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Unified Inference for Sparse and Dense

Longitudinal Data in Time-Varying

Coefficient Models

Yixin Chen and Weixin Yao∗

Abstract

Time-varying coefficient models are widely used in longitudinal data analysis. These

models allow the effects of predictors on response to vary over time. In this article,

we consider a mixed-effects time-varying coefficient model to account for the within

subject correlation for longitudinal data. We show that when kernel smoothing is

used to estimate the smooth functions in time-varying coefficient models for sparse or

dense longitudinal data, the asymptotic results of these two situations are essentially

different. Therefore, a subjective choice between the sparse and dense cases might

lead to erroneous conclusions for statistical inference. In order to solve this problem,

we establish a unified self-normalized central limit theorem, based on which a unified

inference is proposed without deciding whether the data are sparse or dense. The

effectiveness of the proposed unified inference is demonstrated through a simulation

study and an analysis of Baltimore MACS data.

∗Weixin Yao is corresponding author, Associate Professor, Department of Statistics, University of Cali-
fornia, Riverside, California 92521. Email: weixin.yao@ucr.edu.
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1 Introduction

Longitudinal data sets arise in biostatistics and life-time testing problems when the responses

of the individuals are recorded repeatedly over a period of time. Examples can be found in

clinical trials, follow-up studies for monitoring disease progression, and observational cohort

studies. In many longitudinal studies, repeated measurements of the response variable are

collected at irregular and possibly subject-specific time points. Therefore, the measurements

within each subject are possibly correlated with each other and data are often highly un-

balanced, but different subjects can be assumed to be independent. Typically, the scientific

interest is either in the pattern of change over time of the outcome measures or more simply

in the dependence of the outcome on the covariates.

A useful nonparametric model to quantify the influence of covariates other than time

is the time-varying coefficient model, in which coefficients are allowed to change smoothly

over time. Let {(yij,xi(tij), tij); i = 1, 2, ..., n; j = 1, 2, ..., ni} be a longitudinal sample from n

randomly selected subjects, where tij is the time when the jth measurement of the ith subject

is made and assumed to have bounded support, ni is the number of repeated measurements

of the ith subject, yij is the response, and xi(tij) = xij = (x0i , x
1
i (tij), ..., x

k
i (tij))

T are the

(k + 1)-dimensional covariates for the ith subject at time tij, where x0i = 1 is an optional

intercept. The total number of observations in this sample is N =
∑n

i=1 ni. The time-varying

coefficient model can be written as

yij = xTijβ(tij) + εi(tij), (1.1)

where β(t) = (β0(t), β1(t), ..., βk(t))
T for all t > 0 are smooth functions of t, εi(t) is a
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realization of a zero-mean stochastic process ε(t), and xij and εi are independent. It allows

the time-varying intercept to exist when x0(t) ≡ 1.

To better account for the local correlation structure of the longitudinal data, similar to

the nonparametric mixed-effects model used by Wu and Zhang (2002) and Kim and Zhao

(2013), we add a subject-specific random trajectory vi(·) to model (1.1) and consider the

following mixed-effects time-varying coefficient model

yij = xTijβ(tij) + vi(tij) + σ(tij)εij, (1.2)

where vi(t) is a realization of a mean 0 process with a covariance function γ(t, t
′
) = cov

{
vi(t), vi(t

′
)
}

=

E[vi(t)vi(t
′
)], εij are errors with E(εij) = 0 and E(ε2ij) = 1, and vi(t) and εij are assumed to

be independent. Model (1.2) is basically the same as the model of Hoover, et al. (1998) and

is a special case of the model investigated by Liang, et al. (2003) and Tian and Wu (2014)

which also include subject-specific coefficients. Our primary goal in this article is to estimate

the varying coefficients β(t) and construct confidence intervals for them.

Longitudinal data can be identified as sparse or dense according to the number of mea-

surements within each subject. Statistical analyses for sparse or dense longitudinal data

have been a subject of intense investigation in the recent ten years. Please see, for example,

Yao, et al. (2005) and Ma, et al. (2012) for the studies of the sparse longitudinal data when

ni is assumed to be bounded or follows a given distribution with E(ni) < ∞; and see, for

example, Fan and Zhang (2000) and Zhang and Chen (2007) for the studies of the dense

longitudinal data when ni →∞. Kim and Zhao (2013) specified the sparse and dense cases

clearly. Here we adopt their assumptions for the number of repeated measurements of each

subject under these two scenarios:

• Sparse longitudinal data: n1, n2, ..., nn are independent and identically distributed

positive-integer-valued random variables with E(ni) <∞;
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• Dense longitudinal data: min1≤i≤n(ni) >Mn for some Mn →∞ as n→∞.

Other assumptions regarding the number of repeated measurements within each subject

were also used to study asymptotic behaviors of local polynomial estimators in varying coeffi-

cient models. These assumptions are more or less similar to sparse or dense longitudinal data

definitions described above. For example, in Hoover, et al. (1998) and Wu and Chiang (2000)

the asymptotic inference was established under the assumption of max1≤i≤n(niN
−1)→ 0 as

n → ∞. This assumption covers the sparse longitudinal data condition defined above but

does not meet the definition of dense longitudinal data. In practice, it is well known that

the boundary between sparse and dense cases is not always clear. A subjective choice be-

tween sparse and dense cases may pose challenges for statistical inference. Furthermore,

asymptotic properties of estimators could be different under sparse and dense assumptions.

For example, as pointed out in Wu and Chiang (2000), estimators proposed in Hoover, et

al. (1998) may not be consistent under the dense data setting. Li and Hsing (2010) estab-

lished a uniform convergence rate for weighted local linear estimation of mean and variance

functions for functional/longitudinal data. Nevertheless, Kim and Zhao (2013) showed that

convergence rates and limiting variances under sparse and dense assumptions are different.

This motivated them to develop unified nonparametric approaches to perform longitudinal

data analysis without deciding whether the data are dense or sparse. However, Kim and

Zhao (2013) only considered estimating the mean response curve without the presence of

covariates.

In this article, we use the mixed-effects time-varying coefficient model (1.2) to take co-

variates other than time into account. The time-varying coefficient part, β(t), in this model

describes the effect of interest. The model considered by Kim and Zhao (2013) is a special

case of ours if xij = 1. We first show that when using kernel smoothing to estimate smooth

functions for sparse or dense longitudinal data, asymptotic results of these two situations

are essentially different. Therefore, a subjective choice between sparse and dense cases could
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lead to wrong conclusions for statistical inference. In order to solve this problem, motivated

by Kim and Zhao (2013), we establish a unified self-normalized central limit theorem, based

on which a unified inference is proposed that can adapt to both sparse and dense cases. The

resulting unified confidence interval is simple to compute and use in practice. The effective-

ness of the proposed unified inference is demonstrated through a simulation study and an

analysis of Baltimore MACS data.

This article is organized as follows. In Section 2, we first introduce a sample-size weighted

local constant estimator of the smooth functions β(t) and provide asymptotic properties for

both sparse and dense longitudinal data. Under the mixed-effects time-varying coefficient

model setting, we then propose a unified convergence theory based on a self-normalization

technique. In Section 3, we provide numerical results from a simulation study and use the

Baltimore MACS data to demonstrate the performance of the proposed unified approach.

Section 4 contains some discussion. Regularity conditions and proofs are assembled in the

Appendix.

2 A Unified Approach for Longitudinal Data

2.1 Estimation Method

Hoover, et al. (1998) proposed a local constant fit for the time-varying coefficient model.

However, they did not consider the effect of repeated measurements for each subject. Similar

to Li and Hsing (2010), we consider a sample-size weighted local constant estimation method

for the model (1.2). Let f(·) be the density function of tij and let t be an interior point of

the support of f(·). The weighted local constant estimator we consider is

β̂(t) = arg min
β

n∑
i=1

1

ni

ni∑
j=1

[
yij − xTijβ(t)

]2
K

(
tij − t
hn

)
= H−1n gn, (2.1)
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where K(·) is a kernel function which is symmetric about 0 and satisfies
∫
RK(u)du = 1 and

hn > 0 is a bandwidth, depending on n, with

Hn =
n∑
i=1

1

ni

ni∑
j=1

xijx
T
ijK(

tij − t
hn

), gn =
n∑
i=1

1

ni

ni∑
j=1

xijyijK(
tij − t
hn

). (2.2)

Similar to the estimator considered by Kim and Zhao (2013), the above estimator does

not take within-subject correlations into account for the simplicity of explanation. However

the statistical inference we establish in this article takes within-subject correlations into

account and is based on the model assumption (1.2). Based on Lin and Carroll (2000),

the working independence kernel regression estimate β̂(t) of (2.1) is still consistent and

can achieve optimal convergence rate. However, the working independence estimate might

lose some efficiency compared to many proposed methods that incorporate within-subject

correlations into nonparametric regression estimator. See, for example, Fan, et al. (2007),

Fan and Wu (2008), Pourahmadi (2007), Pan and Mackenzie (2003), Ye and Pan (2006),

Zhang and Leng (2012), Yao and Li (2013), and Zhang et al. (2015).

2.2 Asymptotic Properties for Sparse and Dense Longitudinal Data

Based on sparse and dense cases specified in Kim and Zhao (2013), we will show that

convergence rates and limiting variances of β̂(t) are different for sparse and dense longitudinal

data. To gain intuition about this, we decompose the difference between the estimated value

β̂(t) and the true value β(t) in the following way:

β̂(t)− β(t)−H−1n

n∑
i=1

1

ni

ni∑
j=1

xij
[
xTijβ(tij)− xTijβ(t)

]
K(

tij − t
hn

) = H−1n

n∑
i=1

ξi, (2.3)
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where the asymptotic distribution of β̂(t) is determined by the right hand side, with

ξi =
1

ni

ni∑
j=1

ξij, ξij = xij [vi(tij) + σ(tij)εij]K(
tij − t
hn

). (2.4)

Based on the previous definition γ(t, t
′
) = cov

{
vi(t), vi(t

′
)
}

= E
[
vi(t)vi(t

′
)
]
, and E(ξijξ

T
ij′ ) =

E
{

E
(
ξijξ

T
ij′ | tij, tij′

)}
, we have, for j 6= j

′
,

E(ξijξ
T
ij′ ) = E

{
G(tij, tij′ )γ(tij, tij′ )K(

tij − t
hn

)K(
tij′ − t
hn

)

}
≈ h2nG(t, t)f 2(t)γ(t, t), (2.5)

where G(tij, tij′ ) = E(xijx
T
ij′
| tij, tij′ ) and G(t, t) = lim

t′→t
G(t, t

′
). Throughout this article,

an ≈ bn means that an/bn → 1. For the same subject and same time point,

E(ξijξ
T
ij) = E

{
Γ(tij)

[
γ(tij, tij) + σ2(tij)

]
K2(

tij − t
hn

)

}
≈ Γ(t)hnf(t)ψk

[
γ(t, t) + σ2(t)

]
,

(2.6)

where Γ(tij) = E(xijx
T
ij|tij) and ψK =

∫
RK

2(u)du. Since

var(ξi|ni) = n−2i


ni∑
j=1

E(ξijξ
T
ij) +

∑
16j 6=j′6ni

E(ξijξ
T
ij′ )

 ,

then by (2.5) and (2.6), we have the following result,

var(ξi|ni) ≈
1

ni
Γ(t)hnf(t)ψK

[
γ(t, t) + σ2(t)

]
+ (1− 1

ni
)G(t, t)h2nf

2(t)γ(t, t). (2.7)

Under the sparse assumption that ni’s are independently and identically distributed

with E(ni) < ∞, we have, var(ξi|ni) ≈ Γ(t)hnf(t)ψK [γ(t, t) + σ2(t)] /ni as hn → 0; under

the dense assumption that min1≤i≤n(ni) > Mn for some Mn → ∞ as n → ∞, we have,

var(ξi|ni) ≈ G(t, t)h2nf
2(t)γ(t, t) with Mnhn → ∞. Therefore, limiting variances for sparse

and dense cases are substantially different. We state asymptotic properties for these two
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scenarios in the following theorem.

Theorem 2.1. Let

ρ(t) =

[
β

′
(t)f

′
(t)

f(t)
+

β
′′
(t)

2
+ Γ−1(t)Γ

′
(t)β

′
(t)

]∫
R
u2K(u)du.

Based on the regularity conditions in the Appendix, we have the following asymptotic results.

• Sparse data: Assume nhn →∞ and supnnh
5
n <∞. Then

√
nhn

[
β̂(t)− β(t)− h2nρ(t)

]
→ N (0k+1,Σsparse(t)) , (2.8)

where Σsparse(t) = Γ−1(t)ψK [γ(t, t) + σ2(t)] τ/f(t), 0k+1 is a (k + 1) × 1 vector with

each entry being 0, and τ = E(1/n1).

• Dense data: Assume γ(t, t) 6= 0, ni ≥Mn, Mnhn →∞, nhn →∞ and supnnh
4
n <∞.

Then
√
n
[
β̂(t)− β(t)− h2nρ(t)

]
→ N (0k+1,Σdense(t)) , (2.9)

where Σdense(t) = Γ−1(t)G(t, t)γ(t, t)Γ−1(t).

Based on Theorem 2.1, β̂(t) has the traditional nonparametric convergence rate if the

data are sparse but has root n convergence rate if the data are dense. In addition, note that if

x = 1, then Theorem 2.1 simplifies to asymptotic results provided by Kim and Zhao (2013).

Based on the asymptotic normality in Theorem 2.1, confidence intervals for β(t) are different

under sparse and dense assumptions. Let z1−α/2 be the 1 − α/2 standard normal quantile.

Then an asymptotic 1− α confidence interval for the smooth function βl(t), l = 0, . . . , k is

β̂l(t)− h2nρ̂l(t)± z1−α/2(nhn)−1/2
{[

Γ̂
−1

(t)ψK
[
γ̂(t, t) + σ̂2(t)

]
τ̂ /f̂(t)

]1/2}
l,l

(2.10)
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for sparse data, or

β̂l(t)− h2nρ̂l(t)± z1−α/2n−1/2
{[

Γ̂
−1

(t)Ĝ(t, t)γ̂(t, t)Γ̂
−1

(t)
]1/2}

l,l

(2.11)

for dense data, where β(t) = (β0(t), β1(t), . . . , βk(t))
T , β̂l(t) is the (l + 1)th element of

β̂(t), ρ̂l(t) is the (l + 1)th element of ρ̂(t) and the subscript (l, l) refers to the (l + 1)th

diagonal element of a matrix. In the above formulas, τ̂ = n−1
∑n

i=1 n
−1
i , γ̂(t, t), σ̂2(t),

f̂(t), ρ̂l(t), Γ̂
−1

(t), and Ĝ(t, t) are consistent estimates of τ , γ(t, t), σ2(t), f(t), ρl(t),

Γ−1(t), and G(t, t). In practice, f(t) can be estimated by kernel density estimate, f̂(t) =

N−1
∑n

i=1

∑ni

j=1Khn(tij − t), where Khn(t) = h−1n K(t/hn). The nonparametric mean func-

tions Γ(t), γ(t, t′), and G(t, t′) can be estimated by kernel smoothing methods. For example,

Γ̂lm(t) = N−1
∑n

i=1

∑ni

j=1 xijlxijmKhn(tij − t), where Γlm(t) is the (l,m)th element of Γ(t)

and xijl is the lth element of xij. Then σ(t) and ρ(t) can be easily estimated by noting that

var{y(tij)} = σ2(tij) + γ(tij, tij).

2.3 Proposed Unified Approach

From Section 2.2, asymptotic results for sparse and dense longitudinal data are essentially

different and thus a subjective choice between these two situations poses challenges for

statistical inference, which motivates us to find a unified approach. In this section, we propose

a unified self-normalized central limit theorem which can adapt to both sparse and dense

cases for the mixed-effects time-varying coefficient model (1.2). Let Un(t) = H−1n WnH
−1
n ,

where Hn is defined in (2.2), and

Wn =
n∑
i=1

{
1

ni

ni∑
j=1

xij

[
yij − xTijβ̂(tij)

]
K(

tij − t
hn

)

}{
1

ni

ni∑
j=1

xTij

[
yij − xTijβ̂(tij)

]
K(

tij − t
hn

)

}
.

We have the following unified central limit theorem.
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Theorem 2.2. Assume nhn/ log n → ∞ and supn nh
5
n < ∞ for sparse data, or ni ≥ Mn,

Mnhn → ∞, nh2n/ log n → ∞ and supn nh
4
n < ∞ for dense data. Under the regularity

conditions in the Appendix,

Un(t)−1/2
[
β̂(t)− β(t)− h2nρ(t)

]
→ N(0k+1, Ik+1)

in both sparse and the dense settings, where Ik+1 is the (k + 1)× (k + 1) identity matrix.

Note that the central limit theorem proposed in Kim and Zhao (2013) is a special case of

Theorem 2.2 if x = 1 is assumed in model (1.2). Based on Theorem 2.2, a unified asymptotic

pointwise 1− α confidence interval for βl(t), l = 0, . . . , k can be written as follows:

β̂l(t)− h2nρ̂l(t)± z1−α/2
[
Un(t)1/2

]
l,l
. (2.12)

The confidence intervals (2.10) and (2.11) in Section 2.2 require estimates of the within-

subject covariance function γ(t, t), the overall noise variance function σ2(t), and the condi-

tional expectation G(t, t), which need extra smoothing procedures; but (2.12) does not need

such estimates and can be used for both sparse and dense cases through the self-normalizer

Un(t)1/2.

Due to the bias term h2nρl(t), it is possible that the estimate β̂l(t) is outside the confidence

interval. Since it is difficult to estimate the bias h2nρ(t) in practice due to unknown derivatives

f
′
, β

′
, β

′′
and Γ

′
, we use the same kernel function as in Kim and Zhao (2013), K(u) =

2G(u)− G(u/
√

2)/
√

2, where G(u) is the standard normal density. Then
∫
R u

2K(u)du = 0

and therefore ρ(t) = 0k+1. This obviously does not solve the bias problem. For instance,

if f , β and Γ are four times differentiable, then we have the higher order bias term O(h4n).

As Kim and Zhao (2013) stated, the bias problem is an inherently difficult problem and no

good solutions exist so far. Our simulation results in Section 3.1 demonstrate that the new

proposed self-normalized confidence interval works well.
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For kernel regression, the selection of bandwidth is generally more important than the

selection of kernel functions. As stated in Wu and Chiang (2000), under-smoothing or over-

smoothing is mainly caused by inappropriate bandwidth choices in practice, but is rarely

influenced by kernel shapes. The asymptotic optimal bandwidth depends on n and ni and it

should be able to balance the asymptotic bias term h2nρ(t) and the asymptotic variance term

Un(t). However, as proved in Theorem 2.1, asymptotic properties of the variance term Un(t)

depend on whether the data are dense or sparse and how ni increases with n. Therefore, it

is not easy to derive a unified asymptotic optimal bandwidth. To select the bandwidth for β̂

in practice, we use the idea of “leave-one-subject-out” cross-validation procedure suggested

by Rice and Silverman (1991). Let β̂−i(t) be a kernel estimator of β(t) computed using the

data with all repeated measurements of the ith subject left out, and define

CV(hn) =
n∑
i=1

1

ni

ni∑
j=1

{
yij − xTijβ̂−i(tij)

}2

(2.13)

to be the subject-based cross-validation. The optimal bandwidth is then defined to be the

unique minimizer of CV(hn). Based on Remark 2.3 of Wu and Chiang (2000), the above CV

bandwidth approximately minimizes the following average squared error

ASE(β̂) =
n∑
i=1

1

ni

ni∑
j=1

[
xTij

{
β(tij)− β̂(tij)

}]2
.
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3 Simulation and Real Data Application

3.1 Simulation Study

We follow Kim and Zhao (2013) to construct the subject-specific random trajectory vi(·).

Consider the model

yij =
2∑
l=0

βl(tij)xijl(tij) +
3∑

m=1

αimΦm(tij) + σεij, i = 1, ..., n; j = 1, ..., ni,

where αim ∼ N(0, ωm) and εij ∼ N(0, 1). Let β0(t) = 5(t− 0.6)2, β1(t) = cos(3πt), β2(t) =

sin(2πt), Φ1(t) = 1, Φ2(t) =
√

2sin(2πt), Φ3(t) =
√

2cos(2πt), (ω1, ω2, ω3) = (0.6, 0.3, 0.1),

and σ = 1. Then the variance function γ(t, t) = 0.6 + 0.6sin2(2πt) + 0.2cos2(2πt). The

time points tij are uniformly distributed on [0, 1]. To generate covariates, let bi1 ∼ N(0, 0.3),

bi2 ∼ N(0, 0.3), ηij ∼ N(0, 1), δij ∼ N(0, 1) and ϕ(t) =
√

2(t + 1), then set xij0 = 1,

xij1 = bi1ϕ(tij) + ηij and xij2 = bi2ϕ(tij) + δij for i = 1, ..., n and j = 1, ..., ni. We consider

two sample sizes, n = 200 or 400. Under this setting, we have the following conditional

expectations: Γ(tij) = E(xijx
T
ij | tij) = diag{1, 0.6(tij + 1)2 + 1, 0.6(tij + 1)2 + 1} and

G(tij, tij) = lim
t
ij

′→tij
E(xijx

T
ij′ | tij, tij′) = diag{1, 0.6(tij + 1)2, 0.6(tij + 1)2}.

For the vector (n1, n2, ..., nn) of the number of repeated measurements on each subject,

we consider four cases

N1 : ni ∼ U [{5, 6, ..., 15}]; N2 : ni ∼ U [{15, 16, ..., 35}]; (3.1)

N3 : ni ∼ U [{80, 81, ..., 120}]; N4 : ni ∼ U [{150, 151, ..., 250}]. (3.2)

Here U [D] represents the discrete uniform distribution on a finite set D. Five confidence

intervals are compared in our simulation study:
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1. the self-normalization based confidence interval in (2.12) (SN);

2. the asymptotic normality based confidence interval (2.10) for sparse data (NS);

3. the asymptotic normality based confidence intervals (2.11) for dense data (ND);

4. the bootstrap confidence interval with 200 bootstrap replications from sampling sub-

jects with replacement (BS);

5. the infeasible confidence interval (NSD)

β̂l(t)− h2nρ̂l(t)± z1−α/2n−1/2Sl,l, (3.3)

where S =
{
Γ−1(t)G(t, t)Γ−1(t)(1− τ̂)γ(t, t) + Γ−1(t)τ̂ψK [γ(t, t) + σ2(t)] / [hnf(t)]

}1/2
.

The confidence interval NSD is used as a benchmark to compare the performance of the

other confidence intervals, since NSD uses the true theoretical limiting variance function

(2.7). Note, however, that NSD is practically infeasible, since it depends on many unknown

functions. Similar to Kim and Zhao (2013), we use the true functions γ(t, t), σ2(t), f(t), Γ(t),

and G(t, t) for NS, ND, and NSD, which gives an advantage to these three methods and re-

moves the impact of different estimation methods. Note that the proposed self-normalization

based confidence interval SN only requires a point estimate of β(t) and thus is very easy to

implement. We would like to demonstrate that our new method SN works comparably or

better than NS and ND even when true functions are used for NS and ND.

To measure the performance of different confidence intervals, we use the following two

criteria: empirical coverage probabilities and lengths of confidence intervals. Let t1 < · · · <

t20 be 20 grid points evenly spaced on [0.1, 0.9]. For each grid point tj (j = 1, . . . , 20) and a

given confidence level, we construct confidence intervals for smooth functions β0(tj), β1(tj),

and β2(tj), and compute the empirical coverage probabilities based on 500 replications.

Using 500 replications is restricted by the computing time based on a personal computer
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with Intel(R) Core(TM) i5 CPU, 4GB installed memory, and 32-bit operating system. For

each of the five confidence intervals, the empirical coverage probabilities and lengths are

averaged at 20 grid points. The bandwidth used for each replicate is the average of 20

optimal bandwidths in (2.13) based on 20 replications (Kim and Zhao, 2013).

The results for β1(t) and β2(t) are showed in Table 1 to 4. The bandwidths for N1, N2, N3

and N4 when n = 200 are 0.0548, 0.0471, 0.0359 and 0.0334, respectively. The bandwidths

for N1, N2, N3 and N4 when n = 400 are 0.0498, 0.0428, 0.0327 and 0.0273, respectively.

It can easily be seen that the performance of the confidence intervals NS and ND for β1(t)

and β2(t) strongly depends on the spareness or denseness of the data for both sample sizes.

When the number of repeated measurements on each subject is increased from the sparse

setting N1 to the dense setting N4, the performance of the confidence interval NS assuming

the sparse data becomes worse, while the confidence interval ND assuming the dense data

becomes better. These two confidence intervals only perform well under their corresponding

sparse or dense setting, which further confirms the theoretical results in Theorem 2.1.

Note that the confidence interval ND assuming dense data gives same widths for each

simulation setting at a certain nominal level. This is because asymptotic variances at 20 grid

points assuming dense data are the same for each simulation setting. In addition, since we

use the same way to generate two covariates xij1 and xij2, the diagonal elements in Γ(t) and

G(t, t) corresponding to β1(t) and β2(t) in (2.10), (2.11), and (3.3) are the same at a given

grid point. Hence the widths of the confidence intervals of β1(t) and β2(t) are the same for

NSD, NS, and ND .

Compared to NS and ND, the proposed self-normalization based confidence interval SN

provides more stable and better performance. First, it has similar widths and coverage

probabilities as the bootstrap confidence interval (BS) and both of them perform closely

to the infeasible confidence interval NSD; second, its computing time is much shorter than

for the bootstrap confidence interval; finally, asymptotic properties of the self-normalization
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method have been established in this article, whereas theoretical properties of the bootstrap

procedure for longitudinal data have not been developed as far as we know. We also did

simulation studies on some larger sample sizes, for example, n = 3000, and the proposed self-

normalized method still works very well and performs better than sparse and dense intervals

and has similar performance to the bootstrap method under all cases we tried.

3.2 Application to Baltimore MACS Data

In this section, we apply the self-normalization based confidence interval to the HIV part of

the Baltimore MACS data which came from the Baltimore MACS Public Data Set Release

PO4 (1984 - 1991) provided by Dr. Alfred Saah. CD4 cells can be destroyed by human

immune-deficiency virus(HIV) and thus the percentage of the CD4 cells in the blood of

a human body will change after HIV infection. Because of this, CD4 cell count and the

percentage in the blood are the most popular used markers to monitor the progression of

the disease.

The HIV status of 283 homosexual men who were infected with HIV during the follow-up

period between 1984 and 1991 was included in this data set. All individuals were scheduled

to have measurements made twice a year. Since many patients missed some of their sched-

uled visits and HIV infections happened randomly during the study, numbers of repeated

measurements for each patient are not equal and their measurement times are different. Fur-

ther details about the design, methods, and medical implications of the study can be found

in Kaslow, et al. (1987).

The response variable is the CD4 percentage over time after HIV infection. Three co-

variates are: patient’s age, smoking status with 1 as smoker and 0 as nonsmoker, and the

CD4 cell percentage before the infection. The aim of our statistical analysis is to evaluate

the effects of smoking, pre-HIV infection CD4 percentage, and age at HIV infection on the

mean CD4 percentage after the infection. Define tij to be the time (in years) of the jth mea-
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surement of the ith individual after HIV infection. In this data set, patients have minimum

1 and maximum 14 measurements. Let Yij be the ith individual’s CD4 percentage at time

tij and X1i be the smoking status for the ith individual. We center age and pre-infection

CD4 percentage using the sample average. Then we construct the time-varying coefficient

model as follows:

Yij = β0(tij) + β1(tij)X1i + β2(tij)X2i + β3(tij)X3i + εij,

where β0(t) represents the baseline CD4 percentage and can be interpreted as the mean

CD4 percentage at time t for a nonsmoker with average pre-infection CD4 percentage and

average age at HIV infection. Therefore, β1(t), β2(t), and β3(t) represent time-varying effects

for smoking, age at HIV infection, and pre-infection CD4 percentage, respectively, on the

post-infection CD4 percentage at time t.

We use the kernel smoothing method stated in (2.1) to estimate smoothing functions

β0(t), β1(t), β2(t), and β3(t). The bandwidth was chosen by using the leave-one-subject-out

cross-validation method, and its value is 0.7074. This real data set is most likely to be the

sparse case. However, based on Table 1 to 4, even for the case of N1, the proposed self-

normalized method (SN) provides better confidence interval than the sparse confidence in-

terval (NS). In addition, as we discussed before, the sparse confidence interval (2.10) requires

estimates of many unknown quantities and some of them are not easy to estimate, while the

self-normalized confidence interval (2.12) does not require any additional estimates besides

the estimates of regression coefficients. Therefore, self-normalization based 95% confidence

intervals were constructed for β0(t), . . . , β3(t) at 100 equally spaced time points between 0.1

and 5.9 years. We also constructed bootstrap 95% confidence intervals at the same 100 time

points, based on 1000 bootstrap replications. Figure 1 depicts fitted coefficient functions

(solid curves) with 95% self-normalization based confidence intervals (dashed curves) and

bootstrap confidence intervals (dotted curves). It can easily be seen that self-normalization
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based confidence intervals are very close to bootstrap confidence intervals. Indeed, they al-

most overlap with each other. However, the computing time for the self-normalization based

confidence interval is much shorter than the bootstrap confidence interval. The former one

only takes approximately 5 seconds, whereas the latter one needs almost 50 minutes based

on a personal computer with Intel(R) Core(TM) i5 CPU, 4GB installed memory, and 32-bit

operating system.

Based on the constructed confidence intervals, the mean baseline CD4 percentage of

the population decreases with time, but at a rate that appears to be slowing down at four

years after the infection. Since confidence intervals for smoking and age of HIV infection

cover 0 most of the time, these two covariates do not significantly affect the post-infection

CD4 percentage. The pre-infection CD4 percentage appears to be positively associated with

higher post-infection CD4 percentage, which is expected. The above findings basically agree

with Wu and Chiang (2000), Fan and Zhang (2000), and Huang, et al. (2002), and Qu and

Li (2006).

4 Discussion

In this article, we proposed a unified inference for the time-varying coefficient model (1.2)

for the longitudinal data based on the new established unified self-normalized central limit

theorem. The new inference tool allows us to do inference for the longitudinal data without

subjectively deciding whether the data are sparse or dense. The effectiveness of the proposed

unified inference is demonstrated through a simulation study and an analysis of Baltimore

MACS data. However, we want to point out that our method only unifies the inference of

the sparse and dense situations discussed in our article. It requires more research to provide

a unified inference that is applicable to all cases.

The weighted local constant estimators that we considered in this article only use one

17



smoothing parameter, which may not be able to provide adequate smoothing for all coefficient

curves at the same time. Wu and Chiang (2000) proposed the componentwise local least

squares criteria to estimate time-varying coefficients using different amounts of smoothing.

The reason that we use one smoothing parameter is for the simplicity of computation and

our proposed unified inference can be extended to the case of different smoothing parameters

as well.

For time-varying coefficient models, commonly asked questions are whether coefficient

functions β(·) vary over time and whether certain covariates are significant. Therefore, we

may wish to test whether a certain component of β(·) is identically zero or constant. The

generalized likelihood ratio statistics for the nonparametric testing problems proposed in Fan,

et al. (2001) might be considered, but the theoretical and practical aspects for longitudinal

data would require substantial development.
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Appendix

The following conditions are imposed to facilitate the proof and are adopted from Wu and

Chiang (2000), Huang, et al. (2002), and Kim and Zhao (2013).

Regularity Conditions:

1. The observation time points follow a random design in the sense that tij, for j = 1, ..., ni

and i = 1, ..., n, are chosen independently from an unknown distribution with a density
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f(·) on a finite interval. The density function f(·) is continuously differentiable in a

neighborhood of t and is uniformly bounded away from 0 and infinity.

2. In a neighborhood of t, β(·) is twice continuously differentiable, σ2(·) is continuously

differentiable. In a neighborhood of (t, t), γ(t, t
′
) = cov{vi(t), vi(t

′
)} is continuously

differentiable and γ(t, t) = limt′→t cov{vi(t), vi(t
′
)}. Furthermore, σ2(t) < ∞ and

γ(t, t) <∞.

3. {vi(·)}i, {tij}ij, {εij}ij are independent and identically distributed and mutually inde-

pendent.

4. {xij}ij, {vi(·)}i, {εij}ij are mutually independent. {xij}i are independent and iden-

tically distributed. For the same i, xi1, ...,xini
have identical distribution and can be

correlated. E
[
‖xij‖ ·

∥∥xij′∥∥ · ∥∥xij′′∥∥ |tij, tij′ , tij′′ ] <∞ for 1 6 j 6= j
′ 6= j

′′
6 ni.

5. Γ(t) is invertible and differentiable.

6. E{|vi(·) + σ(·)εij|4} is continuous in a neighborhood of t and E{|vi(·) + σ(·)εij|4} <∞.

7. K(·) is bounded, symmetric, and has bounded support and bounded derivative.

Since σ2(t) and γ(t, t) are unknown in most applications and the unified approach that

we propose does not need the specific structures of σ2(t) and γ(t, t), therefore, we do not

require further specific structures for σ2(t) and γ(t, t), except for their continuity in the above

condition 2. These conditions are not weakest possible conditions. For instance, in condition

7, actually we only need the first moment of K(·) to be 0 so that the bias term containing

the first order of h will be 0. K(·) is allowed to be negative. The symmetry assumption

is traditionally used for kernel function and will automatically satisfy the condition of zero

first moment. In addition, the requirement for bounded support for the kernel K(·) could be

relaxed as well. All asymptotic results still hold if we put a restriction on the tail of K(·).
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For example, lim supt→∞ |K(t)t5| < ∞ (Fan and Gijbels, 1992). In the following, without

confusing, we will omit the subscript n of hn for the simplicity of notation.

Proof of Theorem 2.1. Based on (2.3), asymptotic results for sparse or dense longitudinal

data depend on the limiting distribution of ξi which is defined in (2.4). In order to obtain

the limiting distribution of ξi, we define the following notation.

Hn =
n∑
i=1

Vi, Vi =
1

ni

ni∑
j=1

Vij, Vij = xijx
T
ijK(

tij − t
h

),

bn =
n∑
i=1

ζi, ζi =
1

ni

ni∑
j=1

ζij, ζij = xij
[
xTijβ(tij)− xTijβ(t)

]
K(

tij − t
h

),

Γ(tij) = E(xijx
T
ij|tij), Γ1(tij) = E(x2ijlx

2
ijr|tij), Γ2(tij) = E(X2

ijmxijx
T
ij|tij),

where l, r,m = 0, ..., (k + 1). Throughout this article, we consider the element-wise variance

of a matrix. Based on regularity conditions 1, 2, 3, 4, 5, 7, Taylor’s expansion and symmetry

of the kernel function K(·), we have the following results,

E(Vij) =E {E(Vij|tij)} = E

{
E(xijx

T
ij|tij)K(

tij − t
h

)

}
=h

∫ [
Γ(t) + Γ

′
(t)ht0 + o(h)

]
K(t0)

[
f(t) + f

′
(t)ht0 + o(h)

]
dt0

=Γ(t)hf(t)
[
1 +O(h2)

]
,
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and

var(Vij(l, r)) = var

(
xijlxijrK(

tij − t
h

)

)
= E

{[
xijlxijrK(

tij − t
h

)

]2}
−
{

E

[
xijlxijrK(

tij − t
h

)

]}2

= E

[
Γ1(tij)K

2(
tij − t
h

)

]
−O(h2) = hΓ1(t)f(t)ψK + o(h)−O(h2) = O(h),

where (l, r) refers to the element of Vij in the lth row and rth column. Therefore, var(Vij) =

O(h). Similarly, we have the following results for ζij,

E(ζij) = E

{
E

{
xij
[
xTijβ(tij)− xTijβ(t)

]
K(

tij − t
h

)|tij
}}

= E

{
Γ(tij) [β(tij)− β(t)]K(

tij − t
h

)

}

= h3f(t)Γ(t)

[
β

′
(t)f

′
(t)

f(t)
+

β
′′
(t)

2
+ Γ−1(t)Γ

′
(t)β

′
(t)

]∫
t20K(t0)dt0 + o(h3)

= Γ(t)h3f(t)ρ(t) + o(h3),

and

var(ζijm) = var

{
xijm

[
xTijβ(tij)− xTijβ(t)

]
K(

tij − t
h

)

}

= E

{
E

{[
xijmxTij [β(tij)− β(t)]K(

tij − t
h

)

]2
|tij

}}
−
[
O(h3)

]2
=

∫
[β(tij)− β(t)]T Γ2(tij) [β(tij)− β(t)]K2(

tij − t
h

)f(tij)dtij −O(h6)

= O(h3),

where ρ(t) =

[
β

′
(t)f

′
(t)

f(t)
+

β
′′
(t)

2
+ Γ−1(t)Γ

′
(t)β

′
(t)

] ∫
R u

2K(u)du, ζijm and xijm are the mth

elements of ζij and xij, respectively. Therefore, var(ζij) = O(h3). In both sparse and
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the dense cases, E(Vi|ni) is not random, so we have var(Vi) = E {var(Vi|ni)} 6 var(Vij).

Therefore, var(Hn) = O(nh). Then

Hn = E(Hn) +Op

(√
var(Hn)

)
=

[
1 +Op

{
h2 +

1√
nh

}]
nΓ(t)hf(t).

Similarly, bn = nΓ(t)h3f(t)ρ(t) + op(nh
3) +Op(

√
nh3). Hence,

H−1n bn =
Γ−1(t)

[
nΓ(t)h3f(t)ρ(t) + op(nh

3) +Op(
√
nh3)

]
[
1 +Op(h2 +

√
1
nh

)
]
nhf(t)

= h2ρ(t) + δn,

where δn = op(h
2) +Op(

√
h
n
).

For dense longitudinal data, under the given conditions we have δn = op(1/
√
n) and

[nh2f 2(t)]
−1

var(
∑n

i=1 ξi) ≈ G(t, t)γ(t, t). For any unit vector d ∈ Rk+1, let dT
∑n

i=1 ξi =∑n
i=1 dTξi =

∑n
i=1 θi, where θi = dTξi. Then we have E(θ2

i ) = O(h2) and E(θ3
i ) = O(h3)

based on the regularity condition 4. By the Lyapunov central limit theorem,
∑n

i=1 ξi

h
√
nf(t)

→

N(0k+1,G(t, t)γ(t, t)). Similarly, for sparse longitudinal data, since ξ1, ..., ξn are independent

and identically distributed, the result follows from δn = op(1/
√
nh) and var(

∑n
i=1 ξi) ≈

nhτψKf(t)[γ(t, t) + σ2(t)]Γ(t). �

Proof of Theorem 2.2. Based on Theorem 2.1, if we can show nUn(t) → Σdense(t) and

nhUn(t)→ Σsparse(t), the Theorem 2.2 can be proved.

Denote Kij = K(
tij−t
h

). Let

Wn =
n∑
i=1

{
1

ni

ni∑
j=1

xij

[
yij − xTijβ̂(tij)

]
Kij

}{
1

ni

ni∑
j=1

xTij

[
yij − xTijβ̂(tij)

]
Kij

}

=
n∑
i=1

(
ξiξ

T
i + ξiα

T
i + αiξ

T
i + αiα

T
i

)
,
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where ξi = 1
ni

∑ni

j=1 xij [vi(tij) + σ(tij)εij]Kij, and αi = 1
ni

∑ni

j=1 xij

[
xTijβ(tij)− xTijβ̂(tij)

]
Kij.

Similarly as Kim and Zhao (2013), by Theorem 3.1 in Li and Hsing (2010),
∣∣∣β̂(z)− β(z)

∣∣∣ =

Op(ln)1k+1 uniformly for z in the neighborhood of t, where ln = h2 +
√

logn
n

for dense data,

ln = h2 +
√

logn
nh

for sparse data and 1k+1 is a (k + 1) × 1 vector with all elements equal

to 1. Then αi = Op(|αi|) = Op(ln) 1
ni

∑ni

j=1

∣∣xijxTij1k+1Kij

∣∣. Since ξi = 1
ni

∑ni

j=1 ξij which is

defined in (2.4), we can get

n∑
i=1

∣∣ξiαT
i + αiξ

T
i + αiα

T
i

∣∣ = Op(ln)
n∑
i=1

1

n2
i

ni∑
j=1

∣∣ξij∣∣ ni∑
j=1

∣∣xTij(xTij1k+1)Kij

∣∣
+Op(ln)

n∑
i=1

1

n2
i

ni∑
j=1

∣∣xijxTij1k+1Kij

∣∣ ni∑
j=1

∣∣ξTij∣∣
+Op(l

2
n)

n∑
i=1

1

n2
i

ni∑
j=1

∣∣xijxTij1k+1Kij

∣∣ ni∑
j=1

∣∣xTij(xTij1k+1)Kij

∣∣ .
Based on the proof of Theorem 2.1,

ξij = E(ξij) +Op(
√

var(ξij)) = Op(
√

E(ξijξ
T
ij)) = Op(

√
h),

xijx
T
ijKij = Vij = E(Vij) +Op(

√
var(Vij)) = Op(h) +Op(

√
h) = Op(

√
h).

Since xijx
T
ij1k+1Kij = xijx

T
ijKij1k+1, xTij(x

T
ij1k+1)Kij = 1Tk+1xijx

T
ijKij and l2n = o(ln), then∑n

i=1

∣∣ξiαT
i + αiξ

T
i + αiα

T
i

∣∣ = Op(nhln). Recall that ξ1, ..., ξn are independent, then

Wn = E

(
n∑
i=1

ξiξ
T
i

)
+Op

√√√√var(
n∑
i=1

ξiξ
T
i )

+Op(nhln) =
n∑
i=1

E(ξiξ
T
i ) +Op(xn),

where xn =
√∑n

i=1 var(ξiξ
T
i ) + nhln. By Theorem 2.1, we have nH−1n

∑n
i=1 E(ξiξ

T
i )H−1n →

Σdense(t) for dense data or nhH−1n
∑n

i=1 E(ξiξ
T
i )H−1n → Σsparse(t) for sparse data. Therefore,

it remains to show that xn = o(nh2) for dense data and xn = o(nh) for sparse data.

For the dense data, we have
∑n

i=1 var(ξiξ
T
i ) = O(nh4) based on the regularity condition
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6 and thus xn = O(
√
nh2 + nh3 + h

√
n log n) = o(nh2). For the sparse data, we have∑n

i=1 var(ξiξ
T
i ) = O(nh) and therefore xn = O(

√
nh+ nh3 +

√
nh log n) = o(nh).
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Table 1: Average empirical coverage percentages and lengths, in parentheses, for
β1(t) of five confidence intervals when n=200.

1− α N SN NS ND NSD BS

90% N1 85.7(0.218) 82.1(0.198) 56.4(0.115) 87.4(0.226) 88.8(0.238)

N2 87.1(0.169) 76.6(0.132) 70.4(0.115) 88.5(0.174) 88.7(0.177)

N3 88.6(0.133) 61.2(0.074) 82.6(0.115) 89.8(0.136) 89.0(0.135)

N4 89.2(0.126) 54.5(0.057) 86.3(0.115) 90.1(0.128) 89.2(0.126)

95% N1 91.4(0.261) 88.4(0.236) 64.1(0.137) 92.6(0.270) 93.7(0.283)

N2 92.7(0.201) 84.1(0.157) 78.1(0.137) 93.4(0.207) 93.7(0.210)

N3 93.2(0.159) 68.8(0.088) 88.9(0.137) 94.1(0.163) 93.5(0.161)

N4 93.7(0.150) 61.4(0.068) 91.9(0.137) 94.6(0.153) 93.7(0.151)

SN, the self-normalized confidence interval in (2.12); NS and ND, the asymp-
totic normality based confidence intervals (2.10) and (2.11) assuming sparse
and dense data, respectively; NSD, the infeasible confidence interval in (3.3);
BS, the bootstrap confidence interval; Ni, i=1,. . . ,4, the number of measure-
ments on individual subjects defined in (3.1) and (3.2).

Table 2: Average empirical coverage percentages and lengths, in parentheses, for
β2(t) of five confidence intervals when n=200.

1− α N SN NS ND NSD BS

90% N1 86.6(0.219) 83.0(0.198) 57.1(0.115) 88.2(0.226) 88.9(0.232)

N2 86.9(0.169) 77.1(0.132) 70.6(0.115) 88.2(0.174) 88.1(0.174)

N3 88.5(0.134) 61.6(0.074) 82.8(0.115) 89.6(0.136) 88.7(0.135)

N4 88.9(0.126) 54.0(0.057) 85.8(0.115) 90.1(0.128) 89.0(0.127)

95% N1 92.0(0.260) 89.3(0.236) 65.2(0.137) 93.5(0.270) 93.8(0.276)

N2 93.0(0.201) 84.4(0.157) 78.6(0.137) 94.0(0.207) 93.7(0.208)

N3 93.5(0.160) 69.8(0.088) 89.3(0.137) 94.1(0.163) 93.8(0.161)

N4 93.7(0.150) 60.0(0.068) 91.3(0.137) 94.2(0.153) 93.6(0.150)

SN, the self-normalized confidence interval in (2.12); NS and ND, the asymp-
totic normality based confidence intervals (2.10) and (2.11) assuming sparse
and dense data, respectively; NSD, the infeasible confidence interval in (3.3);
BS, the bootstrap confidence interval; Ni, i=1,. . . ,4, the number of measure-
ments on individual subjects defined in (3.1) and (3.2).
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Table 3: Average empirical coverage percentages and lengths, in parentheses, for
β1(t) of five confidence intervals when n=400.

1− α N SN NS ND NSD BS

90% N1 86.5(0.163) 82.9(0.147) 54.9(0.082) 87.3(0.166) 88.8(0.174)

N2 87.9(0.125) 78.1(0.098) 69.2(0.082) 88.7(0.126) 89.4(0.130)

N3 88.7(0.097) 63.6(0.055) 82.2(0.082) 89.2(0.098) 89.1(0.098)

N4 88.4(0.091) 53.7(0.042) 84.8(0.082) 89.2(0.092) 88.5(0.091)

95% N1 92.3(0.194) 89.5(0.175) 63.1(0.097) 93.3(0.198) 94.1(0.207)

N2 93.6(0.149) 85.6(0.117) 78.0(0.097) 94.1(0.150) 94.5(0.154)

N3 94.2(0.116) 72.0(0.065) 88.9(0.097) 94.6(0.117) 94.5(0.117)

N4 94.0(0.108) 62.2(0.051) 91.0(0.097) 94.4(0.109) 94.0(0.109)

SN, the self-normalized confidence interval in (2.12); NS and ND, the asymp-
totic normality based confidence intervals (2.10) and (2.11) assuming sparse
and dense data, respectively; NSD, the infeasible confidence interval in (3.3);
BS, the bootstrap confidence interval; Ni, i=1,. . . ,4, the number of measure-
ments on individual subjects defined in (3.1) and (3.2).

Table 4: Average empirical coverage percentages and lengths, in parentheses, for
β2(t) of five confidence intervals when n=400.

1− α N SN NS ND NSD BS

90% N1 86.4(0.162) 82.8(0.147) 55.0(0.082) 87.6(0.166) 88.1(0.170)

N2 88.2(0.125) 77.8(0.098) 68.8(0.082) 88.9(0.126) 88.9(0.128)

N3 88.8(0.097) 62.8(0.055) 81.7(0.082) 89.0(0.098) 88.8(0.097)

N4 90.2(0.091) 56.0(0.042) 86.4(0.082) 90.8(0.092) 90.1(0.091)

95% N1 93.1(0.194) 90.4(0.175) 63.9(0.097) 93.9(0.198) 94.4(0.203)

N2 93.8(0.148) 85.7(0.117) 77.5(0.097) 94.2(0.150) 94.4(0.152)

N3 94.0(0.115) 71.1(0.065) 88.8(0.097) 94.5(0.117) 94.1(0.116)

N4 95.0(0.108) 64.0(0.051) 92.5(0.097) 95.5(0.109) 95.0(0.109)

SN, the self-normalized confidence interval in (2.12); NS and ND, the asymp-
totic normality based confidence intervals (2.10) and (2.11) assuming sparse
and dense data, respectively; NSD, the infeasible confidence interval in (3.3);
BS, the bootstrap confidence interval; Ni, i=1,. . . ,4, the number of measure-
ments on individual subjects defined in (3.1) and (3.2).
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Figure 1: Application to AIDS data. Estimated coefficient curves for the baseline CD4 percentage
and the effects of smoking, age and pre-infection CD4 percentage on the percentage of CD4 cells.
The value of the selected bandwidth is 0.7074. Solid curves, estimated effects; dashed curves, 95%
self-normalization based confidence intervals; dotted curves, 95% bootstrap pointwise confidence
intervals.
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