

meaningful patterns in these data. This lack has been felt more acutely in studies that utilize more

complex and powerful classifiers, such as deep neural networks. The advent of explainable artificial

intelligence algorithms, which are able to learn from another AI how that other AI recognizes

the patterns that it does, has begun to shift that paradigm. Instead of having to choose between

a powerfully predictive model and an interpretable one, now scientists can have both. In the

DynOMICs project, we see both AI and XAI combined with genomic-scale microfluidics to address

the problem of real-time heavy metal sensing and as a method to study the transcriptional dynamics

of the E. coli genome. To our knowledge, this project represents the first time anyone in our field have

simultaneously brought all of these tools to bear on either of these problems, much less than on both

of them simultaneously. DynOMICs has already demonstrated its usefulness as an in-line, real-time

heavy metal sensor. While the system is still in its infancy with regards to scientific instrumentation,

it has already uncovered novel dynamic transcriptional behavior and shown that it can be used to
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discover relationships between related gene networks in the E. coli genome. Moving forward, we

look forward to pursuing these analyses via further analysis of the XAI results.
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