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A Step-by-Step Implementation of DeepBehavior, Deep Learning 
Toolbox for Automated Behavior Analysis

Sanjay Shukla1, Ahmet Arac1

1Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles

Abstract

Understanding behavior is the first step to truly understanding neural mechanisms in the brain that 

drive it. Traditional behavioral analysis methods often do not capture the richness inherent to the 

natural behavior. Here, we provide detailed step-by-step instructions with visualizations of our 

recent methodology, DeepBehavior. The DeepBehavior toolbox uses deep learning frameworks 

built with convolutional neural networks to rapidly process and analyze behavioral videos. This 

protocol demonstrates three different frameworks for single object detection, multiple object 

detection, and three-dimensional (3D) human joint pose tracking. These frameworks return 

cartesian coordinates of the object of interest for each frame of the behavior video. Data collected 

from the DeepBehavior toolbox contain much more detail than traditional behavior analysis 

methods and provides detailed insights to the behavior dynamics. DeepBehavior quantifies 

behavior tasks in a robust, automated, and precise way. Following the identification of behavior, 

post-processing code is provided to extract information and visualizations from the behavioral 

videos.
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Introduction

A detailed analysis of behavior is key to understanding the brain and behavior relationships. 

There have been many exciting advances in methodologies for recording and manipulating 

neuronal populations with high temporal resolution, however, behavior analysis methods 

have not developed at the same rate and are limited to indirect measurements and a 

reductionist approach1. Recently, deep learning based methods have been developed to 

perform automated and detailed behavior analysis2,3,4,5. This protocol provides a step-by-

step implementation guide for the DeepBehavior toolbox.
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Traditional behavioral analysis methods often include manually labeling data by multiple 

evaluators, leading to variance in how experimenters define a behavior6. Manual labeling of 

the data requires time and resources that increase disproportionately to the amount of data 

collected. Moreover, manually labelled data reduce the behavior outcomes into categorical 

measurements which do not capture the richness of the behavior, and will be more 

subjective. Thus, the current traditional methods may be limited in capturing the details in 

the natural behaviors.

The DeepBehavior toolbox presents a precise, detailed, highly temporal, and automated 

solution using deep learning for behavioral analysis. Deep learning has quickly become 

accessible to all with open-source tools and packages. Convolutional neural networks 

(CNNs) are proven to be highly effective in object recognition and tracking tasks7,8. Using 

modern day CNNs and high-performance graphics-processing-units (GPUs), large image 

and video datasets can be processed quickly with high precision7,9,10,11. In DeepBehavior, 

there are three different convolutional neural net architectures, TensorBox, YOLOv3, and 

OpenPose2.

The first framework, Tensorbox, is a versatile framework that incorporates many different 

CNN architectures for object detection12. TensorBox is best suited for detecting only one 

object class per image. The resulting outputs are bounding boxes of the object of interest 

(Figure 1) and the cartesian coordinates of the bounding box.

The second CNN framework is YOLOv3, which stands for “You Only Look Once”13. 

YOLOv3 is advantageous when there are multiple objects of interest that must be tracked 

separately. The output of this network includes the bounding box with the associated object 

label class as well as the bounding box cartesian coordinates of the object in the video frame 

(Figure 2).

The previous two frameworks are advantageous for generalized behavioral data collected 

from standard laboratory experiments in animal subjects. The last CNN framework is 

OpenPose14,15,16 which is used for human joint pose estimation. OpenPose detects human 

body, hand, facial, and foot key points on images. The outputs of the framework are labeled 

images of the human subject as well as the coordinates of all the 25 key points in the body 

and 21 key points of each hand (Figure 3).

This detailed step-by-step guide for implementation of our recently developed open-source 

DeepBehavior toolbox employs state-of-the-art convolutional neural nets to track animal 

behavior (e.g. movement of a paw) or human behavior (e.g. reaching tasks). By tracking the 

behavior, useful kinematics can be derived from the behavior such as position, velocity, and 

acceleration. The protocol explains the installation of each CNN architecture, demonstrates 

how to create training datasets, how to train the networks, how to process new videos on the 

trained network, how to extract the data from the network on the new videos, and how to 

post-process the output data to make it useful for further analysis.
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Protocol

1. GPU and Python Setup

1. GPU Software

When the computer is first setup for deep learning applications, GPU-appropriate 

software and drivers should be installed which can be found on the GPU’s 

respective website. (see the Table of Materials for those used in this study).

2. Python 2.7 Installation

Open a command line prompt on your machine.

Command line: sudo apt-get install python-pip python-dev python-virtualenv

2. TENSORBOX

1. Tensorbox Setup

1. Create Virtual Environment for Tensorbox

Command line: cd ~

Command line: virtualenv --system-site-packages ~/tensorflow

NOTE: ‘~/tensorflow’ is the name of the environment and is arbitrary

2. Activate environment

Command line: source ~/tensorflow/bin/activate

2. Tensorbox Installation

We will be using GitHub to clone TensorBox from http://github.com/aarac/

TensorBox and install it on our machine as well as installing additional 

dependencies.

Command line: cd ~

Command line: git clone http://github.com/aarac/TensorBox

Command line: cd TensorBox

Command line: pip install -r requirements.txt

3. Label Data

1. Create a folder of images of behavior

Open source tools such as ffmpeg are useful to accomplish converting 

videos to individual frames We recommend labeling at least 600 images 

from a wide-distribution of behavior frames for training. Put these 

images in a folder.

2. Launch labeling graphical user interface

Command line: python make_json.py <path to image folder> 

labels.json
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To label an image, click the top left corner of the object of interest (i.e. 

paw) first and then click the bottom right corner of the object of interest 

(Figure 4). Inspect that the bounding box captures the entire object of 

interest. Press ‘undo’ to re-label the same image or press ‘next’ to move 

onto the next frame.

4. Train TensorBox

1. Link training images to network hyperparameters file

Within the tensorbox folder, open the following folder in a text editor:

/TensorBox/hypes/overfeat_rezoom.json. Navigate to the attribute under 

data named train_idl and replace the file path from ./data/brainwash/
train_boxes.json to the labels.json filepath. Save the changes to file.

2. Begin training script

Command line: cd ~/TensorBox

Command line: python train.py --hypes hypes/overfeat_rezoom.json --

gpu 0 --logdir output

The network will then begin training for 600,000 iterations. In the 

output folder, the resulting trained weights of the convolutional neural 

network will be generated.

5. Predict on New Images

For image labeling:

Command line: cd ~/TensorBox

Command line: python label_images.py --folder <path to image folder> --

weights output/overfeat_rezoom_<timestamp>/save.ckpt-600000 --hypes /hypes/

overfeat_rezoom.json --gpu 0

To get coordinates of bounding boxes:

Command line: cd ~/TensorBox

Command line: python predict_images_to_json.py --folder <path to image 

folder> --weights

output/overfeat_rezoom_<timestamp>/save.ckpt-600000 --hypes

/hypes/overfeat_rezoom.json --gpu 0

6. MATLAB Post-Processing for TensorBox

Additional MATLAB code has been provided to extract kinematics and 

visualizations of the coordinates using the resulting JSON coordinate file from 

the model

Run the “Process_files_3Dreaching_mouse.m” script for 3D kinematic analysis 

of single food pellet reaching task.
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3. YOLOv3

1. Install YOLOv3

Command line: cd ~

Command line: git clone cd darknet

For GPU usage, open ‘Makefile’ and change the following lines: GPU=1; 

CUDNN=1.

Command line: make

2. Labeling Training Data using Yolo_mark

Command line: cd ~

Command line: git clone cd ~/Yolo_Mark

Command line: cmake .

Command line: make

Place the training images in ~/Yolo_mark/data/obj folder

Command line: chmod +x ./linux_mark.sh

Command line: ./linux_mark.sh

Label the images one by one in the graphical user interface (Figure 5). The 

recommended amount of images is approximately 200.

3. Training YOLOv3

1. Setup configuration file

Command line: cd ~/Yolo_mark

Command line: scp -r ./data ~/darknet

Command line: cd ~/darknet/cfg

Command line: cp yolov3.cfg yolo-obj.cfg

2. Modify the configuration file

Open the yolo-obj.cfg folder and modify the following lines: batch=64, 

subdivision=8, classes=(# of class to detect), and for each convolutional 

layer before a yolo layer change the filter=(classes+5)x3. Details on 

these changes can be found at https://github.com/aarac/darknet/blob/

master/README.md

3. Download network weights

Download the network weights from https://www.dropbox.com/s/

613n2hwm5ztbtuf/darknet53.conv.74?dl=0

Place the downloaded weight file into ~/darknet/build/darknet/x64

4. Run training algorithm
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Command line: cd ~/darknet

Command line: ./darknet detector train data/obj.data cfg/yolo-obj.cfg 

darknet53.conv.74

5. YOLOv3 Evaluation

After the training is complete based on a set number of iterations 

(ITERATIONNUMBER), you can view them by

Command line: ./darknet detector test data/obj.data cfg/yolo-obj.cfg 

backup/yolo-obj_ITERATIONNUMBER.weights <IMAGE>.jpg

4. Predict on new videos and get coordinates

This command can be run to obtain the coordinates of the labels in the new 

video:

Command line: ./darknet detector demo data/obj.data cfg/yolo-obj.cfg backup/

yolo-obj_ITERATIONNUMBER.weights VIDEO.avi -ext_output <VIDEO.avi> 

FILENAME.txt

5. YOLOv3 PostProcessing in MATLAB

Take the FILENAME.txt file to MATLAB, and run the 

“Process_socialtest_mini.m” script for two mice social interaction test. See 

results in Figure 2

4. OpenPose

OpenPose is ideal to track multiple body parts in a human subject. The setup and installation 

processes are very similar to the previous two frameworks. However, there is no training step 

as the network is already trained on human data.

1. OpenPose Installation

Navigate to https://github.com/aarac/openpose and follow the installation 

instructions.

2. Process Video

./build/examples/openpose/openpose.bin --video VIDEONAME.avi --

net_resolution “1312×736” --scale_number 4 --scale_gap 0.25 --hand --

hand_scale_number 6 --hand_scale_range 0.4 --write_json 

JSONFOLDERNAME --write_video RESULTINGVIDEONAME.avi

Here the --net_resolution, --scale_number, --scale_gap, --hand_scale_number 

and --hand_scale_range handles can be omitted if a high precision detection is 

not needed (this would decrease the processing time).

3. OpenPose Post-Processing

In MATLAB folder, please use ‘process_files_human3D.m’ script to run the 

code after adding the appropriate folder containing json files from cameras 1 and 

2, as well as the calibration file. This will create a “cell” file with all the 3D 
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poses of the joints. It will also make a movie of the 3D skeletal view. For camera 

calibration, please follow the instructions at this link: http://

www.vision.caltech.edu/bouguetj/calib_doc/

Representative Results

When the protocol is followed, the data for each network architecture should be similar to 

the following. For TensorBox, it outputs a bounding box around the object of interest. In our 

example, we used videos from a food pellet reaching task, and labeled the right paws to 

track their movement. As seen in Figure 1, the right paw can be detected in different 

positions in both the front view and side view cameras. After post-processing with camera 

calibration, 3D trajectories of the reach can be obtained (Figure 1B).

In Yolov3, as there are multiple objects, the output is also multiple bounding boxes. As seen 

in Figure 2B, there are multiple bounding boxes around the objects of interest. These can be 

parts of the body.

In OpenPose, the network detects the joint positions as seen in Figure 3A. After post-

processing with camera calibration, a 3D model of the subject can be created (Figure 3B).

In conclusion, these representative results showcase the rich details of behavior that can be 

captured using the DeepBehavior toolbox.

Discussion

Here, we provide a step-by-step guide for implementation of DeepBehavior, our recently 

developed deep learning based toolbox for animal and human behavior imaging data 

analysis2. We provide detailed explanations for each step for installation of the frameworks 

for each network architecture, and provide links for installation of the open-source 

requirements to be able to run these frameworks. We demonstrate how to install them, how 

to create training data, how to train the network, and how to process new video files on the 

trained network. We also provide the post-processing code to extract the basic necessary 

information needed for further analysis.

For single object detection, we recommend using TensorBox. If the goal is to track multiple 

objects at once, we recommend using YOLOv3. Finally, to obtain human kinematic data, we 

recommend using OpenPose. In this protocol we have shown that deep learning methods are 

able to process hundreds of thousands of frames while tracking objects with a high degree of 

precision. Using the post-processing code provided, we can derive meaningful ways of 

analyzing the tracked behavior of interest. This provides a more detailed way of capturing 

behavior. It also provides an automated, robust way of defining behavior that is generalizable 

to many different types of behavioral tasks.

It is quite common to get a ‘ModuleNotFoundError’ when starting with a new virtual 

environment or code that has been downloaded from the internet. In the case that this occurs, 

open up your terminal, activate the source environment and type ‘pip install <missing 

Shukla and Arac Page 7

J Vis Exp. Author manuscript; available in PMC 2021 February 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/


module name>’. If the problem persists, you will need to check your python version as well 

as other dependency packages.

Limitations to this technique include the technical troubleshooting to properly set up GPU 

processing units compatible with open-source code. It is advantageous to have past 

programming experience within a linux environment to properly set up the necessary project 

dependencies and environments that are compatible with the computer’s hardware.

We demonstrate the DeepBehavior toolbox installations and processing of in a linux 

environment, however, this toolbox can also be run on a Windows and Mac machines with 

GPUs by following the respective installation guides on github.

Using deep learning methods for imaging data analysis is a very efficient way to automate 

behavior analysis. In comparison to traditional behavior analysis methods, DeepBehavior 

captures much more information to quantify, automate, and evaluate the behavior at a more 

precise and temporally detailed way. With the further advances in the deep learning field, the 

utilization and extent of the use of this technology in behavior analysis will likely continue 

to improve. The applications of DeepBehavior can be expanded beyond the demonstrated 

reaching tasks to identify objects of interest in any behavioral images. In this protocol, we 

provide detailed instructions to implement three neural networks for behavior analysis. With 

this kind of automated and unbiased behavior analysis methods, hopefully, the neuroscience 

field will be able to do more detail behavior analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Bounding boxes with TensorBox seen on the paws of video frames during a reaching 
task in mice.
(Adapted from Arac et al 2019). Please click here to view a larger version of this figure.
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Figure 2: Bounding boxes with Yolov3 seen on the regions of interest in video frames during a 
two mice social interaction test (A raw image, B analyzed image).
(Adapted from Arac et al 2019). Please click here to view a larger version of this figure.
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Figure 3: Human pose detection with OpenPose in two camera views (A) and 3D model created 
from these two images (B).
(Adapted from Arac et al 2019). Please click here to view a larger version of this figure.
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Figure 4: TensorBox’s make_json GUI used to label training data.
Please click here to view a larger version of this figure.
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Figure 5: GUI of Yolo_Mark to label images in a format acceptable for Yolov3.
Please click here to view a larger version of this figure.
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