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Abstract

In thesimplerecurrentnetwork(SRN)model,proposedby
CleeremansandMcClelland(1991)to describeimplicit se-
quencelearning,the distinctionbetweenreactiontime and
predictionof thenext trial is somewhatblurred.That is, the
reactiontime of thenetworkis takento beinverselypropor-
tional to theactivationvalueof thecorrespondingnode. In
a predictiontask the predictionwould also be directly de-
rived from the activities of the output nodes. In order to
investigatethedifferencebetweenability to predictfollow-
ing stimuli andreactiontimes,we study implicit sequence
learningin a similar vein asdoneby CleeremansandMc-
Clelland(1991),usingaslightly lesscomplex grammarthan
they did. In additionweasksubjectsto guesswherethenext
stimuluswill beat randomlychosentrials duringthelearn-
ing process.Resultsshow a directcorrespondencebetween
fastreactiontimesandcorrectpredictions.

Introduction
Implicit learninghasbeenstudiedfor overthirty yearsstart-
ing with Reber(1967). Only recentlyattentionhasbeen
given to modeling this kind of learning behavior in de-
tail, mainly usingneuralnetworks.Specificallysimplere-
currentnetworkshave beenusedsuccessfullyby Cleere-
mansandMcClelland(1991)to modelsubjects’behavior
on learningsequencesthat are generatedby a finite state
automaton,in fact thevery sameautomatonthatwasused
by Reber(1967).

Many differentparadigmshave beendevelopedfor stu-
dying implicit learningbehavior. One characteristicthat
dividesthoseparadigmsis thewayin which they assessthe
possessionof implicit knowledge. In this papertwo such
measures,reactiontimes andpredictions,arestudied. In
implicit learningresearchthe sequentialimplicit learning
paradigmhasbecomeincreasinglypopularand with that
theuseof reactiontime asthe primarymeasureof perfor-
mance(seefor exampleNissen& Bullemer, 1987;Cleere-
mans& McClelland,1991;Seger, 1997).We usedanaug-
mentedsequencelearningparadigmin whichadirectcom-
parisonbetweenreactiontimesandpredictionswaspossi-
ble.

1The authorswish to thank their studentsSandervan Duyn,
WandaToxopeus,Stijn Gooskens,Thijs de Jongh& EdibeTali
for valuablehelpin settingup this experimentandcollectingand
analyzingthedata.

Sequence learning
Oneof the morerecentparadigmsto studyimplicit learn-
ing is so-calledsequencelearning. Subjectsare typically
offeredsequencesof stimuli that are formedaccordingto
some(formal) rule(s). Theonly thing subjectshave to do
is presssomekey thatcorrespondsto thecurrentstimulus.
For examplewhenthestimuli arejust zerosandones,the
currentstimuluscouldbe formedby taking the xor of the
precedingtwo stimuli. It is now interestingto seeif sub-
jectsimplicitly learnthisrule. This is measuredby compar-
ing RTs on correcttrials, that is trials on which thecurrent
stimulusis in fact thexor of thetwo precedingtrials, with
RTsonincorrecttrials,wherethecurrentstimulusis notthe
xor of thetwo precedingtrials.

Cleeremansand McClelland (1991), using this para-
digm,hadtheir subjectslearnanendlesssequenceof stim-
uli genratedby a finite stategrammar. To determinetheef-
fectsof implicit learning,they assessedreactiontimes,and
foundtheseto bedecreasingassubjectsgot moretraining.
Similarstudieshavebeendonewhere,insteadof measuring
reactiontimes, performancewasassessedby askingsub-
jectsto predictthenext stimulusafterhaving seenaninitial
segmentof astring.However, few studieshave investigated
theexactrelationbetweenRTsandpredictionperformance
in implicit learning.Thepresentstudyaimsto gaininsight
into this relationby analyzingRTs andpredictionperfor-
mancesimultaneously.

In this context thework of CleeremansandMcClelland
(1991)on theSRNmodelfor implicit learning,is of inter-
est. They usethe SRN model to predictRT performance
of subjectsby takingthereactiontimeof thenetworkto be
inverselyproportionalto theactivity of theoutputunit cor-
respondingwith thecorrectresponse2. Theactivity of the
‘correct’ outputunit can thusbe interpretedasa measure
of anticipationof the position of the next stimulus. This
anticipationin turn canbeusedto makepredictionsof the
next stimulusaswell; in this casethepositioncorrespond-
ing with the output unit with the highestactivity hasthe
highestprobabilityof beingpredicted.This meansthatthe

2Note that this doesn’t leave the possibility for incorrectre-
sponses.This is not a big problem,however, sincetypically in-
correctresponsesareveryseldombecauseof thesimplicity of the
task.



SRNmodelpredictsa negativerelationbetweenprediction
performanceandRTs, with the RTs decreasingaspredic-
tion performancegetsbetter. Theaim of thepresentstudy
is to testthishypothesisempirically.

Experiment
To assesstherelationbetweenRTs andpredictionof stim-
uli directlywedidasequencelearningexperimentin which
the standardseriesof RT trials wasinterspersedwith pre-
diction trials atwhich subjectshadto guesswherethenext
stimulus would come. A similar procedureis proposed
by Jimenez,Mendez,andCleeremans(1996) which they
namedthe continuousgenerationtask. The main differ-
encebetweenthis procedureandothergenerationtasksis
thatno feedbackis givenon thecorrectnessof thepredic-
tion; rather, after subjectshave madetheir predictionthe
next stimulusof the sequenceis presentedwith the same
response-stimulusinterval asbetweenconsecutive RT tri-
als.

Subjectsweregivena four-choiceRT task,consistingof
a total of 4800trials dividedin twentyblocksof 240trials
each.Theblocksweresplit into two sessionsthatwerepre-
sentedon two consecutive days. Unknown to subjectsthe
sequenceof stimuli followeda patternthat wasgenerated
using the finite stategrammarwhich is describedbelow.
Becauseof the rathercomplex structureof the sequences
generatedwith such a grammarsubjectswere presented
with 4800trials. Thereweretwo typesof stimuli: RT trials
andpredictiontrials. At the RT trials subjectswereasked
merelyto reproducethecurrentstimulusby pressingtheap-
propriatekey. At thepredictiontrials subjectswereasked
to predictthenext stimulusby pressingtheappropriatekey.
Eachblockof 240trials wasdividedinto subblocksof four
types: grammaticalRT, randomRT, grammaticalpredic-
tion andrandomprediction.Theswitchfrom onesubblock
to thenext wasnotmarkedsosubjectswereunawareof the
existenceof thesesubblocks. The sequenceof stimuli in
therandomsubblockswasunrestrictedbut for thefact that
notwo consecutivestimuli couldbethesame,whichwould
leadto undesiredspeed-upof responsesdueto priming.

The randomtrials are usedas a control condition, ac-
comodatingfor possibleeffectsof motor training,aswell
asfor additionaleffectsof subjectsgainingimplicit knowl-
edgeof the grammar. This designprovides the possibil-
ity to assesstheeffectsof implicit learning,by comparing
RTs andpredictionperformancein the grammaticaltrials
to thoseobtainedin the randomtrials. Note that this is
a within subjectsdesign,so that eachsubjectis his own
controlgroup(i.e., theperformanceof eachsubjecton the
grammaticaltrialsis comparedwith thatsamesubject’sper-
formanceon randomtrials). Thepredictionof aninversely
proportionalrelation betweenRTs and predictionperfor-
mance,asderivedfrom theSRNmodel(Cleeremans& Mc-
Clelland,1991),translatesinto threestatisticalhypotheses.
Thefirst is aninteractioneffectof conditionandtimeonthe
RTs: If implicit learningoccurs,RTsshoulddecreasemore
for the grammaticaltrials thanfor the randomtrials. The

secondis aninteractioneffectof conditionandtimeonpre-
diction performance:over time,predictionshouldimprove
for thegrammaticaltrials,but not for therandomtrials. Fi-
nally, on trials leadingto correctpredictions,RTs

Method
Subjects Twenty-foursubjects,undergraduatesattheDe-
partmentof Psychologyof the University of Amsterdam,
participatedin this experiment.They received bothcourse
creditsand money for participation. On top of that they
couldearnbonussesfor fastandaccurateresponses.

Procedure At the start of the experimentsubjectswere
told that in this taskbothaccuracy andspeedwereimpor-
tant.Theexperimentstartedwith two smallblocksof trials
thatwerenot recordedto familiarize the subjectswith the
task. Eachblock consistedof four subblocks:20 random
RT trials,100grammaticalRT trials,100grammaticalpre-
diction trials and20 randompredictiontrials. In the RT
subblocksonly reproductionof the stimuli was askedof
thesubjects;in thepredictionsubblocksRT trials werein-
terspersedwith predictiontrials. At theendanextra block
wasaddedin which theorderof therandomandgrammat-
ical trials wasreversedto testwhethertheorderof thesub-
blockscouldinfluencetheresults.

To enablea moredirect comparisonbetweenprediction
andreactiontimes,anextra block wasaddedin which the
seriesof trials for boththeRT subblockandtheprediction
block was identical. In this way it is possibleto directly
comparethe RT on a given trial with the predictionmade
on thevery sametrial.

Stimulus material Thesequenceof stimuli in thegram-
maticalsubblockswasgeneratedfrom thefinite stategram-
mar in figure 1. Sequencesareproducedby this grammar
in thefollowing manner:

1. Start in state#1 and randomlychooseone of the arcs
leaving that statewhile noting the letter corresponding
to thefollowedarc.

2. In the next staterepeatthis processof choosingan arc
andnotingthecorrespondingletter

3. Theprocessendswhenstate#7 is reachedandthe pro-
cessstartsover again to createstrings of unbounded
length.

Display As can be seenin figure 1 the alphabetof the
grammarconsistsof four letters.Thelettersweretranslated
into screenpositionsasshown in figure2. In thegrammat-
ical RT subblocksubjectswere exposedto 100 trials; in
eachtrial the � -symbolappearedin oneof thequadrantsof
thecomputerdisplayandthesubjectshadto pressthecor-
respondingkey on thenumericalkeypadon thekeyboard.
The keys 1,2,4and5 on the numericalkeypadwereused
to ensurethatthespatialconfigurationof theresponsekeys
matchedthespatialconfigurationof thestimuluspositions
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Figure1: Finitestateautomatonusedto generatestringsfor
sequencelearningexperiments.A stringis formedby start-
ing in state#1 andthenrandomlychoosingoneof thearcs
leaving that statemeanwhilenoting the letter correspond-
ing to thatarc. Continuesteppingfrom stateto stateuntil
the endstate#7 is reached;from therethe processstarts
over againfrom state# 1.

on the display. Subjectswere instructedto hold their in-
dex finger over the middle of the four keys andpressthe
appropriatekey only with theindex finger.

Exit interviews All subjectswereaskeda seriesof ques-
tionsaftertheexperimentwascompletedto assesswhether
subjectshadacquiredany explicit knowledgeof thegram-
maticalsequence.

Results

The dataof one of the subjectswas was not includedin
the analyses,becausethe subjecthad too many errors in
threeconsecutive blocksdue to misplacingthe index fin-
gerover thenumericalkeypad.Comparisonof thelasttwo
blocksrevealedthattheorderof thesubblocks,randombe-
fore grammaticalor vice versa,did not significantlyinflu-
encereactiontimes.

RT trials GrammaticalRTs decreasedfrom 404.7msat
the beginning of the experimentto 342.6 ms at the end;
randomRTs decreasedfrom 414.2ms to 370.3ms. The
meanRTsaredisplayedin Figure3.

Thefirst hypothesispredictsthatRTs decreasemorefor
the grammaticaltrials than for the randomtrials. In or-
der to test this hypothesis,RTs were averagedover sub-
jects and over two consecutive blocks. A repeatedmea-
suresANOVA with two within factors,block (10 levels) �
grammaticality(2 levels),indicatesasignificantinteraction
betweengrammaticalityand blocks: as predicted,gram-
matical trial RTs decreasedmoreover time thandid ran-
domtrial RTs, �����	��
���
������	��
����������	� ����
 . Theanalysis
alsoyieldedsignificantmaineffectsfor grammaticalityand
training: grammaticaltrial RTs weresignificantlysmaller
thanthe randomtrial RTs, � �!
��#"�"��$�&%���� '(�	���)�*�	� ����
 ,
andRTs becamefasterover blocks for both grammatical
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Figure2: Thetoppanelshowsthecomputerdisplayfor the
RT trials. Subjectshave to pressthekey correspondingto
the quadrantof the screenwherethe � is shown. In the
bottom panelthe screenlay-out for a predictiontrial: all
quadrantshaveaquestionmarkandsubjectshaveto choose
whatever letterthey think will occurnext. Thelettersin the
top-left cornerof thequadrantswerenot partof theactual
display.

andrandomtrials, � ��������
���
���
��+�,"�%�����%	���-�.��������
 with
Greenhouse-Geissercorrectionfor non-homogeneousvari-
ances.

Prediction trials The percentageof correctpredictions
in grammaticalsubblocksincreasedfrom 33.6% at thebe-
ginningto 52.2% at theendof theexperiment.Thecorre-
spondingpercentagesfor therandompredictionsare30and
34 % respectively. Theproportionsof correctresponseson
predictionsfor bothrandamandgrammaticalsubblocksare
displayedin Figure4.

The secondhypothesisstates that prediction perfor-
manceshouldimprove over time for the grammaticaltri-
als, but not for the randomtrials. In line with this pre-
diction,a significantinteractionbetweenblocks(time) and
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Figure3: Meanreactiontimesfor grammaticalandrandom
trials. Meansare averagedover two consecutive blocks,/ ��"�� .

grammaticalitywasfound, � �������	��
���
��0�1"���"�%����2���	� ��"�� ,
showing that the grammaticalpredictionsdid show more
improvementover time than did the randompredictions.
More specifically, there was no improvementover time
for the randomtrial predictionswhenanalyzedseperately,
���3
��#"�"�
��4�1����
5'6%����2���	����%�� , aswasto beexpected.
Prediction and RT trials: comparison To compareper-
formanceon predictionandRT trials directly we addeda
block of trials in which the stringsusedfor the RT trials
andfor thepredictiontrials wereidentical. Table1 shows
themeanRTs for correctlyandincorrectlypredicteditems
in this addedblockof trials. An anova with onewithin fac-
tor (correctvs. incorrect)confirmsthat correctpredictions
correspondto fastRTs, ���3
��#"�"��7��8	� '�'9���2�1������
�� .

Table1: Meanreactiontimesfor correctlyandincorrectly
predictedtrials.

Prediction mean sd
correct 360.96 49.64
incorrect 389.97 30.30

Exit interviews Subjectswere askedwhetherthey no-
ticed anything particular in the sequenceof stimuli. Al-
thoughsomesubjectsfelt therewas some‘regularity’ in
the seqeunce,noneof the subjectscould specify this, ex-
cept for threesubjectsthat said that the subsequence:<;
occuredratherfrequently. This is the subsequencein the
grammarwhich correspondswith theloopbetweenthetwo
topright nodesin Figure1.
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Figure 4: Proportioncorrect predictionsof grammatical
andrandompredictiontrials,
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Discussion
Theresultsshow thatimplicit learningoccurs:subjectsgive
fasterresponseson grammaticaltrials thanon randomtri-
als and this effect becomeslarger towardsthe endof the
experiment.Secondly, subjectsgraduallygetbetterat pre-
dicting following stimuli dueto training aswell. Thirdly,
asexpected,smallerRTscorrespondwith a betterability to
predictthefollowing stimulus.

Models of sequence learning
CleeremansandMcClelland(1991)appliedtheSRNto im-
plicit sequencelearning. The SRN successfullydescribes
subjects’growing sensitivity to dependenciesbetweensuc-
cessive stimuli. The successof the SRN model is due to
its ability to capturethe ‘statisticalconstraints’inherentin
the sequenceof stimuli. The SRN model also correctly
predicts,at leastin a qualitative manner, the inverserela-
tion betweenRTs andtheproportionof correctpredictions
aswe have shown above. A drawbackof the SRN model
is that it is not very well suitedfor describingindividual
differences.The SRN modelconstruesimplicit sequence
learning in subjectsas statisticallearning. Subjectsfirst
grow sensitiveto first orderfrequenciesof symbols,thento
secondorderfreqeuncies,that is bigramfrequencies,then
third orderfrequencieset cetera.Individual differencesin
boththelearningprocessandtheresultingimplicit knowl-
edgebase,that is knowledgeof frequency constraints,are
not broughtout by themodel.Below we will describehow
hiddenMarkov modelscanbeusedto modelindividualbe-
havior of subjects.

The hidden Markov model
HiddenMarkov models,henceforthHMMs, arealsocalled
stochasticfinite automatasincethey areequivalentto finite



automatawherethe arcsbetweenstateshave probabilities
correspondingto them.Theonly restrictionis thattheprob-
abilities on the arcsleaving a particularstateshouldsum
to one. This resemblanceto finite automatais the reason
for exploring thepossibilityof applyingHMMs to implicit
learning.Beforepresentingresultsof fitting HMMs to sub-
jects’datawe givea shortintroductionto HMMs.

HiddenMarkov modelshavemainlybeenusedin speech
recognition applicationssuch as Schmidbauer, Casacu-
berta,Castro,andHegerl (1993),ChienandWang(1997)
althoughrecentlymore psychologicallyorientedapplica-
tionshavecomeupaswell suchasin actionlearning(Yang,
Xu, & Chen,1997).ThemainreasonthatHMMs areused
in speechrecognitionis thatthey areespiallywell suitedfor
capturingtemporaldependenciesin a seriesof utterances
which thenhelpsin identifyingphonemes.This featurecan
beusedto modelthetemporaldependenciesthatareinher-
entin theseriesof stimuli thataretypically usedin implicit
learning.

More formally a HMM consistsof a the following el-
ements(notationsadaptedfrom Rabiner(1989)),alsosee
figure5 for clarification:

1. asetof states=?>@��A4�B
���������� /

2. aset C of observationsymbolsC(D?��E��.
����������GF
3. amatrix : of transitionprobabilitiesH�> I for moving from

state=?> to state=6I
4. a matrix ; of observationprobabilitiesJKI���E�� of observ-

ing symbol C D while beingin state=6I
5. a vector L of initial stateprobabilitiesL > corresponding

to theprobabilityof startingin state=?> at MN�B

Theequationsdescribingthedynamicsof themodelareas
follows:

=?O�P7Q+�R:S=?O0TVUWO�P7Q
X O�P7Q �1;V= O T-Y O�P7Q �

where =?O is thehiddenprocessand
X O is theobservedpro-

cess; U@O�P7Q and Y�O�P7Q are zero meanmartingaleincrement
processes,cf. Elliott, Aggoun, andMoore (1995, p. 20)
for further details. A hidden Markov processthen is a
Markov processwith multiple indicatorsfor each(hidden)
state.By substituting= O by itsdefinitionin termsof = OKZ7Q in
thedefiningequationfor

X O�P7Q it is easilyseenthat in factX O�P7Q is dependenton all foregoing observationsback toX Q . Hence,at any givenpoint observationscandependon
all foregoingobservations.This is in contrastwith anormal
Markov modelwherethenext observationonly dependson
thecurrentobservation.

Characterizing sequence learning behavior
Fitting ahiddenMarkov modelis in fact theinverseof pro-
ducinga sequenceof stimuli from a finite stateautomaton:

0.5

0.50.5

0.5
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B C

D B

D
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Figure5: Representationof a hiddenMarkov model. This
modelproducesexactly the samesequencesas the gram-
marweusedin theexperimentwith equalprobabilities.Se-
quencesaregeneratedin thesamemannerasin FSAs:start
in oneof thestatesontheleft with letterA or B, thenfollow
thearcsleadingfrom thosestates.A sequenceendswhen
oneof theacceptingstatesis reached,thatis thetwo states
with the doublecircle aroundthem. From therethe pro-
cesscontinuesby goingto oneof thestartingstatesagain.
For theacceptingstatewith theletterD thearcsaredrawn
to the startstates.For reasonsof clarity the arcsfrom the
acceptingstatewith the C are left out. The arcs leading
from onestateto thenext have probabilitiescorresponding
to themwhich aregivenin thefigurefor someof thearcs.

finding thebestautomatonto describea givensequenceof
observations.This procedurecanbeappliedto any kind of
sequenceof categoricalobservationsandhencealsoto ase-
quenceof responsesin a sequencelearningexperiment.In
simulationstudieswehaveshown thatin fitting aHMM the
right automatoncanbeinducedfrom thedata(Visser, Rai-
jmakers,& Molenaar, acceptedfor publication). That is,
having generateda sequencefrom thegrammarusedin the
experimentwefoundtheHMM in Figure5 exploratively.
Sequence learning data In the prediction subbblocks
of the experimentsubjectswere presentedwith question
markson the screenat randompoints in the sequenceof
stimuli. In betweenthe predictiontrials normalRT trials
werepresented.For eachsubjectthisresultedin asequence
of responsesconsistingof thetrials thatwerepresentedon
thescreeninterspersedwith theirown predictionsaboutthe
positionof thenext stimulus.

In order to characterizesequencelearning we fitted
HMMs on thesesequencesof responses.To bring out the
learningwe fitted separateHMMs on the initial andfinal
segmentsof thesequenceof responses.Bothsegmentscon-
sistedof 500trials. We expectedto seea risein numberof
hiddenstatesof the modelfrom beginning to end; that is,



we expectedsubjectsto graduallybuild a more complex
modelof thegrammarunderlyingthesequenceof stimuli.
A rise in numberof stateswould reflectsubjects’growing
sensitivity to the structureof the sequence.For two sub-
jectswe indeedfound sucha rise in the numberof states
from two statesat thestartof learningto four statesat the
endof learning. Overall however, resultswere inconclu-
sive. This is, we think, mainly dueto the fact thatonly a
small proportionof the seriesof responsesthat wereana-
lyzedwereactuallyproducedby thesubject.Of theseries
of 500 trials that theHMMs werefitted on, only 125were
producedby thesubjects,theothersweregeneratedby the
finite stateautomatonandonly reproducedby thesubjects.
As a consequence,of all theresponsesonly aquartercould
wereuseful in discriminatingbetweenbeginning andend
of thelearningphase.Hencethe low power of the test. In
futureresearchit wouldbeusefulto have longersequences
of freelygeneratedresponsesto which HMMs canbefitted
morereliably.

Conclusion

In sequencelearningboth RTs and predictionhave been
usedasa measureof performance.The resultsof this ex-
perimentshow that when measuredsimultaneouslyit is
possibleto relatedirectly improvementin predictionper-
formanceand improvementin RT performanceon gram-
maticaltrials. The direct comparisonshows what is to be
expected: fast RTs areindicative of the subjects’level of
anticipationof the next trial andon the samecountresult
in correctpredictions.With this studyit is alsoshown that
predictionis possibleeven in a fairly complex rule system,
thatcannotbeverbalizedby subjects.

The SRN modelhasproved to be a valuablemodel for
describingthe learningprocessesinherentin implicit se-
quencelearning. However the model doesnot seemes-
pecially suitableto describeindividual subjects’behavior.
Therefor we introducedthe hidden Markov model as a
stochasticcounterpartof theFSAto characterizeindividual
learningbehavior. SincehiddenMarkov modelsareanex-
cellentmeansof describingtemporaldenpenciesbetween
responsesthey are in principle well suitedfor describing
implicit learningbehavior. Our resultswith fitting HMMs
arepromisingin thatwe canreliably estimatethemon the
kind of sequencesthat are generallyusedin implicit se-
quencelearning.It wouldbe interestingto do experiments
wheresubjectsgeneratelongersequencesof responsesin-
steadof thesinglepredictionsthey madein theexperiment
describedin thispaper.

References
Chien, J. T., & Wang, H. C. (1997). Telephonespeech

recognition basedon bayesianadaptationof hid-
denMarkov models.Speech Communication, 22(4),
369–384.

Cleeremans,A., & Jimenez,L. (1998). Implicit sequence
learning:Thetruth is in thedetails. In M. Stadler&
P. Freuch(Eds.),Handbookof Implicit Learning(pp.
323–364).ThousandOaks(Ca):SagePublications.

Cleeremans,A., & McClelland, J. L. (1991). Learning
thestructureof eventsequences.JEP:General, 120,
235–253.

Elliott, R. J.,Aggoun,L., & Moore,J. B. (1995). Hidden
Markovmodels:Estimationandcontrol. New York:
SpringerVerlag.

Jimenez,L., Mendez, C., & Cleeremans,A. (1996).
Comparingdirectandindirectmeasuresof sequence
learning. JEP: Learning, Memory and Cognition,
22–4, 948–969.

Nissen,M. J.,& Bullemer, P. (1987). Attentionalrequire-
mentsof learning:Evidencefrom performancemea-
sures.CognitivePsychology, 19, 1–32.

Rabiner, L. R. (1989). A tutorial on hiddenMarkov mod-
els andselectedapplicationsin speechrecognition.
Proceedingsof IEEE, 77(2), 267–295.

Reber, A. S. (1967). Implicit learningof artificial gram-
mars.Journalof Verbal LearningandVerbalBehav-
ior, 6, 317-327.

Schmidbauer, O., Casacuberta,F., Castro,M. J.,& Hegerl,
G. (1993). Articulatory representationandspeech
technology. LanguageandSpeech, 36(2), 331–351.

Seger, C.A. (1997).Two formsof sequentialimplicit learn-
ing. ConsciousnessandCognition:An International
Journal, 6(1), 108-131.

Visser, I., Raijmakers,M. E., & Molenaar, P. C. (accepted
for publication). Confidenceintervals for hidden
Markov modelparameters.British journal of mathe-
maticalandstatisticalpsychology.

Yang,J.,Xu, Y., & Chen,C.S.(1997).Humanactionlearn-
ing via hiddenMarkov model.IEEETransactionson
Systems,ManandCybernetics, 27(1), 34–44.




