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Reaction Timesand Predictionsin Sequence L earning: A Comparison

IngmarVisser and MaartjeE.J.Raijmakersand PeterC.M. Molenaat
{op_vi sser, op.rai j maker s, op_nol enaar }@racnai | . psy. uva. nl
DevelopmentaProcesseResearclGroup
Departmenbf PsychologyUniversity of Amsterdam
Roetersstra&t5,1018WB Amsterdam
TheNetherlands

Abstract

In the simplerecurrentnetwork(SRN) model,proposedy
CleeremangandMcClelland (1991)to describemplicit se-
guencelearning,the distinction betweenreactiontime and
predictionof thenext trial is somevhatblurred. Thatis, the
reactiontime of the networkis takento beinverselypropor
tional to the activation value of the correspondingnode. In
a predictiontask the predictionwould also be directly de-
rived from the actiities of the outputnodes. In orderto
investigatethe differencebetweenability to predictfollow-
ing stimuli andreactiontimes, we study implicit sequence
learningin a similar vein asdoneby CleeremansndMc-
Clelland(1991),usingaslightly lesscomplex grammarthan
they did. In additionwe asksubjectdo guesswvherethe next
stimuluswill be atrandomlychosertrials duringthelearn-
ing process Resultsshav a directcorrespondencketween
fastreactiontimesandcorrectpredictions.

I ntroduction

Implicit learninghasbeenstudiedfor overthirty yearsstart-
ing with Reber(1967). Only recentlyattentionhasbeen
given to modeling this kind of learning behaior in de-
tail, mainly usingneuralnetworks. Specificallysimplere-
currentnetworkshave beenusedsuccessfullyby Cleere-
mansand McClelland (1991)to model subjects’behaior
on learningsequencethat are generatedy a finite state
automatonin fact the very sameautomatorthatwasused
by Reber(1967).

Mary differentparadigmshave beendevelopedfor stu-
dying implicit learningbehaior. One characteristidhat
dividesthoseparadigmss thewayin whichthey assesthe
possessiomf implicit knowledge. In this papertwo such
measuresreactiontimes and predictions,are studied. In
implicit learningresearctthe sequentiaimplicit learning
paradigmhasbecomeincreasinglypopularand with that
the useof reactiontime asthe primary measuref perfor
mance(seefor exampleNissen& Bullemer, 1987;Cleere-
mans& McClelland,1991;Seger, 1997). We usedanaug-
mentedsequencéearningparadigmin whichadirectcom-
parisonbetweerreactiontimesand predictionswas possi-
ble.

The authorswish to thank their studentsSandervan Duyn,
WandaToxopeus,Stijn Gooskens Thijs de Jongh& Edibe Tali
for valuablehelpin settingup this experimentandcollectingand
analyzingthedata.

Sequence learning

Oneof the morerecentparadigmgo studyimplicit learn-
ing is so-calledsequencdearning. Subjectsare typically
offered sequencesf stimuli that are formed accordingto

some(formal) rule(s). The only thing subjectshave to do
is presssomekey thatcorrespondso the currentstimulus.
For examplewhenthe stimuli arejust zerosandones,the
currentstimuluscould be formed by taking the xor of the
precedingtwo stimuli. It is now interestingto seeif sub-
jectsimplicitly learnthisrule. Thisis measuredby compar

ing RTs on correcttrials, thatis trials on which the current
stimulusis in fact the xor of the two precedingtrials, with

RTsonincorrecttrials,wherethe currentstimulusis notthe
xor of thetwo precedingrials.

Cleeremansand McClelland (1991), using this para-
digm, hadtheir subjectdearnanendlessequencef stim-
uli genratedy afinite stategrammar To determineheef-
fectsof implicit learning,they assesserkactiontimes,and
foundtheseto be decreasin@ssubjectsgot moretraining.
Similar studieshave beendonewhere jnsteacdbf measuring
reactiontimes, performancewas assessetdy askingsub-
jectsto predictthenext stimulusafterhaving seeraninitial
seggmentof astring. However, few studieshave investigated
theexactrelationbetweerRTs andpredictionperformance
in implicit learning. The presenstudyaimsto gaininsight
into this relation by analyzingRTs and predictionperfor
mancesimultaneously

In this context the work of CleeremansindMcClelland
(1991)on the SRN modelfor implicit learning,is of inter-
est. They usethe SRN modelto predictRT performance
of subjectduy takingthereactiontime of the networkto be
inverselyproportionalto the actiity of the outputunit cor-
respondingwith the correctrespons& The activity of the
‘correct’ outputunit canthusbe interpretedasa measure
of anticipationof the position of the next stimulus. This
anticipationin turn canbe usedto makepredictionsof the
next stimulusaswell; in this casethe positioncorrespond-
ing with the output unit with the highestactvity hasthe
highestprobability of beingpredicted.This meanghatthe

2Note that this doesnt leave the possibility for incorrectre-
sponses.This is not a big problem,however, sincetypically in-
correctresponsearevery seldombecaus®f thesimplicity of the
task.



SRNmodelpredictsa nggative relationbetweerprediction
performanceand RTs, with the RTs decreasings predic-
tion performanceyetsbetter The aim of the presenstudy
is to testthis hypothesisempirically.

Experiment

To assessherelationbetweerRTs and predictionof stim-
uli directlywe did asequencéarningexperimentin which
the standardseriesof RT trials wasinterspersedvith pre-
dictiontrials atwhich subjectshadto guesswherethe next
stimulus would come. A similar procedureis proposed
by Jimenez,Mendez,and Cleeremang1996) which they
namedthe continuousgenerationtask. The main differ-
encebetweenthis procedureand othergeneratiortasksis
that no feedbackis givenon the correctnes®f the predic-
tion; rather after subjectshave madetheir predictionthe
next stimulusof the sequenceés presentedvith the same
response-stimulumterval asbetweenconsecutie RT tri-
als.

Subjectsveregivenafour-choiceRT task,consistingof
atotal of 4800trials dividedin twenty blocksof 240trials
each.Theblocksweresplitinto two sessionshatwerepre-
sentedon two consecutie days. Unknown to subjectshe
sequencef stimuli followed a patternthat was generated
using the finite stategrammarwhich is describedbelow.
Becauseof the rathercomplex structureof the sequences
generatedwvith sucha grammarsubjectswere presented
with 4800trials. Thereweretwo typesof stimuli: RT trials
and predictiontrials. At the RT trials subjectswereasked
merelyto reproducehecurrentstimulusby pressingheap-
propriatekey. At the predictiontrials subjectswereasked
to predictthenext stimulusby pressingheappropriatekey.
Eachblock of 240trials wasdividedinto subblockf four
types: grammaticalRT, randomRT, grammaticalpredic-
tion andrandomprediction. The switchfrom onesubblock
to thenext wasnot markedso subjectavereunavareof the
existenceof thesesubblocks. The sequencef stimuli in
therandomsubblocksvasunrestrictecbut for the fact that
no two consecutie stimuli couldbethesamewhichwould
leadto undesiredspeed-umf responsedueto priming.

The randomtrials are usedas a control condition, ac-
comodatingfor possibleeffects of motor training, aswell
asfor additionaleffectsof subjectgyainingimplicit knowl-
edgeof the grammar This designprovides the possibil-
ity to assesshe effectsof implicit learning,by comparing
RTs and predictionperformancean the grammaticaltrials
to thoseobtainedin the randomtrials. Note that this is
a within subjectsdesign,so that eachsubjectis his own
control group(i.e., the performancenf eachsubjecton the
grammaticatrialsis comparedvith thatsamesubjectsper
formanceon randomtrials). The predictionof aninversely
proportionalrelation betweenRTs and prediction perfor
manceasderivedfrom theSRNmodel(Cleereman& Mc-
Clelland,1991),translatesnto threestatisticalhypotheses.
Thefirstis aninteractioneffect of conditionandtime onthe
RTs: If implicit learningoccurs RTs shoulddecreasenore
for the grammaticalrials thanfor the randomtrials. The

seconds aninteractioneffect of conditionandtime on pre-
diction performanceover time, predictionshouldimprove
for thegrammaticatrials, but not for therandomtrials. Fi-
nally, ontrials leadingto correctpredictionsRTs

M ethod

Subjects Twenty-foursubjectsundegraduateattheDe-

partmentof Psychologyof the University of Amsterdam,
participatedn this experiment. They recevved both course
creditsand mong for participation. On top of that they

couldearnbonusse$or fastandaccurateesponses.

Procedure At the startof the experimentsubjectswere
told thatin this taskboth accurag andspeedwereimpor-

tant. The experimentstartedwith two smallblocksof trials

thatwere not recordedo familiarize the subjectswith the
task. Eachblock consistedof four subblocks:20 random
RT trials, 100grammaticaRT trials,100grammaticapre-
diction trials and 20 randompredictiontrials. In the RT

subblocksonly reproductionof the stimuli was askedof

the subjectsjn the predictionsubblocksRT trials werein-

terspersedvith predictiontrials. At theendan extra block
wasaddedn which theorderof therandomandgrammat-
ical trials wasreversedo testwhetherthe orderof the sub-
blockscouldinfluencetheresults.

To enablea moredirect comparisorbetweenprediction
andreactiontimes,an extra block wasaddedin which the
seriesof trials for boththe RT subblockandthe prediction
block wasidentical. In this way it is possibleto directly
comparethe RT on a giventrial with the predictionmade
onthevery sametrial.

Stimulus material Thesequencef stimuli in thegram-
maticalsubblockavasgeneratedrom thefinite stategram-
marin figure 1. Sequenceareproducedby this grammar
in thefollowing manner:

1. Startin state#1 and randomly chooseone of the arcs
leaving that statewhile noting the letter corresponding
to thefollowedarc.

2. In the next staterepeatthis processf choosingan arc
andnotingthe correspondindetter

3. The procesendswhenstate#7 is reachedandthe pro-
cessstartsover again to createstrings of unbounded
length.

Display As canbe seenin figure 1 the alphabetof the
grammaiconsistf four letters. Thelettersweretranslated
into screerpositionsasshown in figure 2. In the grammat-
ical RT subblocksubjectswere exposedto 100 trials; in
eachtrial the x-symbolappearedh oneof thequadrant®f
the computerdisplayandthe subjectshadto pressthe cor
respondingkey on the numericalkeypadon the keyboard.
The keys 1,2,4and5 on the numericalkeypad were used
to ensurahatthespatialconfigurationof theresponsdeys
matchedhe spatialconfigurationof the stimuluspositions



Figurel: Finite stateautomatorusedto generatestringsfor
sequencéearningexperiments A stringis formedby start-
ing in state#1 andthenrandomlychoosingoneof thearcs
leaving that statemeanwhilenoting the letter correspond-
ing to thatarc. Continuesteppingfrom stateto stateuntil
the end state#7 is reached;from therethe processstarts
over againfrom state# 1.

on the display Subjectswere instructedto hold their in-
dex finger over the middle of the four keys and pressthe
appropriatekey only with theindex finger.

Exit interviews All subjectavereaskeda seriesof ques-
tionsaftertheexperimentwascompletedo assessvhether
subjectshadacquiredary explicit knowledgeof the gram-
maticalsequence.

Results

The dataof one of the subjectswaswas not includedin
the analysesbecausahe subjecthad too mary errorsin
three consecutie blocks due to misplacingthe index fin-
gerover thenumericalkeypad. Comparisorof thelasttwo
blocksrevealedthatthe orderof the subblocksrandombe-
fore grammaticalor vice versa,did not significantlyinflu-
encereactiontimes.

RT trials GrammaticaRTs decreasedrom 404.7ms at
the beginning of the experimentto 342.6 ms at the end;
randomRTs decreasedrom 414.2msto 370.3ms. The
meanRTs aredisplayedn Figure3.

Thefirst hypothesigredictsthat RTs decreasenorefor
the grammaticaltrials than for the randomtrials. In or-
der to testthis hypothesis RTs were averagedover sub-
jects and over two consecutie blocks. A repeatedmea-
suresANOVA with two within factors,block (10 levels) x
grammaticality(2 levels),indicatesa significantinteraction
betweengrammaticalityand blocks: as predicted,gram-
maticaltrial RTs decreasednore over time thandid ran-
domtrial RTs, F'(9,198) = 3.87;p < 0.001. Theanalysis
alsoyieldedsignificantmaineffectsfor grammaticalityand
training: grammaticalrial RTs were significantly smaller
thanthe randomtrial RTs, F(1,22) = 59.49;p < 0.001,
and RTs becamefasterover blocks for both grammatical

A B
X

D C

A B
”? 2

D C
? 2

Figure2: Thetop panelshovsthe computerisplayfor the
RT trials. Subjectshave to pressthe key correspondingo

the quadrantof the screenwherethe x is shovn. In the
bottom panelthe screenlay-out for a predictiontrial: all

guadranthiave aquestionrmarkandsubjectdhave to choose
whatever letterthey think will occurnext. Thelettersin the

top-left cornerof the quadrantsvere not partof the actual
display

andrandomtrials, F(3.78,198) = 25.75; p < 0.001 with
Greenhouse-Geisseorrectionfor non-homogeneousri-
ances.

Prediction trials The percentageof correctpredictions
in grammaticabubblockdgncreasedrom 33.6% atthebe-
ginningto 52.2% atthe endof the experiment.The corre-
spondingpercentagefor therandompredictionsare30and
34 % respectiely. The proportionsof correctresponsesn
predictiongor bothrandamandgrammaticakubblocksare
displayedn Figure4.

The second hypothesisstatesthat prediction perfor
manceshouldimprove over time for the grammaticaltri-
als, but not for the randomtrials. In line with this pre-
diction, a significantinteractionbetweerblocks(time) and
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Figure3: Meanreactiontimesfor grammaticakndrandom
trials. Meansare averagedover two consecutre blocks,
N = 23.

grammaticalitywasfound, F'(7.9, 198) = 2.25;p = 0.027,
shaving that the grammaticalpredictionsdid shov more
improvementover time thandid the randompredictions.
More specifically there was no improvementover time
for therandomtrial predictionswhenanalyzedseperately
F(1,228) = 0.845; p = 0.359, aswasto beexpected.
Prediction and RT trials: comparison To compareper
formanceon predictionand RT trials directly we addeda
block of trials in which the stringsusedfor the RT trials
andfor the predictiontrials wereidentical. Table 1 shows
themeanRTs for correctlyandincorrectlypredicteditems
in this addedblock of trials. An anosawith onewithin fac-
tor (correctvs. incorrect)confirmsthat correctpredictions
correspondo fastRTs, F'(1,22) = 6.44; p = 0.019.

Tablel: Meanreactiontimesfor correctlyandincorrectly
predictedrials.

Prediction mean sd
correct 360.96 49.64
incorrect 389.97 30.30

Exit interviews Subjectswere askedwhetherthey no-
ticed arything particularin the sequenceof stimuli. Al-
though somesubjectsfelt there was some‘regularity’ in
the segeuncenoneof the subjectscould specify this, ex-
ceptfor threesubjectsthat said that the subsequence B
occuredratherfrequently This is the subsequence the
grammamvhich correspondsvith theloop betweerthetwo
top right nodesn Figurel.

0.6
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Figure 4. Proportioncorrect predictionsof grammatical
andrandompredictiontrials, N = 23.

Discussion

Theresultsshav thatimplicit learningoccurs:subjectgive
fasterresponsesn grammaticatrials thanon randomtri-
als andthis effect becomedarger towardsthe end of the
experiment.Secondly subjectggraduallygetbetterat pre-
dicting following stimuli dueto training aswell. Thirdly,
asexpected smallerRTs corresponavith a betterability to
predictthefollowing stimulus.

M odels of sequence learning

CleeremanandMcClelland(1991)appliedthe SRNto im-
plicit sequencéearning. The SRN successfullydescribes
subjects’growing sensitvity to dependencieletweersuc-
cessie stimuli. The succes®f the SRN modelis dueto
its ability to capturethe ‘statisticalconstraintsinherentin
the sequenceof stimuli. The SRN model also correctly
predicts,at leastin a qualitative manney the inverserela-
tion betweerRTs andthe proportionof correctpredictions
aswe have shovn above. A drawbackof the SRN model
is thatit is not very well suitedfor describingindividual
differences.The SRN model construesmplicit sequence
learningin subjectsas statisticallearning. Subjectsfirst
grow sensitveto first orderfrequencie®f symbolsthento
secondorderfreqeunciesthatis bigramfrequenciesthen
third orderfrequencieset cetera.Individual differencesn
boththelearningprocessandthe resultingimplicit knowl-
edgebase thatis knowledgeof frequeng constraintsare
not broughtout by themodel. Below we will describehow
hiddenMarkov modelscanbe usedto modelindividual be-
havior of subjects.

The hidden Markov mode

HiddenMarkov models henceforttHMMs, arealsocalled
stochastidinite automatasincethey areequialentto finite



automatavherethe arcsbetweenstateshave probabilities
correspondindgo them. Theonly restrictionis thattheprob-
abilities on the arcsleaving a particularstateshouldsum
to one. This resemblancdo finite automatais the reason
for exploring the possibility of applyingHMMs to implicit
learning.Beforepresentingesultsof fitting HMMs to sub-
jects’ datawe give a shortintroductionto HMMs.

HiddenMarkov modelshave mainly beenusedin speech
recognition applicationssuch as Schmidbauer Casacu-
berta,Castro,andHegerl (1993), Chienand Wang (1997)
althoughrecentlymore psychologicallyorientedapplica-
tionshave comeup aswell suchasin actionlearning(Yang,
Xu, & Chen,1997). ThemainreasorthatHMMs areused
in speechiecognitionis thatthey areespiallywell suitedfor
capturingtemporaldependencies a seriesof utterances
whichthenhelpsin identifying phonemesThis featurecan
be usedto modelthetemporaldependenciethatareinher
entin theseriesof stimuli thataretypically usedin implicit
learning.

More formally a HMM consistsof a the following el-
ements(notationsadaptedfrom Rabiner(1989)),alsosee
figure5 for clarification:

1. asetof statesS;, i=1,..., N
2. asetV of obserationsymbolsVy, k =1,... , M

3. amatrix A of transitionprobabilitiesa; ; for moving from
statesS; to statesS;

4. amatrix B of obsenation probabilitiesh; (k) of observ-
ing symbolV;, while beingin stateS;

5. avectorr of initial stateprobabilitiesw; corresponding
to the probability of startingin stateS; att = 1

Theequationglescribingthe dynamicsof themodelareas
follows:

St41 = A St + (et
Oiy1 = B S; + &4,

wheresS; is the hiddenprocessandO; is theobseredpro-

cess;(;+1 andé;y1 are zero meanmartingaleincrement
processescf. Elliott, Aggoun, and Moore (1995, p. 20)

for further details. A hidden Markov processthenis a
Markov processwith multiple indicatorsfor each(hidden)
state.By substitutingS; by its definitionin termsof S; _; in

the definingequationfor 0. it is easilyseenthatin fact
O:4+1 is dependenbn all foregoing obsenationsback to

O;. Hence,atary givenpoint obsenationscandependon

all foregoingobsenations.Thisisin contraswith anormal
Markov modelwherethe next obsenationonly depend®n

thecurrentobsenation.

Char acterizing sequence learning behavior

Fitting ahiddenMarkov modelis in facttheinverseof pro-
ducinga sequencef stimuli from afinite stateautomaton:

Figure5: Representatioof a hiddenMarkov model. This
model producesexactly the samesequenceas the gram-
marwe usedn theexperimentwith equalprobabilities.Se-
guencegregeneratedn thesamemannerasin FSAs: start
in oneof thestateontheleft with letterA or B, thenfollow
the arcsleadingfrom thosestates.A sequencendswhen
oneof theacceptingstateds reachedthatis thetwo states
with the doublecircle aroundthem. From therethe pro-
cesscontinueshy goingto oneof the startingstatesagain.
For the acceptingstatewith theletter D thearcsaredravn
to the startstates.For reasonf clarity the arcsfrom the
acceptingstatewith the C areleft out. The arcsleading
from onestateto the next have probabilitiescorresponding
to themwhich aregivenin thefigurefor someof thearcs.

finding the bestautomatorto describea givensequencef
obsenations.This procedurecanbe appliedto ary kind of
sequencef catgyoricalobsenationsandhencealsoto a se-
guenceof response a sequencéearningexperiment.in
simulationstudiesve have shovn thatin fitting aHMM the
right automatorcanbeinducedfrom the data(Visser Rai-
jmakers,& Molenaar acceptedor publication). Thatis,
having generate@ sequencéom the grammarusedin the
experimentwe foundthe HMM in Figure5 exploratively.

Sequence learning data In the prediction subbblocks
of the experimentsubjectswere presentedwith question
markson the screenat randompointsin the sequencef
stimuli. In betweenthe predictiontrials normal RT trials
werepresentedFor eachsubjecthisresultedn asequence
of responsesonsistingof thetrials thatwerepresentean
thescreerintersperseavith theirown predictionsaboutthe
positionof the next stimulus.

In order to characterizesequenceearning we fitted
HMMs on thesesequencesf responsesTo bring out the
learningwe fitted separateHMMs on the initial andfinal
sgmentsf thesequencef responsesBoth segmentscon-
sistedof 500trials. We expectedto seea risein numberof
hiddenstatesof the modelfrom beginning to end;thatis,



we expectedsubjectsto gradually build a more comple
modelof the grammarunderlyingthe sequencef stimuli.
A risein numberof stateswould reflectsubjects’growing
sensitvity to the structureof the sequence.For two sub-
jectswe indeedfound sucha rise in the numberof states
from two statesat the startof learningto four statesat the
end of learning. Overall however, resultswereinconclu-
sive. This is, we think, mainly dueto the fact thatonly a
small proportionof the seriesof responseshat were ana-
lyzed wereactually producedby the subject. Of the series
of 500 trials thatthe HMMs werefitted on, only 125were
producedby the subjectsthe othersweregeneratedy the
finite stateautomatorandonly reproducedby the subjects.
As aconsequencef all theresponsesnly aquartercould
were usefulin discriminatingbetweenbeginning andend
of thelearningphase.Hencethe low power of the test. In
futureresearchit would beusefulto have longersequences
of freely generatedesponseto which HMMs canbefitted
morereliably.

Conclusion

In sequencdearningboth RTs and predictionhave been
usedasa measureof performance.The resultsof this ex-
perimentshav that when measuredsimultaneouslyit is
possibleto relatedirectly improvementin predictionper
formanceand improvementin RT performanceon gram-
maticaltrials. The directcomparisorshavs whatis to be
expected: fast RTs areindicative of the subjects’level of
anticipationof the next trial and on the samecountresult
in correctpredictions.With this studyit is alsoshavn that
predictionis possibleevenin afairly comple rule system,
thatcannotbeverbalizedby subjects.

The SRN modelhasprovedto be a valuablemodelfor
describingthe learning processesnherentin implicit se-
guencelearning. However the model doesnot seemes-
pecially suitableto describeindividual subjects’behaior.
Therefor we introducedthe hidden Markov model as a
stochasticounterparbf theFSAto characterizéndividual
learningbehaior. SincehiddenMarkov modelsarean ex-
cellentmeansof describingtemporaldenpenciebetween
responseshey arein principle well suitedfor describing
implicit learningbehaior. Our resultswith fitting HMMs
arepromisingin thatwe canreliably estimatethemon the
kind of sequenceshat are generallyusedin implicit se-
guencdearning. It would beinterestingto do experiments
wheresubjectsgeneratdongersequencesf response-
steadof the singlepredictionsthey madein the experiment
describedn this paper
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