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Abstract

This paper presents a model of international portfolios with real exchange rate and
non financial risks that accounts for observed levels of equity home bias. A key feature
is that investors can trade domestic and foreign bonds in addition to equities. Bonds
matter: in equilibrium, investors structure their bond portfolio to hedge real exchange
rate risks and equity home bias arises when non-financial income risk is negatively
correlated with equity returns, after controlling for bond returns. Our framework allows
us to derive equilibrium bond and equity portfolios in terms of sufficient statistics—
directly measurable hedge ratios. We estimate equity and bond portfolios implied by
the model for G-7 countries an find strong empirical support for the theory. We are
able to account for a significant share of the equity home bias and obtain a currency
exposure of bond portfolios comparable to the data.
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JEL codes: F30, F41, G11

∗We thank Charles Engel, Marcel Fratzscher, Taka Ito, Benoit Mojon, Maury Obstfeld, Fabrizio Perri,
Paolo Pesenti, Hélène Rey and seminar participants at Harvard, LBS, PSE, SciencesPo, Toulouse, UCLA,
USC, UC Berkeley, the NBER IFM 2009 Fall meeting, the CEPR International Macroeconomic and Fi-
nance Conference 2009 (ECARES/NBB) and the CEPR ESSIM 2008 meeting. Gabriel Chodorow-Reich
and Victoria Vanasco provided outstanding research assistance. All errors are our sole responsibility. A
first draft of this paper was completed while P-O. Gourinchas was visiting the London Business School
whose hospitality is gratefully acknowledged. Pierre-Olivier Gourinchas thanks the NSF for financial sup-
port (grants SES-0519217 and SES-0519242) as well as the Coleman Fund Risk Management Research
Center. Contact address: U.C. Berkeley, Department of Economics, 697C Evans Hall #3880, Berkeley, CA
94720-3880. email: pog@berkeley.edu. Nicolas Coeurdacier thanks the ANR for financial support (Chaire
d’Excellence INTPORT). Contact address: SciencesPo, 28 rue des saint-pères, 75007 Paris, France. email:
nicolas.coeurdacier@sciences-po.fr

mailto:pog@berkeley.edu
mailto:nicolas.coeurdacier@sciences-po.fr


1 Introduction

The current international financial landscape exhibits two critical features. First, the last
thirty years witnessed an unprecedented increase in cross-border financial transactions (see
Lane and Milesi-Ferretti (2007)). Second, despite this massive wave of financial globalization,
international portfolios remain heavily tilted toward domestic assets. This is the well-known
equity home bias (See French and Poterba (1991) and Coeurdacier and Rey (2013) for a recent
survey). As of 2008, the share of US stocks in US investors’ equity portfolios was 77.2%,
despite the fact that US equity markets account for only 32% of world market capitalization.1

The importance of these two features has spurred renewed interest for theories of optimal
international portfolio allocation.

Two important strands of literature aim to account for the observed bias. In both
approaches, investors depart from the perfectly diversified portfolio of frictionless general
equilibrium models à la Lucas (1982), in order to insulate their consumption stream from
additional sources of risk. Differences in equilibrium portfolio holdings across countries thus
reflect the equilibrium hedging properties of domestic equity returns, relative to foreign ones.
Generically, consider a risk-factor X that impacts negatively domestic wealth relatively more
than foreign wealth. In equilibrium, the difference between domestic and foreign own-equity
holdings (the degree of equity home bias) will be proportional to the following hedge ratio:

cov (X,R)

var (R)
, (1)

where R denotes the difference between domestic and foreign equity returns. Domestic
equity bias arises when this relative equity return is positively correlated with X, that is,
when domestic equities constitute a better hedge for domestic investors against risk factor
X.

The two strands of literature differ in which risk factor they consider. One approach,
following Obstfeld and Rogoff (2000), explores the link between consumption expenditures
and international portfolios in stochastic general equilibrium models where investors have
different consumption baskets.2 In this class of models, investors face real exchange rate
risk: X = (1 − 1/σ)∆ lnQ where ∆ lnQ is the rate of change of the real exchange rate
and an increase denotes an appreciation, and σ is the coefficient of relative risk aversion.
The hedging demand for equities is then proportional to (1 − 1/σ)cov(∆ lnQ,R)/var(R).3

With a coefficient of relative risk aversion σ above unity, domestic equity bias arises when

1The equity home bias is a general phenomenon. The share of home equities in other G7 countries
portfolios in 2008 are as follows: 80.2% in Canada, 73.5% in Japan, 66% in France, 53% in Germany and
52% in Italy. All these countries account for less than 10% of world market capitalization.

2A non-exhaustive list of contributions –some of which precedes Obstfeld and Rogoff (2000)– includes
Dellas and Stockman (1989), Uppal (1993), Baxter, Jermann and King (1998), Serrat (2001), Kollmann
(2006), Obstfeld (2007), Heathcote and Perri (2007), Coeurdacier, Kollmann and Martin (2009), Collard,
Dellas, Diba and Stockman (2007), Coeurdacier (2009) and Benigno and Nistico (2011).

3See Kouri and Macedo (1978), Krugman (1981) and the references in Adler and Dumas (1983) for an
early derivation of this result under partial equilibrium.
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relative equity returns are positively correlated with an appreciation of the domestic real
exchange rate. The reason is as follows: with σ > 1, efficient risk sharing requires that
domestic consumption expenditures increase when the real exchange rate appreciates, i.e.
when their relative price increases.4 If domestic equity returns are high precisely at that time,
they provide the appropriate hedge against real exchange rate risk, and domestic investors
will optimally tilt their portfolio towards domestic equity. As shown by van Wincoop and
Warnock (2010), this line of research faces a serious challenge: for many countries, the
empirical correlation between excess equity returns and the real exchange rate is close to
zero.

The second strand of literature focuses on the hedging properties of domestic stocks
against fluctuations in non-financial incomes (e.g. labor income).5 In that case, the risk
factor is X = −Rn, where Rn denotes the return to domestic non-financial income relative
to the rest of the world. The hedge ratio takes the form −cov(Rn, R)/var(R): if returns
on domestic equities are high precisely when returns on non-financial wealth are low, then
investors will favor domestic stocks. This line of research also faces an important empirical
challenge as initially shown by Baxter and Jermann (1997). These authors find that finan-
cial and non-financial returns appear to be positively correlated, suggesting that optimal
portfolios should be biased towards foreign equity.6

The first contribution of this paper is to merge and improve upon these two strands of
literature by showing that many of the earlier results are not robust to the introduction of
domestic and foreign bonds, whether nominal or real. We establish this point in a generic
setting, characterizing jointly the optimal equity and bond portfolios in environments with
multiple sources of risk and different degrees of completeness of financial markets. Our
approach allows us to characterize the optimal equity and bond portfolios in terms of suffi-
cient statistics that can easily be estimated, in the spirit of Chetty (2009). These sufficient
statistics take precisely the form of the hedge ratios of equation (1), extended to the case of
multiple asset classes. While these hedge ratios are equilibrium objects and thus depend on
the specific details of the model (the structure of shocks, preferences etc...), it is sufficient
to measure them to back out efficient portfolios.

The key economic insight of our paper is that in most models of interest, as well as in
the data, nominal or real relative bond returns are strongly positively correlated with real
exchange rate fluctuations. As a result, it is optimal for investors to use bond holdings to
hedge real exchange rate risks. In that sense, bonds matter. All that is left for equities is to
hedge the impact of any additional source of risk on investors’ wealth, more specifically its
non-financial income component. Again, the precise structure of these additional risk factors
matters for optimal portfolio holdings, but the general portfolio structure can be estimated

4Under efficient risk sharing, the Backus and Smith (1993) condition applies and relative consumption
expenditures satisfy (PC/P ∗C∗) = (P/P ∗)1−1/σ.

5A non-exhaustive list of contributions includes Bottazzi, Pesenti and van Wincoop (1996), Baxter and
Jermann (1997), Julliard (2003), Heathcote and Perri (2007), Engel and Matsumoto (2009), Berriel and
Bhattarai (2013), Mukherjee (2013) and Arespa (2015).

6Other empirical papers found more mixed results. See Bottazzi et al. (1996) and Julliard (2003).
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independently of the specificities of the model. Generically, equity home bias arises if non-
financial income risk is negatively correlated with equity returns, after controlling for bond
returns. This conditioning is important: to the extent that unconditional and conditional
hedge ratios for non-financial income risk are different in the data, bonds also matter for the
insurance properties of equities against fluctuations in non-financial wealth.

A fully specified model provides the mapping from these hedge ratios to the structural
parameters. Different models will imply different mappings. We show how this can be done
in a two-country two-good model with stochastic endowments and redistributive shocks
between capital and labor. This particular example also serves to illustrate starkly how
failure to allow for trade in bonds can lead to incorrect inference on the structure of optimal
equity portfolios. The same model without bond trading (equity-only) predicts that investors
should short domestic equities, as in Baxter and Jermann (1997). By contrast, the model
with equity and bond predicts full home equity bias.

The second important contribution of this paper is to confront the theory to the empirical
evidence. We show how to estimate the sufficient statistics—and hence efficient portfolios—
from observable data on bond returns, real exchange rates and the estimated returns to
financial and non-financial wealth. Simple regressions of real exchange rate fluctuations
and the return on non-financial wealth on bond and financial returns are sufficient to back
out empirical estimates of the hedge ratios and thus equilibrium portfolios from the data.
This provides an important link between recent theoretical work on international portfolios
and data on asset returns. We use quarterly data on market returns, non-financial and
financial income for the G-7 countries since 1970 to ask wether asset returns are theoretically
consistent with observed portfolios. Since returns on non-financial and financial wealth
are not directly observed, we consider a number of different approaches, such as Campbell
(1996) (our benchmark estimation) or Lustig and Nieuwerburgh (2008) to construct alternate
measures of these returns.

For all G-7 countries, and across all specifications, we find that the presence of bonds is
key to obtaining more reasonable equity positions. Without bond trading, ‘the international
diversification puzzle is worse than you think’ as Baxter and Jermann (1997) argued. How-
ever, once we allow for bond holdings, we predict, in line with the data, significant levels of
equity home bias for all G-7 countries. Put differently, financial and non-financial returns
are significantly negatively correlated, once investors are able to control their real exchange
rate exposure with domestic and foreign bonds. Finally, our empirical estimates also predict
short but fairly small domestic currency positions for a reasonable degree of relative risk
aversion.

Section 2 presents our basic framework and characterizes optimal equity and bond port-
folios in terms of hedge ratios. Section 3 presents a fully-specified version of the model
with endowment and redistributive shocks and characterizes the equity-only and the full
portfolios. Section 4 presents our empirical results. Section 5 concludes.
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2 A Benchmark Model

2.1 Set-up

Preferences. We consider a two-period model (t = 0, 1) with two symmetric countries,
Home (H) and Foreign (F ), each with a representative household. Country i’s representa-
tive household has standard Constant Relative Risk Aversion (CRRA) preferences, with a
coefficient of relative risk aversion σ ≥ 1 defined over a consumption index Ci, and a discount
factor 0 < ξ ≤ 1:

Ui =
C1−σ
i,0

1− σ
+ ξE0

[
C1−σ
i,1

1− σ

]
, (2)

where E0 denotes expectations conditional on date t = 0 information. The ideal consumer
price index in country i = H,F is denoted Pi,t, in terms of an arbitrary numeraire.

Financial markets and budget constraints. Trade in financial assets occurs in period
0. In each country there is a ‘Lucas tree’ whose supply is normalized to unity. In both
periods, a cash-flow dfi,t is distributed to owners of this financial asset (stockholders) as divi-
dend. Another cash-flow dni,t is distributed to households of country i as non-financial income.
At the simplest level, one can think of dni,t as representing ‘labor income.’ More generally,
it describes all of country i’s income sources that cannot be capitalized into financial claims.7

Agents can also trade Home and Foreign one-period bonds. Both bonds are in zero net
supply. Buying one unit of the bond of country i in period t − 1 yields a cash-flow dbi,t at
date t. These bonds are riskless but pay in different units. If the bonds are risk-free in real
terms, a unit of country i’s bond purchased at date t − 1 yields dbi,t = Pi,t at date t, i.e.
enough resources to purchase one unit of country i’s consumption index.

The representative household from country i enters period t = 0 with an initial portfolio
of stocks {Sij,0} and bonds {Bij,0} from country j ∈ {H,F} and faces the following budget
constraint:

Pi,0Ci,0 +
∑
j

(
pjSSij,1 + pjBBij,1

)
= dni,0 +

∑
j

(
Sij,0

(
pjS + dfj,0

)
+Bij,0d

b
j,0

)
(3)

where pjS (resp. pjB) denotes the price of a stock (resp. of the bond) from country j at date
0. The right hand side of equation (3) measures sources of funds, non-financial and financial.
The left hand side captures uses of funds: consumption and portfolio investment.

At date t = 1, all income is spent. The period budget constraint takes the following
form:

Pi,1Ci,1 =
∑
j

(
Sij,1d

f
j,1 +Bij,1d

b
j,1

)
+ dni,1 (4)

7This could be due, inter alia, to domestic financial frictions, capital income taxation or poor enforcement
of property rights.
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Lastly, market clearing in markets for stocks and bonds of country i ∈ {H,F} requires at
both dates: ∑

j

Sji,t = 1;
∑
j

Bji,t = 0. (5)

2.2 Equilibrium portfolios

Portfolios decisions. The optimal portfolio allocation results from maximizing (2) subject
to (3) and (4). The corresponding optimality conditions for stocks and bonds holdings in
country i are given by the usual Euler equations:

E0

(
MiR

f
j

)
= E0

(
MiR

b
j

)
= 1 ; i, j ∈ {H,F}, (6)

where Rf
j = dfj,1/p

j
S and Rb

j = dbj,1/p
j
B denote the gross return on stocks and bonds respec-

tively in country j and Mi = ξ (Pi,0/Pi,1) (Ci,1/Ci,0)−σ is the stochastic discount factor in
country i.

Log-linearization of the budget constraint. While it is not generically possible to de-
rive exact solutions for portfolios, we can characterize approximate optimal consumption and
portfolio decisions around the symmetric equilibrium where both countries have the same
distribution of financial, non-financial and bond cash flows, households hold similar initial
portfolios and have no initial net foreign asset positions, using standard log-linearization
techniques as in Devereux and Sutherland (2011) and Tille and van Wincoop (2010).8 Be-
fore we do so, we need to introduce a bit of notation. First, we use variables without country
indices to denote differences across countries: x = xH−xF . Second, we use Jonesian hats for
the log-deviation of a variable x from its (symmetric) steady state value x̄: x̂ ≡ log(x/x̄)).
Finally, we use the operator ∆ to denote first differences: ∆x = x1 − x0.

Define the Home country real exchange rate as the foreign price of the domestic good,
Q ≡ PH/PF , so that an increase in the real exchange rate represents a real appreciation.
Log-linearizing yields:

Q̂t = P̂H,t − P̂F,t. (7)

Define aggregate nominal expenditures Xi,t = Pi,tCi,t, and denote 1 − δ = d̄nt /X̄t the
steady state share of non-financial income in total expenditures, assumed common in both
periods. We then take the difference between Home and Foreign budget constraints in both
periods from (3) and (4), log-linearize around the symmetric equilibrium, and use the market
clearing conditions (5), to obtain:

X̂0 = (1− δ) d̂n0 + (2S − 1) δd̂f0 + 2bd̂b0

X̂1 = (1− δ) d̂n1 + (2S − 1) δd̂f1 + 2bd̂b1,

8Formally, we log-linearize around dli,0 = d̄l0 and E0d
l
i,1 = d̄l1, and assume that Sii,0 = S and Bii,0 = B

for i ∈ {H,F} and l ∈ {n, f, b}. Appendix A.1 derives the more general case where countries are asymmetric
ex-ante. In that case, the optimal portfolio contains an additional intertemporal component.
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where S = Sii,0 = Sii,1 and B = Bii,0 = Bii,1 denote the (symmetric) optimal holdings of a
country’s own equities and real bonds and b = B/X̄0 denotes the steady state ratio of bond
holdings to aggregate expenditures.

Taking the difference between the two previous equations, using the definition of the
stochastic discount factorMi = ξ (Pi,0/Pi,1) (Ci,1/Ci,0)−σ and the fact that ∆X̂ = ∆Q̂+∆Ĉ,
we obtain:

∆X̂ =

(
1− 1

σ

)
∆Q̂− 1

σ
M̂ = (1− δ) ∆d̂n + (2S − 1) δ∆d̂f + 2b∆d̂b (8)

The left hand side of this equation determines relative consumption expenditure growth
(∆X̂) as a function of the rate of change of the real exchange rate (∆Q̂) and the relative
stochastic discount factor (M̂). The right hand side expresses relative income growth for
a given portfolio choice (S, b), as a function of non-financial income growth (1 − δ)∆d̂n,
the relative return on equities (2S − 1)δ∆d̂f and the relative return on bonds 2b∆d̂b. More
formally, we can write the (log-linearized) relative return on equities Rf , non-financial wealth
Rn and bonds Rb as:

R̂f = ∆d̂f − E0∆d̂f ; R̂n = ∆d̂n − E0∆d̂n ; R̂b = ∆d̂f − E0∆d̂f .

Substituting into (8), we obtain:

∆X̂−E0∆X̂ =

(
1− 1

σ

)(
∆Q̂− E0∆Q̂

)
− 1

σ

(
M̂ − E0M̂

)
= (1−δ)R̂n+(2S − 1) δR̂f+2bR̂b

(9)
Equation (9) is a key equation for our analysis. It tells us how relative aggregate consumption
expenditures must vary with the portfolio structure, for any realization of portfolio returns.

Hedge Ratios. If relative bond and equity returns are not perfectly correlated, it is always
possible to ‘project’ the rate of change of the real exchange rate and the return on non-
financial income on stock and bond returns.9 This projection takes the form:{

∆Q̂− E0∆Q̂ ≡ βQ,bR̂
b + βQ,f R̂

f + uQ
R̂n ≡ βn,bR̂

b + βn,f R̂
f + un

, (10)

where the residual terms ui are orthogonal to asset returns R̂j, i.e. E0[uiR̂
j] = 0 for i ∈

{Q, n} and j ∈ {f, b}. The coefficients βi,j capture the loading of asset return j on risk factor
i = {Q, n}. These loading factors, also called hedge ratios, have the usual interpretation in
terms of covariance-variance ratios:

βn,j =
covR̂l

(
R̂n, R̂j

)
varR̂l

(
R̂j
) ; βQ,j =

covR̂l
(

∆Q̂− E0∆Q̂, R̂j
)

varR̂l
(
R̂j
) ,

9Appendix A.1 shows formally that a rank condition needs to be satisfied. This will generically be the
case if the dimension of the underlying shocks is larger or equal to 2.
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where j 6= l ∈ {f, b} and covz(x, y) (resp. varz(x)) denotes the covariance between x and
y (resp. the variance of x), conditional on z. While these factor loadings are equilibrium
objects and model-dependent, their empirical counterpart can be obtained simply from the
reduced form multivariate regressions of equation (10), independently of the specifics of the
model and the source of shocks driving asset returns.

Equilibrium portfolios. From the Euler equations (6) of the investor problem, observe
that the relative stochastic discount factor M̂ satisfies:

E
[
M̂ R̂i

]
= 0 for i ∈ {f, b} (11)

Using equation (11) to project the budget constraint on relative asset returns R̂f and R̂b,
we obtain the following key property:10

Property 1 (Optimal Portfolios in terms of Hedge Ratios) Under the rank condition
of Appendix A.1, the optimal portfolio is unique and can be expressed in terms of the loading
factors βi,j as follows:

b∗ =
1

2

(
1− 1

σ

)
βQ,b −

1

2
(1− δ) βn,b (12a)

S∗ =
1

2

[
1− 1− δ

δ
βn,f +

1− 1
σ

δ
βQ,f

]
. (12b)

Property 1 has two key implications that are central to our analysis. First, it establishes
that the loading factors (or hedge ratios) βi,j provide sufficient statistics for the optimal port-
folios, in the sense of Chetty (2009). The structural details of a general equilibrium model
will generically provide a mapping of the loading factors into the primitive characteristics
of the model. Yet the portfolio predictions remain identical across models, conditional on
a set of loading factors βi,j. Second, these loading factors can easily be measured empirically.

Let’s now discuss the structure of equilibrium portfolios implied by Property 1. Con-
sider first the bond portfolio b∗ in equation (12a). It contains two terms. The first term
(1− 1/σ) βQ,b/2 reflects the role of bonds in hedging real exchange rate risk. When σ > 1,

the household’s relative consumption expenditures X̂ increase when the real exchange rate
appreciates. If, after controlling for equity returns, domestic bonds deliver a high relative re-
turn precisely when the currency appreciates (i.e. βQ,b > 0), then domestic bonds constitute
a good hedge against real exchange rate risk. The second term − (1− δ) βn,b/2 captures the
role of bonds in hedging non-financial income risk. When domestic bonds and the return to
nonfinancial wealth are positively conditionally correlated (βn,b > 0), investors want to short
the domestic bond to hedge the implicit exposure from their non-financial wealth. Equation

10The proof is relegated to Appendix A.1. It relies on observing that the relative stochastic discount factor
is orthogonal to asset returns, using Eq.(11).
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(12a) indicates that investors will go long or short in their domestic bond holdings depending
on the relative strength of these two effects.

Consider now the equilibrium equity position S∗ in equation (12b). The first term inside
the brackets represents the symmetric risk-sharing equilibrium of Lucas (1982): S∗ = 1/2.
This is the optimal equity portfolio if equities are not useful to hedge real exchange rate or
non-financial risk (βQ,f = βn,f = 0).

The second term, (1 − 1/σ)βQ,f/δ, is similar to the term that has been emphasized in
Coeurdacier (2009), Obstfeld (2007) and others, with one important difference. It repre-
sents the demand for domestic equity that arises from hedging the real exchange rate risk,
corresponding to the hedge portfolio in equation (1). This demand is driven by the condi-
tional correlation between equity returns and the real exchange rate, βQ,f . If this loading
is positive, domestic stock returns are relatively high when the currency appreciates. The
important difference is that this hedge ratio is conditional on bond returns. As we will es-
tablish shortly, conditional and unconditional hedge ratios can differ greatly, with important
implications for optimal portfolios.

The last term, −(1− δ)βn,f/δ, determines how equity portfolios are structured to hedge
non-financial risk. Investors optimally want to undo the endowed equity exposure implicit
in their non-financial wealth and measured by βn,f . To fix ideas, consider the case where
bonds are risk-free in real terms so that dbi,t = Pi,t. In that case, it is immediate, using

equation (10), that βQ,b = 1 and βQ,f = 0 since R̂b = Q̂ − E0Q̂. In the absence of non-
financial income (i.e. when δ → 1), the optimal portfolios are the same as in Adler and
Dumas (1983). Since bonds hedge perfectly real exchange risk, risky asset holdings are fully
diversified: S∗ = 1/2. Equation (12b) extends Adler and Dumas (1983) to the case with
non-financial income (δ < 1):

S∗ =
1

2

(
1− 1− δ

δ
βn,f

)
. (13)

This result is reminiscent of Baxter and Jermann (1997) who find that financial and non-
financial returns are (unconditionally) positively correlated and conclude that the optimal
portfolio should therefore be tilted towards foreign equities (S∗ < 0.5). However, unlike
Baxter and Jermann (1997), equation (13) indicates that the relevant hedge ratio is condi-
tional on bond returns. Our model predicts that home equity bias arises if βn,f < 0. To our
knowledge, this condition has not been empirically investigated in the literature.11

Finally, observe that our approach is valid as long as equities and bonds are not redundant
assets (the rank condition is satisfied), regardless of the degree of completeness of financial
markets. Technically, we show in Appendix A.1 that if an additional spanning condition is

11Engel and Matsumoto (2009) also note that this is the relevant condition in presence of bond holdings,
or forward exchange contracts. See also Coeurdacier et al. (2009) and Coeurdacier, Kollmann and Martin
(2010).
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satisfied, markets are locally complete, in the sense that the efficient risk sharing condition
of Backus and Smith (1993) holds locally:

M̂ = −σ∆Ĉ −∆Q̂ = 0. (14)

When this condition holds bonds and equities are sufficient to span the relevant sources
of risk in the economy. This implies that the decomposition in Eq. (10) is exact and ui = 0.
The fact that our approach works both in complete and incomplete market environments
gives it a great deal of generality.

3 Closing the Model: The Case of Redistributive Shocks

We have established that the partial equilibrium hedge ratios βi,j provide sufficient statistics
for a full characterization of optimal portfolios. Yet, by fleshing out the remaining details of
the model, we can link these hedge ratios to the structural parameters of the model. While
providing a full fledged general theory of the factor loadings βi,j is beyond the scope of this
paper, this section presents a simple model with endowment and redistributive shocks.12 We
use the model to contrast conditional and unconditional equilibrium factor loadings—and
therefore optimal equity portfolios in environments with and without bond trading. These
results serves to illustrate the potential pitfalls of using an equity-only model as commonly
done in the literature. Readers only interested in the empirical implications of Section 2 can
go directly to Section 4.

3.1 A model with endowment and redistributive shocks.

The structure of the model borrows all the elements introduced in Section 2. In addition,
one needs to specify further the production and the demand side as well as the nature of the
shocks.

Endowments and shocks. Each country receives an endowment of a country-specific trad-
able good each period. The endowment in country i at date t is denoted yi,t. yi,0 is known
while yi,1 is stochastic and symmetrically distributed with mean ȳ1 common to both countries.

We denote pi,t the price at date t of country i’s good in terms of the numeraire. At
each date, the financial cash-flow represents a share δi,t of output at market value pi,tyi,t:

dfi,t = δi,tpi,tyi,t. δi,0 = δ is known while δi,1 is stochastic and symmetrically distributed
with mean δ. Shocks to δi,t represent redistributive shocks, i.e shocks to the share of total
output distributed as financial income in country i. While we take these fluctuations as
exogenous, they can occur endogenously in a world where capital and labor enter into the
production function with a non-unit elasticity of substitution, in presence of capital and

12The working paper version Coeurdacier and Gourinchas (2011) provides additional examples with, e.g.,
fiscal shocks, nominal shocks or non-traded goods. This example with redistributive shocks is similar to
Coeurdacier et al. (2009) and Engel and Matsumoto (2009).
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labor augmenting productivity shocks or in presence of biased technical change in the sense
of Young (2004).13

In each country the representative consumer enters period t = 0 with a given financial
portfolio of financial assets, receive financial and non-financial income as described in Section
2, consume and trade financial claims. In period t = 1, stochastic endowments and stochastic
shocks to δ are realized, households consume using the revenues from their financial portfolio
and their non-financial endowment.

Preferences. Each representative household consumes both goods with a preference to-
wards the domestic good. For i, j ∈ {H,F} and t = 0, 1 the consumption index Ci,t is a
constant-elasticity aggregator:

Ci,t =
[
a1/φc

(φ−1)/φ
ii,t + (1− a)1/φc

(φ−1)/φ
ij,t

]φ/(φ−1)

,

where cij,t denotes country i’s consumption of the good from country j at date t. φ is the
elasticity of substitution between the two goods and 1 ≥ a ≥ 1/2 captures preference for the
home good (mirror-symmetric preferences). With these preferences, the Fisher-ideal price
index for consumption is:

Pi,t =
[
ap1−φ

i,t + (1− a)p1−φ
j,t

]1/(1−φ)

. (15)

Financial and non-financial cash-flows. We assume that each country’s bonds are risk-
free in terms of that country’s consumption index, that is dbi,t = Pi,t. With the notations of
Section 2, financial and non financial cash-flows at date t are given by:

dfi,t = δi,tpi,tyi,t ; dni,t = (1− δi,t) pi,tyi,t ; dbi,t = Pi,t for i ∈ {H,F}.

With these definitions of cash-flows, budget constraints can be written as in Eqs. (3) and
(4) and portfolio equations as in Eq. (6).

Goods markets equilibrium. In each period, optimal intratemporal allocation of con-
sumption requires:

cii,t = a

(
pi,t
Pi,t

)−φ
Ci,t ; cij,t = (1− a)

(
pj,t
Pi,t

)−φ
Ci,t for i 6= j. (16)

Resource constraints are given by:

cii,t + cji,t = yi,t for i ∈ {H,F}, j 6= i. (17)

Define qt as Home’s terms of trade, i.e. the relative price of the Home tradable good in terms
of the Foreign tradable good: qt ≡ pH,t/pF,t. An increase in q represents an improvement in

13See also Ŕıos-Rull and Santaeulàlia-Llopis (2010).
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Home’s terms of trade.

Using (16) together with the resource constraints (17) yields the following expression for
relative output:

yH,t
yF,t

= q−φt Ωa

[
(
PF,t
PH,t

)φ
CF,t
CH,t

]
(18)

where Ωa(x) ≡
[
1 + x(1−a

a
)
]
/
[
x+ (1−a

a
)
]
. Without home bias in preferences (a = 1/2),

Ω1/2(x) = 1 identically and Eq. (18) simplifies to yH,t/yF,t = q−φt : the price elasticity of rel-
ative output is φ, independently of the distribution of relative expenditures. As emphasized
by Obstfeld (2007), the term Ωa(.) captures the Keynesian transfer effects due to consump-
tion home-bias: with a > 0.5, a reallocation of wealth towards the home country requires
an improvement in the domestic terms of trade since it shifts relative demand towards the
domestic good.

Log-linearization of returns. We show in Appendix A.1 that the model with indepen-
dent endowment and redistributive shocks satisfies the rank and spanning conditions so that
markets are locally complete. This simplifies greatly the characterization of the equilibrium.
Formally, it implies that the Backus and Smith (1993) efficient risk sharing condition, Eq.
(14), holds locally and ∆Ĉ = −1/σ∆Q̂.

Log-linearizing the goods’ market equilibrium condition Eq. (18) substituting the above
expression, and using the fact that ∆Q̂ = (2a−1)∆q̂ from Eq. (15), we obtain a relationship
between relative output and the terms of trade:

∆ŷ = −λ∆q̂ = −λ(2a− 1)−1∆Q̂ (19)

In this expression, λ ≡ φ
(
1− (2a− 1)2)+(2a− 1)2 /σ > 0 represents the equilibrium terms

of trade elasticity of relative output. Without home bias in preferences (a = 1/2), λ = φ,
the elasticity of substitution between Home and Foreign goods. When a > 1/2, the addi-
tional term (2a− 1)2(1/σ− φ) captures the required change in the terms of trade needed to
accommodate transfer effects. The last equality uses the fact that terms of trade and real
exchange rates are perfectly correlated in this model, with q̂ = (2a− 1)Q̂.

Define aggregate nominal income xi,t = pi,tyi,t. We can write the (log-linearized) relative

return on equities R̂f , bonds R̂b and non-financial income R̂n as:

R̂f = ∆δ̂ − E0∆δ̂ + ∆x̂− E0∆x̂ (20a)

R̂n = − δ

1− δ

(
∆δ̂ − E0∆δ̂

)
+ ∆x̂− E0∆x̂ (20b)

R̂b = ∆Q̂− E0∆Q̂ (20c)

Financial and non-financial returns co-move positively with innovations to nominal income
growth ∆x̂− E0∆x̂ and negatively with redistributive shocks ∆δ̂ − E0∆δ̂.
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Projection of risk factors on asset returns. Using (19), we get immediately that ∆x̂ =
(1− λ) (2a − 1)−1∆Q̂. Substituting into asset returns, we obtain the following equilibrium
projection of the real exchange rate and the return to non-financial wealth on equity and
bond returns—the model-specific counterpart of equation (10):14

∆Q̂− E0∆Q̂ = R̂b (21a)

R̂n =
1− λ

(1− δ)(2a− 1)
R̂b − δ

1− δ
R̂f (21b)

Equation (21) characterizes the equilibrium hedge ratios βi,j in terms of the structural pa-
rameters of the model:

βQ,b = 1 ; βQ,f = 0 ; βn,b =
1− λ

(1− δ)(2a− 1)
; βn,f = − δ

1− δ
(22)

In Eq. (22), two elements are essential: first, since investors can trade real risk-free bonds,
relative bond returns and the real exchange rate are perfectly correlated (βQ,b = 1 and
βQ,f = 0). Second and more importantly, despite positive co-movements between financial
and non-financial returns driven by innovations to nominal income growth (∆x̂−E0∆x̂), the
loading of non-financial income risk on financial asset returns βn,f is always strictly negative.
The reason is that nominal income growth is tightly linked to terms-of trade and the real
exchange rate in this model through Eq. (19), and thus can be hedged using real bonds.

Equilibrium portfolios. Substituting the equilibrium loadings (22) into equation (12), the
optimal portfolio satisfies:

S∗ = 1 ; b∗ =
1

2

[
(1− 1

σ
) +

λ− 1

2a− 1

]
. (23)

Since purely redistributive shocks only affect the distribution of total output, but not its
size, the optimal hedge is for the representative domestic household to hold all the domestic
equity. This perfectly offsets the impact of the redistributive shocks on total income. Con-
sequently, the model implies full equity portfolio home bias.

Observe that this result does not depend upon the size of the redistributive shock. If we
denote the relative variance of redistributive and endowment shocks by υ2 = σ2

δ/σ
2
y, then

the model predicts that S∗(υ) = 1 as long as υ > 0.15

The optimal bond position is the outcome of two forces: first, investors hedge real ex-
change risk when σ 6= 1. This is the term (1 − 1/σ)/2. Second, investors are fully exposed
to domestic endowment shocks given their equity holdings. The bond portfolio makes sure

14Since markets are locally complete, residual (non-insurable) noise uQ and un in Eq. (10) are zero in all
states.

15When υ = 0, portfolios are indeterminate. Equity and bond returns are perfectly correlated when there
is endowment risk only and the model fails the rank condition of App. A.1.
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that endowment risk is equally shared between home and foreign investors. This is the
term (2a − 1)−1(λ − 1)/2. The bond position can be long or short depending on whether
λ < 1− (1− 1/σ)(2a− 1) or not, i.e depending on whether relative income growth co-move
positively or negatively with relative bonds returns, or equivalently the real exchange rate.

3.2 The pitfalls of equity-only models

To illustrate the pitfalls of using equity-only models, consider what happens in the previous
model if households can only trade equities. Following similar steps as in Section 2, one can
derive the equilibrium equity-only optimal portfolio:

Su =
1

2

[
1− 1− δ

δ
βun,f +

1− 1
σ

δ
βuQ,f

]
.

This equation is similar to Eq. (12b) except that the loadings βui,f = cov(R̂i, R̂f )/var(R̂f )
are unconditional loadings. The formula has the same interpretation: the optimal equity
portfolio hedges both non-financial and real exchange rate risk.

With two sources of uncertainty (endowment and redistributive shocks) and only equities,
markets are incomplete, even locally. Solving for the optimal hedge ratios βui,f requires to
follow the approach of Devereux and Sutherland (2011). This is done in Appendix A.2 for
the general case. We consider here the limit of Su(υ) as υ → 0, i.e. as redistributive shocks
become vanishingly small. Intuitively, in that case financial and nonfinancial returns become
positively correlated (see Eqs. (20)) so that βun,f > 0. In the limit of υ = 0, markets are
locally complete again, and following the same steps as before, one can establish that:

βun,f = 1 ; βuQ,f = (2a− 1)/(1− λ). (24)

It follows that the optimal equity portfolio of the equities-only model satisfies:

Su(0) = lim
υ→0

Su(υ) =
1

2

[
1− 1− δ

δ
+

1− 1
σ

δ

(2a− 1)

1− λ

]
(25)

As before, this portfolio is the sum of three terms: a Lucas pooled portfolio (1/2), a term
due to hedging of nonfinancial income risk (−(1 − δ)/(2δ)) and a final term hedging real
exchange rate risk (1− 1/σ)(a− 1/2)/(δ(1− λ))). In the absence of bond trading, however,
the hedging term for nonfinancial risk always imparts a large foreign equity bias, as in Baxter
and Jermann (1997): financial and nonfinancial income are perfectly correlated when υ goes
to zero and βun,f = 1. While in principle the last term can be positive or negative, depending
on whether the equilibrium terms of trade elasticity of relative output λ is smaller or greater
than 1, we know from van Wincoop and Warnock (2010) that the unconditional loading
factor βuQ,f is positive but small in the data, so that the portfolio Su(0) should typically
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exhibit foreign bias.16

Thus, as in Baxter and Jermann (1997), the equity-only model cannot account for the
home-equity bias for υ sufficiently small. Once bond trading is allowed, the same model
imparts full equity home bias, independently on model parameters. This striking example
shows the potential crucial role of bond trading for the composition of equity portfolios.
From an empirical perspective, our portfolio results are driven by the stark difference between
unconditional and conditional hedge ratios: in the above example, βun,f is typically positive—
at the limit, when υ goes to zero, βun,f = 1. To the opposite, βn,f is unambiguously negative,
thus for any value of υ. If data were generated by such a model, measuring the unconditional
hedge ratio would lead to the conclusion that the international diversification puzzle in worse
than we think as in Baxter and Jermann (1997), while measuring the conditional hedge ratio
would lead to the opposite conclusion.

More broadly, the overall message is that the optimal equity portfolio will depend on
the menu of assets available to investors allowing them to diversify the risks they face. We
consider that allowing for bonds is essential since, as we document, they provide a very
natural hedge against real exchange rate risk—a point also noted by Adler and Dumas
(1983). Other tradable assets may be relevant besides risk-free bonds if they have attractive
hedging properties: long term bonds, housing, derivatives... The empirical approach we
follow in the next section aims to maintain a parsimonious framework. We will show that we
can provide a reasonable account of observed equity portfolios simply by allowing for trade
in short term bonds. This does not preclude more sophisticated models from achieving an
even better fit with the data.

4 Estimating Optimal Portfolios

A key contribution of the paper is to construct optimal equity and bond portfolios. To do so,
we estimate the reduced-form loading factors βQ,i and βn,i for i = f, b for the G-7 countries.
According to Property 1, this is all we need to characterize equilibrium portfolios.

4.1 From theory to data

Two issues arise when mapping the theory into the data, one theoretical, the other empirical.
On the theoretical side, one might wonder if our results, derived in a two-period environment
survive in a dynamic setting. On the empirical side, our two period model does not allow
for time-varying expected returns, an important feature of the data. In Appendix A.5, we
show that our results are robust to a dynamic environment with complete markets and i.i.d
returns, in a continuous-time model à la Merton (see Merton (1990) and Adler and Dumas

16van Wincoop and Warnock (2010) estimate βuQ,f = 0.32. With such a low hedge ratio, the model
can deliver equity home bias (S > 1/2) only if the share of financial income in total income is very high:
δ ≥ 1 − βuQ,f = 0.68, a number vastly in excess of any reasonable estimate. In section 4, we estimate
βuQ,f = 0.55 which would require δ > 0.45 which is still too high.
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(1983)). Optimal portfolios satisfy Property 1. The property holds with factor loadings
computed on total returns, and thus including any time-varying expected return component
— a finding that will matter when computing the empirical counterpart of returns on non-
financial wealth.17 In summary, our results hold in a static context with (locally) complete
or incomplete markets, and also in a dynamic context, but under complete markets. Ideally,
one would like to derive the equivalent of Property 1 for optimal portfolios in a dynamic
model with incomplete markets, multiple agents and time-varying expected returns. This is
a challenging task that is beyond the scope of this paper.18

4.2 The data.

We collect quarterly data for all G-7 countries over the period 1970:1-2008:3, stopping short
of the global financial crisis.19 We consider each member of the G-7 as the Home country in
turn, aggregating the remaining countries into a ‘Foreign country’.

4.2.1 The easy part: bond returns, real exchange rates, financial and nonfinan-
cial income.

We measure gross real bond returns, Rb
i , as the ex-post gross return on 3-month domestic

Treasury-bill converted in constant U.S. dollars.20 The (log) of the real exchange rate Qi

for country i is defined as the difference between the (log) of the consumer price index in
country i, Pi, and the (log) of the consumer price index for the rest of the world, defined
as a GDP-weighted average of the price indices of the remaining countries, where all price
indices are converted into U.S. dollars:21

lnQi = lnPi −
∑
j 6=i

αji lnPj,

where αji represents the share of country j′s output in the rest of the world outside country
i.22 With this definition, an increase in Qi represents a real appreciation of the currency of
country i. Figure 1 reports the real exchange rate for the G-7 countries, normalized to 100
in 2001Q1.

Next, we decompose each country’s gross domestic product into a financial and a nonfi-
nancial components using National Income Account data.23 All variables are converted in US
dollars using nominal exchange rates. The decomposition of output Y by income satisfies:

Y = COMP +M + Π +D + T, (26)

17In the dynamic model of Appendix A.5, returns are iid log-normal. Expected returns can be time-
varying as long as returns of a given asset are driven by a unidimensional Brownian motion to preserve
market completeness. Otherwise, the derived portfolio is only valid in the log-case.

18See for instance the discussion in Dumas and Lyasoff (2012).
19See appendix B.1 for a detailed description of data sources.
20Short-term government bond yields and dollar nominal exchange rates are obtained from the Global

Financial Database.
21Consumer Price Indices are from the OECD Main Economic Indicators.
22Formally, αji = Yj/

∑
j 6=i Yj .

23Data is obtained from the OECD quarterly national income and from U.N. national account statistics.
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where COMP refers to the compensation of employees, M to mixed income, Π to the net
operating surplus, D to the consumption of fixed capital, and T to taxes minus subsidies
on production and imports. According to the 1993 United Nations’s System of National
Accounts, the net operating surplus Π represents the profits of incorporated entities.24 By
contrast, mixed income M denotes income from self-employment as well as proprietary in-
come.25 In the model, nonfinancial income denotes the component of aggregate income that
cannot be capitalized into financial claims. We follow Gollin (2002) and construct an empir-
ical counterpart W as the sum of the compensation of employees COMP, plus a fraction ν
of mixed income M :26 W = COMP + νM .

Financial income K is then defined as gross operating profits Π +D plus the remainder
of mixed income (1− ν)M , net of non-residential gross capital formation I:27

K = Π +D + (1− ν)M − I.

Using these measures, we construct estimates of the share of financial income δ as K/(Y −
T − I). Table 1 summarizes our estimates for the G-7 countries. These estimates range from
13.1 percent for Germany to 25.4 percent for Italy, with an unweighted average of 16.7
percent. For comparison, the table also reports the ‘näıve’ estimate of δ obtained as one
minus the share of compensation of employees in output measured at factor prices, that is
1− COMP/(Y − T ). The näıve estimate is much higher, with an average of 41.3 percent.

In what follows, we normalize financial and nonfinancial income by population, and
express them in constant U.S. dollars. Figure 1 reports nonfinancial income per capita for
each country relative to the nonfinancial income of the remaining G-7 countries. Relative
nonfinancial income exhibits marked fluctuations over the period. For instance, for the U.S.,
it fluctuates between 0.9 and 2.4. It is also strikingly correlated with the real exchange rate,
also reported on the same figure.28

4.2.2 The harder part: returns to financial and nonfinancial wealth

We now construct empirical counterparts to the return on financial and nonfinancial wealth
since neither returns are directly observable.

24It is defined as “the surplus or deficit accruing from production before taking account of any interest, rent
or similar charges payable on financial or tangible non-produced assets borrowed or rented by the enterprise,
or any interest, rent or similar receipts receivable on financial or tangible non-produced assets owned by the
enterprise.”

25It is defined as “the surplus or deficit accruing from production by unincorporated enterprises owned by
households; it implicitly contains an element of remuneration for work done by the owner, or other members
of the household, that cannot be separately identified from the return to the owner as entrepreneur but it
excludes the operating surplus coming from owner-occupied dwellings.”

26ν is assumed equal to COMP/ (COMP + Π) . The results are very robust to alternative measures of ν,
including the polar cases where all mixed incomes are treated as nonfinancial income (ν = 1) and all mixed
incomes are treated as financial income (ν = 0).

27We substract gross capital formation to compute the part of income that flows to owners of financial
claims on capital. We adjust gross capital formation for residential investment since the latter does not
reflect investment decisions of corporations but of households.

28The correlation ranges between 0.68 for Italy and 0.96 for Japan with an average of 0.85
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Consider first the return to financial wealth, Rf , where we drop the country subscript i to
ease notation. In general, that return is not equal to the return on aggregate equity Re. In the
model, the two are equal because financial wealth is entirely capitalized in the equity market.
In practice, firms are financed through equity and corporate debt, among other instruments.29

What is needed is an estimate of the financial return to the firm. Our benchmark method
looks at the liability side of the firms’ balance sheet, using observable equity and corporate
bond market data. Specifically, we construct the gross return to financial wealth, Rf , as a
weighted average of the country’s equity (Re) and corporate debt (Rd) gross constant dollar
returns, where the weight µt reflects the share of corporate debt in the total value of the firm.
These weights are estimated for each country using balance sheet data for non-financial firms
from Compustat.30 Our measure of returns to financial wealth for each country is then:

rft+1 ≡ log(Rf
t+1) = log

[
(1− µt)Re

t+1 + µtR
d
t+1

]
. (27)

Section 4.6 presents alternative estimates of Rf as robustness checks.

Consider next the return to nonfinancial wealth, Rn. In a dynamic context, that return
differs from the growth rate of real nonfinancial income per capita ∆ lnW : the latter rep-
resents only the dividend component and not the total return on the corresponding asset.31

Measuring the total return on nonfinancial wealth is a difficult issue. We tackle it from
a variety of perspectives. First, we follow the standard present-value method of Campbell
and Shiller (1988), as detailed in Campbell (1996). Under the assumption that the dividend-
price ratio on nonfinancial wealth is stationary, the return on that asset satisfies the following
approximation:

rnt+1 ≡ ln
(
Wt+1 + V n

t+1

)
− lnV n

t = k + φnt − ρ φnt+1 + ∆wt+1, (28)

where V n
t denotes nonfinancial wealth at time t, φnt = ln (Wt/V

n
t ) is the log dividend-price

ratio for nonfinancial wealth, ρ is a number slightly smaller than 1, k is an unimportant
constant and we use lower case variables to denote logs.32

Using (28) to solve for φt forward, imposing the equilibrium condition that limt→∞ ρ
t (rnt −∆wt) =

0, substituting back into equation (28), and taking conditional expectations, yields the usual
present-value relationship:

29One might worry that equilibrium equity positions might differ if firms are able to issue debt as well as
equity. We show in Appendix A.3 that in the benchmark model where firms’ financing decisions are irrelevant
for the value of the firm, this is not the case. In this Modigliani-Miller limit case, the presence of corporate
debt has no impact on equity portfolio decisions. In models with some departure from Modigliani-Miller,
our results can remain valid as long as changes in the value accrued to debtholders versus shareholders does
not interact with the fundamental shocks of the model.

30See appendix B.1 for details. The average share of debt in total liabilities is 67.1 percent (Canada), 75.2
percent (France), 75.3 percent (Germany), 76.2 percent (Italy), 70.7 percent (Japan), 59.2 percent (U.K.),
71.8 percent (U.S.). The country equity and corporate debt returns are obtained from the Global Financial
Database. For Italy and Japan, corporate bond markets developed only in the late 1980s. We approximate
the corporate debt return by using instead the holding return on long-term government debt.

31See Baxter and Jermann (1997, p. 175)
32One can show that ρ = 1/ (1 + exp (φ)) where φ is the steady state value of the log dividend-price ratio.

We will use the value of ρ = 0.98 in line with standard estimates in the literature. Our results are robust to
changes in the value of ρ.
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rnt+1 − Etrnt+1 = (Et+1 − Et)
∞∑
s=0

ρs∆wt+1+s − (Et+1 − Et)
∞∑
s=1

ρsrnt+1+s. (29)

This expression makes clear that the innovation to the return on nonfinancial wealth on
the left hand side of the equation depends positively upon revisions to the path of future
expected real nonfinancial income growth—the cash flow component represented by the first
summation on the right hand side—and negatively upon revisions to the path of future
expected real returns—the discount rate component represented by the second summation
on the right hand side.

Our approach consists in constructing the empirical counterpart of equation (29) for each
country using a Vector-Auto-Regression (VAR) in first differences of the following form:33

Zt+1 = A Zt + εt+1

where Zt = (r̃t,∆wt,∆kt,∆ lnQt,x
′
t)
′. In this expression, r̃t+s represents a possible proxy for

the expected return on nonfinancial wealth at time t+ s, in the sense that Etr
n
t+s = Etr̃t+s.

This proxy is necessary to construct the second summation on the right hand side of (29).
In our benchmark approach, we set r̃ = rf , that is, we assume that expected financial and
nonfinancial future returns are equal.34 ∆wt,∆kt and ∆ lnQt denote respectively the rate
of change of non-financial income, financial income and the real exchange rate. Finally, xt
denotes a vector of additional controls used to forecast future factor income growth and
future returns.

Our VAR specification first-differences financial and non-financial income. We discuss in
details in Appendix B.2 why this is the appropriate empirical specification. In short, we find
that while we cannot reject the null hypothesis that w and k are integrated processes, we do
not find any statistical evidence of a cointegration relationship between the two. This is an
important point of departure from the earlier literature. For instance, Baxter and Jermann
(1997) estimate a Vector Error Correction Mechanism (VECM) on financial and nonfinancial
income, imposing the cointegration relationship that k − w is stationary. This assumption
is appealing on theoretical grounds since the share of financial income is bounded between 0
and 1. The null of cointegration is, however, strongly rejected in the data, indicating a very
persistent process for income shares, with no apparent error-correction term.35 Therefore, a
stationary VAR in first-differences is appropriate.

Based on our reading of the literature on financial return predictability, we consider a
comprehensive list of potential controls for future asset returns: consumption growth; the

33Standard Akaike and Schwarz lag-selection criteria indicate that a VAR of order 1 is the preferred
specification for all countries.

34Section 4.6 explores various alternatives. One such alternative is to set r̃ = rb, to capture the fact that
returns to non financial wealth may have a risk-return profile closer to bonds than equities. Another is to
follow Lustig and Nieuwerburgh (2008) and recover returns on nonfinancial wealth from the joint behavior
of asset returns, nonfinancial income growth and consumption growth, under the assumption that aggregate
consumption satisfies the first-order condition of an optimizing representative household.

35Moreover, as discussed in appendix B.2, the assumption that k−w is stationary is also strongly rejected
by the data.
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dividend-price ratio; the relative T-bill rate (the difference between the yield on 3-month
T-bill rate and a 4-quarter moving average); the term premium (the spread between 10
year and 3 months government yields); the yield spread (the spread between the yield on
long-term corporate bonds and that on 10-year government bonds); cay, the fluctuations
in US aggregate consumption-wealth ratio as measured by Lettau and Ludvigson (2001);
and nxa, the Gourinchas and Rey (2007) measure of US external imbalances. In order to
maintain a parsimonious and statistically significant representation, our selection of variables
is as follows. First we exclude variables that appear integrated, based on Augmented-ADF
tests, since this would violate our stationary VAR assumptions. Second, we select predictive
variables based on the Least Angle Regression (LARS) approach of Efron, Hastie, Johnstone
and Tibshirani (2004) applied to the financial return equation of the Vector Auto Regression.
This selection algorithm efficiently selects a parsimonious subset of predictive variables. In
our final specification, only one predictive variable remains: the term premium for the U.S
and Italy.

With estimates of A and εt+1 in hand, the empirical counterpart to rnt+1−Etrnt+1 can be
obtained from (29) as:

rnt+1 − Etrnt+1 = (e′∆w − ρe′r̃A) (I− ρA)−1 εt+1, (30)

where e′y is a row-vector that ‘selects’ variable y in Z, i.e. such that e′yZ = y. The first

term, e′∆w (I− ρA)−1 εt+1, captures the contribution of expected future non financial income
growth (the first summation in equation (29)). The second term, −ρe′r̃A (I− ρA)−1 εt+1,
captures the contribution of expected future returns on nonfinancial wealth (the second
summation in equation (29)). Figure 2 reports the return to nonfinancial wealth rnt+1−Etrnt+1

for the U.S., together with the growth rate of nonfinancial income ∆w. The correlation
between the two series is high (0.66), but the striking fact is that the return innovation
exhibits much more volatility.36

The last step consists in measuring bond, financial and non-financial returns relative to
the rest of the world. To this effect, we define the relative returns r̂li of country i as follows:

r̂li,t+1 =
(
rli,t+1 − Etrli,t+1

)
−
∑
j 6=i

αji
(
rlj,t+1 − Etrlj,t+1

)
,

for l ∈ {b, f, n}, where αji is the output weight of country j in the rest of the world outside
of country i.

4.3 Estimating the loadings on the real exchange rate

We are now in a position to estimate the key loading parameters in equation ( 10). We begin
with the loadings on the real exchange rate, βQ,j for j = f, b. These conditional moments
can be estimated for each country by the following simple regression for each country i:

36The standard deviation of the return innovations is 3.09% vs. 1.01% for nonfinancial income growth.
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∆ lnQi,t − Et−1∆ lnQi,t ≡ e′∆qεi,t = βiQ,0 + βiQ,br̂
b
i,t + βiQ,f r̂

f
i,t + ui,t. (31)

where ui,t captures the fluctuations in the real exchange rate that are not spanned by
relative bond and financial returns.37

Results of regression (31) for each countries are displayed in Table 2. Our empirical results
confirm the results of van Wincoop and Warnock (2010) for all the countries considered in
the sample: relative bond returns capture most of the variations of the real exchange rate.
The coefficient on the relative bond returns in panel A, βQ,b is often not statistically different
from one, between 0.82 for the U.K and 1.01 for Japan. The R2 of the regression is also very
strong, between 0.86 for UK and 0.95 for France and Japan. Moreover, conditional on bond
returns, the hedge ratio of financial returns for real exchange rate risk, βQ,f is almost never
statistically different from zero.38

Panel B of the table reports the unconditional loading on the real exchange rate βuQ,f
obtained from a regression only on the relative financial return r̂f . The coefficients are signif-
icantly positive for all countries, between 0.38 (U.K.) and 0.73 (U.S.). This re-emphasizes the
importance of properly conditioning on the relative bond returns. Finally, the last column
of the table reports the results from a pooled regression with country fixed effects. This can
be interpreted as an average loading for all G-7 countries. The estimates, βQ,b = 0.94 and
βQ,f = 0.01 confirm the strong correlation between relative bond returns and real exchange
rates.

4.4 Estimating the loading on the return to non-financial wealth

We now use the returns to non-financial wealth estimated for each country i to estimate the
loadings of (relative) bond returns and (relative) returns to financial wealth by estimating
the following equation:

r̂ni,t = βin,0 + βin,br̂
b
i,t + βin,f r̂

f
i,t + vi,t, (32)

where vi,t is attributed both to measurement error in the construction of the return on
nonfinancial wealth, and to fluctuations in relative nonfinancial income risk not spanned by
relative bond returns and relative returns to financial wealth.

Results of the regression (32) for each countries are shown in Table 3. Panel B reports
the estimate of the unconditional loading factor βi,un,f = cov(r̂ni , r̂

f
i )/var(r̂fi ). This coefficient

is positive and significant for all countries except Italy, with a pooled estimate of 0.41.
This indicates that returns to non financial wealth are positively correlated with returns to

37It is important to note how equation (31) differs from a standard test of uncovered interest rate parity
(Fama (1984)). Denote řbt−1 the ex-ante real interest rate differential between t− 1 and t, expressed in local
units. Then r̂bt = řbt−1 + ∆qt and the coefficient βQ,b will be close to 1 if most of the variation in ex-post

real interest rate differential r̂bt comes from movements in the real exchange rate, regardless of whether
uncovered interest rate parity holds. However, under uncovered interest rate parity, řbt−1 = −Et−1 [∆qt] so
that r̂bt = ∆qt − Et−1∆qt measures the innovation to the rate of depreciation and βQ,b = 1.

38The exception is the U.K. but even in this case βQ,f remains economically very small, less than 7 percent.
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financial wealth as in Baxter and Jermann (1997) and the international diversification puzzle
is ‘worse than you think’ when using equities only.

However, the loading factor conditional on bond returns βin,f reported in panel A is
negative and strongly significant for all countries, except Germany. It varies between -0.05
(Germany) and -0.55 (Italy) with a pooled estimate of -0.23. As the previous analysis em-
phasized, this negative conditional hedge ratio indicates that in all these countries domestic
equities constitute a good hedge against shocks to non financial wealth.

Moreover, the positive loadings of (relative) bond returns βn,b > 0 implies that shorting
the local currency bond, and going long in the foreign currency bond, constitutes a good
hedge against fluctuations in returns to non-financial wealth (see equation (12)). This is not
surprising: in our model, a potentially large part of relative non-financial income comoves
with the real exchange rate (see Figure 1), and we know that relative bond returns track
almost perfectly the real exchange rate.

4.5 Implied equity and bond portfolios

The previous estimates allow us to back out the implied equity and bond positions using
equations (12) when all countries are symmetric. Allowing for different country sizes, equa-
tion (12) must be rewritten as follows (see Appendix (A.4)):

b∗ = (1− ωi)
(
1− 1

σ

)
βQ,b − (1− ωi) (1− δ) βn,b

S∗ = ωi + (1− ωi)
(

1− 1
σ

δ
βQ,f − 1−δ

δ
βn,f

) (33)

where ωi is the relative size of country i in world market capitalization.

The implied equity bias and bond portfolios are summarized in table 4 using the load-
ing coefficients from our baseline estimates. As equation (33) indicates, the optimal bond
position requires an estimate of the degree of risk aversion σ. We consider the plausible
value of σ = 2 in our benchmark calibration. For the share of financial income δ, we use the
average share of financial income across G7 countries in the more recent period (2000-2008):
δ = 0.191.

The model is very successful at predicting a significant degree of equity home bias for
all countries when bond trading is allowed. Consider first panel B, which excludes bonds,
as commonly done in the literature. The baseline refers to the first term in equation (33),
that is, a predicted portfolio share equal to the share in world market capitalization ωi.
The second term (Bias due to Q) reflects the contribution of the real exchange rate hedging
component: (1− ωi)(1− 1/σ)βi,uQ,f/δ. Given the positive unconditional correlation between

financial returns and exchange rates (βi,uQ,f > 0 in table 2), this term is positive, indicating a
potential source of home bias. The second term (Bias due to rn) reflects the contribution of
the non-financial income hedging component: −(1− ωi)(1− δ)βi,un,f/δ. Since βi,un,f is strongly
positive (see table 3), this term contributes negatively to the optimal equity portfolio and
dominates the real exchange rate hedge. The result, as in Baxter and Jermann (1997) is a
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strong predicted foreign bias, Si − ωi ranging from -8.6 percent for France to -91.5 percent
for Germany, in total contrast to the data.39

By contrast, Panel A shows that the estimated model accounts for a large share of ob-
served equity home bias once bond trading is allowed. The hedge portfolio is now dominated
by the non-financial income component. This term is strongly positive since βin,f < 0 in
table 3. The predicted equity portfolio (S) is 29% for Germany, between 59% and 101% for
Canada, Japan, U.K. and the U.S. and quite above 100% for France and Italy.40 Available
empirical evidence indicates a home equity position between 55% (Germany) and 85.6%
(Canada).41 Except for Germany, the equity bias predicted by the model is comparable
to the amount of bias in the data. Using βQ,f and βn,f estimated on pooled data for all
countries, we get equity portfolios close to 90% for all countries, also fairly close to the data.

The last line (∆S) reports the change in the predicted equity position between the equity
only and the full model. In all cases, the predicted equity position increases substantially,
moving the model closer to the data. For instance, in the case of the U.S., in the model
with equity only, investors should have a strong foreign bias (S = 12%) while the full model
predicts 101% domestic equity holdings, much closer to the empirical estimate (83.2%).

Panel A also reports the model predictions for bond holdings. As for equities, we can
decompose the predicted bond position into a real exchange rate hedge component ((1 −
ωi)(1 − 1/σ)βQ,b) and a non financial income component (−(1 − ωi)(1 − δ)βn,b).42 We find
a strong positive demand for local currency bonds arising from real exchange rate hedging,
given the positive loading factor βQ,b, but an even stronger and negative loading factor
for hedging non-financial income risk, given βn,b.

43 While each of these component can be
large relative to output, they offset each other and imply net currency exposure of bond
portfolios of reasonable magnitude. Thus, the model predicts that countries should issue
bond liabilities in their own currency, between 19 percent (US) and 54 percent (Italy) of their
domestic output. Data regarding the net currency exposure of debt positions from Lane and
Shambaugh (2010) suggests that G7 countries are on average short in domestic currency
(and long in foreign currency) although the positions are smaller than those predicted by
the model. The average net currency bond exposure is b = −6.3% of GDP over 2000-2004.44

There is some heterogeneity across countries: while US, UK, Japan and Italy are short in

39The exception is Italy, where the unconditional loading βu
n,f is insignificant and therefore the model

predicts more home bias than observed.
40The results for Italy are perhaps to be taken with some caution since we imputed the return on Italian

T-bills for the return on corporate bonds.
41Data are from Coeurdacier and Rey (2013).
42The baseline is zero for the bond position.
43This term would only grow stronger relative to the real exchange rate hedge if we decrease the coefficient

of risk aversion σ. In the limit where σ = 1, the real exchange rate hedge component disappears.
44In the data, countries often have leveraged external debt position. The counterpart of b in the model is

(bHH − bHF )/2 where bHH denotes the net domestic currency debt exposure, that is, the difference between
domestic currency denominated debt assets and domestic currency denominated debt liabilities– and bHF
denotes the net foreign currency debt exposure, that is, the difference between foreign currency debt assets
and foreign currency debt liabilities. This counterpart generates the same wealth transfer towards a country
whose currency depreciates by 1% with respect to all other currencies as in our model.
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domestic currency, Germany, France and Canada are long. Our empirical counterpart of b
ranges from -16.4% of GDP for the UK to 9.8% for France. Overall, it is fair to say that
the fit of the benchmark model in terms of bond portfolios is less impressive. As direct
inspection of equation (33) shows, for higher values of σ the hedging of real exchange rate
becomes progressively more important, reducing the magnitude of the bond positions.

4.6 Using Different Measures of Returns to Financial and Non-
Financial Wealth

A key element of our analysis is the construction of returns to financial and non financial
wealth rf and rn. If these returns are incorrectly measured, one should be cautious when
interpreting the loading factors and predicted portfolios. This section investigates the ro-
bustness of our results to various alternative measures of financial and non financial returns.

A first point of departure would be to construct returns to financial wealth using the
same approach as for non financial returns, with national income data as in Baxter and
Jermann (1997). This approach yields the following expression for the return to financial
wealth:

rft+1 − Etr
f
t+1 = (Et+1 − Et)

∞∑
j=0

ρj∆kt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrft+1+s (34)

Using the same VAR specification as in section (4.2.2), the empirical estimates of the
returns to financial wealth becomes:45

rft+1 − Etr
f
t+1 = (e′∆k − ρe′r̃A) (I− ρA)−1 εt+1. (35)

The returns on the firm thus obtained may be noisy and imperfectly estimated. Our
second approach instruments the returns in equation (35) with the country’s equity and
corporate debt returns, forcing the weights to sum to one. This is equivalent to choosing
different weights µ̂ in equation (27), measuring the leverage implied by national accounts
data according to a first stage regression:

rft = (1− µ̂)ret + µ̂rdt + νt. (36)

The predicted component
(
(1− µ̂)ret + µ̂rdt

)
of (36) becomes our proxy for returns to

financial wealth. This method identifies the variations in financial wealth estimated from
national accounts that are reflected in market returns and is therefore potentially more robust
to measurement error.

A third approach approach simply sets µ = 0, equating the return to financial wealth
with observed equity returns:

rft = ret (37)

45The implementation still requires the use of observed market returns to form expectations of future
returns. In practice, we use the returns on the firm constructed in the previous section as a proxy.
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This approach has the merit of simplicity, but as argued earlier, there are good theoretical
reasons why equity returns may differ from the returns to the firm.46

Figure 3 reports the innovations to financial returns under these alternative measures
for the United States. As can be seen from the figure, the return innovations tend to be
positively correlated.47 The equity return is also the more volatile, with a standard deviation
of 8% per quarter against 3.5% for the projected NIPA return.

Lastly, we also consider three different approaches to constructing returns to non financial
wealth. The first one assumes that non-financial wealth is discounted using the holding return
on long term government bonds, denoted rlb. We follow the exact same methodology as in
our benchmark estimates but set r̃ = rlb to construct estimates of returns to non-financial
wealth.48

The second approach borrows from Lustig and Nieuwerburgh (2008). The basic idea
is to recover the unobserved innovation to non financial wealth from the joint behavior of
consumption and market returns, under the assumption that aggregate consumption satisfies
the first-order condition of an optimizing representative household.49

Results from regressions (31) and (32) are displayed in table 5 and table 6 for the different
specifications and the different countries. Our empirical results confirm the previous results
across all specifications: relative bond returns capture most of the variations of the real
exchange rate and claims on financial income are not used to hedge real exchange rate
changes (see table 5). Moreover, conditional on bond returns, the loadings of non-financial
wealth on financial wealth are negative across all specifications and significantly so for most
of the countries, implying home bias in our model (see table 6). This confirms the important
role of bond holdings as an hedging instrument. Hence, qualitatively, results using these
alternative measures of returns are very similar to our benchmark case.

Quantitatively, the magnitude of the loadings βin,f in table 6 are similar to our benchmark
case when using the projection of financial returns estimated from national accounts on
market returns (panel B, the pooled estimate of βin,f is equal to −0.17), when using long
term government bond returns to discount non-financial wealth (panel D, pooled estimate
of βin,f equal to −0.24), or when using the method of Lustig and Nieuwerburgh (2008)

(panel E, pooled estimate of βin,f equal to −0.19). As reported in table 7, under all of these
specifications, the amount of equity home bias generated by our estimates are in line with
the home bias data for most countries.

The results are marginally weaker when using national accounts data (panel A) or equity
returns (panel C). More generally, one could also argue that these are noisier measure of

46We also set r̃ = re in the VAR and re-run the LARS algorithm to select predictive variables. The
following variables are added to the VAR: yield spread (Germany and U.S.) and relative T-bill (U.S.).

47The NIPA returns tend to have the lowest correlation with the other variables, between 0.15 and 0.21.
All other measures are strongly correlated.

48In that specification, the following variables are added to the VAR according to our LARS algorithm:
term-premium (Italy and the U.S.), consumption growth (Japan, U.S.), relative T-bill (UK) and yield spread
(U.S.).

49See appendix B.2 for details.
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financial returns causing attenuation bias on our estimates of the loadings. When using
equity returns, the pooled estimates of βin,f is equal to −0.08 (panel C), roughly 40% of
the value of our benchmark. Hence in this specification, the model can still explain a
significant share of equity home bias (around 40%; see table 7). The estimation using national
account data to estimate returns to financial wealth performs qualitatively similarly as our
benchmark, except for Italy.50 When looking at the US more specifically, table 7 indicates
that the equity portfolio implied by the model are respectively 82% of domestic equity when
using national account data and 70% when using equity returns, only slightly below the
measured ones.51

As a final check, we consider the relative importance of the cash flow and discount compo-
nents in equation (29). Unlike our benchmark result, Benigno and Nistico (2011) find that,
for the U.S., returns to non-financial wealth are largely uncorrelated with financial returns,
even after controlling for bond returns. Their approach ignores the contribution of revisions
to the path of future expected real returns to the return on non-financial wealth –the second
term in equation (29). Conceptually, it is not clear why one would wish to assume that the
expected return to non-financial wealth remains constant given the large body of evidence
on time-varying asset returns. Further, as the robustness checks presented above illustrates,
our results are robust to many plausible alternative assumptions regarding expected future
non-financial returns (equal to expected financial return, expected government bond return,
or determined by consumption innovations). Lastly, we do find that our results are qualita-
tively robust to the restriction that expected non-financial returns are constant. Setting the
second summation in (29) equal to zero, we find that the conditional loading of non-financial
returns on financial ones remains negative and significant for most countries, although not
the US or Germany, accounting perhaps for the findings in Benigno and Nistico (2011).52

5 Conclusion

What drives equity home bias? This paper merges and improves upon two strands of lit-
erature. The first strand focused on risks to non-financial wealth. It concluded that home
equity positions should be even more tilted towards foreign equity since non financial and
financial returns appeared positively correlated. The second strand looked at frictions in
goods markets and emphasized real exchange rate risks. In this class of models, efficient
risk sharing requires holding securities delivering high returns when the domestic currency
appreciates. However, the correlation between stock returns and exchange rates is too low
to generate significant portfolio biases. This class of models has thus been challenged by its
lack of empirical support.

50In panel A, Italy is an obvious outlier with βn,f = 0.51. However, recall for that country, we do not
have a good measure of corporate returns which affects the way non financial wealth is discounted. When
dropping Italy from our pooled estimation, βin,f is equal to −0.1 and highly significant.

51Like in our benchmark regression, the unconditional loadings (non-reported) for these two specifications
are positive and highly significant (βi,un,f > 0) implying a very large foreign bias in the model without bonds.

52The estimates vary between 0.004 for Germany and -0.20 for France. Results available upon request
from the authors.
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This paper shows that both strands of the literature are related, but incomplete. It starts
from the observation that relative bond returns (nominal or real) are strongly correlated with
real exchange rates. It follows that, in a world where investors can trade both equities and
bonds, they will hedge real exchange rate risk with the latter. And once this is achieved, the
equilibrium equity position will be a function of the residual risks that investors face, namely
the risk to their non-financial wealth, conditional on bond returns. Equity home bias will
arise if non financial risk is negatively correlated with equity returns, after controlling for
bond returns. The paper derives this prediction in a fairly general model and characterizes
equilibrium portfolios as a simple function of hedge ratios that can easily be estimated from
data on real exchange rates and returns on bonds, financial and non-financial wealth. We
implement this empirical strategy for the countries of the G-7 and show that under many
reasonable specifications, the conditional correlation between financial and non-financial re-
turns is such that it can empirically account for a significant share of the observed equity
home bias. For most countries, the conditional correlation between financial and non fi-
nancial returns is negative and economically significant. In other words, the international
diversification puzzle is not so puzzling anymore! The model also makes predictions about
equilibrium bond positions. Here, although we find an implied currency exposure of bond
portfolios broadly in line with the empirical evidence, the performance of the model is not
as good for international bond portfolios.

It is possible to interpret our results in a broader perspective. Nominal exchange rates
present a deep source of puzzles in international finance. They are too volatile and largely
uncorrelated with their fundamental determinants — the exchange rate disconnect puzzle.
To the extent that nominal exchange rate movements drive real exchange rate fluctuations,
real exchange rates too, do not behave as predicted in our models —the Mussa (1986)
puzzle. For instance, relative real consumption is not correlated with real exchange rate
movements as models of risk sharing predict—the Backus and Smith (1993) puzzle. In
the context of international portfolios, this implies that real exchange rates fluctuations are
both uncorrelated with relative financial returns, and that relative financial and non-financial
returns are positively correlated, since a given change in the nominal exchange rate affects
both returns in the same direction. Our paper shows that, once currency fluctuations are
controlled for through the use of nominal or real bonds, the structure of international equity
portfolios conforms to the predictions of standard portfolio models. This provides a qualified
success for the theory, since an empirically successful theory of exchange rate fluctuations
remains elusive.

We left open an obvious step for future research. One would want to go back and
enrich/discriminate among existing models to fully account for the hedge ratios we obtain
from the data. Such a model would be consistent both with observed portfolios (quantities)
and with their corresponding loadings, i.e the covariance structure of exchange rates and
asset returns (prices). Going from the reduced form estimates to the structural parameters
of the model requires taking a stand on the ‘correct’ model of the economy. A full-fledged
structural estimation lies beyond what we attempt in this paper.
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Canada France Germany Italy Japan U.K. U.S. Euro Average

δ 16.4 14.1 13.1 25.4 16.1 18.5 13.3 17.9 16.7

näıve-δ 39.9 39.9 40.5 50.9 43.5 36.7 37.8 42.9 41.3

Table 1: Estimates of the share of financial income in output δ (in percent), defined as
the share of financial income (Π + D + (1− λ)M − I) in output at product prices net of
investment (Y −T−I). The näıve share is estimated as one minus the share of compensation
of employees (COMP ) in output at factor prices (Y −T ). Source: OECD Quarterly National
Income and U.N. National Account Statistics. Authors’ calculations.

Canada France Germany Italy Japan U.K. U.S. Pooled

Panel A: Conditional Loadings
βQ,f -0.036 -0.011 0.007 -0.017 -0.030 0.064*** -0.013 0.006
(s.e.) (0.025) (0.024) (0.026) (0.018) (0.028) (0.022) (0.038) (0.009)
βQ,b 1.003*** 0.944*** 0.946*** 0.969*** 1.012*** 0.821*** 0.944*** 0.942***
(s.e.) (0.033) (0.028) (0.031) (0.026) (0.034) (0.039) (0.040) (0.012)

R2 0.941 0.947 0.940 0.944 0.947 0.863 0.918 0.929

Panel B: Unconditional Loadings
βuQ,f 0.579*** 0.591*** 0.616*** 0.447*** 0.658*** 0.376*** 0.733*** 0.554***
(s.e.) (0.040) (0.043) (0.043) (0.042) (0.040) (0.034) (0.048) (0.016)

R2 0.579 0.557 0.573 0.424 0.641 0.453 0.611 0.535
Obs. 153 153 153 153 153 153 153 1071

Table 2: Loadings on real exchange rate changes: ∆ lnQi,t − E0∆ lnQi,t = βiQ,br̂
b
i,t +

βiQ,f r̂
f
i,t + ui,t. Standard errors are in parenthesis. (***) (resp (**)) indicates significance

at the 1% level (resp. 5%). Unconditional loadings impose βQ,b = 0. Last column reports
pooled fixed effect estimates. Constants are not reported. Sample: 1970:2 to 2008:3.
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Canada France Germany Italy Japan U.K. U.S. Pooled

Panel A: Conditional Loadings
βn,f -0.186*** -0.327*** -0.053 -0.551*** -0.171*** -0.081** -0.252*** -0.227***
(s.e.) (0.072) (0.057) (0.062) (0.098) (0.053) (0.036) (0.099) (0.026)
βn,b 1.262*** 1.122*** 1.073*** 1.295*** 0.970*** 0.967*** 1.073*** 1.096***
(s.e) (0.094) (0.069) (0.075) (0.140) (0.065) (0.062) (0.103) (0.034)

R2 0.709 0.719 0.759 0.366 0.769 0.706 0.595 0.600

Panel B: Unconditional Loadings
βun,f 0.588*** 0.389*** 0.637*** 0.068 0.489*** 0.286*** 0.595*** 0.411***
(s.e.) (0.064) (0.060) (0.060) (0.089) (0.046) (0.043) (0.074) (0.024)

R2 0.362 0.219 0.429 0.004 0.428 0.223 0.300 0.213
Obs. 153 153 153 153 153 153 153 1071

Table 3: Loadings on nonfinancial returns: r̂ni,t = βin,br̂
b
i,t + βin,f r̂

f
i,t + vi,t. Standard errors

are in parenthesis. (***) (resp (**)) indicates significance at the 1% level (resp. 5%). Un-
conditional loadings βun,f impose βn,b = 0. Last column reports pooled fixed effect estimates.
Constants are not reported. Sample: 1970:2 to 2008:3.
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Canada France Germany Italy Japan U.K. U.S.

Panel A: With Bonds and Equity
Equity
Baseline (Market Cap Weights) 5.13 7.30 5.67 3.30 15.71 12.35 50.53
Bias due to:
Q -8.96 -2.72 1.77 -4.25 -6.64 14.59 -1.64
rn 74.56 128.36 21.27 225.88 61.01 30.25 52.76

Total (S) 70.73 132.95 28.71 224.93 70.08 57.18 101.66

Data for (S) (2000-2008) 85.60 71.40 55.40 59.50 84.30 65.20 83.20

Bond
Bias due to:
Q 47.58 43.74 44.59 46.85 42.65 35.99 23.35
rn -96.85 -84.11 -81.85 -101.33 -66.14 -68.55 -42.92

Total (b) -49.27 -40.37 -37.26 -54.48 -23.49 -32.56 -19.57

Data for (b) (2000-2004) 9.30 9.90 8.90 -2.70 -12.70 -16.40 -10.90

Panel B: Equities Only
Baseline (Market Cap Weights) 5.13 7.30 5.67 3.30 15.71 12.35 50.53
Bias due to:
Q 145.25 142.53 143.62 108.09 144.20 90.82 104.86
rn -238.74 -151.72 -240.46 -26.71 -173.30 -111.90 -137.79

Total (S) -89.35 -1.29 -85.91 88.97 -12.77 -13.33 12.44

∆S 160.08 134.24 114.62 135.96 82.84 70.52 89.22

Table 4: Implied Portfolio Equity (S) and bond (b) position for G7 countries. Calculations
are done under the assumption that δ = 0.19 and σ = 2. (S) refers to the percentage of
domestic stocks held by domestic residents (data for (S) are averaged over the period 2000-
2008). ∆S refers to the difference between the implied S in a model with bonds and equity
and the implied S with equities only. (b) refers to the net domestic currency exposure of
bond portfolios (as a % of GDP). Data for (b) are computed from Lane and Shambaugh
(2010) and refers to the average between net debt assets in domestic currency and net debt
liabilities in foreign currency as a % of GDP (averaged over 2000-2004): b = bHH−bHF

2
.
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Canada France Germany Italy Japan U.K. U.S. Pooled

Panel A: Financial returns estimated using national accounts
βQ,f 0.011 0.017 0.037 0.051 0.032 0.047*** 0.000 0.027
(s.e.) (0.010) (0.010) (0.014) (0.012) (0.013) (0.019) (0.019) (0.005)

βQ,b 0.954*** 0.921*** 0.911*** 0.923*** 0.953*** 0.846*** 0.934*** 0.924***
(s.e.) (0.022) (0.019) (0.025) (0.019) (0.022) (0.035) (0.027) (0.009)

R2 0.941 0.948 0.942 0.950 0.949 0.862 0.918 0.931

Panel B: Projection of returns from panel A on market returns
βQ,f -0.052** -0.021 -0.003 -0.048*** -0.044 0.040 -0.004 -0.019
(s.e.) (0.028) (0.029) (0.026) (0.019) (0.033) (0.033) (0.043) (0.011)

βQ,b 1.020*** 0.952*** 0.955*** 1.006*** 1.026*** 0.842*** 0.938*** 0.967***
(s.e.) (0.035) (0.032) (0.033) (0.028) (0.039) (0.051) (0.046) (0.014)

R2 0.941 0.947 0.939 0.946 0.948 0.857 0.918 0.929

Panel C: Financial returns based on equity returns
βQ,f -0.003 0.003 0.008 0.011 -0.015 0.040*** -0.007 0.006
(s.e.) (0.012) (0.009) (0.012) (0.008) (0.011) (0.014) (0.018) (0.004)

βQ,b 0.971*** 0.935*** 0.939*** 0.946*** 0.996*** 0.878*** 0.943*** 0.946***
(s.e.) (0.022) (0.019) (0.022) (0.020) (0.023) (0.030) (0.026) (0.009)

R2 0.945 0.953 0.935 0.941 0.944 0.889 0.924 0.932

Panel D: Non-financial returns using bond return discounting: r̃ = rb

βQ,f -0.030 0.001 0.007 -0.018 -0.033 0.053** -0.030 0.001
(s.e.) (0.024) (0.024) (0.028) (0.018) (0.030) (0.026) (0.037) (0.010)

βQ,b 1.002*** 0.929*** 0.939*** 0.971*** 1.006*** 0.769*** 0.964*** 0.937***
(s.e.) (0.031) (0.029) (0.034) (0.026) (0.037) (0.044) (0.039) (0.013)

R2 0.947 0.944 0.931 0.945 0.939 0.807 0.924 0.921

Panel E: Non-financial returns estimated using Lustig and Nieuwerburgh (2008)
βQ,f -0.027 -0.017 0.017 -0.008 -0.030 0.072*** -0.013 0.011
(s.e.) (0.028) (0.024) (0.028) (0.018) (0.030) (0.023) (0.038) (0.010)

βQ,b 0.980*** 0.947*** 0.925*** 0.958*** 1.005*** 0.802*** 0.945*** 0.931***
(s.e.) (0.037) (0.029) (0.034) (0.026) (0.036) (0.040) (0.040) (0.013)

R2 0.927 0.944 0.927 0.945 0.940 0.855 0.918 0.923

Obs. 153 153 153 153 153 153 153 1071

Table 5: Loadings on real exchange rate changes for alternative measures of returns:
∆ lnQi,t − E0∆ lnQi,t = βiQ,br̂

b
i,t + βiQ,f r̂

f
i,t + ui,t. Standard errors are in parenthesis. (***)

(resp (**)) indicates significance at the 1% level (resp. 5%). Last column reports pooled
fixed effect estimates. Constants are not reported. Sample: 1970:2 to 2008:3.
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Canada France Germany Italy Japan U.K. U.S. Pooled

Panel A: Financial returns estimated using national accounts
βn,f -0.093*** -0.041 -0.074** 0.506*** -0.118*** -0.027 -0.149*** -0.004
(s.e.) (0.027) (0.026) (0.034) (0.062) (0.025) (0.031) (0.047) (0.015)

βn,b 1.156*** 0.847*** 1.104*** 0.459*** 0.901*** 0.900*** 0.981*** 0.877***
(s.e.) (0.061) (0.052) (0.059) (0.100) (0.041) (0.056) (0.070) (0.027)

R2 0.718 0.662 0.765 0.470 0.786 0.698 0.603 0.572

Panel B: Projection of financial returns from panel A on market returns
βn,f -0.147** -0.344*** -0.069 -0.215** -0.226*** -0.098 -0.196 -0.172***
(s.e.) (0.081) (0.071) (0.062) (0.111) (0.063) (0.052) (0.113) (0.031)

βn,b 1.221*** 1.130*** 1.093*** 0.998*** 1.028*** 0.998*** 1.037*** 1.051***
(s.e.) (0.102) (0.079) (0.078) (0.166) (0.074) (0.081) (0.119) (0.039)

R2 0.702 0.703 0.759 0.251 0.773 0.703 0.585 0.584

Panel C: Financial returns based on equity returns
βn,f -0.109*** -0.053*** 0.014 -0.125*** -0.076*** -0.028 -0.099** -0.080***
(s.e.) (0.043) (0.020) (0.033) (0.023) (0.026) (0.026) (0.049) (0.012)

βn,b 1.287*** 1.032*** 1.168*** 1.240*** 0.375*** 0.995*** 0.926*** 0.952***
(s.e.) (0.079) (0.044) (0.058) (0.058) (0.053) (0.055) (0.071) (0.025)

R2 0.678 0.805 0.762 0.751 0.256 0.726 0.571 0.600

Panel D: Nonfinancial returns using bond returns discounting: r̃ = rb

βn,f -0.148*** -0.289*** -0.100 -0.590*** -0.259*** -0.079 -0.298*** -0.245***
(s.e.) (0.074) (0.083) (0.071) (0.120) (0.060) (0.061) (0.095) (0.032)

βn,b 1.076*** 0.951*** 0.917*** 1.076*** 1.073*** 0.981*** 1.046*** 1.012***
(s.e.) (0.096) (0.100) (0.085) (0.171) (0.074) (0.106) (0.099) (0.041)

R2 0.634 0.459 0.612 0.212 0.732 0.457 0.577 0.451

Panel E: Nonfinancial returns estimated using Lustig and Nieuwerburgh (2008)
βn,f -0.172*** -0.218*** -0.122*** -0.204*** -0.216*** -0.199*** -0.179*** -0.191***
(s.e.) (0.042) (0.037) (0.052) (0.037) (0.037) (0.028) (0.040) (0.014)

βn,b 1.084*** 1.141*** 0.985*** 1.163*** 1.165*** 1.113*** 1.124*** 1.116***
(s.e.) (0.055) (0.044) (0.063) (0.053) (0.046) (0.048) (0.041) (0.018)

R2 0.836 0.884 0.765 0.814 0.906 0.815 0.920 0.853
Obs. 153 153 153 153 153 153 153 1071

Table 6: Loadings on nonfinancial returns for alternative measure of returns: r̂ni,t =

βin,br̂
b
i,t + βin,f r̂

f
i,t + vi,t. Standard errors are in parenthesis. (***) (resp (**)) indicates sig-

nificance at the 1% level (resp. 5%). Last column reports pooled fixed effect estimates.
Constants are not reported. Sample: 1970:2 to 2008:3.
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Canada France Germany Italy Japan U.K. U.S.

Implied Equity (S) under alternative estimation methods
Baseline (Market Cap Weights) 5.13 7.30 5.67 3.30 15.71 12.35 50.53
Benchmark estimates 70.73 132.95 28.71 224.93 70.08 57.18 101.66
National Accounts 45.54 27.57 44.34 -191.01 64.94 33.08 81.77
Projection of financial returns 51.19 137.32 32.70 79.24 86.95 58.09 91.05
Equity returns 48.26 28.93 1.99 57.33 39.62 31.96 70.30
Bond returns discounting 57.43 121.10 47.52 240.61 100.76 53.90 109.01
Method of Lustig et al (2008) 67.46 88.67 58.63 84.81 86.32 102.79 86.39

Data for (S) (2000-2008) 85.60 71.40 55.40 59.50 84.30 65.20 83.20

Implied Bond (b) under alternative estimation methods
Benchmark estimates -49.27 -40.37 -37.26 -54.48 -23.49 -32.56 -19.57
National Accounts -18.43 -29.79 -17.49 -50.01 -26.99 -20.56 -13.11
Projection of financial returns -45.32 -40.56 -38.34 -29.40 -26.85 -33.84 -18.31
Equity returns -52.67 -34.02 -44.87 -51.26 16.39 -32.07 -13.71
Bond returns discounting -35.04 -28.27 -25.68 -37.27 -30.77 -35.86 -17.99
Method of Lustig et al (2008) -36.71 -41.62 -31.52 -44.69 -37.10 -43.78 -21.61

Data for (b) (2000-2004) 9.30 9.90 8.90 -2.70 -12.70 -16.40 -10.90

Table 7: Implied Portfolio Equity (S) and bond (b) position for G7 countries under alterna-
tive methods to compute financial and non-financial returns. Calculations are done under
the assumption that δ = 0.19 and σ = 2. (S) refers to the percentage of domestic stocks held
by domestic residents (data for (S) are averaged over the period 2000-2008). (b) refers to the
net domestic currency exposure of bond portfolios (as a % of GDP). Data for (b) are com-
puted from Lane and Shambaugh (2010) and refers to the average between net debt assets
in domestic currency and net debt liabilities in foreign currency as a % of GDP (averaged
over 2000-2004): b = bHH−bHF

2
.
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Figure 1: Relative nonfinancial income (left) [ –] and real exchange rate [-o-] (100 in 2001Q1,
right), G7 countries, 1970:1-2008:3. Data Sources: Global Financial Database, OECD Quar-
terly National Accounts and UN National Account Statistics. Authors’ calculations.
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Figure 2: Innovations to returns on nonfinancial wealth rnt+1 − Etr
n
t+1, and nonfinancial

income growth ∆w, United States, 1970:1-2008:3.
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Figure 3: Innovations to returns on financial wealth. Compustat: weighted average of equity
and corporate bond returns using share of debt in total assets measured from Compustat;
NIPA: innovation to financial return constructed using equation (34); Projected: regresses
NIPA returns on equity and corporate bond returns; Equity: S&P-500 Total Return Index.
United States, 1970:1-2008:3.

39



Appendices

A Theoretical Derivations

A.1 Optimal portfolios in the benchmark model

We use Jonesian hats (x̂ ≡ log(x/x̄)) to denote the log-deviation of a variable x from its mean
value x̄. Variables x without country indices denotes difference across countries: x̂ = x̂H − x̂F . We
denote ∆x for first-differences : ∆x̂ = x̂1 − x̂0.

We assume that countries are symmetric ex-ante, that is E−1yi,t = ȳ. However, as of time
0, countries can have different expected growth rates. That is, we allow E0yi,1 to differ across
countries. Appendix (A.4) considers the case of ex-ante asymmetries in sizes.

We apply a similar method to Devereux and Sutherland (2011) (see also Tille and van Wincoop
(2010)) to characterize equilibrium portfolios. This method relies on deriving:

1. First-order approximation for non-portfolio equations,

2. Second-order approximation of the Euler equations.

Non-portfolio equation. In our generic model of Section 2, there is only one non-portfolio
equation, the relative budget constraint. Taking the difference between Home and Foreign budget
constraints (4) and using the asset market clearing conditions implies:

X0 =dn0 +
∑
j

(2SHj,0 − 1) dfj,0 + 2
∑
j

(SHj,0 − SHj,1) pjS (A.1a)

− 2
∑
j

pjBBHj,1 + 2
∑
j

dbj,0BHj,0

X1 =dn1 +
∑
j

(2SHj,1 − 1) dfj,1 + 2
∑
j

BHj,1d
b
j,1 (A.1b)

Denote (S,B) the optimal holdings of stocks and bonds in the perfectly symmetric equilibrium, i.e.
the case considered in the main text where S = Sii,t and B = Bii,t. Because we allow for differences
in output growth (as of time 0), we can write the optimal stock and bond holdings as Sii,t = S and

Bii,0 = B, Bii,1 = B(1 + B̂i). B̂i denotes the portfolio rebalancing component of the bond portfolio
due to intertemporal smoothing between period 0 and 1. Note that with fully symmetric country,
as in Section 2, countries have no incentives for reblancing their portfolio, i.e B̂i = 0.53

Log-linearizing (A.1a) and (A.1b) and neglecting second-order terms, yields (using the steady-
state share of non financial income 1− δ = d̄nt /X̄t):

X̂0 = (1− δ) d̂n0 + (2S − 1) δd̂f0 + 2
(
b̂H − b̂F

)
bpB + 2b

(
d̂b0 − pB p̂B

)
X̂1 = (1− δ) d̂n1 + (2S − 1) δd̂f1 + 2bd̂b1 + 2

(
b̂H − b̂F

)
d̂b1︸ ︷︷ ︸

2nd order≈0

53This intertemporal smoothing component could also be implemented through equity holdings. Contrary
to the zero-order portfolio, at this order of approximation the rebalancing portfolio B̂ is not unique. At this
order of approximation, only the change in the net foreign asset position (and not its composition) is pinned
down.
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where pS and pB denotes stocks and bond prices in the symmetric ex-ante equilibrium and b = B/X
denotes the ratio of bond holdings over aggregate expenditure.

Taking the difference between period t = 1 and t = 0 and introducing the relative stochastic
discount factor M =MH/MF , with Mi = ξ (Pi,0/Pi,1) (Ci,1/Ci,0)−σ, we obtain:(

1− 1

σ

)
∆Q̂− 1

σ
M̂ = (1− δ)∆d̂n + δ (2S − 1) ∆d̂f + 2b

(
∆d̂b − pB p̂B

)
− 2b̂bpB (A.3)

where b̂ =
(
b̂H − b̂F

)
is the intertemporal smoothing term between t = 0 and t = 1.

Portfolio equations. Let us now turn to the second-order approximation of the portfolio equa-
tions. The Euler equations for asset returns in country i ∈ {H,F} and asset type k ∈ {f, b} from
country j ∈ {H,F} is:

E0

[
MiR

k
j

]
= 1

Taking differences across country for each asset type k ∈ {f, b}, we obtain:

E0

[
(MH −MF )

(
RfH −R

f
F

)]
= E0

[
(MH −MF )

(
RbH −RbF

)]
= 0

The second-order approximation of this expression yields:

E
[
M̂ R̂i

]
= 0 for i ∈ {f, b} (A.4)

The optimal portfolio is a vector
(
S, b, b̂

)
such that the first order of the non-portfolio condition

(A.3) and the second-order portfolio conditions (A.4) are satisfied.

Locally complete markets. Note that, if markets are (locally) complete, we are looking for a

portfolio
(
S, b, b̂

)
such that the following risk-sharing condition holds:

M̂ = −σ∆Ĉ −∆Q̂ = 0. (A.5)

Such a portfolio trivially satisfies the two (second-order) Euler equation approximations (A.4).

Let us assume that it is possible to find a portfolio such that markets are locally complete. Note
that this also implies ∆X̂ = (1− 1/σ)∆Q̂.

Using Eq. (A.3) and Eq. (A.5), the zero-order portfolio (S, b) must be such that the following

equation holds for any (first-order approximation) of the returns innovations R̂j for j = {n, f, b}:

(1− 1/σ)
(

∆Q̂− E0∆Q̂
)

= (1− δ)R̂n + δ (2S − 1) R̂f + 2bR̂b (A.6)

The rebalancing portfolio b̂ makes sure that Eq. (A.3) holds in expectations together with

E0M̂ = 0:(
1− 1

σ

)
E0∆Q̂ = (1− δ)E0∆d̂n + δ (2S − 1)E0∆d̂f + 2bE0∆d̂b − pB

(
p̂B + b̂

)
(A.7)
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The rebalancing portfolio b̂ only affects the expected component: in other words, deviations form
the zero-order bond portfolio will be used for intertemporal smoothing and will be such that:

2
(
p̂B + b̂

)
bpB =

[
(1− δ)E0∆d̂n + δ (2S − 1)E0∆d̂f + 2bE0∆d̂b −

(
1− 1

σ

)
E0∆Q̂

]
(A.8)

The zero-order portfolio (S, b) is the one used for risk-sharing across states of nature. The key
question is wether one can verify (A.6) in all states of nature. To answer this question, write

relative returns R̂j and the innovation to the real exchange rate ∆Q̂− E0∆Q̂ as a (log-linearized)
function of a vector of structural shocks ε̂ of dimension k × 1:54

R̂j = vj′ε̂, j = f, b, n; and ∆Q̂− E0∆Q̂ = vq′ε̂, (A.9)

where the vectors v are also of dimension k × 1.
The portfolio restrictions encoded in (A.6) can be rewritten as:

V

(
δ (2S − 1)

2b

)
= (1− 1/σ) vq − (1− δ) vn, (A.10)

where V =
(
vf ,vb

)
is the matrix of loadings for equities and bonds. Because we have two instru-

ments (S and b), markets are locally complete if we have at most two sources of risk: k ≤ 2. This
is our Spanning Condition.

Spanning Condition: The spanning condition holds when k ≤ 2.

The second condition for the portfolio to be unique and determined is that k = 2 and that the
matrix V is invertible.

Rank Condition: The rank condition for the portfolio to be uniquely determined is k = 2 and
det V 6= 0.

The Rank Condition is equivalent to assuming that equity and bond excess returns, R̂f and
R̂b, are not perfectly correlated (as well cross-country returns within an asset class). In that case,
the unique equilibrium portfolio (S∗; b∗) is determined as follows:(

δ (2S∗ − 1)
2b∗

)
=V−1 [(1− 1/σ) vq − (1− δ) vn]

Note that, by identifying appropriately the coefficients of vectors V−1vq and V−1vn, one can easily
show that this last expression is equivalent to:(

δ (2S∗ − 1)
2b∗

)
=

(
(1− 1/σ)βQ,f − (1− δ)βn,f
(1− 1/σ)βQ,b − (1− δ)βn,b

)
Where the hedge ratios βi,j are uniquely defined when the rank and spanning conditions are satis-
fied, and such that: {

∆Q̂− E0∆Q̂ ≡ βQ,bR̂
b + βQ,f R̂

f

R̂n ≡ βn,bR̂
b + βn,f R̂

f

54Without lack of generality, we assume that the structural shocks ε̂ are not perfectly correlated.
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This ends the proof of Property 1 when markets are locally complete.

Incomplete markets. First note that the rebalancing portfolio b̂ is the same as in Eq. (A.8),

such that E0M̂ = 0. As a consequence, the zero-order portfolio (S, b) is such that the non-expected
component of Eq. (A.3) holds:

(1− 1/σ)
(

∆Q̂− E0∆Q̂
)
− 1

σ

(
M̂ − E0M̂

)
= (1− δ)R̂n + δ (2S − 1) R̂f + 2bR̂b (A.11)

Markets are not complete (even locally) when k > 2 (i.e. there are more shocks than assets). This
implies that the risk-sharing condition (A.5) cannot be verified in all states. However, the equilib-
rium portfolio still has the same expression as in Property 1, as long as a similar Rank Condition
is satisfied.

Rank Condition: the equilibrium portfolio under (locally) incomplete markets (k > 2) is uniquely
determined as long the following rank condition is satisfied: rank(V) = 2, where V = (vf ,vb) and

R̂j = vj′ ε̂ for j ∈ {f, b}.

This rank condition ensures that R̂f and R̂b are not perfectly correlated. In that case, one
can always span the vector of structural shocks ε̂ on the following basis (R̂f , R̂b, ε̌1..., ε̌k−2) with

E0(ε̌′s R̂
i) = 0 for s = {1; ...; k − 2} and i = {f, b}.

Let us rewrite the risk factors in this transformed basis of innovations (with ε̌ the (k − 2) × 1
vector of innovations ε̌s for s = {1; ...; k − 2}):{

∆Q̂− E0∆Q̂ ≡ βQ,bR̂
b + βQ,f R̂

f + v̌q′ε̌

R̂n ≡ βn,bR̂
b + βn,f R̂

f + v̌n′ε̌

Note that this expression is equivalent to Eq. (10) with uQ = v̌q′ε̌ and un = v̌n′ε̌.

The projection of Eq. (A.11) on returns innovations R̂i for i = {f, b}, using the portfolio-
equation (Eq. (A.4)) gives:

(1− 1/σ)βQ,b = (1− δ)βn,b + 2b

(1− 1/σ)βQ,f = (1− δ)βn,f + δ (2S − 1)

Such a portfolio implies, by construction, 1
σ

(
M̂ − E0M̂

)
= (1−1/σ)v̌q′ε̌−(1−δ)v̌n′ε̌. This insures

that the portfolio-equation (A.4) holds and that (A.11) holds in all states.55

Thus, this last expression gives the unique equilibrium portfolio as long as the Rank condition
is verified. This ends the proof of Property 1 when markets are incomplete.

55Note that, by construction, E0(ε̌′s R̂
i) = 0 for s = {1; ...; k − 2} and i = {f, b}—or equivalently, the

stochastic discount factor is only correlated with uninsurable risks.
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A.2 Closing the model: optimal portfolios with endowment and
redistributive shocks

Bonds and equity portfolios. We use the Devereux and Sutherland (2011) approach to char-
acterize the optimal equity and bond positions. To do so, we use the first-order approximations of
the non-portfolio equations (see reduced-form of the model below) and the second order approxi-
mation of the Euler equations. This pins down a unique equilibrium portfolio. In this appendix, we
implement the solution method in a slightly more general model than the one developed in Section
3: asset returns can be driven by structural shocks of dimension higher or equal to two. We do so
to show that our derivations do not rely on the locally complete markets assumption of Section 3.

Non portfolio equations. In the general equilibrium of that section, there is an additional non-
portfolio equation, which is derived from the optimal intratemporal condition for the allocation
of consumption across goods and the market clearing condition in goods markets (equation (18)).
The log-linear first-order approximation yields:

ŷt =
[
−φ+ (2a− 1)2(φ− 1)

]
q̂t + (2a− 1)X̂t (A.12)

Taking first differences, we obtain a system of two non portfolio equations:

• Intratemporal allocation across goods:

∆ŷ = −φ∆q̂ + (2a− 1)[∆X̂ − (1− φ)∆Q̂] (A.13)

• Budget constraint:

∆X̂ − E0∆X̂ = (1− δ)R̂n + δ (2S − 1) R̂f + 2bR̂b

Using a more general expressions of returns than in Section 3, we can express the returns on
equities, bonds and nonfinancial wealth as follows:

R̂f = ∆x̂− E0∆x̂ + γ ′f ε̂

R̂b = (2a− 1) (∆q̂ − E0∆q̂) + γ ′bε̂

R̂n = ∆x̂− E0∆x̂ + γ ′nε̂

, (A.14)

where ε̂ is a N-dimensional vector of shocks and γi for i = {b, f, n} is a N × 1 vector that controls
the impact of ε̂ on assets returns and non-financial wealth. ∆x̂ − E0∆x̂ denotes innovations on
(relative) income growth. In Section 3, ε̂ is unidimensional and equal to δ̂−E0δ̂ so that the loadings

γi satisfy:
{
γf ; γb; γn

}
=
{

1; 0;− δ
1−δ

}
.

Portfolio equations. Due to symmetry, we can write the Euler equations in relative terms as follows
for asset i = {f, b}:

E0(M Ri) = 0 for i = {f, b} (A.15)

where M is the difference between stochastic discount factor across countries. The second-order
approximation of Euler equations is thus:

E
[
M̂ R̂i

]
= 0 for i = f, b (A.16)

Solution method. Using the budget constraint, the intratemporal condition can be rewritten as
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follows, where ξ̂ = δ (2S − 1) R̂f +2bR̂b = ( δ (2S − 1) , 2b )
(R̂f
R̂b

)
denotes portfolio excess returns:

∆q̂ − E0∆q̂ = qy (∆ŷ − E0∆ŷ) + q′εε̂+ qξ ξ̂

where qy, qε and qξ are derived by substituting portfolio excess returns and the budget constraints
into the equilibrium goods market condition.56 If we rewrite the reduced form model using Devereux
and Sutherland (2011)’s notations, we get the following expression for the vector excess returns:(

R̂f

R̂b

)
= R1ξ̂ + R2

(
∆ŷ − E0∆ŷ

ε̂

)

where R2 =

(
1 + qy q′ε + γ ′f

(2a− 1)qy (2a− 1)q′ε + γ′b

)
and R1 =

(
qξ

(2a− 1)qξ

)
.

The first-order approximation of the difference between stochastic discount factor across coun-
tries gives:

−M̂
σ

= ∆X̂ − E0∆X̂ + (1/σ − 1)(2a− 1) (∆q̂ − E0∆q̂) = D1ξ̂ + D2

(
∆ŷ − E0∆ŷ

ε̂

)
where D1 = 1 + [(1− δ) + (2a− 1)(1/σ − 1)]qξ is a scalar and
and D2 = ( (1− δ) (1 + qy) + (2a− 1)(1/σ − 1)qy (2a− 1)(1/σ − 1)q′ε + (1− δ)γ′n ) is a 1×N+1
vector.

Following Devereux and Sutherland (2011), we define R̃2 = R1H̃+R2 and D̃2 = D1H̃ + D2

with H̃ = (1− ( δ (2S − 1) 2b )R1)−1 ( δ (2S − 1) 2b )R2.
Then using the second-order approximation of the Euler equation, we get the following quadratic

equation:
R̃2ΣD̃′2 = 0

where Σ is the (N + 1) × (N + 1) variance-covariance matrix of the vector of innovations (∆ŷ −
E0∆ŷ, ε̂)′. Rearranging terms, this equation simplifies into the following expression for portfolios:(

δ (2S − 1)
2b

)
=
(
R2ΣD′2R′1 −D1R2ΣR′2

)−1 R2ΣD′2

where we assume that the 2 × 2 matrix [R2ΣD′2R′1 −D1R2ΣR′2] is invertible (Rank condition).
When this rank condition is satisfied, the equilibrium portfolio is unique and bond and equity
excess returns are not collinear. There also exists a unique decomposition such that:

∆Q̂− E0∆Q̂ ≡ βQ,bR̂b + βQ,f R̂
f + uQ

R̂n ≡ βn,bR̂b + βn,f R̂
f + un

where ui for i = {Q,n} is orthogonal to R̂j for j = {b, f} : E0

[
uiR̂

j
]

= 0. This decomposition

allows to rewrite the portfolio as in Section 2, using Property 1.

Equity only portfolios. Using a similar solution technique, one can be the equilibrium portfolio

56qy =
[φ(1−(2a−1)2)+(2a−1)2]−1[(2a−1)(1−δ)−1]
1−[φ(1−(2a−1)2)+(2a−1)2]−1(2a−1)(1−δ)

, q′ε =
[φ(1−(2a−1)2)+(2a−1)2]−1(2a−1)(1−δ)

1−[φ(1−(2a−1)2)+(2a−1)2]−1(2a−1)(1−δ)
γ′n and qξ =

[φ(1−(2a−1)2)+(2a−1)2]−1(2a−1)(1−δ)
1−[φ(1−(2a−1)2)+(2a−1)2]−1(2a−1)(1−δ)

.
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in a model with equities only.

Non portfolio equations.

• Intratemporal allocation across goods:

∆ŷ = −φ∆q̂ + (2a− 1)[∆X̂ − (1− φ)∆Q̂]

• Budget constraint:
∆X̂ − E0∆X̂ = (1− δ)R̂n + δ (2S − 1) R̂f

Portfolio equations. We can write Euler equations in relative terms as follows for asset f :

E0(MRf ) = 0 (A.17)

We use similar expressions as Eq. (A.14) to express returns on financial and non-financial wealth.

In the example developed in the core of the paper, ε̂ is unidimensional and equal to δ̂ − E0δ̂ and{
γf ; γn

}
=
{

1;− δ
1−δ

}
.

Solution method: Using the budget constraint, the intratemporal condition can be rewritten as
follows, where we introduce portfolio excess returns ξ̂ = δ (2S − 1) R̂f :

∆q̂ − E0∆q̂ = quy (∆ŷ − E0∆ŷ) + qu′ε ε̂+ quξ ξ̂

where quy , qu′ε and quξ are simply derived from the non-portfolio equations where δ (2S − 1) R̂f has

been substituted by ξ̂. If we rewrite the reduced form model (Eq. (A.14)) using Devereux and
Sutherland (2011)’s notations, we get the following expression for the vector excess returns:

R̂f = Ru1 ξ̂ + Ru2
(

∆ŷ − E0∆ŷ

ε̂

)
where Ru2 =

(
1 + quy qu′ε + γ ′f

)
and R1 = quξ .

The first-order approximation of the difference between stochastic discount factor across coun-
tries gives:

−M̂
σ

= Du
1 ξ̂ + Du

2

(
∆ŷ − E0∆ŷ

ε̂

)
where Du

1 = 1 + [(1− δ) + (2a− 1)(1/σ − 1)]quξ is a scalar and

and Du
2 =

(
(1− δ)

(
1 + quy

)
+ (2a− 1)(1/σ − 1)quy (2a− 1)(1/σ − 1)qu′ε + (1− δ)γ′n

)
is a 1 ×

N + 1 vector.
Following Devereux and Sutherland (2011), we define R̃u2 = Ru1H̃u+Ru2 and D̃u

2 = Du
1 H̃u+Du

2

with H̃u= (1− (δ (2Su − 1))Ru1)−1 (δ (2Su − 1))Ru2 .
Then using the second-order approximation of the Euler equation, we get the following quadratic

equation:
R̃u2ΣD̃u′

2 = 0

where Σ is the (N+1) x (N+1) variance-covariance matrix of the vector of innovations
(

∆ŷ−E0∆ŷ
ε̂

)
.

Rearranging terms, this equation simplifies into the following expression for portfolios:

δ (2Su − 1) =
(
Ru2ΣDu′

2 Ru′1 −Du
1Ru2ΣRu′2

)−1 Ru2ΣDu′
2
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where we assume that the 2× 2 matrix [Ru2ΣDu′
2 Ru′1 −Du

1Ru2ΣRu′2 ] is invertible (Rank condition
— which states that equity returns across countries are not collinear). When this rank condition
is satisfied, the equilibrium equity portfolio is unique. There also exists a unique decomposition
such that:

∆Q̂− E0∆Q̂ ≡ βuQ,f R̂f + uuQ

R̂n ≡ βun,f R̂f + uun

where ui for i = {Q,n} is orthogonal to R̂j for j = {b, f} : E0

[
uiR̂

j
]

= 0. This decomposition

allows to rewrite the portfolio as in Section 2.
In the example of the main text (with ε̂ unidimensional and equal to δ̂ − E0δ̂ and

{
γf ; γn

}
={

1;− δ
1−δ

}
), we have:

quy = − 1− (2a− 1)(1− δ)
φ+ (1− φ)(2a− 1)2 − (2a− 1)(1− δ)

quε =
(2a− 1)δ

φ+ (1− φ)(2a− 1)2 − (2a− 1)(1− δ)

quξ =
(2a− 1)

φ+ (1− φ)(2a− 1)2 − (2a− 1)(1− δ)

together with: Ru2 =
(

1 + quy 1 + quε
)

and R1 = quξ ; Du
1 = 1 + [(1− δ) + (2a− 1)(1/σ− 1)]quξ and

Du
2 =

(
(1− δ)

(
1 + quy

)
+ (2a− 1)(1/σ − 1)quy (2a− 1)(1/σ − 1)qu′ε − δ

)
.

Equity only portfolio when υ2 → 0. One can verify that when υ2 → 0, only the terms in y remain as

Σ→
(
σ2
y 0

0 0

)
. Keeping only the y terms, to compute (Ru2ΣDu′

2 Ru′1 −Du
1Ru2ΣRu′2 )−1 and Ru2ΣDu′

2 ,

we make use of:

1 + quy =
(φ− 1) (1− (2a− 1)2)

φ+ (1− φ)(2a− 1)2 − (2a− 1)(1− δ)

(2a− 1)(1/σ − 1)quy = −(2a− 1)(1/σ − 1) (1− (2a− 1)(1− δ))
φ+ (1− φ)(2a− 1)2 − (2a− 1)(1− δ)

(2a− 1)(1/σ − 1)quξ =
(2a− 1)2(1/σ − 1)

φ+ (1− φ)(2a− 1)2 − (2a− 1)(1− δ)

Thus, δ (2S − 1) = (Ru2ΣDu′
2 Ru′1 −Du

1Ru2ΣRu′2 )−1 Ru2ΣDu′
2 can be rewritten as—noticing that de-

nominator (Ru2ΣDu′
2 Ru′1 −Du

1Ru2ΣRu′2 )−1 and numerator Ru2ΣDu′
2 are both multiplied by the term:

(1+quy )σ2
y

φ+(1−φ)(2a−1)2−(2a−1)(1−δ) :

δ (2Su(0)− 1) = −(1− δ) (φ− 1) (1− (2a− 1)2)− (2a− 1)(1/σ − 1) (1− (2a− 1)(1− δ))
(φ− 1) (1− (2a− 1)2) + (2a− 1)2(1/σ − 1)

= −(1− δ) (λ− 1)− (2a− 1)(1/σ − 1)

λ− 1

= − (1− δ) + (1− 1/σ)
2a− 1

1− λ
.
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This is the expression shown in the main text. One can easily verify by identification with the
portfolio formula that βun,f = 1 and βuQ,f = 2a−1

1−λ .

A.3 Optimal portfolios with equity and corporate debt [Not for
publication]

Consider the benchmark model of Section 2 under locally complete markets.57

Assume that firms in country i issue a given amount of corporate debt. We call Di,t the debt
payments that have to be paid in period t in country i (we preserve symmetry across countries,
i.e Di,0 = D and E0(Di,1) = D but results regarding equity home bias do not depend on this
assumption).58

We call SD the (zero-order) share of corporate debt in country i held by country i. Market
clearing in the corporate debt market implies that country j holds a share (1− SD).

In this environment, Modigliani-Miller theorem holds. This means that equilibrium firms values
are independent of the amount of debt issued. In particular, the log-linearized expressions for
returns are unchanged and so are the loadings βij under locally complete markets:{

∆Q̂− E0∆Q̂ ≡ βQ,bR̂
b + βQ,f R̂

f

R̂n ≡ βn,bR̂
b + βn,f R̂

f

Note that R̂f is not relative equity returns anymore (if Di,1 non-zero in some states) but relative
financial returns, i.e cross country difference in the sum of the returns on equity and returns on
corporate debt.

Using similar notations, we introduce dfi,t the financial income in country i (sum of equity

dividends
(
dfi,t −Di,t

)
and corporate debt payments Di,t).

Ignoring portfolio rebalancing terms (assuming perfect symmetry ex-ante and that countries
start with the optimal steady state portfolio as in our benchmark case), the budget constraint at
date t in country i can be written as:

Xi,t = dni,t + S
(
dfi,t −Di,t

)
+ (1− S)

(
dfj,t −Dj,t

)
+ SDDi,t + (1− SD)Dj,t +B(dbi,t − dbj,t)

(A.18)

= dni,t + Sdfi,t + (1− S)dfj,t + (SD − S)Di,t + (S − SD)Dj,t +Bdbt (A.19)

Taking the difference across countries and the first-difference across time gives in log-linearized
terms a similar equation to (A.6) once we project on innovations (under locally-complete markets):

(1− 1

σ
)
(

∆Q̂− E0∆Q̂
)

= δ (2S − 1) R̂
f

+(1− δ)R̂n + (SD − S) ∆D̂ +2bR̂
b

If we find a portfolio (S, SD, b) such that the previous equation holds for arbitrary realizations of
the shock innovations (or equivalent asset returns under the Rank condition), markets are locally-
complete and such a portfolio is the equilibrium one.

The portfolio (S, SD, b) = (S∗, S∗, b∗) obviously satisfies this condition and is unique, where
(S∗, b∗) are the ones derived in Section (2) (see equations (12a) and (12b)). The intuition for

57Note that our results also hold in the general equilibrium model of Section 3.
58We assume that debt issued is bounded above such that at period t equity payments are strictly positive:(
dfi,t −Di,t

)
> 0 for all states.
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the result is quite straightforward: the presence of corporate debt only redistributes income from
shareholder to debt holders in some states (without any impact on total financial returns). By
holding corporate debt and equity in the same proportion, investors insulate their consumption
expenditures from this redistribution.

We can conclude that the presence of corporate leaves the degree of home bias unchanged as
well as the expression in terms of factor loadings once we compute the aggregate financial returns
R̂f (equity returns plus corporate debt returns). We also obtain that the (equilibrium) home bias
in corporate debt is equal to the one in equity. One assumption is key for this result: returns
on financial incomes hatRf are independent on the capital structure (i.e Modigliani-Miller holds)
which makes the projection on the risk factors (and hence the portfolio) unchanged.

A.4 Derivation of portfolios for countries of different sizes

We extend our benchmark model of Section 2 by log-linearizing around the case where countries
are of different country sizes. We assume that unconditional means of financial and non-financial

incomes, E(dji,t), j = f, n and i = H,F , are not equal across countries. Calling total income

(financial and non financial) in country i, xi,t = dni,t + dfi,t, the size of countries is measured by the

unconditional mean of xi,t, E(xH,t) = xH and E(xF,t) = xF . We solve the model when countries
start in period zero from their unconditional mean of income xi, focusing on the non-expected
part of the budget constraints. We denote by ωi the relative size of country i: ωi = xi

xi+xj
, with

ωH + ωF = 1.

Keeping the same notations as in the case of our benchmark model with locally complete
markets, projection of the log-linearized budget constraints on shocks innovations in country i
gives (using market clearing conditions in the asset market) for i 6= j:

∆X̂i − E0∆X̂i = (1− δ)R̂ni + δSiiR̂
f
i +

ωj
ωi
δ (1− Sjj) R̂fj + biiR̂bi −

ωj
ωi
bjjR̂bj

where R̂bi denotes the return on the bond of country i, bii denotes bonds i held by country i

normalized by the unconditional expenditures Xi of country i (in the benchmark model Xi = X
and bii = bii = b).59

Taking the difference across countries and usingM̂ = 0, we get:

(1− 1

σ
)
(

∆Q̂− E0∆Q̂
)

= (1− δ)R̂ni + δR̂fi

(
SHH −

ωH
ωF

(1− SHH)

)
− δR̂fj

(
SFF −

ωF
ωH

(1− SFF )

)
+

(
1 +

ωH
ωF

)
bHHR̂bH −

(
1 +

ωF
ωH

)
bFF R̂bF

Rewrite the equilibrium portfolios as:

Sii = S = ωi+Ωf (1− ωi)
bii = b = Ωb(1− ωi)

59Note that the steady-state shares of financial and non-financial income are assumed to be constant across
countries, only the unconditional mean of total income is different across countries.
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Ωf and Ωb are measures of the size of portfolio biases. Then, keeping the same notations:

(1− 1

σ
)
(

∆Q̂− E0∆Q̂
)

= (1− δ)R̂n + ΩfδR̂f+ΩbR̂
b

Assuming the following loadings on R̂n and ∆Q̂ (see main text):

∆Q̂− E0∆Q̂= βQ,bR̂
b + β

Q,f
R̂f

R̂n = βn,bR̂
b+βn,f R̂

f

Projection on R̂n and ∆Q̂ gives Ωf and Ωb :

Ωf = −1− δ
δ

βn,f +
1− 1

σ

δ
βQ,f

Ωb =

(
1− 1

σ

)
βQ,b − (1− δ)βn,b

Using S = ωi+Ωf (1− ωi) and b = Ωb(1− ωi) gives equilibrium portfolios for countries of different
sizes: {

b∗ = (1− ωi)
(
1− 1

σ

)
βQ,b − (1− ωi) (1− δ)βn,b

S∗ = ωi + (1− ωi)
(

1− 1

σ

δ βQ,f − 1−δ
δ βn,f

)
A.5 A dynamic portfolio model with complete markets

Set-up. We use a dynamic continuous time portfolio model à la Merton (see Merton (1990) and

Adler and Dumas (1983)). Investors have a CRRA utility flow c1−σt

1−σ at date t. We consider two

countries i = {H,F}. Countries are ex-ante symmetric except in terms of their initial aggregate

wealth Wit. Aggregate wealth of country i at date t is the sum of financial wealth W f
it and non-

financial wealth Wn
it :

Wit = W f
it +Wn

it

Each country issues two assets, one bond and one claim on financial wealth. We denote by k = {f, b}
the asset class. Asset ik denotes the asset of country i = {H,F} of class k = {f, b}. A riskless asset
in zero-net supply is traded internationally with riskless rate r, paying in units of the numeraire
good. All returns are expressed in the numeraire good. Each asset ik has iid log-normal returns
(with common drift across countries):

Rkit = µkdt+ σki dz
k
i

The return on non financial wealth Rnit in country i = {H,F} is iid log-normal with common
drift across countries:

Rnit = µndt+ σni dz
n
i

The change in the price index of country i = {H,F}, denoted πit is iid log-normal with common
drift across countries:

πit = µπdt+ σπi dz
π
i

Complete markets assumption. The two sources of local risk, returns on human wealth and
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inflation, are perfectly spanned by the set of risky securities:

Rnit = λndt+
∑

j={H,F}

∑
k={f,b}

βnijkR
k
jt (A.20)

πit = λπdt+
∑

j={H,F}

∑
k={f,b}

βπijkR
k
jt (A.21)

with, for r = {n, π}, λr =

(
µr −

∑
j={H,F}

∑
k={f,b}

βrijkµ
k

)
and σridz

r
i =

∑
j={H,F}

∑
k={f,b}

βrijkσ
k
jdz

k
j .

Note that, following to our notations, the change in the real exchange rate for countryH is ∆ lnQt =
πHt − πFt.
Portfolio choice. The total share of aggregate wealth αijk invested by country i = {H,F} in
security j is:

αijk,t =
1

σ
θjk +

(
1− 1

σ

)
βπijk − βnijk

(
1−

W f
it

Wit

)
(A.22)

where θjk is the market price of risk of security jk defined as the corresponding line of Ω−1[µ− r]
with Ω the (4× 4) matrix of variance-covariance of returns and [µ− r] the vector of excess returns
of assets jk.

The proof of this result is immediate using Adler and Dumas (1983) as the share of aggregate

wealth (financial and non financial, αijk + βnijk

(
1− W f

it

Wit

)
) invested in asset jk has to be equal to

1
σθjk +

(
1− 1

σ

)
βπijk. The second term of Eq. (A.22) is the hedge portfolio of inflation risk and the

last term is the hedge portfolio of non-financial wealth risk.
Rewriting Eq. (A.22) by taking the difference within an asset class k for a country i (i 6= j)

gives:

(αiik,t − αijk,t) =

(
1− 1

σ

)(
βπiik − βπijk

)
−
(
βniik − βnijk

)(
1−

W f
it

Wit

)
(A.23)

assuming that, due to symmetry, assets within an asset class k = {f, b} have the same market price
of risk (θik − θjk = 0).
Rewrite the projection of returns on non-financial wealth (Eq. (A.20)) as follows:

Rnt =
∑

j={H,F}

∑
k={b,f}

(
βnHjk − βnFjk

)
Rkjt

where Rst = RsHt −RsF t for s = {n, f, b} is the cross-country differential in returns.
Symmetry across countries implies: βnHHk − βnFHk = βnFFk − βnHFk = βn,k. Thus,

Rnt =
∑

k={b,f}

βn,kR
k
t .

Similarly, using Eq. (A.21):

∆ lnQt =
∑

k={b,f}

βQ,kR
k
t
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with βπHHk − βπFHk = βπFFk − βπHFk = βQ,k. Eq. (A.23) can be rewritten as:

(αiik,t − αijk,t) =

(
1− 1

σ

)
βQ,k − βn,k

(
1−

W f
it

Wit

)
(A.24)

Asset market clearing. The market clearing condition in the asset market is for i 6= j:

αiik,tWit + αjik,tWjt = Mk
it

with Mk
it the total market value of security ik at date t. Equivalently:

αijk,t =
Mk
it

Wjt
− αiik,t

Wit

Wjt

with αiik,t = αjjk,t and αjik,t = αijk,t (symmetry).

Equilibrium portfolios. Using market clearing, Eq. (A.24) leads to (abstracting from time
indices): (

αiik
1− ωi

− δ

1− ωi

(
Ski

W f
H +W f

F

))
=

(
1− 1

σ

)
βQ,k − βn,k (1− δ)

where δ =
(
W f
i

Wi

)
=

W f
j

Wj
and ωi = Wi

WH+WF
= ωi,0 (complete markets). Using M b

i = 0 (bonds in net

zero supply) and calling bi the share of wealth invested in domestic bonds and Si = αiik
δ the share

of financial wealth invested in domestic claims on financial wealth.

bi = (1− ωi)
[(

1− 1

σ

)
βQ,b − βn,b (1− δ)

]

Si =

 Ski∑
i={H,F}

Ski

+

(
1− ωi
δ

)[(
1− 1

σ

)
βQ,f − βn,f (1− δ)

]

These expressions are identical to our static two-period model if the relative stock market size of

country i is equal to the relative share of country i in aggregate wealth ωi =

(
Ski /

∑
i={H,F}

Ski

)
.

B Empirical Appendix

B.1 Data description. [Not for publication]

All data are quarterly, between 1970-Q1 and 2008-Q3.

• Government bond returns: gross return on 3-month domestic Treasury-bill, from Global
Financial Database.

• Nominal exchange rates: from Global Financial Database.

• Consumer Price Index (CPI): from OECD Main Economic Indicators
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• Gross Domestic Product: OECD Quarterly National Accounts, Seasonally adjusted, except
as noted. Notes: Germany: data for West Germany before 1991:Q1. Japan: data before
1979 from 1999 OECD Statistical compendium and seasonally adjusted with X-12 method;
Italy: data before 1979 from the 1999 OECD Statistical Compendium (seasonally adjusted).

• Compensation of Employees: OECD Quarterly National Accounts, Seasonally adjusted.except
as noted. Notes: Japan: Japan: data before 1998 from 1999 OECD Statistical compendium
and seasonally adjusted with X-12 method. Italy: data before 1979 from the 1999 OECD Sta-
tistical Compendium (seasonally adjusted). France: data before 1977 from the 1999 OECD
Statistical Compendium (seasonally adjusted). Germany: data for West Germany before
1991:Q1.

• Mixed Income:

– US: fraction of net operating surplus plus mixed income from OECD Quarterly National
Accounts. Fraction calculated as the share of mixed income in (mixed income + gross
operating surplus - consumption of fixed capital) annual data from UN National Income
System of National Accounts. Ratio after 2007 is the average for 2004-2006.

– UK: fraction of net operating surplus + mixed income. Fraction calculated as the share
of net mixed income in (net mixed income + gross operating surplus - consumption
of fixed capital); annual data from UN National Income System of National Accounts
1987-1994. Annual data from 2007 National Accounts Statistics Part III, pp836 for
1995-2005. Ratio after 2005 is the average for 2003-2005. Ratio before 1987 is the
average for 1987-1989.

– Japan: fraction of net operating surplus + mixed income. Fraction calculated as the
share of net mixed income in (net mixed income + gross operating surplus - consumption
of fixed capital); annual data from UN National Income System of National Accounts
1980-2003. Ratio after 2003 is the average for 2001-2003. Ratio before 1980 is the
average for 1980-1982.

– Italy: fraction of net operating surplus + mixed income. Fraction calculated as the share
of net mixed income in (net mixed income + gross operating surplus - consumption of
fixed capital); annual data from UN National Income System of National Accounts
1980-2003. Ratio after 2003 is the average for 2001-2003. Ratio before 1980 is the
average for 1980-1982.

– Germany: fraction of net operating surplus + mixed income. Uses data from West
Germany before 1991:Q1. Fraction calculated as the share of net mixed income in (net
mixed income + gross operating surplus - consumption of fixed capital); annual data
from UN National Income System of National Accounts 1991-2002. Ratio after 2002 is
the average for 2000-2002. Ratio before 1991 is the average for 1991-1993.

– France: fraction of net operating surplus + mixed income. Fraction calculated as the
share of net mixed income in (net mixed income + gross operating surplus - consumption
of fixed capital); annual data from UN National Income System of National Accounts
1978-2003. Ratio after 2003 is the average for 2001-2003. Ratio before 1978 is the
average for 1978-1980.

– Canada: fraction of net operating surplus + mixed income. Fraction calculated as the
share of net mixed income in (net mixed income + gross operating surplus - consumption
of fixed capital); annual data from UN National Income System of National Accounts
1970-2005. Ratio for 2005-2007 from StatCan. Data after 2007 is the average for 2005-
2007.
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• Net Operating Surplus and mixed income: from OECD Quarterly National Accounts, sea-
sonally adjusted, except as noted below.

– France: before 1978 GDP minus compensation of employees, depreciation and indirect
taxes.

– Italy: before 1980 GDP minus compensation of employees, depreciation and indirect
taxes.

– Japan: Before 1998:Q3, net operating surplus + mixed income from OECD Statistical
Compendium quarterly data, seasonally adjusted with X-12 routine. After 1998:Q3,
defined as GDP minus compensation of employees, depreciation and indirect taxes.

– United Kingdom: before 1988, GDP minus Compensation of employees, Depreciation
and Indirect Taxes.

• Depreciation: OECD Quarterly National Accounts, Consumption of Fixed Capital. Season-
ally adjusted, except as noted below.

– France: Before 1978, calculated as fraction of GDP, where the fraction is computed
annually as the ratio of consumption of fixed capital to GDP from 1999 OECD Annual
National Accounts.

– Germany: Data for West Germany before 1991:Q1.

– Italy: Before 1980, calculated as fraction of GDP, where the fraction is computed
annually as the ratio of consumption of fixed capital to GDP from 1999 OECD Annual
National Accounts.

– Japan: Before 1998:Q2 from the 1999 OECD Statistical Compendium. After 1998,
calculated as fraction of GDP, where the fraction is computed annually as the ratio of
consumption of fixed capital to GDP from United Nations system of national accounts
annual data.

– United Kingdom: Before 1988, calculated as fraction of GDP, where the fraction is
computed annually as the ratio of consumption of fixed capital to GDP from 1999
OECD Annual National Accounts.

• Indirect Taxes: Taxes less Subsidies on Production and Imports from OECD Quarterly
National Accounts, seasonally adjusted, except as noted below.

– France: before 1978, from 1999 OECD Statistical Compendium.

– Germany: before 1991 uses data for West Germany.

– Italy: before 1980, calculated as fraction of GDP, where the fraction is computed annu-
ally as the ratio of indirect taxes to GDP from 1999 OECD Annual National Accounts.

– Japan: before 1998:Q2, from OECD Statistical Compendium quarterly data, seasonally
adjusted with X-12 routine. After 1998:Q2 calculated as fraction of GDP, where the
fraction is computed annually as the ratio of indirect taxes to GDP from United Nations
system of national accounts annual data.

• Gross Fixed Capital Formation: from OECD Quarterly National Accounts, seasonally ad-
justed, except as noted below.

– France: before 1978, from 1999 OECD Statistical Compendium.
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– Germany: before 1991 uses data for West Germany

– Italy: before 1980, from 1999 OECD Statistical Compendium.

– Japan: before 1994 from ESRI National Accounts Office Total Fixed Investment.

• Residential Investment: OECD Quarterly National Accounts, seasonally adjusted, except as
noted below.

– Canada: before 1980, assumed to be 25% of total investment.

– France: before 1978, from 1999 OECD Statistical Compendium.

– Germany: before 1991 data for West Germany

– Italy: before 1980, constructed backwards from the growth rate of total construction,
from 1999 OECD Statistical Compendium.

– Japan: before 1994, from ESRI National Accounts Office Residential Investment.

– United States: before 1990, from 1999 OECD Statistical Compendium.

• Consumption: OECD Quarterly National Accounts, seasonally adjusted, except as noted
below.

– France: before 1978, from 1999 OECD Statistical Compendium.

– Germany: before 1991 data for West Germany.

– Italy: before 1980, from 1999 OECD Statistical Compendium.

– Japan: before 1980, from OECD Statistical Compendium quarterly data, seasonally
adjusted with X-12 routine.

• Equity Returns: Global Financial Database Total Return index.

• Corporate Bond Returns: quarterly holding return on corporate bond, converted into US
dollar, assuming a 10 year maturity. except for Italy and Japan where we use the quar-
terly holding return on government bonds. Yields on corporate debt from Global Financial
Database. Yields on government bonds from IFS (line 61).

• Compustat Weights: For each country and each available year, we construct the share of
corporate debt as 1 minus the share of stockholder’s equity in total assets for non-financial
firms listed in Compustat North America (for the US and Canada) and Compustat Global
(for France, Germany, Italy, Japan and the UK). Data start in 1970 for Canada and the US,
1987 for Japan and the UK, 1988 for Germany and France and 1989 for Italy.

B.2 Empirical Issues

B.2.1 VAR diagnostic tests

We specify our Vector Auto Regression in first differences for lnw and ln k (see section 4.2.2). This
is empirically valid given that:

• w and k are integrated of order 1;

• w and k are not co-integrated.
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We verify that these conditions are satisfied as follows (detailed results available upon request):

• we conduct Augmented Dickey-Fuller tests of unit roots for both variables. We cannot reject
the null of a unit root, except for lnw in Japan.

• We perform Johansen tests of co-integration for (w, k). We find no cointegration relationship,
except for Germany.

• Since theory suggests that the only correct co-integration vector is w − k (see Baxter and
Jermann (1997)), we directly test for stationarity for this variable. Using Augmented Dickey-
Fuller tests, we cannot reject the null of a unit root, except for Germany (with a p-value of
5.3%).

We conclude from these diagnostic tests that a VAR in first difference is appropriate. Although
theory suggests that w−k should be stationary, this variable is extremely persistent even over long
periods of time, suggesting that the correcting mechanism does not play an important role at least
over the period we consider.

B.2.2 An alternative measure of the returns to non-financial wealth

Lustig and Nieuwerburgh (2008) propose an alternative approach to measuring the returns to
human wealth. The key identification assumption consists in assuming that consumption choices
are consistent with the choices of a representative agent faced with financial and non-financial
wealth. In other words, aggregate consumption satisfies the Euler equation of the representative
household when using the total return to the agent’s wealth. Since this return is a combination of
the return to financial wealth (observable) and non-financial wealth (non-observable), one can then
back out the innovation to the return on non-financial wealth.

The Lustig and Nieuwerburgh (2008) method starts with the two equations below:

ct+1 − Etct+1 = (Et+1 − Et)
∞∑
j=0

ρjrmt+1+j − (Et+1 − Et)
∞∑
j=1

ρj∆ct+1+j (B.1a)

Et∆ct+1 = µm + σ−1Etr
m
t+1 (B.1b)

where the first equation is a log-linearization of the intertemporal budget constraint following
Campbell (1993), under the assumption that ct − vmt is stationary, where ct is log-consumption,
vmt is log-total wealth and rmt = ln (Rmt ) is the return on total wealth: V m

t+1 = Rmt+1 (V m
t − Ct) .

ρ is related to the steady state consumption wealth ratio as ρ = 1 − exp (c− vm) . Crucially, V m
t

includes non-financial wealth. The second equation is the log-linearized form of the Euler equation
that characterizes the slope of the consumption profile. σ is the coefficient of relative risk aversion
(inverse of the intertemporal elasticity of substitution) and µm captures all variance-covariance
terms, assumed constant.

Substituting the Euler equation into the budget constraint, one obtains an expression for the
innovation to consumption:

ct+1 − Etct+1 = rmt+1 − Etrmt+1 +
(
1− σ−1

)
(Et+1 − Et)

∞∑
j=1

ρjrmt+1+j (B.2)

The next step consists in writing the (log) return on total wealth as :

rmt+1 = (1− κt) rft+1 + κtr
n
t+1 (B.3)
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where rft+1 is the return on financial wealth and rnt+1 the return on non-financial wealth and κt is
the share of nonfinancial wealth in total wealth (possibly time-varying). Following the usual steps,
the innovation to the return on nonfinancial wealth satisfies:

rnt+1 − Etrnt+1 = (Et+1 − Et)
∞∑
j=0

ρj∆wt+1+j − (Et+1 − Et)
∞∑
j=1

ρjrnt+1+j (B.4)

The central idea is to recover (Et+1 − Et) rnt+1+j from the consumption innovations in (B.2). Sub-

stituting (B.3) and (B.4) into (B.2), and assuming constant portfolio shares (κt = κ), we obtain:

ct+1 − Etct+1 = (1− κ)
(
rft+1 − Etr

f
t+1

)
+
(
1− σ−1

)
(1− κ) (Et+1 − Et)

∞∑
j=1

ρjrft+1+j (B.5)

+ κ (Et+1 − Et)
∞∑
j=0

ρj∆wt+1+j − κσ−1 (Et+1 − Et)
∞∑
j=1

ρjrnt+1+j .

Assuming that financial returns are observed (as in the benchmark case), we can invert this
expression to obtain an expression for the innovation to nonfinancial returns that does not involve
expected future nonfinancial returns:60

rnt+1 − Etrnt+1 = (1− σ) (Et+1 − Et)
∞∑
j=0

ρj∆wt+1+j − σ
(
κ−1 − 1

) (
rft+1 − Etr

f
t+1

)
(B.6)

− (σ − 1)
(
κ−1 − 1

)
(Et+1 − Et)

∞∑
j=1

ρjrft+1+j + σκ−1 (ct+1 − Etct+1) .

One can estimate the innovation to non-financial wealth in (B.6) using a Vector Autoregression

of the form zt+1= Azt+εt+1 with z′t =
(

∆wt,∆kt,∆ct, r
f
t ,∆ lnQt,x

′
t

)
as:

rnt+1 − Etrnt+1 = (1− σ) e′∆w (I− ρA)−1 εt+1

−
(
κ−1 − 1

)
e′rf
[
σ + (σ − 1) ρA (I− ρA)−1

]
εt+1 (B.7)

+ σκ−1e′∆cεt+1

We implement this VAR estimation in section 4.6 under the assumption that σ = 1 and κ = 1−δ.
In that case, the expression for the innovations simplifies substantially:

rnt+1 − Etrnt+1 = −
(
κ−1 − 1

)
e′rf εt+1 + κ−1e′∆cεt+1. (B.8)

60A similar derivation can be obtained in the case where financial returns are not observed, using equation
(34).
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