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Abstract

Optical Orientation of Nuclear Spins
by
Jonathan King
Doctor of Philosophy in Chemical Engineering
University of California, Berkeley
Professor Jeffrey A. Reimer, Chair

Nuclear spins are harnessed in many important technologies, including the well estab-
lished fields of magnetic resonance imaging for medical diagnostics, magnetic resonance spec-
troscopy in analytical chemistry as well as emerging technologies in quantum information
and spintronics. All of these technologies either harness, or are subject to, the behavior of a
nuclear spin ensemble. To achieve the most desirable behavior, (large spectroscopic signal or
reduction of unwanted fluctuations) the nuclear spin ensemble should be prepared in a pure
quantum state. In practice, this “polarization” is typically created by allowing the energy
levels of the spins in an applied magnetic field achieve thermal equilibrium. Unfortunately,
even with the largest magnets available with fields greater than 20 Tesla, the separation
between energy levels is much smaller than k7" for all but extreme refrigerated systems. It is
then desirable to achieve pure nuclear spin states which are not at thermal equilibrium with
the environment. In order to do this, it is necessary to create a situation in which a pure
quantum state can be created in a system other than the nuclear spin which then interacts
with the nucleus to create a more pure nuclear spin state. In this work we harness the pure
photon spin state of circularly polarized light as well as spin transition selection rules of a
deep electronic defect in diamond to polarize nuclei.

In the first case, we use circularly polarized photons to excite spin polarized electrons
in the semiconductor gallium arsenide which equilibrate with bound electronic states at
recombination centers. These bound states then polarize nearby nuclear spins through the
magnetic hyperfine interaction. While this hyperfine mechanism of nuclear spin polarization
was previously known, we have identified a new regime of low optical absorption where
the coupling of nuclear quadrupole moments to electric field gradients near recombination
centers is the dominant mechanism of nuclear spin polarization. Through a combination
of experiment and theory, we determine relative rates of these two mechanisms depending
on the rate of optical absorption. Since optical absorption varies as a function of depth in
a sample, we predicted that control of these two mechanisms is possible as a function of
position in the sample. Using the stray field of a superconducting magnet to supply the
gradient field for magnetic resonance imaging, we were able to directly observe patterns of



nuclear magnetization on a micron length scale. When combined with in-plane control of the
laser and NMR pulse sequences, this technique will give rise to fully 3-dimensional patterns
of nuclear magnetization. These patterns may be created in bulk gallium arsenide without
the need for lithography or other microfabrication techniques. These regions of magnetized
nuclei will enable magnetic control over drifting electrons in future spintronics devices.

The paramagnetic nitrogen-vacancy defect in diamond provides a different tool to control
nuclei. The ground state spin triplet of this defect may be easily polarized into the S, = 0
state with visible optical illumination. The polarization is due to the symmetry and selection
rules within the defect itself and does not require polarized photons. We discovered that,
with a sufficient density of defects, the **C nuclei in the diamond lattice are spontaneously
polarized upon illumination of the sample. We attribute this polarization to a highly refriger-
ated “spin temperature” among the energy levels created by the magnetic dipole interaction
of the many spins in the defect ensemble. This energy reservoir is in thermal contact with
the C nuclei, which are driven to highly athermal spin states. We theoretically investigate
the thermodynamics of the defect spin ensemble, first with a two-spin “toy model” and more
recently have begun a many-spin theoretical approach. The polarization of nuclei in diamond
has application in the quenching of nuclear fluctuations in quantum information systems and
as a platform for signal enhancement in magnetic resonance imaging and spectroscopy.
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Chapter 1

Introduction

1.1 Spin Magnetic Resonance

The subject of magnetic resonance has been covered in great detail in many excellent texts
(such as those by Abragam and Slichter); here I will give only a brief introduction to the
subject of high-field, pulsed magnetic resonance. Magnetic resonance spectroscopy is the
experimental interrogation of the magnetic transitions of particles that possess magnetic
dipole moments (which are aligned with the spin angular momentum of the particle). In the
high-field regime encountered in this work, the dominant term in the Hamiltonian (called
the Zeeman interaction) is the result of a static, external magnetic field applied by the
experimental apparatus. The spectroscopically interesting features of the system under study
then reveal themselves as small perturbations to the Zeeman Hamiltonian.

A pulsed magnetic resonance experiment generally takes the following steps. First, the
populations of the energy levels (as determined by the Zeeman Hamiltonian) are allowed to
come to thermal equilibrium, creating some degree of spin order. Next, a pulsed, oscillating
magnetic field is applied perpendicular to the Zeeman field at the nuclear Larmor frequency.
The pulse is timed to convert the Zeeman spin order in to a coherent superposition of Zeeman
states. This ensemble superposition state then interacts with the inductive detection coil to
coherently emit and absorb photons (to the coil, not the radiation field!) in an oscillatory
fashion. This oscillation at the Larmor frequency is recorded as an induced voltage in the
detection coil, yielding the magnetic resonance signal. A Fourier transform of the oscillating
signal yields the familiar spectrum representation of the magnetic resonance signal. The
internal spin Hamiltonian of the sample yields many subtle perturbations to the observed
signal, which are responsible for widespread application of NMR as an analytical technique.
In this work, it is important to understand that magnitude of the observed signal is directly
related to the initial (typically very small) spin order. It is this initial order (or polarization,
or magnetization) that we seek to enhance and control.
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1.2 Spin Thermodynamics

The Density Operator Description

Because this work exclusively deals with large ensembles of spins, it is usually convenient
to use the density operator description of quantum mechanics. The density operator (p) is
simply defined as the outer product of a quantum mechanical state vector with its adjoint,
or conjugate transpose:

p=|U>< U (1.1)

Schrodinger’s equation is then rearranged to form the Liouville equation for the time evolu-
tion of the density operator:

dp 1
5 = el (1.2)
So far this is rigorously equivalent to the state vector description of quantum mechanics. If we
have a system of N identical spins that are weakly coupled, it is often a good approximation
to represent the state of the system as a single density operator which is the sum of many

single-spin operators:

1 N
Pensemble — N Zzl Pi- (13)

This approximation reduces the state of the system from an operator on a (21 + 1)N-
dimensional vector space to a (2 + 1)-dimensional space. In exchange for this simplification,
coherences (superposition states) involving more than one spin are not represented and their
effects appear as non-unitary evolution of the density operator along with spin-environment
interactions. The main advantage of this representation is that the ensemble density op-
erator represents both the statistical and quantum mechanical nature of the system. For
example, the ensemble average of a quantity represented by an observable operator O is:

< O >= trace(pO). (1.4)

Often we will be concerned with the total energy in the spin system, which is:

E =< H >= trace(pH). (1.5)
We can also define the density operator at thermal equilibrium:
o—H/KT
p(T) = trace(c /AT’ (1.6)

The exponential of an operator, which is itself typically represented as a matrix, can cause
some confusion in this equation. This is easily resolved by representing the exponential as a
Taylor series:
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2 3
LN S N .
KT 2(kT)?  6(kT)?

where the usual rules for matrix multiplication apply so that the result is also an operator
on the same vector space as H.

These expressions are especially powerful because the trace is invariant under similarity
transformations, meaning one can represent the observable operators and density operator
in any basis set that is convenient. This is especially useful when studying the angular
dependence of spin phenomena. If we work in a basis where the Hamitonian is diagonal, the
equilibrium density operator will also be diagonal, with the diagonal elements equal to the
population of each corresponding energy level as expected for Boltzmann statistics.

(1.7)

The Problem of Polarization

Most magnetic resonance spectroscopy and imaging techniques involve the observation of
bulk magnetization. The operator for magnetization is:

_ JUN 7
=2 1.8
h (1.8)

where g is the nuclear g-factor, py is the nuclear magneton and S is the nuclear spin vector
operator. If we measure the z-component of the average nuclear magnetization we obtain:

<y >= g'uTNtrace(pSZ) (1.9)

Since kT is typically very large relative to the eigenvalues of the spin Hamiltonian the density
matrix can approximated as a truncated Taylor series:

e—H/kT H
TY="——/——~1—— 1.10
AT) trace(e—H/KT') kT (1.10)

where [ is the identity operator. Now we evaluate the nuclear magnetization

S.H
kT

IHN (pS.) = gUN

-S.H
< py >= Ttrace = Ttrace(Sz — _ 9KN )

) = =— trace( T

. (1.11)

The final equality results from the fact that spin operators are traceless, leaving only a small
term of order AE /KT, where AFE is the separation between eigenvalues of the Hamiltonian.
This result is interpreted physically by recognizing that at high temperatures, the density
operator is nearly identical to the identity operator which has no contribution to observable
magnetization. It is only by introducing order, corresponding to a smaller spin temperature,
that the ensemble properties may be harnessed.



Chapter 2

Optical Nuclear Polarization in
Diamond

2.1 Introduction

The Nitrogen Vacancy Center in Diamond

The nitrogen vacancy color center in diamond has been the subject of many studies in the
last decade. Most studies have focused on quantum control and the use of NV- centers
as qubits for quantum information [10, 12, 13, 5, 7, 14, 29], while others have focused on
applications such as high-resolution magnetometry[3, 23]. Some of the desirable properties
of the nitrogen vacancy center for these applications include: a ground state spin-triplet
(S = 1), efficient polarization of the ground state triplet into S, = 0 by irradiation in a
broad phonon sideband, long spin coherence times, and single-photon emission.

The NV- center, whose structure is shown in figure 2.1, is a negatively charged defect
that consists of a substitutional nitrogen adjacent to a vacancy in the diamond lattice. The
defect can be modeled as 6 electrons (5 from dangling bonds and one donated from another
defect such as the P1 center) or as a 2-hole system with C3, symmetry. The ground state is
a (*Ay) triplet with a spin-spin interaction that splits the Sz = 0 state from the Sz = 1 and
Sz = —1 states by 2.88 GHz. The lowest excited state (°E) is also a triplet with a 1.42 GHz
spin-spin interaction. After spin-conserving optical excitation the defect may either decay
radiatively into the ground state (also spin-conserving) or undergo intersystem crossing into
an 'E singlet state (this is most likely for the S, = +1 and S, = —1 levels of the excited
state triplet.) The intersystem crossings are due to mixing of the singlet and triplet states by
weak spin-orbit coupling. The system then decays to the 'A; singlet state which undergoes
another intersystem crossing to preferentially populate the S, = 0 state of the ground state
triplet. The spin coherence time of the ground state triplet can be as long as 0.5s, depending
on the purity of the diamond[4]. This is due to the largely spin-free carbon lattice (only 1.1%
of carbon nuclei have spin). These long-lived, optically initialized spin states in a solid-state
system are the basis for quantum information and magnetometry applications.
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Figure 2.1: Structure of the nitrogen vacancy defect, taken from [2]
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Figure 2.2: Zero-field energy levels of the NV- center showing radiative and non-radiative
transitions, taken from [2]

Dynamic Nuclear Polarization in Diamond

Previous work has shown microwave-induced dynamic nuclear nuclear polarization (DNP) of
bulk '¥C spins in diamond through paramagnetic defects[37],[38],[39]. However, these DNP
techniques are limited by the electron Boltzmann factor at the magnetic field strength and
temperature used in the experiment. More recently, experiments have shown polarization
of the nitrogen nuclear spin of the NV- center, as well as polarization of proximate single
13C spins by making use of the optical polarization of the NV- center[17][13]. However, all
of these studies involved polarization and detection of single nuclear spins.

2.2 Experimental

Sample Preparation

The sample used in this study is a high pressure, high temperature (HPHT) synthetic single-
crystal diamond purchased from Element-6. Sample dimensions were 3x3x0.5mm with the
< 111 > crystal axis aligned along the normal vector to the largest crystal face. One side
of the sample is polished. As received, the nitrogen concentration was approximately less
than or equal to 200 ppm. The sample was irradiated with 3.0 MeV electrons at a dose of
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~ 10¥cm™2, and subsequently annealed at 700, 875 and 1050 degrees Celsius in a forming
gas (0.96 atm Ar, 0.04 atm H,). The final concentration of NV- centers was 8 ppm. Specific
details of sample preparation and characterization can be found in [2], where the sample
used in this study is labeled as sample 6.

Nuclear Magnetic Resonance

All NMR experiments were carried out in an Oxford 9.4 Tesla superconducting magnet.
Spectra were acquired with a Tecmag LapNMR single-resonance spectrometer at 100.59MHz.
NMR experiments were carried out using a homebuilt probe employing a flattened split-
solenoid coil for optical access. 7 pulse lengths for this configuration and the pulse power
used were approximately 5.5 microseconds. The sample was mounted to a sapphire plate
on the probe which has grooves in which the split solenoid coil resides. Adhesion to the
sapphire plate was maintained using a small amount of Apiezon-N grease. The amount
of grease used was kept to a minimum in order to avoid background *C NMR signals.
Temperature control was maintained using an Oxford Spectrostat continuous flow helium
cryostat with optical access controlled by an Oxford I'TC 503 temperature controller. Optical
pumping was performed using a Coherent Innova 300 multi-line argon ion laser operating at
multiple simultaneous wavelengths ranging from 457.9nm to 514.5nm. Power output from
the laser was maintained at 2.5 Watts except for experiments where laser power dependence
was studied. Optical pumping experiments were performed by saturation of the 3C spins
via a series of RF pulses, followed by an optical pumping delay, then a 7 pulse immediately
followed by detection of the free-induction decay (FID). Laser irradiation was maintained
throughout the entire experiment. Non optically-pumped thermal equilibrium spectra were
acquired by cooling the sample to the specified temperature, allowing the spins to equilibrate
for a time of two hours, then a 7 pulse and detection of the FID. The signal magnitudes in
pumped and non-pumped experiments were different such that multiple signal amplifier gains
were necessary. In order to correct for the change in receiver gain, signals were calibrated
with an external source. Time domain data were Fourier-transformed to obtain a frequency
spectrum. A 0" order baseline correction was applied to the frequency spectrum. The
integrated area of the NMR peak, proportional to the bulk-averaged nuclear polarization,
was calculated. Peak shift and width were obtained by fitting Lorentzian curves to the
spectra.

2.3 Results

Polarization Kinetics
Temperature Dependence

Thermal equilibrium NMR spectra were obtained at 50 K. The polarization at equilibrium
is given by:
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hw
p_ 2.1
tanh (kBT> (2.1)

At 50K and w = 2 * m * 100.6MHz, the polarization P is ~ %1074

Bulk averaged nuclear polarizations for optically-pumped experiments are obtained by direct
ratio of the integral of the NMR peak to the integrated thermal equilibrium peak obtained
at H0K, with the necessary normalization for receiver gain and number of scans. Since this is
a bulk measurement, it does not provide information about the distribution of polarization
within then sample. Figure 2.3 shows the kinetics of the polarization process at tempera-
tures between 5 K and 50 K. Due to the laser powers used in the experiment and the limited
cooling capacity of the cryostat near the boiling point of helium, temperature control was
poor for experiments at 20 K and lower. This is especially true for the 5 K data, where the
measured temperature varied by as much as several K. Additionally, the temperature sensor
is not in direct contact with the sample. Therefore we expect that a temperature gradient
exists within the cryostat, with the sample at some temperature above the measured tem-
perature. Therefore, the effects of temperature will not be modeled quantitatively, but may
be examined as a general trend.

Laser Power Dependence

At a setpoint of 50K, the cooling power of the cryostat was sufficient to maintain stable
temperature control. A series of optical pumping experiments using different laser powers was
performed at 50K. The results of these experiments are shown in figure 2.4. The magnitude
of the polarization increased with increasing laser power. However, the polarization (i.e., the
shape of the polarization buildup curve) remained similar.

Temperature Dependence of NMR Lineshape

The NMR lineshape was found to vary with lattice temperature. As shown in table 2.1, at
lower temperatures the NMR peak shifted to lower frequencies and broadened significantly.
Due to the difficulties of temperature control with high laser power, the temperatures shown
are not an accurate measure of lattice temperature, but the trend of the lineshape’s depen-
dance on temperature is easily seen.

The shift and with data were extracted by fitting the data with Lorentzian lineshapes.
This provided a good fit in all cases while the signal to noise ratio was very high. While it
is difficult to extract a meaningful measure of error from these fits, it is clear that the shifts
and linewidths are significant.
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Figure 2.3: '3C polarization kinetics with 2.5W irradiation and varied temperature. The
theoretical model is fit to the 5K data. (From [20].)

Temperature | Peak Width | Peak Shift
5K 776Hz -363Hz
7.5K 757THz -315Hz
10K 762Hz -272Hz
15K 731Hz -116Hz
20K 698Hz OHz

Table 2.1: NMR peak width and shift relative to the peak at 20K, obtained by fitting
Lorentzian curves to the data.



CHAPTER 2. OPTICAL NUCLEAR POLARIZATION IN DIAMOND 10

0 50 100 150 200 250 300 350
0000/0 ... 1 . = 1 1 1 1 1 il
c 001% ¢ = . - . .
(] X
S -0.02%
©
N % 1 hA W
E -0.03% xXe R 25w
© -0.04% A35W
o Xxea wom
g, -0.05% 1 x .
g -0.06% - x 1 A .
> *
& -0.07% 4
D
X X A
S -0.08% x
m
-0.09% A * % x

-0.10% - Pumping Time (s)

Figure 2.4: Polarization kinetics as a function of laser power at 50K. (From [20].)

2.4 A “Toy Model”

A Thermodynamic View of Spin-Lattice Relaxation

It is well known that high purity diamonds have *C spin-lattice relaxation times on the or-
der of hours at a field of several Tesla and room temperature, indicating an extremely weak
direct coupling between the nuclear spins and lattice phonons[16]. In the case of diamonds
containing a large number of paramagnetic impurities, where spin-lattic relaxation times are
much shorter, it is valid to consider only the action of the paramagnetic defects in the spin-
lattice relaxation mechanism. A thermodynamic description of 1¥C spin-lattice relaxation
in diamonds due to paramagnetic defects has been presented previosly[46]. Following this
treatment, we consider the “energy reservoirs” that are assumed to posses internal thermal
equilibrium. The important reservoirs are the ¥C Zeeman interaction, the paramagnetic
defect Zeeman interaction, and the dipole-dipole interaction between paramagnets. The nu-
clear dipole-dipole interaction is very weak for this dilute spin system and is neglected. The
paramagnetic defect-nuclear dipolar interaction is treated as a perturbation that induces
transitions as will be shown later, but does not constitute a significant energy reservoir. As
shown in figure 2.5, the relaxation of the nuclear Zeeman reservoir can occur directly with
the lattice (A), with the electron Zeeman reservoir (B), or with the electron dipole-dipole
interaction reservoir (C). Figure 2.5 differentiates between NV- centers and “other” paramag-
netic defects, such as substitutional nitrogen and neutral NV centers, in which the electronic
spin states are not optically oriented. The arrows represent thermal contact between energy
reservoirs.

Relaxation of the nuclear Zeeman energy reservoir for a spin—% nucleus is induced by fluctu-
ating magnetic fields at the NMR frequency (~100MHz). Fluctuations due to spin-lattice
relaxation of paramagnetic defects, governed by a relaxation time T}., give rise to a direct
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coupling between the nuclear Zeeman reservoir and lattice phonons (“A” in figure 2.5). It
has been shown that at temperatures less than 100K 77, can be several seconds or more, so
the spectral density of these fluctuations at the NMR frequency is very small [45, 18]. All
other spin-lattice relaxation pathways involve relaxation of paramagnetic Zeeman reservoirs
with the lattice (arrows “B”). Again, as these relaxation times become long, the coupling
between the nuclei and the lattice becomes weak.

% = 13
Other Czeeman |C |, Dipolar
Dipolar
“Other” A NV
Zeeman Zeeman
B B
Lattice

Figure 2.5: Thermodynamic model of spin-lattice relaxation in diamond showing energy
reservoirs and relaxation pathways.

Since both the electron and nuclear spins are effectively decoupled from the lattice, we
might expect that interaction between the nuclear Zeeman reservoir and optically-pumped
NV- centers will result in athermal populations of nuclear spin states. The coupling between
the 13C Zeeman system and the NV- center Zeeman reservoir is weak because there is no
energy-conserving 2-spin flip flop or 3-spin process that couples these two reservoirs. The
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latter statement’s validity can be seen by examining the electron spin resonance spectrum,
for example [45], and finding no NV- center lines are separated by a frequency equal to
the 1¥C Larmor frequency. It is however possible for a transition among the dipolar energy
levels of the NV- centers to be on resonance with the nuclear transition, thereby establishing
thermal contact between the *C Zeeman energy reservoir and the NV- center dipolar energy
reservoir (C in figure 2.5).

Energy Level Structure
Spin Hamiltonian

In the thermodynamic context, we are investigating thermal contact between energy reser-
voirs. In order to continue in this manner, we must determine the effective temperature of
the NV- center dipolar energy reservoir, which in turn requires detailed knowledge of the
energy level structure of the NV- centers. We consider pairwise dipolar interactions between
separate NV- centers for which we determine energy levels and eigenfunctions. The the full
spin Hamiltonian is then given by:

H=Hz+Hpp+ Hss (2.2)

where 7Z represents the Zeeman interaction, DD represents the electron dipole-dipole inter-
action between separate defect centers, and SS represents the spin-spin splitting of the NV-
center Zeeman levels due to the two electrons contained within a single defect. In the Zee-
man basis, the basis vectors are:

|S%, 52 >=

11,1 >,]1,0>,[0,1>,] —1,1>,/0,0 >,|1,-1>,|— 1,0 >,]0,—-1>,| —1,-1 >

The indices 1 and 2 refer to different defect centers. The vector connecting the two defects
has a length r, and an angle 6 with the z-axis (defined by the external magnetic field).
Retaining only those terms which commute with the Zeeman Hamiltonian, the total spin
Hamiltonian can then be written in matrix form:

A+27+2D 0 0 0 0 0 0 0 0
0 Z+D B 0 0 0 0 0 0
0 B Z+D 0 0 0 0 0 0
0 0 0 —A+2D B 0 0 0 0
H= 0 0 0 B 0 B 0 0 0
0 0 0 0 B —-A+2D 0 0 0
0 0 0 0 0 0 —Z+D B 0
0 0 0 0 0 0 B —Z+D 0
0 0 0 0 0 0 0 0 A—-2Z+2D

(2.3)
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where

Z = thNVBO (24)
Mo, o 1 2
A= Eh%’vﬁ[l — 3cos”0) (2.5)
_ lpe, o 1o 2
B = 447rh7NV7“3 [1 — 3cos=0] (2.6)

D is the spin-spin splitting and will be calculated in the next section. This Hamiltonian can
now be diagonalized to find the eigenvectors and corresponding energy levels. Using these
new eigenvectors |n > as our basis we have:

1
1>= ——(—|—1,1>+[1,-1>)

V2

1
2>=—(—-1,1>
2>= (= 11>+

—A+2I' + A2+ 8B2 —4AD + 4D?

00,0 > +[1, -1 >)

2B
1 —A+2I — VA2 +8B? — 4AD + 4D?
= —(|-1,1 1,-1

3= (- L1>+( - 10,0 > +[1,-1 )
4>=|—-1,-1>

1
5>=—(—|—1,0> 4|0, -1 > (2.7)
5>= (- 0.-1>)
65— (| = 1,0 > 4]0, —1 >)

\/§ J J

1
7>=—(—1,0> +]0,1 >
7>= (110> +0,1>)

1
8§ >= —(0,1>+|1,0 >
8 >= —5(0,1> +1,0 >)
9 >=|1,1>

N; and N, are normalization factors given by:

1 /[—A+90 +VAZF8B2 —4AD +4D2\’
le 2—’—1

K (2.8)
_ _ 2 7 3\ 2
o \/2 N i ( A+ 9T — VA +BSB IAD + 4D ) 2)
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Due to the large difference between vy and yis¢, transitions that involve ASy; > 1 cannot
induce a nuclear Zeeman transition. In order to see how transitions among energy levels can
give rise to polarized nuclei, we will confine the analysis to the manifold of states with zero
total spin angular momentum, |1 >, |2 > , and |3 > (Valid if optical pumping into S, =0
is efficient. Note that other states, if populated, can also induce transitions). The energies
for these states are given by:

E =—-A+2D (2.10)
E, = %(—A — /8B2+ (A —2D)%+2D) (2.11)
E; = %(—A +/8B2 + (A — 2D)% + 2D) (2.12)

Spin-Spin Interaction

Due to axial symmetry of the NV- center defect, the spin-spin interaction Hamiltonian can
be written entirely in terms of S./:

2
Hes = Do(S% — g) (2.13)

where the z’-axis is defined by the symmetry axis of the defect. In this experiment, a < 111 >
axis of the crystal is aligned along the magnetic field such that some of the defects have their
symmetry axes aligned with the external field. However, due to the tetrahedral symmetry
of the lattice, there are an additional 3 equivalent symmetry axes oriented approximately
109.5 degrees from the external field. In order to transform the Hamiltonian from the
crystal reference frame to the laboratory frame (i.e. the frame in which we measure nuclear
polarization), we recognize that the spin-spin Hamiltonian transforms under rotations like
a rank-2 tensor. The Wigner rotation matrices are a useful notation for representing the
rotational properties of such entities. Since we only need to retain the part of the transformed
Hamiltonian that commutes with S,, we only need a single element from the rank-2 rotation
matrix, d(2),0' In the laboratory frame, the Hamiltonian is given by:

2
Hss = dg yDo(S2 — g) (2.14)

which evaluates as

1 2 2
Hes = D0§(3 cos? 0 — 1)(S? — g) = D(S? - g) (2.15)

where D = Doz (3 cos? 0 — 1).
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Optical Pumping of Energy Levels

The optical pumping of NV- centers whose symmetry axes align with the external magnetic
field has been extensively treated in literature for low fields, and it is clear that the Sz = 0
state is populated with high efficiency. Even at high field, the symmetry properties of
the defect should not change, and a similar polarization is expected. (The case where the
magnetic field is not aligned with the defect axis is more complicated and is not treated in
this work.) Ensembles of identical spins are most naturally represented as a density matrix.
We shall define pyy to be the density matrix of a single NV- center under optical pumping.
The optical pumping is not expected to give rise to any coherent superposition states, so the
off-diagonal elements of pyy are all zero and the diagonal elements are the populations of
the single-spin sub levels. Although the single-defect density matrix is convenient to define,
we are interested in knowing the populations of the 2-defect eigenstates defined in Eqn. 2.7.
In order to find these populations, P;, we use the formula:

Py =< il(pyy @ pyv)li > (2.16)

where ply, ® pay is the density matrix expanded into the 9-dimensional vector space for
pair-wise interactions. The superscripts on the density matricies refer to one of the two
separate defects under consideration. In order to achieve a fit in our simulations, we assume
defects of all orientations have 99.8% of their population in the S, = 0 state (the actual
populations for non-aligned defects is likely quite different, and should be accounted for in
future work).

Evaluating equation 2.16 for the 3 eigenstates of the total spin Hamiltonian for which Sz = 0
gives:

1
P = 5 (P|+1>P|71> + P|71>P|+1>> (2.17)
1
Py = 2 (P|+1>P|71> + P> By + a2P|0>) (2.18)
i
1
Py = 2 (P|+1>P|71> + P> By + 52]3\0>) (2.19)
2

where

_ 2 2 _ 2
. A+2I' + A2+ 8B 4AD+4D) (2.20)

2B

B (2.21)

(—A+2r— VA? + 8B2 —4AD+4D2)
2B
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Direct Relaxation Rates

In order to continue our analysis, we must determine the strength of the thermal contact
between the NV- center dipolar reservoir and the nuclear Zeeman reservoir. In microscopic
terms, this involves a quantum mechanical calculation of transition rates bewteen energy
levels using perturbation theory. The following analysis is similar to [47], but adapted to a
spin-1 system with a spin-spin splitting. In the previous section we defined the energy levels
for a pair of NV- centers coupled through the anisotropic dipolar interaction. We now wish
to examine the effect of a single 13C nuclear spin coupled to one of the NV- centers through
the dipolar interaction. Since the magnetic dipole of a ¥C is on the order of 4000 times
weaker than the NV- center, we can treat the influence of the nuclear spin as a perturbation
to the Hamiltonian developed in the previous section.

The dipole-dipole interaction between NV- centers and 3C spins is treated as a pertur-
bation that induces transitions between NV- center energy levels. Fermi’s Golden Rule gives
the direct relaxation rate for a nucleus, m, near a central NV- center, 7, which is also coupled
to another NV- center, k:

) 2 ,
pyakm — %|Vﬂm|25(AElg — hwr) (2.22)

Vim = BOp2y 5 (—3sin(0)cos(f)e~) is the Hamiltonian matrix element for transi-
tion, from Hzs. Angular dependence is removed by spatial averaging to obtain [VI™| =
—fT(gh%vaT%. In order to obtain an average transition rate, a sum over all neighboring
NV- centers, k, is approximated as an integral:

Wi = /_ N p(A)g(A)YWImk(A) dA (2.23)

where ¢ is the normalized distribution of values of A, and p = P, + P5 is the probability

that the NV- center pair is in state 1 or 3. For a dilute spin system, g(A) = ﬁ, where

o= %7}2\{\/52“ and n is the number density of NV- centers [1]. The integral may then be
evaluated: A
W =% p(A) W (A;)g(Ay) (2.24)

i=1,2

where A; are the two roots of the argument of the delta function in W.

Effective Spin Temperature

From the previous section, we can see that only two electron dipolar levels, 1 and 3 are
involved in the polarization process. The NV- dipolar energy reservoir system is now sim-
plified to a pseudo two-level system, for which a spin temperature may be defined in a
straightforward way (returning to the designations for two NV- center states):
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Es — Ey

Topin = ——p~
" kpIn(H)

(2.25)
P; and P, are the populations of states 3 and 1. As shown previously, the populations
depend upon A and ~, the values of which were determined in the previous section, with two
possible roots to the delta function for each value of v. As an example, in the case where
Pos =1, the ratio % becomes zero and the effective spin temperature approaches negative
zero, or the zero-entropy state where all members of the ensemble are in the highest energy
level.

Spin Diffusion and Transport Model

In the previous section we showed that the direct relaxation rate is proportional to | V™%
which decays as 1/r5. Therefore, direct relaxation is only significant for those nuclei suffi-
ciently close to NV- centers. We now turn our attention to the transport of spin polarization
from these proximate nuclei to the bulk material. In other words, we will investigate the
mechanism by which the nuclear Zeeman energy reservoir establishes internal thermal equi-
librium. The average distance between nearest neighbor polarizing NV- centers is [46]:

3 3
R = 2.26
(47TNNv> ( )

We define the location of an NV- center to be r = 0. The transport of polarization to the
bulk material occurs through energy conserving homonuclear flip-flop transitions, known as
spin diffusion. We will approximate this process as diffusion in a continuum, even though the
spins lie on a discrete crystal lattice. This should be a good approximation when R >> a,
where a is the average distance between nuclei. A further simplification is made by averaging
over all angles so only transport in the radial direction is modeled. The polarization is then
modeled using an effective spin diffusion coefficient D.;s in conjunction with a well known
equation for radial transport in spherical coordinates :

dP 1d, 6 ,dP

— = Dgpp——(r*— Py — PYW,, 2.27

= Degy g (P50) + (B — PYWa(r) (2.27)
where P is the nuclear spin polarization, W, is the direct relaxation rate calculated in the
last section, and Py is the thermal equilibrium nuclear polarization at the NV- effective spin

temperature. We have neglected spin-lattice relaxation in this treatment.
The initial and boundary conditions are:

P(t=0)=0 (2.28)
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%(r =0)=0 (2.29)
Z—f(r —R)=0 (2.30)

The initial condition represents saturation of the nuclear spins prior to optical pumping,
while the boundary conditions follow from symmetry. This equation is solved numerically
using Mathematica to obtain polarization as a function of r and ¢ using the literature value
Desy = 6.7 % 10_15%[46]. In order to avoid overflow error due to the %6 dependance of
W;(r), the r = 0 boundary condition was instead applied at 7 = 1072m. This value is
significantly less than a carbon-carbon bond length, so polarization neglected within this
radius is not physically realistic. Using a defect density of n ~ 10%cm™3, the numerical
solution was rescaled and superimposed upon data taken at 5K in Fig. 2.3. This model is
in good agreement with the characteristic timescale estimated for the diffusion-limited case
where 7 = %2, which is 69.6s for the values used in this model. It should be noted that
after publication [20] it was discovered that an incorrect value for the spin-spin splitting of
the 109.5 degree defects was used in the simulation. This should not significantly affect the
polarization rate, but does have implications for the spin temperature of those manifolds. A
corrected version of the simulations will also include a description of how the population the
the NV- Zeeman states varies with the angles of the defect symmetry axes relative to the
magnetic field. Since we are still developing an understanding of how the optical pumping
process is affected by a large magnetic field misaligned with the defect symmetry axis, this

simulation remains as future work.

2.5 Conclusions

Kinetics

We have shown that the timescale for nuclear polarization does not depend on temperature.
This is consistent with our model in that the relevant transitions are energy-conserving with-
out energy exchange with the lattice. This is in contrast to other DNP methods such as the
Overhauser effect, solid-state effect, and optical nuclear polarization in inorganic semicon-
ductors, all of which depend upon lattice energy to facilitate electron/nuclear transitions.
This has several important implications. The timescale of polarization can be much faster
than the spin-lattice relaxation rate, especially at low temperatures where the polarization
can be preserved long after the optical pumping. Also, this method is not dependent upon
the Boltzmann factor to achieve large polarizations, as is the case with microwave-induced
DNP methods. Therefore, in sample optimized for slow spin-lattice relaxation, this tech-
nique possibly could be used at higher temperatures as well. Additionally, the polarization
rate should be highly dependent upon NV- center concentration, allowing for tuning of the
polarization kinetics. At the time of this study, only one NV- concentration was available but
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studies are currently under way to determine the dependence of the polarization mechanism
on NV- concentration.

Temperature Dependence

The dependence of the polarization kinetics on temperature merits further investigation.
Earlier we proposed that a temperature-dependent phonon sideband in the optical absorp-
tion spectrum may allow greater optical penetration depth at lower temperatures [20]. Our
current speculation is that temperature-dependent spin-lattice relaxation processes (such as
those involving other paramagnetic defects) compete with and reduce the effectiveness of the
optical polarization. The lineshape changes may be due to temperature-dependant behavior
of the experimental apparatus, such as magnetic susceptibility of materials or movement of
the sample within the magnet due to thermal contraction. However, they may also be an
indirect probe of the spin dynamics of paramagnetic defects in the sample. The spin-lattice
relaxation times of these defects are highly temperature-dependant and the data may reflect
a transition between a “fast spin-flip” regime where the dipolar interaction with the nuclei
is averaged and a “slow spin-flip” regime where the defect spins are static on the timescale
of the dipolar interaction. Further studies are warranted to investigate this phenomenon.
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Chapter 3

Spin Ensemble Thermodynamics of
the NV- Center

Introduction

The previous chapter introduced the concept of a dipolar energy reservoir consisting of
a dense ensemble of interacting paramagnetic NV- centers. A quantitative description of
this mechanism requires knowledge of the spin temperature of this reservoir. In the previous
chapter a two-defect system with a distribution of dipolar couplings was used to approximate
this energy reservoir. Additionally, we assumed that the state of the ensemble is the tensor
product of single-defect states under optical pumping rather than consider evolution of the
ensemble under the dipolar interaction. In this chapter we describe preliminary attempts to
address these assumptions and a more rigorous, many-spin description of the ensemble spin
temperature.

A Microcanonical Ensemble

The stated goal of this section is to determine the spin temperature of the NV- ensemble.
However, in assuming that a well-defined spin temperature exists we have implicitly assumed
that the dipolar energy levels of the ensemble have reached an internal equilibrium (i.e. ther-
malization). This is in contrast to the previous “Toy Model” where we assumed the ensemble
was optically pumped in to a particular state which does not evolve until interaction with
the nuclear spins. The time scale for thermalization among dipolar energy levels is identical
to the spin-spin relaxation time, or 75 (assuming that the spin-spin dipolar interaction is
the dominant mechanism in determining 75.) Literature values for 75 for samples of similar
NV- density to the ones in this work indicate this thermalization happens on the timescale
of microseconds [45]. We must then compare this timescale to that for re-initialization of the
NV- spin state by optical pumping. Unfortunately, this value is not readily available and
most likely depends on the intensity of the illumination, polarization of the illumination,
and penetration depth of the illumination. So, while we proceed with this analysis assuming
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that the spin ensemble is indeed thermalized, future researchers should keep in mind the
questionable validity of this assumption.

Now that we are working with an equilibrium state, we can use the thermodynamic
definition of temperature:

dE
T=— 1
7S (3.1)

Since the spin system is energetically isolated (7} is long), it is appropriate to work with the
microcanonical ensemble. The entropy is then:

S = kInQ(E) (3.2)

where Q(F) is the number of microstates with a given energy E. Keeping in mind from the
previous chapter that we are only concerned with transitions for which AS, = 0, we can
neglect the Zeeman Hamiltonian in this calculation (although its influence is still present
through the neglect of Hamiltonian terms with which it does not commute). We also recog-
nizing the dipole-dipole interaction is small relative to the internal spin-spin splitting of the
NV- center. As an example, we consider the case for which total S, of the ensemble is equal
to zero (the same as assuming the +1 and —1 states are populated equally). The number of
ways an N-spin ensemble can be configured to give an energy E is:

N!

E E
(N = 5@)!(zp@n)"*

QE) = (3.3)
where D(0) is the component of the spin-spin splitting that commutes with the Zeeman
Hamiltonian. # is the angle between the defect symmetry axis and the laboratory z-axis. In
order to apply this theory to a quantitative model of the orientation dependence of nuclear
polarization, we must know the angular dependence of secular part of the spin-spin splitting
D. The spin-spin hamiltonian transforms under rotation like a rank-2 tensor, so the angular
dependence of the splitting is given by the following Wigner matrix element:

1
dgo = 5(3 cos’ 0 — 1) (3.4)

This symmetry may be familiar to NMR researchers as it has the same form as the Hamilto-
nian for the nuclear electric quadrupole moment interacting with an electric field gradient.
So we have:

1
D = hx 2.88GHZ§(3 cos? — 1) (3.5)

The energy of the system is entirely due to the internal spin-spin splitting and is equal
to:

1 1 2
E = ND(#)(5Pu + 5Py — 5Po). (3.6)
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Now, we can directly calculate the entropy:

N!
s=kln BN (3.7)

This expression poses a problem since it is not a continuous function of energy, as will
be needed to calculate the temperature. One option is to use Stirling’s approximation for
logarithms of large factorials and assume N >> 1, N >> %, and % >> 1. This yields the
following expression for entropy:

s~ k(NInN — (N — %) In(N — %)). (3.8)

Another approach is to recognize that the expression for {2 closely resembles a Gaussian curve
(the combinatorial expression resembles a binomial distribution, which may be approximated
as a Gaussian function in certain limits). However (2, and therefore entropy, is approximated
as a continuous function of E, the spin temperature may be defined as a derivative:

ds

)T = FTok (3.9)

In making this analysis, we assumed a collection of discrete energy levels behaves as a
continuum. This is valid if the homogeneous broadening due to the dipole-dipole interaction
is sufficient. However, since this broadening is known to be of the order of 10 MHz, and the
splitting between energy levels can be as large as 2.88 GHz, the validity of this assumption
remains open to questioning. Another possibility is that it is not a single continuum of states
that participates in the heat exchange, but many manifolds of states separated by 2D(6)
each form a continuum. Such a mechanism would not require an energy gap on the order
of GHz (2D(0)) to be overcome in order to couple to the nuclear spins. However, this also
means there are many different energy reservoirs (each characterized by a constant ) S?)
with separate spin temperatures. We have yet to develop a tractable solution for this theory

3.1 An Ensemble not at Equilibrium

As mentioned in the previous section, we do not yet know if the assumption of internal
equilibrium is valid, so we must consider the possibility that no well-defined spin temperature
exists among the dipolar energy levels of the spin ensemble. This is similar to the 2-spin
“Toy Model” presented in the last chapter but extended to a system with many energy levels,
rather than just 2. In the 2-spin model, we reduced the number of relevant NV- states to
2, and it is a particular quality of 2-level systems that they always have a well-defined spin
temperature, something that will not be the case in a many-spin solution. A many-spin
solution will require the calculation of population distributions among the many dipolar
energy levels as well as the transition rates for each pair of levels based on the available
density of states. Such a treatment will require theoretical methods beyond what have been
employed here.
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Chapter 4

Electric-Quadrupole Induced Nuclear
Polarization in (Gallium Arsenide

4.1 Introduction

Optical control of nuclear polarization in semiconductors has been an active area of research
for a community comprised of both nuclear magnetic resonance (NMR) spectroscopists and
condensed matter physicists[15]. As a probe of electron-nuclear interactions in the presence
of spin-couplings, such control is interesting at a fundamental scientific level. There is also
considerable interest in applying optical control of nuclear spin polarization to sensitivity-
enhanced NMR[24] and devices for quantum information processing[8][44]. Control of the
sign and magnitude of the polarization, especially as a function of position, is an important
prerequisite for proposed devices[36][42]. The most studied and best understood material is
gallium arsenide (GaAs). Optically-pumped NMR (OPNMR) in GaAs has been explained
by invoking a model where spin-polarized electrons are excited and spin exchange occurs
with electrons bound at shallow donors[6][32]. These bound, spin-polarized electrons then
polarize proximate nuclei primarily through the Fermi-contact hyperfine interaction.

The energy dependence of the OPNMR signal amplitude in GaAs exhibits several gen-
eral features. Far above the bandgap, the sign of the OPNMR signal may be controlled
with the light helicity and the spectrum exhibits oscillations as a function of photon energy
due to the appearance of Landau levels[27]. Near the bandgap, a maximum in the OPNMR
signal is observed due to the interplay of photon penetration depth and electron spin po-
larization[6]. Below the bandgap, a different regime emerges where the OPNMR signal can
no longer be controlled with light helicity and always assumes a positive value with respect
to thermal polarization, suggesting a different polarization mechanism is at work (Fig. 1).
Previous studies have proposed mechanisms, perhaps involving an electronic species with a
positive g-factor[34], but none have attempted to model this regime, nor have they provided
experimental tests of these mechanisms.

In this chapter, we present experimental data showing the dependence of OPNMR signal
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on incident laser intensity, rather than photon energy. We identify a regime at low laser
intensity with similar phenomenology to the previously observed regime of low photon energy.
We show that both situations are explained by including the effects of both quadrupolar
and electron-nuclear hyperfine relaxation on the growth and decay of the observed bulk
OPNMR signal. The rates of both relaxation mechanisms are determined by the free electron
concentration and shallow donor occupation fraction, which vary throughout the depth of
the sample. These parameters are determined at a given laser intensity and photon energy
by the optical absorption spectrum for GaAs.

4.2 Results

OPNMR spectra of "'Ga, as well as %Ga and "As, were collected for a bulk semi-insulating
GaAs wafer (American Crystal Technologies) 350 pym in thickness, surface orientation [100],
resistivity greater than 107Qcm, mobility greater than 6000 =, in a 9.4 T magnetic field at
low temperature. The sample was placed in a continuous flow cryostat and in good thermal
contact with a sapphire wafer to facilitate heat transfer at 6 to 8 K. NMR detection was
preceded by the rf pulse sequence SAT — 1, — 7p — 5, where 7, and 7p indicate illumination
and dark intervals, which were 180 s and 10 s respectively, unless otherwise noted. Saturation
(SAT) prior to illumination was carried out via a series of § pulses. The beam diameter was
~ 1.5 mm.

Figure 2 shows the dramatic change in observed NMR polarization for " Ga when the
laser intensity is decreased to ~ .83 uW/cm at 1.503 eV. At this photon energy, none of
the previously published models [26] can account for this pronounced loss of sensitivity
to light helicity. A new mechanism for optically-induced NMR effects is therefore sug-
gested. Previous workers have developed a model to explain the reduction of OPNMR signal
by quadrupolar-induced depolarization [31]. Here, we consider quadrupolar relaxation as a
mechanism for polarization which, in certain regimes, may dominate over hyperfine polar-
ization and reverse the sign of the NMR signal. Quadrupolar relaxation occurs near shallow
donors as the capture, release, and recombination of electrons creates a fluctuating electric
field gradient[31]. These fluctuations are governed by the kinetic temperature of the elec-
trons, and therefore drive the nuclear spins to this temperature, with no dependence on
the electron spin polarization. The equilibrium spin temperature achieved by quadrupolar
relaxation results in a spin polarization which has the same sign as the thermal equilibrium
spin polarization.
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Figure 4.1: OPNMR profile for ""Ga in GaAs, showing helicity-independent signal with
positive NMR signals for low photon energy and for low laser intensity. Temperature is 8 K.
(From [22].)
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Figure 4.2: Optically enhanced signal for "'Ga as a function of light helicity at different
laser intensities. The temperature was 6 K. The beam diameter was 1-2 mm. The laser
wavelength was 1.503 eV. 7p = 10 s and 7, = 180 s. The dotted lines are guide for eye only.

(From [22].)
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4.3 Discussion

The important parameter in a model [31] for OPNMR when nuclear spins possess a quadrupo-
lar moment is the ratio of the two relaxation timescales, f, defined by:

Ty o
— 18 4.1
f=7 (4.1)

where Q and H stand for quadrupolar and hyperfine relaxation. f is found to be a function
of the donor occupation fraction, I', and in the high magnetic field limit, this dependence is
given by:

r
f=for—s -
Previous works have primarily studied the regime of high laser intensity and near to above-
gap irradiation. In this case, I' is close to one, f is large, and the hyperfine mechanism
dominates. Here we consider the case where the donor occupation is less than one, either
due to lower laser intensity or reduced absorption at low photon energies.
fo is a property of the material and nucleus under investigation. By observing 3 different
nuclei in the same sample, we can isolate the effects of varying the gyromagnetic ratio, vy,
and the product of the quadrupolar moment and electrostatic antishielding, QRy4[31]. fo
scales as:

(4.2)

foox (4.3
DRy |

Based on this scaling behavior, we expect the transition from quadrupolar-dominated to
hyperfine-dominated behavior to occur at increasing values of laser intensity in the order
1Ga<%Ga<™As. This trend is clearly seen in Figure 3, supporting the proposed mechanism.

It was discovered previously that laser penetration depth effects have a significant impact
on the OPNMR signal [6, 26]. Our analysis predicts that not only can the magnitude of (1)
vary throughout the depth of the sample, but the sign of (I,) may vary as well. Qualita-
tively, for high laser intensity and near to above gap irradiation, the majority of the light
is absorbed near the surface of the sample, with a high donor occupation fraction and free
electron concentration. The OPNMR signal is then almost entirely due to this region where
hyperfine relaxation is dominant. As the photon energy is lowered well below the bandgap,
the penetration depth becomes large, the rate of absorption per unit volume is much lower
and is spread throughout a larger region of the sample. In this case, the OPNMR signal is
due to a large region of the sample with lower donor occupation fraction and free electron
concentration where quadrupolar relaxation dominates. This accounts for the behavior in
the low photon energy regime that was previously unexplained[34].

For near and above gap irradiation, the OPNMR signal will always be limited to the
region near the surface due to small penetration depths. By reducing the laser intensity,
however, the free electron concentration and donor occupation fraction in this region may be
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Figure 4.3: OPNMR signal as a function of laser intensity for 'Ga (circles), °Ga (squares),
and As (diamonds). Photon energy is 1.503 eV. Temperature is 6 K. (From [22].)
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lowered so that quadrupolar relaxation dominates. There also exists an intermediate case for
both laser intensity and photon energy where the net OPNMR signal is zero. This analysis
suggests that in this case (I,) is not zero throughout the sample, but rather there are regions
of positive and negative (/).

We have experimentally demonstrated a new, helicity-independent regime of OPNMR
at low laser intensity. These data are consistent with competing hyperfine and quadrupolar
relaxation mechanisms, including scaling behavior for different nuclei. This physical picture
also accounts for the previously unexplained regime of low photon energy. These competing
mechanisms provide a means by which to pattern nuclear polarization on a sub-micron length
scale by adjusting photon energy and laser intensity. This patterning is an important step
in the development of devices using hyperpolarized nuclear spins.
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Chapter 5

Patterned Nuclear Magnetism in
Gallium Arsenide

5.1 Introduction

Control of electron spins in semiconductors impacts the design and analysis of both solid-
state quantum computation schemes and spintronics devices[48, 30]. In both applications
the electron spins are subject to internal magnetic fields that arise from nuclear spins. The
small energy separation between nuclear spin states leads to a highly disordered, fluctuating
spin ensemble that contributes significantly to electron spin decoherence, thereby limiting
the fidelity of quantum computation. If the nuclear spins are polarized, their magnetic field
acts on electron spins to produce an effective, static field in addition to the fluctuating com-
ponent. Spatial control of this internal field is a prerequisite to coherent control of electron
spin currents in spintronics devices[19]. While patterns have been imprinted via ferromag-
netic heterostructures[41, 43|, and nanometer-scale control has been achieved by a variety
of methods in quantum-confined semiconductors[35, 28], no general scheme for controlling
internal nuclear fields has yet been developed for unstructured, bulk semiconductors.
Optical excitation for the crafted preparation of nuclear polarization I, in semiconductors
has a history extending back several decades[15]. Previous work focused on the selection
rules for excitation of spin-polarized electrons in GaAs, and the subsequent exchange of
these electrons with spins bound at recombination centers[33]. These bound electrons have
a strong contact hyperfine interaction with nearby nuclei which undergo dynamic nuclear
polarization (DNP) driven by spin exchange modulation of the hyperfine field. The DNP
rate decays exponentially with distance from the recombination center, and scales linearly
with probability of trapping at a recombination center[6, 26]. Both the magnitude and sign
of the polarization of nuclei undergoing DNP may be controlled by the polarization of the
incident light. In the previous chapter we identified a second mechanism[22, 31] for nuclear
polarization that arises from the interaction of a nuclear electric quadrupole moment with
fluctuating electric field gradients at a recombination center. These gradients arise from the
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spin exchange process at recombination centers and result in a positive nuclear polarization
by facilitating thermal relaxation.

The charge carrier dynamics that drive both polarization processes depend upon opti-
cal absorption rate, which is a function of optical absorption coefficient and light intensity.
In the regime (near to above gap) where the optical penetration depth is smaller than the
sample thickness, the electron generation rate is strongly dependent upon depth in the sam-
ple. Because both illumination intensity and penetration depth (via different wavelengths)
are variable across several orders of magnitude in typical laboratory settings, these param-
eters may be used to “tune” the recombination center dynamics and control the sign and
magnitude of nuclear polarization. Here we harness this control to create micron-scale pat-
terns of nuclear polarization as a function of position and isotope. These patterns are easily
re-writable, depend only on simple parameters of optical excitation, and may be easily ma-
nipulated with NMR pulse sequences.

5.2 Results

Internal Nuclear Fields

An intuitive way to view how nuclear polarizations produce effective static fields for spin-
tronics applications begins with the Hamiltonian governing the behavior of electron spins in
a semiconductor:

N
H=gupS-B+> A,S-1, (5.1)
n=1
The first term of this Hamilltonian is associated with the static field and applied resonant
pulses. The second term represents the contact hyperfine interaction with the many (N)
nuclei enveloped by the single electron wavefunction. We can separate the applied magnetic
field, B, into its static z-component (the Zeeman field denoted By), and its time dependent
component (RF or microwave pulses, arbitrarily chosen to be along the x-axis). We can also
separate the hyperfine interaction with nuclei into a static component (which has non-zero
magnitude only in the z-direction) and a fluctuating component:

N
H = gupS.Bo+ gpupSaBo(t) + AS.L + Y " A,S - 61,(t). (5.2)

n=1

Control of the average nuclear polarization, I, effectively controls the Zeeman field as a
function of position in space

N
H = g,U,BSZBeff(7) + g,uBSme(t) + ZA”S . 6]n(t> (53)

n=1
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with Besyr = By + A?—(?). It is this spatially-dependent field that will enable spintronic and

uB _
quantum computing device technologies and experimental control of 12(7) is the necessary

prerequisite.

In order to understand how control of I_Z(?) can be used to create patterns of nu-
clear magnetization, we examine the two distinct mechanisms of nuclear polarization. The
hyperfine-induced nuclear polarization rate by the electron spin-exchange mechanism in the
high-field limit is[31]

2 —4 -
. F’VN;;O (5.4)
Ty Wi TH
where aq is the Bohr radius, I' is the probability of a trapped electron at a recombination
center, r is the distance of a nucleus from the recombination center, vy is the nuclear
gyromagnetic ratio, 74 is the correlation time for fluctuations of the hyperfine field, and wy
is the frequency associated with a nuclear-electron “flip-flop” transition.

In contrast, the quadrupolar polarization mechanism occurs due to modulation of the
electric field gradients (EFG’s) around recombination centers. These modulations are caused
by the alternation between the ionized and neutral state of the recombination center due
to electron capture and recombination[31]. This modulation couples the nuclear Zeeman
energy reservoir to the kinetic energy reservoir of the electrons, which rapidly equilibrates
with lattice phonons [49]. Therefore, this mechanism always drives nuclei towards a positive
spin temperature. The angular and radial dependence of the polarization rate are subtle,
but in the high field limit the angular dependence of the total relaxation rate disappears and
the rate is given by[31]

2(r) B2, Q2

xI['(1-T) -

T_Q (5.5)
where () is the quadrupolar moment of the nucleus, R4 is the electrostatic antishielding
factor, wy is the NMR frequency, and 7¢ is the correlation time of fluctuations of the EFG’s.
The radial factor s(r) is given by s(r) =1 — (1 +2- + 2%)6_2;7). For this mechanism the
optimum recombination center occupation probability is 50% and the rate decreases to zero
as I' approaches unity.
Defining the ratio of the two relaxation timescales as
and using[31] 72 o< T', we have (see Equs. 10-16)

I QR
1-T 7}
From this relationship, we model the transport of nuclear spin polarization around a given
recombination center as:

f o (5.6)
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ot N TH(T‘)
L. 1 ,
m@ + W) + DV, (5.7)

oI, 1
r

where Ig g is the equilibrium nuclear spin polarization via the quadrupolar mechanism and
I is the steady-state polarization due to the hyperfine mechanism (See Eqns. 17-19). Spin
diffusion (characterized by the diffusion coeflicient D) is fast relative to the direct polarization
rate outside the Bohr radius, where the magnitude of the electron wavefunction is negligible,
so gradients of I, are neglected and the last term in Eqn. 8 is zero. Integrating all terms in
Eqn. 8 over the sphere associated with a single recombination center (R = ( 473%)%) gives
the polarization per recombination center. Since both polarization rates are very small as r
approaches R, we approximate the limit of this integral as R — co. Equation 8 then yields
the solution for polarization per unit volume.

Stray-Field Imaging

NMR imaging is a well-established technique which maps spatial information to the frequency
domain by means of a magnetic field gradient. Nuclear spins at different positions within
the inhomogeneous field may be identified by their different NMR frequencies. Here we
employ a one-dimensional imaging technique known as Stray-Field Imaging (STRAFI)[25].
The STRAFT experiment makes use of the large gradients available in the stray field of a
superconducting NMR magnet. A schematic of the experimental setup is shown in Fig.
5.1. With a natural NMR linewidth of approximately 4kHz for ®*Ga and a gradient of
approximately 19 T/m, we achieved spatial resolution in the z-direction of 20 microns. As
shown in the pulse diagram of Fig. 1, data are acquired by first saturating the spin transitions
with a series of RF pulses, after which the sample is illuminated with circularly polarized
near-gap irradiation followed by signal acquisition via a 7 pulse and inductive detection of
the transverse magnetization.
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Figure 5.1: Stray-Field Apparatus for Imaging Nuclear Magnetism

The strong gradient in the stray field of a superconducting magnet provides the means for
NMR imaging in 1-dimension. Circularly-polarized illumination is directed to the sample
through an optical window on the sapphire sample support. Inset: the NMR pulse sequence
including saturation, illumination, and detection. (From [21].)
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Figure 5.2: Spatial patterns of ®Ga Nuclear Magnetism as a Function of Laser Intensity

NMR images of °Ga Nuclear Magnetism at (i) 102 mW/cm? (ii) 51 mW /cm?, (iii) 37
mW/cm?, (iv) 29 mW/cm?, (v) 12 mW/cm? and (vi) 4 mW/cm?. Red curves correspond
to o+ helicity and green curves correspond to o-. The origin is chosen to approximately
coincide with the semiconductor wafer surface. Inset: Incoming light illuminates the sample
from the left (coincident with higher frequencies in our setup, see upper horizontal axis).
(From [21].)

The STRAFI data in Fig. 5.2 correspond directly to the sign and magnitude of nuclear
magnetization as a function of depth in the sample. At the lowest illumination intensity (4
mW /cm?), the polarization is positive throughout the sample, and is nearly independent of
helicity, consistent with the bulk experiments reported previously[22]. At the highest illumi-
nation intensity (102 mW/cm?) the sign of the polarization throughout much of the sample
may be controlled with light polarization, consistent with many previous bulk studies in
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this regime[15, 36]. Here, the intermediate regime is of interest. In this regime of interme-
diate illumination intensity, using o+ polarization, regions of opposite spin polarization are
created within close proximity in the GaAs wafer. Neglecting for now the positive signals
immediately at the illuminated surface (discussed later) a negative signal is found close to
the surface of the sample where absorption is greatest and electron spin-exchange dominates
the nuclear polarization process. A positive signal emanates from that portion of the wafer
where the light intensity has decayed. In these regions of reduced absorption, the recombina-
tion center occupation fraction decreases such that the quadrupolar polarization mechanism
is dominant. By adjusting the wavelength of light (Fig. 5.3), we vary the optical penetration
depth, controlling the length scale of the patterns of polarization. For example, using 810
nm irradiation our analysis reveals that we created features approximately 40 microns wide.
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Figure 5.3: Controlling the Length Scale of Nuclear Magnetism with [llumination Wavelength

Stray Field Images of nuclear polarization for ®Ga as a function of irradiation wavelength

for an illumination intensity of 37 mW /cm? after 10 min. (i) 810nm, (ii) 820nm, (iii) 825nm,

(iv) 830nm, (v) 835nm, (vi) 855nm. Red curves correspond to o+ helicity and black curves
correspond to o-. Decreasing the wavelength to 810nm (i) provides the shortest length scale
for polarization patterning. Our analysis indicates that the width of the negative polarization
region associated with this spectrum is approximately 40 microns. (From [21].)
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Modeling

Without detailed knowledge of the electron recombination dynamics, optical absorption at
high-field and low temperature, and kinetics of electron capture at recombination centers, it
is difficult to quantitatively model the dependence of the patterns on illumination wavelength
and intensity. However, assuming a single binary recombination mechanism and Langmurian
binding of free electrons to recombination centers, combined with literature values for optical
absorption|[6], we reproduce the shape of the STRAFI images as a function of illumination
intensity for a given wavelength (Fig. 4). We also note that for most experimental conditions
there is a region of positive polarization localized at the irradiated surface. We attribute
this to a depletion layer of low recombination center occupation near the surface where the
quadrupolar mechanism dominates. Briefly, defect states pin the Fermi-level mid gap at
the surface and an electric field extends from the surface into the bulk. Recombination
centers may be ionized in the regions where the electric field exceeds ~ 5000 V/cm[9]. The
approximate width of the depletion layer is given by[49]:

2€€0¢0
P

where € is the dielectric constrant, €, is the vacuum permittivity, ¢, is the potential of the
pinned Fermi-level at the surface, and p is the charge carrier density. In order to theoretically
reproduce STRAFI images, a depletion layer of 50 pum was included in the simulations.
Assuming the Fermi-level is pinned mid-gap, this corresponds to a carrier concentration of
~ 10" em™3, which is similar to the free electron concentrations predicted by the simplified
model for a semi-insulating sample at low temperature with optical illumination. Given this
very simplistic model, the agreement with experiment (Fig. 5.3) is nearly quantitative.

L= )%’ (5.8)

Engineered Nuclear Magnetization

We investigated the isotope dependence of the patterning process (Figs. 4a and 4b). As
expected, the isotope with the larger quadrupole moment and smaller gyromagnetic ratio
required greater irradiation intensity to transition from positive to negative polarization.
Comparing the intermediate irradiation intensity data in Figs. 5.4a and 5.4b (for example
14 mW /cm?), we observed the unique situation where different isotopes of the same chemical
species have opposite polarization at the same location in the sample, suggesting the ability
to create heteronuclear spin order via dipolar or indirect J-coupling[11].
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Figure 5.4: Understanding the Roles of Quadrupolar and Hyperfine Polarization.

Stray Field Images of nuclear polarization for (a) "'Ga and (b) ®Ga. %°Ga, the isotope with
the larger quadrupolar moment and smaller magnetic moment, transitions from the (nega-
tive) hyperfine regime to the (positive) quadrupolar regime at higher irradiation intensity.
(c) Spatial patterns are due to the various “zones” where either the hyperfine or quadrupolar
mechanism may dominate. (d) Simulated STRAFI images for *Ga capture the changing
shape of the distribution of nuclear polarization with illumination intensity. For (a) the
intensities are (i) 5 mW /cm?, (ii) 10 mW /cm?, (iii) 35 mW /em?, (iv) 75 mW /cm?. For both
(b) and (d) the intensities are (i) 6 mW /cm?, (ii) 14 mW/cm?, (iii) 38 mW/cm?, (iv) 83
mW /cm?. (From [21].)



CHAPTER 5. PATTERNED NUCLEAR MAGNETISM IN GALLIUM ARSENIDE 40

Furthermore, optical pumping can be combined with NMR pulse sequences to further
control nuclear polarization. As a proof of principle, we combined periods of optical pumping
of varied intensity and wavelength with NMR 7 pulses to isolate regions of hyperfine- and
quadrupolar-induced polarization (Fig. 5.5). Many sophisticated NMR pulse sequences
exist that interconvert various types of spin order and coherence, which may be combined
with wavelength, intensity, and helicity control of spatially-patterned polarization to create
a range of spatially-dependent spin dynamics.
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Figure 5.5: Engineering Nuclear Magnetism

Optical pumping parameters may be chosen so that (a) quadrupolar relaxation dominates,
or (b) both mechanisms act simultaneously on different regions in the sample. By combining
periods of optical pumping with different intensity and wavelength, separated by 7 pulses,
only the (c) hyperfine or (d) quadrupolar polarized regions remain. (From [21].)
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5.3 Discussion

We have demonstrated an all-optical method to create patterns of polarized nuclear spins
from millimeter to micron length scales. All regimes are easily accessible under typical
laboratory conditions. Rastering of the laser beam will provide an additional 2 dimensions
of spatial control and combining NMR pulse sequences with optical irradiation gives a general
scheme for creating patterns. These patterns persist for a time scale equal to the nuclear
spin-lattice relaxation time, minutes to hours under these conditions, which is more than
sufficient for any NMR pulse sequence or quantum computing protocol. Patterns may be
erased (saturation), reoriented (#° RF pulses), or converted to various types of spin-order
through available NMR pulse sequences. We also note that for applications where the surface
depletion layer is undesired, Fermi-level pinning does not occur, for example, on a freshly
cleaved (110) GaAs surface[49] and may be avoided with an inert atmosphere or protective
encapsulation.

We call specific attention to the possibility of using patterned nuclear polarization to
create effective Zeeman fields in electron-spin based devices. Such fields may be used to
selectively tune the resonance frequency of confined electrons. Coherent electron spin ro-
tations have already been achieved[30], by causing electrons to drift through a region of
magnetized nuclei. Micron-level, 3-dimensional control of nuclear magnetism gives a new
degree of freedom in semiconductor spintronics which will be easily integrated into existing
device architectures with optical and electrical control.

We also note that the relative rates of the two polarization mechanisms are a function
of distance from a given recombination center. This suggests the possibility of achieving
patterned polarization on a length scale similar to the Bohr radius (~10nm in GaAs). For
an s-orbital like hydrogenic wavefunction the hyperfine polarization rate is greatest where
the electron density is highest (near the recombination center) and becomes small outside the
Bohr radius. In contrast, the quadrupolar mechanism relies on fluctuations in the gradient
of the electric field. Symmetry considerations dictate that no gradients exist at the center
of a spherically symmetric environment, so the behavior near the recombination center is
dominated by the hyperfine interaction. The quadrupolar interaction reaches a maximum
on the order of the Bohr radius from the defect site and decays less rapidly as a function of
distance. Future studies will investigate the local distribution of nuclear polarization near
defects.

5.4 Methods

Stray-Field NMR Imaging

NMR images for ""Ga and °Ga are obtained using the stray field of a 9.4 T superconducting
NMR magnet. The RF pulse sequence is SAT-7;, -7/2, where SAT is the saturation of the
spin transitions by a series of pulses, 7, is the irradiation time, and the final 7/2-pulse (8
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us) converts the nuclear polarization into observable coherences. The sample is a [100] wafer
of semi-insulating GaAs (American Crystal Technologies) with resistivity greater than 107
Qcm. To ensure good thermal conductivity, we use Apiezon N grease to mount the sample
of thickness 350 pum atop a long, rectangular sapphire strip. The strip bridges the opposite
sides of a ~3 cm diameter opening at the center of a thin copper plate, whose orientation
relative to the static magnetic field can be (slightly) adjusted using screws connected to
the outside of the cryostat via long G10 rods. A split-coil surrounding the sample (and
sapphire wafer) as part of a purpose-made cryogenic probe serves as the radio-frequency
source. The coil shape and size are chosen so as to optimize the sample filling-factor while
avoiding making physical contact with the support wafer or GaAs crystal. As shown in Fig.
1, the area illuminated by the laser beam on the sample surface is defined by a proximal
1x1 mm? square window etched on an aluminum-coated sapphire strip aligned to coincide
with the coil central gap. We use an optical expander to widen the laser beam so as to
reach a 5-mm-diameter waist before the Al window, thus ensuring homogeneous intensity
over the optically pumped surface. We control the beam helicity using a linear polarizer
and a quarter wave plate. We illuminate the sample at 6.5 K through the quartz windows
at the bottom of a modified Janis-Varitran cryostat, and use the G10 rods protruding at
the upper end of our NMR probe to align the GaAs wafer perpendicular to the direction
of the static magnetic field. To accomplish this, we adjust the copper plate orientation
while monitoring the part of the laser beam reflected from the aluminum-coated sapphire;
this method allows us to reach a sample orientation precision better than half a degree. In
preparation for the optical-pumping experiments reported herein, we conducted extensive
preliminary experiments aimed at determining the magnetic field gradient as a function of
the sample position within the magnet bore. For this purpose, we recorded the "*Ga NMR
signal from a 350-pum-thick GaAs wafer at room temperature for multiple displacements of
the cryostat from its rest position atop the magnet. NMR spectra were attained using a
simple excitation-acquisition protocol with 1-us-long RF pulses so as to ensure the broadest
excitation bandwidth possible. The magnetic field gradient is linear over the sample volume
and exceeds 70 T/m at the maximum displacements we tested. For the present optical
pumping experiments, we use a somewhat moderate gradient (~19 T/m) as a reasonable
tradeoff between spatial resolution and signal-to-noise ratio for typical illumination times
(~10 min). Unless otherwise noted, the illumination wavelength is 825nm.
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Chapter 6

Conclusions and Advice for Future
Researchers

The two main topics discussed in this dissertation, the polarization of nuclear spins in dia-
mond and gallium arsenide, share some common attributes. In both systems one can readily
generate spin-polarized electrons via optical illumination. In gallium arsenide two mecha-
nisms of nuclear polarization are present, a magnetic hyperfine interaction that drives the
nuclear spins to a highly polarized non-equilibrium state, and an electric quadrupole interac-
tion that drives the nuclear spins to equilibrium with the lattice temperature. In diamond,
we establish a spin temperature in the dipolar energy reservoir formed by many interacting
defects. This reservoir is thermally connected to the nuclear spin Zeeman energy and drives
the nuclear spins to a highly refrigerated equilibrium state. While we have provided the
groundwork for understanding the basic physics, there is still much work to be done to fully
understand these systems, especially in the case of diamond. Additionally, there exists the
opportunity for exciting new applications of this knowledge. In the following sections I will
outline some ideas that future researchers may pursue:

6.1 Orientation Dependence in Diamond

Studies are already under way in the Reimer lab to determine the dependence of the nuclear
spin polarization on the orientation of the sample crystal in the magnetic field. These data are
still preliminary, but it appears that theoretical descriptions developed in this dissertation are
not yet sufficient to capture these phenomena. A full understanding must include the angular
dependence of the spin-spin Hamiltonian, how the optical pumping behaves when the defect
symmetry axis is not aligned with the magnetic field, and light polarization selection rules
for optical transitions. Additionally, many of the assumptions made in our initial attempts
to model the system must be reexamined, such as the neglect of Hamiltonian terms that do
not commute with the Zeeman term.
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6.2 Polarization Transfer from Diamond

It has long been a goal of magnetic resonance researchers to transfer nuclear polarization from
a highly polarized substrate to target molecules. There are several possible ways this may be
accomplished. The first possibility is to transfer polarization from '3C nuclei in the diamond
to external molecules. This could be facilitated by using isotopically enriched samples and
allowing spin diffusion to transfer polarization to external carbon nuclei. If it is desired to
transfer to another nucleus outside the sample, a double-resonance technique will be needed
(such as cross polarization) to overcome the energy mismatch. A perhaps more intriguing
possibility is to bypass the carbon nuclei altogether. There is no fundamental reason why only
13C should be polarized by the mechanism described here, it is only required that a nucleus
be sufficiently near to the NV- centers in order to interact. It may be possible to optimize
diamond samples with NV- centers very close to the surface, such that the electron dipolar
field extends to nuclei outside the crystal, directly polarizing them. Simulations suggest that
NV- centers must be within approximately 1nm of the surface for such a coupling to occur,
so it is not yet clear if this method is feasible.

6.3 3-D Patterning and Spintronics in Gallium
Arsenide

The work in this dissertation showed proof of concept that nuclear magnetization may be
patterned as a function of depth in bulk gallium arsenide samples by varying illumination
conditions and using NMR pulse sequences. It should be possible to extend this work further
by developing control of the illumination laser in the x-y plane and creating 3-dimensional
patterns of nuclear magnetization. The 1-dimensional imaging technique used here must
also be revised to image 3-dimensions. Furthermore, microfabricated devices with electrodes
may be fabricated to cause electrons to drift through regions of magnetized nuclei. Optical
Faraday rotation spectroscopy may be used to investigate how the magnetized nuclei are
controlling the drifting electrons.



45

Bibliography

1]
2]

Y

N O Ot

o C0
~ = & =N 2

— — o/ — —

Ne)

NS2)

A. Abragam. The Principles of Nuclear Magnetism. Oxford University Press, 1961.

Bauch E. Ledbetter M. P. Santori C. Fu K.-M. C. Barclay P.E. Beausoleil R.G. Linget
H. Roch J.F. Treussart F. Chemerisov S. Gawlik W. Acosta V.M. and D. Budker.

“Diamonds with a high density of nitrogen-vacancy centers for magnetometry appli-
cations”. In: Phys. Rev. B. 80.115202 (2009).

G. Balasubramanian et al. In: Nature 455.7213 (2008), 648-U46.

Pham L. M. Jarmola A. Budker D. Bar-Gill N. and R. L. Walsworth. In:
arXiv:1211.7094 (2012).

L. Childress et al. In: Science 314.5797 (2006), pp. 281-285.

P. Coles and J. Reimer. In: Phys. Rev. B 76 (2007), p. 174440.

M. V. G. Dutt et al. In: Science 316.5829 (2007), pp. 1312-1316.

J. Fabian et al. In: Acta Physica Slovaca 57 (2007), p. 565.

M. R. et. al. Fitzsimmons. In: Phys. Rev. B. 76.245301 (2007).

T. Gaebel et al. In: Nature Physics 2.6 (2006), pp. 408-413.

Ohki S. Hashi K. Goto A. and T. Shimizu. In: Nat. Commun. 2.378 (2011).

R. Hanson, O. Gywat, and D. D. Awschalom. In: Physical Review B 74.16 (2006).
R. Hanson et al. In: Physical Review Letters 97.8 (2006).

R. Hanson et al. In: Science 320.5874 (2008), pp. 352-355.

S. E. Hayes, S. Mui, and K. Ramaswamy. In: Journal of Chemical Physics (2008),
p. 052203,

M. J. R. Hoch and E. C. Reynhardt. In: Phys. Rev. B 37.17 (1988), pp. 9222-9226.
V. Jacques et al. In: Physical Review Letters 102.5 (2009).

Acosta V. M. K. Jensen Chemerisov S. Jarmola A. and D. Budker. In: Phys. Rev. Lett.
108.197601 (2012).

R. K. et al. Kawakami. In: Science 294 (2001), pp. 131-134.
Coles P. J. King J. P. and J. A. Reimer. In: Phys. Rev. B. 81.073201 (2010).



BIBLIOGRAPHY 46

[21] Li. Y. Meriles C. A. King J. P. and J. A. Reimer. In: Nat. Commaun. 3.918 (2012).

[22] King J. P. Peng L. Tamargo M. C. Reimer-J. A. Li Y. and C. A. Meriles. In: Appl.
Phys. Lett. 98.112101 (2011).

| J. R. Maze et al. In: Nature 455.7213 (2008), 644-U41.
| C. A.Michal and R . Tycko. In: Phys. Rev. B 60 (1999), pp. 8672-8679.
| C. A. Michal and R. Tycko. In: Phys. Rev. B. 60.12 (1999), pp. 8672-8679.
6] S. Mui, K. Ramaswamy, and S. Hayes. In: J. Chem. Phys 128 (2008), p. 052303.
| S. Mui et al. In: Phys. Chem. Chem. Phys 11 (2009), p. 7031.
]

Kobayashi Y. Komiyama S. Tsuboi M. Nakajima T. and T . Machida. In: Phys. Rev.
B 81.085322 (2010).

[29] P. Neumann et al. In: Science 320.5881 (2008), pp. 1326-1329.

[30] Fuchs G. D. Mack S. Samarth N. Nowakowski M. E. and D. D. Awschalom. In: Phys.
Rev. Lett 105.137206 (2010).

[31] D. Paget, T. Amand, and J. P. Korb. In: Phys. Rev. B 77 (2008), p. 245201.
2] D. Paget and P.B. Klein. In: Physical Review B 34 (1986), p. 971.

3] journal = Phys. Rev. B volume = 24 pages = 3776 3793-Year = 1977 . n. . E. Paget
D. In: ().

A. Paravastu et al. In: Phys. Rev. B 69 (2004), p. 075203.
M. et. al. Poggio. In: Phys. Rev. Lett 9.207602 (2003).
J. Reimer. In: Solid State Nuclear Magnetic Resonance 37 (2010), p. 3.

E. C. Reynhardt and G. L. High. In: Journal of Chemical Physics 109.10 (1998),
pp- 4090-4099.

[38] E. C. Reynhardt and G. L. High. In: Journal of Chemical Physics 109.10 (1998),
pp. 4100-4107.

[39] E.C.Reynhardt and G. L. High. In: Journal of Chemical Physics 113.2 (2000), pp. 744—
750.

[40] Klug C. A. Miller J. B. Sauer K. L. and J. P. Yesinowski. In: Phys. Rev. B. 84.085202
(2011).

[41] Berezovsky J. Kawakami R. K. Gossard A. C. Stephens J. and D. D. Awschalom. In:
Appl. Phys. Lett 85 (2004), pp. 1184-1186.

J. Stephens et al. In: Physical Review B 68 (2003), 041307(R).

J. et. al. Stephens. In: Phys. Rev. B. 68.041307(R) (2003).

D. Suter and T. S. Mahesh. In: The Journal of Chemical Physics 128 (2008), p. 052206.
S. Takahashi et al. In: Physical Review Letters 101.4 (2008).

w W

D
= =L =

T



BIBLIOGRAPHY 47

[46] C. J. Terblanche, E. C. Reynhardt, and J. A. van Wyk. In: Solid State Nuclear Magnetic
Resonance 20.1-2 (2001), pp. 1-22.

[47] J. Vanhouten, W. T. Wenckebach, and N. J. Poulis. In: Physica B and C 92.2 (1977),
pp- 210-220.

[48]  W.M Witzel and S. Das Sarma. In: Phys. Rev. B 74.035322 (2006).

[49] P. Y. Yu and M. Cardona. Fundamentals of Semiconductors. Springer-Verlag, Berlin,
2001.



48

Appendix A

Computer Simulations of Nuclear
Polarization in Diamond

The following is the code used to generate the simulations published in ??. The code runs on
Mathematica version 8.0.1.0. Note that the term “Cf2,” which corresponds to the zero-field
splitting for defects aligned 109.5 degrees from the magnetic field, contains an incorrect term.
It should read Cf2= 2 x Pi * hbar * 2.88 x 109 x $(3cos? 6 — 1).



"C13 OPNMR in Diamond"

C13 OPNMR in Di anmpond

" Physical Constants and Properties "
ClearAll ["A obal " %"]

c = 3%10% («Meters/Secondsx)

h =6.626 x10" -34; (*Joul esxSecondsx)

hbar = h/ (2 x); (xJoul esxSeconds )

kb = 1.38 % 10" -23; (*Joul es/Kel vi nx)

¥13C = 10. 705 % 107 6; (xHz/T from W ki pedi ax)
(*yNV=-2.560777%10"5%x1076; (xHz/T, cal cul ated from W ki pedi ax) %)
yNV=1.76%10"11/2/Pi;

NA13C = 0. 01108; (*Naural Abundance of Carbon-13: Fraction, not percent %)
Bo = 9. 4; (xTesl ax)

wl = yl3CxBo*2 % Pi; (xrad/sx)

0 =4 xPi »10" (=7); (*xTxnVA, from wi ki pedi ax)

"Model Parameters "

Nnv = 9.5 %107 18; (xConcentrati on of NV- Centers Spins/cm3,
estimated from Awschal om s quenchi ng decoherence papaer *)

(*Ne=10720; (*Concentration of all non-punped paramagnets spins/cnmt3,
estimated from Awschal om s quenchi ng decoherence papaer x) %)

(*Tle=.01; (%Electron Spin-

Lattice Relaxation tinme. Assumed constant for all paranagnetic defects, Secondsx)
Pnv=0; (xPol ari zation of NV- centers into the ns = 0 subl evel %) %)
(*Tc=3.510" (-7); (xCorrelation time for flucturations,
seconds Rough Guess for now, ~1 Gauss |inew dthx)x)

Deff =6.7 %10"-19; (*Spin D ffusion Coefficient m2/s,
taken fromtable 5 of Terblanche et. al (4.7 Tesla!)x)
POdeg = . 998; (*818Popul ation of ns=
0 state for those defects aligned with the nagnetic fieldx)
P109deg = . 998; (xPopul ati on of ns=
0 state for those defects 109.5 degrees off the external nagnetic fieldx)

" Calculations "

" Preliminary Calculations "

Rhv =1/7100% (3/ (4*7mxNnv))”™ (1/3);
(*Radi us under influence of a single NV- Center, Metersx)

" Hamiltonian Matrix Elements "

Cf :=2%Pi xhbar #2.88 %1079; (xZero Field Splitting the 2Pi converts fromHz to rad/s,
final answer in Joules, for defets aligned with BOx)

Cf2:=2%Pi xhbar *x2.88%10"9%1/4 % (3+ (Cos[2%109.5/360%2=xPi])"2);

(xZero Field Splitting the 2Pi converts fromHz to rad/s,

final answer in Joules, for defets 109.5 degrees misaligned with BOx)

2
V[r_]:=hbar *u0/ (4 %xx) xhbar » (yNV*2xPi ) » (y13Cx2*Pi) /r*"3 % (-3/2) x—;
3
(xDi polar transition termfor nuclear /el ectron interaction,
ommtted the phi dependance due to axial symetry,
al so averaged over theta to renove all angul ar dependencex)
(*Converted gammas to radians by nmultpplying by 2 Pi 8/20/09%)

" Transition Rates "
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2 | Diamond OPNMR Model with Data 9 with other manifolds.nb

AOOm= -hbar *wl -Sqrt [2 % (Cf +Cf) xhbar *wl +3 % (hbar »wl ) *3];
(*One of 2 Roots of the argunent of the delta function in Ferm's Colden rule,
i.e. the value of A for which AE=0, both zero degreesx)

AOOp = -hbar *wl +Sqgrt [2 % (Cf +Cf) »hbar *wl +3 % (hbar »wl ) *3];
(*One of 2 Roots of the argunment of the delta function in Ferm's Col den rule,
i.e. the value of A for which AE=0, both zero degreesx)

Allm= -hbar *wl -Sgrt [2* (Cf 2+ Cf2) = hbar »wl +3 % (hbar »wl ) *3];
(xFirst root of argunent delta function for both 109. 5degree non-aligned defectsx)

Allp = -hbar *wl +Sqrt [2 % (Cf 2+ Cf2) xhbar *wl +3 % (hbar »wl ) *3];
(xSecond root of argunment delta function for both 109. 5degree non-aligned defectsx)

AO01lm= -hbar *wl -Sgrt [2 * (Cf + Cf2) = hbar »wl +3 % (hbar »wl )" 31;
(xFirst root for conbination of 0O degree and 109.5 degree defectsx)

AOlp = -hbar *wl +Sqgrt [2 % (Cf + Cf2) xhbar *wl +3 % (hbar »wl ) "31;
(xSecond root for conbination of 0 degree and 109.5 degree defectsx)

Adp = hbar % wl ; (*CHECK THESE MATRI X ELEMENTS FOR CORRECT LADDER OPERATORS*)
Adm= -hbar »wl ;

bla_]:=-1/4%a%=Sqrt [2];
(#Just a rel ationship between A and B of the "dipol ar al phabet" x)

NOO[a_] :=Sqrt[2+1 /4% ((-a+2*Cf +Sgrt [a”"2+8xb[a]™"2-4xaxCf +4xCf"2]) /b[a])"2];
Nil[a_ ] :=

Sgrt[2+1 /4% ((-a+2+x*Cf2+Sgrt[a”*2+8xb[a]”"2-4xaxCf +4+Cf2722]) /bl[a])"2];
NOl[a_]:=Sqrt[2+1 /4% ((-a+ (Cf +Cf2) +Sqrt [(a”2) /2+ (a- (Cf +Cf2))"2]) /b[a])"2];
(*Normal i zati on constant defined as N_3 in ny paper,
the nunbers refer to the two possible orientations of the defectsx)

a

B

-1;

Ndl[a_]:=Sqgrt [1+a”2];
Nd2[a_] :=Sqrt [1+B"2];

2% 7N2

é * (YNV*2 % Pi )"2xhbar 2 % Nnv; (xEssentially the dipolar Iinew dth, %)

" 3 «Sqrt [3]
3]

gla_] i = ———;

(6"2+an2)

(*Describes fluctuations in NV- Centers due to the dipolar interaction,

Lorentzian as shown in Abragam this is like the density of statesx)

" Transport Model " \n \n(xThese are the diagonal elements of the 9x9
density matrix that were calculated in the paper. The first two numbers refer
to the orientation of the defects in the pair (0=0degrees,1=109.5 degrees)
The third number refers to level 1 and level 3 as defined in the papers)
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POO1 : = ((1-POdeg) /2)"2;
P003[a_]:=1/ (NOO[a])"2 % (2% ((1-P0Odeg) /2)"2+
((-a+2%xCf +Sqrt[a”"2+8xb[a]*2-4xa*xCf +4xCf~2])/ (2xb[a]))"2 % (POdeg)"2);

P111 : = ((1-P109deg) /2)"2;
P113[a_]:=1/ (N11[a])"2 % (2 % ((1 - P109deg) /2)"2+
((-a+2%xCf2+Sqrt[l/2+a”2+ (a-Cf2-Cf2)72]1)/ (2%xb[a])) "2 (P109deg) " 2);

P011 : = (1 - POdeg) » (1 - P109deg) / 4;
PO13[a_]:=1/ (N01[a])"2 % (2 (1 -P0deg) /2 % (1-P109deg) /2 +
((-a+ (Cf +Cf2) +Sgrt[l/2%xa”"2+ (a-Cf -Cf2)"2])/ (2*xb[a]))” 2 %xP0deg » P109deq);

(*These are the total probabilities for a defect
pair to be in a state that can participate in the tranitions)
Prob0OO[a_] : = POO1 + POO3[a];
Probll[a_]:=P111 + P113[a];
Prob0l[a_] :=P011 + P013[a];

Probd00 = 2 » (1 - POdeg) = (POdeq);
Probdl1l = 2 » (1 - P109deg) » (P109degq);

(*These are transition rates (as calculated fromFerm's Gol den Rul e)

for each of the 3 possible defect pair orientations 00, 10=01, 11,

and al so accounting for the two different values of A that gave roots for

the argunent of the delta function. (mand p, stand for plus and m nus) %)

WOm[r _] : = ProbOO[AOOmM] » (2 = Pi / hbar %= (2 % (Abs[V[r]1]1)"2/ (NOO[AOOM])"2) »g[A0Om]) /
(1/72+1/4% (6+«A00M-2x% (Cf +Cf)) /7Sqrt [2 » AOOM 2 + (AOOmM- (Cf + Cf))"21);

W)Op[r_] : = ProbO0O[AOOp] = (2 xPi /hbar = (2 % (Abs[V[r1])”2/ (NOO[A00p])~"2) % g[A00p]) /
(1/72+1/4% (6+xA00p-2+ (Cf +Cf)) /Sqrt [2«A00p™2 + (AOOp - (CF +CF))"2]);

WLIm[r _] : = Probl1[Allm] » (2 = Pi /hbar = (2 % (Abs[V[r]1]1)"2/ (NL1[A11m])"2) »g[Allm]) /
(1/2+1/74% (6%xAllm-2+% (CF2+CF2)) /Sqrt [2 « Al1lm*2 + (Al1lm- (CF2+ CF2))"2]);

WL1p([r_] :=Probl1[Allp] = (2 xPi /hbar % (2 % (Abs[V[r1]1)"2/ (N11[Allp])"2) *xg[Allp]) /
(1/72+1/4% (6+xAllp-2+ (Cf2+Cf2)) /Sqrt [2«Allpn2+ (Allp- (CF2+CF2))"2]);

WOIm[r _] : = ProbO1[AO1m] » (2 = Pi / hbar %= (2 % (Abs[V[r]1]1)"2/ (NO1[AO1m])"2) »g[AO01m]) /
(1/72+1/4% (6%«A0Im-2* (Cf +Cf2)) /Sgrt [2 « A0ImM 2 + (AO1m- (Cf + Cf2))"2]);

WO1p([r_] :=Prob01[AO1p] = (2« Pi /hbar = (2 (Abs[V[r1]1)”2/ (NO1[A01p])~2) »g[AO1lp]) /
(1/72+1/4% (6%xA01p-2+ (Cf +Cf2)) /Sqrt [2 «A01p~2+ (AO1p - (Cf +CF2))"2]);

WOOdp[r_1] : = Probd00 = (2 xPi /hbar = ((Abs[V[r]] * Nd2[Adp] / (Nd1[Adp]"2 % B))”"2) xg[Adp]);
WO0dm[r _1 : = Probd00 % (2 = Pi / hbar = ((Abs[V[r]] = Nd2[Adm] / (Nd1[AdmM] "2 = B))"2) * g[Adm]);
WLldp[r_] : = Probdll « (2« Pi /hbar » ((Abs[V[r1] * Nd2[Adp] / (Nd1[Adp]~*2 % B))"2) »g[Adp]);
WLidm[r ] : = Probdll = (2 xPi /hbar = ((Abs[V[r1] = Nd2[Adm] / (Nd1[AdM] "2 % B))"2) x*g[AdmM]);
W1d[r_]1:=0;

(*These are the actual equilibriumpolarizations of the dipolar |evels of defect pairs
for each of the 3 orientations and 2 possible values of A per orientation. A

wei ght ed conbi nation of these values (weighted by both abundance and transition rate)
will give the final nuclear polarizations)

MbOOm = (PO03[A00mM] - P0O01) / (POO3[A00mM] + P001);

Mb0Op = (POO3[A00Op] - POO1) / (POO3[A0Op] + PO01);

Mbllm= (P113[All1m] - P111) / (P113[Allm] + P111);

Mbllp = (P113[Allp] - P111) / (P113[Allp] + P111);

MbO1lm= (PO13[A01m] - PO11) / (PO13[A01m] + P011);

MO1p = (PO13[A01p] - PO11) / (PO13[AO01p] + P0O11);

" Time Evolution of the Spatial Profile of Nuclear Polarization "
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(*This solves the differential equation for the tine
evolution of direct polarization and spin diffusion in the continuum
approxi mati on with angul ar dependence renoved by averagi ng. =)
sol ution = NDSol ve[{D[M[t, r], t] ==Deff «1/r”*"2%D[r"2D[M[t, r], r], r]+
1716 % ((VWOOmM[r ] % (MOOOM- M[t, r]) + WOpI[r] = (MoOOp - M[t, r])) +
6% (WOIm[r] *» (M0O1Im-M[t, r]) + W 1p[r] = (MoO1lp -M[t, r])) +
9% (WLIm[r] » (Mo1llm-M[t, r]) + W1lp([r] % (Mo1llp-M[t, r]1)) -WOOdp[r] = M[t, r] -
wWodm[r] * M[t, r] -9 »W1ldp([r] *M[t, r] -9 «WI1ldm[r] +M[t, r]), MO, r] =0,
Derivative[O0, 1][M[t, 10" (-12)] == O, Derivative[O, 1][M[t, Rnv] = 0},
M {t, 0, 3060}, {r, 10" (-12), Rnv}];

(*Shows the spatial distribution (Wth respect to r)
of the nuclear polarization due to a pol arizing defectx)
Pl ot 3D[Eval uate[M[t, r] /. %], {t, O, 300}, {r, 10" (-11), Rnv},
Pl ot Range -» Al | , AxeslLabel -» {Style["Time (Seconds)", Medium Bol d, Bl ack],
Style["r (meters)", Medium Bold, Black], Style["Pol arization", Medium Bol d, Bl ack]}]

r (meters)

9 0
2.x10°° 1.x10

0.08

Polarization 2%

0.04

0.02

0.00 o

Time (Seconds) 0
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" Prediction for Time Evolution of NMR Signal "

lz[t_]:=Nntegrate[Evaluate[(r *10"9)"2«M[t, r] /. solution], {r, 10~ (-10), Rnv}]/
(Rnv - 10" (-10)); (*xThis integration yields the
bul k averaged nucl ear polarization as a function of tinesx)

(*Shows rescal ed mbdel vs. rescal ed datax)
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Appendix B

Computer Simulations of Patterns of
Nuclear Magnetization in Gallium
Arsenide

The following is the code used to generate the simulations published in ??7. The code runs
on Mathematica version 8.0.1.0.



ClearAll["Global™ %"]

~constants.,

h=6.626x10"-34; (xPlanck's Constant, Jxs *)

hbar = h/ (2 * Pi) ; (*Reduced Planck's Constantx)

kb = 1.38 * 10" -23; (*Boltzmann Constant, J/K#)

ec =1.602*%10"-19; (xfundamental charge, Coulombsx)
c=3%10%; (xSpeed of Light m/sx)

me = 9.11 * 10" -31; (*xElectron Mass, kgx)

B=hxec/ (2*me*2); (¥xBohr Magnetonx)

~Model Parameters.,

£71 = 2.5 % 10~ - 14; (xFitting Parameter in Model«)
£69 =1.3%10"-14;

T = 6.5; (*Temperature in Kelvins)

T = 600; (*Masurement time in Arbitrary Unitsx)
intensity = 40; (*Enter Intensity, mW/cm”2x)
wavelength = 825; (*Enter Laser Wavelength, nmx)
6 =50%10"-6; (xDepletion Layer Thicknessx*)

BO = 9.4; (xExternal Magnetic Field, Teslax)
¥71 = 121.927 %1076 /9.4 % 2 » Pi; (*Gyromagnetic Ratios Rad/S/Teslax)
¥69 =95.993 %1076 /9.4 %2 % Pi;
¥75 =68.483 %1076 /9.4 2 x Pi;
gGaAs = -0.44; (xis this the free electron g-factor? Do we need both g-factors?x)
wH = gGaAs * 3 *x BO / hbar;
oe =9%10" (-16); (*xSpin Exchange Cross Section in m"2, from Paget=)
v=.64%10"5; (xElectron velocity in m/s, at 6K from Bimbergx)
be =1.5%10" (-3); (xHyperfine field at the Bohr Radius (Tesla), from Pagetx)
a0 = 10" -8; (*Bohr radius, meters, from Wikipediax)
SO =-1/4; (*xInitial Value of <Sz>
for Photoexcited Electrons for sigma minus irradiation, units of hbarx)
SOm = +1/ 4; (*xInitial Value of <Sz>
for Photoexcited Electrons for sigma minus irradiation, units of hbarx)
k=1%10"-16; (*recombination rate constant (m"3/s)*)
Na = 5% 10" 22; (xAcceptor Concentration, m”-3x)
Nd = 10" 22; (xDonor Concentration, m”-3x)
(*voc=10"(-13) ; (xElectron capture rate (m"3/s)x*)=*)
RGa = 2.8 * 10" 12; (xAntishielding tensor component, m"-1x)
RAs = 3.2%10"12; (*Antishielding tensor component, m”"-1%)
071 = .106 * 10" (-28) ; (*Quadrupole Moment, m"2x)
(*.107%10" (-28) ;,.19%10" (-28) ;, .29%10" (-28) ; %)
069 = .168 * 10" (-28) ; (*Quadrupole Moment, m"2x)
(*Modified these while fitting, need to change to Correct Values!!!x)
Q075 = .315 *» 10" (-28) ; (¥Quadrupole Moment, m"2x)
€ =8.854%10" (-12); (*Vacuum Permittivity, Coulombs/ (Vm) %)

€0 = 12.9; (*Relative permittivity=x)
oc=5.1%10"-19; (xCross Section for electron capture at shallow donors m"2x)
C2=k/ (cc*v*Nd)"2;
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= (*Absorption Data near the Band Gap Energy (The Compillation of absorption data was done by
Pat Coles*)

absdata = {{0, O} {1.48755", 10}, {1.48895>, 11}, {1.48915, 11}, {1.4899499999999999, 12},
{1.4900499999999999~, 12}, {1.49065", 13}, {1.49155~, 14}, {1.49175°, 14.57},
{1.4922499999999999~, 15.4"}, {1.49275°, 17.5"}, {1.49305°, 18},

{1.49365>, 20}, {1.49395", 20}, {1.49475", 22}, {1.49545", 22}, {1.49565", 25},
{1.49655~, 27}, {1.4966, 30.5"}, {1.49755", 35}, {1.4981499999999999", 40.57},
{1.49905°, 45}, {1.49985~, 49}, {1.5004499999999998~, 54}, {1.50155~, 60},
{1.5023499999999999~, 64}, {1.50345~, 70}, {1.5040499999999999", 76},
{1.50545", 82}, {1.5063499999999999~, 95}, {1.50675~, 119}, {1.50685", 160." },
{1.50775", 220.00000000000003"}, {1.5085499999999998", 300},
{1.509, 409.99999999999994}, {1.5092999999999999", 500}, {1.50965", 610.7},
{1.5101499999999999°, 790.7}, {1.5104499999999998~, 1000}, {1.51085", 1100."},
{1.51155>, 1550.~}, {1.51185", 1750."}, {1.5125", 3880."}, {1.51375>, 23920."},
{1.515~, 5240.7}, {1.5162499999999999~, 4800."}, {1.5174999999999998", 5400."},
{1.5187499999999998~, 6320."}, {1.5199999999999998", 7480."},
{1.52125, 11399.999999999998~}, {1.5225~, 11000."}, {1.52375", 10000."},
{1.525~, 10280.7}, {1.5262499999999999", 11960.7}, {1.5274999999999999~, 17000."},
{1.5287499999999998", 13600.000000000002"}, {1.5299999999999998", 10600. "},
{1.53125>, 9520."}, {1.5325>, 10600."}, {1.53375>, 11500."},
{1.535~, 12240.7}, {1.53625", 13000."}, {1.5374999999999999", 13200. "},
{1.5387499999999998~, 13200."}, {1.5399999999999998", 15640."},
{1.5412499999999998~, 14400."}, {1.5425", 12360.7}, {1.54375", 13000. "},
{1.545~, 14360.7}, {1.54625", 13360."}, {1.5474999999999999", 13180."},
{1.5487499999999998~, 13680.000000000002"}, {1.5499999999999998", 14240."},
{1.5512499999999998~, 15600."}, {1.5525, 18460."}, {1.55375", 14200."},
{1.555~, 12960.}, {1.55625", 13600.000000000002"}, {1.5574999999999999", 14120."},
{1.5587499999999999~, 14440.7}, {1.5599999999999998", 14840.7}};

(*Did some "doctoring" of these data to remove points with the

same energy and also added in the first point

to make extrapolation not go negativex)

abs = Interpolation[absdata, InterpolationOrder - 2];

Show[ListPlot [absdata, PlotRange -» {{1.49, 1.56}, {0, 29000}}],
Plot[abs[e], {e, 1.49, 1.56}, PlotRange » {{1.49, 1.56}, {0, 29000}}]]
(*This plots the compiled data points for optical obsorption with
the interpolation function used in the model superimposed on topx)
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(#*Show[ListPlot [DataCombinedLT] ,Plot [10+Exp[ ( (x-1.485)/.0125)"2.1],{x,1.48,1.495}]]%)

(xEquations for free electron concentration and donor
occupation fraction adapted from Pat Colesx)
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a[EO_] := abs[EO] * 100; (xAbsorption coefficients, conveted to m"-1x%)

G[z_, EO_, P_] =P/ 1000%10"4 »Exp[-a[EO] *z] *a[EO] /EO/ (1.60217646 »x 10" (-19));
(*Electron generation rate m"-3s”-1, includes conversion to mW/cm”2 and eV to Joulesx)
(*I changed some things from the original version here, make sure its correctx)

ns[z_, EO_, P_] := (G[z, EO, P] / k) *.5;

(*Free electron concentration based on simple bimolecular recombination modelx)
(*r'[2z_,EO_,P_]:=ns[z,EO0,P]/(ns[2,E0,P]+Ndxcc*v/ (2+k))+107-10; %)

r'[z_, EO_, P_] := UnitStep[z - 6] *ns[z, EO, P] / (ns[z, EO, P] +Nd*xoc*v/ (2+k)) +10"-10;
(*Donor occupation fraction based on Langmurian binding behaviorx)

Seq = 0.5 *x Tanh[-gGaAs *3%¥9.4/ (2*xkb*T)];
(*Themal equilibrium value for Sz for electronscheck sign on thisx)

AS[z_, EO_, P_] = (SO—Seq)/ (1+ (4/ (1+\/4 G[z, EO, P] #C2+1 ))) ; (+*The steady-

state departure of electron polarization from its equilibrium value for sigma+x)

ASm[z_, EO_, P_] = (SOm—Seq)/ (1+ (4/ (1+—\/4 G[z, EO, P] *xC2 +1 )));(*The steady-

state departure of electron polarization from its equilibrium value for sigma-=*)

(*Sz[z_,EO_,P_]:(SO+Seq*2/ (\/4 G[z,E0,P]%C2+1 +1)/c3)/
(1+2/ (\/4 G[z,EO,P]#C2+1 +1)/c3);

Te[z_,EO0_,P_]=-gGaAs*%*9.4/ (2xkbxArcTanh[2xAS[z,EOQ0,P]]) ;*)
Ih71[z_, EO_, P_] =5%AS[z, EO, P]; (*xThe steady-
state nuclear polarizations under the sole effect of hyperfine DNP, sigma+*)
Ih69[z_, EO_, P_] = 5% AS[z, EO, P];
Ih75[z_, EO_, P_] = 5% AS[z, EO, P];

Ih71lm[z_, EO_, P_] = 5% ASm[z, EO, P]; (*The steady-

state nuclear polarizations under the sole effect of hyperfine DNP, sigma-%*)
Ih69m[z_, EO_, P_] = 5% ASm[z, EO, P];
Ih75m[z_, EO_, P_] = 5% ASm[z, EO, P];

Iq71 =1/2 xTanh[9.4 xy71 xhbar / (2 *kb*T)] + Tanh[9.4 *x y71 *hbar / (kb*T)];
(*The equilibrium polarizations under the sole effect of quadrupolar relaxationx)
Iq69 =1/ 2 *Tanh[9.4 » y69 *hbar / (2 *kb *T)] + Tanh[9.4 » y69 * hbar / (kb*T)];
Iq75=1/2*Tanh[9.4 x y75 *hbar / (2 x*kb *T)] + Tanh[9.4 * y75 *hbar / (kb*T)];

|12

(xSolutions for sigma+ polarizationx)
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AB71[z_, EO_, P_] = (T'[z, EO, P]) / (1-T[z, EO, P])  (¥y71°2/ (RGa~2xQ71~2)) % £71;
(*The Factor A divided by B in my notesx)
D71[z_, EO_, P_] =a0"3 %4 xPi*xNd*y71"2+be”2 +xExp[4] *

r'(z, EO, P] / (wH"2/ (ce*Vv*ns[z, EO, P])); (*The Factor D in my notesx)
E71[z_, EO_, P_]1 =1/32+5/ (8 *AB71[z, EO, P] *xa0"4); (*The Factor E in my notesx)
F71[z_, EO_, P_] = Th71[z, EO, P] /32+5/8 «xIq71 /a0"4 /AB71[z, EO, P];
(*The Factor F in my notes*)

AB69[z_, EO_, P_] = (I'[z, EO, P]) / (1-T[z, EO, P]) = (¥y69"2/ (RGa"2%069"2)) % £69;
D69[z_, EO_, P_] =

a0”"3 %4 *PixNd+*y¥69"2xbe”2 xExp[4] *T'[z, EO, P] / (wH"2/ (0exVv*xns[z, EO, P]));
E69[z_, EO_, P_] =1/32+5/ (8 +*AB69[z, EO, P] xa0"4);
F69[z_, EO_, P_] = Th69[z, EO, P] /32+5/8%Igq69/a0"4 /AB69[z, EO, P];

AB75[z_, EO_, P_] = (T'[z, EO, P]) / (1-T[z, EO, P]) * (¥y75"2/ (RAs"~2 % Q75"2)) % £75;
D75[z_, EO_, P_] =

a0”"3 x4 *PixNd+*y¥75"2xbe”2 xExp[4] *T'[z, EO, P] / (wH"2/ (cexVv *xns[z, EO, P]));
E75[z_, EO_, P_] =1/32+5/ (8 xAB75[z, EO, P] *a0"4);
F15[z_, EO_, P_] = Th75[z, EO, P] /32+5 /8 *x Iq75/a0"4 /AB75[z, EO, P];

Iz71(z_, EO_, P_] :=F71[z, EO, P] /E71[z, EO, P] » (1 -Exp[-D71[z, EO, P] *E71[z, EO, P] »t]);
(*The analytical solution for Iz in the fast diffusion, high-field limitx)

Iz69[z_, EO_, P_] :=F69[z, EO, P] /E69[z, EO, P] * (1 -Exp[-D69[z, EO, P] *xE69[z, EO, P] xt]);
Iz75[z_, EO_, P_] :=F75[z, EO, P] /E75[z, EO, P] » (1 -Exp[-D75[z, EO, P] *E75[z, EO, P] »t]);

(+Solutions for sigma— polarizationx)
AB71m[z_, EO_, P_] = (T'[z, EO, P]) / (1-T[z, EO, P]) » (¥y71°2/ (RGa"2%Q71"2)) » £71;
D71m[z_, EO_, P_] =

a0”"3 %4 *Pi*xNd*y¥71"2xbe”2 xExp[4] *T'[z, EO, P] / (wH"2/ (cexVv *ns[z, EO, P]));
E7lm[z_, EO_,P_]=1/32+5/ (8 *xAB71lm[z, EO, P] xa0"4);
F7lm[z_, EO_, P_] = Th71lm[z, EO, P] /32+5/8 »x Iq71 /a0~ 4 / AB71lm[z, EO, P];

AB69m[z_, EO_, P_] = (T[z, EO, P]) / (1-T[z, EO, P]) * (¥y69°2/ (RGa"2 +Q69"2)) » £69;
D69m[z_, EO_, P_] =

a0”"3 %4 *PixNd+*y¥69"2xbe”2 xExp[4] *T'[z, EO, P] / (wH"2/ (cexVvxns[z, EO, P]));
E69m[z_, EO_, P_] =1/32+5/ (8 xAB69m[z, EO, P] xa0"4);
F69m[z_, EO_, P_] = Ih69m[z, EO, P] /32+5/8 *x Iq69 /a0~ 4/ AB69m[z, EO, P];

AB75m[z_, EO_, P_] = (T'[z, EO, P]) / (1-T[z, EO, P]) * (¥75°2/ (RAs~2 xQ75"2)) * £00;
D75m[z_, EO_, P_] =

a0”3 +4+Pi*Nd*y75°2+be”2 «Exp[4] *T'[z, EO, P] / (wH 2/ (ce xv+ns[z, EO, P]));
E75m[z_, EO_, P ] =1/32+5/ (8 +AB75m[z, EO, P] +a0"4);
F75m[z_, EO_, P_] = Ih75m[z, EO, P] /32+5 /8 *x I1q75 /a0~ 4 / AB75m[z, EO, P];

Iz71m[z_, EO_, P_] :=
F7lm[z, EO, P] /E71m[z, EO, P] * (1 - Exp[-D71m[z, EO, P] * E71m[z, EO, P] *t]);
Iz69m[z_, EO_, P_] := F69m[z, EO, P] / E69m[z, EO, P] *
(1 -Exp[-D69m[z, EO, P] * E69m[z, EO, P] *t]);
Iz75m[z_, EO_, P_] := F75m[z, EO, P] /E75m[z, EO, P] *
(1 -Exp[-D75m[z, EO, P] * E75m[z, EO, P] *t]);
(*ListPlot [Table[ {Energy,Sum[Iz71[z,Energy,50],{z,0,.35%¥10"-3,10"-7}1},
{Energy,1.48,1.55,.0001}],PlotJoined-»True,PlotRange—~»All] %)
(+This plot reproduces the photon energy spectrum for OPNMR for a given power and helicityx)

(xThis simulates bulk OPNMR data as a function of laser intenisty with
experimental points displayed, done by summing Iz over the depth of the samplex)
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(*Show [ E
ListPlot[{Table[{P,10"7*Sum[IZz71[z,1.503,P],{2,0,.35%10"-3,.00001}]},{P,0,15,.1}],
Table[{P,10"7%*Sum[Iz71m[z,1.503,P],{z,0,.35%x10"-3,.00001}]1},{P,0,15,.1}]
(*,Table[{P,10"6%Sum[Iz69[Zz,1.503,P],{z,0,.35%10"-3,.00001}]},{P,0,20,.1}],
Table[{P,10"6*Sum[IZz75[z,1.503,P],{z,0,.35%10"-3,.00001}]},{P,0,20,.1}]1%)},
AxesStyle-»Thick,TicksStyle-»Thick,PlotStyle—»{Thickness[.005]},LabelStyle- (FontSize—»42),
AxesLabel-{Style["",Large,Bold,Black],Style["", Large,Bold,Black]},
PlotRange-~{{0,10},{-25,50}},PlotJoined-True],
ListPlot[{{{22.2,-61.508},{12.8,-39.679},{7.99,-22.295},{4.21,-7.908},
{3.03,-3.836},{2.02,-1.294},{1.53,2.603},{1.02,3.66},{0.802,3.998},
{0.623,4.254},{0.44,4.178},{0.197,4.249},{0.118,3.646},{0.086,3.605},
{0.0535,3.068},{0.0244,2.916},{0.0104,2.568},{0,1.058}} (*,
{{13.5,2%-6.076},{8,2%-2.749},{6.06,2%-1.33},{5.14,2%-1.021},{4,2%x0.654},
{3,2%1.172},{2.06,2%1.708},{1.34,2%1.955},{1.06,2%2.116},{0.87,2%1.989},
{0.658,1.965},{0.36,2.093},{0.246,1.643},{0.101,1.78},{0.068,1.6},
{0.035,1.512},{0.013,1.224},{0,0.603}},{{22.4,.25%-12.737},{21,.25%-10.517},
{15.5,.25%-9.515},{12.7,.25%*-7.039},{10.3,.25%-4.945},{8.18,.25%x5.625},
{5.4,.25%8.992},(1.98,.25%10.236},{1.05,.25%11.167},{0.82,.25%10.561},
{0.55,.25%10.439},{0.267,.25%9.222},{0.101, .25%8.993},{0.079, .25+7.558},
{0.038,.25%6.906},{0.016,.25%5.516},{0.008, .25%3.794},{0,.25%x1.765}}*)},
PlotMarkers- {Automatic,30},PlotRange~{{0,25},{-25,5}}]]

(xPlot[{Iz71[2z/10°6,1.503,1]},{z,0,350},PlotRange~All,
AxesLabel-{Style[" Depth, um", (FontSize-36) ,Bold,Black],
Style["<Iz>, Arb. Units", (FontSize-36) ,Bold,Black]},

LabelStyle- (FontSize—»36) ,PlotStyle-{Thick,Black}]*)

STRAFI Simulations

Simulations STRAFI

A = 4; (*xNatural Linewidth in KHzx)
grad = 19; (*Linear gradient in T/mx)
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(*Images are simulated by convoluting the profile of Iz with a Lorentzian lineshapex)

(*imagel[v_]:=
10"15xNIntegrate[Iz71[z,1.503,2/ (.25%.25%Pi) ]/ (1+((v-z*xgrad*y71/(2xPi)/1000) /A)"2),
{z,0,350%10"-6}];image2[v_]:=10"15xNIntegrate[
Iz71[z,1.503,4/(.25%.25%Pi) ]/ (1+((v-z*grad+y71/(2+«Pi) /1000) /A)"2),{z,0,350%10"-6}];
image3[v_]:=10"15xNIntegrate[Iz71[z,1.503,14/ (.25%.25%Pi)]/
(1+((v-z+gradxy71/ (2%Pi) /1000) /A)~2) ,{z,0,350%10"-6}];
image4[v_]:=10"15xNIntegrate[Iz71[2,1.503,30/(.25%.25%Pi)]/
(1+((v-z+gradxy71/ (2%Pi) /1000) /A) ~2) ,{z,0,350%10%-6}]; *)
image5([v_] := 10”15 » NIntegrate[Iz69[z, 1.503, 2/ (.25 % .25 %Pi)] /
(l+ ((v-z+xgrad*y71/ (2% Pi) /1000) /A)~2), {z, 0, 350%x10"-6}];
image6[v_] := 10”715 x NIntegrate[Iz69[z, 1.503, 5/ (.25 * .25%Pi)] /
(1+ ((v-z+xgrad*y71/ (2% Pi) /1000) /A)"~2), {z, 0, 350%x10"-6}];
image7[v_] := 10”15 % NIntegrate[Iz69[z, 1.503, 14/ (.25 % .25 %xPi)] /
(1+ ((v-z+xgrad*y71/ (2% Pi) /1000) /A)"~2), {z, 0, 350+x10"-6}];
image8([v_] := 10”715 x NIntegrate[Iz69[z, 1.503, 30/ (.25 % .25 %xPi)] /
(l+ ((v-zxgrad*y71/ (2% Pi) /1000) /A)"~2), {z, 0, 350%x10"-6}];

This series ofplots simulates the power dependence of STRAFI data
(*Plot[{imagel[v+70]},{v,-200,200}, PlotRange-All,Axes-{True,False},AxesStyle~Thick,
TicksStyle-Thick,AxesLabel-{Style[" kHz", (FontSize-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle- {Thickness[.005]}]
Plot[{image2[v+70]},{v,-200,200}, PlotRange-All,Axes-{True,False}, AxesStyle-Thick,
TicksStyle-»Thick,AxesLabel-{Style[" kHz", (FontSize-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle-{Thickness[.005]}]
Plot[{image3[v+70]},{v,-200,200}, PlotRange-All,Axes-{True,False}, AxesStyle-»Thick,
TicksStyle-Thick,AxesLabel-{Style[" kHz", (FontSize-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle- {Thickness[.005]}]
Plot[{image4[v+70]},{v,-200,200}, PlotRange-All,Axes—{True,False}, AxesStyle-»Thick,
TicksStyle-Thick,AxesLabel-{Style[" kHz", (FontSize-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle-{Thickness[.005]}]%*)
Plot[{image5[v +70]}, {v, -200, 200}, PlotRange - All,
Axes -» {True, False}, AxesStyle » Thick, TicksStyle -» Thick,
AxesLabel - {Style[" kHz", (FontSize - 42), Bold, Black]},
LabelStyle » (FontSize - 42), PlotStyle -» {Thickness[.005]}]
Plot[{image6([v +70]}, {v, -200, 200}, PlotRange - All,
Axes -» {True, False}, AxesStyle » Thick, TicksStyle -» Thick,
AxesLabel -» {Style[" kHz", (FontSize - 42), Bold, Black]},
LabelStyle -» (FontSize —» 42), PlotStyle -» {Thickness[.005]}]
Plot[{image7([v +70]}, {v, -200, 200}, PlotRange - All,
Axes -» {True, False}, AxesStyle » Thick, TicksStyle -» Thick,
AxesLabel » {Style[" kHz", (FontSize - 42), Bold, Black]},
LabelStyle » (FontSize —» 42), PlotStyle -» {Thickness[.005]}]
Plot[{image8([v +70]}, {v, -200, 200}, PlotRange - All,
Axes -» {True, False}, AxesStyle -» Thick, TicksStyle -» Thick,
AxesLabel » {Style[" kHz", (FontSize - 42), Bold, Black]},
LabelStyle » (FontSize - 42), PlotStyle -» {Thickness[.005]}]

data dependence of ofplots power series simulates STRAFI the This
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200  —-100
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~200  —-100
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200  —100 0
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(*imagea[v_]:=
10~15xNIntegrate[Iz69[z,c/ (855+410"-9) +h/(1.60217646%10" (-19)),19/(.25%.25%Pi) ]/
(1+((v-zxgrad+y71/ (2«Pi) /1000) /A)~2),{z,0,350%x10%-6}];
imageb[v_]:=10"15xNIntegrate[Iz69[z,c/(835%10"-9)+h/(1.60217646%10" (-19)),
19/ (.25%.25%Pi) ]/ (1+((v-zxgrad«y71l/ (2«Pi) /1000) /A) “2) ,{z,0,350%x10"-6}];
imagec[v_]:=10"15«NIntegrate[Iz69[z,c/(830%¥10°-9)+h/ (1.60217646%10" (-19)),
19/ (.25%.25%Pi) 1/ (1+ ((v-z*grad*y71/ (2+Pi) /1000) /A) *2),{z,0,350%10%-6}];
imaged[v_]:=10"15xNIntegrate[Iz69[z,c/ (825%10"-9)«h/ (1.60217646%10"(-19)),
19/ (.25%.25%Pi) ]/ (1+( (v-z*xgrad+y71/ (2%Pi) /1000) /A)*2),{z,0,350%x10"-6}];
imagee[v_]:=10"15xNIntegrate[Iz69[z,c/ (820%10"-9)+h/(1.60217646%10"(-19)),
19/ (.25%.25%Pi) ]/ (1+((v-z*grad«y71l/ (2«Pi) /1000) /A)“2) ,{z,0,350%x10%-6}];
imagef[v_]:=10"15xNIntegrate[Iz69[z,c/ (810%x10"-9)xh/(1.60217646%10"(-19)),
19/ (.25%.25%Pi) 1/ (1+ ((v-z*grad+y71l/ (2%Pi)/1000) /A)~2),{z,0,350%10%-6}];
(*imageg[v_]:=10"15xNIntegrate[Iz69[z,c/ (795%10"-9) xh/ (1.60217646%10" (-19)),0.968]/
(1+ ((v-zxgrad+y71/ (2%Pi) /1000) /A)~2) ,{z,0,350%10"-6}];
imageh[v_]:=10"15xNIntegrate[Iz69[z,c/(750x10"-9)+h/(1.60217646%10"(-19)),0.968]/
(1+((v-z+gradxy71/ (2%Pi) /1000) /A) *2) ,{z,0,350%10"-6}]; *)

imageam[v_]:=
10" 15xNIntegrate[Iz69m[z,c/ (855%x10°-9) xh/ (1.60217646%10" (-19)),19/(.25%.254Pi) ]/
(1+ ((v-z+grad+y71/ (2%Pi) /1000) /A) *2) ,{z,0,350%10%-6}];
imagebm[v_]:=10"15xNIntegrate[Iz69m[z,c/ (835%10"-9)+h/(1.60217646%10" (-19)),
19/ (.25%.25%Pi) 1/ (1+ ((v-z*grad*y71/ (2%Pi) /1000) /A)*2),{z,0,350%10%-6}];
imagecm[v_]:=10"15«NIntegrate[Iz69m[z,c/ (830%10"-9)xh/ (1.60217646%10"(-19)),
19/ (.25%.25%Pi) ]/ (1+( (v-z*xgrad+«y71/ (2%Pi)/1000) /A)~2),{z,0,350%x10"-6}];
imagedm[v_]:=10"15*NIntegrate[Iz69m[z,c/ (825%10"-9)xh/ (1.60217646%10"(-19)),
19/ (.25%.25%Pi) ]/ (1+((v-z*grad«y71l/ (2«Pi) /1000) /A) “2) ,{z,0,350%x10%-6}];
imageem[v_]:=10"15xNIntegrate[Iz69m[z,c/ (820%x10"-9)xh/ (1.60217646%x10"(-19)),
19/ (.25%.25%Pi) 1/ (1+ ((v-z*grad+y71l/ (2%Pi)/1000) /A)*2),{z,0,350%10%-6}];
imagefm[v_]:=10"15xNIntegrate[Iz69m[z,c/ (810%x10"-9)xh/(1.60217646%10"(-19)),
19/ (.25%.25%Pi) ]/ (1+ ((v-z*grad+y71/ (2+Pi) /1000) /A)~2),{z,0,350%10"-6}];
(+imagegm[v_]:=10"15xNIntegrate[Iz69m[z,c/(795+x10°-9)+h/ (1.60217646+10" (-19)),0.968]/
(1+ ((v-z*grad*xy71/ (2xPi) /1000) /A) *2) ,{2,0,350%10"-6}];
imagehm[v_]:=10"15xNIntegrate[Iz69m[z,c/ (750%x10"-9)+h/(1.60217646+10"(-19)),0.968]/
(1+ ((v-zxgrad+y71/ (2%«Pi) /1000) /A)~2) ,{z,0,350%10"-6}] ;%)

£

(*This series of plots simulates STRAFI data as a function of wavelengthx)
(*Plot[{imagea[v+70] ,imageam[v+70]},{v,-200,200}, PlotRange-All,Axes-{True,False},
AxesStyle-Thick,TicksStyle-»Thick,AxesLabel-{Style[" kHz", (FontSize-42),Bold,Black]},

LabelStyle- (FontSize—»42) ,PlotStyle- {Thickness[.005]}]
Plot[{imageb[v+70],imagebm[v+70]},{v,-200,200}, PlotRange-All,Axes-{True,False},
AxesStyle-Thick,TicksStyle-»Thick,AxesLabel-»{Style[" kHz", (FontSize—-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle-{Thickness[.005]}]
Plot[{imagec[v+70],imagecm[v+70]},{v,-200,200}, PlotRange-All,Axes-{True,False},
AxesStyle-Thick,TicksStyle-»Thick,AxesLabel-»{Style[" kHz", (FontSize—-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle-{Thickness[.005]}]
Plot[{imaged[v+70],imagedm[v+70]},{v,-200,200}, PlotRange-All,Axes-{True,False},
AxesStyle-Thick,TicksStyle-»Thick,AxesLabel-»{Style[" kHz", (FontSize—-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle- {Thickness[.005]}]
Plot[{imagee[v+70],imageem[v+70]},{v,-200,200}, PlotRange-All,Axes-{True,False},
AxesStyle-Thick, TicksStyle-»Thick,AxesLabel-»{Style[" kHz", (FontSize—-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle- {Thickness[.005]}]
Plot[{imagef[v+70],imagefm[v+70]},{v,-200,200}, PlotRange-All,Axes-{True,False},
AxesStyle-Thick,TicksStyle-»Thick,AxesLabel-»{Style[" kHz", (FontSize—-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle- {Thickness[.005]}]
(*Plot[{imageg[v],imagegm[v]},{v,-200,200}, PlotRange-All,Axes-{True,False},
AxesStyle-Thick,TicksStyle-»Thick,AxesLabel-{Style[" kHz", (FontSize-42),Bold,Black]},
LabelStyle- (FontSize—42) ,PlotStyle—{Thickness[.005]}]
Plot[{imageh[v],imagehm[v]}, {v,-200,200}, PlotRange-All,Axes-{True,False},
AxesStyle-Thick,TicksStyle-»Thick,AxesLabel-{Style[" kHz", (FontSize-42),Bold,Black]},
LabelStyle- (FontSize—»42) ,PlotStyle-{Thickness[.005]}]*)
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Appendix C

Modeling of Patterns of Nuclear
Magnetization

Calculation of the Polarization Rate Ratio “f”

The ratio between the rates of the hyperfine and quadrupolar polarization mechanisms
around a given defect is labelled “f”:

=22 (C.1)

In the high magnetic-field limit (wyTy >> 1) the hyperfine polarization rate is given by:

1 272 TH 41—
T = 2F7Nbe(ao)wl2q7_%e ag” (C.3)
The quadrupolar polarization rate is
1 €| Ria@ .5, le| o Ki(O)7q | Ka(0)mq, S*(r)
— =2I'(1-T C.4
To ( ) 12 47ree Wy TH + w3TH ) o’ (€4
)

which in the high magnetic field limit (wy7g >> 1) reduces to:

1 |€‘R14Q 2 |€| o, 6 52<T)
— =2I'(1-T )
To ( ) 12h ) <47T€€0 wJQ\,TQ) Z—i (C5)
with
2r  2r? -2
Sr)=1-(1+—+ —5)e . (C.6)

Here wy is the frequency associated with a A, = 1 nuclear spin transition and wy ~ 2wy is
the frequency associated with a AI, = 2 transition. Using the high magnetic field limit for
both polarization mechanisms, the ratio becomes
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f= (C.7)

Equilibrium and Steady State Polarizations

The quadrupolar polarization mechanism is driven by electron capture and recombination at
recombination centers, thereby coupling the nuclear Zeeman energy reservoir to the electron
kinetic energy reservoir. The electrons are assumed to thermalize rapidly, so that the electron
kinetic temperature is equal to the lattice temperature. For a spin—% system the polarization
is given by

Ioo = %tanh[Bonyh/(QkT)] + tanh[Byywh/(KT)]. (C.8)

At 6 K for "'Ga in a field of 9.4 T, this corresponds to a polarization of approximately 0.1%
or ~ 56 Gauss[43]. The steady-state value for a spin—% nucleus undergoing DNP induced by
a contact hyperfine interaction is

where AS, is the departure of S, from its thermal equilibrium value. This parameter is given
by

AS, = @ (C.10)
1 + Tle

where Sy is the polarization of electrons due to excitation selection rules, S, is the ther-
mal equilibrium polarization of electrons, and 7 and 7j. respectively denote the electron
recombination lifetime and spin-lattice relaxation time of electrons. Hyperfine-induced nu-
clear polarization in semiconductors has been measured to be of the order of 10%[40]. 10%
polarization in GaAs corresponds to a nuclear field of approximately 5600 Gauss[43].





