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ABSTRACT	  OF	  THE	  DISSERTATION	  

	  
System,	  Component	  and	  Subcomponent	  Power	  Estimation	  	  

	  
By	  
	  

Davit	  Hovhannisyan	  	  
	  

Master	  of	  Science	  in	  Electrical	  and	  Computer	  Engineering	  
	  

	  University	  of	  California,	  Irvine,	  2015	  
	  

Professor	  Fadi	  Kurdahi,	  Chair	  
	  
	  
	  

	   This work focused on the power estimation of plug load devices, and in particular on 

Personal Computers. As a result, neural network classification estimated power with less than 

5.4% errors. Study showed that internal performance counters properly described the overall 

system and the main component (CPU and GPU) power. Furthermore, neural networks model 

demonstrated higher precision on test data than the linear regression model. 
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INTRODUCTION	  

	   Personal Computers (PCs) are plug load devices, which have dynamic power 

consumption needs. State-of-the-art computing systems, such as PCs, use power reduction 

techniques. Some of these techniques focus on identifying wasteful operations and separation of 

such operations from mainstream. For example, when the PC is not in use and is ON, then it is 

wasting power, energy, and scrutinizing its lifespan. Hence, utilizing adaptive techniques 

increases efficiency. Some of these techniques utilize state identification for idle detection for 

deep sleep, or robust scaling of computational intensity and power consumption. Personal 

Computers (PCs) are complex systems composed of various components, and subcomponents. 

Typically found components in modern PCs are Power Supply, Motherboard, CPU, GPU, Hard 

Drive and DVD Drive. Each of these components’ power consumption depends on the 

appropriation of the overall system. Layers of hardware and software such as power supplies, 

regulators, firmware, middleware, and operating systems operate Personal Computers. These 

layers determine the power and performance architecture, but the activity patterns of their users 

and running programs are the most significant source control. Thus, due to the complexity of the 

overall system (e.g. PC) and user’s ever-changing usage patterns, it is not sufficient to estimate 

the overall power consumption with only rudimentary (e.g. peak frequency, voltage) metrics. 

Researches have shown that PCs are special purpose electrical appliances with unpredictable 

usage patterns. In 2005-2006, Thomas Beauvisage, from Orange Labs of France, carried out a 

study in computer usage in everyday life of 661 households with 1434 users at home for over 19 

months. Among different findings, they identified that software preferences and usage intensity 

at the individual level are rather independent (Beauvisage, 2009). In another study conducted by 

Microsoft Research and Bell Laboratories found that Desktop PC is now a special purpose 
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device, which they use only for specific activities such as working from home or online gaming. 

Thus, PC is an appliance such as a toaster or Microwave oven. Another study indicates that 

energy consumption of Desktop PCs varies over time from diversity of usage pattern impact on 

energy demands (Kawsar & Brush, 2013). Thus, inference on individual usage patterns from the 

general population of users may require resources beyond existing within computing system. 

Therefore, Desktop computers or PCs are appliances with stochastic usage pattern, and are an 

excellent model for study of real time power estimation for plug load devices. 
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Background 
 
Power estimation and characterization are crucial for many endeavors, from competitive analyses 

to load characterization of the power grid. Moreover, it is important to characterize and estimate 

usage and demand for plug load devices from design to actual use. First attempts for accurate 

power estimation and characterization of digital systems are made in the design and testing 

stages by the very detailed knowledge of the inner workings of these systems. The usual solution 

is computationally expensive and time-consuming and is intended for use by system designers 

due to its detail of complexity. As final product moves from designers and manufacturers to 

consumers, the goals of estimation become less focused on detail and more concentrated on 

aggregate information. Moreover, as the challenge moves from the inner workings of a single 

unit to understand from a population of units, then more appropriate models of computation 

should be used. Thus, coarse black-box model based on power estimation methodologies, that 

rely on internal reporting of estimates with use of pervasive and observable features, can deliver 

estimates for very large deployments of computing devices, such as those plugged to the power 

grid. 

Challenge with coarse black-box models identification of the optimal granularity or 

dimensionality of the model. The more detailed and refined these power states are and closer 

they correspond to actual hardware states more accurate power estimates become, at the cost of 

greater computational complexity. Therefore, it is of the utmost importance to identify those 

states that exert the most influence on power consumption without ending up with an 

inapplicable power model.  
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 Some power management features are software interfaced in Personal Computers in the 

Advanced Configuration and Power Interface (ACPI), which help to save energy yet may be not 

possible to use for power estimation. ACPI standard defines multiple types of states, such as 

power, computational, and etc. For example, Intel's 4th generation CPUs' follow ACPI standards 

in order to save energy, and it is not designed to help with estimation. Intel Data sheet identified 

Global System (S), sleep (S), power (P) and package core (C) as separate types of states. The 

Figure 1 demonstrates ACPI states found in Intel 4th generation CPU’s. It is important to point 

out, as stated in the documentation, that this structure may not be found in all processors or 

SKUs. Moreover, other than C0 state, other states consume very little or no power. Power States, 

P’s, in C0 state do not guarantee that power and energy demand will be separated into coarse 

power ratings, thus, in the scope of estimation of power there will be not applied. However, it is 

known that such structure supports power and energy conservation (Hamady, F., Kayssi, A., 

Chehab, A., & Mansour, M.). 

 
 

v G0 – Working 
Ø S0 – Processor Powered on (full on mode / connected standby mode) 

§ C0 – Active mode 
• P0 
• P1 
• … 
• Pn 

v G1 – Sleeping 
Ø S3 cold – Sleep – Suspend to Ram (STR) 
Ø S4 – Hibernate – Suspend To Disk (STD), Wakeup on PCH 

v G2 – Soft Off 
Ø S5 – Soft Off – no power, Wakeup on PCH 

v G3 – Mechanical Off 

FIGURE 1: ACPI STATES 
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 In work of (Park, Pasricha, Kurdahi, & Dutt, 2010), a layered approach is offered to deal 

with operational states and a granularity optimization technique is used to deal with the efficacy 

of the model. The work offers a layered approach to handle functionally accurate layer (Level 0), 

an instruction-level accurate layer (Level 1), a pipeline accurate layer (level 2), and a cycle-

accurate or microarchitecture layer. According to their studies, the layered approach enables to 

deal with different planes of accuracy as needed. Instructions are the commands that are received 

by a processing unit. Therefore, it may be intuitive to assign power estimates to every instruction 

and calculate power by aggregation. This technique becomes far more complex when applied to 

the situation when such planes of complexity are increased. 

 An example of architectural complexity, the pipeline, in computing, is a form of 

operational complexity that may be implemented in hardware or software. Pipelines in their 

essence are very similar to ford assembly lines. In Figure 4, workers are working on the chassis 

of a vehicle each adding an effort to in a line. Due to specialization of each worker work finishes 

much quicker than if each worker had to complete the entire process by himself. Although 

pipelines simplify the work, they do not necessarily save power, or make it deterministic, 

moreover, they add another plane of complexity. Some of the added complexities are in part due to 

the added number of units and their operational states, as some may not be always 

deterministically operating.  

 Units are computational structures that directly deal with computing. These units are 

governed by instructions and pipeline. Thus, the work by Park and others offers an approach to 

simplify the interaction between these different abstractions to allow feasible mechanisms of 

power and energy estimation.  This work tried to take advantage of this layered approach by 

dealing with all abstraction layers in a single layer of features.   
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Model 
 Hierarchical system model can be aggregate into lumped energy estimate or can report 

individual distributed energy estimates. The system model consists of Components, which may 

be devices, and are composed of Subcomponents. Subcomponents may have their own 

subcomponents as well. For example, in Home System consists of a PC (Personal Computer) 

with a CPU (Central Processing Unit), which has some states such as S1, S2, S3... These states 

represent power consumption of the Device. Thus, the formula (Equation 1) for power 

consumption at any given moment would depend on per device reported power consumption. 

Home system is an example of a system where this strategy may apply. Aggregating all 

component energy models allows having a system view on energy estimation. (Figure 2) 

  

Equation 1:      

 
 
  

Total _Power = Pi∑

FIGURE 2: HIERARCHICAL MODEL 
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Procedures 
  Methodology uses three complementary procedures. The first procedure uses external 

metering for overall system energy consumption and calibration. Second procedure utilizes 

internal metering of internal components for energy consumption estimation and calibration. 

Third procedure uses a statistical learning model based on performance metrics or “performance 

counters” that are prevalent in different parts of the overall system, to estimate energy 

consumption for the system and its components. In this work, we discuss complementary set of 

machine learning techniques for accurate electrical energy estimation. 

In Figure 3, demonstrates the setup of the physical system. Diagram demonstrates connection of 

different metering units and computer. These units measure overall PC and Components power 

measurements. The system is powered thru “Watt’s Ap” meter, which serves as a power meter 

for the overall system. The “Watt’s Ap” meter has a limitation of internal logging for 

approximately 32,000 samples. The study used the minimum sampling period of 1 second. 

FIGURE 3: EXPERIMENTAL SETUP DIAGRAM 
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Current clamps were used to measure current flowing thru wires connecting power supply of the 

PC to Motherboards appropriate sockets. Measured current is used to measure power 

consumption of a particular socket, because the voltage is regulated by the power supply. 

Procedures in the study included identifying applications and programs, which were used as 

benchmarks, such as those mentioned in Appendix 1. These programs enable exposure of power 

states of the system and its individual components. Demonstration of the experiment that 

exposed the underlying system is in Figure 4.  

 Next step ensures that all logging tools and devices log the data with respect to the same 

time reference. Because multiple measuring units were used, a convex optimization technique is 

applied to properly align their measurements with software internal performance metrics. 

Essentially asynchronous metering related problem was solved with use optimization technique 

for alignment. 
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System benchmark 

Netflix 

GPU benchmark 

System benchmark 

FIGURE 4: POWER VARIATION OVER DIFFERENT APPLICATIONS 
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 In order to correct identified misalignment, alignment study was done by using mean 

square error cost function with respect to different arrangements in data streams of inputs and 

outputs. The optimization heuristic was to align sequences of data streams in such way that 

would enable lowest cost.  

 In the Figure 5, convex graph demonstrates convex minima at which a correction needs 

performed on input and output data streams. The low point in the graph shows that at that point 

cost function, which is related to the error of estimation is the lowest.  

This technique allows use of inexpensive asynchronous metering systems, which do not share a 

common reference with one another. Figure 6 and 7 demonstrate different fits of estimation 

under different time sequence arrangements.  
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FIGURE 5: CONVEX MINIMA ALIGNMENT OF TWO INDEPENDENT METERS (90 
POINT DRIFT NOTICED) 

Co
st

 

Iteration 
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FIGURE 6: REGRESSION FIT FOR PERSONAL COMPUTER (PC) 
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 After proper alignment is done on data streams, supervised learning algorithms can be 

applied to estimate energy consumption with linear regression estimation and neural network 

classification.  

Although, performance counters are intended to provide information about performance of 

different software and software layers, research used performance counters as features for 

statistical inference of power estimation by machine learning techniques. Software may also use 

the counters to store information on system resources allocated to adjust its strategies of 

operation. (Microsoft Corporation).  

FIGURE 7: NOT ALIGNED DATA REGRESSION RESULTS 
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 In order to exploit the data from performance counters, two different strategies of 

estimation were used; respectively, regression and neural networks models of supervised 

machine learning used linear and nonlinear transformations to estimate consuming power and 

energy. 

 Machine Learning is a scientific field, which uses data to construct learning algorithms.  

Supervised learning is a process by which known examples of correspondence is used to make 

inferences.  
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Results 
 

 Results shown in Figure 8 demonstrate that the mean estimation error in percent is 

usually higher with Neural Networks in comparison to Linear Regression, however, when a test 

sample is used, as shown in Figure 9 estimates are more accurate with Neural Network model. It 

is important to mention that linear regression is computationally less intensive. Both algorithms 

can be implemented on-line, meaning that the data does not have to be present from the very 

beginning and it can be added as more data is available. Accuracy of supervised learning 

algorithms may improve with more data. This features allows for continues self-calibration.  

Mini-Bucket batch processing technique and others allow neural networks model to be refined 

by processing new data after an initial model is formed. Thus, a particular model of a device, 

such as PC, may have specific generic model assigned to it that will offer generally accurate 
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Figure 8: Accuracy comparison of Regression and Neural Network for PC, 
CPU, and GPU 
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results, however, due to variability in between different devices of the same model, a self 

calibration can be done to compensate for intrinsic differences.  

 
 

 
 
In Figure 10, results show that there is high power consumption variation between different 

operational states. For example, the range of power varies of PC between 50-290 Watts while 

range of the CPU varies up to 50 Watts. Results demonstrate high power variation over different 

patterns.   
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FIGURE 9: REGRESSION AND NEURAL NETWORKS PERFORMANCE 
COMPARISON 
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FIGURE 10: POWER VARIATIONS OBSERVED 
DURING STUDY 
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  GPU Regression Estimate vs. Measured 

CPU Regression Estimate vs. Measured CPU Neural Networks Estimate vs. Measured 

GPU Neural Networks Estimate vs. Measured 

PC Regression Estimate vs. Measured PC Neural Networks Estimate vs. Measured 

FIGURE 11: RESULTS FOR REGRESSION AND NEURAL NETWORKS (VERTICAL 
AXIS AVERAGE POWER IN WATTS, HORIZONTAL AXIS SAMPLES FOR EVERY 
TWO SECONDS) 
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 Results demonstrate accurate results with errors 0.42-5.3% in terms electrical energy. In 

Figure, study results are demonstrated for PC, GPU and CPU. These results are spread between 

regression estimation and neural networks classification (Figure 11). Each individual graph 

shows fitness between measured and estimated power values. The results can be further analyzed 

by electrical energy used. Electrical energy in each study is the sum of every point in the graph 

or the area under the curve. Thus, the total energy estimated over the study can be compared with 

measured by comparing areas under the curves. However, to have more appropriate results, 

comparison should be done on a test data, which was not included in the learning model. Table 1 

demonstrates results on test data where error varies between 0.42%-5.3%. 

TABLE 1: ESTIMATION ERROR 
 
 
 
 
 

 
 Internal energy reporting offers insights for power consumption, allows visualization, 

enabling more judicious power usage behavior for consumers to discover subtle sources of 

wasting components and devices.  

 In ERROR! REFERENCE SOURCE NOT FOUND.summary of steps taken to report 

energy estimation is illustrated. Performance metrics taken from the PC are then processed by 

one of two, regression, and neural networks, learning models, which produce estimates and are 

sent to aggregating and visualizing system. Then the data can be visualized from an online 

database by using advanced visualization techniques, which can conform to users needs.  

 PC CPU GPU 

Regression 0.42 % 1.16 % 2.73 % 

Neural Networks 0.77 % 1.1 % 5.3 % 
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FIGURE 12: PERFORMANCE COUNTERS USED TO DERIVE A LEARNING 
MODEL AND USE IT FOR ENERGY CONSUMPTION ESTIMATION AND 
REPORTING. 
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Conclusion and Future Work 
 
 Once estimated, data can be reported to visualization tools that will allow non-experts 

visualize power consumption patterns. The insights attained from power consumption 

measurement and visualization may enable more judicious power usage behavior and allow 

customers to discover subtle sources of power waste, such as long-running unused 

subcomponents of computing devices. The end goal is to make power consumption to closely 

track useful activity expected by users and consumers. 

 The results of this work suggest that an easy-to-use software can be developed that can be 

used to study personal computers with their respective configuration post production time which 

will enable users to know beforehand how much energy a particular configuration uses for 

particular software or benchmarks. The suggested software has already been designed and can 

soon be available.  

 Graphical user interface in Figure will allow users review their energy consumption or 

redo the experimental study with only few additional hardware component used in the study 

itself. This will allow greater transparency for energy consumption of systems and will allow 

users take control of their energy budget. The cost of such hardware setup may vary between 

$100-$700, depending on how many metering units are used. 
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FIGURE 13: SOFTWARE FOR ENERGY ESTIMATION MODELING AND 
REPORTING 
 
 Results of this study show that it is possible to give expert designer understanding of 

components and subcomponents of home devices as sophisticated as personal computers. Energy 

estimation and reporting can increase transparency and awareness of users with little or no 

background in system power consumption and their needs as opposed to leaving them with guess 

work and trust towards sales associates who themselves may not have appropriate 

understandings of possible energy waste generated by some components and software. 
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Appendix 1: Tools and Benchmarks 

Performance Benchmarks 

• Intel Extreme Tuning Utility 

• PC-Mark 7 

• Unigine Valley Benchmark 

• Unigine Heaven Benchmark 

• SiSoftware Sandra 

 

Programs as Benchmarks 

• OpenOffice 

• Netflix streaming 

• Amazon Instant streaming 

• Microsoft Visual Studio 

• Eclipse IDE 

 

Logging tools: 

• For logging data from PC, three software tools were used: Intel Power Gadget, Asus GPU 

Tweaker, and Windows Performance Monitor. 

• For individual components power consumption logging current clumps were used with 

National Instruments DAQ unit and NI DataLogger utility from the NIMxBase software suit.  

• For system power consumption “Watt’s Ap” power meter was used.  
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• For deduction of power in different components study used current clamps. The current clamps 

used were made by PicoTech, and the model was PP218, which is a 60 A  AC/DC Current 

Clamp.  
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Appendix 2: Methods 

Regression Method 
 After alignment correction, data is ready to be used to produce regression and neural 

networks models. In regression data resulted fit is illustrated which is an improvement over 

Error! Reference source not found.. Similarly, Figure 14, Figure 15, Figure 16 and Figure 17 

respectively, demonstrate the fits for CPU – Central Processing Unit, GPU – Graphical 

Processing Unit, Motherboard and PC overall power consumption. Note, in green is for the 

measured data and blue is for the estimated.  

 
 
 
 
 
 
  

FIGURE 14: REGRESSION FIT FOR GPU 
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FIGURE 15: REGRESSION FIT FOR CPU 
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FIGURE 16: REGRESSION OVER THE ENTIRE STUDY FOR PC 
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 Test on regression model revealed that regression analysis will not produce results with 

fidelity, because in one half of the graph the results showed lower than expected and another 

higher than expected. (Figure 17) 

 

  

FIGURE 17: TEST ON REGRESSION MODEL 
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Artificial Neural Networks Method 
Performance metric used was (MSE) Mean Square Error of data in training Validation and 

testing sets. The results converged in the 371st epoch using scaled conjugate back-propagation 

algorithm. (Figure 18) 

 
 
 
 
  

FIGURE 18: VALIDATION, TESTING AND LEARNING COST PER EPOCH 
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Regression of target and output for Training, Validation, Testing, and All Data 
sets 
 
The results of artificial neural networks based learning are summarized in Figure below, where 

additional fitting lines represent goodness of fit.  

 
 
 
 

FIGURE 19: TRAINING, TESTING, VALIDATION AND ALL DATA ESTIMATES 
WITH RESPECT TO MEASURED DATA REPRESENTATION WITH 
REGRESSION LINES 
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Error Histogram. 
In Figure  histogram on artificial neural networks demonstrates errors, which are centered near 

0.2 Watts. Distribution is symmetric and fits expected range of error. 

 
  

FIGURE 20: ERROR HISTOGRAM FOR NEURAL 
NETWORKS MODEL 
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Learned Model plot for output and target average power measurements per 2 seconds of over 

50K data samples, demonstrates efficacy of the algorithm. 

 
  

FIGURE 21: OVERALL PLOT OF ESTIMATED IN BLUE AND MEASURED IN 
GREEN FOR OVER 50K DATA SAMPLES 
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Test data, which was not incorporated with learning data sets (training, validation and testing of 

neural networks classification). 

 

  

FIGURE 22: TEST DATA NOT USED IN MODEL FORMULATION AND 
REFINEMENT FOR PC 
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Error Histogram of the Test Data set in Figure Below, demonstrates with exception of some 

outliers results are centered. 

 

FIGURE 23: ERROR HISTOGRAM ON TEST DATA SET 




