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Key Points: 9 

• This study examined the spectral scaling, coherence and cross-phase spectrum of riverbed 10 

elevation and width variability for 35 sites across channel types and flow stages. 11 

• Uniform channels had the mildest spectral slope for bed elevation variability, while 12 

confined channels had the mildest spectral slope for width variability.  13 

• Braided channels showed the steepest spectral slopes for both bed elevation and width 14 

variability.  15 

• Harmonic components of detrended width and bed elevation series mostly exhibited in-16 

phase relationships at bankfull and flood stage across frequencies whereas some out-of-17 

phase relationships were observed at baseflow stage for low frequencies. 18 

• Bed variability spectral slope and mean wetted width were positively correlated across 19 

flow stages. 20 

 21 

Abstract 22 

Rivers exhibit self-similarity, or spectral scaling, across a wide range of spatial scales, 23 

from clusters of individual sediment grains to periodic features such as ripples, dunes, and 24 

meanders, extending to entire river valleys and networks. Previous studies have identified 25 

relationships between reaches characterized by specific wavelet scales and distinct 26 

morphological units or valley controls. Drawing on available high-resolution lidar-based 27 

bathymetries of 35 channel reaches, this study investigates linkages between spectral analysis 28 

measures and established channel typologies and morphological attributes across diverse river 29 
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settings. We use spectral analysis to demonstrate how sub-reach scale topographic variability 30 

patterns vary by flow stage and channel type. Uniform channels had the mildest spectral slopes 31 

for bed elevation variability, while confined channels had the mildest spectral slopes for width 32 

variability. In contrast, braided channels had the steepest spectral slopes for both bed and width 33 

variability. Coherence analysis revealed that the harmonic components of bed and width are 34 

largely in-phase (i.e., when the bed is high, the channel is wide) at bankfull and flood stage, but 35 

some out-of-phase relationships were found at baseflow within the low-frequency range. Finally, 36 

the longitudinal bed elevation series exhibited steeper spectral slopes with increasing mean 37 

wetted width across channel types and flow stages. Our findings on spectral slope and coherence 38 

of bed and width undulations may help improve the representation of the nested structure of a 39 

river’s terrain and variability at different scales from sub-reach to watershed. 40 

1 Introduction 41 

There is an established need to move beyond the central tendencies of channel reach 42 

morphology to understand patterns of sub-reach scale topographic variability (White et al., 2010; 43 

Wyrick & Pasternack, 2016; Lane et al., 2017; Duffin et al., 2021). Descriptive river reach 44 

typologies distinguish both reach-average (e.g., bankfull width) and sub-reach-scale geomorphic 45 

features and repeating patterns. For instance, Montgomery and Buffington (1993) distinguish 46 

channel types such as pool-riffle, plane-bed and step-pool in part based on observable 47 

longitudinal undulations in channel bed elevation and width that result in distinct types and 48 

spacing of landforms. These descriptive typologies facilitate the identification of river reaches 49 

with different dominant geomorphic features, processes and aquatic habitat conditions. However, 50 

none systematically and quantitatively describe or differentiate the entire, nested structure of a 51 
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river’s terrain and variability. A key step to understanding rivers lies in linking reach-scale 52 

channel typologies and attributes to multi-scale variability patterns as quantitatively summarized 53 

by frequency domain measures.  54 

1.1 Previous Studies on Multiscale Sub-Reach Scale Variability 55 

Longitudinal variations in channel topography, such as in channel width and bed 56 

elevation, can contain stochastic non-periodic fluctuations. However, they are highly organized 57 

and interrelated to a large degree (Brown & Pasternack, 2017; Palucis & Lamb, 2017; Pasternack 58 

et al., 2018a, 2018b) owing to their lability and tendency for mutual adjustment to external 59 

forcing (Hack, 1960). As a result, rivers exhibit self-similarity, or spectral scaling, over scales 60 

ranging from the size of clusters of individual sediment grains to periodic structures such as 61 

ripples, dunes, and meanders to entire river valleys and networks (Figure 1) (Nikora & Hicks, 62 

1997; Turcotte, 1997; Rodriguez-Iturbe & Rinaldo, 2001). Here, we define sub-reach scale 63 

topographic variability (SRV) as the nested patterns of topographic (co)variability along a river 64 

ranging from the particle (10-2-100 channel width) to reach (102-103 channel width) scales. SRV 65 

acts as a major control on river hydrodynamics via topographic steering, the morphological 66 

control of water depth, speed and direction (Sear, 1996; MacWilliams et al., 2006; Blanckaert, 67 

2010; Huang et al., 2004). That in turn affects river processes including sediment transport (Sear, 68 

1996), hyporheic exchange (Lee et al., 2020), and geochemical cycling (Movahedi et al., 2021) 69 

as well as aquatic habitat structure (Wheaton et al., 2010; Lane et al., 2018; Dudunake et al., 70 

2020). 71 
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 72 

Figure 1. River sub-reach-scale topographic variability is the totality of everything in this figure. 73 

Past studies have observed distinct patterns of SRV at different spatial scales. For 74 

example, the longitudinal spacing of sediment clusters (Hassan & Reid, 1990) and ripples 75 

(Davies, 1980) (relative to roughness height) has been shown to be repeating at wavelengths 10-76 

2-100 channel width and as a function of flow resistance (A in Figure 1). Bedform scale 77 

variability (B in Figure 1) can exhibit multiscale structures (Nikora & Hicks, 1997; Coleman & 78 

Nikora, 2011; Martin & Jerolmack, 2013) with a range of wavelengths (10-1-100 channel width) 79 

and heights (Hino, 1968; Nikora et al., 1997; van der Mark et al., 2008; McElroy & Mohrig, 80 

2009; Signh et al., 2011). At the morphological unit scale (100-101 channel width, C in Figure 1), 81 

pool spacing in riffle-pool reaches has been observed to range from fit to seven bankfull widths 82 
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in small pools and 30-40 bankfull widths in large pools (Duffin et al., 2021; Gibson et al. 2019; 83 

Keller & Melhorn 1978; Leopold et al., 1964).  84 

 Several broad approaches exist to quantify SRV in rivers for different applications. These 85 

include classic statistical descriptions such as root mean square deviation (Glenn et al., 2006; 86 

Frankel & Dolan, 2007), geostatistics such as variogram/autocorrelation analysis (Legleiter, 87 

2014), object-oriented analysis describing the longitudinal sequencing of features which is useful 88 

in data-limited systems (Hay et al., 2001; Halwas & Church, 2002), covariance of longitudinal 89 

series of channel features (e.g., width, bed elevation, originating in Brown & Pasternack, 2014, 90 

2017; Nogueira et al., 2024) and frequency domain or spectral analysis (Nikora & Hicks, 1997; 91 

McKean et al., 2008; Duffin et al., 2021). Among these approaches, in data-rich systems, 92 

spectral analysis can capture the scale dependence and covariance inherent in landforms by 93 

deconstructing patterns and quantifying variability at many, nested spatial scales. The application 94 

of spectral analysis to river topography is also flow independent, objective, repeatable, and does 95 

not require intensive field surveying.  96 

Past studies of river SRV patterns have shown that the power spectrum may be fit with a 97 

power law where its slope (i.e., spectral slope) represents the relative balance between low- and 98 

high-frequency undulations in the channel terrain, defined as spectral scaling (Burrough, 1981; 99 

Clifford et al., 1992; Pelletier, 2007; Williams et al., 2019). Nikora (1991) found a relation 100 

between sinuosity and the spectral slope of river channel width for 46 river reaches in Moldavia 101 

with different planform patterns. Duffin et al. (2021) used continuous wavelet analysis of 102 

channel terrain data to identify reaches with distinct dominant morphological units (e.g., riffle-103 

pool from glide) as well as individual morphological units (e.g., pools) for three small pool-riffle 104 
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reaches in Idaho. They observed some, but limited, relationships between reaches dominated by 105 

certain wavelet scales (e.g., low-frequency bed elevation undulations) and distinct morphological 106 

units and valley controls. However, more research is needed to explore linkages between spectral 107 

analysis measures and established channel typologies and morphological attributes across diverse 108 

river settings.  109 

1.2 Conceptual Model and Scientific Questions 110 

When considering the longitudinal series of mean-width-normalized wetted width (Wn) 111 

and detrended, mean-width-normalized bed elevation (Zn), we expect river reaches with steeper 112 

spectral slopes of Wn and Zn (Figure 2a, red line) to undulate longitudinally but to do so 113 

relatively smoothly, because low-frequency SRV patterns (i.e., larger repeating geomorphic 114 

features) dominate (Figure 2b,d). In contrast, we expect river reaches with gentler spectral slopes 115 

(Figure 2a, blue line) to be associated with a greater degree of high-frequency topographic 116 

variability, because there is a similar amount of spectral power across all spatial scales (Figure 117 

2c,e). To test this expectation, we first ask [Q1] how the spectral slopes of Zn and Wn series vary 118 

as a function of channel type. 119 
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 120 

Figure 2. Proposed conceptual model of end-member river reaches with different spectral 121 

properties. (a) Spectral density plot with a steep spectral slope (red line) and gentle spectral slope 122 

(blue line), (b and d) a channel terrain model and representative river topography with a steep 123 

spectral slope of Zn and Wn series, (c and e) a channel terrain model and representative river 124 

topography with a gentle spectral slope of Zn and Wn series, (f) phase difference of Zn and Wn 125 

series: out-of-phase (π or – π, red dots), in-phase (0, blue dots) (g and i) a channel terrain model 126 

and representative river topography having out-of-phase relationship between Zn and Wn series, 127 

and (h and j) a channel terrain model and representative river topography having in-phase 128 

relationship between Zn and Wn series. 129 

 130 

In addition to the spectral slope, the phase difference between two series, a value between 131 

0 and π, is another spectral property that identifies how far apart two series are on their paths of 132 

undulation for a given frequency. Zn and Wn are considered in-phase (i.e., when the bed is high, 133 

the channel is wide) (Figure 2g,i) if their phase difference is close to zero (Figure 2f, blue dots). 134 

On the other hand, Zn and Wn are considered out-of-phase (i.e., when the bed is high, the 135 

channel is narrow) (Figure 2h,j) if their phase difference is close to π or - π (Figure 2f, red dots). 136 

Building on past research showing that, in many individual rivers, bed and width undulations are 137 
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linked (Brown and Pasternack, 2017; Nogueira et al., 2024), we further ask [Q2] how Zn and Wn 138 

undulations align based on their phase differences across flow stages and channel types. 139 

Finally, building on previous research that links bankfull width to SRV patterns in 140 

channel bed elevation (e.g., bedforms and pool-riffle spacing) (Leopold et al., 1964), we expect 141 

the channel width and the spectral slope of Zn representing bed variability to be related. For 142 

example, for single-threaded alluvial rivers, increasing width is hypothesized to be associated 143 

with increasing spectral slope because larger rivers become dominated by a single spatial scale of 144 

topographic undulation dictated by meandering. Here, we further ask [Q3] if mean wetted width 145 

or other reach-scale channel attributes typically used in channel classification are related to the 146 

spectral slopes of Zn and Wn. 147 

 148 

2 Study Area and Methods 149 

2.1 Study Area and Data Processing 150 

The study area consists of 35 ephemeral river reaches along the southern Pacific coastline 151 

of California, USA (Figure 3), spanning coastal valleys, foothills, and rugged mountains with 152 

significant geologic diversity but generally similar physiographic characteristics. These study 153 

reaches fall within five channel types (six to eight study reaches per channel type) identified for 154 

the South Coast region as detailed in Byrne et al. (2020) and Lane et al. (2021) based on an equal 155 

effort stratified-random sampling strategy and multivariate analysis of the resulting 67 surveyed 156 

reaches. The five channel types are: (1) unconfined, uniform, sand-gravel, (2) partly-confined, 157 
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braided, gravel-cobble, (3) confined, Cascade/step-pool, cobble-boulder, (4) confined, uniform, 158 

gravel-cobble, and (5) confined, riffle-pool, gravel-cobble channel. Details on how channel types 159 

were determined are available in Supporting Information: Text S1. Fifteen reach-scale channel 160 

attributes were previously calculated for each study reach, as detailed in Nogueira et al. (2024): 161 

stream order, catchment area, valley confinement, channel slope, coefficient of variance of width 162 

and depth at bankfull stage, and average baseflow/bankfull/flood stage width, water depth, and 163 

width-to-depth ratio. The calculation methods and channel attribute values are provided in Table 164 

S2. 165 

 166 

Figure 3. Map of the California South Coast showing all 35 study reaches color-coded by 167 

channel type and representative photos for each channel type. The five channel types are: (1) 168 

unconfined, uniform, sand-gravel, (2) partly-confined, braided, gravel-cobble, (3) confined, 169 

cascade/step-pool, cobble-boulder, (4) confined, uniform, gravel-cobble, and (5) confined, riffle-170 

pool, gravel-cobble channel (reproduced from Nogueira et al. 2024 with permission). 171 
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The bare-ground elevation point cloud data for each study reach was clipped and 172 

processed to obtain a meter-resolution raster digital elevation model of the dry river-corridor 173 

reach. Longitudinal Wn and Zn series were extracted for selected elevations representing key 174 

flow stages (Nogueira et al., 2024). Further information on geomorphic analysis including the 175 

key metrics of LiDAR project data (Table S1) and the final yes/no classification tree (Figure S1) 176 

can be found in Supporting Information: Text S2.  177 

 178 

2.2 Data Analysis 179 

To answer the scientific questions posed above, we performed spectral analysis on Wn 180 

and Zn for each of the 35 study reaches across three key flow stages: baseflow, bankfull, and 181 

flood stage. Q1 was answered by comparing the site-specific spectral slopes of Zn and Wn 182 

within and between channel types, and relative to the conceptual model to see if the model held 183 

up. 184 

To answer Q2, we first identified frequencies with statistically significant coherence (p = 185 

0.01) between Zn and Wn, and then evaluated the distribution of phase differences of coherent 186 

frequencies (i.e., phase of cross-spectrum). Coherence (𝐶𝑥𝑦(𝑓)) represents the normalized cross-187 

correlation between Zn and Wn at a given frequency (𝑓) as defined below, ranging from 0 (not 188 

coherent) to 1 (high coherency): 189 

 𝐶𝑥𝑦(𝑓) =
|𝐺𝑥𝑦(𝑓)|

2

𝐺𝑥𝑥(𝑓)𝐺𝑦𝑦(𝑓)
 Eq. 1 
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where 𝐺𝑥𝑦(𝑓) is the cross-spectral density between x and y for a given frequency f, and 𝐺𝑥𝑥(𝑓) 190 

and 𝐺𝑦𝑦(𝑓) are the auto-spectral density of x and y, respectively (Bendat & Piersol, 2011). The 191 

phase of cross-spectrum of Zn and Wn was then evaluated across flow stages and frequencies 192 

using scatterplots and kernel density plots. 193 

Finally, Q3 was answered by assessing multi-site relationships (R2 of fitted power 194 

functions) between stage-specific spectral slopes of Wn and Zn and each of the 15 reach-scale 195 

channel attributes. Detailed information on spectral and coherence analysis is given in 196 

Supporting Information: Text S2, and MATLAB scripts are available at  197 

https://github.com/anzylee/Spectral_Analysis_GCS_public.  198 

 199 

3 Results 200 

3.1 Spectral Slopes by Channel Type 201 

With respect to Q1, the site-specific spectral slopes of Zn and Wn varied as a function of 202 

channel type for different flow stages. Table 1 presents the average spectral slope for various 203 

flow stages and channel types, and Figure S3 shows box plots of Zn and Wn spectral slopes with 204 

respect to channel type. For all channel types, the channel type-average spectral slopes of Zn and 205 

Wn became steeper as flow stage increased (by an average of 61.2% and 61.5%, respectively, 206 

from baseflow to flood). When considering the Zn series, study reaches classified as partly-207 

confined braided channels (channel type 2) exhibited the steepest spectral slopes, whereas 208 

unconfined uniform channels (channel type 1) exhibited the mildest spectral slopes, followed by 209 

https://github.com/anzylee/Spectral_Analysis_GCS_public
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confined uniform channels (channel type 4) for all flow stages (Table 1, Figure S3). When 210 

considering the Wn series, partly-confined braided channels again exhibited the steepest spectral 211 

slopes among all channel types whereas confined channels (channel type 3 and 4) exhibited 212 

milder slopes for bankfull and flood and followed by unconfined uniform sand-gravel channels 213 

(channel type 1) which had the mildest slope for baseflow. The site-specific spectral slope values 214 

for Wn and Zn for baseflow, bankfull, and flood stages are provided in Table S4.  215 

Table 1. For both mean-width-normalized wetted width (Wn) and detrended, mean-width-216 

normalized bed elevation (Zn), at each stage, numbers indicate the channel type ordered from 217 

steepest (first column) to mildest (last column) spectral slope, with each channel type’s average 218 

spectral slope in parentheses. Channel type numbering is the same as in Figure 3. 219 

 220 
Variable Stage ← Steeper                                                                                Milder → 

Zn 

Baseflow 2 (1.31) 3 (1.11) 4 (1.03) 5 (0.98) 1 (0.64) 

Bankfull 2 (1.55) 5 (1.24) 3 (1.18) 4 (1.08) 1 (1.03) 

Flood 2 (1.93) 5 (1.65) 1 (1.60) 4 (1.28) 3 (1.28) 

Wn  

Baseflow 2 (1.45) 3 (1.35) 4 (1.32) 5 (1.18) 1 (1.03) 

Bankfull 2 (1.70) 5 (1.68) 1 (1.64) 4 (1.59) 3 (1.50) 

Flood 2 (2.25) 5 (2.11) 1 (2.05) 3 (1.84) 4 (1.82) 

 221 

3.2 Bed and Width Undulation Coherent Phasing 222 

Figure 4 addressed Q2 by showing the scatter plots of phase differences between Zn and 223 

Wn for coherent frequencies at three key flow stages for (a) all channel types and (b-f) each 224 

channel type. As visualized by the kernel density plots, the median phase differences were 0.04 225 

(2.3°), 0.01 (0.6°), and 0.01 rad (0.6°) and the standard deviations of phase differences were 1.31 226 

(75°), 0.49 (28°), and 0.35 rad (20°) for baseflow, bankfull and flood stage, respectively, across 227 

channel types (Figure 4a). At bankfull and flood stage, the median phase difference between Zn 228 

and Wn was close to 0, indicating an in-phase relationship, with a standard deviation of 0.49 229 
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(28°) and 0.35 rad (20°), respectively, across channel types. At baseflow stage, the standard 230 

deviation of phase differences was larger than those at bankfull and flood stages due to the out-231 

of-phase relationships between Zn and Wn within the low-frequency range (Figure 4a, blue 232 

density plot on the left and blue dots). This out-of-phase relationship of low-frequency Zn and 233 

Wn was observed in most channel types (Figure 4c-f), except for channel type 1 (Figure 4b). 234 

 235 

Figure 4. Scatter plots and kernel density plots (to left) of phase differences between Zn and Wn 236 

for coherent frequencies at baseflow (blue squares), bankfull (orange diamonds), and flood 237 

(yellow dots) stages for (a) all channel types, (b-f) channel type 1-5 where channel type 238 

numbering is the same as in Figure 3. The horizontal solid line denotes a phase difference of 0 239 

indicating an in-phase relationship. 240 

 241 

Here, we examine individual sites exhibiting extreme topographic states to help 242 

understand the results for Q1 and Q2 relative to the conceptual model. Figure 5 illustrates (a and 243 

f) wetted polygons, (b and g) Zn (mean-width-normalized bed elevation) series, (c and h) Wn 244 

(mean-width-normalized wetted width) series, (d and i) the most dominant harmonic components 245 

of Zn, and (e and j) the most dominant harmonic components of Wn for two example sites. The 246 
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harmonic analysis was performed using the numpy.fft.fft function from Numpy (Harris et al., 247 

2020). The first example site, classified as channel type 1 (Figure 5a-e, unconfined, uniform, 248 

sand-gravel) with a bankfull width of 38 m, has some of the mildest baseflow Zn and Wn 249 

spectral slopes of any study site (0.6 and 1.03, respectively, Table 1). The second example site, 250 

classified as channel type 2 (Figure 5f-j, partly confined, braided, gravel-cobble) with a bankfull 251 

width of 244 m, has some of the steepest flood stage Zn and Wn spectral slopes (1.93 and 2.25, 252 

respectively, Table 1). The first example site exhibits out-of-phase relationships between the two 253 

lowest-frequency harmonic components of Zn (1, 2, and 4 in Figure 5d) and Wn (1, 2, and 4 in 254 

Figure 5e), which further supports Q2 results. For the second site, the harmonic components of 255 

Zn and Wn are mostly in-phase (Figure 5i,j). The lowest-frequency component (1, orange line) 256 

exhibits the largest phase difference of 0.97 rad (55.8°). 257 

 258 
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 259 

Figure 5. Wetted polygons (a and f), Zn (mean-width-normalized bed elevation) series (b and g), 260 

Wn (mean-width-normalized wetted width ) series (c and h), the most dominant harmonic 261 

components of Zn (d and i) and Wn (e and j) for two example sites having some of the mildest 262 

baseflow Zn and Wn spectral slopes in channel type 1 (Figure 6a-e, unconfined, uniform, sand-263 

gravel) and steepest flood Zn and Wn spectral slopes in channel type 2 (Figure 6f-j, partly 264 

confined, braided, gravel-cobble). Bankfull widths and spectral slopes are indicated. The latitude 265 

and longitude are (34.3538, -119.104879) and (34.4233, -119.302179) for the first and second 266 

site, respectively. 267 

 268 

3.3 Spectral Slope Correlations with Conventional Reach Metrics 269 

Regression analysis between the spectral slopes of Zn and Wn and reach-scale channel 270 

attributes revealed some but limited relationships. The baseflow Zn spectral slope and baseflow 271 

width showed an R² of 0.51 (purple dots and dashed line in Figure S4g), the bankfull Zn spectral 272 

slope and bankfull width had an R² of 0.53 (light-blue dots and dashed line in Figure S4h), and 273 

the flood stage Zn spectral slope and floodplain width had an R² of 0.72 (brown dots and dashed 274 
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line in Figure S4i). Looking across flow stages, a positive relationship was observed (R2 = 0.7) 275 

between Zn spectral slope and mean wetted width (Figure 6). This relationship is evident in the 276 

two example sites in Figure 5, where the first site is narrower (baseflow width = 5.24 m) with 277 

milder Zn spectral slope (0.55) and the second site is much wider (flood width = 441 m) with a 278 

steeper Zn spectral slope (2.12). On the other hand, the Wn spectral slope was not strongly 279 

correlated with any reach-scale channel attributes. Thus, larger channels seem to have more 280 

simplified spectra of bed undulations in alignment with expectations but still relatively complex 281 

spectra of width undulations contrary to expectations. Additional scatter plots and fitted power 282 

functions are depicted in Figure S4.  283 

 284 

  285 

Figure 6. The regression model of spectral slope of Zn versus mean wetted width across 35 286 

study sites and three flow stages.  The fitted power function is described by a dashed line and the 287 

associated equation and correlation coefficient (R2) is indicated. 288 

 289 

4 Discussion 290 

This study examined the spectral scaling, coherence, and cross-phase spectrum of Zn and 291 

Wn for 35 river reaches spanning five channel types with flashy ephemeral flow regimes. While 292 
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spectral analysis has been used to examine topographic variability in river channels, there has not 293 

been a comprehensive study linking the spectral slopes of Zn and Wn to specific channel types or 294 

reach-scale channel attributes. Additionally, instead of focusing solely on the covariance 295 

between Zn and Wn series (Pasternack et al., 2018b; Nogueira et al., 2024) or identifying key 296 

scales of variability (McKean et al., 2008; Duffin et al., 2021), this study applies cross-spectrum 297 

analysis of Zn and Wn to a large and diverse set of river reaches, offering new insights into how 298 

the underlying harmonic components of Zn and Wn relate to each other. Specifically, we found 299 

that spectral slopes of Zn and Wn vary with flow stage and channel type in an explainable 300 

manner [Q1], Zn and Wn mostly exhibited coherent, in-phase relationships across SRV scales 301 

for all stages except low-frequency undulations at baseflow stage [Q2], and the spectral slope of 302 

Zn had a positive relationship with mean wetted width across flow stages [Q3].  303 

The finding that spectral slopes of both Zn and Wn generally increased at higher flow 304 

stages indicates that low-frequency (larger spatial scale) variations in both attributes become 305 

dominant compared to high-frequency (smaller spatial scale) variability patterns as flow stage 306 

increases regardless of channel type. This aligns with channel and valley walls and large bedrock 307 

features acting as dominant topographic controls on hydrodynamics at higher flows, while 308 

smaller features (e.g., boulder clusters, bedforms, morphological units, Figure 1) associated with 309 

high-frequency variability are more dominant controls at low flows (MacVicar & Roy, 2007; 310 

Sawyer et al., 2010; Pasternack et al., 2018b; Kalathil & Chandra, 2021).  311 

Differences in the spectral slopes between channel types can be understood in terms of 312 

their dominant SRV patterns. The dominance of low-frequency Zn variations in braided channels 313 

resulted in steeper spectral slopes, whereas the lack of low-frequency Zn variations in uniform 314 
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channels yielded milder spectral slopes; in other words, uniform channels do not have meanders, 315 

riffles, and pools generating high bed relief at low frequencies, but instead have plane beds. This 316 

finding is consistent with Duffin et al.’s (2021) finding that river reaches containing the most 317 

pronounced SRV patterns and largest bed features exhibited the highest wavelet power across 318 

scales. For Wn, partly-confined braided channels again yielded the steepest spectral slopes 319 

among all channel types, whereas confined channels (channel types 3 and 4) resulted in milder 320 

slopes, as their width variability is constrained by valley walls limiting low-frequency 321 

undulations. Across stages, even though braided rivers exhibit significant complexity in their 322 

wetted area polygons at bankfull stage (Figure 5f), their Wn spectral slopes are not particularly 323 

mild, as medium to low-frequency undulations exhibit substantial spectral density. This 324 

observation is consistent with our finding that steepening of Wn spectral slope is driven by a gain 325 

in low frequency undulations rather than a loss of high-frequency undulations as stage increases 326 

(e.g., flood Wn is controlled by valley scale). In other words, as stage increases, the water 327 

increasingly interacts with valley walls and terraces that have high-amplitude low-frequency 328 

undulations. For a given stage, Wn spectral slope gets steeper as wetted width increases (Table 329 

1) and this can be due to a strong link between width and meander wavelength− the bigger a 330 

river gets, the more it meanders (Williams, 1986; Hickin, 1978). More broadly, our findings 331 

suggest that the spectral properties of Zn and Wn offer an equivalent way to describe 332 

topographic patterning in rivers on par with descriptive channel typologies, with the advantage of 333 

being more compact, quantitative, and free of language misinterpretations. While this study 334 

mainly focused on the variations in spectral slope, future research could explore the area under 335 

the spectral density curve (Figure 2a) as it represents the integrated energy over a range of 336 



Manuscript submitted to River Research and Applications 

19 

 

frequencies and could provide valuable insights into surface roughness characteristics (Burrough, 337 

1983; Huang and Bradford, 1992). 338 

Coherence analysis showed that, for a large set of geomorphologically diverse river 339 

reaches, Zn and Wn are mostly in-phase across frequencies for bankfull and flood conditions. 340 

The in-phase covariance structure of Zn and Wn for bankfull and flood can be explained by the 341 

local narrowing/widening of a channel causing flow acceleration/deceleration and riverbed grain 342 

entrainment/deposition (Chartrand et al., 2018). Pasternack et al. (2018a) demonstrated that bed 343 

and width are positively covary at morphodynamically relevant water stages where the 344 

topography and large bed element structure are set. On the other hand, we observed out-of-phase 345 

relationships (π or -π) between Zn and Wn in channel types 2-5 for baseflow, which corresponds 346 

to either a nozzle (Zn, -Wn) or an oversized (-Zn, Wn). Wiener & Pasternack (2022) suggested 347 

that baseflow Zn and Wn are expected to be out-of-phase in many cases, especially in confined 348 

and bedrock/boulder streams, because once these landforms and large bed elements are in place, 349 

the hydraulics are forced to conform to them at lower flows. In our study, the substrates of the 350 

channel types that showed an out-of-phase relationship between Zn and Wn range from gravel to 351 

boulder, which are more resistant to hydraulic forcing than sand-gravel channels (channel type 352 

1), resulting in negative covariance between Zn and Wn (Nogueira et al., 2024).  353 

Finally, limited relationships were observed between the spectral slopes of bed and width 354 

series and reach-scale channel attributes. The positive relationship between the spectral slope of 355 

Zn and mean wetted width indicates that the spacing between repeating bed features like riffles 356 

and pools tends to increase with mean channel width. The pool spacing in riffle-pool reaches has 357 

been found to range from five to seven bankfull widths (Leopold et al., 1964; Keller, 1971; 358 
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Richards, 1976; Gregory et al., 1994). However, some reported that the modes of spacing 359 

between riffles and pools ranged from three to five bankfull widths, which is presumably 360 

bedform-scale variability (Carling and Orr, 2000). Based on this observation, Wyrick and 361 

Pasternack (2014) explored the use of baseflow width as a metric to more accurately describe the 362 

longitudinal spacings between channel morphological units and proposed that valley width could 363 

potentially serve as a measure for larger-scale bed profile variability. Our study showed a 364 

connection between the mean wetted width and the metric describing bed profile variability at 365 

the same flow stage (e.g., mean baseflow width and spectral scaling of Zn for baseflow), 366 

revealing a power-law relationship across stages. While no other relationships were apparent, 367 

study site selection was not set up to address this question (i.e., balanced sampling across 368 

channel metric ranges) and additional research could explore connections between established 369 

reach-scale channel metrics and the frequency domain metrics considered herein. 370 

Spectral slope may serve as a valuable new river channel attribute to characterize and 371 

distinguish multiscale variability of channel topography. Spectral slope is an effective metric to 372 

describe nested topographic scaling of SRV across scales and has been shown to be a critical 373 

predictor of channel type, independent of traditional terrain metrics such as elevation and 374 

curvature. Guillon et al. (2020) found that, in a machine learning approach to predict geomorphic 375 

channel types using coarse geospatial predictors, the fractal dimension - directly related to 376 

spectral slope - was a stronger predictor of channel type than conventional terrain metrics based 377 

on 10-m topographic data. Furthermore, given that over 97% of the world’s rivers have a channel 378 

width of less than 30 meters (Downing et al., 2012), our findings provide valuable insights into 379 
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estimating the spectral scaling and covariance structures of sub-reach variability by leveraging 380 

channel and valley characteristics identifiable in 10 m resolution data. 381 

 382 

5 Conclusion 383 

Drawing on available high-resolution lidar-based bathymetries of 35 channel reaches, our 384 

study investigated the spectral slope and coherence of five different channel types. Across 385 

channel types, the longitudinal series of Wn and Zn showed steeper spectral slopes (e.g., low-386 

frequency dominated oscillations) with increasing flow stage. Uniform channels had the mildest 387 

spectral slope of Zn, while confined channels had the mildest spectral slope of Wn. In contrast, 388 

braided channels showed the steepest spectral slopes of Zn and Wn. Coherence analysis revealed 389 

that the harmonic components of bed and width are largely in-phase for bankfull and flood 390 

stages, but some out-of-phase relationships were found at baseflow within the low-frequency 391 

range. From regression analysis, a relationship between Zn spectral slope and mean wetted width 392 

was found across flow stages. This study provides information about spectral scaling and 393 

covariance structure of bed and width variability, which may help improve physical 394 

understanding and representation of nested sub-reach scale variability patterns that act as a major 395 

control on hydrodynamics and river processes. These outcomes could support predictions of 396 

hydraulics and aquatic habitat conditions from sub-reach to watershed scales with limited 397 

resource requirements. 398 
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Text S1. Site selection and river classification 

This study employed a three-way random-stratified sampling methodology to 

obtain an initial set of representative ephemeral stream reaches to consider for use as 

study sites in the South Coast region of California. Three sources of pre-existing 

published information were used to stratify potential study sites. First, reaches had to be 

classified as having ephemeral hydrology, based on the California hydrologic 

classification’s “Flashy-Ephemeral River (FER)” designation (Lane et al., 2018). 

Second, a reach had to be fully covered with a topo-bathymetric point cloud, which 

is the input data for the algorithms used in this study. Considering the South Coast 

region of California, streams are often dry for much of the year, so sub-meter-resolution 

airborne LiDAR surveys (Table S1) alone can yield such complete datasets suitable for the 

algorithm. In other regions, it would be necessary to perform bathymetric mapping 

together with topographic mapping. For this study, airborne LiDAR coverage polygons 

were used to stratify streams on the basis of coverage or no coverage. 

 

Table S1. Key metric associated with utilized dry season (May – October) LiDAR project 

data.   

LiDAR dataset 
Mean point 
spacing (m) 

Vertical RMSE 
(cm) 

# of river 
reaches 

2015 Los Angeles County, CA QL2 Lidar 0.7 9.95 2 
2018 Southern California Wildfire FEMA R9 QL1 Lidar 0.35 10 17 

2018 Southern California Wildfire QL2 Lidar 0.7 5.4 16 

 

Third, a reach had to be initially classified into one of the five South Coast 

regional river types by Byrne et al. (2020), as this provided the typology to ensure that 

site selection in this study spanned the diverse river types in the region. River-type 

prediction had been done on each 200-m length interval along all lines representing 

streams present in the National Hydrography Dataset version 2 (McKay et al., 2012; 

NHDPlusV2). Prediction models were made on an ensemble basis using Random Forest, 

Support Vector Machine, and Artificial Neural Network methods. Training data consisted 

of river type labels for 67 independent sites subjected to thorough geomorphic 

characterization spanning the five channel types in the region (Byrne et al., 2020). A total 

of 147 potential predictors quantifying metrics of river corridor terrain, river network 

topology, topographic fractal dimension, sediment supply, valley confinement, and 

contributing drainage area, as detailed in Guillon et al. (2020) and Lane et al. (2021). 

Among California’s regions, the South Coast had the lowest prediction accuracy, but the 

cross-validated multiclass AUC was still 0.949 and the cross-validated accuracy was > 

70%. Among the three modeling methods, the Random Forest model was selected to 

generate the final river type predictions (Fig. S1). The final classification tree was defined 

by CVd (Coefficient of variation of depth), w/d (Width-to-depth ratio), s (Slope), and Cv 

(Valley confinement). Details on modeling methods and predictive performance are 

available at https://guillon.xyz/regional_comparison_pRA17Mm/index.html.  Noting that 

https://guillon.xyz/regional_comparison_pRA17Mm/index.html
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statistical methods to create the regional river-type classification had uncertainty arising 

from a modest number of samples, multivariate classification algorithms, and the final 

Random Forest machine learning prediction framework, a river type verification/re-

assignment process was performed as the last step in the site-selection process after 

detailed information about each site was available and analyzed, as described below (as 

that scope of work data processing could not be fully automated and applied to the 

entire river network at the outset). 

 

 

Figure S1. Final yes/no classification tree that produced suitable prediction and cross-

validation percentages. Channel types are indicated by numbers at the bottom of the 

figure.   
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Text S2. Spectral analysis 

Spectral analysis starts by conducting Fourier transforms of longitudinal series of 

mean-width-normalized wetted width (Wn) and detrended, mean-width-normalized bed 

elevation (Zn), for key threshold stages evident in a river’s topography (e.g., baseflow, 

bankfull and flood stage). All spectral analysis used seven 4π Slepian multitapers which 

reduces the variance of the spectral estimate (Thomson, 1982; Lees & Park, 1995). To 

measure spectral slope, we first identified the slope break where the spectrum shows 

power-law scaling relationship to the maximum frequency and calculated the slope using 

linear regression in log-log scale from the slope break to the maximum frequency (Fig. 

S2a, b).  

Thomson’s (1982) Fourier-based spectral estimators were used to investigate 

frequency-based correlations between Wn and Zn at baseflow, bankfull and flood stages 

(Fig. S2c). A strong correlation between the two series results in high coherency value 

and vice versa (Fig. S2c, top). We recorded the magnitude-squared coherencies that are 

dominant or statistically significant satisfying 99% confidence level along with their 

frequencies and phases (Fig. S2c, bottom) (Carter et al., 1973; Hinnov, 1994; Priestley, 

1981). 

 

Figure S2. Example multitaper power spectrum density (PSD) estimate and spectral 

slope of (a) Wn and (b) Zn at bankfull flow for an unconfined, uniform, sand-gravel 

channel with bankfull width of 12.22 m. (c) Example magnitude-squared coherence (top) 

and phase of the cross spectrum (bottom) for baseflow stage for an unconfined, uniform, 

gravel-cobble channel. 

a b 

c 
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Text S3. Extraction of width and bed elevation 

After all stream reaches in the South Coast region were subjected to three-way 

stratification (i.e., FER, lidar coverage, and predicted stream type), then eight study sites 

were randomly chosen from the population for each river type, yielding 40 candidate 

study river intervals, each 200-m long. The sites were not considered final, because after 

selection each site’s meter-resolution digital elevation model (DEM) could be generated 

and analyzed using the geomorphic covariance structure (GCS) graphical user interface 

(GUI) software (available at https://github.com/xaviernogueira/GCS-Analysis-Tools) to (i) 

evaluate the suitability of a site for use in the study and (ii) obtain a more accurate river-

type classification to re-sort the set of final sites by river type. Inspection of site DEMs 

found that five sites were unsuitable and therefore removed from the study. For example, 

unsuitable sites might have artificially dug small reservoirs or engineered confinements 

(e.g., levees or walls). 

After the final set of 35 dry river-corridor sites was selected, the bare-ground 

elevation point cloud data for each site was clipped to a length judged to be a consistent 

geomorphic reach type based on expert judgment evaluated by two experts who 

evaluated multiple years of meter-resolution aerial image available on Google Earth and 

terrain indicators in the DEM. After clipping, the average study reach length was 56 times 

mean channel width at bankfull discharge. These spans are substantially long for GCS 

analysis and are consistent with classic reach length norms (> 10-20 times bankfull 

width) for reach-scale studies (Nardini et al., 2020). 

Airborne LiDAR point cloud data for each site were processed using a novel 

algorithm that is part of a geomorphic analysis tool (Nogueira et al., 2024) to create each 

study site’s meter-resolution DEM, generate thalweg-detrended DEMs, and extract 

longitudinal width (W) and bed elevation (Z) for three key flow stage elevations: 

baseflow, bankfull, and flood stage (Table S2). Further information on the details of these 

geomorphic analysis can be found in Nogueira et al. (2024). 

In addition, the GCS program was used to compute reach-average slope, valley 

confinement distance, bankfull width to depth ratio, and bankfull depth coefficient of 

variation (Table S3). These variables were then put into the river-type classification 

decision tree (Fig. S1) for the South Coast region (Byrne et al., 2020) to verify the river 

type predicted and assigned by the Random Forest model. Sites found to have a 

different class than originally predicted were re-assigned to the correct river type class. 

As a result, two river types only had six sites and one only had seven sites, instead of all 

sites having eight sites. Additional reach-average terrain metrics for each site were also 

computed (Table S3). 

Sensitivity analysis was conducted to assess the extent to which channel-type 

sample sizes (i.e., 6, 7, or 8 sites) impacted class-averaged GCS metrics. That analysis 

found that group sample sizes were sufficient to prevent a single river reach from 

significantly affecting class-averaged GCS values in this study. Considering that no prior 

study has analyzed more than a single site’s GCS before, having 6-8 per river type with a 

total of 35 sites was considered a significant, acceptable development for moving 

forward with the study.

https://github.com/xaviernogueira/GCS-Analysis-Tools
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Table S2. Key metric values used width and bed elevation extraction.   

River 
type 

COMID 
Spatial series  
interval (m) 

Reach 
length (m) 

Baseflow 
stage height (m) 

Bankfull 
stage height (m) 

Flood 
stage height (m) 

1 17573013 1.83 611 0.06 0.67 1.55 
1 17573045 1.83 2207 0.18 0.94 3.66 
1 17567211 0.91 719 0.03 0.27 0.79 
1 17633478 1.83 410 0.03 0.30 0.94 
1 17562556 0.91 576 0.09 0.91 N/A 
1 17609947 1.83 1271 0.06 0.21 0.79 
2 17610671 3.66 1185 0.12 0.82 2.44 
2 17586760 3.66 1284 0.21 0.82 1.52 
2 17609707 2.74 628 0.15 0.61 1.52 
2 17586810 2.74 903 0.18 1.10 2.47 
2 17609015 3.66 1156 0.09 1.04 3.14 
2 17637906 2.74 1791 0.09 0.37 1.62 
3 17594703 0.91 1608 0.15 0.88 1.71 
3 17609699 1.83 1042 0.15 0.67 1.71 
3 17570395 1.83 1507 0.06 0.34 1.52 
3 17609755 0.91 617 0.06 0.30 1.07 
3 17586504 0.91 822 0.21 0.88 1.49 
3 17570347 0.91 1125 0.18 0.98 1.83 
3 17569535 0.91 711 0.27 0.91 1.77 
4 17563722 0.91 813 0.21 0.49 1.46 
4 17569841 0.91 896 0.09 0.46 1.52 
4 17563602 1.83 929 0.18 0.37 1.83 
4 17610235 0.91 1915 0.12 0.58 1.16 
4 17595173 1.83 682 0.00 0.30 1.40 
4 22514218 0.91 454 0.03 0.27 1.58 
4 17610257 0.91 902 0.12 0.76 1.49 
4 17610541 1.83 1372 0.15 0.70 1.80 
5 17585756 1.83 836 0.24 0.61 1.31 
5 17611423 1.83 1569 0.24 0.55 1.83 
5 17610721 2.74 1772 0.12 0.40 1.25 
5 17586610 0.91 774 0.15 0.52 1.65 
5 17607455 1.83 439 0.09 0.43 1.28 
5 17607553 1.83 1441 0.06 0.34 0.79 
5 17609017 2.74 1152 0.15 1.28 2.23 
5 17610661 3.66 871 0.15 0.64 2.59 
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Table S3. Summary table for reach-average river metrics. Avg.: Average, CV: coefficient of variation, W: width, d: depth, W/d: width to depth ratio 
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1 17573013 3 23.45 1631.88 0.0047 0.28 0.34 5.24 0.30 38.57 0.83 85.05 1.71 17.69 46.62 49.70 
1 17573045 3 37.07 1968.60 0.0043 0.23 0.38 5.98 0.23 19.92 0.92 417.20 3.63 25.76 21.60 114.82 
1 17567211 2 6.96 1546.92 0.0036 0.46 0.28 3.75 0.06 9.70 0.23 64.94 0.74 58.19 41.72 87.47 
1 17633478 3 40.91 821.67 0.0059 0.39 0.34 5.52 0.06 13.90 0.28 20.33 0.91 88.19 49.01 22.25 
1 17562556 2 11.08 1143.25 0.0073 0.15 0.29 4.34 0.13 12.22 0.91 N/A N/A 32.48 13.36 N/A 
1 17609947 3 37.93 576.50 0.0035 0.39 0.74 7.38 0.08 15.87 0.19 31.01 0.77 95.52 82.84 40.36 
2 17610671 5 636.40 117.86 0.0024 0.39 0.38 19.39 0.11 70.24 0.60 208.94 2.21 176.48 116.46 94.58 
2 17586760 6 209.60 758.00 0.0037 0.18 0.25 30.99 0.17 244.03 0.75 441.08 1.45 182.38 326.42 304.48 
2 17609707 3 23.33 401.10 0.0039 0.39 0.40 8.86 0.10 45.87 0.42 86.54 1.33 88.81 108.52 65.12 
2 17586810 4 123.58 153.69 0.0029 0.28 0.39 10.66 0.11 51.65 0.83 249.55 2.20 93.53 62.20 113.47 
2 17609015 5 1468.03 837.75 0.0015 0.35 0.21 29.68 0.13 224.60 0.67 296.59 2.77 227.19 333.17 106.89 
2 17637906 3 99.56 231.60 0.0069 0.31 0.30 25.64 0.08 66.28 0.31 182.47 1.55 339.78 215.39 117.48 
3 17594703 2 8.97 18.82 0.0203 0.19 0.39 6.73 0.19 22.13 0.87 40.00 1.69 34.54 25.41 23.61 
3 17609699 2 12.78 13.54 0.0269 0.42 0.32 7.76 0.28 19.81 0.68 34.91 1.70 28.20 29.07 20.56 
3 17570395 3 21.10 14.00 0.0172 1.51 0.35 5.98 0.15 12.51 0.30 34.14 1.37 39.69 41.75 24.85 
3 17609755 2 2.72 12.00 0.0136 0.88 0.37 2.69 0.17 5.15 0.33 14.65 1.02 15.37 15.71 14.34 
3 17586504 2 3.03 16.33 0.0518 0.41 0.46 7.45 0.34 19.03 0.88 30.21 1.48 21.71 21.73 20.41 
3 17570347 2 2.90 0.86 0.0413 0.40 0.37 5.93 0.33 11.54 0.93 16.70 1.77 18.12 12.43 9.41 
3 17569535 2 3.16 41.29 0.0441 0.61 0.51 4.85 0.59 9.11 1.11 17.47 1.94 8.24 8.18 9.03 
4 17563722 2 2.14 18.88 0.0119 0.50 0.63 4.54 0.29 12.35 0.51 33.44 1.46 15.40 24.24 22.97 
4 17569841 2 6.83 24.57 0.0108 0.88 0.51 7.80 0.15 18.73 0.38 48.34 1.38 50.67 49.05 35.16 
4 17563602 2 17.91 94.00 0.0077 0.36 0.00 18.39 0.19 31.90 0.37 130.66 1.83 96.35 86.72 71.39 
4 17610235 2 7.43 15.70 0.0120 0.33 0.34 4.73 0.19 13.83 0.56 22.36 1.14 25.38 24.60 19.65 
4 17595173 3 12.67 8.14 0.0201 0.76 0.35 9.80 0.32 15.16 0.53 30.26 1.54 30.86 28.66 19.67 
4 22514218 2 3.62 24.13 0.0742 0.90 0.66 5.29 0.34 10.42 0.49 22.36 1.71 15.46 21.23 13.06 
4 17610257 2 4.42 10.08 0.0296 0.33 0.21 4.66 0.21 10.32 0.73 15.42 1.46 22.55 14.05 10.55 
4 17610541 4 84.33 55.00 0.0041 0.13 0.14 12.50 0.15 27.01 0.68 50.14 1.78 84.68 39.67 28.20 
5 17585756 3 32.13 73.44 0.0102 0.24 0.28 9.46 0.25 19.85 0.61 42.46 1.31 38.01 32.66 32.44 
5 17611423 4 62.26 137.18 0.0041 0.26 0.36 8.97 0.25 26.14 0.53 128.43 1.81 36.08 49.26 70.95 
5 17610721 4 89.13 149.40 0.0039 0.49 0.37 11.75 0.11 24.57 0.33 82.15 1.16 104.31 74.83 70.85 
5 17586610 2 9.61 828.25 0.0302 0.56 0.12 7.99 0.18 20.88 0.41 47.15 1.51 43.51 51.38 31.16 
5 17607455 3 11.66 23.33 0.0132 0.47 0.52 6.10 0.12 13.81 0.36 45.68 1.20 50.83 38.51 38.02 
5 17607553 2 13.36 279.00 0.0037 0.47 0.47 4.36 0.09 11.62 0.32 45.30 0.78 47.38 35.76 58.22 
5 17609017 4 122.80 169.33 0.0012 0.12 0.31 7.97 0.14 28.16 1.21 43.45 2.16 54.94 23.20 20.13 
5 17610661 5 652.81 423.17 0.0012 0.24 0.31 15.76 0.16 42.71 0.59 334.45 2.54 96.35 72.67 131.91 
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Table S4. Summary table for spectral slopes  

River 
type 

COMID 
Wn Spectral slope Zn Spectral slope 

Baseflow / R2 Bankfull / R2 Flood / R2 Baseflow / R2 Bankfull / R2 Flood / R2 

1 17573013 0.71 0.67 1.95 0.89 2.04 0.89 0.55 0.64 1.43 0.76 1.84 0.85 

1 17573045 1.01 0.70 1.59 0.86 2.02 0.87 0.65 0.48 0.98 0.74 2.25 0.90 

1 17567211 0.95 0.61 1.41 0.93 2.22 0.85 0.67 0.44 0.85 0.86 1.69 0.90 

1 17633478 1.03 0.78 1.01 0.87 1.77 0.87 0.68 0.58 0.95 0.80 1.07 0.72 

1 17562556 0.96 0.85 1.79 0.91 N/A N/A 0.71 0.45 0.88 0.75 N/A N/A 

1 17609947 1.53 0.62 2.12 0.55 2.18 0.83 0.57 0.63 1.09 0.65 1.16 0.79 

2 17610671 1.64 0.92 1.81 0.88 2.25 0.84 1.42 0.75 1.55 0.83 1.99 0.87 

2 17586760 1.71 0.60 2.08 0.53 2.14 0.88 1.52 0.66 1.82 0.65 2.12 0.79 

2 17609707 1.39 0.85 2.34 0.64 2.77 0.76 0.9 0.84 1.74 0.87 1.95 0.78 

2 17586810 0.81 0.89 0.97 0.93 2.33 0.89 0.89 0.66 0.98 0.78 2.03 0.87 

2 17609015 1.6 0.84 1.31 0.86 1.99 0.90 1.65 0.81 1.58 0.87 1.67 0.85 

2 17637906 1.57 0.88 1.7 0.90 2.02 0.90 1.46 0.86 1.61 0.86 1.84 0.92 

3 17594703 1.6 0.84 1.7 0.90 2.02 0.94 1.28 0.81 1.28 0.82 1.36 0.90 

3 17609699 1.18 0.90 1.43 0.89 1.9 0.90 1.04 0.89 1.37 0.85 1.32 0.82 

3 17570395 1.28 0.85 1.26 0.86 1.7 0.90 1.15 0.78 1.42 0.88 1.43 0.88 

3 17609755 0.83 0.91 1.15 0.86 1.53 0.92 0.57 0.91 0.51 0.85 0.68 0.83 

3 17586504 1.61 0.87 1.62 0.83 2.07 0.90 1.39 0.85 1.31 0.83 1.42 0.77 

3 17570347 1.48 0.76 1.64 0.87 1.74 0.87 1.31 0.76 1.27 0.89 1.17 0.84 

3 17569535 1.47 0.73 1.73 0.81 1.93 0.90 1.06 0.50 1.11 0.57 1.58 0.64 

4 17563722 0.89 0.86 1.37 0.91 1.55 0.93 0.71 0.78 0.84 0.79 1.04 0.88 

4 17569841 1.36 0.69 1.58 0.86 1.83 0.84 0.79 0.64 1.03 0.74 1.44 0.74 

4 17563602 1.67 0.88 2.11 0.90 2.42 0.87 1.21 0.71 1.28 0.77 1.85 0.87 

4 17610235 1.16 0.89 1.56 0.88 1.69 0.87 0.96 0.85 1.13 0.79 1.04 0.78 

4 17595173 1.48 0.85 1.58 0.89 1.9 0.88 1.23 0.81 1.11 0.83 1.17 0.76 

4 22514218 1.56 0.83 1.75 0.87 1.61 0.86 1.28 0.80 1.16 0.79 1.24 0.78 

4 17610257 1.33 0.75 1.33 0.80 1.47 0.93 1.05 0.65 1.08 0.70 1.04 0.80 

4 17610541 1.09 0.89 1.43 0.88 2.11 0.79 1.04 0.85 1.01 0.72 1.43 0.82 

5 17585756 1.28 0.76 1.58 0.85 2.08 0.94 1.24 0.68 1.26 0.81 1.42 0.77 

5 17611423 1.06 0.87 1.62 0.86 1.98 0.91 0.84 0.73 1.11 0.87 1.66 0.81 

5 17610721 1.34 0.74 1.62 0.88 2.05 0.93 1.03 0.74 1.27 0.74 1.62 0.89 

5 17586610 1.51 0.74 1.59 0.89 2.08 0.93 1.08 0.51 1.34 0.77 1.4 0.85 

5 17607455 1.13 0.86 1.92 0.85 1.83 0.85 0.9 0.66 1.2 0.84 1.71 0.83 

5 17607553 0.88 0.64 1.81 0.81 2.26 0.93 0.56 0.81 0.92 0.82 1.7 0.85 

5 17609017 1.23 0.86 1.74 0.87 2.09 0.91 0.9 0.70 1.44 0.82 1.74 0.88 

5 17610661 1.04 0.81 1.6 0.87 2.53 0.88 1.3 0.67 1.4 0.84 1.97 0.85 
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Figure S3. The spectral and a scatter plot of Zn and Wn spectral slopes with respect to channel 

type. The box chart displays the median, lower and upper quartiles, any outliers (computed 

using the interquartile range), and the non-outlier minimum and maximum values. 
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Figure S4. The spectral slope of width (blue/orange/yellow dots) and bed elevation (purple/light 

blue/red dots) for baseflow/bankfull/flood stages versus (a) stream order, (b) catchment area, (c) 

valley confinement, (d) channel slope, (e) coefficient of variance of bankfull depth, (f) coefficient 

of variance of bankfull width  (g) baseflow width, (h) bankfull width, (i) floodplain width, (j) 

baseflow depth, (k) bankfull depth, and (l) floodplain depth. Dashed lines are corresponding 

power-law fitting curves. 
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