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ARTICLE INFO ABSTRACT
Keywords: Municipal wastewater provides a representative sample of human fecal waste across a catchment area and
Wastewater contains a wide diversity of microbes. Sequencing wastewater samples provides information about human-

Antimicrobial resistance
Metatranscriptomics
Microbial ecology
Environmental microbiology

associated and medically important microbial populations, and may be useful to assay disease prevalence and
antimicrobial resistance (AMR).

Here, we present a study in which we used untargeted metatranscriptomic sequencing on RNA extracted from
275 sewage influent samples obtained from eight wastewater treatment plants (WTPs) representing approxi-
mately 16 million people in Southern California between August 2020 — August 2021. We characterized bacterial
and viral transcripts, assessed metabolic pathway activity, and identified over 2,000 AMR genes/variants across
all samples. Because we did not deplete ribosomal RNA, we have a unique window into AMR carried as ribosomal
mutants. We show that AMR diversity varied between WTPs (as measured through PERMANOVA, P < 0.001) and
that the relative abundance of many individual AMR genes/variants increased over time (as measured with
MaAsLin2, P,gj < 0.05). Similarly, we detected transcripts mapping to human pathogenic bacteria and viruses
suggesting RNA sequencing is a powerful tool for wastewater-based epidemiology and that there are
geographical signatures to microbial transcription. We captured the transcription of gene pathways common to
bacterial cell processes, including central carbon metabolism, nucleotide synthesis/salvage, and amino acid
biosynthesis. We also posit that due to the ubiquity of many viruses and bacteria in wastewater, new biological
targets for microbial water quality assessment can be developed.

To the best of our knowledge, our study provides the most complete longitudinal metatranscriptomic analysis
of a large population’s wastewater to date and demonstrates our ability to monitor the presence and activity of
microbes in complex samples. By sequencing RNA, we can track the relative abundance of expressed AMR genes/
variants and metabolic pathways, increasing our understanding of AMR activity across large human populations
and sewer sheds.

1. Introduction biological and chemical processing (Lu et al., 2018). As a heterogenous
mixture, wastewater has been shown to contain microbial communities

Wastewater harbors a wide diversity of microorganisms and repre- that vary depending on sampling location, time of year, industry, agri-
sents the collective waste of human activity across a sewershed (Newton culture, and the health of the served human population (Cantalupo
and McClary, 2019). Over 300 km? of wastewater is produced globally, et al., 2011; Edwards et al., 2019; McLellan et al., 2010; Symonds et al.,
of which most is channeled into wastewater treatment plants (WTPs) for 2009; Wu et al.,, 2019). As a result, the microbial water quality of
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wastewater can be a useful indicator of an area’s biological contami-
nation, with outbreaks of several diseases corresponding to increased
wastewater titers of pathogenic etiological agents (Hellmér et al., 2014;
Manor et al., 1999; Rothman et al., 2021; Wu et al., 2020). The microbial
ecology of wastewater is an important topic, with many studies char-
acterizing the microbes present through culturing, PCR- and
sequencing-based methods. These studies generally rely on targeting
specific pathogens or metagenomic shotgun DNA sequencing (Hubeny
et al., 2022; Jankowski et al., 2022; Kitajima et al., 2018; Marti-
nez-Puchol et al., 2020). While useful, these studies are unable to cap-
ture microbial transcription, which provides information about active
microbial processes, instead of the genomic potential of wastewater.
Moreover, as many important human and crop/livestock pathogens are
RNA viruses (Amoah et al., 2020; Bibby and Peccia, 2013; Symonds
et al., 2009), we can monitor the presence and spread of Ribovira
through untargeted metatranscriptomics. Wastewater RNA sequencing
can uncover active microbial interactions and metabolic networks,
which may inform us of the public and environmental health of the areas
served by a given sewage system (Brumfield et al., 2022; Crits-Christoph
et al., 2021; Li et al., 2022; Rothman et al., 2021).

Wastewater-based epidemiology (WBE) can inform public health
about the presence of pathogens in a population without needing to test
individuals in healthcare settings (Bivins et al., 2020; Sims and Kaspr-
zyk-Hordern, 2020). Health agencies have used WBE to detect the
presence of human pathogens such as norovirus, polio, SARS coronavi-
ruses, and a variety of bacteria and protists (Hellmér et al., 2014; Manor
et al., 1999; Rothman et al., 2021; Wu et al., 2020). For example, WBE
has been heavily used to track and monitor the abundance and spread of
SARS-CoV-2 during the ongoing COVID-19 pandemic at various popu-
lation levels (Achak et al., 2021; Karthikeyan et al., 2021; Nemudryi
et al., 2020; Peccia et al., 2020; Rothman et al., 2021; Wu et al., 2020).
Furthermore, as disease case counts change longitudinally, multiple
time points and RNA sequencing are useful to track not only the pres-
ence, but the activity of microorganisms which may provide additional
information about pathogens over longer time periods (Faust et al.,
2015; Joseph et al., 2019; Marcelino et al., 2019; Nemudryi et al., 2020).
Lastly, by broadly sequencing RNA, we may be able to discover new
targets for microbial water quality assays in order to detect and monitor
for sewage contamination of the environment and water sources (Cao
et al., 2015; Farkas et al., 2019; Jiang et al., 2022; Kitajima et al., 2018;
Zimmer-Faust et al., 2021).

Antimicrobial resistance (AMR) is a worldwide concern that inhibits
effective treatment of disease and increases healthcare burden and
morbidity of infections (World Health Organization, 2021). Wastewater
contains a complex diversity of AMR genes, which allows for horizontal
gene transfer (HGT) of mobile genetic elements between antimicrobial
resistant organisms and those species or strains that are currently sus-
ceptible to antimicrobial therapies (Joseph et al., 2019; Ju et al., 2019;
Sims and Kasprzyk-Hordern, 2020). As AMR and HGT are important to
monitor for public and agricultural health, many studies have employed
sequencing and targeted PCR-based technologies to assay the AMR
genomic content of wastewater (Karkman et al., 2018). While useful,
these studies typically rely on DNA-based technologies which cannot
measure the transcriptional activity of these genes or the organisms that
harbor AMR, and may better indicate the severity and abundance of
antimicrobial resistant infections across a population (de Nies et al.,
2021; Ju et al., 2019; Marcelino et al., 2019). By employing
RNA-sequencing, we are better able to understand the disease ecology
and AMR activity of wastewater-inhabiting organisms and those
deposited through the waste stream, and the specific mutations that
cause AMR (Alcock et al., 2020). Lastly, through careful sampling,
changes in AMR transcription can be tracked over time, likely providing
finer-scale information about the severity and seasonality of AMR in-
fections (Langford et al., 2020; Rose et al., 2021).

Studying wastewater microbial ecology and tracking the activity of
disease-associated microbes and AMR is vital to public health and
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environmental monitoring. In this study, we used metatranscriptomic
sequencing to characterize the RNA world of 275 samples across eight
wastewater treatment plants (WTPs) representing approximately 16
million people across Southern California. We investigated several lines
of inquiry: First, what is the transcriptomic diversity of microorganisms
in Southern California wastewater, and does it vary longitudinally?
Second, what AMR genes are being actively transcribed in wastewater?
Third, are there conserved biochemical pathways across wastewater,
and does this metabolic potential vary? Lastly, are there largescale
patterns of microbial transcription in Southern California’s wastewater,
and is there a temporal component to any of these patterns?

2. Materials and methods
2.1. Sample collection

We previously reported the sample collection and handling proced-
ure in Rothman et al., 2021 (Rothman et al., 2021), and note that the
viromes of 94 samples were previously reported in that study. Briefly,
we collected 275 1-liter 24-hour composite influent wastewater samples
by autosampler at eight WTPs across Southern California between
August 2020 — August 2021 (Table 1, Fig. 1). We aliquoted and stored
50 mL of sample at 4 °C until RNA extraction.

2.2. RNA extraction and sequencing library preparation

We used a protocol based on Crits-Christoph 2021 (Crits-Christoph
et al., 2021) and Wu et al. 2020 (Wu et al., 2020), in which we
pasteurized 50 mL of influent wastewater in a 65 °C water bath for 90
min, then filtered samples through a sterile 0.22-uM filter (VWR, Rad-
nor, PA). We then centrifuged the sample at 3000 xg through 10-kDa

Table 1
Descriptions of the experiment sampling scheme and relevant information about
each WTP.

Wastewater Number Date Span Approximate Approximate
Treatment of Inflow (Million Population
Plant Samples Gallons/Day) Served
Escondido Hale 45 August 3 14 190,000
Avenue 2020, — July
Resource 19 2021,
Recovery
Facility
Hyperion 92 August 11 275 4000,000
Water 2020, — July
Reclamation 29 2021,
Plant
Joint Water 15 August 11 400 4800,000
Pollution 2020, —
Control Plant November
17 2020,
North City 7 August 14 30 1400,000
Water 2020, —
Reclamation November 6
Plant 2020,
Orange County 17 August 12 140 2600,000
Reclamation 2020, —
Plant #1 December
21 2020,
Point Loma 77 August 13 175 2200,000
Water 2020, —
Treatment August 3
Plant 2021,
San Jose Creek 15 August 12 100 1000,000
Water 2020, —
Reclamation November
Plant 18 2020,
South Bay 7 August 13 15 107,000
Water 2020, —
Reclamation November 5
Plant 2020,
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Amicon filters (MilliporeSigma, Burlington, MA) to concentrate the
samples’ volume to < 500 pL and stored the concentrate at —80 °C until
RNA extraction. We then used an Invitrogen PureLink RNA Mini Kit with
added DNase step (Invitrogen, Waltham, MA) following the manufac-
turer’s instructions to extract RNA and stored the resulting RNA at
—80 °C until library preparation.

The University of California Irvine Genomics High Throughput Fa-
cility (GHTF) handled all library preparation steps. Briefly, the GHTF
used the Illumina RNA Prep for Enrichment kit (Illumina, San Diego, CA)
on each RNA sample, then sequenced the paired end libraries as 2 x 100
bp or 2 x 150 bp (supplemental file SF1) with an S4 300 cycle kit on an
[llumina NovaSeq 6000 over four batches.

2.3. Bioinformatics and data processing

We received the data from the GHTF as demultiplexed FASTQ files
and used the UCI High Performance Community Computing Cluster for
data processing. We used BBTools v38.87 “bbduk” (Bushnell, 2014) to
remove [llumina adapters, low-quality bases (Phred score < 10), and
primers, then removed PCR duplicates with BBTools “dedupe.” After
deduplication, we removed reads mapping to the human genome (hg38)
with Bowtie2 v2.4.1 with the default settings (Langmead and Salzberg,
2012), then used Kraken2 v2.0.7 (Wood et al., 2019) and Bracken v2.6.1
(Lu et al., 2017) with databases built with the NCBI RefSeq database of
bacteria, archaea, and viruses (January 2021), to taxonomically classify
reads with default settings and Phred score > 20. We then tabulated
these reads and used these tables for downstream diversity analysis and
reported raw read numbers ((supplemental file SFland Dryad dataset
(https://doi.org/10.7280/D11Q30) (Rothman et al., 2022)). Lastly, we
used EukDetect v1.3 (Lind and Pollard, 2021) to attempt classification of
eukaryotes in our samples.

For community analyses, we normalized the transcript reads into
within-sample relative abundances in R, removed reads corresponding
to less than 0.01% relative abundance, then calculated Shannon Di-
versity indices and Bray-Curtis dissimilarity matrices with the R package
“vegan” (Oksanen et al., 2017). We generated nonmetric multidimen-
sional scaling (NMDS) ordinations, then tested the diversity metrics for
significant differences with Kruskal-Wallis tests (alpha diversity) and
Adonis PERMANOVA (beta diversity) with “vegan.” We assessed the
relationship of diversity with time with linear mixed effects models
(Imer) in the R package “ImerTest” using WTP and sequencing batch as
random effects (Kuznetsova et al., 2017), and plotted all diversity ana-
lyses with “ggplot2” (Wickham, 2009), “ggrepel” (Slowikowski, 2018),
and “patchwork” (Pedersen, 2020). Because we collected samples from
Escondido, Hyperion, and Point Loma for a much longer period of time
than the other WTPs, we ran the above analyses two ways: all WTPs
together from August — November 2020, and Escondido, Hyperion, and
Point Loma samples for the full year separately.

We used HUMANN3 (Beghini et al., 2021) with default settings to
assign functional gene pathway annotations to reads using the UniRef90
(Suzek et al., 2015) and Metacyc (Caspi et al., 2020) databases. We also
used RGI (the Resistance Gene Identifier) and the CARD and WildCARD
databases (Alcock et al., 2020) to assign predicted antimicrobial resis-
tance ontology identities (AROs) to the reads, then normalized all
pathway abundances and AMR gene identities to transcripts per million
(TPM). We compared microbial abundances, pathway abundances, and
AMR gene abundances at greater than 0.01% relative abundance and
present in 50% of samples between WTPs with ANCOM2.1 using sample
collection month as an adjustment for covariates and sequencing batch
as a random effect in the ANCOM models. We then plotted log;¢ trans-
formed counts of significantly differentially abundant viruses, bacterial
genera, and AMR genes on a heatmap allowing the taxa to cluster with
the Ward D2 algorithm with the R package “pheatmap” (Kolde, 2019).
We used MaAsLin2 (Mallick et al., 2021) for longitudinal analyses of the
above-mentioned variables, and included WTP and sequencing batch as
random effects in the models, and we adjusted ANCOM and MaAsLin2
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statistical tests for multiple comparisons with the Benjamini-Hochberg
correction. We report the linear model coefficient with time of MaAs-
Lin2 analyses on each plot and refer to Zenodo (doi.org/10.5281/ze-
n0do.6829029) (Rothman et al., 2022) for individual scatterplots.

2.4. Data and code availability

Representative analyses scripts and code are available at github.
com/jasonarothman/wastewater_metatranscriptomics_socal_aug20_aug
21 and raw sequencing files have been deposited at the NCBI Sequence
Read Archive under accession numbers PRINA729801 using the MIMS:
metagenome/environmental, wastewater; v5.0 package for each Bio-
Sample. Data tables containing taxa abundances, HUMAnN3 pathway
annotations, and RGI assigned predicted antimicrobial resistance
ontology identities are available as a Dryad dataset (https://doi.
org/10.7280/D11Q30) (Rothman et al., 2022)

3. Results
3.1. Library statistics and microbial sample composition

We obtained a total of 4336,566,730 quality-filtered, nonhuman,
paired-end reads across 275 samples from eight WTPs (average:
15,769,334 reads per sample, range: 1039,430 - 88,651,858, supple-
mental file SF1). With Kraken2, we classified an average of 55.0% of our
reads (range 8.7 — 83.5%), of which an average of 48.1% (range 7.0 —
83.0%) were bacterial, 0.2% were archaeal (range 0.02 - 3.8%), and
5.9% (range 0.03 — 38.3%) were viral (Fig. 2). We also tried to classify
nonhuman eukaryotes in our samples, but identified eukaryotes
comprised less than 0.001% of reads. Due to the low relative abundance
of archaea and nonhuman eukaryotes, and known questionable classi-
fication accuracy, we chose to focus on bacteria and viruses for diversity
analyses.

We detected transcripts from a total of 6449 bacterial and 6888 viral
species across all samples, however due to the likelihood of the taxo-
nomic classifier reporting spurious species, we removed species ac-
counting for < 0.01% average relative abundance within each domain.
This filtering left us with 935 bacterial and 134 viral species present,
which we used for downstream analyses. We also tabulated 245 bacte-
rial families present in the same fashion as above. Because we had an
uneven longitudinal distribution of samples, we analyzed diversity,
differential abundance, and longitudinal relationships in two ways:
First, samples where we had all eight WTPs were analyzed together
representing N = 98, covering the months of August — November 2020.
Second, we analyzed samples from Escondido, Hyperion, and Point
Loma WTPs, where we had an entire year of sampling (N = 214),
covering August 2020 — August 2021.

3.2. Antimicrobial resistance transcription

We detected transcripts matching 2128 unique antibiotic resistance
ontology identifiers (AROs) through use of RGI and the CARD database
(Fig. 2, Dryad: https://doi.org/10.7280/D11Q30). Of AROs that were
present in an average of one read or greater per sample within each WTP
(843 unique AROs), 25% were present at all WTPs, while 17% were
unique to only one WTP (Fig. S1). AMR alpha diversity between August
— November 2020 significantly differed between WTPs (H(y) = 33.7, P <
0.001), but not over time (t = —0.3, P = 0.74) and did not correlate with
the population served by WTP (p = —0.25, P = 0.27). AMR beta diversity
during this time only differed between WTPs (P < 0.001, RZ= 0.43), and
not by month (P = 0.08, R?= 0.03), an interaction of WTP and month (P
= 0.10, R? = 0.16), or sequencing batch (P = 0.05, R? = 0.02), and
slightly changed over time (t = —2.3, P = 0.03) (Fig. 3). Several AMR
transcripts were differentially abundant between WTPs, and for easier
discrimination between the categories, we separated them into ribo-
somal RNA mutations and non-rRNA AMR genes: 29 rRNA AMR mutants
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Fig. 1. Diagram indicating the date ranges of samples separated by wastewater treatment plan and month. Y-axis codes correspond to abbreviated WTP names: ESC
= Escondido Hale Avenue Resource Recovery Facility, HTP = Hyperion Water Reclamation Plant, JWPCP = Joint Water Pollution Control Plant, NC = North City
Water Reclamation Plant, OC = Orange County Reclamation Plant #1, PL = Point Loma Water Treatment Plant, SJ = San Jose Creek Water Reclamation Plant, and

SB = South Bay Water Reclamation Plant.

(W > 88, P,gj < 0.05) and 17 non-rRNA genes (W > 140, P,q; < 0.05)
differed between WTPs (Fig. 3, supplemental file SF2).

When considering the entire year, AMR alpha diversity differed be-
tween WTPs (Hz) = 28.6, P < 0.001), but not over time (t = —0.6, P =
0.68), and did not correlate with the population served by WTP (p =
0.08, P = 0.27). AMR beta diversity differed between WTPs (P < 0.001,
R? = 0.13), month (P < 0.001, R? = 0.16), an interaction between WTP
and month (P = 0.007, R? = 0.12), with significant sequencing batch
effects (P < 0.001, R? = 0.06), and again, changed over time (t = 3.3, P
= 0.001) (Fig. 3). We considered AMR transcripts from rRNA genes and
non-ribosomal genes separately as above. For rRNA genes, we found that
26 positively and 13 negatively correlated with time (P,gj < 0.05), while
45 did not, and for non-ribosomal genes, 38 positively and 1 negatively
changed over time (P,qj < 0.05), while 256 did not change significantly
(Fig. 3, supplemental file SF3, Zenodo: https://doi.org/10.5281/zenod
0.6829029).

3.3. Bacterial transcriptional ecology

We found that the top ten most proportionally abundant bacterial
families represented an average of 58.6% (range 17.7 — 82.3%) of bac-
terial transcripts. These families (in descending average proportional
abundance) were: Campylobacteraceae, Pseudomonadaceae, Entero-
bacteriaceae, Neisseriaceae, Moraxellaceae, Comamonadaceae, Bur-
kholderiaceae, Aeromonadaceae, Weeksellaceae, and
Methylobacteriaceae (Fig. 2).

As we only had samples from all WTPs from August — November
2020 we analyzed these separately, and found that bacterial transcript
alpha diversity significantly differed between WTP (H(7) = 55.5, P <
0.001), but not over time (t = —1.3, P = 0.22). Bacterial beta diversity
was significantly different across WTPs (P < 0.001, R? = 0.30) and
month (P < 0.001, R? = 0.09), with no interaction between WTP and
month (P = 0.13, R% = 0.16), was affected by sequencing batch (P <
0.001, R? = 0.03), and changed over time (t = —2.4, P = 0.02). We also
found that transcripts from 222/564 bacterial genera were significantly
differentially abundant between WTPs during this time period (W >
507, Pagj < 0.05, Fig. 4, supplemental file SF2).

We had samples across the entire year for three WTPs, so we
analyzed these independently, and found that alpha diversity was not
different between WTPs (H(p) = 1.1, P = 0.59), and did not differ over
time (t=1.6, P = 0.12). Beta diversity differed between WTP (P < 0.001,
R? = 0.07), month (P < 0.001, R* = 0.20), and the interaction of WTP
and month (P = 0.002, R = 0.11) with significant sequencing batch
effects (P < 0.001, RZ= 0.06), and over time as a continuous variable (t
= 4.8, P < 0.001). We tracked the transcription of bacterial genera
across the year, and found that 172 genera increased, 63 genera
decreased, and 295 did not change significantly over time (Fig. 4, sup-
plemental file SF3, Zenodo: https://doi.org/10.5281/zenodo.6829029).

3.4. Viral ecology

We did not group viruses by family because of the dominance of
Virgaviridae, and instead report summary statistics of the ten most
proportionally abundant viral species as this provides more information.
These viruses represented an average proportional viral abundance of
92.4% (range 33.1 - 99.5%; in descending average proportional abun-
dance): Tomato brown rugose fruit virus, Cucumber green mottle
mosaic virus, Pepper mild mottle virus, crAssphage, Tomato mosaic
virus, Tropical soda apple mosaic virus, Tobacco mild green mosaic
virus, Tomato mottle mosaic virus, Melon necrotic spot virus, and
Pseudomonas virus PMBT3 (Fig. 2).

Over August — November 2020, viral alpha diversity differed be-
tween WTPs (H7) = 35.1, P < 0.001), but not over time (t = —0.57, P =
0.58). Beta diversity differed between WTPs (P < 0.001, RZ= 0.31), by
month (P = 0.003, R? = 0.07), but not by an interaction between WTP
and month (P = 0.69, R? = 0.13), by sequencing batch (P = 0.07, R? =
0.02), or over time (t = —1.6, P = 0.11). During this time period, only 11
viruses were differentially abundant between WTPs (Fig. 5, supple-
mental file SF2).

The full-year samples showed significantly different alpha diversity
between WTP (H2y = 55.4, P < 0.001) but not over time (t = 0.11, P =
0.91). Long-term beta diversity differed between WTPs (P = 0.005, R?=
0.03), month (P = 0.001, R? = 0.11), with no interaction between WTP
and month (P = 0.34, R? = 0.09), with significant sequencing batch
effects (P = 0.001, R = 0.11), and changed significantly over time (t =
4.3, P < 0.001). When considering the proportional abundance of in-
dividual virus species over the year, 22 viruses increased 16 decreased,
and 102 did not change over time (Fig. 5, supplemental file SF3,
https://doi.org/10.5281/zenodo.6829029).

3.5. Metabolic pathway transcription

Across samples that successfully processed through HUMAnN3 (N =
252), we detected transcripts that mapped to 474 Metacyc metabolic
pathways (Dryad: https://doi.org/10.7280/D11Q30). Most commonly,
we found transcriptional activity from pathways such as nucleotide
biosynthesis, ubiquitination, amino acid biosynthesis, and central car-
bon metabolism, while we also detected rarer pathways involved in the
degradation of xenobiotics including toluene, atrazine, nitrobenzoate,
and octane.

Metabolic transcript alpha diversity was not significantly different
across WTPs from August — November 2020 (H7) = 4.8, P = 0.68) and
did not change over time (t = 1.2, P = 0.222). Likewise, metabolic
transcript beta diversity during this period was not different between
WTPs (P = 0.18, R? = 0.09), but slightly differed between months (P =
0.003, R? = 0.07) with an interaction between month and WTP (P =
0.03, R? = 0.24) (Fig. 6), with significant sequencing batch effects (P <
0.001, R? = 0.06), but did not change over time (t = 0.9, P = 0.38).
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Fig. 2. Stacked bar plots showing the relative abundances of RNA reads mapping to A) unclassified taxonomic ranks, bacteria, viruses, and archaea; B) AMR genes
separated by the ten most abundant antibiotic classes each gene confers resistance to plus all others; C) ten most abundant bacterial families plus all others; D) ten
most abundant viral species plus all others. All plots are faceted by WTP and labeled with sampling date.

There were no differentially-expressed metabolic pathways across WTPs
during this time period.

Across the full year, transcript alpha diversity differed between
WTPs (H) = 14.4, P < 0.001), but not over time (t=1.3, P = 0.19). Beta
diversity slightly differed between WTPs (P = 0.008, R? = 0.02), month
(P < 0.001, R?= 0.17), with an interaction between WTP and month (P
=0.005, R? = 0.12) with significant sequencing batch effects (P = 0.002,

2 0.04), and did not change longitudinally (t = 0.8, P = 0.41). The
transcription of few metabolic pathways had a significant association
with time, as only 12 were positively, and one was negatively correlated,
out of 205 pathways total (Fig. 6, supplemental file SF3, Zenodo:
https://doi.org/10.5281/zenodo.6829029).

4. Discussion

Composite wastewater samples from Southern California over the
year contained RNA transcripts derived from a wide diversity of mi-
croorganisms. To the best of our knowledge, our study representing a
sewer shed of 16 million people is the most complete metatran-
scriptomic characterization of a large metropolitan region’s wastewater
to date. Most notably, we show evidence of actively transcribed anti-
microbial resistance (AMR) genes that encode resistance to a variety of
commonly-administered antimicrobial drugs including macrolides,
aminoglycosides, tetracycline and other AMR classes (Alcock et al.,
2020). Likewise, we also show that bacterial transcription and RNA viral
diversity differed between wastewater treatment plants (WTPs), and
that sequencing wastewater RNA can be a wuseful tool for
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Fig. 3. Nonmetric multidimensional scaling ordination of Bray-Curtis dissimilarities of AMR genes at greater than 0.01% relative abundance across A) all WTPs
August — November 2020, (NMDS stress = 0.08) and B) ESC, HTP, and PL across August 2020 — August 2021 (NMDS stress = 0.13). C) Heatmaps of the log;o-
transformed counts of differentially abundant non-rRNA AMR genes across all WTPs August — November 2020, and D) rRNA gene mutations conferring resistance to
antimicrobials. Hierarchal clustering of genes in each heatmap is through the Ward D2 algorithm. E) Bar plots indicating the non-RNA AMR genes across ESC, HTP,
and PL that changed over time and F) AMR rRNA gene mutations. X-axes denote the linear model coefficient of each gene’s relationship to time.

wastewater-based epidemiology (WBE) (Brumfield et al., 2022; Crits--
Christoph et al., 2021; de Nies et al.,, 2021; Rothman et al., 2021;
Xagoraraki and O’brien, 2020). Finally, we examined the total RNA pool
and described metabolic pathway transcription to show that wastewater
metabolism is largely consistent across WTPs and over time, but that
there are slight signatures of geographical location (Gulino et al., 2020).
Likewise, we report that approximately 45% of our reads were unas-
signed by the Kraken2 database, which is not unusual for metagenomes
even from well-studied environments and most likely represents mi-
crobial “dark matter,” along with sequencing artifacts (Hurwitz et al.,
2016; Zund et al., 2022). The unknowns may also arise due to our
Kraken2 database not including eukaryotes, however, we subsequently

attempted to classify eukaryotes using a different method (Lind and
Pollard, 2021), but only classified an additional < 0.001% of the reads.
Our results suggest that RNA sequencing is a viable tool to understand
the complex matrix that wastewater represents and is useful in assaying
the microbes associated with large populations.

4.1. Antimicrobial resistance transcription across southern california
wastewater

Wastewater is known to harbor an array of AMR genes, and several
studies have sequenced and/or quantified many of these genes in
wastewater (de Nies et al., 2021; Ju et al., 2019; Raza et al., 2022; Yin
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Fig. 4. Nonmetric multidimensional scaling ordination of Bray-Curtis dissimilarities of bacterial species at greater than 0.01% relative abundance across A) all WTPs
August — November 2020 (NMDS stress = 0.11), and B) ESC, HTP, and PL across August 2020 — August 2021 (NMDS stress = 0.16). C) Heatmap of the log;o-
transformed counts of differentially abundant bacterial genera at greater than 0.1% relative abundance across all WTPs August — November 2020. D) Bar plots
indicating the bacterial genera across ESC, HTP, and PL that changed over time (only genera with a P,4; < 0.001 shown). X-axes denote the linear model coefficient of

each genus’s relationship to time.

et al., 2021). Our study differs in that we demonstrate transcriptional
activity through RNA-sequencing, rather than the genomic potential of
the sampled organisms. We found a wide diversity of transcribed AMR
genes that are commonly found in AMR infections across all WTPs,
including components of the multidrug efflux pumps adeFGH (Coyne
etal., 2010) and its repressor acrS (Hirakawa et al., 2008), the gene tetQ
(Nikolich et al., 1992), which encodes a ribosomal protection protein
against tetracycline, Staphylococcus aureus’s multidrug efflux protein
ImrS (Floyd et al., 2010), genes in the aminoglycoside resistance series
aadA and aph(3”) (Ramirez and Tolmasky, 2010), and several variants
of the glycopeptide resistance gene vanR (Courvalin, 2006). Many of
these transcripts have been previously detected in WTPs, or in animals

that resided in wastewater (Brumfield et al., 2022; Marcelino et al.,
2019). Because we did not deplete rRNAs during library preparations,
most of our bacterial transcripts were ribosomal RNAs. We detected
rRNA mutations that confer macrolide resistance in the medically
important taxa Neisseria, Campylobacter, Salmonella, Helicobacter,
Staphylococcus, Streptococcus, Klebsiella, and many others. These genera
(and subsequent antimicrobial-resistant rRNAs) were ubiquitous in our
samples and are often found in wastewater (Jankowski et al., 2022;
Joseph et al., 2019; Ju et al., 2019). Our results indicate transcriptional
evidence of widespread AMR activity, and we posit that this AMR
presence is likely to be found in other wastewater catchments making
metatranscriptomics useful for tracking AMR across wide areas (de Nies
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Fig. 5. Nonmetric multidimensional scaling ordination of Bray-Curtis dissimilarities of viruses at greater than 0.01% relative abundance across A) all WTPs August —
November 2020 (NMDS stress = 0.10), and B) ESC, HTP, and PL across August 2020 — August 2021 (NMDS stress = 0.08). C) Heatmap of the log;o-transformed
counts of differentially abundant viruses across all WTPs August — November 2020. D) Bar plots indicating the viruses across ESC, HTP, and PL that changed over

time. X-axes denote the linear model coefficient of each virus’s relationship to

et al., 2021). The diversity of AMR genes in our samples differed be-
tween WTPs, and there were a few AMR genes differentially abundant
between WTPs — mostly mutant rRNAs. This finding supports studies
that show geographic differences between AMR (Raza et al., 2022; Yin
et al., 2021), but there are likely other factors impacting the diversity of
AMR, such as disease load in the served populations. Interestingly, we
noticed a general increase over time in the proportional abundance of
several transcripts from the major facilitator superfamily (MFS) and
resistance-nodulation-cell division (RND) antibiotic efflux pumps -
which are often implicated in multidrug resistance (Li and Nikaido,
2009) - along with beta-lactamases, and aminoglycoside/macrolide
resistant rRNAs (Alcock et al., 2020). These data support studies
showing an increase in antibiotic resistance (Ju et al., 2019) and the
prevalence of AMR genes, but may also be impacted by seasonal changes

time.

in the waste stream (Yang et al., 2013). While our results are suggestive
of AMR becoming more prevalent, our results are likely not truly
quantitative, especially given the technical challenges of sequencing
wastewater (Karthikeyan et al., 2022). Similarly, our data reflect
frequent detection of AMR genes in organisms that have been identified
as “urgent” or “serious” by the Centers for Disease Control (CDC),
although the release of some 2020 and 2021 data is delayed, so we are
unable to truly link AMR infections to AMR gene prevalence (CDC, 2022;
World Health Organization, 2021).

4.2. Viral ecology of southern california wastewater

Plant-infecting tobamoviruses dominated the viromes of our samples
regardless of source or time of year (Bacnik et al., 2020; Brumfield et al.,
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Fig. 6. Nonmetric multidimensional scaling ordination of Bray-Curtis dissimilarities of metabolic pathway transcripts per million across A) all WTPs August —
November 2020 (NMDS stress = 0.07), and B) ESC, HTP, and PL across August 2020 — August 2021 (NMDS stress = 0.08). C) Bar plots indicating the metabolic
pathway at greater than 0.01% relative abundance across ESC, HTP, and PL that changed over time. X-axes denote the linear model coefficient of each metabolic

pathway’s relationship to time.

2022; Cantalupo et al., 2011; Crits-Christoph et al., 2021; Rothman and
Whiteson, 2022), although we also found substantial numbers of reads
mapping to arthropod-infecting viruses (i.e. Hubei picorna-like viruses,
Wuhan insect viruses, and Flock House Virus), and phages including
crAssphage and assorted bacteriophages. While most known phages
have DNA genomes, previous studies have identified phages in waste-
water RNA (Crits-Christoph et al., 2021; Wilder et al., 2021). We may be
detecting novel RNA viruses, or transcription of either DNA or RNA
based phage genomes, or there may be some DNA contamination from
incomplete DNase treatment during RNA extraction confounding our
results. Viral diversity differed when tested across all WTPs and over the
full year, supporting studies that suggest geographical signatures of vi-
ruses in wastewater, and may be due to differences in human diet and

viral excretion, along with disease dynamics in bacteria and/or
eukaryotic hosts (Bibby and Peccia, 2013; Brumfield et al., 2022; Gulino
etal., 2020). Likewise, several viruses were differentially abundant over
time, which may be due to underlying infection trends or due to un-
known seasonality effects (Brinkman et al., 2017; Kazama et al., 2016).
While overall viral diversity was different between WTPs and changed
over time, highly abundant viruses tended to be present in most samples,
which may afford new targets in establishing microbial water quality or
the detection of sewage pollution (Cao et al., 2015; Jiang et al., 2022;
Kitajima et al., 2018). Similarly, we detected several human-infecting
viruses (i.e. Norwalk Virus in 78% of samples and SARS-CoV-2 in 62%
of samples) which provides support for WBE efforts (Crits-Christoph
et al., 2021; Nemudryi et al., 2020; Rothman et al., 2021, 2020;
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Xagoraraki and O’brien, 2020), but due to relatively few counts of these
viruses of interest, we suggest that RNA sequencing of wastewater
should be used in conjunction with targeted and quantificational ap-
proaches to assist in passively monitoring diseases across large
populations.

4.3. Bacterial ecology and metabolic pathways in southern california
wastewater

Similar to other studies, we detected transcripts from bacterial spe-
cies in wastewater - mostly in the form of rRNA reads (de Nies et al.,
2021; Joseph et al., 2019). Human pathogens were broadly represented
in our data, including ESKAPE bacteria (Enterococcus faecium, Staphy-
lococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudo-
monas aeruginosa, and Enterobacter spp.), Campylobacter jejuni,
Salmonella spp., Helicobacter pylori, Haemophilus spp., sexually trans-
mitted infectious (STIs) agents along with taxa associated with the
human fecal microbiome previously found in wastewater such as Bac-
teroides, Escherichia, Faecalibacterium, and Roseburia spp (Liu et al., 2015;
McLellan et al., 2010; Newton et al., 2015; Newton and McClary, 2019).
As wastewater is a matrix and contains bacterial taxa from a variety of
sewer-associated or environmental species, we also report finding
appreciable relative abundances of transcripts from genera often found
in wastewater such as Arcobacter, Aeromonas, and Acidovorax (Liu et al.,
2015; McLellan et al., 2010). Much as with viruses, the bacterial profiles
of WTPs were different, although many species were ubiquitous
throughout the samples (Wu et al., 2019). There were also noticeable
changes in the relative proportional transcript abundance over time,
with many bacterial genera displaying a bimodal periodicity: Higher
transcript abundance during Winter and Summer, and generally higher
as time proceeded from August 2020 to August 2021. Other work has
shown a distinct seasonality to the wastewater microbial community
(Peces et al., 2022) - and our data supports this as well - although there
are many other factors that can affect wastewater communities, such as
pH, flux, dissolved oxygen, and detergents (Wu et al., 2019).
Non-ribosomal bacterial metabolism was apparent in our data with
transcripts mapping to widely-conserved pathways such as nucleotide
and amino acid biosynthesis and ubiquitination, with no pathways
differing between WTPs or over time (Caspi et al., 2020). Likewise, we
recognize that our RNA extraction methods were harsh, and surely
resulted in nucleic acid degradation, which likely affects the accuracy of
our results (Schuierer et al., 2017). Similarly, our results may be
confounded by the difficulty in sequencing wastewater samples, as
wastewater-derived RNA is often fragmented, low-quality, low concen-
tration, and contains PCR inhibitors (Karthikeyan et al., 2022). Collec-
tively, our results suggest that sequencing bacterial species and their
constituent metabolic pathways common to wastewater may be useful
for monitoring disease through WBE, and that novel targets to assay
microbial water quality may be possible.

5. Conclusion

In our opinion, this large-scale longitudinal dataset represents an
unprecedented metatranscriptomic characterization of wastewater
across a large population and region. We detected a wide diversity of
transcribed AMR genes, suggesting that RNA sequencing is a powerful
tool for WBE and may be useful in monitoring the spread and intensity of
AMR. Within our study, we sequenced the viromes of a large portion of
Southern California’s wastewater catchment area and show that plant-
infecting viruses dominate the RNA viral fraction, which may have
additional uses in detecting agricultural disease outbreaks. Similarly, we
detected numerous human pathogens and observed changes in the
relative proportions of these taxa, lending more credence to WBE as a
vital component to public health and microbial water quality assays. We
suggest that future transcriptomic studies target disease-causing taxa in
wastewater to understand and refine WBE and its usefulness to human
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health more deeply.
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