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Abstract

Empirical psychological experimentation (very briefly
reviewed here) has provided evidence of top-down con-
ceptual constraints on letter perception. The role hy-
pothesis suggests that these conceptual constraints take
the form of structural subcomponents (roles) and rela-
tions between subcomponents (r-roles). In this paper,
we present a fully-implemented computer model based
on the role hypothesis of letter recognition. The emer-
gent model of letter perception discussed below offers
a cogent explanation of human letter-perception data
— especially with regard to error-making. The model
goes beyond simple categorization by parsing a letter-
form into its constituent parts. As it runs, the model
dynamically builds (and destroys) a context-sensitive in-
ternal representation of the letter that it is perceiving.
The representation emerges as by-product of a parallel
exploration of possible categories. The model is able
to successfully recognize (i.e., conceptually parse) many
diverse letters at the extremes of their categories.

The role hypothesis

Results from a series of previously reported psychological
experiments in human letter recognition provide empir-
ical evidence for the existence of conceptual-level repre-
sentations of letter-parts that we call roles (McGraw et
al., 1994; McGraw, 1995). The role hypothesis of human
letter recognition jibes with other psychological theo-
ries of perception that posit higher-level relational struc-
ture, including work by Palmer (1977), Treisman and
Gelade (1980), Hock et al. (1988), Biederman (1987),
and Sanocki (1986). In the role hypothesis, the concep-
tual components of a letter representation are not ex-
plicit shapes per se but are ideas about what acceptable
bounds for letter-part shapes are, how far such shapes
can be stretched before they lose their interpretation,
and how they interact with other roles to form a com-
plete object.

Letterforms, or physical instances of letters, are made
up of parts that correspond to the conceptual roles of
the mental level. Little work on machine-based letter-
recognition systems has considered intermediate-level
parts (sometimes called “high-level features” in the lit-
erature), let alone collections or groups of such parts
(Mori et al., 1984; Gaillat & Berthod, 1979). One impor-
tant exception to this trend is the work done some two
decades ago by Barry Blesser’s research group' (Blesser

!Blesser’s group included Shillman, Cox, Naus, Kuklinski,
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et al., 1973). The Blesser group’s approach to machine
letter recognition was, like ours, strongly based on the
psychology of human letter perception (Naus & Shill-
man, 1976). The idea was to describe letters not in
terms of their physical attributes, but in terms of more
general descriptions of their underlying representations.
Rich also briefly mentions an idea for a part-based model
of letter recognition in her introductory AI text (Rich,
1983). The model she sketches is similar in spirit to the
implemented work of Sanocki (1986; 1991).

Letter concepts, roles, and parts

bole

Figure 1: Three common conceptualizations of the letter ‘b’,
featuring two roles apiece.

Figure | is a graphical representation of three common
ways one can break the abstract concept of letter ‘b’
into conceptual pieces according to the role hypothesis.
Roles (the wiggly outlines) and r-roles that include re-
lationships between roles (the black dots) make up the
internal structure of a letter category and together define
a particular conceptualization of a letter. Category mem-
bership at the whole-letter level is partially determined
by category membership at the lower level of roles. (We
say “partially” because the interaction between roles also
matters. For example, a graphic shape might have a
strong exemplar of posi to the left of a strong exemplar
of loop and yet the way they interact might still make
them look more like ‘lo’ than ‘b’.)

Figure 2 shows how actual letterforms (e.g., shapes
on a page) are comprised of parts that fill a letter-
conceptualization’s roles. During perception, represen-
tations of such parts are formed under top-down pres-
sure from roles and are sensitive to context. As stated
by Palmer (1978) [p. 96], “components [or parts] en-
ter into relationships with other components, resulting
in larger structural units whose importance supersedes
that of [their] constituents.” We hold that most of the
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“importance” attributed to the emerging parts stems di-
rectly from their role-filling ability. In other words, the
way in which a part fills a role directly determines its
“goodness”. Experimental evidence reported in (Mec-
Graw, 1995) supports this claim by showing that hu-
man subjects prefer parts that correspond to natural
roles over parts that fit the Gestalt criteria described
by Palmer (1978).

roles  letterforms  [illed roles roles  letterforms  filled roles

a 2 2V bbm@
2w DN

Figure 2: Parsing letterforms into high-level parts oc-
curs under the top-down influence of roles. The top two
examples show straightforward parsings (or, role-fillings)
requiring little plasticity. The bottom two are more com-
plicated, with role-plasticity performing a critical func-
tion during recognition.

Roles are “plastic” — their plasticity resulting from
the fact that a role can be filled by a whole host of
differently shaped parts. Roles are defined in terms of
norms. Sometimes norms associated with roles must be
violated in order to accommodate a given letterform's
parts. The plasticity of a role is context-sensitive and
varies according to conceptual pressures brought to bear
by the situation.

Conceptual-level letter recognition

Human letter recognition has many distinct flavors. Let-
ter recognition used while reading sentences in a uniform
book-face, for example, is far different than recognition
of a style-rich letter in a display face for advertising.
The sort of recognition that we strive to model is more
closely-related to display-face recognition. Specifically,
our research concentrates on recognizing one letter at a
time with no word-level context. Particular letters range
all the way from very normal to stylistically-loaded. The
human results that we use for comparative purposes were
collected during just this sort of recognition task — that
is, the recognition of single letters with no word-level
context. Our model is driven by the need for a flexi-
ble and powerful letter-recognizer to be included in an
analogy-based model of typeface creation called Letter
Spirit.

Our model is based on the tenets of high-level percep-
tion, in which concepts dynamically provide top-down
influence on the formation of perceptual structures dur-
ing the process of categorization. The resulting percep-
tual structures, which emerge from the stochastic activi-
ties of a large number of tiny processing agents, are well-
suited for further analogical processing (Mitchell, 1993).
These perceptual structures include important informa-
tion about the stylistic attributes of a letterform (as op-
posed to a mere categorization, like “is an ‘a’”). This
“conceptual parsing” is critical to the design of stylis-

tically uniform alphabets — the ultimate aim of Letter
Spirit.

Why focus on cognitive plausibility of recognition
models instead of engineering efficiency”? Because hu-
man recognition of letterforms (especially highly-stylized
ones) is still far superior to that of machines. We believe
that a human-like approach will significantly enhance
the capacity of computers to correctly recognize a wide
variety of non-standard letterforms.

Letter Spirit

The Letter Spirit project is an attempt to model central
aspects of human high-level perception and creativity
on a computer, focusing on the creative act of artistic
letter-design.? The aim is to model the process of ren-
dering the 26 lowercase letters of the roman alphabet
in many different, artistically coherent styles. Two im-
portant and orthogonal aspects of letterforms are basic
to the project: the calegorical sameness possessed by
instances of a single letter in various styles (e.g., the let-
ter ‘a’ in Baskerville, Palatino, and Helvetica) and the
stylistic sameness possessed by instances of various let-
ters in a single style (e.g., the letters ‘a’, ‘b’, and "¢’ in
Baskerville). Figure 3 shows the relationship of these two
ideas. Initial work on the Letter Spirit project has been
focused on the “letter” aspect. The model described in
this paper is able to successfully recognize hundreds of
letters from all 26 categories. We aim to show that the
model does this in a similar fashion to the way people

abcdet..
abodef ...
abcdef ..
aus Az ¥ ...

Figure 3: Items in any column have letter in common. Items
in any row have spirit in common.

To avoid the need for modeling low-level vision and
to focus attention on the deeper aspects of letter recog-
nition, we developed an idealized micro-domain. Letter-
forms are restricted to short line segments on a fixed grid
of 21 points arranged in a 3 x 7 array. Legal line seg-
ments, connect a point to any of its nearest neighbors.
There are 56 possible segments, as shown in Figure 4.
This restriction allows much of low-level vision to be
bypassed and forces concentration on higher-level cog-
nitive processing, particularly the abstract and context-
dependent character of concepts.

2For information about the on-going Letter Spirit project
see (Hofstadter & McGraw, 1993) and (McGraw & Hofs-
tadter, 1993), available on the World Wide Web through URL
http://eww.cogeci.indiana.edu.
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Figure 4: The Letter Spirit grid, with line segments instan-
tiating one of many possible ‘a’s turned on.

Emergent letter perception

The fully-implemented gridletter recognizer in Letter
Spirit is called the role model. All perceptual and cre-
ative processes in the role model are emergent, in the
sense that they result from the actions of a large number
of independent codelets — computational micro-agents
that create, examine, and modify structures represent-
ing parts, roles, letters, stylistic traits, and so forth.
Codelets perform these activities in (simulated) paral-
lel. Newly created codelets wait to be run in a struc-
ture called the Coderack, which can be thought of as
a stochastic waiting room. In contrast to a standard
operating-systems queue, where processes wait before
being deterministically given their slice of CPU time,
the Coderack features stochastic selection of actions. To
each codelet is attached an urgency value — a number
that determines its probability of being chosen next. Ur-
gency values are based on how well a codelet’s possible
effect coheres with structures already built.

Actions of every sort — gluing, labeling, scanning,
matching, adjusting, regrouping, destroying, and so on
— are carried out by codelets. The effect of each codelet
considered by itself is very slight; however, as many
codelets run, their independent effects build upon one
another into a coherent collective behavior.

Over a long period of time, processes are interleaved in
a manner reminiscent of time-sharing. (A process con-
sists of many codelets, which er post facto can be seen
to have been acting in concert.) One notable difference
between this and conventional time-sharing is that the
biased nondeterministic selection of codelets amounts to
having different processes run at different speeds. The
speeds themselves are regulated over time, by varying
the urgencies of the codelets involved, in an effort to fa-
vor more-promising directions over less-promising ones.
Since codelets have very small effects, it is never criti-
cal that any particular codelet get selected. What does
matter is that certain broad-stroked courses of action as
a whole run faster than others. Probabilistic selection
based on urgencies allows this to happen.

Many of the ideas behind this model (and its Copy-
cat predecessor (Mitchell, 1993)) were originally inspired
by the Hearsay II speech-understanding system (Erman
et al., 1980). Hearsay Il introduced the idea of simul-
taneous bottom-up and top-down influences interacting
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in the process of perception. A complete comparison of
the role model and Hearsay 1, including a discussion
of many important distinctions and differences can be
found in (McGraw, 1995).

Processing in the role model

The role model operates roughly as follows, although
this outline may give the impression that processing is
more serial and well-ordered than it really is. In reality,
processing occurs in a more parallel manner, with various
aspects described below often proceeding concurrently.
See (McGraw, 1995) for a thorough account of the role
model.

e Line segments are probabilistically bonded together (by lo-
cal perceptual codelets) with different amounts of “glue™.
(For example, more glue tends to be deposited at straight
junctions than at angles.) The gluing codelets agents exe-
cute in a completely bottom-up fashion.

e When enough glue has been deposited, the glued shape
is metaphorically “shaken”. This amounts to probabilisti-
cally breaking the glued shape into chunks of segments at
weak joints, resulting in a set of parts (usually made up of
between two and four line segments).

e Each part is scanned by multiple codelets that probabilisti-
cally attach syntactic labels to the part. Labels reflect very
simple properties of parts like curviness, length, width, lo-
cation, and so on, and in no way involve the set of cat-
egories (either at the level of roles or wholes) into which
these stimuli will eventually be channeled. Each syntactic
label has a real number associated with it, standing for the
strength with which the label applies to its part.

e When a part has accumulated encugh syntactic labels
(once again, a probabilistically determined event), it is al-
lowed to send activation to one or more roles.

o The presence of a particular label on a given part serves as
a cue that tends to lightly activate one or more roles with
which the label is associated (i.e., roles of which the given
label is at least somewhat diagnostic). For instance, the
labels “left-side”, “straight”, “skinny”, and “tall” would
tend to activate the “left-post” role found in ‘b’, *h’, ‘k’,
and sometimes ‘I’. [t is important to understand that even
a label such as “straight” is probabilistic, in the sense that
a not-totally-straight part might get that label, with proba-
bility diminishing with its non-straightness. The real num-
ber associated with each label reflects this “goodness of
fit”.

A part that does not strongly activate any roles will be
slated for destruction, with its constituent line segments
subjected to the part-forming process all over again.

The various light activations coming from a given part’s la-
bels sum up to a total activation-level for each role that the
part matches sufficiently. If activated highly enough, roles
associate themselves with labeled parts, with the best-
matching roles getting the most activation from a part.
Each particular role may be filled by one part at any given
time, although inter-part competition for the role’s atten-
tion is ongoing and sometimes fierce.

As roles and parts attempt to “mate”, a given part may
need to be slightly altered in order to be a good mate for
a given role. A quantum or two may need to be stolen
from one or more neighboring parts to make the part in
question more attractive to a possible match. Likewise,
small pieces that seem to make a part ugly in the eyes of



possible role-mates may need to be given away or simply
detached. The resulting structures composed of groups of
the initial line segments are now results of the combined
influence of bottom-up and top-down processing. As such,
these parts are no longer totally syntactic entities, and we
call them (semantically) adjusted parts.

¢ Roles compete for parts throughout the letter, adjust-
ing the parts as they go. When this adjustment-and-
association phase is over, there is a fairly strong match-up
between roles and semantically-adjusted parts.

e Each instantiated role has a few tags attached, stating how
well the given part instantiates the role. This information
focuses on how the part deviates from various norms asso-
ciated with the role.

e Each realized role begins to alert one or more wholes (1.e.,
full role-sets, such as those shown in Figure 1) for which
it provides evidence, in the sense of fitting a particular
conceptualization of that letter. Role/whole coupling is
analogous to part/role coupling, only it occurs at a higher
(more semantic) level. Particular letter-conceptualizations
are activated according to how strongly their component
roles are realized in the actual grid letter.

e The activation level of each hypothesized whole is adjusted
according to whether the whole's r-roles (i.e., inter-role re-
lations) approve of the structure discovered so far. When r-
roles for a particular whole are checked, activation is taken
away from any whole whose roles are not appropriately re-
lated or filled. This is a critical inhibitory aspect of the
categorization process.

e Different wholes thus become activated to different extents.
Each sufficiently-activated whole attempts to match itself
up with the shape on the grid.

o If there is a clear leading contender among the wholes,
it is deemed the winner. If there is a close race between
several, the letterform is deemed ambiguous and therefore
unacceptable. In a borderline case between clear-winner
and close-race, a probabilistic decision is made that chooses
between the two courses of action.

e In the end, the winning whole has been parsed into con-
stituent, non-overlapping parts. These parts fill specific
roles in the whole to a greater or lesser extent. The tags
attached to roles according to how well they are filled by
their associated parts are also available when processing
ends. For example, a ‘t’ whose spine is too tall or is bent
over at the top, or whose crossbar is too short, too high,
or tilted, will have tags stating such things attached to its
filled conceptualization. This information can be used in
further processing, including checking the style of a letter-
form and designing related letterforms by analogy.

The entire labeling and role-association process hap-
pens in parallel for each of the initial parts created
after shaking. In general, processing proceeds from
low-level syntactic processing to high-level semantic (or
conceptual-level) processing, but is not completely lin-
ear in nature. Conflicting perceptual structures compete
against each other in the context of current perceptual
trends. Weak structures tend to be destroyed and strong
ones to be strengthened. A perceptual parsing in terms
of role-filling parts emerges as a result of this perceptual
“competition”.

Emergence, subsymbols, and symbols

It is difficult to pigeonhole the role model as belonging to
any particular well-known cognitive-science school, as it
is neither fully symbolic nor fully connectionist. Instead,
it takes some of the central features of both paradigms
and mixes them together, and thus could be said to fall
somewhere between symbolic Al and connectionism.

In common with connectionism, the role model has
many important subsymbolic characteristics of the sort
that Smolensky advocates (Smolensky, 1988). In the
subsymbolic paradigm, cognitive representations are
built of subsymbols that in turn give rise to symbol-like
structures. In systems of the subsymbolic vein, symbols
are statistically emergent entities that are represented hy
patterns of activation over large numbers of subsymbols.
The role model’s fine-grained parallelism, local actions,
competition for limited computational resources, spread-
ing activation, and emergent concepts are all faithful to
the subsymbolic enterprise. Also closely related is the in-
teraction of top-down and bottom-up processing in the
model.

The role model’s representations also have something
in common with more traditional symbolic methods.
The emergent representations that the system develops
are able to be quickly and easily referenced and ezplicitly
manipulaled since they are cut from symbolic cloth (z.e.,
they are made up of Scheme structures, albeit with at-
tached and dynamically varying activation values). Fur-
thermore, these symbolic structures are built up in a
workspace similar in some respects to a short-term mem-
ory — something not often found in connectionist mod-
els. The notion of reference is a critical one in models of
higher-level cognitive activities such as analogy-making
(Indurkhya, 1992). By their very nature, symbols —
even of the active, emergent variety that we model —
provide a natural avenue for such reference.

Performance of the role model

An intuitive way to illustrate the flexibility inherent in
and emergent from the role model’s architecture is to
consider a series of runs on groups of letters. Doing this
gives some idea of the sorts of letterforms the model
is capable of recognizing and the sorts of letterforms it
fails on. Figure 5, below, shows the extent to which the
role model can handle cases where stylistic aspects of a
letterform begin to overcome its category.

The particular group of letters we discuss here is taken
from page 424 of (Hofstadter & FARG, 1995). The
dataset consists of 88 lowercase gridfont ‘a’'s. We ran
the role model at least ten times on each of the ‘a’s in
the original illustration, in order to discover which ones
are easily recognized by the model and which are not.

In Figure 5 we have arranged the ‘a’s of the original
chart into a bull’s-eye pattern, whose center is made up
of ‘a’s that were correctly recognized 10 times out of 10.
Concentric rings surrounding the bull’s-eye the remain-
ing "a's into “recognition bins”, the first consisting of ‘a’s
recognized from 5 to 9 times over 10 runs, the second be-
ing those recognized from 2 to 4 times. Finally, outside
of the outermost closed curve are those ‘a’s that the role
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Figure 5: How the role model fares on 88 ‘a’s.

model never categorized correctly. The more poorly a
letter is categorized by the role model, the farther from
the center of the picture it is placed. It is very interesting
to note what the role model can do in terms of flexibly
stretching its roles, and what the role model can’t do.
A detailed analysis of the model’s behavior on this and
other datasets may be found in (McGraw, 1995).
Overviews such as this provide a general feel for cat-
egorization in the role model. As can be seen from the
letterforms in the center, the role model exhibits a re-
markable flexibility in its categorization, making its no-
tion of ‘a’-ness very rich. Generally speaking, letterforms
that are never properly recognized (those shown at the
outskirts of the picture) are indeed letterforms at the
“fringes of the category a”, although there are a few ex-
ceptions that, by disappointing us, keep life lively.

Comparison with human data

A more objective measure of the role model’s perfor-
mance may be had by comparing its recognition data
with human gridfont recognition data over the same
dataset. The series of psychology experiments from
which our comparative data is drawn can only briefly
be described here. However, they are fully explained in
(McGraw et al., 1994) and (McGraw, 1995). The idea
is very basic: 35 subjects were presented with a series
of grid-bound letterforms one at a time on a macintosh
monitor and asked to identify the letters as quickly and
accurately as possible. The letterforms were presented
as darkened line segments on a lighter grid such that
the grid provided some degree of noise. The computer
tracked both reaction time and accuracy data. Error-
making, which often provides insight into the behavior
of complex cognitive systems, was carefully tracked. Pre-
dictions based on the role hypothesis were confirmed dur-
ing analysis reported in (McGraw et al., 1994). In ad-
dition to this simple experiment, another study (alluded
to on the first page) showed that given letterforms as
stimuli, people prefer parts that correspond to roles over

parts that are supposedly “better” according to Palmer's
rules. The study also included as a control non-letter
stimuli made of flipped and inverted letterforms in which
the “role-based” parts were not prefered over the Palmer
parts.

The entire dataset reported here, called PsYCH, is
made up of 544 tokens coming from all 26 letter cate-
gories. The full dataset can be split into two subsets:
NORMALS (388 relatively strong letters) and FONTS (156
letters ranging from somewhat stylized to completely ec-
centric). Division of the dataset was initially completed
by a human letterform expert. This division was con-
firmed empirically through post facto analysis.

Table 1 shows accuracy values of humans and the role
model on the PSYCH dataset. The values were computed
by averaging the correct-response percentages of each
letter category.

[ Dataset | Humans [ Role model |
PSYCH 80.1 76.6
NORMALS 85.0 93.8
FONTS 65.4 51.4

Table 1: Accuracy percentages.

Large 544x26-entry confusion matrices can be built
for both the human data and the role model. These
matrices differ considerably from others like them in the
psychology literature since they include data about a
large variely of lowercase alphabetic styles instead of just
one. Even though the dataset is made up of arguably
idiosyncratic gridletters, our stimuli are more realistic
than many past datasets, in the sense that they capture
more of the natural variability found among letterforms.
This leads to a more thorough treatment of errors than
has been evident in past work.

[ Dataset [ r-value | points |
PSYCH 8872 | 10764
NORMALS 9511 6708
FONTS 7274 4056

Table 2: Token-level correlation of role model and human
error matrices. (All correlations are significant p > 0.0001.)

Table 2 shows the correlation values of the token-level
confusion matrix of the role model against the human
confusion matrix over our large and varied dataset.’
Since error-making tends to highlight the type of pro-
cessing that a cognitive system is doing, it is important
to take errors into account during correlation. Favor-
able comparisons of these correlation values with those
of simple connectionist models and a brute-force sym-
bolic model can be found in (McGraw, 1995). Unfor-
tunately, space constraints do not allow us to introduce
those results or comparisons here. In-depth analysis of

*Category-level correlations are routinely higher (e.g., the
category-level correlation over PSYCH is 0.9821), but offer less
resolution for inter-model comparison of the sort in (McGraw,
1995).
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particular trends in error-making are also analyzed in
(McGraw, 1995) and corroborate the general claims re-
garding the role-model’s strength.

Conclusions

Our fully-implemented role model provides one possible
implementation of the role hypothesis. It has proven
to be a very strong model of letter recognition, as it
clearly explains much of human letter-recognition be-
havior (especially with regard to error-making). Among
the critical portions of the recognition process in the
role model are these: building preliminary parts in a
bottom-up fashion from low-level data, adjusting parts
under top-down influence from roles, noting aspects of
style — norm violations — that result from filling roles
with particular parts, evaluating prospective filled role-
sets as matches of different letter categories, tracking
the strengths of activation of competing categories, and
searching for new perceptual parsings if initial attempts
at recognition result in only weak categorization.

Unlike many recognition programs, the role model
does not simply perform very well on one style, only
to crash and burn on others. It was designed specifi-
cally to handle a huge variety of styles. Tests using large
datasets show that we have captured at least some of the
perceptual fluidity exhibited by people. The role model
is able to recognize both standard and stylistically ec-
centric letterforms.

A distinct advantage that the role model holds over
simpler models lies in the nature of its output. The
role model returns not only the usual category label, but
also a parsing of a letterform in terms of its constituent
parts. Part-level parsings correspond to role-level con-
ceptualizations of letters. Further processing — for in-
stance, the extraction of style information, or the analog-
ical design of other letterforms — is possible only with
the kind of structural information that the role model
provides. The ability to parse a letterform into natural
parts corresponding to roles is of critical importance to
Letter Spirit's capability to design stylistically-consistent
alphabets.
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