
UCLA
UCLA Previously Published Works

Title
Acoustic sequences in non‐human animals: a tutorial review and prospectus

Permalink
https://escholarship.org/uc/item/31t10075

Journal
Biological Reviews, 91(1)

ISSN
1464-7931

Authors
Kershenbaum, Arik
Blumstein, Daniel T
Roch, Marie A
et al.

Publication Date
2016-02-01

DOI
10.1111/brv.12160
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/31t10075
https://escholarship.org/uc/item/31t10075#author
https://escholarship.org
http://www.cdlib.org/


Acoustic sequences in non-human animals: a tutorial review and 
prospectus

Arik Kershenbaum1,2,*, Daniel T. Blumstein3, Marie A. Roch4, Çağlar Akçay5, Gregory 
Backus6, Mark A. Bee7, Kirsten Bohn8, Yan Cao9, Gerald Carter10, Cristiane Cäsar11, 
Michael Coen12, Stacy L. DeRuiter13, Laurance Doyle14, Shimon Edelman15, Ramon Ferrer-
i-Cancho16, Todd M. Freeberg17, Ellen C. Garland18, Morgan Gustison19, Heidi E. Harley20, 
Chloé Huetz21, Melissa Hughes22, Julia Hyland Bruno23, Amiyaal Ilany1, Dezhe Z. Jin24, 
Michael Johnson25, Chenghui Ju26, Jeremy Karnowski27, Bernard Lohr28, Marta B. 
Manser29, Brenda McCowan30, Eduardo Mercado III31, Peter M. Narins32, Alex Piel33, 
Megan Rice34, Roberta Salmi35, Kazutoshi Sasahara36, Laela Sayigh37, Yu Shiu5, Charles 
Taylor3, Edgar E. Vallejo38, Sara Waller39, and Veronica Zamora-Gutierrez2,40

1National Institute for Mathematical and Biological Synthesis, 1122 Volunteer Blvd., Suite 106, 
University of Tennessee, Knoxville, TN 37996-3410, USA 2Department of Zoology, University of 
Cambridge, Downing Street, Cambridge, CB2 3EJ, UK 3Department of Ecology and Evolutionary 
Biology, University of California Los Angeles, 621 Charles E. Young Drive South, Los Angeles, 
CA 90095-1606, USA 4Department of Computer Science, San Diego State University, 5500 
Campanile Dr, San Diego, CA 92182, USA 5Lab of Ornithology, Cornell University, 159 
Sapsucker Woods Rd, Ithaca, NY 14850, USA 6Department of Biomathematics, North Carolina 
State University, Raleigh, NC 27607, USA 7Department of Ecology, Evolution and Behavior, 
University of Minnesota, 100 Ecology Building, 1987 Upper Buford Cir, Falcon Heights, MN 
55108, USA 8Integrated Science, Florida International University, Modesto Maidique Campus, 
11200 SW 8th Street, AHC-4, 351, Miami, FL 33199, USA 9Department of Mathematical 
Sciences, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA 
10Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA 
11Department of Psychology & Neuroscience, University of St. Andrews, St Mary’s Quad South 
Street, St Andrews, Fife, KY16 9JP, UK 12Department of Biostatistics and Medical Informatics, 
University of Wisconsin, K6/446 Clinical Sciences Center, 600 Highland Avenue, Madison, WI 
53792-4675, USA 13School of Mathematics and Statistics, University of St. Andrews, St Andrews, 
KY16 9SS, UK 14Carl Sagan Center for the Study of Life in the Universe, SETI Institute, 189 
Bernardo Ave, Suite 100, Mountain View, CA 94043, USA 15Department of Psychology, Cornell 
University, 211 Uris Hall, Ithaca, NY 14853-7601, USA 16Department of Computer Science, 
Universitat Politecnica de Catalunya, (Catalonia), Calle Jordi Girona, 31, 08034 Barcelona, Spain 
17Department of Psychology, University of Tennessee, Austin Peay Building, Knoxville, 
Tennessee 37996, USA 18National Marine Mammal Laboratory, AFSC/NOAA, 7600 Sand Point 
Way N.E., Seattle, Washington 98115, USA 19Department of Psychology, University of Michigan, 
530 Church St, Ann Arbor, MI 48109, USA 20Division of Social Sciences, New College of Florida, 
5800 Bay Shore Rd, Sarasota, FL 34243, USA 21CNPS, CNRS UMR 8195, Université Paris-Sud, 

*Author for correspondence (arik.kershenbaum@gmail.com ; Tel. +44-1223-3336682). 

HHS Public Access
Author manuscript
Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2017 February 01.

Published in final edited form as:
Biol Rev Camb Philos Soc. 2016 February ; 91(1): 13–52. doi:10.1111/brv.12160.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



UMR 8195, Batiments 440-447, Rue Claude Bernard, 91405 Orsay, France 22Department of 
Biology, College of Charleston, 66 George St, Charleston, SC 29424, USA 23Department of 
Psychology, Hunter College and the Graduate Center, The City University of New York, 365 Fifth 
Avenue, New York, NY 10016, USA 24Department of Physics, Pennsylvania State University, 104 
Davey Lab, University Park, PA 16802-6300, USA 25Department of Electrical and Computer 
Engineering, Marquette University, 1515 W. Wisconsin Ave., Milwaukee, WI 53233, USA 
26Department of Biology, Queen College, The City Univ. of New York, 65-30 Kissena Blvd., 
Flushing, New York 11367, USA 27Department of Cognitive Science, University of California San 
Diego, 9500 Gilman Drive, La Jolla, CA 92093-0515, USA 28Department of Biological Sciences, 
University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA 
29Institute of Evolutionary Biology and Environmental Studies, University of Zurich, 
Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 30Department of Veterinary Medicine, 
University of California Davis, 1 Peter J Shields Ave, Davis, CA 95616, USA 31Department of 
Psychology; Evolution, Ecology, & Behavior, University at Buffalo, The State University of New 
York, Park Hall Room 204, Buffalo, NY 14260-4110, USA 32Department of Integrative Biology & 
Physiology, University of California Los Angeles, 612 Charles E. Young Drive East, Los Angeles, 
CA 90095-7246, USA 33Division of Biological Anthropology, University of Cambridge, Pembroke 
Street Cambridge, CB2 3QG, UK 34Department of Psychology, California State University San 
Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA 92096-0001, USA 35Department of 
Anthropology, University of Georgia at Athens, 355 S Jackson St, Athens, GA 30602, USA 
36Graduate School of Information Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 
464-8601, Japan 37Biology Department, Woods Hole Oceanographic Institution, 86 Water St, 
Woods Hole, MA 02543, USA 38Department of Computer Science, Monterrey Institute of 
Technology, Ave. Eugenio Garza Sada 2501 Sur Col. Tecnológico C.P. 64849, Monterrey, Nuevo 
León, Mexico 39Department of Philosophy, Montana State University, 2-155 Wilson Hall, 
Bozeman, Montana 59717, USA 40Centre for Biodiversity and Environmental Research, 
University College London, London WC1H 0AG, UK

Abstract

Animal acoustic communication often takes the form of complex sequences, made up of multiple 

distinct acoustic units. Apart from the well-known example of birdsong, other animals such as 

insects, amphibians, and mammals (including bats, rodents, primates, and cetaceans) also generate 

complex acoustic sequences. Occasionally, such as with birdsong, the adaptive role of these 

sequences seems clear (e.g. mate attraction and territorial defence). More often however, 

researchers have only begun to characterise – let alone understand – the significance and meaning 

of acoustic sequences. Hypotheses abound, but there is little agreement as to how sequences 

should be defined and analysed. Our review aims to outline suitable methods for testing these 

hypotheses, and to describe the major limitations to our current and near-future knowledge on 

questions of acoustic sequences.

This review and prospectus is the result of a collaborative effort between 43 scientists from the 

fields of animal behaviour, ecology and evolution, signal processing, machine learning, 

quantitative linguistics, and information theory, who gathered for a 2013 workshop entitled, 

“Analysing vocal sequences in animals”. Our goal is to present not just a review of the state of the 
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art, but to propose a methodological framework that summarises what we suggest are the best 

practices for research in this field, across taxa and across disciplines. We also provide a tutorial-

style introduction to some of the most promising algorithmic approaches for analysing sequences.

We divide our review into three sections: identifying the distinct units of an acoustic sequence, 

describing the different ways that information can be contained within a sequence, and analysing 

the structure of that sequence. Each of these sections is further subdivided to address the key 

questions and approaches in that area.

We propose a uniform, systematic, and comprehensive approach to studying sequences, with the 

goal of clarifying research terms used in different fields, and facilitating collaboration and 

comparative studies. Allowing greater interdisciplinary collaboration will facilitate the 

investigation of many important questions in the evolution of communication and sociality.

Keywords

acoustic communication; information; information theory; machine learning; Markov model; 
meaning; network analysis; sequence analysis; vocalisation

I. INTRODUCTION

Sequences are everywhere, from the genetic code, to behavioural patterns such as foraging, 

as well as the sequences that comprise music and language. Often, but not always, sequences 

convey meaning, and can do so more effectively than other types of signals (Shannon et al., 

1949), and individuals can take advantage of the information contained in a sequence to 

increase their own fitness (Bradbury & Vehrencamp, 2011). Acoustic communication is 

widespread in the animal world, and very often individuals communicate using a sequence 

of distinct acoustic elements, the order of which may contain information of potential 

benefit to the receiver. In some cases, acoustic sequences appear to be ritualised signals 

where the signaller benefits if the signal is detected and acted upon by a receiver. The most 

studied examples include birdsong, where males may use sequences to advertise their 

potential quality to rival males and to receptive females (Catchpole & Slater, 2003). 

Acoustic sequences can contain information on species identity, e.g. in many frogs and 

insects (Gerhardt & Huber, 2002), on individual identity and traits, e.g. in starlings Sturnus 

vulgaris (Gentner & Hulse, 1998), wolves Canis lupus (Root-Gutteridge et al., 2014), 

dolphins Tursiops truncatus (Sayigh et al., 2007), and hyraxes Procavia capensis (Koren & 

Geffen. 2011), and in some cases, on contextual information such as resource availability, 

e.g. food calls in chimpanzees Pan troglodytes (Slocombe & Zuberbühler, 2006), or 

predator threats, e.g. in marmots Marmota spp. (Blumstein, 2007), primates (Schel, 

Tranquilli & Zuberbühler, 2009; Cäsar et al., 2012b), and parids (Baker & Becker, 2002). In 

many cases, however, the ultimate function of communicating in sequences is unclear. 

Understanding the proximate and ultimate forces driving and constraining the evolution of 

acoustic sequences, as well as decoding the information contained within them, is a growing 

field in animal behaviour (Freeberg, Dunbar & Ord, 2012). New analytical techniques are 

uncovering characteristics shared among diverse taxa, and offer the potential of describing 
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and interpreting the information within animal communication signals. The field is ripe for a 

review and a prospectus to guide future empirical research.

Progress in this field could benefit from an approach that can bridge and bring together 

inconsistent terminology, conflicting assumptions, and different research goals, both 

between disciplines (e.g. between biologists and mathematicians), and also between 

researchers concentrating on different taxa (e.g. ornithologists and primatologists). 

Therefore, we aim to do more than provide a glossary of terms. Rather, we build a 

framework that identifies the key conceptual issues common to the study of acoustic 

sequences of all types, while providing specific definitions useful for clarifying questions 

and approaches in more narrow fields. Our approach identifies three central questions: what 

are the units that compose the sequence? How is information contained within the sequence? 

How do we assess the structure governing the composition of these units? Fig. 1 illustrates a 

conceptual flow diagram linking these questions, and their sub-components, and should be 

broadly applicable to any study involving animal acoustic sequences.

Our aims in this review are as follows: (1) to identify the key issues and concepts necessary 

for the successful analysis of animal acoustic sequences; (2) to describe the commonly used 

analytical techniques, and importantly, also those underused methods deserving of more 

attention; (3) to encourage a cross-disciplinary approach to the study of animal acoustic 

sequences that takes advantage of tools and examples from other fields to create a broader 

synthesis; and (4) to facilitate the investigation of new questions through the articulation of a 

solid conceptual framework.

In Section II we ask why sequences are important, and what is meant by “information” 

content and “meaning” in sequences. In Section III, we examine the questions of what units 

make up a sequence and how to identify them. In some applications the choice seems trivial, 

however in many study species, sequences can be represented at different hierarchical levels 

of abstraction, and the choice of sequence “unit” may depend on the hypotheses being 

tested. In Section IV, we look at the different ways that units can encode information in 

sequences. In Section V, we examine the structure of the sequence, the mathematical and 

statistical models that quantify how units are combined, and how these models can be 

analysed, compared, and assessed. In Section VI, we describe some of the evolutionary and 

ecological questions that can be addressed by analysing animal acoustic sequences, and look 

at some promising future directions and new approaches.

II. THE CONCEPTS OF INFORMATION AND MEANING

The complementary terms, “meaning” and “information” in communication, have been 

variously defined, and have long been the subject of some controversy (Dawkins & Krebs, 

1978; Stegmann, 2013). In this section we explore some of the different definitions from 

different fields, and their significance for research on animal behaviour. The distinction 

between information and meaning is sometimes portrayed with information as the form or 

structure of some entity on the one hand, and meaning as the resulting activity of a receiver 

of that information on the other hand (Bohm, 1989).
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(1) Philosophy of meaning

The different vocal signals of a species are typically thought to vary in ways associated with 

factors that are primarily internal (hormonal, motivational, emotional), behavioural 

(movement, affiliation, agonistic), external (location, resource and threat detection), or 

combinations of such factors. Much of the variation in vocal signal structure and signal use 

relates to what W. John Smith called the message of the signal – the “kinds of information 

that displays enable their users to share” (Smith, 1977, p. 70). Messages of signals are 

typically only understandable to us as researchers after considerable observational effort 

aimed at determining the extent of association between signal structure and use, and the 

factors mentioned above. The receiver of a signal gains information, or meaning, from the 

structure and use of the signal. Depending on whether the interests of the receiver and the 

signaller are aligned or opposed, the receiver may benefit, or potentially be fooled or 

deceived, respectively (Searcy & Nowicki, 2005). The meaning of a signal stems not just 

from the message or information in the signal itself, but also from the context in which the 

signal is produced. The context of communication involving a particular signal could relate 

to a number of features, including signaller characteristics, such as recent signals or cues it 

has sent, as well as location or physiological state, and receiver characteristics, such as 

current behavioural activity or recent experience. Context can also relate to joint signaller 

and receiver characteristics, such as the nature of their relationship (Smith, 1977).

Philosophical understanding of meaning is rooted in studies of human language and offers a 

variety of schools of thought. As an example, we present a list of some of these 

philosophical theories to give the reader a sense both of the lack of agreement as to the 

nature of meaning, and to highlight the lack of connection between theories of human 

semantics, and theories of animal communication. The nature of meaning has been theorised 

in many ways: extensional (based on things in the world, like “animals”), intensional (based 

on thoughts within minds, notions, concepts, ideas), or according to prototype theory (in 

which objects have meaning through a graded categorisation, e.g. “baldness” is not precisely 

determined by the number of hairs on the head). The physiological nature of meaning may 

be innate or learned, in terms of its mental representations and cognitive content. Finally, 

descriptions of the role of meaning are diverse: meaning may be computational/functional; 

atomic or holistic; bound to both signaller and receiver, or a speech act of the signaller; rule 

bound or referentially based; a description, or a convention; or a game dependent on a form 

of life, among other examples (Christiansen & Chater, 2001; Martinich & Sosa, 2013).

(2) Context

Context has a profound influence on signal meaning, and this should apply to the meaning 

of sequences as well. Context includes internal and external factors that may influence both 

the production and perception of acoustic sequences; the effects of context can partially be 

understood by considering how it specifically influences the costs and benefits of producing 

a particular signal or responding to it. For instance, an individual’s motivational, 

behavioural, or physiological state may influence response (Lynch et al., 2005; Goldbogen 

et al., 2013); hungry animals respond differently to signals than satiated ones, and an 

individual in oestrus or musth may respond differently than ones not in those altered 

physiological states (Poole, 1999). Sex may influence response as well (Tyack, 1983; 
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Darling, Jones & Nicklin, 2006; Smith et al., 2008; van Schaik, Damerius & Isler, 2013). 

The social environment may influence the costs and benefits of responding to a particular 

signal (Bergman et al., 2003; Wheeler, 2010a; Ilany et al., 2011; Wheeler & 

Hammerschmidt, 2012) as might environmental attributes, such as temperature or 

precipitation. Knowledge from other social interactions or environmental experiences can 

also play a role in context, e.g. habituation (Krebs, 1976). Context can also alter a 

behavioural response when hearing the same signal originate from different spatial 

locations. For instance in neighbour–stranger discrimination in songbirds, territorial males 

typically respond less aggressively toward neighbours compared with strangers, so long as 

the two signals are heard coming from the direction of the neighbour’s territory. If both 

signals are played back from the centre of the subject’s territory, or from a neutral location, 

subjects typically respond equally aggressively to both neighbours and strangers (Falls, 

1982; Stoddard, 1996). Identifying and testing for important contextual factors appears to be 

an essential step in decoding the meaning of sequences.

In human language, context has been proposed to be either irrelevant to, or crucial to, the 

meaning of words and sentences. In some cases, a sentence bears the same meaning across 

cultures, times, and locations, irrespective of context, e.g. “2+2=4” (Quine, 1960). In other 

cases, meaning is derived at least partially from external factors, e.g. the chemical 

composition of a substance defines its nature, irrespective of how the substance might be 

variously conceived by different people (Putnam, 1975). By contrast, indexical terms such 

as “she” gain meaning only as a function of context, such as physical or implied pointing 

gestures (Kaplan, 1978). Often, the effect of the signal on the receivers determines its 

usefulness, and that usefulness is dependent upon situational-contextual forces (Millikan, 

2004).

(3) Contrasting definitions of meaning

Biologists (particularly behavioural ecologists), and cognitive neuroscientists have different 

understandings of meaning. For most biologists, meaning relates to the function of 

signalling. The function of signals is examined in agonistic and affiliative interactions, in 

courtship and mating decisions, and in communicating about environmental stimuli, such as 

the detection of predators (Bradbury & Vehrencamp, 2011). Behavioural ecologists study 

meaning by determining the degree of production specificity, the degree of response 

specificity, and contextual independence, e.g. Evans (1997). Cognitive neuroscientists 

generally understand meaning through mapping behaviour onto structure–function 

relationships in the brain (Chatterjee, 2005).

Mathematicians understand meaning by developing theories and models to interpret the 

observed signals. This includes defining and quantifying the variables (observable and 

unobservable), and the formalism for combining various variables into a coherent 

framework, e.g. pattern theory (Mumford & Desolneux, 2010). One approach to examining 

a signal mathematically is to determine the entropy, or amount of structure (or lack thereof) 

present in a sequence. An entropy metric places a bound on the maximum amount of 

information that can be present in a signal, although it does not determine that such 

information is, in fact, present.
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Qualitatively, we infer meaning in a sequence if it modifies the receiver’s response in some 

predictable way. Quantitatively, information theory measures the amount of information 

(usually in units of bits) transmitted and received within a communication system (Shannon 

et al., 1949). Therefore, information theory approaches can describe the complexity of the 

communication system. Information theory additionally can characterise transmission errors 

and reception errors, and has been comprehensively reviewed in the context of animal 

communication in Bradbury & Vehrencamp (2011).

The structure of acoustic signals does not necessarily have meaning per se, and so 

measuring that structure does not necessarily reveal the complexity of meaning. As one 

example, the structure of an acoustic signal could be related to effective signal transmission 

through a noisy or reverberant environment. A distinction is often made between a signal’s 

“content”, or broadcast information, and its “efficacy”, or transmitted information – the 

characteristics or features of signals that actually reach receivers (Wiley, 1983; Hebets & 

Papaj, 2005). This is basically the distinction between bearing functional information and 

getting that information across to receivers in conditions that can be adverse to clear signal 

propagation. A sequence may also contain elements that do not in themselves contain 

meaning, but are intended to get the listeners’ attention, in anticipation of future meaningful 

elements (e.g. Richards, 1981; Call & Tomasello, 2007; Arnold & Zuberbühler, 2013).

Considerable debate exists over the nature of animal communication and the terminology 

used in animal communication research (Owren, Rendall & Ryan, 2010; Seyfarth et al., 

2010; Ruxton & Schaefer, 2011; Stegmann, 2013), and in particular the origin of and 

relationship between meaning and information, and their evolutionary significance. For our 

purposes, we will use the term “meaning” when discussing behavioural and evolutionary 

processes, and the term “information” when discussing the mathematical and statistical 

properties of sequences. This parallels (but is distinct from) the definitions given by Ruxton 

& Schaefer (2011), in particular because we wish to have a single term (“information”) that 

describes inherent properties of sequences, without reference to the putative behavioural 

effects on receivers, or the ultimate evolutionary processes that caused the sequence to take 

the form that it does.

We have so far been somewhat cavalier in how we have described the structures of call 

sequences, using terms like notes, units, and, indeed, calls. In the next section of our review, 

we describe in depth the notion of signalling ‘units’ in the acoustic modality.

III. ACOUSTIC UNITS

Sequences are made of constituent units. Thus, the accurate analysis of potential information 

in animal acoustic sequences depends on appropriately characterising their constituent 

acoustic units. We recognise, however, that there is no single definition of a unit. Indeed, 

definitions of units, how they are identified, and the semantic labels we assign them vary 

widely across researchers working with different taxonomic groups (Gerhardt & Huber, 

2002) or even within taxonomic groups, as illustrated by the enormous number of names for 

different units in the songs of songbird species. Our purpose in this section is to discuss 
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issues surrounding the various ways the acoustic units composing a sequence may be 

characterised.

Units may be identified based on either production mechanisms, which focus on how the 

sounds are generated by signallers, or by perceptual mechanisms, which focus on how the 

sounds are interpreted by receivers. How we define a unit will therefore be different if the 

biological question pertains to production mechanisms or perceptual mechanisms. For 

example, in birdsong even a fairly simple note may be the result of two physical production 

pathways, each made on a different side of the syrinx (Catchpole & Slater, 2003). In 

practice, however, the details of acoustic production and perception are often hidden from 

the researcher, and so the definition of acoustic units is often carried out on the basis of 

observed acoustic properties: see Catchpole & Slater (2003). It is not always clear to what 

extent these observed acoustic properties accurately represent the production/perceptual 

constraints on communication, and the communicative role of the sequence. Identifying 

units is made all the more challenging because acoustic units produced by animals often 

exhibit graded variation in their features (e.g. absolute frequency, duration, rhythm or 

tempo, or frequency modulation), but most analytical methods for unit classification assume 

that units can be divided into discrete, distinct categories (e.g. Clark, Marler & Beeman, 

1987).

How we identify units may differ depending on whether the biological question pertains to 

production mechanisms, perceptual mechanisms, or acoustical analyses of information 

content in the sequences. If the unit classification scheme must reflect animal sound 

production or perception, care must be taken to base unit identification on the appropriate 

features of a signal, and features that are biologically relevant, e.g. Clemins & Johnson 

(2006). In cases where sequences carry meaning, it is likely that they can be correlated with 

observational behaviours (possibly context-dependent) observed over a large number of 

trials. There is still no guarantee that the sequence assigned by the researcher is 

representative of the animal’s perception of the same sequence. To some degree, this can be 

tested with playback trials where the signals are manipulated with respect to the 

hypothesised unit sequence (Kroodsma, 1989; Fischer, Noser & Hammerschmidt, 2013).

Whatever technique for identifying potential acoustic units is used, we emphasise here that 

there are four acoustic properties that are commonly used to delineate potential units (Fig. 

2). First, the spectrogram may show a silent gap between two acoustic elements (Fig. 2A). 

When classifying units “by eye”, separating units by silent gaps is probably the most 

commonly used criterion. Second, examination of a spectrogram may show that an acoustic 

signal changes its properties at a certain time, without the presence of a silent “gap” (Fig. 

2B). For example, a pure tone may become harmonic or noisy, as the result of the animal 

altering its articulators (e.g. lips), without ceasing sound production in the source (e.g. 

larynx). Third, a series of similar sounds may be grouped together as a single unit, 

regardless of silent gaps between them, and separated from dissimilar units (Fig. 2C). This is 

characteristic of pulse trains and “trills”. Finally, there may be a complex hierarchical 

structure to the sequence, in which combinations of sounds, which might otherwise be 

considered fundamental units, always appear together, giving the impression of a coherent, 

larger unit of communication (Fig. 2D). A consideration of these four properties together 
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can provide valuable insights into defining units of production, units of perception, and units 

for sequence analyses.

In Table 1, we give examples of the wide range of studies that have used these different 

criteria for dividing acoustic sequences into units. Although not intended to be 

comprehensive, the table shows how all of the four criteria listed above have been used for 

multiple species and with multiple aims – whether simply characterising the vocalisations, 

defining units of production/perception, or identifying the functional purpose of the 

sequences.

(1) Identifying potential units

Before we discuss in more detail how acoustic units may be identified in terms of 

production, perception, and analysis methods, we point out here that practically all such 

efforts require scientists to identify potential units at some early stage of their planned 

investigation or analysis. Two practical considerations are noteworthy.

First, a potential unit can be considered that part of a sequence that can be replaced with a 

label for analysis purposes (e.g. unit A or unit B), without adversely affecting the results of a 

planned investigation or analysis. Because animal acoustic sequences are sometimes 

hierarchical in nature, e.g. humpback whale Megaptera novaengliae song, reviewed in 

Cholewiak, Sousa-Lima & Cerchio (2012), distinct sequences of units may themselves be 

organised into longer, distinctive sequences, i.e. “sequences of sequences” (Berwick et al., 

2011). Thus, an important consideration in identifying potential acoustic units for sequence 

analyses is that they can be hierarchically nested, such that a sequence of units can itself be 

considered as a unit and replaced with a label.

Second, potential acoustic units are almost always identified based on acoustic features 

present in a spectrographic representation of the acoustic waveform. Associating 

combinations of these features with a potential unit can be performed either manually (i.e. 

examining the spectrograms “by eye”), or automatically by using algorithms for either 

supervised classification (where sounds are placed in categories according to pre-defined 

exemplars) or unsupervised clustering (where labelling units is performed without prior 

knowledge of the types of units that occur). We return to these analytical methods in Section 

III-4, and elaborate here on spectrographic representations.

Spectrograms (consisting of discrete Fourier transforms of short, frequently overlapped, 

segments of the signal) are ubiquitous and characterise well those acoustic features related to 

spectral profile and frequency modulation, many of which are relevant in animal acoustic 

communication. Examples of such features include minimum and maximum fundamental 

frequency, slope of the fundamental frequency, number of inflection points, and the 

presence of harmonics (Oswald et al., 2007) that vary, for example, between individuals 

(Buck & Tyack, 1993; Blumstein & Munos, 2005; Koren & Geffen, 2011; Ji et al., 2013; 

Kershenbaum, Sayigh & Janik, 2013; Root-Gutteridge et al., 2014), and in different 

environmental and behavioural contexts (Matthews et al., 1999; Taylor, Reby & McComb, 

2008; Henderson, Hildebrand & Smith, 2011).
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Other less-used analytical techniques, such as cepstral analysis, may provide additional 

detail on the nature of acoustic units, and are worth considering for additional analytical 

depth. Cepstra are the Fourier (or inverse Fourier) transform of the log of the power 

spectrum (Oppenheim & Schafer, 2004), and can be thought of as producing a spectrum of 

the power spectrum. Discarding coefficients can yield a compact representation of the 

spectrum (Fig. 3). Further, while Fourier transforms have uniform temporal and frequency 

resolution, other techniques vary this resolution by using different basis sets, and this 

provides improved frequency resolution at low frequencies and better temporal resolution at 

higher frequencies. Examples of these other techniques include multi-taper spectra 

(Thomson, 1982; Tchernichovski et al., 2000; Baker & Logue, 2003), Wigner–Ville spectra 

(Martin & Flandrin, 1985; Cohn, 1995), and wavelet analysis (Mallat, 1999). While 

spectrograms and cepstra are useful for examining frequency-related features of signals, 

they are less useful when analysing temporal patterns of amplitude modulation. This is an 

important issue worth bearing in mind, because amplitude modulations are probably critical 

in signal perception by many animals (Henry et al., 2011), including speech perception by 

humans (Remez et al., 1994).

(2) Identifying production units

One important approach to identifying acoustic units stems from considering the 

mechanisms for sound production. In stridulating insects, for example, relatively simple, 

repeated sounds are typically generated by musculature action that causes hard physical 

structures to be engaged, such as the file and scraper located on the wings of crickets or the 

tymbal organs of cicadas (Gerhardt & Huber, 2002). The resulting units, variously termed 

“chirps,” or, “pulses,” can be organised into longer temporal sequences often termed “trills” 

or “echemes” (Ragge & Reynolds, 1988). Frogs can produce sounds with temporally 

structured units in a variety of ways (Martin & Gans, 1972; Martin, 1972; Gerhardt & 

Huber, 2002). In some species, a single acoustic unit (sometimes called a “pulse,” “note,” or 

a “call”) is produced by a single contraction of the trunk and laryngeal musculature that 

induces vibrations in the vocal folds (e.g. Girgenrath & Marsh, 1997). In other instances, 

frogs can generate short sequences of distinct sound units (also often called “pulses”) 

produced by the passive expulsion of air forced through the larynx that induces vibrations in 

structures called arytenoid cartilages, which impose temporal structure on sound (Martin & 

Gans, 1972; Martin, 1972). Many frogs organise these units into trills (e.g. Gerhardt, 2001), 

while other species combine acoustically distinct units (e.g. Narins, Lewis & McClelland, 

2000; Larson, 2004). In songbirds, coordinated control of the two sides of the syrinx can be 

used to produce different units of sound, or “notes” (Suthers, 2004). These units can be 

organised into longer sequences, of “notes,” “trills,” “syllables,” “phrases,” “motifs,” and 

“songs” (Catchpole & Slater, 2003). In most mammals, sounds are produced as an air source 

(pressure squeezed from the lungs) causes vibrations in the vocal membranes, which are 

then filtered by a vocal tract (Titze, 1994). When resonances occur in the vocal tract, certain 

frequencies known as formants are reinforced. Formants and formant transitions have been 

strongly implicated in human perception of vowels and voiced consonants, and may also be 

used by other species to perceive information (Peterson & Barney, 1952; Raemaekers, 

Raemaekers & Haimoff, 1984; Fitch, 2000).
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As the variety in these examples illustrates, there is incredible diversity in the mechanisms 

animals use to produce the acoustic units that are subsequently organised into sequences. 

Moreover, there are additional mechanisms that constrain the production of some of the 

units. For example, in zebra finches Taeniopygia guttata, songs can be interrupted between 

some of its constitutive units but not others (Cynx, 1990). This suggests that at a neuronal 

level, certain units share a common, integrated neural production mechanism. Such 

examples indicate that identifying units based on metrics of audition or visual inspection of 

spectrograms (e.g. based on silent gaps) may not always be justified, and that there may be 

essential utility that emerges from a fundamental understanding of unit production. Thus, a 

key consideration in identifying functional units of production is that doing so may often 

require knowledge about production mechanisms that can only come about through rigorous 

experimental studies.

(3) Identifying perceptual units

While there may be fundamental insights gained from identifying units based on a detailed 

understanding of sound production, there may not always be a one-to-one mapping of the 

units of production or the units identified in acoustics analyses, onto units of perception (e.g. 

Blumstein, 1995). Three key considerations should be borne in mind when thinking about 

units of perception and the analysis of animal acoustic sequences (Fig. 4).

First, it is possible that units of production or the units a scientist might identify on a 

spectrogram are perceptually bound together by receivers into a single unit of perception 

(Fig. 4A). In this sense, a unit of perception is considered a perceptual auditory object in 

terms familiar to cognitive psychologists and auditory scientists. There are compelling 

reasons for researchers to consider vocalisations and other sounds as auditory objects (Miller 

& Cohen, 2010). While the rules governing auditory object formation in humans have been 

well studied (Griffiths & Warren, 2004; Bizley & Cohen, 2013), the question of precisely 

how, and to what extent, non-humans group acoustic information into coherent perceptual 

representations remains a largely open empirical question (Hulse, 2002; Bee & Micheyl, 

2008; Miller & Bee, 2012).

Second, studies of categorical perception in humans and other animals (Harnad, 1990) show 

that continuous variation can nevertheless be perceived as forming discrete categories. In the 

context of units of perception, this means that the graded variation often seen in 

spectrograms may nevertheless be perceived categorically by receivers (Fig. 4B). Thus, in 

instances where there are few discrete differences in production mechanisms or in 

spectrograms, receivers might still perceive distinct units (Nelson & Marler, 1989; Baugh, 

Akre & Ryan, 2008).

Third, well-known perceptual constraints related to the limits of spectrotemporal resolution 

may identify units of perception in ways that differ from analytical units and the units of 

production (Fig. 4C). For example, due to temporal integration by the auditory system 

(Recanzone & Sutter, 2008), some short units of production might be produced so rapidly 

that they are not perceived as separate units. Instead, they might be integrated into a single 

percept having a pitch proportional to the repetition rate. For example, in both bottlenose 

dolphins Tursiops truncatus and Atlantic spotted dolphins Stenella frontalis, the 
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“squawking” sound that humans perceive as having some tonal qualities is actually a set of 

rapid echolocation clicks known as a burst pulse (Herzing, 1996). The perceived pitch is 

related to the repetition rate, the faster the repetition, the higher the pitch. Given the 

perceptual limits of gap detection (Recanzone & Sutter, 2008), some silent gaps between 

units of production may be too short to be perceived by the receiver. Clearly, while it may 

sometimes be desirable or convenient to use “silence” as a way to create analysis boundaries 

between units, a receiver may not always perceive the silent gaps that we see in our 

spectrograms. Likewise, some transitions in frequency may reflect units of production that 

are not perceived because the changes remain unresolved by auditory filters (Moore & 

Moore, 2003; Recanzone & Sutter, 2008). Indeed, some species may be forced to trade off 

temporal and spectral resolution to optimise signalling efficiency in different environmental 

conditions. Frequency modulated signals are more reliable than amplitude modulation in 

reverberant habitats, such as forests, so woodland birds are adapted to greater frequency 

resolution and poorer temporal resolution, while the reverse is true of grassland species 

(Henry & Lucas, 2010; Henry et al., 2011).

The question of what constitutes a unit that is perceptually meaningful to the animal 

demands rigorous experimental approaches that put this question to the animal itself. There 

simply is no convenient shortcut to identifying perceptual units. Experimental approaches 

ranging from operant conditioning (e.g. Dooling et al., 1987; Brown, Dooling & O’Grady, 

1988; Dent et al., 1997; Tu, Smith & Dooling, 2011; Ohms et al., 2012; Tu & Dooling, 

2012), to field playback experiments, often involving the habituation-discrimination 

paradigm (e.g. Nelson & Marler, 1989; Wyttenbach, May & Hoy, 1996; Evans, 1997; 

Searcy, Nowicki & Peters, 1999; Ghazanfar et al., 2001; Weiss & Hauser, 2002). Such 

approaches have the potential to identify the boundaries of perceptual units. Playbacks 

additionally can determine whether units can be discriminated (as in ‘go no-go’ tasks 

stemming from operant conditioning), or whether they can be recognised and are 

functionally meaningful to receivers.

Obviously some animals and systems are more tractable than others when it comes to 

assessing units of perception experimentally, but those not easy to manipulate 

experimentally (e.g. baleen whales, Balaenopteridae) should not necessarily be excluded 

from communication sequence research, although the inevitable constraints must be 

recognised.

(4) Identifying analytical units

In many instances, it is desirable to analyse sequences of identified units in acoustic 

recordings without having a priori knowledge about how those units may be produced or 

perceived by the animals themselves. Such analyses are often a fundamental first step 

toward investigating the potential meaning of acoustic sequences. We briefly discuss 

methods by which scientists can identify and validate units for sequence analyses from 

acoustic recordings.

Sounds are typically assigned classifications to units based on the consistency of acoustic 

characteristics. When feasible, external validation of categories (i.e. comparing animal 

behavioural responses to playback experiments) should be performed. Even without directly 
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testing hypotheses of biological significance by playback experiment, there may be other 

indicators of the validity of a classification scheme based purely on acoustic similarity. For 

example, naïve human observers correctly divide dolphin signature whistles into groups 

corresponding closely to the individuals that produced them (Sayigh et al., 2007), and 

similar (but poorer) results are achieved using quantitative measures of spectrogram features 

(Kershenbaum et al., 2013).

When classifying units on the basis of their acoustic properties, errors can occur both as the 

result of perceptual bias, and as the result of poor repeatability. Perceptual bias occurs either 

when the characteristics of the sound that are used to make the unit assignment are 

inappropriate for the communication system being studied, or when the classification 

scheme relies too heavily on those acoustic features that appear important to human 

observers. For example, analysing spectrograms with a 50 Hz spectral resolution would be 

appropriate for human speech, but not for Asian elephants Elephas maximus, which produce 

infrasonic calls that are typically between 14 and 24 Hz (Payne, Langbauer & Thomas, 

1986), as details of the elephant calls would be unobservable. Features that appear important 

to human observers may include tonal modulation shapes, often posed in terms of geometric 

descriptors, such as “upsweep”, “concave”, and “sine” (e.g. Bazúa-Durán & Au, 2002), 

which are prominent to the human eye, but may or may not be of biological relevance. Poor 

repeatability, or variance, can occur both in human classification, as inter-observer 

variability, and in machine learning, where computer classification algorithms can make 

markedly different decisions after training with different sets of data that are very similar 

(overtraining). Poor repeatability can be a particular problem when the classification scheme 

ignores, or fails to give sufficient weight to, the features that are of biological significance, 

or the algorithm (human or machine) places too much emphasis on particular classification 

cues that are specific to the examples used to learn the categories. Repeatability suffers 

particularly when analysing signals in the presence of noise, which can mask fine acoustic 

details (Kershenbaum & Roch, 2013).

Three approaches have been used to classify units by their acoustic properties: visual 

classification of spectrograms, quantitative classification using features extracted visually 

from spectrograms, and fully automatic algorithms that assign classifications based on 

mathematical rules.

(a) Visual classification, “by eye”—Traditionally, units are “hand-scored” by humans 

searching for consistent patterns in spectrograms (or even listening to sound recordings 

without the aid of a spectrogram). Visual classification has been an effective technique that 

has led to many important advances in the study both of birdsong (e.g. Kroodsma, 1985; 

Podos et al., 1992; reviewed in Catchpole & Slater, 2003), and acoustic sequences in other 

taxa (e.g. Narins et al., 2000; Larson, 2004). Humans are usually considered to be good at 

visual pattern recognition – and better than most computer algorithms (Ripley, 2007; Duda, 

Hart & Stork, 2012), which makes visual classification an attractive approach to identifying 

acoustic units. However, drawbacks to visual classification exist (Clark et al., 1987). Visual 

classification is time consuming and prevents taking full advantage of large acoustic data 

sets generated by automated recorders. Similarly, the difficulty in scoring large data sets 

means that sample sizes used in research may be too small to draw firm conclusions 
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(Kershenbaum, 2013). Furthermore, visual classification can be prone to subjective errors 

(Jones, ten Cate & Bijleveld, 2001), and inter-observer reliability should be used (and 

reported) as a measure of the robustness of the visual assessments (Burghardt et al., 2012).

(b) Classification of manually extracted metrics—As an alternative to visual 

classification, specific metrics, or features, measured on the acoustic data can be extracted 

for input to classification algorithms. A variety of time (e.g. duration, pulse repetition rate) 

and frequency (e.g. minimum, maximum, start, end, and range) components can be 

measured (extracted) from spectrograms, using varying degrees of automation, or computer 

assistance for a manual operator. Software tools such as Sound Analysis Pro 

(Tchernichovski et al., 2000), Raven (Charif, Ponirakis & Krein, 2006), and Avisoft 

(Specht, 2004) have been developed to assist with this task. Metrics are then used in 

classification analyses to identify units, using mathematical techniques such as discriminant 

function analysis (DFA), principal components analysis (PCA), or classification and 

regression trees (CART), and these have been applied to many mammalian and avian taxa 

(e.g. Derégnaucourt et al., 2005; Dunlop et al., 2007; Garland et al., 2012; Grieves, Logue 

& Quinn, 2014). Feature extraction can be conducted using various levels of automation. A 

human analyst may note specific features for each call, an analyst-guided algorithm can be 

employed (where sounds are identified by the analyst placing a bounding box around the 

call, followed by automatic extraction of a specific number of features), or the process of 

extraction can be fully automated. Automated techniques can be used to find regions of 

possible calls that are then verified and corrected by a human analyst (Helble et al., 2012).

(c) Fully automatic metric extraction and classification—Fully automated systems 

have the advantage of being able to handle large data sets. In principle, automatic 

classification is attractive as it is not susceptible to the inter-observer variability of visual 

classification (Tchernichovski et al., 2000). However, current implementations generally fall 

short of the performance desired (Janik, 1999), for instance by failing to recognise subtle 

features that can be detected both by humans, and by the focal animals. Visual classification 

has been shown to out-perform automated systems in cases where the meaning of acoustic 

signals is known a priori (e.g. Sayigh et al., 2007; Kershenbaum et al., 2013), possibly 

because the acoustic features used by fully automated systems may not reflect the cues used 

by the focal species. However, once an automatic algorithm is defined, large data sets can be 

analysed. Machine assistance can allow analysts to process much larger data sets than 

before, but at the risk of possibly missing calls that they might have been able to detect.

The metrics generated either by manual or automatic extraction must be passed to a 

classification algorithm, to separate detections into discrete unit types. Classification 

algorithms can accept acoustic data with varying degrees of pre-processing as inputs. For 

example, in addition to the commonly used spectrograms (Picone, 1993), cepstra 

(Oppenheim & Schafer, 2004), multi-taper spectra (Thomson, 1982), wavelets (Mallat, 

1999), and formants (Fitch, 1997) may be used, as they provide additional information on 

the acoustic characteristics of units, which may not be well represented by traditional 

spectrograms (Tchernichovski et al., 2000). Each of these methods provide analysis of the 

spectral content of a short segment of the acoustic production, and algorithms frequently 
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examine how these parameters are distributed or change over time (e.g. Kogan & 

Margoliash, 1998).

(d) Classification algorithms—Units may be classified automatically using supervised 

algorithms, in which the algorithm is taught to recognise unit types given some a priori 

known exemplars, or clustered using unsupervised algorithms, in which no a priori unit type 

assignment is known (Duda et al., 2012). In both cases, the biological relevance of units 

must be verified independently because mis-specification of units can obscure sequential 

patterns. Environmental noise or sounds from other species may be mistakenly classified as 

an acoustic unit, and genuine units may be assigned to incorrect unit categories. When using 

supervised algorithms, perceptual bias may lead to misinterpreting data when the critical 

bands, temporal resolution, and hearing capabilities of a species are not taken into account. 

For instance, the exemplars themselves used in supervised clustering may be subject to 

similar subjective errors that can occur in visual classification. However, validation of 

unsupervised clustering into units is also problematic, where clustering results cannot be 

assessed against known unit categories. The interplay between unit identification and 

sequence model validation is a non-trivial problem (e.g. Jin & Kozhevnikov, 2011). 

Similarly, estimating uncertainty in unit classification and assessing how that uncertainty 

affects conclusions from a sequence analysis is a key part of model assessment (Duda et al., 

2012)

When using supervised classification, one appropriate technique for measuring classification 

uncertainty is cross-validation (Arlot & Celisse, 2010). For fully unsupervised clustering 

algorithms, where the desired classification is unknown, techniques exist to quantify the 

stability of the clustering result, as an indicator of clustering quality. Examples include 

“leave-k-out” (Manning, Raghavan & Schütze, 2008), a generalisation of the “leave-one-

out” cross-validation, and techniques based on normalised mutual information (Zhong & 

Ghosh, 2005), which measure the similarity between two clustering schemes (Fred & Jain, 

2005). However, it must be clear that cluster stability (and correspondingly, inter-observer 

reliability) is not evidence that the classification is appropriate (i.e. matches the true, 

unknown, biologically relevant categorisation), or will remain stable upon addition of new 

data (Ben-David, Von Luxburg & Pál, 2006). Other information theoretic tests provide an 

alternative assessment of the validity of unsupervised clustering results, such as checking if 

units follow Zipf’s law of abbreviation, which is predicted by a universal principle of 

compression (Zipf, 1949; Ferrer-i-Cancho et al., 2013) or Zipf’s law for word frequencies, 

which is predicted by a compromise between maximizing the distinctiveness of units and the 

cost of producing them (Zipf, 1949; Ferrer-i-Cancho, 2005).

(5) Unit choice protocol

The definition of a unit for a particular focal species and a particular research question is 

necessarily dependent on a large number of factors in each specific project, and cannot be 

concisely summarised in a review of this length. In particular, availability or otherwise of 

behavioural information, such as the responses of individuals to playback experiments, is 

often the determining factor in deciding how to define a sequence unit. However, we 

provide here a brief protocol that can be used in conjunction with such prior information, or 
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in its absence, to guide the researcher in choosing the definition of a unit. This protocol is 

also represented graphically in Fig. 5. (a) Determine what is known about the production 

mechanism of the signalling individual. For example, Fig. 5A lists eight possible production 

types that produce notably different sounds, although clearly other categories are also 

possible. (b) Determine what is known about the perception abilities of the receiving 

individual. Perceptual limitations may substantially alter the structure of production units. 

Fig. 5B gives examples of typical modifications resulting from reduced temporal or spectral 

resolution at the receiver. (c) Choose a classification method, such as manual, semi-

automatic, or fully automatic (Fig. 5C). Some putative unit types lend themselves more 

readily to certain classification techniques than others. For example, “separated by silence” 

is often well distinguished by manual inspection of spectrograms “by eye” or a band-limited 

energy detector, whereas “changes in acoustic properties” may benefit from manual 

extraction of features for passing to a classification algorithm (semi-automatic definition), 

and “series of sounds” may lend itself to a fully automatic classification approach.

IV. INFORMATION-EMBEDDING PARADIGMS

A “sequence” can be defined as an ordered list of units. Animals produce sequences of 

sounds through a wide range of mechanisms (e.g. vocalisation, stridulation, percussion), and 

different uses of the sound-producing apparatus can produce different sound “units” with 

distinct and distinguishable properties. The resulting order of these varied sound units may 

or may not contain information that can be interpreted by a receiver, irrespective of whether 

or not the signaller intended to convey meaning. Given that a sequence must consist of more 

than one “unit” of one or more different types, the delineation and definition of the unit 

types is clearly of vital importance. We have discussed this question at length in Section III. 

However, assuming that units have been successfully assigned short-hand labels (e.g. A, B, 

C, etc.), what different methods can be used to arrange these units in a sequence, in such a 

way that the sequence can contain information?

Although it seems intuitively obvious that a sequence of such labels may contain 

information, this intuition arises from our own natural human dispensation to language and 

writing, and may not be particularly useful in identifying information in animal sequences. 

We appreciate that birdsong, for instance, can be described as a complex combination of 

notes, and we may be tempted to compare this animal vocalisation to human music (Baptista 

& Keister, 2005; Araya-Salas, 2012; Rothenberg et al., 2013). An anthropocentric approach, 

however, is not likely in all cases to identify structure relevant to animal communication. 

Furthermore, wide variation can be expected between the structure of sequences generated 

by different taxa, from the pulse-based stridulation of insects (Gerhardt & Huber, 2002) to 

song in whales (reviewed in Cholewiak et al., 2012), and a single analytical paradigm 

derived from a narrow taxonomic view is also likely to be inadequate. A more rigorous 

analysis is needed, one that indicates the fundamental structural properties of acoustic 

sequences, in all their diversity. Looking for information only, say, in the order of units can 

lead researchers to miss information encoded in unit timing, or pulse rate.

Although acoustic information can be encoded in many different ways, we consider here 

only the encoding of information via sequences. We suggest a classification scheme based 
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on six distinct paradigms for encoding information in sequences (Fig. 6): (a) Repetition, 

where a single unit is repeated more than once; (b) Diversity, where information is 

represented by the number of distinct units present; (c) Combination, where sets of units 

have different information from each unit individually; (d) Ordering, where the relative 

position of units to each other is important; (e) Overlapping, where information is conveyed 

in the relationship between sequences of two or more individuals; and (f) Timing, where the 

time gap between units conveys information. This framework can form the basis of much 

research into sequences, and provides a useful and comprehensive approach for classifying 

information-bearing sequences. We recommend that in any research into animal acoustic 

communication with a sequential component, researchers first identify the place(s) of their 

focal system in this framework, and use this structure to guide the formulation of useful, 

testable hypotheses. Identification of the place for one’s study system will stem in part from 

the nature of the system – a call system comprising a single, highly stereotyped contact note 

will likely fit neatly into the Repetition and Timing schemes we discuss, but may have little 

or nothing to do with the other schemes. We believe that our proposed framework will go 

beyond this, however, to drive researchers to consider additional schemes for their systems 

of study. For example, birdsong playback studies have long revealed that Diversity and 

Repetition often influence the behaviour of potential conspecific competitors and mates 

(Searcy & Nowicki, 2005). Much less is known about the possibility that Ordering, 

Overlapping, or Timing affect songbird receiver behaviour, largely because researchers 

simply have yet to assess that possibility in most systems. Considering the formal structures 

of possible information-embedding systems may provide supportive insights into the 

cognitive and evolutionary processes taking place (Chatterjee, 2005; Seyfarth, Cheney & 

Bergman, 2005). Of course, any particular system might have properties of more than one of 

the six paradigms in this framework, and the boundaries between them may not always be 

clearly distinguished. Sperm whale Physeter macrocephalus coda exchanges (Watkins & 

Schevill. 1977) provide an example of this. A coda is a sequence of clicks (Repetition of the 

acoustic unit) where the Timing between echolocation clicks moderates response. In duet 

behaviour, Overlap also exists, with one animal producing and another responding with 

another coda (Schulz et al., 2008). Each of these paradigms is now described in more detail 

below.

(1) Repetition

Sequences are made of repetitions of discrete units, and repetitions of the same unit affect 

receiver responses. For instance, the information contained in a unit A given in isolation may 

convey a different meaning to a receiver than an iterated sequence of unit A (e.g. AAAA, 

etc.). For example, greater numbers of D notes in the chick-a-dee calls of chickadee species 

Poecile spp. can be related to the immediacy of threat posed by a detected predator (Krams 

et al., 2012). Repetition in alarm calls is related to situation urgency in meerkats Suricata 

suricatta (Manser, 2001), marmots Marmota spp. (Blumstein, 2007), colobus monkeys 

Colobus spp. (Schel, Candiotti & Zuberbühler, 2010), Campbell’s monkeys Cercopithecus 

campbelli (Lemasson et al., 2010) and lemurs Lemur catta and Varecia variegata 

(Macedonia, 1990).
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(2) Diversity

Sequences of different units (e.g. A, B, C) are produced, but those units are functionally 

interchangeable, and therefore ordering is unimportant. For instance, many songbirds 

produce songs with multiple different syllables. In many species, however, the particular 

syllables are substitutable (e.g. Eens, Pinxten & Verheyen, 1991; Farabaugh & Dooling, 

1996; but see Lipkind et al., 2013), and receivers attend to the overall diversity of sounds in 

the songs or repertoires of signallers (Catchpole & Slater, 2003). Large acoustic repertoires 

have been proposed to be sexually selected in species such as great reed warblers 

Acrocephalus arundinaceus and common starlings Sturnus vulgaris (Eens, Pinxten & 

Verheyen, 1993; Hasselquist, Bensch & von Schantz, 1996; Eens, 1997), in which case 

diversity embeds information (that carries meaning) on signaller quality (e.g. Kipper et al., 

2006). Acoustic “diversity” has additionally been proposed as a means of preventing 

habituation on the part of the receiver (Hartshorne, 1956, 1973; Kroodsma. 1990) as well as 

a means of avoiding (neuromuscular) “exhaustion” on the part of the sender (Lambrechts & 

Dhondt, 1987, 1988). We do note that these explanations remain somewhat controversial, 

especially if the transitions between acoustic units are, indeed, biologically constrained 

(Weary & Lemon, 1988, 1990; Weary et al., 1988; Weary, Lambrechts & Krebs, 1991; 

Riebel & Slater, 2003; Brumm & Slater, 2006).

(3) Combination

Sequences may consist of different discrete acoustic units (e.g. A, B, C) each of which is 

itself meaningful, and the combining of the different units conveys distinct information. 

Here, order does not matter (in contrast to the Ordering paradigm below) – the sequence of 

unit A followed by unit B has the same information as the sequence of unit B followed by 

unit A. For example, titi monkeys Callicebus nigrifrons (Cäsar et al., 2013) use semantic 

alarm combinations, in which interspersing avian predator alarms calls (A-type) with 

terrestrial predator alarm calls (B-type) indicates the presence of a raptor on the ground. In 

this case, the number of calls (i.e. Repetition) also appears to influence the information 

present in each call sequence (Cäsar et al., 2013).

(4) Ordering

Sequences of different discrete acoustic units (e.g. A, B, C) each of which is itself 

meaningful and the specific order of which is meaningful. Here, order matters – and the 

ordered combination of discrete units may result in emergent responses. For instance, A 

followed by B may elicit a different response than either A or B alone, or B followed by A. 

Examples include primate alarm calls which, when combined, elicit different responses 

related to the context of the predatory threat (Arnold & Zuberbühler, 2006b, 2008). Human 

languages are a sophisticated example of ordered information encoding (Hauser, Chomsky 

& Fitch, 2002). When sequences have complex ordering, simple quantitative measures are 

unlikely to capture the ordering information. Indeed, the Kolmogorov complexity of a 

sequence indicates how large a descriptor is required to specify the sequence adequately 

(Denker & Woyczyński, 1998). Instead of quantifying individual sequences, an alternative 

approach to measuring ordering is to calculate the pairwise similarity or difference between 
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two sequences, using techniques such as the Levenshtein or Edit distance (Garland et al., 

2012; Kershenbaum et al., 2012).

(5) Overlapping

Sequences are combined from two or more individuals into exchanges for which the order of 

these overlapping sequences has information distinct from each signaller’s signals in 

isolation. Overlapping can be in the time dimension (i.e. two signals emitted at the same 

time) or in acoustic space, e.g. song-type matching (Krebs, Ashcroft & Orsdol, 1981), and 

frequency matching (Mennill & Ratcliffe, 2004). For example, in different parid species 

(Paridae: chickadees, tits, and titmice), females seem to attend to the degree to which their 

males’ songs are overlapped (in time) by neighbouring males’ songs, and seek extra-pair 

copulations when their mate is overlapped (Otter et al., 1999; Mennill, Ratcliffe & Boag, 

2002). Overlapping is also used for social bonding, spatial perception, and reunion, such as 

chorus howls in wolves (Harrington et al., 2003) and sperm whale codas (Schulz et al., 

2008). Overlapping as song-type matching (overlapping in acoustic space) is also an 

aggressive signal in some songbirds (Akçay et al., 2013), although this may depend on 

whether it is the sequence or the individual unit that is overlapped (Searcy & Beecher, 

2011). Coordination between the calling of individuals can also give identity cues (Carter et 

al., 2008). However, despite the apparent widespread use of overlapping in sequences, few 

analytical models have been developed to address this mechanism. While this is a promising 

area for future research, it is currently beyond the purview of this review.

(6) Timing

The temporal spacing between units in a sequence can contain information. In the simplest 

case, pulse rate and interpulse interval can distinguish between different species, for 

example in insects and anurans (Gerhardt & Huber, 2002; Nityananda & Bee, 2011), rodents 

(Randall, 1997), and primates (Hauser, Agnetta & Perez, 1998). Call timing can indicate 

fitness and aggressive intent, e.g. male howler monkeys Alouatta pigra attend to howling 

delay as an indicator of aggressive escalation (Kitchen, 2004). Additionally, when sequences 

are produced by different individuals, a receiver may interpret the timing differences 

between the producing individuals to obtain contextual information. For instance, ground 

squirrels Spermophilus richarsonii use the spatial pattern and temporal sequence of 

conspecific alarm calls to provide information on a predator’s movement trajectory 

(Thompson & Hare, 2010). This information only emerges from the sequence of different 

callers initiating calls (Blumstein, Verneyre & Daniel, 2004). Such risk tracking could also 

emerge from animals responding to sequences of heterospecific alarm signals produced over 

time.

(7) Information-embedding paradigms: conclusions

The use of multiple embedding techniques may be quite common, for instance in intrasexual 

competitive and intersexual reproductive contexts (Gerhardt & Huber, 2002). For example, 

many frog species produce pulsatile advertisement calls consisting of the same repeated 

element. If it is the case that both number of pulses and pulse rate affect receiver responses, 
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as shown in some hylid treefrogs (Gerhardt, 2001), then information is being embedded 

using both the Repetition and the Timing paradigms simultaneously.

Before hypothesising a specific structuring paradigm, it is frequently useful to perform 

exploratory data analysis (Fig. 7). This might begin by looking at histograms, networks, or 

low-order Markov models that are based on acoustic units or timing between units. This 

analysis can be on the raw acoustic units or may involve preprocessing. An example of 

preprocessing that might be helpful for hypothesising Repetition would be to create 

histograms that count the number of times that acoustic units occur within a contiguous 

sequence of vocalisations. As an example, if 12 different acoustic units each occurred three 

times, a histogram bin representing three times would have a value of 12; for examples, see 

Jurafsky & Martin (2000). For histograms or networks, visual analysis can be used to 

determine if there are any patterns that bear further scrutiny. Metrics such as entropy can be 

used to provide an upper bound on how well a Markov chain model describes a set of 

vocalisations (smaller numbers are better, as an entropy of zero indicates that we model the 

data perfectly). If nothing is apparent, it might mean that there is no structure to the acoustic 

sequences, but it also possible that the quantity of data are insufficient to reveal the structure 

or that the structure is more complex than what can be revealed through casual exploratory 

data analysis.

Exploratory data analysis may lead to hypotheses that one or more of the embedding 

paradigms for acoustic sequences may be appropriate. At this point a greater effort should be 

put into the modelling and understanding and we provide a suggested flow of techniques 

(Fig. 7). It is important to keep in mind that these are only suggestions. For example, while 

we suggest that a grammar (Section V.4) be modelled if there is evident and easily described 

structure for Repetition, Diversity, and Ordering, other models could be used effectively and 

machine learning techniques for generating grammars may be able to do so when the 

structure is less evident.

We conclude this section with a discussion of two examples of how sequences of acoustic 

signals produced by signallers can influence meaning to receivers. These two examples 

come from primates and exemplify the Diversity and Ordering types of sequences illustrated 

in Fig. 6. The example of the Diversity type is the system of serial calls of titi monkeys, 

Callicebus molloch, used in a wide range of social interactions. Here, the calls comprise 

several distinct units, many of which are produced in sequences. Importantly, the units of 

this call system seem to have meaning primarily in the context of the sequence – this call 

system therefore seems to represent the notion of phonological syntax (Marler, 1977). One 

sequence has been tested via playback studies – the ‘honks–bellows–pumps’ sequence is 

used frequently by males that are isolated from and not closely associated with females and 

may recruit non-paired females (Robinson, 1979). Robinson (1979) played back typical 

sequences of honks–bellows–pumps sequences and atypical (i.e. reordered) sequences of 

honks–pumps–bellows and found little evidence that groups of titi monkeys responded 

differently to the two playbacks (although they gave one call type – a ‘moan’, produced 

often during disturbances caused by other conspecific or heterospecific monkey groups – 

more often to the atypical sequences).
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The second example relates to the Ordering type of sequence (Fig. 6), and stems from two 

common calls of putty-nosed monkeys, Cercopithecus nictitans martini. ‘Pyow’ calls can be 

produced individually or in strings of pyows, and seem to be used by putty-nosed monkeys 

frequently when leopards are detected in the environment (Arnold & Zuberbühler, 2006b), 

and more generally as an attention-getting signal related to recruitment of receivers and low-

level alarm (Arnold & Zuberbühler, 2013). ‘Hack’ calls can also be produced individually or 

in strings of hacks, and seem to be used frequently when eagles are detected in the 

environment, and more generally as a higher-level alarm call (Arnold & Zuberbühler, 2013). 

Importantly, pyow and hack calls are frequently combined into pyow–hack sequences. Both 

naturalistic observational data as well as experimental call playback results indicate that 

pyow–hack sequences influence receiver behaviour differently than do pyow or hack 

sequences alone – pyow–hack sequences seem to mean “let’s go!” and produce greater 

movement distances in receivers (Arnold & Zuberbühler, 2006a). The case of the pyow–

hack sequence therefore seems to represent something closer to the notion of lexical syntax 

– individual units and ordered combinations of those units have distinct meanings from one 

another (Marler, 1977).

These two examples of primate calls illustrate the simple but important point that sequences 

matter in acoustic signals – combinations or different linear orderings of units (whether 

those units have meaning individually or not) can have different meanings to receivers. In 

the case of titi monkeys, the call sequences seem to serve the function of female attraction 

for male signallers, whereas in the case of putty-nosed monkeys, the call sequences serve 

anti-predatory and group-cohesion functions.

V. ANALYSIS OF SEQUENCES

Given that the researcher has successfully determined the units of an acoustic sequence that 

are appropriate for the hypothesis being tested, one must select and apply appropriate 

algorithms for analysing the sequence of units. Many algorithms exist for the analysis of 

sequences: both those produced by animals, and sequences in general (such as DNA, and 

stock market prices). Selection of an appropriate algorithm can sometimes be guided by the 

quantity and variability of the data, but there is no clear rule to be followed. In fact, in 

machine learning, the so-called ‘no free lunch’ theorem (Wolpert & Macready, 1997) shows 

that there is no one pattern-recognition algorithm that is best for every situation, and any 

improvement in performance for one class of problems is offset by lower performance in 

another problem class. In choosing an algorithm for analyses, one should be guided by the 

variability and quantity of the data for analysis, keeping in mind that models with more 

parameters require more data to estimate the parameters effectively.

We consider five models in this section: (1) Markov chains, (2) hidden Markov models, (3) 

network models, (4) formal grammars, and (5) temporal models. Each of these models has 

been growing in popularity among researchers, with the number of publications increasing 

in recent years. The number of publications in 2013 mentioning both the terms “animal 

communication” as well as the model name has grown since 2005 by a factor of: “Markov”, 

4.9; “hidden Markov”, 3.3; “network”, 2.6; “grammar” 1.7; “timing”, 2.3.
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The structure-analysis algorithms discussed throughout this section can be used to model the 

different methods for combining units discussed earlier (Fig. 6). Repetition, Diversity, and 

Ordering are reasonably well captured by models such as Markov chains, hidden Markov 

models, and grammars. Networks capture structure either with or without order, although 

much of the application of networks has been done on unordered associations 

(Combination). Temporal information can be modelled as an attribute of an acoustic unit 

requiring extensions to the techniques discussed below, or as a separate process. Table 2 

summarises the assumptions and requirements for each of these models.

Here we give a sample of some of the more important and more promising algorithms for 

animal acoustic sequence analysis, and discuss ways for selecting and evaluating analytical 

techniques. Selecting appropriate algorithms should involve the following steps. (i) 

Technique: understand the nature of the models and their mathematical basis. (ii) Suitability: 

assess the suitability of the models and their constraints with respect to the research 

questions being asked. (iii) Application: apply the models to the empirical data (training, 

parameter estimation). (iv) Assessment: extract metrics from the models that summarise the 

nature of the sequences analysed. (v) Inference: compare metrics between data sets (or 

between empirical data and random null-models) to draw ecological, mechanistic, 

evolutionary, and behavioural inferences. (vi) Validate: determine the goodness of fit of the 

model to the data and uncertainty of parameter estimates. Bootstrapping techniques can 

allow validation with sets that were not used in model development.

(1) Markov chains

Markov chains, or N-grams models, capture structure in acoustic unit sequences based on 

the recent history of a finite number of discrete unit types. Thus, the occurrence of a unit (or 

the probability of occurrence of a unit) is determined by a finite number of previous units. 

The history length is referred to as the order, and the simplest such model is a 0th order 

Markov model, which assumes that each unit is independent of another, and simply 

determines the probability of observing any unit with no prior knowledge. A 1st order 

Markov model is one in which the probability of each unit occurring is determined only by 

the preceding unit, together with the “transition probability” from one unit to the next. This 

transition probability is assumed to be constant (stationary). Higher order Markov models 

condition the unit probabilities based on more than one preceding units, as determined by 

the model order. An N-gram model conditions the probability on the N–1 previous units, and 

is equivalent to an N–1th order Markov model. A Kth order Markov model of a sequence 

with C distinct units is defined by at most a CK × C matrix of transition probabilities from 

each of the CK possible preceding sequences, to each of the C possible subsequent units, or 

equivalently by a state transition diagram (Fig. 8).

As the order of the model increases, more and more data are required for the accurate 

estimation of transition probabilities, i.e. sequences must be longer, and many transitions 

will have zero counts. This is particularly problematic when looking at new data, which may 

contain sequences that were not previously encountered, as they will appear to have zero 

probability. As a result, Markov models with orders greater than two (trigram, N=3) are rare. 

In principle, a Kth order Markov model requires sufficient data to provide accurate estimates 
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of CK+1 transition probabilities. In many cases, the number of possible transitions is similar 

to, or larger than, the entire set of empirical data. For example, Briefer et al. (2010) 

examined very extensive skylark Alauda arvensis sequences totalling 16,829 units, but 

identified over 340 unit types. As a naïve transition matrix between all unit types would 

contain 340 × 340 = 115,600 cells, the collected data set would be too small to estimate the 

entire matrix. A different problem occurs when, as is commonly the case, animal acoustic 

sequences are short. Kershenbaum et al. (2012) examined hyrax Procavia capensis 

sequences that are composed of just five unit types. However, 81% of the recorded 

sequences were only five or less units long. For these short sequences, 55 = 3125 different 

combinations are possible – which is greater than the number of such sequences recorded 

(2374). In these cases, estimates of model parameters, and conclusions drawn from them, 

may be quite inaccurate (Cover & Thomas, 1991; Hausser & Strimmer, 2009; Kershenbaum, 

2013).

Closed-form expressions for maximum-likelihood estimates of the transition probabilities 

can be used with conditional counts (Anderson & Goodman, 1957). For example, assuming 

five acoustic units (A–E), maximum-likelihood estimates of the transition probabilities for a 

first-order Markov model (bigram, N=2) can be found directly from the number of 

occurrences of each transition, e.g.

(1)

Although not widely used in the animal communication literature, research in human natural 

language processing has led to the development of methods known as back-off models 

(Katz, 1987), which account for the underestimated probability of rare sequences using 

Good–Turing counts, a method for improving estimated counts for events that occur 

infrequently (Gale & Sampson, 1995). When a particular state transition is never observed in 

empirical data, the back-off model offers the minimum probability for this state transition so 

as not to rule it out automatically during the testing. Standard freely available tools, such as 

the SRI language modelling toolkit (Stolcke, 2002), implement back-off models and can 

reduce the effort of adopting these more advanced techniques.

Once Markovian transitions have been calculated and validated, the transition probabilities 

can be used to calculate a number of summary metrics using information theory (Shannon et 

al., 1949; Chatfield & Lemon, 1970; Hailman, 2008). For a review on the mathematics 

underlying information theories, we direct the readers to the overview in McCowan, Hanser 

& Doyle (1999) or Freeberg & Lucas (2012), which provides the equations as well as a 

comprehensive reference list to other previous work. Here we will define these quantitative 

measures with respect to their relevance in analysing animal acoustic sequences. Zero-order 

entropy measures repertoire diversity:

(2)
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where, C=|V| is the cardinality of the set of acoustic units V. First-order entropy H1 begins to 

measure simple repertoire internal organisational structure by evaluating the relative 

frequency of use of different signal types in the repertoire:

(3)

where the probability P(vi) of each acoustic unit i is typically estimated based on frequencies 

of occurrence, as described earlier with N-grams. Higher-order entropies measure internal 

organisational structure, and thus one form of communication complexity, by examining 

how signals interact within a repertoire at the two-unit sequence level, the three-unit 

sequence level, and so forth.

One inferential approach is to calculate the entropic values from first-order and higher-order 

Markov models to summarise the extent to which sequential structure is present at each 

order. A random sequence would show no dependence of entropy on Markov order, whereas 

decreases in entropy as the order is increased would be an indication of sequential 

organisation, and thus higher communication complexity (Ferrer-i-Cancho & McCowan, 

2012). These summary measures can then be further extended to compare the importance of 

sequential structure across different taxa, social and ecological contexts. These types of 

comparisons can provide novel insights into the ecological, environmental, social, and 

contextual properties that shape the structure, organisation, and function of signal repertoires 

(McCowan, Doyle & Hanser, 2002).

The most common application of the Markov model is to test whether or not units occur 

independently in a sequence. Model validation techniques include the sequential and χ2 tests 

(Anderson & Goodman, 1957). For instance, Narins et al. (2000) used a permutation test 

(Adams & Anthony, 1996) to evaluate the hypothesis that a frog with an exceptionally large 

vocal repertoire, Bufo madagascariensis, emitted any call pairs more often than would be 

expected by chance. Similar techniques were used to show non-random call production by 

Sayigh et al. (2012) with short-finned pilot whales Globicephala macrorhynchus, and by 

Bohn et al. (2009) with free-tailed bats Tadarida brasiliensis. However, deviation from 

statistical independence does not in itself prove a sequence to have been generated by a 

Markov chain. Other tests, such as N-gram distribution (Jin & Kozhevnikov, 2011) may be 

more revealing.

(2) Hidden Markov models

Hidden Markov models (HMMs) are a generalisation of the Markov model. In Markov 

models, the acoustic unit history (of length N) can be considered the current “state” of the 

system. In HMMs (Rabiner, 1989), states are not necessarily associated with acoustic units, 

but instead represent the state of some possibly unknown and unobservable process. Thus, 

the system progresses from one state to another, where the nature of each state is unknown 

to the observer. Each of these states may generate a “signal” (i.e. a unit), but there is not 

necessarily a one-to-one mapping between state transitions and signals generated. For 

example, transitioning to state X might generate unit A, but the same might be true of 

transitioning to state Y. An observation is generated at each state according to a state-
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dependent probability density function, and state transitions are governed by a separate 

probability distribution (Fig. 9). HMMs are particularly useful to model very complex 

systems, while still being computationally tractable.

Extensions to the HMM model also exist, in which the state transition probabilities are non-

stationary. For example, the probability of remaining in the same state may decay with time 

e.g. due to neural depletion, as shown by Jin & Kozhevnikov (2011), or recurrent units may 

appear more often than expected by a Markov model, particularly where behavioural 

sequences are non-Markovian (Cane, 1959; Kershenbaum, 2013; Kershenbaum et al., 2014). 

Also, HMMs are popular in speech analysis (Rabiner, 1989), where emissions are 

continuous-valued, rather than discrete.

HMMs have been used fairly extensively in speaker recognition (Lee & Hon, 1989), the 

identification of acoustic units in birdsong (Trawicki, Johnson & Osiejuk, 2005), and other 

analyses of birdsong sequences. ten Cate, Lachlan & Zuidema (2013) reviewed analytical 

methods for inferring the structure of birdsong and highlighted the idea that HMM states can 

be thought of as possibly modelling an element of an animal’s cognitive state. This makes it 

possible to build models that have multiple state distributions for the same acoustic unit 

sequence. For instance, in the trigram AAC, the probability given by the 2nd order Markov 

model, P(C|A, A) is fixed. There cannot be different distributions for observing the unit C, if 

the previous two units are A. Yet cognitive state may have the potential to influence the 

probability of observing C, even for identical sequence contexts (AA). Another state variable 

(θ) exists unobserved, as it reflects cognitive state, rather than sequence history. In this case, 

P(C|A, A,θ =0) P(C|A, A,θ=1). Hahnloser, Kozhevnikov & Fee (2002), Katahira et al. 

(2011), and Jin (2009) have used HMMs to model the interaction between song and neural 

substrates in the brain. A more recent example of this can be seen in the work of Jin & 

Kozhevnikov (2011), where they used states to model neural units in song production of the 

Bengalese finch Lonchura striata ver. domestica, restricting each state to the emission of a 

single acoustic unit, thus making acoustic units associated with each state deterministic 

while retaining the stochastic nature of state transitions.

Because the states of a HMM represent an unobservable process, it is difficult to estimate 

the number of states needed to describe the empirical data adequately. Model selection 

methods and criteria (for example Akaike and Bayesian information criteria, and others) can 

be used to estimate model order – see Hamaker, Ganapathiraju & Picone (1998) and 

Zucchini & MacDonald (2009) for a brief review – so the number of states is often 

determined empirically. Increasing the number of states permits the modelling of more 

complex underlying sequences (e.g. longer term dependencies), but increases the amount of 

data required for proper estimation. The efficiency and accuracy of model fitting depends on 

model complexity, so that models with many states, many acoustic units, and perhaps many 

covariates or other conditions will take more time and require more data to fit.

During training, HMM parameters are estimated using an optimisation algorithm (Cappé, 

Moulines & Rydén, 2005) that finds a combination of hidden states, state transition tables, 

and state-dependent distributions that best describe the data. Software libraries for the 

training of HMMs are available in many formats, e.g. the Matlab function hmmtrain, the R 
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package HMM (R Development Team, 2012), and the Hidden Markov Model Toolkit 

(Young & Young, 1994). Similar considerations of data set completeness exist to those 

when generating regular Markov models, most importantly, that long sequences of data are 

required.

Although the states of a HMM are sometimes postulated to possess biologically relevant 

meaning, the internal states of the HMM represent a hidden process, and do not necessarily 

refer to concrete behavioural states. Specifically, the training algorithm does not contain an 

optimisation criterion that will necessarily associate model states with the functional or 

ecological states of the animal that a researcher is interested in observing (e.g. foraging, 

seeking a mate, etc.). While the functional/ecological state is likely related to the sequence, 

each model state may in fact represent a different subsequence of the data. Therefore, one 

cannot assume in general that there will be a one-to-one mapping between model and animal 

states. Specific hidden Markov models derived from different empirical data are often 

widely different, and it can be misleading to make comparisons between HMMs derived 

from different data sets. Furthermore, obtaining consistent states requires many examples 

with respect to the diversity of the sequence being modelled. An over-trained network will 

be highly dependent on the data presented to it and small changes in the training data can 

result in very different model parameters, making state-based inference questionable.

(3) Network models

The structure of an acoustic sequence can also be described using a network approach – 

reviewed in Newman (2003) and Baronchelli et al. (2013) – as has been done for other 

behavioural sequences, e.g. pollen processing by honeybees (Fewell, 2003). A node in the 

network represents a type of unit, and a directional edge connecting two nodes means that 

one unit comes after the other in the acoustic sequence. For example, if a bird sings a song 

in the order: ABCABC; the network representing this song will have three nodes for A, B, 

and C, and three edges connecting A to B, B to C, and C to A (Fig. 10). The edges may 

simply indicate association between units without order (undirected binary network), an 

ordered sequence (directed binary network), or a probability of an ordered sequence 

(directed weighted network), the latter being equivalent to a Markov chain (Newman, 2009).

The network representation is fundamentally similar to the Markov model, and the basic 

input for constructing a binary network is a matrix of unit pairs within the repertoire, which 

corresponds to the transition matrix in a Markov model. However, the network 

representation may be more widely applicable than a Markov analysis, particularly when a 

large number of distinct unit types exist, precluding accurate estimation of transition 

probabilities (e.g. Sasahara et al., 2012; Weiss et al., 2014; Deslandes et al., 2014). In this 

case, binary or simple directed networks may capture pertinent properties of the sequence, 

even if transition probabilities are unknown.

One of the attractive features of network analysis is that a large number of quantitative 

network measures exist for comparison to other networks (e.g. from different individuals, 

populations, or species), or for testing hypotheses. We list a few of the popular algorithms 

that can be used to infer the structure of the acoustic sequence using a network approach. 
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We refer the reader to introductory texts to network analysis for further details (Newman, 

2009; Scott & Carrington, 2011).

Degree centrality measures the number of edges directly connected to each node. In a 

directed network, each node has an in-degree and an out-degree, corresponding to incoming 

and outgoing edges. The weighted version of degree centrality is termed strength centrality, 

which takes into account the weights of each edge (Barrat et al., 2004). Degree/strength 

centrality identifies the central nodes in the network, corresponding to central elements in 

the acoustic sequence. For example, in the mockingbird Mimus polyglottos, which imitates 

sounds of other species, its own song is central in the network, meaning that it usually 

separates between other sounds by singing its own song (Gammon & Altizer, 2011).

Betweenness centrality is a measure of the role a central node plays in connecting other 

nodes. For example, if an animal usually uses three units before moving to another group of 

units, a unit that lies between these groups in the acoustic sequence will have high 

betweenness centrality. A weighted version of betweenness centrality was described in 

Opsahl, Agneessens & Skvoretz (2010).

Clustering coefficient describes how many triads of nodes are closed in the network. For 

example, if unit A is connected to B, and B is connected to C, a cluster is formed if A is also 

connected to C. Directed and weighted versions of the clustering coefficient have also been 

described (Barrat et al., 2004; Fagiolo, 2007).

Mean path length is defined as the average minimum number of connections to be crossed 

from any arbitrary node to any other. This measures the overall navigability in the network; 

as this value becomes large, a longer series of steps is required for any node to reach 

another.

Small-world metric measures the level of connectedness of a network and is the ratio of the 

clustering coefficient C to the mean path length L after normalising each with respect to the 

clustering coefficient and mean path length of a random network: S=(C/Crand)/(L/Lrand). If S 

> 1 the network is regarded as “small-world” (Watts & Strogatz, 1998; Humphries & 

Gurney, 2008), with the implication that nodes are reasonably well connected and that it 

does not take a large number of edges to connect most pairs of nodes. Sasahara et al. (2012) 

demonstrated that the network of California thrasher Toxostoma redivivum songs has a 

small-world structure, in which subsets of phrases are highly grouped and linked with a 

short mean path length.

Network motifs are recurring structures that serve as building blocks of the network (Milo et 

al., 2002). For example, a network may feature an overrepresentation of specific types of 

triads, tetrads, or feed-forward loops. Network motif analysis could be informative in 

comparing sequence networks from different individuals, populations or species. We refer 

the reader to three software packages available for motif analysis: FANMOD (Wernicke & 

Rasche, 2006); MAVisto (Schreiber & Schwöbbermeyer, 2005); and MFinder (Kashtan et 

al., 2002).
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Community detection algorithms offer a method to detect network substructure objectively 

(Fortunato, 2010). These algorithms identify groups of nodes with dense connections 

between them but that are sparsely connected to other groups/nodes. Subgroups of nodes in 

a network can be considered somewhat independent components of it, offering insight into 

the different subunits of acoustic sequences. Multi-scale community detection algorithms 

can be useful for detecting hierarchical sequence structures (Fushing & McAssey, 2010; 

Chen & Fushing, 2012).

Exponential family Random Graph Models (ERGMs) offer a robust analytic approach to 

evaluate the contribution of multiple factors to the network structure using statistical 

modelling (Snijders, 2002). These factors may include structural factors (e.g. the tendency to 

have closed triads in the network), and factors based on node or edge attributes (e.g. a 

tendency for connections between nodes that are acoustically similar). The goal of ERGMs 

is to predict the joint probability that a set of edges exists on nodes in a network. The R 

programming language package statnet has tools for model estimation and evaluation, and 

for model-based network simulation and network visualisation (Handcock et al., 2008).

As with other models, many statistical tests for inference and model assessment require a 

comparison of the observed network to a set of random networks. For example, the 

clustering coefficient of an observed network can be compared to those of randomly 

generated networks, to test if it is significantly smaller or larger than expected. A major 

concern when constructing random networks is what properties of the observed network 

should be retained (Croft, James & Krause, 2008). The answer to this question depends on 

the hypothesis being tested. For example, when testing the significance of the clustering 

coefficient, it is reasonable to retain the original number of nodes and edges, density and 

possibly also the degree distribution, such that the observed network is compared to random 

networks with similar properties.

Several software packages exist that permit the computation of many of the metrics from 

this section that can be used to make inferences about the network. Examples include 

UCINet (Borgatti, Everett & Freeman, 2002), Gephi (Bastian, Heymann & Jacomy, 2009), 

igraph (Csardi & Nepusz, 2006) and Cytoscape (Shannon et al., 2003).

(4) Formal grammars

The structure of an acoustic sequence can be described using formal grammars. A grammar 

consists of a set of rewrite rules (or “productions”) that define the ways in which units can 

be ordered. Grammar rules consist of operations performed on “terminals” (in our case, 

units), which are conventionally denoted with lower case letters, and non-terminals (symbols 

that must be replaced by terminals before the derivation is complete), conventionally 

denoted with upper case letters (note that this convention is inconsistent with the upper case 

convention used for acoustic unit labels). Grammars generate sequences iteratively, by 

applying rules repeatedly to a growing sequence. For example, the rule “U → a W” means 

that the nonterminal U can be rewritten with the symbols “a W.” The terminal a is a unit, as 

we are familiar with, but as W is a non-terminal, and may itself be rewritten by a different 

rule. For an example, see Fig. 11.
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Sequences that can be derived by a given grammar are called grammatical with respect to 

that grammar. The collection of all sequences that could possibly be generated by a grammar 

is called the language of the grammar. The validation of a grammar consists of verifying that 

the grammar’s language matches exactly the set of sequences to be modelled. If a species 

produces sequences that cannot be generated by the grammar, the grammar is deemed “over-

selective”. A grammar that is “over-generalising” produces sequences not observed in the 

empirical data – although it is often unclear whether this represents a true failure of the 

grammar, or insufficient sampling of observed sequences. In the example given in Fig. 11, 

the grammar is capable of producing the sequence abbbbbbbbbbbbb, however, since blue 

whales have not been observed to produce similar sequences in decades of observation, we 

conclude that this grammar is overgeneralising. It is important to note, however, that formal 

grammars are deterministic, in contrast to the probabilistic models discussed previously 

(Markov model, HMM). If one assigned probabilities to each of the rewriting rules, the 

particular sequence shown above may not have been observed simply because it is very 

unlikely.

Algorithms known as parsers can be constructed from grammars to determine whether a 

sequence belongs to the language for which the grammar has been inferred. Inferring a 

grammar from a collection of sequences is a difficult problem, which, as famously 

formulated by Gold (1967), is intractable for all but a number of restricted cases. Gold’s 

formulation, however, does not appear to preclude the learning of grammar in real-world 

examples, and is of questionable direct relevance to the understanding or modelling of the 

psychology of sequence processing (Johnson, 2004). When restated in terms that arguably 

fit better the cognitive tasks faced by humans and other animals, grammar inference 

becomes possible (Clark, 2010; Clark, Eyraud & Habrard, 2010). Algorithms based on 

distributional learning, which seek probabilistically motivated phrase structure by 

recursively aligning and comparing input sequences, are becoming increasingly successful 

in sequence-processing tasks such as modelling language acquisition (Solan et al., 2005; 

Kolodny, Lotem & Edelman, in press).

A grammar can be classified according to its place in a hierarchy of classes of formal 

grammars known as the Chomsky hierarchy (Chomsky, 1957) and illustrated in Fig. 12. 

These classes differ in the complexity of languages that can be modelled. The simplest class 

of grammars are called regular grammars, which are capable of describing the generation of 

any finite set of sequences or repeating pattern, and are fundamentally similar to Markov 

models. Fig. 11 is an example of a regular grammar. Kakishita et al. (2009) showed that 

Bengalese finch Lonchura striata ver. domestica songs can be modelled by a restricted class 

of regular grammars, called “k-reversible regular grammars,” which is learnable from only 

positive samples, i.e. observed and hence permissible sequences, without information on 

those sequences that are not permissible in the grammar. Context-free grammars are more 

complex than regular grammars and are able to retain state information that enable one part 

of the sequence to affect another; this is usually demonstrated through the ability to create 

sequences of symbols where each unit is repeated the same number of times AnBn where n 

denotes n repetitions of the terminal unit, e.g. AAABBB (A3B3). Such an ability requires 

keeping track of a state, e.g. “how many times the unit A has been used”, and a neurological 
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implementation may be lacking in most species (Beckers et al., 2012). Context-sensitive 

languages allow context-dependent rewrite rules that have few restrictions, permitting 

further reaching dependencies such as in the set of sequences AnBnCn, and require still more 

sophisticated neural implementations. The highest level in the Chomsky hierarchy, 

recursively enumerable grammars, are more complex still, and rarely have relevance to 

animal communication studies.

The level of a grammar within the Chomsky hierarchy can give an indication of the 

complexity of the communication system represented by that grammar. Most animal 

acoustic sequences are thought to be no more complex than regular grammars (Berwick et 

al., 2011), whereas complexity greater than the regular grammar is thought to be a unique 

feature of human language (Hauser et al., 2002). Therefore, indication that any animal 

communication could not be represented by a regular grammar would be considered an 

important discovery. For example, Gentner et al. (2006) proposed that European starlings 

Sturnus vulgaris can learn to recognise context-free (but non-regular) sequences, and reject 

sequences that do not correspond to the learned grammar. However, other authors have 

pointed out that the observed results could be explained by more simple mechanisms than 

context-free processing, such as primacy rules (Van Heijningen et al., 2009) in which simple 

analysis of short substrings is sufficient to distinguish between grammatical and non-

grammatical sequences, or acoustic similarity matching (Beckers et al., 2012). 

Consequently, claims of greater than regular grammar in non-human animals have not been 

widely accepted. The deterministic nature of regular grammars – or indeed any formal 

grammars – may explain why formal grammars are not sufficiently general to describe the 

sequences of many animal species, and formal grammars remain more popular in human 

linguistic studies than in animal communication research.

(5) Temporal structure

Information may exist in the relative or absolute timing of acoustic units in a sequence, 

rather than in the order of those units. In particular, timing and rhythm information may be 

of importance, and may be lost when acoustic sequences are represented as a series of 

symbols. This section describes two different approaches to quantifying the temporal 

structure in acoustic sequences: traditional techniques examining inter-event interval and 

pulse statistics (e.g. Randall, 1989; Narins et al., 1992), and recent multi-timescale rhythm 

analysis (Saar & Mitra, 2008).

Analyses of temporal structure can be applied to any audio recording, regardless of whether 

that recording contains recognisable sequences, individual sounds, or multiple 

simultaneously vocalising individuals. Such analyses are most likely to be informative, 

however, when recurring acoustic patterns are present, especially if those recurring patterns 

are rhythmic or produced at a predictable rate. Variations in interactive sound-sequence 

production during chorusing and cross-individual synchronisation can be quantified through 

meter, or prosody analysis, and higher-order sequence structure can be identified through 

automated identification of repeating patterns. At the simplest level, it is possible to analyse 

the timing of sounds in a sequence, simply by recording when sound energy is above a fixed 

threshold. For instance, temporal patterns can be extracted automatically from simpler 
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acoustic sequences by transforming recordings into sequences of numerical measures of the 

durations and silent intervals between sounds (Isaac & Marler, 1963; Catchpole, 1976; 

Mercado, Herman & Pack, 2003; Handel, Todd & Zoidis, 2009; Green et al., 2011), song 

bouts (Eens, Pinxten & Verheyen, 1989; Saar & Mitra, 2008), or of acoustic energy within 

successive intervals (Murray, Mercado & Roitblat, 1998; Mercado et al., 2010). Before the 

invention of the Kay sonograph, which led to the routine analysis of audio spectrograms, 

temporal dynamics of birdsong were often transcribed using musical notation (Saunders, 

1951; Nowicki & Marler, 1988).

Inter-pulse interval has been widely used to quantify temporal structure in animal acoustic 

sequences, for example in kangaroo rats Dipodomys spectabilis (Randall, 1989), fruit flies 

Drosophila melanogaster (Bennet-Clark & Ewing, 1969), and rhesus monkeys Macaca 

mulatta (Hauser et al., 1998). Variations in pulse intervals can encode individual 

information such as identity and fitness (Bennet-Clark & Ewing, 1969; Randall, 1989), as 

well species identity (Randall, 1997; Hauser et al., 1998). In these examples, comparing the 

median inter-pulse interval between two sample populations is often sufficient to uncover 

significant differences.

More recently developed techniques for analysis of temporal structure require more detailed 

processing. For example, periodic regularities and repetitions of patterns within recordings 

of musical performances can be automatically detected and characterised (Paulus, Müller & 

Klapuri, 2010; Weiss & Bello, 2011). The first step in modern approaches to analysing the 

temporal structure of sound sequences involves segmenting the recording. The duration and 

distribution of individual segments can be fixed (e.g. splitting a recording into 100 ms 

chunks/frames) or variable (e.g. using multiple frame sizes in parallel or adjusting the frame 

size based on the rate and duration of acoustic events). The acoustic features of individual 

frames can then be analysed using the same signal-processing methods that are applied when 

measuring the acoustic features of individual sounds, thereby transforming the smaller 

waveform into a vector of elements that describe features of the segment. Sequences of such 

frame-describing vectors then would typically be used to form a matrix representing the 

entire recording. In this matrix, the sequence of columns (or rows) corresponds to the 

temporal order of individual frames extracted from the recording.

Regularities within the feature matrix generated from frame-describing vectors reflect 

temporal regularities within the original recording. Thus, the problem of describing and 

detecting temporal patterns within a recording is transformed into the more computationally 

tractable problem of detecting and identifying structure within a matrix of numbers (as 

opposed to a sequence of symbols). If each frame is described by a single number (e.g. mean 

amplitude), then the resulting sequence of numbers can be analysed using standard time–

frequency analysis techniques to reveal rhythmic patterns (Saar & Mitra, 2008). 

Alternatively, each frame can be compared with every other frame to detect similarities 

using standard measures for quantifying the distance between vectors (Paulus et al., 2010). 

These distances are then often collected within a second matrix called a self-distance matrix. 

Temporal regularities within the original feature matrix are visible as coherent patterns with 

the self-distance matrix (typically showing up as patterned blocks or diagonal stripes). 
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Various methods used for describing and classifying patterns within matrices (or images) 

can then be used to classify these two-dimensional patterns.

Different patterns in these matrices can be associated with variations in the novelty or 

homogeneity of the temporal regularities over time, as well as the number of repetitions of 

particular temporal patterns (Paulus et al., 2010). Longitudinal analyses of time-series 

measures of temporal structure can also be used to describe the stability or dynamics of 

rhythmic pattern production over time (Saar & Mitra, 2008). An alternative approach to 

identifying temporal structure within the feature matrix is to decompose it into simpler 

component matrices that capture the most recurrent features within the recording (Weiss & 

Bello, 2011). Similar approaches are common in modern analyses of high-density 

electroencephalograph (EEG) recordings (Makeig et al., 2004). Algorithms for analysing the 

temporal dynamics of brain waves may thus also be useful for analysing temporal structure 

within acoustic recordings.

VI. FUTURE DIRECTIONS

Many of the central research questions in animal communication focus on the meaning of 

signals and on the role of natural, sexual, and social selection in the evolution of 

communication systems. As shown in Fig. 6, information can exist in a sequence 

simultaneously via diversity, and order, as well as other less well-studied phenomena. Both 

natural and sexual selection may act on this information, either through conspecifics or 

heterospecifics (e.g. predators). This is especially true for animal acoustic sequences 

because the potential complexity of a sequence may imply greater scope for both meaning 

and selective pressure. Many new questions – and several old and unanswered ones – can be 

addressed by the techniques that we have outlined herein. Some of the most promising 

avenues for future research are outlined below, with some outstanding questions in animal 

acoustic sequences that can potentially be addressed more effectively using the approaches 

proposed in this review.

(1) As sequences are composed of units, how might information exist within units 
themselves?

One promising direction lies in studying how animals use concatenated signals with multiple 

meanings. For example, Jansen, Cant & Manser (2012) provided evidence for temporal 

segregation of information within a syllable, where one segment of a banded mongoose 

Mungos mungo close call is individually distinct, while the other segment contains meaning 

about the caller’s activity. Similar results have been demonstrated in the song of the white-

crowned sparrow Zonotrichia leucophrys (Nelson & Poesel, 2007). Understanding how to 

divide acoustic units according to criteria other than silent gaps (Fig. 2) can change the 

research approach, as well as the results of a study. The presence of information in sub-

divisions of traditional acoustic units is a subject underexplored in the field of animal 

communication, and an understanding of the production and perceptual constraints on unit 

definition (Fig. 4) is essential.
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(2) How does knowledge and analysis of sequences help us define and understand 
communication complexity?

There is a long history of mathematical and physical sciences approaches to the question of 

complexity, which have typically defined complexity in terms of how difficult a system is to 

describe, how difficult a system is to create, or the extent of the system’s disorder or 

organisation (Mitchell, 2009; Page, 2010). This is an area of heavy debate among 

proponents of different views of complexity, as well as a debate about whether a universal 

definition of complexity is even possible. In the life and social sciences, the particular 

arguments are often different from those of the mathematical and physical sciences, but a 

similar heavy debate about the nature of biological complexity exists (Bonner, 1988; 

McShea, 1991, 2009; Adami, 2002).

Perceptual and developmental constraints may drive selection for communication 

complexity. However, complexity can exist at any one (or more) of the six levels of 

information encoding that we have detailed, often leading to definitions of communication 

complexity that are inconsistent among researchers. In light of multiple levels of 

complexity, as well as multiple methods for separating units, we propose that no one 

definition of communication complexity can be universally suitable, and any definition has 

relevance only after choosing to which of the encoding paradigms described in Fig. 6 – or 

combination thereof – it applies. Complexity defined, say, for the Repetition paradigm (Fig. 

6A) and quantified as pulse rate variation, is not easily compared with Diversity complexity 

(Fig. 6B), typically quantified as repertoire size.

For example, is selection from increased social complexity associated with increased vocal 

complexity (Pollard & Blumstein, 2012; Freeberg et al., 2012), or do some other major 

selective factors – such as sexual selection or intensity of predation – drive the evolution of 

vocal complexity? In most of the studies to date on vocal complexity, complexity is defined 

in terms of repertoire size (Fig. 6B). Considerable evidence in diverse taxa indicates that 

increased social complexity is associated with increased repertoire size (reviewed in 

Freeberg et al., 2012). Different views of complexity in this literature are revealed by the 

fact that social complexity has been measured in terms of group size, group stability, or 

information-based metrics of group composition, and vocal complexity has been measured 

in terms of not just repertoire size, but also information-based metrics of acoustic variation 

in signals. In fact, the work of Pollard & Blumstein (2011) is highly informative to questions 

of complexity, in that different metrics of social complexity can drive different metrics of 

vocal complexity – these authors have found that group size is associated with greater 

individual distinctiveness (information) in the calls of species, but the diversity of social 

roles in groups is more heavily associated with vocal repertoire size. Some researchers have 

proposed the idea that communicative complexity, again defined as repertoire size, has at 

least in some species been driven by the need to encode more information, or redundant 

information, in a complex social environment (Freeberg et al., 2012). Alternatively, 

complexity metrics that measure Ordering (Fig. 6D), often based on non-zero orders of 

entropy (McCowan et al., 1999; Kershenbaum, 2013), may be more biologically relevant in 

species that use unit ordering to encode information. Understanding the variety of sequence 
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types is essential to choosing the relevant acoustic unit definitions, and without this, testing 

competitive evolutionary hypotheses becomes problematic.

(3) How do individual differences in acoustic sequences arise?

If we can develop categories for unit types and sequence types that lead to productive 

vocalisation analysis and a deeper understanding of universal factors of encoded multi-

layered messages, then individual differences in sequence production become interesting 

and puzzling. The proximal processes driving individual differences in communicative 

sequences are rarely investigated. Likewise, although there is a decades-rich history of song-

learning studies in songbirds, the ontogenetic processes giving rise to communicative 

sequences per se have rarely been studied. Neural models, e.g. Jin (2009) can provide 

probabilistic descriptions of sequence generation (e.g. Markov models, hidden Markov 

models), but the nature of the underlying stochasticity is unknown. When an appropriate 

choice of a model for sequence structure is made, quantitative comparisons can be carried 

out between the parameters of different individuals, for example with the California thrasher 

Toxostoma redivivum (Sasahara et al., 2012). However, model fitting is only valid if unit 

selection is biologically appropriate (Section III). Other, more abstract, questions can also be 

addressed. Individual humans use language with varying degrees of efficiency, creativity, 

and effectiveness. Shakespearean sequences are radically unlike Haiku sequences, political 

speeches, or the babbling of infants, in part because their communicative purposes differ. 

While sexual selection and survival provide some purposive contexts through which we can 

approach meaning, additional operative contexts may suggest other purposes, and give us 

new frameworks through which to view vocal sequences (Waller, 2012). In many animals, 

song syntax may be related to sexual selection. Females of some species such as zebra 

finches Taeniopygia guttata not only prefer individuals with longer songs, but also songs 

comprising a greater variety of syllables (Searcy & Andersson, 1986; Neubauer, 1999; 

Holveck et al., 2008); whereas in other species, this preference is not observed (Byers & 

Kroodsma, 2009). Variation in syntax may also reflect individual differences in intraspecific 

aggression, for instance in banded wrens Pheugopedius pleurostictus (Vehrencamp et al., 

2007) and western populations of song sparrows Melospiza melodia (Burt, Campbell & 

Beecher, 2001). Individual syntax may also serve to distinguish neighbours from non-

neighbours in song sparrows (Beecher et al., 2000) and skylarks Alauda arvensis (Briefer et 

al., 2008). Male Cassin’s vireos Vireo cassinii can usually be discriminated by the acoustic 

features of their song, but are discriminated even better by the sequences of phrases that they 

sang (Arriaga et al., 2013).

(4) What is the role of sequence dialects in speciation?

In a few species, geographic syntactic dialects (Nettle, 1999) have been demonstrated, 

including primates, such as Rhesus monkeys Macaca mulatta (Gouzoules, Gouzoules & 

Marler, 1984) and chimpanzees Pan troglodytes (Arcadi, 1996; Mitani, Hunley & Murdoch, 

1999; Crockford & Boesch, 2005), birds, such as Carolina chickadees Poecile carolinensis 

(Freeberg, 2012), swamp sparrows Melospiza georgiana (Liu et al., 2008) and chaffinches 

Fringilla coelebs (Lachlan et al., 2013) and in rock hyraxes Procavia capensis 

(Kershenbaum et al., 2012). This broad taxonomic spread raises the question of whether 

sequence syntax has a role in speciation (Wiens, 1982; Nevo et al., 1987; Irwin, 2000; 
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Slabbekoorn & Smith, 2002; Lachlan et al., 2013), with some support for such a role in 

chestnut-tailed antbirds Myrmeciza hemimelaena (Seddon & Tobias, 2007) and winter wrens 

Troglodytes troglodytes (Toews & Irwin, 2008). It is tempting to speculate that acoustic 

sequences may have arisen from earlier selective forces acting on a communication system 

based on single units, with variation in the sequences of individuals providing differential 

adaptive benefit. The ability to communicate effectively with some but not others could lead 

to divergence of groups, and genetic pooling. Conversely, differences in acoustic sequences 

could be adaptive to ecological variation. It is hard to distinguish retrospectively between 

sequence dialect shift leading to divergence of sub-groups and eventual speciation, or group 

separation leading to new communicative strategies that are epiphenomena of species 

formation. What are the best methods for investigating the relationship between 

communication and biological change?

A third alternative is that sequence differences could arise by neutral processes analogous to 

drift. A complex interplay between production, perception, and encoding of information in 

sequence syntax, along with the large relative differences between different species in 

adaptive flexibility (Seyfarth & Cheney, 2010), could lead to adaptive pressures on 

communication structure. However, the definition of acoustic units is rarely considered in 

this set of questions. In particular, perceptual binding (Fig. 4A) and the response of the focal 

species must be considered, as reproductive isolation cannot occur on the basis of 

differences that are not perceived by the receiver. As units may be divided at many levels, 

there may be multiple sequences that convey different information types. Thus, a deeper 

understanding of units and sequences will contribute productively to questions regarding 

forces at work in speciation events.

(5) Future directions: conclusions

We conclude by noting that more detailed and rigorous approaches to investigating animal 

acoustic sequences will allow us to investigate more complex systems that have not been 

formally studied. A number of directions lack even a basic framework as we have proposed 

in this review. For example, there is much to be learned from the detailed study of the 

sequences created by multiple animals vocalising simultaneously, and from the application 

of sequence analysis to multimodal communication with a combination of acoustic, visual, 

and perhaps other modalities (e.g. Partan & Marler, 1999; Bradbury & Vehrencamp, 2011; 

Munoz & Blumstein, 2012). Eavesdropping, in which non-target receivers (such as 

predators) gain additional information from listening to the interaction between individuals, 

has only just begun to be studied in the context of sequence analysis. Finally, the study of 

non-stationary systems, where the statistical nature of the communicative sequences changes 

over long or short time scales (such as appears to occur in humpback whale songs) is ripe for 

exploration. For example, acoustic sequences may be constantly evolving sexual displays 

that are stereotyped within a population at any particular point in time (Payne & McVay, 

1971; Payne, Tyack & Payne, 1983). The application of visual classification (Garland et al., 

2011) and a statistical approach based on edit distance (e.g. Kershenbaum et al., 2012) 

appears to capture the sequential information present within humpback whale song (Garland 

et al., 2012, 2013). This work traced the evolution of song lineages, and the movement or 

horizontal cultural transmission of multiple different versions of the song that were 
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concurrently present across an ocean basin over a decade (Garland et al., 2013). These 

results are encouraging for the investigation of complex non-stationary systems; however, 

further refinement of this approach is warranted. We encourage researchers in these fields to 

extend treatments such as ours to cover these more complex directions in animal 

communication research, thereby facilitating quantitative comparisons between fields.

VII. CONCLUSIONS

1. The use of acoustic sequences by animals is widespread across a large number of 

taxa. As diverse as the sequences themselves is the range of analytical approaches 

used by researchers. We have proposed a framework for analysing and interpreting 

such acoustic sequences, based around three central ideas of understanding the 

information content of sequences, defining the acoustic units that comprise 

sequences, and proposing analytical algorithms for testing hypotheses on empirical 

sequence data.

2. We propose use of the term “meaning” to refer to a feature of communication 

sequences that influences behavioural and evolutionary processes, and the term 

“information” to refer to the non-random statistical properties of sequences.

3. Information encoding in acoustic sequences can be classified into six non-mutually 

exclusive paradigms: Repetition, Diversity, Combination, Ordering, Overlapping, 

and Timing.

4. The constituent units of acoustic sequences can be classified according to 

production mechanisms, perception mechanisms, or analytical properties.

5. Discrete acoustic units are often delineated by silent intervals. However, changes in 

the acoustic properties of a continuous sound may also indicate a transition 

between discrete units, multiple repeated sounds may act as a discrete unit, and 

more complex hierarchical structure may also be present.

6. We have reviewed five approaches used for analysing the structure of animal 

acoustic sequences: Markov chains, hidden Markov models, network models, 

formal grammars, and temporal models, discussing their use and relative merits.

7. Many important questions in the behavioural ecology of acoustic sequences remain 

to be answered, such as understanding the role of communication complexity, 

including multimodal sequences, the potential effect of communicative isolation on 

speciation, and the source of syntactic differences among individuals.
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Fig. 1. 
Flowchart showing a typical analysis of animal acoustic sequences. In this review, we 

discuss identifying units, characterising sequences, and identifying meaning.
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Fig. 2. 
Examples of the different criteria for dividing a spectrogram into units. (A) Separating units 

by silent gaps is probably the most commonly used criterion. (B) An acoustic signal may 

change its properties at a certain time, without the presence of a silent “gap”, for instance 

becoming harmonic or noisy. (C) A series of similar sounds may be grouped together as a 

single unit, regardless of silent gaps between them; a chirp sequence is labelled as C. (D) A 

complex hierarchical structure to the sequence, combining sounds that might otherwise be 

considered fundamental units.
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Fig. 3. 
Example of cepstral processing of a grey wolf Canis lupis howl (below 6 kHz) and crickets 

chirping (above 6.5 kHz). Recording was sampled at Fs = 16 kHz, 8 bit quantization. (A) 

Standard spectrogram analysed with a 15 ms Blackman-Harris window. (B) Plot of 

transform to cepstral domain. Lower quefrencies are related to vocal tract information. F0 

can be determined from the “cepstral bump” apparent between quefrencies 25–45 and can be 

derived by Fs/quefrency. (C) Cepstrum (inset) of the frame indicated by an arrow in A(2.5 s) 

along with reconstructions of the spectrum created from truncated cepstral sequences. 

Fidelity improves as the number of cepstra are increased.
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Fig. 4. 
Perceptual constraints for the definition of sequence units. (A) Perceptual binding, where 

two discrete acoustic elements may be perceived by the receiver either as a single element, 

or as two separate ones. (B) Categorical perception, where continuous variation in acoustic 

signals may be interpreted by the receiver as discrete categories. (C) Spectrotemporal 

constraints, where if the receiver cannot distinguish small differences in time or frequency, 

discrete elements may be interpreted as joined.
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Fig. 5. 
Graphical representation of the process of selecting an appropriate unit definition. (A) 

Determine what is known about the production mechanism of the signalling individual, from 

the hierarchy of production mechanisms, and their spectrotemporal differences. (B) 

Determine what is known about the perception abilities of the receiver (vertical axis), and 

how this may modify the production characteristics of the sound (horizontal axis). (C) 

Choose a classification method suitable for the modified acoustic characteristics (√ indicates 

suitable, × indicates unsuitable, ~ indicates neutral).
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Fig. 6. 
Different ways that units can be combined to encode information in a sequence.
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Fig. 7. 
Flowchart suggesting possible paths for the analysis of sequences of acoustic units. 

Exploratory data analysis is conducted on the units or timing information using techniques 

such as histograms, networks, or low-order Markov models. Preliminary embedding 

paradigm hypotheses are formed based on observations. Depending upon the hypothesised 

embedding paradigm, various analysis techniques are suggested. HMM, hidden Markov 

model.
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Fig. 8. 
State transition diagram equivalent to a 2nd order Markov model and trigram model (N=3) 

for a sequence containing As and Bs.
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Fig. 9. 
State transition diagram of a two-state (X, Y) hidden Markov model capable of producing 

sequences of acoustic units A and B. When in state X, acoustic units emission of signals A 

and B are equally likely Pe(A|X)= Pe(B|X)=0.5, and when in state Y, acoustic unit A is much 

more likely Pe(A|Y)=0.9 than B Pe(B| Y )=0.1. Transitioning from state X to state Y occurs 

with probability Pt(X→Y)=0.6, whereas from state Y to state X with probability 

Pt(Y→X)=0.3.
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Fig. 10. 
Simple networks constructed from the sequence of acoustic units A, B and C. The undirected 

binary network (left) simply indicates that A, B, and C are associated with one another 

without any information about transition direction. The directed binary network (centre) 

adds ordering information, for example that C cannot follow A. The weighted directed 

network (right) show the probabilities of the transitions between units based on a bigram 

model.
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Fig. 11. 
Grammar (rewrite rules) for approximating the sequence of acoustic units produced by 

Eastern Pacific blue whales Balaenoptera musculus. There are three acoustic units, a, b, and 

d (Oleson et al., 2007), and the sequence begins with a start symbol S. Individual b or d calls 

may be produced, or song, which consists of repeated sequences of an a call followed by 

one or more b calls. The symbol | indicates a choice, and ε, the empty string, indicates that 

the rule is no longer used. A derivation is shown for the song abbab. Underlined variables 

indicate those to be replaced. Grammar produced with contributions from Ana Širović 

(Scripps Institution of Oceanography).
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Fig. 12. 
The classes of formal grammars known as the Chomsky hierarchy (Chomsky, 1957). Each 

class is a generalisation of the class it encloses, and is more complex than the enclosed 

classes. Image publicly available under the Creative Commons Attribution-Share Alike 3.0 

Unported license (https://commons.wikimedia.org/wiki/

File:Wiki_inf_chomskeho_hierarchia.jpg).

Kershenbaum et al. Page 65

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://commons.wikimedia.org/wiki/File:Wiki_inf_chomskeho_hierarchia.jpg
https://commons.wikimedia.org/wiki/File:Wiki_inf_chomskeho_hierarchia.jpg


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kershenbaum et al. Page 66

T
ab

le
 1

E
xa

m
pl

es
 o

f 
di

ff
er

en
t a

pp
ro

ac
he

s 
to

 u
ni

t d
ef

in
iti

on
, f

ro
m

 d
if

fe
re

nt
 ta

xa
 a

nd
 w

ith
 d

if
fe

re
nt

 r
es

ea
rc

h 
ai

m
s.

U
ni

t 
cr

it
er

io
n

T
ax

on
G

oa
l o

f 
di

vi
si

on
 in

to
 “

un
it

s”

D
es

cr
ip

ti
ve

P
ro

du
ct

io
n

P
er

ce
pt

io
n

F
un

ct
io

n 
(i

n 
bo

ld
)

Se
pa

ra
te

d 
by

 s
ile

nc
e

B
ir

ds
Sw

am
p 

sp
ar

ro
w

 M
el

os
pi

za
 

ge
or

gi
an

a 
no

te
 (

M
ar

le
r 

&
 P

ic
ke

rt
, 

19
84

)
B

la
ck

-c
ap

pe
d 

ch
ic

ka
de

e 
P

oe
ci

le
 

at
ri

ca
pi

ll
us

 n
ot

e 
(N

ow
ic

ki
 &

 
N

el
so

n,
 1

99
0)

R
ed

-l
eg

ge
d 

pa
rt

ri
dg

e 
A

le
ct

or
is

 
ru

fa
 a

nd
 r

oc
k 

pa
rt

ri
dg

e 
A

. g
ra

ec
a 

( C
eu

gn
ie

t &
 A

ub
in

, 2
00

1)

Z
eb

ra
 f

in
ch

 T
ae

ni
op

yg
ia

 
gu

tt
at

a 
sy

lla
bl

e 
(C

yn
x,

 
19

90
)

E
m

pe
ro

r 
pe

ng
ui

n 
A

pt
en

od
yt

es
 fo

rs
te

ri
 

(R
ob

is
so

n 
et

 a
l.,

 1
99

3)
C

an
ar

y 
Se

ri
nu

s 
ca

na
ri

a 
br

ea
th

s 
(H

ar
tle

y 
&

 
Su

th
er

s,
 1

98
9)

Sw
am

p 
sp

ar
ro

w
 M

el
os

pi
za

 
ge

or
gi

an
a 

no
te

 (
N

el
so

n 
&

 
M

ar
le

r,
 1

98
9)

B
la

ck
-c

ap
pe

d 
ch

ic
ka

de
e 

P
oe

ci
le

 a
tr

ic
ap

il
lu

s 
no

te
s 

( S
tu

rd
y 

et
 a

l.,
 2

00
0;

 C
ha

rr
ie

r 
et

 a
l.,

 2
00

5)
K

in
g 

pe
ng

ui
n 

A
pt

en
od

yt
es

 
pa

ta
go

ni
cu

s 
( L

en
ga

gn
e 

et
 a

l.,
 

20
01

)

C
ar

ol
in

a 
ch

ic
ka

de
e 

P
oe

ci
le

 c
ar

ol
in

en
si

s 
an

d 
bl

ac
k-

ca
pp

ed
 c

hi
ck

ad
ee

 P
. a

tr
ic

ap
il

lu
s 

no
te

 
co

m
po

si
tio

n 
→

 p
re

da
to

r,
 f

or
ag

in
g 

ac
ti

vi
ty

, 
id

en
ti

ty
(F

re
eb

er
g,

 2
01

2;
 K

ra
m

s 
et

 a
l.,

 2
01

2)
K

in
g 

pe
ng

ui
n 

A
pt

en
od

yt
es

 p
at

ag
on

ic
us

 →
 

in
di

vi
du

al
 id

en
ti

ti
es

 (
Jo

uv
en

tin
 e

t a
l.,

 1
99

9;
 

L
en

ga
gn

e 
et

 a
l.,

 2
00

0)
E

m
pe

ro
r 

pe
ng

ui
n 

A
pt

en
od

yt
es

 fo
rs

te
ri

 →
 

in
di

vi
du

al
 id

en
ti

ti
es

 (
A

ub
in

 e
t a

l.,
 2

00
0)

T
er

re
st

ri
al

 m
am

m
al

s
M

ee
rk

at
 S

ur
ic

at
a 

su
ri

ca
tt

a 
ca

lls
 

(M
an

se
r,

 2
00

1)
G

ib
bo

n 
H

yl
ob

at
es

 la
r 

ph
ra

se
 

(R
ae

m
ae

ke
rs

 e
t a

l.,
 1

98
4)

R
oc

k 
hy

ra
x 

P
ro

ca
vi

a 
ca

pe
ns

is
 

so
ng

s 
(K

er
sh

en
ba

um
 e

t a
l.,

 2
01

2)
Fr

ee
-t

ai
le

d 
ba

t T
ad

ar
id

a 
br

as
il

ie
ns

is
 s

yl
la

bl
e 

( B
oh

n 
et

 a
l.,

 
20

08
)

M
us

ta
ch

ed
 b

at
 P

te
ro

no
tu

s 
pa

rn
el

li
i s

yl
la

bl
e 

(K
an

w
al

 e
t a

l.,
 

19
94

)

L
es

se
r 

sh
or

t-
ta

ile
d 

ba
t 

M
ys

ta
ci

na
 tu

be
rc

ul
at

a 
pu

ls
es

 (
Pa

rs
on

s 
et

 a
l.,

 
20

10
)

M
ee

rk
at

 S
ur

ic
at

a 
su

ri
ca

tt
a 

ca
lls

 (
M

an
se

r,
 2

00
1)

M
ee

rk
at

 S
ur

ic
at

a 
su

ri
ca

tt
a 

ca
lls

 →
 p

re
da

to
r 

ty
pe

 (
M

an
se

r,
 2

00
1)

R
oc

k 
hy

ra
x 

P
ro

ca
vi

a 
ca

pe
ns

is
 s

on
gs

 →
 m

al
e 

qu
al

it
y 

(K
or

en
 &

 G
ef

fe
n,

 2
00

9)
Fr

ee
-t

ai
le

d 
ba

t T
ad

ar
id

a 
br

as
il

ie
ns

is
 s

yl
la

bl
e 

→
 

co
ur

ts
hi

p 
(B

oh
n 

et
 a

l.,
 2

00
8;

 P
ar

so
ns

 e
t a

l.,
 

20
10

)

M
ar

in
e 

m
am

m
al

s
H

um
pb

ac
k 

w
ha

le
 M

eg
ap

te
ra

 
no

va
ea

ng
li

ae
 u

ni
t (

Pa
yn

e 
&

 
M

cV
ay

, 1
97

1)
K

ill
er

 w
ha

le
 O

rc
in

us
 o

rc
a 

ca
lls

 
(F

or
d,

 1
98

9)
B

ot
tle

no
se

 d
ol

ph
in

 T
ur

si
op

s 
tr

un
ca

tu
s 

si
gn

at
ur

e 
w

hi
st

le
s 

(C
al

dw
el

l, 
19

65
; M

cC
ow

an
 &

 
R

ei
ss

, 1
99

5)
A

us
tr

al
ia

n 
se

a 
lio

n 
N

eo
ph

oc
a 

ci
ne

re
a 

ba
rk

in
g 

ca
lls

 (
G

w
ill

ia
m

 e
t 

al
., 

20
08

)

H
um

pb
ac

k 
w

ha
le

 
M

eg
ap

te
ra

 n
ov

ae
an

gl
ia

e 
so

ng
 (

A
da

m
 e

t a
l.,

 2
01

3)

B
ot

tle
no

se
 d

ol
ph

in
 T

ur
si

op
s 

tr
un

ca
tu

s 
si

gn
at

ur
e 

w
hi

st
le

s 
(J

an
ik

 e
t a

l.,
 2

00
6)

Su
ba

nt
ar

tic
 f

ur
 s

ea
l 

A
rc

to
ce

ph
al

us
 tr

op
ic

al
is

 p
up

 
at

tr
ac

tio
n 

ca
ll 

(C
ha

rr
ie

r 
et

 a
l.,

 
20

03
)

A
us

tr
al

ia
n 

se
a 

lio
n 

N
eo

ph
oc

a 
ci

ne
re

a 
ca

lls
 (

C
ha

rr
ie

r 
&

 
H

ar
co

ur
t, 

20
06

)

B
ot

tle
no

se
 d

ol
ph

in
 T

ur
si

op
s 

tr
un

ca
tu

s 
si

gn
at

ur
e 

w
hi

st
le

s 
→

 in
di

vi
du

al
 id

en
ti

ty
 (

Sa
yi

gh
 e

t a
l.,

 
19

99
; H

ar
le

y,
 2

00
8)

K
ill

er
 w

ha
le

 O
rc

in
us

 o
rc

a 
ca

lls
 →

 g
ro

up
 

id
en

ti
ty

 (
Fo

rd
, 1

98
9)

A
us

tr
al

ia
n 

se
a 

lio
n 

N
eo

ph
oc

a 
ci

ne
re

a 
ca

ll 
→

 
co

lo
ny

 id
en

ti
ty

 (
A

tta
rd

 e
t a

l.,
 2

01
0)

A
us

tr
al

ia
n 

se
a 

lio
n 

N
eo

ph
oc

a 
ci

ne
re

a 
ca

ll 
→

 
th

re
at

 le
ve

l (
C

ha
rr

ie
r 

et
 a

l.,
 2

01
1)

 A
us

tr
al

ia
n 

se
a 

lio
n 

N
eo

ph
oc

a 
ci

ne
re

a 
ca

ll 
→

 in
di

vi
du

al
 

id
en

ti
ty

 (
C

ha
rr

ie
r 

et
 a

l.,
 2

00
9;

 P
itc

he
r 

et
 a

l.,
 

20
12

)

C
ha

ng
e 

in
 a

co
us

tic
 

pr
op

er
tie

s 
(r

eg
ar

dl
es

s 
of

 s
ile

nc
e)

B
ir

ds
R

ed
 ju

ng
le

fo
w

l G
al

lu
s 

ga
ll

us
 

el
em

en
ts

 (
C

ol
lia

s,
 1

98
7)

N
or

th
er

n 
ca

rd
in

al
 

C
ar

di
na

li
s 

ca
rd

in
al

is
 

so
ng

 (
Su

th
er

s,
 1

99
7)

A
nn

a 
hu

m
m

in
gb

ir
d 

C
al

yp
te

 a
nn

a 
m

ec
ha

ni
ca

l 
ch

ir
ps

 (
C

la
rk

 &
 F

eo
, 

20
08

)

A
nn

a 
hu

m
m

in
gb

ir
d 

C
al

yp
te

 
an

na
 m

ec
ha

ni
ca

l c
hi

rp
s 

(C
la

rk
 &

 F
eo

, 2
01

0)
M

al
e 

ch
ic

ke
ns

 G
al

lu
s 

ga
ll

us
 

al
ar

m
 c

al
ls

 (
E

va
ns

 e
t a

l.,
 

19
93

)

B
la

ck
ca

p 
Sy

lv
ia

 a
tr

ic
ap

il
la

 s
on

g 
→

 s
pe

ci
es

 
id

en
ti

ty
 (

M
at

he
vo

n 
&

 A
ub

in
, 2

00
1)

W
hi

te
-b

ro
w

ed
 w

ar
bl

er
 B

as
il

eu
te

ru
s 

le
uc

ob
le

ph
ar

us
 s

on
g 

→
 s

pe
ci

es
 id

en
ti

ty
 

(M
at

he
vo

n 
et

 a
l.,

 2
00

8)
Y

el
ko

ua
n 

Sh
ea

rw
at

er
s 

P
uf

fi
nu

s 
ye

lk
ou

an
 c

al
l →

 
se

x 
an

d 
m

at
e 

id
en

ti
ty

 (
C

ur
e 

et
 a

l.,
 2

01
1)

G
ra

ss
ho

pp
er

 s
pa

rr
ow

 A
m

m
od

ra
m

us
 s

av
an

na
ru

m
 

bu
zz

/w
ar

bl
e 

→
 t

er
ri

to
ri

al
/s

oc
ia

l (
L

oh
r 

et
 a

l.,
 

20
13

)

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2017 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kershenbaum et al. Page 67

U
ni

t 
cr

it
er

io
n

T
ax

on
G

oa
l o

f 
di

vi
si

on
 in

to
 “

un
it

s”

D
es

cr
ip

ti
ve

P
ro

du
ct

io
n

P
er

ce
pt

io
n

F
un

ct
io

n 
(i

n 
bo

ld
)

R
uf

ou
s-

si
de

d 
to

w
he

e 
P

ip
il

o 
er

yt
hr

op
ht

ha
lm

us
 

so
ng

 →
 s

pe
ci

es
 id

en
ti

ty
 (

R
ic

ha
rd

s,
 1

98
1)

T
er

re
st

ri
al

 m
am

m
al

s
B

la
ck

-f
ro

nt
ed

 ti
ti 

m
on

ke
y 

C
al

li
ce

bu
s 

ni
gr

if
ro

ns
 a

la
rm

 c
al

ls
 

(C
äs

ar
 e

t a
l.,

 2
01

2b
)

W
es

te
rn

 g
or

ill
a 

G
or

il
la

 g
or

il
la

 
ca

lls
 (

Sa
lm

i e
t a

l.,
 2

01
3)

R
ed

 ti
ti 

m
on

ke
y 

C
al

li
ce

bu
s 

cu
pr

eu
s 

ca
lls

 (
R

ob
in

so
n,

 1
97

9)

B
an

de
d 

m
on

go
os

e 
M

un
go

s 
m

un
go

 (
Ja

ns
en

, 
C

an
t &

 M
an

se
r,

 2
01

2)

M
us

ta
ch

ed
 b

at
 P

te
ro

no
tu

s 
pa

rn
el

li
i c

om
po

si
te

s 
(E

ss
er

 e
t 

al
., 

19
97

)

B
la

ck
-f

ro
nt

ed
 ti

ti 
m

on
ke

y 
C

al
li

ce
bu

s 
ni

gr
if

ro
ns

 
al

ar
m

 c
al

ls
 →

 p
re

da
to

r 
ty

pe
 a

nd
 b

eh
av

io
ur

 
(C

äs
ar

 e
t a

l.,
 2

01
2a

)
W

es
te

rn
 g

or
ill

a 
G

or
il

la
 g

or
il

la
 v

oc
al

is
at

io
ns

 →
 

m
ul

ti
pl

e 
fu

nc
ti

on
s 

(S
al

m
i e

t a
l.,

 2
01

3)
T

uf
te

d 
ca

pu
ch

in
 m

on
ke

ys
 S

ap
aj

us
 n

ig
ri

tu
s 

ca
lls

 
→

 p
re

da
to

r 
ty

pe
 (

W
he

el
er

, 2
01

0b
)

B
an

de
d 

m
on

go
os

e 
M

un
go

s 
m

un
go

 c
lo

se
 c

al
ls

 →
 

in
di

vi
du

al
 id

en
ti

ty
, g

ro
up

 c
oh

es
io

n 
(J

an
se

n 
et

 
al

., 
20

12
)

Sp
ot

te
d 

hy
en

a 
C

ro
cu

ta
 c

ro
cu

ta
 c

al
l →

 s
ex

/a
ge

/
in

di
vi

du
al

 id
en

ti
ti

es
 (

M
at

he
vo

n 
et

 a
l.,

 2
01

0)

M
ar

in
e 

m
am

m
al

s
B

ot
tle

no
se

 d
ol

ph
in

 T
ur

si
op

s 
tr

un
ca

tu
s 

w
hi

st
le

 lo
op

s 
(C

al
dw

el
l 

et
 a

l.,
 1

99
0)

K
ill

er
 w

ha
le

 O
rc

in
us

 o
rc

a,
 s

ub
un

it 
of

 c
al

ls
 (

Sh
ap

ir
o 

et
 a

l.,
 2

01
0)

H
um

pb
ac

k 
w

ha
le

 M
eg

ap
te

ra
 

no
va

ea
ng

li
ae

 s
ub

un
it 

(P
ay

ne
 &

 
M

cV
ay

, 1
97

1)
L

eo
pa

rd
 s

ea
l H

yd
ru

rg
a 

le
pt

on
yx

 
ca

lls
 (

K
lin

ck
 e

t a
l.,

 2
00

8)

Fa
ls

e 
ki

lle
r 

w
ha

le
 

P
se

ud
or

ca
 c

ra
ss

id
en

s 
vo

ca
lis

at
io

ns
 (

M
ur

ra
y 

et
 

al
., 

19
98

)
B

ot
tle

no
se

 d
ol

ph
in

 
T

ur
si

op
s 

tr
un

ca
tu

s 
to

na
l 

ca
lls

 (
Pa

rs
on

s 
et

 a
l.,

 
20

10
)

B
ea

rd
ed

 s
ea

l E
ri

gn
at

us
 

ba
rb

at
us

 tr
ill

s 
(C

ha
rr

ie
r 

et
 

al
., 

20
13

)

K
ill

er
 w

ha
le

s 
O

rc
in

us
 o

rc
a 

ca
lls

 →
 s

ex
/

or
ie

nt
at

io
n 

(M
ill

er
 e

t a
l.,

 2
00

7)
Sp

in
ne

r 
do

lp
hi

n 
St

en
el

la
 lo

ng
ir

os
tr

is
 w

hi
st

le
s 

→
 

m
ov

em
en

t 
di

re
ct

io
n 

(L
am

m
er

s 
&

 A
u,

 2
00

3)

Se
ri

es
 o

f 
so

un
ds

B
ir

ds
So

ng
 s

pa
rr

ow
 M

el
os

pi
za

 m
el

od
ia

 
ph

ra
se

s 
(M

ul
lig

an
, 1

96
6;

 M
ar

le
r 

&
 S

he
rm

an
, 1

98
5)

B
lu

e-
fo

ot
ed

 b
oo

by
 S

ul
a 

ne
bo

ux
ii

 
ca

ll 
(D

en
tr

es
sa

ng
le

 e
t a

l.,
 2

01
2)

E
m

be
ri

zi
d 

sp
ar

ro
w

 tr
ill

s 
(P

od
os

, 1
99

7)
Z

eb
ra

 f
in

ch
 T

ae
ni

op
yg

ia
 

gu
tt

at
a 

sy
lla

bl
es

 (
C

yn
x 

et
 a

l.,
 

19
90

)
L

itt
le

 o
w

l A
th

en
e 

no
ct

ua
 

sy
lla

bl
es

 (
Pa

re
jo

 e
t a

l.,
 2

01
2)

So
ng

 s
pa

rr
ow

 M
el

os
pi

za
 

m
el

od
ia

 s
on

gs
 (

H
or

ni
ng

 e
t 

al
., 

19
93

)

C
ar

ol
in

a 
ch

ic
ka

de
e 

P
oe

ci
le

 c
ar

ol
in

en
si

s 
D

-n
ot

es
 

→
 f

oo
d 

av
ai

la
bi

lit
y 

(M
ah

ur
in

 &
 F

re
eb

er
g,

 
20

09
)

K
itt

iw
ak

e 
R

is
sa

 tr
id

ac
ty

la
 c

al
l →

 s
ex

/in
di

vi
du

al
 

id
en

ti
ti

es
 (

A
ub

in
 e

t a
l.,

 2
00

7)
Sh

ea
rw

at
er

s 
P

uf
fi

nu
s 

ye
lk

ou
an

, P
uf

fi
nu

s 
m

au
re

ta
ni

cu
s,

 C
al

on
ec

tr
is

 d
. d

io
m

ed
ea

 c
al

l →
 

sp
ec

ie
s 

id
en

ti
ty

 (
C

ur
é 

et
 a

l.,
 2

01
2)

T
er

re
st

ri
al

 m
am

m
al

s
B

la
ck

-f
ro

nt
ed

 ti
ti 

m
on

ke
y 

C
al

li
ce

bu
s 

ni
gr

if
ro

ns
 a

la
rm

 c
al

ls
 

(C
äs

ar
 e

t a
l.,

 2
01

2b
, 2

01
3)

M
us

ta
ch

ed
 b

at
 P

te
ro

no
tu

s 
pa

rn
el

li
i s

yl
la

bl
e 

(K
an

w
al

 e
t a

l.,
 

19
94

)
Fr

ee
-t

ai
le

d 
ba

t T
ad

ar
id

a 
br

as
il

ie
ns

is
 c

al
ls

 (
B

oh
n 

et
 a

l.,
 

20
08

)
H

yr
ax

 P
ro

ca
vi

a 
ca

pe
ns

is
 s

oc
ia

l 
ca

lls
 (

Il
an

y 
et

 a
l.,

 2
01

3)
C

hi
m

pa
nz

ee
 P

an
 tr

og
lo

dy
te

s 
pa

nt
 

ho
ot

s 
(N

ot
m

an
 &

 R
en

da
ll,

 2
00

5)

D
ia

na
 m

on
ke

y 
C

er
co

pi
th

ec
us

 d
ia

na
 

al
ar

m
 c

al
ls

 (
R

ie
de

 e
t a

l.,
 

20
05

)
D

om
es

tic
 d

og
 C

an
is

 
fa

m
il

ia
ri

s 
gr

ow
ls

 (
R

ie
de

 
&

 F
itc

h,
 1

99
9)

B
la

ck
-f

ro
nt

ed
 ti

ti 
m

on
ke

y 
C

al
li

ce
bu

s 
ni

gr
if

ro
ns

 (
C

äs
ar

 
et

 a
l.,

 2
01

2a
)

C
ol

ob
us

 C
ol

ob
us

 g
ue

re
za

 
se

qu
en

ce
s 

(S
ch

el
 e

t a
l.,

 2
01

0)
T

uf
te

d 
ca

pu
ch

in
 m

on
ke

y 
Sa

pa
ju

s 
ni

gr
it

us
 b

ou
ts

 
(W

he
el

er
, 2

01
0b

)

C
hi

m
pa

nz
ee

 P
an

 tr
og

lo
dy

te
s 

pa
nt

 h
oo

ts
 →

 
fo

ra
gi

ng
 (

N
ot

m
an

 &
 R

en
da

ll,
 2

00
5)

Fr
ee

-t
ai

le
d 

ba
t T

ad
ar

id
a 

br
as

il
ie

ns
is

 c
al

ls
 →

 
co

ur
ts

hi
p 

(B
oh

n 
et

 a
l.,

 2
00

8)

M
ar

in
e 

m
am

m
al

s
H

um
pb

ac
k 

w
ha

le
 M

eg
ap

te
ra

 
no

va
ea

ng
li

ae
 p

hr
as

es
 (

Pa
yn

e 
&

 
M

cV
ay

, 1
97

1)

H
um

pb
ac

k 
w

ha
le

 
M

eg
ap

te
ra

 n
ov

ae
an

gl
ia

e 
so

ng
s 

(F
ru

m
ho

ff
, 1

98
3;

 
Pa

yn
e 

et
 a

l.,
 1

98
3;

 

H
um

pb
ac

k 
w

ha
le

 M
eg

ap
te

ra
 

no
va

ea
ng

li
ae

 s
on

gs
 (

H
an

de
l 

et
 a

l.,
 2

00
9)

B
ot

tle
no

se
 d

ol
ph

in
 T

ur
si

op
s 

tr
un

ca
tu

s 
si

gn
at

ur
e 

w
hi

st
le

s 
→

 in
di

vi
du

al
 id

en
ti

ty
, g

ro
up

 c
oh

es
io

n 
(Q

ui
ck

 &
 J

an
ik

, 2
01

2)

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2017 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kershenbaum et al. Page 68

U
ni

t 
cr

it
er

io
n

T
ax

on
G

oa
l o

f 
di

vi
si

on
 in

to
 “

un
it

s”

D
es

cr
ip

ti
ve

P
ro

du
ct

io
n

P
er

ce
pt

io
n

F
un

ct
io

n 
(i

n 
bo

ld
)

B
ot

tle
no

se
 d

ol
ph

in
 Tursiops














truncatus














 w

hi
st

le
s 

(D
ee

ck
e 

&
 

Ja
ni

k,
 2

00
6)

Fr
ee

-t
ai

le
d 

ba
t T

ad
ar

id
a 

br
as

il
ie

ns
is

 s
yl

la
bl

e 
(B

oh
n 

et
 a

l.,
 

20
08

)

M
er

ca
do

 e
t a

l.,
 2

01
0;

 
M

er
ca

do
 &

 H
an

de
l, 

20
12

)
B

ot
tle

no
se

 d
ol

ph
in

 
T

ur
si

op
s 

tr
un

ca
tu

s 
w

hi
st

le
s 

(J
an

ik
 e

t a
l.,

 
20

13
)

B
ot

tle
no

se
 d

ol
ph

in
 T

ur
si

op
s 

tr
un

ca
tu

s 
w

hi
st

le
s 

(P
ac

k 
et

 
al

., 
20

02
)

W
ed

de
ll 

se
al

 L
ep

to
ny

ch
ot

es
 

w
ed

de
ll

i v
oc

al
is

at
io

ns
 

(T
ho

m
as

 e
t a

l.,
 1

98
3)

H
ar

bo
ur

 s
ea

l P
ho

ca
 v

it
ul

in
a 

ro
ar

s 
(H

ay
es

 e
t a

l.,
 2

00
4)

H
um

pb
ac

k 
w

ha
le

 M
eg

ap
te

ra
 n

ov
ae

an
gl

ia
e 

ph
ra

se
s 

→
 u

nk
no

w
n 

(P
ay

ne
 &

 M
cV

ay
, 1

97
1)

H
ig

he
r 

le
ve

ls
 o

f 
or

ga
ni

sa
tio

n
B

ir
ds

C
an

ar
y 

Se
ri

nu
s 

ca
na

ri
a 

so
ng

 
(L

eh
on

gr
e 

et
 a

l.,
 2

00
8)

Sw
am

p 
sp

ar
ro

w
 

M
el

os
pi

za
 g

eo
rg

ia
na

 
tr

ill
s 

(P
od

os
, 1

99
7)

N
ig

ht
in

ga
le

 L
us

ci
ni

a 
m

eg
ar

hy
nc

ho
s 

so
ng

 
(T

od
t &

 H
ul

ts
ch

, 1
99

8)
C

an
ar

y 
Se

ri
nu

s 
ca

na
ri

a 
so

ng
 (

G
ar

dn
er

 e
t a

l.,
 

20
05

)

So
ng

 s
pa

rr
ow

 M
el

os
pi

za
 

m
el

od
ia

 s
on

gs
 (

Se
ar

cy
 e

t a
l.,

 
19

95
)

Z
eb

ra
 f

in
ch

 T
ae

ni
op

yg
ia

 
gu

tt
at

a 
so

ng
 (

D
ou

pe
 &

 
K

on
is

hi
, 1

99
1)

C
an

ar
y 

Se
ri

nu
s 

ca
na

ri
a 

so
ng

 
(R

ib
ei

ro
 e

t a
l.,

 1
99

8)

Sk
yl

ar
k 

A
la

ud
a 

ar
ve

ns
is

 s
on

gs
 →

 g
ro

up
 

id
en

ti
ty

 (
B

ri
ef

er
 e

t a
l.,

 2
01

3)
W

hi
te

-b
ro

w
ed

 w
ar

bl
er

 B
as

il
eu

te
ru

s 
le

uc
ob

le
ph

ar
us

 s
on

g 
→

 in
di

vi
du

al
 id

en
ti

ty
 

(M
at

he
vo

n 
et

 a
l.,

 2
00

8)

T
er

re
st

ri
al

 m
am

m
al

s
R

ed
 ti

ti 
m

on
ke

y 
C

al
li

ce
bu

s 
cu

pr
eu

s 
sy

lla
bl

e 
(R

ob
in

so
n,

 1
97

9)
Fr

ee
-t

ai
le

d 
ba

t T
ad

ar
id

a 
br

as
il

ie
ns

is
 s

on
gs

 (
B

oh
n 

et
 a

l.,
 

20
08

)

R
he

su
s-

m
ac

aq
ue

 M
ac

ac
a 

m
ul

at
ta

 v
oc

al
is

at
io

ns
 

(F
itc

h,
 1

99
7)

Pu
tty

-n
os

ed
 m

on
ke

y 
C

er
co

pi
th

ec
us

 n
ic

ti
ta

ns
 

se
qu

en
ce

s 
(A

rn
ol

d 
&

 
Z

ub
er

bü
hl

er
, 2

00
6a

)
R

ed
 ti

ti 
m

on
ke

y 
C

al
li

ce
bu

s 
cu

pr
eu

s 
sy

lla
bl

e 
(R

ob
in

so
n,

 
19

79
)

C
hi

m
pa

nz
ee

 P
an

 tr
og

lo
dy

te
s 

ph
ra

se
s 

→
 g

ro
up

 
id

en
ti

ty
 (

A
rc

ad
i, 

19
96

)
Pu

tty
-n

os
ed

 m
on

ke
y 

C
er

co
pi

th
ec

us
 n

ic
ti

ta
ns

 
se

qu
en

ce
s 

→
 p

re
da

to
rs

 p
re

se
nc

e,
 g

ro
up

 
m

ov
em

en
t 

(A
rn

ol
d 

&
 Z

ub
er

bü
hl

er
, 2

00
6a

)
T

uf
te

d 
ca

pu
ch

in
 m

on
ke

ys
 S

ap
aj

us
 n

ig
ri

tu
s 

ca
lls

 
→

 p
re

da
to

r 
ty

pe
 (

W
he

el
er

, 2
01

0b
)

Sp
ot

te
d 

hy
en

a 
C

ro
cu

ta
 c

ro
cu

ta
 c

al
l →

 
do

m
in

an
ce

 r
an

k 
id

en
ti

ty
 (

M
at

he
vo

n 
et

 a
l.,

 
20

10
)

M
ar

in
e 

m
am

m
al

s
H

um
pb

ac
k 

w
ha

le
 M

eg
ap

te
ra

 
no

va
ea

ng
li

ae
 th

em
e 

an
d 

so
ng

 
(P

ay
ne

 &
 M

cV
ay

, 1
97

1)

H
um

pb
ac

k 
w

ha
le

 
M

eg
ap

te
ra

 n
ov

ae
an

gl
ia

e 
so

ng
 (

C
az

au
 e

t a
l.,

 2
01

3)

H
um

pb
ac

k 
w

ha
le

 M
eg

ap
te

ra
 

no
va

ea
ng

li
ae

 s
on

g 
(H

an
de

l 
et

 a
l.,

 2
01

2)

H
um

pb
ac

k 
w

ha
le

 M
eg

ap
te

ra
 n

ov
ae

an
gl

ia
e 

so
ng

 
→

 m
at

in
g 

di
sp

la
y 

- 
fe

m
al

e 
at

tr
ac

ti
on

/m
al

e-
 

m
al

e 
in

te
ra

ct
io

ns
 (

D
ar

lin
g 

et
 a

l.,
 2

00
6;

 S
m

ith
 e

t 
al

., 
20

08
)

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2017 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kershenbaum et al. Page 69

T
ab

le
 2

A
 s

um
m

ar
y 

of
 th

e 
as

su
m

pt
io

ns
 a

nd
 r

eq
ui

re
m

en
ts

 f
or

 e
ac

h 
of

 th
e 

fi
ve

 d
if

fe
re

nt
 s

tr
uc

tu
re

 a
na

ly
si

s 
m

od
el

s 
su

gg
es

te
d 

in
 th

e 
re

vi
ew

.

M
od

el
 t

yp
e

E
m

be
dd

in
g 

ty
pe

D
at

a 
re

qu
ir

em
en

ts
T

yp
ic

al
 h

yp
ot

he
se

s
A

ss
um

pt
io

ns

M
ar

ko
v 

ch
ai

n
•

R
ep

et
iti

on

•
D

iv
er

si
ty

•
O

rd
er

in
g

•
N

um
be

r 
of

 o
bs

er
va

tio
ns

 
re

qu
ir

ed
 in

cr
ea

se
s 

gr
ea

tly
 a

s 
th

e 
si

ze
 o

f 
th

e 
m

od
el

 g
ro

w
s

•
In

de
pe

nd
en

ce
 o

f 
se

qu
en

ce

•
Se

qu
en

tia
l s

tr
uc

tu
re

•
St

at
io

na
ry

 tr
an

si
tio

n 
m

at
ri

x

•
Su

ff
ic

ie
nt

 d
at

a 
fo

r 
m

ax
im

um
 li

ke
lih

oo
d 

es
tim

at
or

 o
f 

tr
an

si
tio

n 
m

at
ri

x

H
id

de
n 

M
ar

ko
v 

m
od

el
•

R
ep

et
iti

on

•
D

iv
er

si
ty

•
O

rd
er

in
g

•
N

um
be

r 
of

 o
bs

er
va

tio
ns

 
re

qu
ir

ed
 in

cr
ea

se
s 

gr
ea

tly
 a

s 
th

e 
si

ze
 o

f 
th

e 
m

od
el

 g
ro

w
s

•
N

on
-s

ta
tio

na
ry

 tr
an

si
tio

ns
 o

f 
ob

se
rv

ab
le

 s
ta

te
s

•
L

on
g-

ra
ng

e 
co

rr
el

at
io

ns

•
E

xi
st

en
ce

 o
f 

co
gn

iti
ve

 s
ta

te
s

•
Su

ff
ic

ie
nt

 d
at

a 
to

 e
st

im
at

e 
hi

dd
en

 s
ta

te
s

N
et

w
or

k
•

C
om

bi
na

tio
n

•
O

rd
er

in
g

•
M

an
y 

un
it 

ty
pe

s
•

N
et

w
or

k 
m

et
ri

cs
 h

av
e 

bi
ol

og
ic

al
 m

ea
ni

ng

•
C

om
pa

ri
so

n 
of

 m
ot

if
s

•
T

he
 p

ro
pe

rt
ie

s 
of

 r
el

at
io

ns
 b

et
w

ee
n 

un
its

 
ar

e 
m

ea
ni

ng
fu

l

Fo
rm

al
 g

ra
m

m
ar

•
R

ep
et

iti
on

•
D

iv
er

si
ty

•
O

rd
er

in
g

•
Fe

w
 r

eq
ui

re
m

en
ts

•
L

in
gu

is
tic

 h
yp

ot
he

se
s

•
D

et
er

m
in

is
tic

 s
eq

ue
nc

es

•
Pl

ac
e 

in
 C

ho
m

sk
y 

hi
er

ar
ch

y

•
D

et
er

m
in

is
tic

 tr
an

si
tio

n 
ru

le
s

T
em

po
ra

l s
tr

uc
tu

re
•

O
ve

rl
ap

pi
ng

•
T

im
in

g

•
T

im
in

g 
in

fo
rm

at
io

n 
ex

is
ts

•
N

o 
ne

ed
 to

 d
ef

in
e 

un
its

•
Pr

od
uc

tio
n/

pe
rc

ep
tio

n 
m

ec
ha

ni
sm

s

•
C

ha
ng

es
 w

ith
 ti

m
e/

ef
fe

ct

•
T

em
po

ra
l v

ar
ia

tio
ns

 a
re

 p
er

ce
iv

ed
 b

y 
re

ce
iv

er

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2017 February 01.




