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ABSTRACT OF THE DISSERTATION

The Holographic Geometry of Conformal Blocks

by

River Curry Snively

Doctor of Philosophy in Physics

University of California, Los Angeles, 2018

Professor Per J. Kraus, Chair

Conformal blocks are the building blocks of correlation functions in conformal field theory.

They figure prominently in the study of quantum gravity in light of the AdS/CFT corre-

spondence which identifies conformal field theory as a holographic representation of quantum

gravity in Anti de-Sitter space. Thus while conformal blocks are fundamentally CFT ob-

jects, it promises to be both conceptually and computationally useful to obtain for them a

description on the AdS side. We lay out that description here, extending the holographic

dictionary relating CFT objects to AdS objects by adding to it an entry for the conformal

blocks themselves. The holographic dual to a global conformal block is a Feynman diagram-

like object we call a geodesic Witten diagram, and a similar picture applies to semiclassical

Virasoro blocks as well. We discuss ways in which this new picture for an old tool can

help to further our understanding of how spacetime emerges from the quantum information

structure of conformal field theory.
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CHAPTER 1

Introduction

Black hole formation introduces an upper bound on the amount of information a region

of space can contain, a bound proportional to the area of the region’s boundary [6]. This

seems to indicate that perhaps the fundamental degrees of freedom describing a volume of

quantum space live not in the space’s volume but rather on a lower-dimensional surface [7],

a tantalizing hint toward the correct description of quantum gravity that has come to be

known as the holographic principle.

The holographic principle is spectacularly realized in the AdS/CFT correspondence [8–

10], which posits that quantum gravity in (d+1)-dimensional anti-de Sitter space (the bulk) is

described by d-dimensional conformally invariant quantum field theory. The correspondence

provides a concrete definition of quantum gravity, one in which quantum-mechanical AdS

spacetime is described by a theory localized to its lower-dimensional boundary.

From a certain point of view, e.g. [11, 12], any conformal field theory furnishes, via the

AdS/CFT correspondence, a theory of quantum gravity in one-higher dimension, with how-

ever a generic CFT corresponding to a bulk theory in which gravity is strongly quantum and

the semiclassical notion of spacetime loses its meaning, leaving the conformal field theory

as the system’s only sensible description. One day we may be able to understand the grav-

itational side of such a system, but for now to make progress one studies those conformal

field theories whose bulk duals are described, like our universe, by perturbative quantum

field theory at low energies. For such systems one can get a handle on both sides of the

correspondence. A highly fruitful course of study has been to carve out the space of con-

formal field theories with perturbative semiclassical bulk duals, e.g. [5, 13–19], and then to

use their properties to prove general conclusions about the bulk, e.g. that bulk scattering is
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local above the AdS horizon scale [20] and governed by a unitary S-matrix [21], that gravity

in the bulk obeys a law analogous to Newton’s 1/r2 at long distances [22] and that the

graviton couples to itself [23] and to matter [24,25] in a way consistent with Einstein gravity.

Pertaining in particular to black holes, it has been shown from very general assumptions

about CFT2 that the bulk spectrum contains the appropriate number of high-mass states –

black hole microstates – to account for AdS3 black hole entropy [26], that probe particles

orbit within them in the expected way [27], and furthermore that low-energy physics in the

vicinity of a black hole is governed by standard quantum field theory in curved spacetime [4]

independent of the details of the microstate.

One extremely powerful technique for proving constraints on conformal field theories,

and thereby on quantum gravity, is the conformal bootstrap program [28, 29], about which

we will have more to say below. The conformal bootstrap operates in terms of the conformal

block decomposition of CFT correlators. Conformal blocks – about which we will have much

to say below – are the building blocks of conformal field theory correlation functions. They

have been important in the study of conformal field theory since their inception [30–32] in

the 1970s, nearly three decades before the advent of the AdS/CFT correspondence. Until

recently, conformal blocks were thought to exist purely in the CFT. This thesis reviews

recent developments bringing conformal blocks into the bulk.

1.1 Conformal field theory and conformal blocks

We proceed with a brief review of background material relevant to conformal blocks. This

section is not intended as a complete pedagogical introduction to conformal field theory. The

reader looking for such may consult one of the classic [33,34] or modern [35] references cited

here. Our objective is to introduce those concepts necessary to define conformal blocks and

motivate their utility, assuming a baseline familiarity with quantum field theory. We restrict

attention throughout to unitary CFTs in Euclidean signature.

2
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Figure 1.1: The conformal map from the cylinder to the plane, with d = 2 for ease of

illustration. Solid lines map to solid lines and dashed lines to dashed lines. Note that

because the transformation is conformal it preserves the angle of intersection (90◦) between

dashed and solid lines.

1.1.1 Conformal symmetry

Conformal field theory is the study of quantum field theories invariant under the conformal

group, consisting of all coordinate transformations that preserve angles between vectors

but not necessarily their lengths. The conformal group is generated by the translations,

xµ 7→ xµ + aµ, and rotations, xµ 7→ Lµνxν (for L an orthogonal matrix) familiar from the

Poincare group, supplemented by scaling, xµ 7→ λxµ, and inversion, xµ 7→ − xµ

|x|2 . A conformal

field theory living on the plane Rd is equivalent to one on the cylinder Sd−1×R because the

latter maps into the former via the conformal transformation (t, nµ) 7→ etnµ, where t is the

cylinder’s axial coordinate and nµ a unit vector on Sd−1. The transformation is illustrated

in figure 1.1.

The conformal group’s Lie algebra is spanned by the generators Pi of translations and

3



Rij of rotations, the generator D of scale transformations, and the generators Ki of special

conformal transformations, the latter implemented by an inversion, followed by the action

of Pi and then another inversion: Ki = IPiI. These together realize an SO(d+ 1, 1) algebra.

We will not state all the commutators here (see e.g. [36]), but three relations important for

present purposes are

[H,Pi] = Pi, [H,Ki] = −Ki, [Pi, Kj] = −2 (δijH +Rij) . (1.1)

The two generators H = −iD and Rij are Hermitian while the remaining two, Pi and Kj,

are Hermitian conjugates of one another.

Motivated by the map to the cylinder, it is standard to quantize CFT on Rd using spheres

Sd−1 centered at the origin as one’s time slices (the circles on the right side of figure 1.1).

Then D generates translations in Euclidean time and the system’s Hamiltonian is therefore

H = −iD.

Just as ordinary rotation-invariant quantum field theory admits operators with spin,

operators in CFT need not be invariant under scaling. Indeed a generic operator will scale

nontrivially. However, one can always choose one’s basis of operators φi to be a scaling

eigenbasis, i.e. such that [D,φi(x)] = ∆iφi(x). ∆i is the scaling dimension of the operator φi.

Any operator lacking definite scaling dimension is simply a linear combination of operators

that do.

Conformal covariance fixes the expectation value of any product of two local scalar op-

erators of definite scaling dimensions in terms of the distance x12 := |x1 − x2| between their

positions.

〈φi(x1)φj(x2)〉 =
Nij

x2∆1
12

if ∆1 = ∆2, otherwise zero (1.2)

for some constant Nij. The expression on the right hand side is the only combination of

x1, x2 that transforms under translation and scaling consistent with the left hand side. For

operators to have nonzero two-point function their scaling dimensions must match. Nij is

real and symmetric, and in practice one always chooses an orthonormal basis of primaries

4



such that the two-point function is simply

〈φi(x1)φj(x2)〉 =
δij

x2∆i
12

. (1.3)

1.1.2 The state/operator correspondence

Here we introduce a very powerful feature of conformal field theory, the presence of a one-

to-one correspondence between states in the CFT Hilbert space and local operators in the

CFT path integral. (This correspondence operates entirely in CFT and is not to be confused

with the AdS/CFT correspondence!)

As discussed above, time slices in the CFT are taken to be spheres centered at the origin.

To declare that the system has state ψ0 at initial “time” r0, one cuts out the circle r < r0

and enforces the condition ψ = ψ0 at r = r0 in the path integral. If one does so with r0

approaching zero, there is no change to the path integral except very near the origin, and in

the limit r0 → 0 the effect is the same as that of a local operator φ inserted at the origin.

The correspondence between states ψ and local operators φ induced in this way is one-to-one

because two local operators have the same effect in every path integral only if they are the

same.

The essential role of conformal symmetry in establishing the state/operator correspon-

dence is to guarantee that the Hilbert spaces of states on spheres of different radii are iso-

morphic. In a theory without scale invariance one would naturally expect a smaller sphere to

host a smaller Hilbert space. But in a conformal field theory, the procedure of taking r0 → 0

does not make the Hilbert space any smaller, and we establish that states on a sphere of any

radius are one-to-one equivalent to local operator insertions at the center of the sphere.

Finally, we mention here that just as ket states |φ〉 are in one-to-one correspondence

with operators inserted at the origin, bra states 〈φ| are likewise in correspondence with local

operators inserted at the point at infinity on the plane. One inserts an operator of dimension

∆ at the point at infinity using the limit x∞ →∞ of the insertion |x∞|2∆φ(x∞). The power

law factor ensures that 〈φ|φ〉 = 1 by equation (1.3).

5



1.1.3 Primaries and the OPE

The Hilbert space of any CFT admits a decomposition into irreducible representations of the

conformal group with H-eigenvalues bounded from below. Any such irrep contains exactly

one state |p〉 annihilated by all special conformal generators Ki, and the representation is

spanned by all possible ways to act with strings of momentum generators Pi on that state.

These statements follow from the algebra (1.1); for a proof see [33]. |p〉 is called a primary

state, and the irrep it generates is called its conformal family. States in the conformal

family are referred to as “descendants” of |p〉. One primary state of special significance is

the vacuum, the state with lowest energy. It is assumed to be translation-invariant, which

condition, stronger than conformal covariance, means it is annihilated by Pi as well as by

Ki.

Meanwhile, a local operator φ is called primary if its insertion at the origin creates a

primary state. Equivalently, the condition is that the operator has definite scaling dimension

and is annihilated by the adjoint action of any special conformal generator Ki, i.e. that

[Ki, φ(0)] = 0. A third equivalent definition of a primary operator is that under a conformal

transformation x 7→ x′(x) it transforms as a density of weight ∆:

φ(x) 7→ φ′(x′) =
(
det ∂x′

∂x

)∆/d
φ(x′) . (1.4)

The above equation applies to scalar primaries. Its generalization to tensors is immediate,

differing only by the inclusion of transformations acting on the indices in the usual manner.

One operator appearing in any conformal field theory is the energy-momentum tensor Tµν ,

defined as usual in quantum field theory as the Noether current associated with spacetime

translation. It is a spin-2 primary operator with dimension ∆ = d, as can be checked

directly by applying a conformal transformation and comparing with the spin-2 version of

the primary transformation law (1.4).

When two primary operators are inserted inside a correlation function at nearby points

the result admits an operator product expansion (OPE) in powers of the separation xµ.

φ1(x)φ2(0) =
∑
p

C12p

∑
Pk

β12p
Pk
|x|∆p−∆1−∆2xkPkφp(0) (1.5)

6



p runs over the labels of all primaries in the CFT spectrum and Pk over all combinations

of momentum generators. The states Pk|p〉 span the Hilbert space so the existence of an

expansion of the left hand side into the operators on the right hand side is automatic. We

have used scaling symmetry to fix the power of x that appears in each term. The combination

xkPk schematically represents an unspecified contraction of the 2k indices in the expression

xµ1 ...xµkPν1 ...Pνk . When tensor primaries φp appear in the sum their indices are contracted

with powers of x appearing in the schematic expression |x|∆p−∆1−∆2 . We have separated

out an overall factor C12p for each conformal family, defining these by demanding that the

primary φp itself enters the sum with coefficient precisely C12p, i.e. that β12p
P0 = 1. The

operator product expansion (1.5) converges inside a correlation function if and only if there

exists a co-dimension-one sphere separating the two operators from all others present.

Conformal symmetry fixes the three-point functions of primaries φi with dimensions ∆i

up to an overall constant.

〈φi(x1)φj(x2)φk(x3)〉 =
Cijk

x
∆i+∆j−∆k

12 x
∆j+∆k−∆i

23 x
∆k+∆i−∆j

31

. (1.6)

All three operators have been taken to be scalars for simplicity. The right hand side of

equation (1.6) is, up to multiplication, the only expression with the correct conformal trans-

formation properties to match the left hand side. Three-point functions involving descendant

operators are fixed in terms of the corresponding primary three-point functions simply by

taking derivatives.

The constant Cijk in the numerator of (1.6) has been identified with the OPE coefficient

by comparing that equation with (1.5) at x1 = x, x2 = 0, x3 = ∞. In principle all coeffi-

cients β12p
Pk

can be similarly determined by comparing the two equations at general operator

positions. This is important; it means the only data in the OPE not fixed by conformal

symmetry is the so-called “conformal data”: the OPE coefficients {C12p} and the spectrum

of primary dimensions and spins {(∆p, `p)}. Because any n-point function can be evaluated

by successive applications of the OPE, a CFT’s observables are completely specified by its

conformal data.

7
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2 3 

4 

Figure 1.2: Positions of the operators on the z-plane in the four-point function 1.7. The

dashed circle is |z| = 1.

1.1.4 Conformal blocks

That three-point functions of local operators take a universal form, (1.6), is a consequence

of the fact that any three points in Rd can be mapped to any other three by a conformal

transformation. The same cannot be said for four or more points, and so there is no general-

ization of equation (1.6) to four- and higher-point correlation functions; they are not fixed by

conformal symmetry. However their structure is severely constrained, as we will now discuss

in the case of four-point functions1.

For conceptual simplicity and with no loss of generality let us consider the four operators

to lie at positions x1, ..., x4 ∈ Rd all on the same two-dimensional plane, parameterized by

a complex coordinate z, such that |z1|, |z2| < 1 and |z3|, |z4| ≥ 1. Any choice of the four

operator positions is conformally equivalent to one of this form [37]. We will study the

four-point function

F4(x4, x3, x2, x1) = 〈0|φ4(x4)φ3(x3)φ2(x2)φ1(x1)|0〉 . (1.7)

Consider inserting into this correlation function a complete set of states
∑

α |α〉〈α| at the

dashed circle |z| = 1 in figure 1.2. We can label the states |α〉 = |p, k〉 where p runs over

1Higher-point functions admit a similar treatment and one can defined higher-point conformal blocks,
but we focus here on four external points.
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all primaries in the Hilbert space and k indexes an orthonormal basis of descendants of each

primary.

F4(x4, x3, x2, x1) =
∑
p

∑
k

〈0|φ4(x4)φ3(x3)|p, k〉〈p, k|φ2(x2)φ1(x1)|0〉 . (1.8)

Each term in the sum is a product of two three-point functions. These are proportional to

C34p and C12p but otherwise fixed by symmetry. Thus if we pull out those factors and write

the correlator as

F4(x4, x3, x2, x1) =
∑
p

C12pC34p

∑
k

〈0|φ4(x4)φ3(x3)|p, k〉
C34p

〈p, k|φ2(x2)φ1(x1)|0〉
C12p

(1.9)

then the sum over k is fixed by conformal symmetry. It depends on the five dimensions ∆i

but not on OPE coefficients. The function

W 43;21
p (x4, x3, x2, x1) =

∑
k

〈0|φ4(x4)φ3(x3)|p, k〉
C34p

〈p, k|φ2(x2)φ1(x1)|0〉
C12p

(1.10)

is known as a conformal partial wave. It captures the full contribution to the four-point

function from the conformal family of p. A perhaps more illuminating expression is

W 43;21
p (x4, x3, x2, x1) = 1

C12pC34p
〈φ4(x4)φ3(x3)Ppφ2(x2)φ1(x1)〉 (1.11)

where Pp is the projector onto that conformal family.

Any four-point function is a linear combination of conformal partial waves.

〈φ4(x4)φ3(x3)φ2(x2)φ1(x1)〉 =
∑
p

C12pC34pW
43;21
p (x4, x3, x2, x1) . (1.12)

Conformal partial waves are not conformally invariant; they transform covariantly in

the same way as the four-point function itself. For applications such as the conformal

bootstrap it is convenient to multiply the partial wave by powers of position to trivialize the

transformation law and promote them to conformal invariants. The resulting object,

G43;21
p (x4, x3, x2, x1) =

(
x24

x14

)∆1−∆2
(
x14

x13

)∆3−∆4

x∆1+∆2
12 x∆3+∆4

34

W 43;21
p (x4, x3, x2, x1) , (1.13)

is called a conformal block. In this thesis we will be concerned entirely with conformal

partial waves, and we will often refer to CPWs interchangeably as conformal blocks with the
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understanding that conformal blocks are actually related to CPWs by the inclusion of the

prefactor displayed above.

In this discussion we have defined the blocks implicitly. It is quite cumbersome to compute

blocks from the definitions stated here but it can be done in some cases [38]. A more efficient

method for computing blocks takes advantage of the fact that they are eigenfunctions of the

conformal Casimir operator [39]. Explicit expressions for conformal blocks can be found in

section 3.2.1.

Conformal blocks are fundamental to conformal field theory because they capture all

nontrivial position dependence of correlation functions. The conformal block decomposi-

tion (1.12) effectively disentangles the theory-dependent information (dimensions and OPE

coefficients) contained in a correlator from the purely kinematic, but very complicated, infor-

mation pertaining to the contributions from conformal descendants. We will see the utility

of this splitting in the next subsection.

The discussion in this introductory chapter has taken place in general dimension d and

we have focused on the global conformal symmetry that exist in any dimension. In two

dimensions, global conformal symmetry is enhanced to Virasoro symmetry and some of

the concepts discussed here become enhanced as well. We relegate discussion of Virasoro

symmetry and Virasoro conformal blocks to later chapters.

1.1.5 The conformal bootstrap

A conformal field theory is defined by the dimensions of its primary operators and their OPE

coefficients, i.e. by the conformal data mentioned above. While the conformal data can be

viewed as the defining parameters of a CFT, those parameters cannot be tuned freely. Indeed

only very special points in parameter space lead to consistent theories. The key constraint

arises from the simple fact that the same correlator admits conformal block decompositions
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in multiple channels.

〈φ4(x4)φ3(x3)φ2(x2)φ1(x1)〉 =
∑
p

C43pC12pW
43;21
p (x4, x3, x2, x1)

〈φ4(x4)φ2(x2)φ3(x3)φ1(x1)〉 =
∑
p

C42pC13pW
42;31
p (x4, x2, x3, x1)

(1.14)

The left hand sides above are equal. Equating the right hand sides leads to the crossing

equation∑
p

C43pC12pW
43;21
p (x4, x3, x2, x1) =

∑
p

C42pC13pW
42;31
p (x4, x2, x3, x1) , (1.15)

an equation that must be satisfied by the conformal data of any consistent theory. It packages

an infinite number of constraints on the conformal data, even for fixed external operators,

since both sides are functions of position.

The conformal bootstrap is an extremely well-studied and fruitful program (see [40] and

references therein) in which one uses the infinite set of crossing equations to identify or

exclude possible conformal field theories. Aside from the obvious AdS/CFT motivation,

the conformal bootstrap is a powerful method for discovering and probing theories beyond

the reach of perturbative quantum field theory. New analytical results from the conformal

bootstrap often arise from new understanding of the analytical properties of conformal blocks,

e.g. [20, 41].

1.2 Generalized Free CFT

In this section we review the conformal field theory structure that underlies perturbative

quantum field theory in the bulk. The special conformal field theories admitting such a

structure are called large-N CFTS, generalized free CFTS, or sometimes holographic CFTS.

The canonical examples of holographic CFTs with perturbative bulk duals are gauge theories

with gauge group SU(N) (or some other classical group) with N � 1 – hence the name large-

N – and we discuss these in section 1.2.1. Gauge symmetry itself is not responsible for the

emergence of perturbative field theory in the bulk. Rather, it is due to the manner in which

the correlation functions organize in powers of 1/N , factorizing into two-point functions at
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leading order and with 1/N corrections entering in a controlled way. In fact one can forget

about specific examples and lay down instead the axioms of a conformal field theory realizing

the desired properties [15, 42]. We review those axioms in section 1.2.2, primarily following

the very thorough and excellent discussion in [5].

1.2.1 Large-N gauge theory

The purpose of this section is to motivate the axioms and nomenclature of generalized free

CFT. Its contents will not be used in what follows and it can be skipped without consequence.

Consider a field X that transforms in the adjoint representation of an SU(N) gauge

theory at large N . That is, X is a traceless N × N Hermitian matrix in color space. Let

the gauge coupling scale with N as g = λ/
√
N with λ, the ‘t Hooft coupling, fixed. We can

form local U(N) singlet operators by taking traces of matrix products of X fields.

Õk(x) = :Tr(X(x)k):, k ≥ 2 (1.16)

In this expression the k operators X at the same position x are normal-ordered as indicated

by the enclosing dots.

At zeroth order in weak coupling (λ→ 0) any correlation function involving the fields Ok
can be computed via Wick contraction, or equivalently by interactionless Feynman diagrams

drawn with propagators for the field X. The propagator 〈Xb
a(x)Xd

c (y)〉 is proportional to

δdaδ
c
b so to keep track of the indices one can draw each X propagator as a pair of lines [43].

Meanwhile, we implement matrix multiplication of the external operators by connecting their

indices in a chain. A Feynman diagram picks up one factor of N for every closed index loop.

It is not hard to see, for example, that 〈ÕkÕk〉 is proportional to Nk.

Away from weak coupling, we must also add gluon propagators, and a graph picks up

two factors of g from the coupling to X each time we do so. The additional propagator –

itself a pair of lines – may also split a single index loop into two, and if so the diagram picks

up a factor of N , but we can never pick up more than one such factor per gluon. The choice

to take N large with λ = g2N fixed means adding more gluons to a diagram increases its

power of λ but never N . Thus, even at finite coupling λ, one can determine the large-N
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X X X X 

Figure 1.3: Example diagram for finding the large-N scaling of a three-point function of

single trace operators 〈O3O3O4〉. Insertions of X are marked. Black double lines originate

from X propagators, while curved blue lines implement the index contractions dictated by

the traces in the external operators. The diagram has four index loops and each contributes a

factor of N . Including the operators’ normalization factors N−3/2, N−3/2, N−2 the net result

is 1/N .

scaling of a diagram without considering internal gluons. It is instructive to work out that

〈ÕjÕkÕ`〉 ∼ N (j+k+`−2)/2 (1.17)

assuming j + k + ` is even and that the largest of j, k, ` is no bigger than the sum of the

other two.

It is standard to normalize operators so that their two-point function has unit coefficient.

Doing so, we define a set of operators Ok = N−k/2Õk. Their two and three-point functions

are

〈OkOk〉 ∼ 1, 〈OjOkO`〉 ∼
1

N
(1.18)
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A very important and useful property of large-N gauge theories is factorization. Cor-

relators of single-trace operators factorize into two-point functions at leading order in N .

Consider, for instance, the four-point function 〈O2O2O3O3〉. It gets an order-one contri-

bution from the disconnected Feynman diagram in which two X propagators from one O2

connect to the other O2 and likewise for the other pair, and all connected diagrams are

suppressed by 1/N . It follows that

〈O2(x)O2(y)O3(z)O3(w)〉 = 〈O2(x)O2(y)〉〈O3(z)O3(w)〉+O(1/N) . (1.19)

Similar statements hold for higher-point functions. If there are more than two of a certain

type of single-trace then one sums over all possible contractions.

The operators Ok are not the only gauge-invariant local operators one can build out of

the field X. There are also “multi-trace” operators consisting of normal-ordered products

of the Ok. Correlators involving these normal-ordered operators are computed with Wick

contractions in the usual way, where one simply avoids contractions between components of

the same normal-ordered operators. One finds, for instance, that

〈OkOj :OkOj:〉 ∼ 1, where :OkOj: (x) = :Tr(X(x)k) Tr(X(x)j): (1.20)

In addition to :OkOj: there is a spectrum of primary operators with conformal dimensions

h = hk + hj + n, h̄ = h̄k + h̄j + n̄, for all n, n̄ ∈ Z≥0 (1.21)

built from normal-ordered products of Ok,Oj with n + n̄ derivatives inserted in specific

combinations so as to build a primary operator.

1.2.2 The axioms of generalized free conformal field theory

A generalized free conformal field theory begins with a collection of operators, the single-

trace operators, with the property that their correlation functions factorize into two-point

functions at zeroth order in 1/N , where N need not be the size of a gauge group; it is

simply a large parameter. For example, the four-point function of two distinct pairs of scalar
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single-trace operators is

〈O1(x1)O2(x2)O1(x3)O2(x4)〉 =
1

x2∆1
13

1

x2∆2
24

+O(1/N) . (1.22)

Three-point functions of single-trace operators are taken to be proportional to 1/N , and

one further assumes that the connected part of an n-point function of single trace operators

is proportional to N2−n. Other variants of this axiom may also be viable.

These axioms lead to incorrect thermodynamics at very high temperatures [5] so a gener-

alized free CFT is not a complete consistent CFT on its own. It should rather be viewed as a

decoupled sector of a larger CFT. We assume, as an axiom, that the dimension of the lightest

new state in the expanded spectrum grows large with N . The additional states are usually

interpreted in AdS/CFT as dual to black hole microstates, a conclusion supported in two

dimensions by degeneracy-counting [26] and by constraining their correlation functions [4].

Because the energy-momentum tensor Tµν has low scaling dimension it must be a single-

trace operator in any generalized free theory. In general, after the stress tensor has been

normalized so that 〈Tµν(x)T µν(0)〉 = 1
|x|2d , its three-point functions with all other operators

are determined up to a single unknown constant
√
CT .

〈φi(∞)Tµν(x)φj(∞)〉 = Iµν(x)
δij∆i√
CT

(1.23)

where Iµν(x) is an unimportant kinematic object. The constant CT , which roughly speaking

measures the number of local degrees of freedom, should be proportional to N2.

1.2.3 Multi-trace operators from the bootstrap

We now endeavor to determine the operator product expansion of two distinct single-trace

scalar primaries O1,O2 in a generalized free CFT, to leading order in 1/N . For definiteness

take all four operators to lie on a two-dimensional plane and place three of them at 0, 1,∞.

The spectrum of operators appearing in the OPE can be read off from the conformal partial

wave expansion

〈O1(∞)O2(1)O2(z, z̄)O1(0)〉 =
∑
p

|C12p|2Wp(z, z̄) (1.24)
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As usual, the sum over p runs over all primaries in the spectrum, and C12p is the coefficient

with which primary p appears in the O1O2 OPE. The conformal partial waves Wp(z, z̄) are

fixed by symmetry. The details of their functional form depend on the spacetime dimension,

but in any dimension they take the general form of a power series

Wp(z, z̄) = zhp−h1−h2 z̄h̄p−h̄1−h̄2

∞∑
k,k̄=0

ak,k̄z
kz̄k̄ (1.25)

where all the coefficients ak,k̄ are nonzero. The chiral dimensions h, h̄ of an operator are

related to its scaling dimension ∆ and spin ` by ∆ = h+ h̄, ` =
∣∣h− h̄∣∣.

Now, in generalized free CFT the four-point function on the left hand side of (1.24) is

the product of two two-point functions, up to 1/N corrections. That is

(1− z)−2h2(1− z̄)−2h̄2 +O(1/N) =
∑
p

|C12p|2Wp(z, z̄) (1.26)

Let us compare the two sides of this equation as power series in z, z̄. Matching at leading

order demands that the sum over p contain, as its lowest-dimension operator, one with

dimensions hp = h1 + h2, h̄p = h̄1 + h̄2 and unit OPE coefficient. Continuing to match the

power series at higher orders in z, z̄, we find that the right hand side contains a spectrum of

operators with dimensions

hp = h1 + h2 + n, h̄p = h̄1 + h̄2 + n̄, for all n, n̄ ∈ Z≥0 (1.27)

all of which must enter into the O1O2 OPE with order-one coefficients. The operators we

have discovered in this way are called double-trace by analogy with large-N gauge theory as

discussed above. A double-trace operator with dimension ∆1 + ∆2 + 2n + ` and spin ` is

often denoted (O1O2)n,`. Similar considerations of crossing symmetry applied to correlators

of multi-trace operators lead one to conclude that the spectrum also contains triple-trace

operators and so on. For correlation functions involving multi-trace operators the Wick

contraction rules of generalized free field theory still apply provided one treats the multi-

trace operators as normal-ordered products of single-traces.
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1.3 AdS and Holography

In this section we attempt a quick review of AdS field theory and holography. For more

detail and better pedagogy the reader is directed to [44,45].

1.3.1 Introducing Anti-de Sitter space and its conformal boundary

The symmetry group of d-dimensional Euclidean CFT is SO(d + 1, 1). Suppose one was

told there exists a duality relating conformal field theory to quantum gravity in a certain

unspecified space. One would naturally look for a space with the same symmetry group.

That space is Euclidean Anti-de Sitter space, AdSd+1, defined as the homogeneous, isotropic

space with negative curvature. Its metric in so-called global coordinates is

ds2 =
1

(cos ρ)2

(
dρ2 + dt2 + (sin ρ)2 dΩ2

)
, 0 ≤ ρ < π/2 (1.28)

where dΩ2 is the metric on the sphere Sd−1.

The surface ρ = π/2 is referred to as the boundary of AdS, though strictly speaking AdS

does not have a boundary2 because that surface is infinitely far from all points in the space.

To give the space an actual boundary one may impose a cutoff at cos ρ = ε for some small

number ε. While this choice of cutoff is quite natural in the coordinates (ρ, t, φ) in which we

have chosen to work, there is no fundamental reason to prefer it over a more general choice

of cutoff surface defined by

f(t, n̂) cos ρ = ε (1.29)

for some function f of the time coordinate t and angular coordinate n̂ ∈ Sd−1.

The induced metric on the cutoff surface is

ds2
B =

f(Ω, t)2

ε2
(
dt2 + dΩ2

)
(1.30)

which for f = 1 we recognize as the metric of a cylinder R× Sd−1 of radius 1/ε. For generic

f the metric is related to that of a cylinder by a conformal transformation, because f simply

2Even more strictly speaking, I mean to say that the closure of AdS does not have a boundary. That
AdS itself does not is trivial by virtue of it being an open set.
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rescales the boundary metric hµν by a local factor and this preserves the angles between

vectors in tangent space (but not necessarily their lengths).

It is standard to strip off the factor of 1/ε2 from the boundary metric to make it inde-

pendent of ε. Afterward, taking the limit ε→ 0 defines the conformal boundary of AdS, so

named because it is defined only up to conformal transformations induced by changing the

choice of cutoff function f .

1.3.2 Quantum fields in AdS and holography

Suppose φ(y) is a mass-m scalar quantum field living in AdS. Correlation functions involving

φ and perhaps other bulk fields can be computed with standard Feynman diagram techniques,

although one must work solely in position space3 because curvature causes Fourier transforms

along different directions not to commute.

The position-space propagator for φ between two points y, y′ in the bulk is a hypergeo-

metric function of the geodesic distance σ between the points,

G(y, y′) = (2 coshσ)−∆
2F1

(
∆
2
, ∆+1

2
; ∆− d−2

2
; sech2 σ

)
. (1.31)

A number of different expressions for this same function exist [44] and can often be useful.

The positive parameter ∆ appearing above is related to the bulk field φ’s mass by

∆(∆− d) = m2 . (1.32)

The long distance limit of the propagator (1.31) is G(y, y′)→ e−∆σ, and it follows that if one

of the fields in a bulk position-space correlation function approaches ρ→ π/2 that function

goes to zero proportional to (cos ρ)∆. By the same token, the operator

O(t, n̂) = lim
ρ→π/2

(cos ρ)−∆φ(ρ, t, n̂) (1.33)

is finite within any bulk correlation function. We interpret (t, n̂) as coordinates on the

cylindrical cutoff surface rescaled to have unit radius. Equivalent to the definition above,

3Or in Mellin space [46].

18



one may state that O(t, n̂) is the bulk field φ evaluated at the point (t, n̂) on the cutoff

surface and multiplied by ε−∆ to make the limit ε → 0 regular. This definition has the

benefit of generalizing naturally to arbitrary cutoff surfaces (1.29) as follows.

O(t, n̂) = ε−∆φ(ρ, n̂, t) with cos ρ = f(n̂, t)−1ε and ε→ 0 . (1.34)

Under a redefinition of the cutoff surface the operator O(t, n̂) transforms as a conformal

scalar field with dimension ∆. For example under a rescaling f → λf it follows from the

fact that φ is proportional to (cos ρ)∆ that

O(t, n̂)→ λ−∆O(t, n̂) (1.35)

as required for a scalar density of dimension ∆. A consequence is that the two-point function

of a boundary operator with dimension ∆ is

〈O(t, n̂)O(t′, n̂′)〉 =
e∆(t+t′)

|etn̂− et′n̂′|2∆ (1.36)

which matches the CFT two point on the cylinder obtained from applying the inverse of the

map shown in figure 1.1 to the plane two-point function (1.3). Likewise conformal symmetry

fixes the three-point function of boundary operators up to an overall constant, essentially

the bulk fields’ three-point coupling in the Lagrangian, up to loop corrections.

More generally, n-point functions of boundary operators 〈O1(x1)...On(xn)〉 transform

exactly like expectation values in conformal field theory. In fact, when bulk interactions are

perturbative – suppressed by a factor 1/N for some large number N – they have precisely

the structure of generalized free CFT, with one single-trace operator for every fundamental

field in the bulk.

As mentioned in section 1.2.2, generalized free CFT is incomplete on its own and must

be viewed as a sector of a larger CFT. At the same time, quantum field theory in the bulk

is incomplete as well and should be viewed as a low-energy approximation to string theory

or perhaps another quantum theory of matter and gravity. The AdS/CFT correspondence

proposes to identify the completions on the two sides.

With one interesting exception, the AdS/CFT correspondence is agnostic about the fields

and interactions governing low-energy physics in the bulk; any choice of bulk Lagrangian can
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be accommodated by some generalized free field theory [15]. The exception is gravity. Every

generalized free CFT has as one of its single trace operators the stress tensor, with spin 2

and dimension d. Any bulk theory arising from AdS/CFT therefore has a fundamental field

with spin 2 and mass zero, i.e. has a graviton. This illustrates a very appealing feature of the

correspondence, that it seems not only to offer a possible quantum description for gravity

but for its own consistency to demand the presence of gravity.

1.3.3 Witten diagrams and conformal blocks

One typically computes n-point functions of boundary operators in AdS using Feynman

diagrams, called Witten diagrams in this context, where there is the additional feature that

propagators may extend to the boundary. Such bulk-boundary propagators are defined by

a limit analogous to (1.33),

Gb∂(y;x) = lim
ρ→π/2

(cos ρ)−∆G(y, (ρ, x)) . (1.37)

That the result of the limit is a nontrivial function of the bulk position y is a feature of the

geometry4 of AdS.

The evaluation of Witten diagrams, especially with loops, is a difficult and interesting

challenge that has received much recent attention [47–51]. These provide a window into per-

turbative quantum gravity in the bulk, to be compared with 1/N corrections to generalized

free conformal field theory. The most efficient way to make such comparisons are in terms

of conformal block expansions of correlators, because these isolate the data of interest, i.e.

scaling dimensions and OPE coefficients, from kinematic data.

An oft-considered Witten diagram is the tree-level exchange diagram with four external

4It is a manifestation of the underappreciated fact that if one varies one of a geodesic’s endpoints the
variation in its length L,

∆L = vµ∆xµ + (gµν − 3
2vµvν)∆xµ∆xν +O((∆x)3), (1.38)

does not vanish for L� |∆x| even when ∆xµ is perpendicular to the tangent vector vµ. This is in contrast
to flat space, where perpendicular translation of a string’s endpoint leads to negligible change in length in
the limit of a long string. Of course, it is the presence of an additional length scale in curved space that
makes the phenomenon possible.
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(a) 

(b) 

Figure 1.4: (a) A Witten diagram representing exchange of a bulk field φ2, left, versus, right,

a conformal block for exchange of the dual operator O2. The two objects are functions of

the same data, and one might expect them to be equal, but they are not. (b) Answering

the question implicitly posed above, the bulk object that computes a conformal block is a

Geodesic Witten diagram, a main subject of this thesis.

Image (a) originally appeared in [5]. It has been reproduced with permission.

points, shown on the left hand side of figure 1.4 (a). The circle in that figure represents

the boundary of AdS, where the four external operators (in this case identical scalars) are

located. Bold lines are bulk-to-boundary propagators and the dotted line is a bulk-to-bulk

propagator. This Witten diagram would contribute to the four-point function 〈O1O1O1O1〉
in a bulk theory with a cubic interaction λφ2

1φ2 in its Lagrangian. Its decomposition into

conformal blocks was undertaken in the very early days of the AdS/CFT correspondence [52].

As perhaps expected, the diagram contains a contribution from the block with exchanged
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operator O2 dual to φ2, i.e. the block on the right hand side of the equation in figure 1.4 (a),

but the equation is spoiled by additional contributions to the left hand side from conformal

blocks associated with exchange of the double-trace operators (O2O2)n,0.

The double-trace contribution can be understood from the fact at an intermediate po-

sition between the two pairs of operators the Witten diagram is associated to two possible

intermediate states: one in which there is only a φ2 particle, and a second in which there

are still (or again) two φ1 particles. This intermediate state is naturally represented by a

double-trace state (OO)n,`, and indeed one with ` = 0 because it must couple to the scalar

field φ2. The parameter n is associated with the energy of relative motion between the

particles. It takes integer values as a consequence of the geometry of AdS [44].

1.4 Holographic conformal blocks and outline of this thesis

The first instance of a holographic interepretation supplied to a conformal block appears

in [22] where it was observed that the Virasoro vacuum block of two light and two heavy

operators is proportional to the length of a geodesic connecting the light operators’ positions

in the background created by the heavy operators.

That observation was greatly expanded in [1] where we developed a systematic picture

for conformal blocks in terms of geodesic segments stretching between points in AdS, work

which appears in Chapter 2. It predates the full discovery of geodesic Witten diagrams, and

the appearance of geodesics in the context of conformal blocks was at the time somewhat

puzzling.

Chapter 3, based on [3], contains the most fundamental results in this thesis. It introduces

geodesic Witten diagrams, figure 1.4 (b), the holographic duals of conformal blocks, and

shows how they can be used to decompose Witten diagrams into their constituent blocks.

In Chapter 4 we return to Virasoro blocks and use geodesic Witten diagram technology to

unify the descriptions of the previous two chapters to give a complete description of Virasoro

blocks in the semiclassical limit, work that was published as [2].

22



CHAPTER 2

Worldline approach to semi-classical conformal blocks

We extend recent results on semi-classical conformal blocks in 2d CFT and their relation

to 3D gravity via the AdS/CFT correspondence. We consider four-point functions with

two heavy and two light external operators, along with the exchange of a light operator.

By explicit computation, we establish precise agreement between these CFT objects and a

simple picture of particle worldlines joined by cubic vertices propagating in asymptotically

AdS3 geometries (conical defects or BTZ black holes). We provide a simple argument that

explains this agreement.

2.1 Introduction

Conformal field theories (CFTs) in two dimensions are specified by a central charge, a list

of primary operators, and their OPE coefficients, this data being subject to the consistency

requirements of modular invariance and crossing symmetry [33,53]. The CFT data appears

directly in the decomposition of correlation functions in terms of conformal blocks, where the

coefficient of each conformal block is given in terms of the OPE coefficients among primary

operators. The conformal blocks correspond to the virtual exchange of a given primary

operator and all of its Virasoro descendants. The conformal blocks are completely fixed

by conformal invariance, although no closed form expression for them is known, except in

special cases. At the same time, efficient recursion relations exist allowing one to compute

the conformal block to any desired order in the conformally invariant cross ratio [54].

While all of this is ancient history, conformal blocks have received renewed attention

recently, both due to their central role in the revival of the conformal bootstrap program [28],
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and also as a useful way to think about how local physics can emerge in the bulk in examples

of AdS/CFT duality [5, 15, 20, 22, 55, 56].1 It is the latter perspective which is closest to

our considerations here. Recent work in this general direction includes the study of time

evolution of entanglement entropy in excited states created by local operators [57–59]; the

issue of universality in 2d conformal field theories [26, 27]; entanglement entropy in higher

spin theories [60] and the emergence of chaos in thermal systems [61].

We are interested in conformal blocks in the semi-classical limit, corresponding to taking

the central charge and operator dimensions to infinity while keeping their ratios fixed. There

is excellent evidence that in this limit the conformal blocks exponentiate [62,63] as e−
c
6
f(
hi
c

;x),

although there exists no proof of this directly from the fundamental definition as a sum over

Virasoro descendants. It is then natural to expect that the function f(hi
c

;x) can be computed

from a saddle point analysis, and indeed several realizations of this are known, as we discuss.

Since conformal blocks are fixed by conformal symmetry, they can be computed in any

theory with this symmetry, provided of course that the desired values of the central charge

and operator dimensions are available. If we have a family of theories with a variable central

charge, where 1/c plays the role of ~, then we can think of taking c → ∞ and computing

f(hi
c

;x) by solving some “classical equations”. An example is provided by Liouville theory,

and this motivates the monodromy approach to the computation of semi-classical confor-

mal blocks [62, 63]. This approach boils down to solving an ordinary differential equation,

ψ′′(z) + T (z)ψ(z) = 0, with prescribed monodromy. The monodromy condition fixes certain

“accessory parameters” in T (z), and these can be used to reconstruct the conformal block

by integration.

Another useful realization is in terms of gravity in AdS3. As was emphasized in the

context of holographic entanglement entropy [64,65], the monodromy approach can be recast

in terms of the problem of finding a solution of Einstein’s equations with specified boundary

behavior. In this context, T (z) is identified as the boundary stress tensor of AdS3 gravity.

The authors of [64,65] were thereby able to derive from first principles the Ryu-Takayanagi

1Most of this work is in the context of d > 2 dimensional CFT, where the conformal group is finite
dimensional, and explicit formulas for the conformal blocks are known [38,39].

24



formula in this context, equating the entanglement entropy with the (regulated) length of a

bulk geodesic.

Especially relevant for our purposes is the illuminating paper [22] which, among other

things, gave an AdS3 bulk interpretation of vacuum conformal blocks for the case in which

two of the external operators are heavy and two are light, in a sense made precise below.

The picture is that the heavy operators set up a classical asymptotically AdS3 geometry

corresponding to a conical defect or BTZ black hole, and the light operators are described

by a geodesic probing this background solution.

Here we extend the results of [22] in several directions. Firstly, we consider the case

of nonvacuum conformal blocks corresponding to an exchanged primary Op, and also allow

for the light operators to have distinct conformal dimensions. The bulk picture is that we

now have three geodesic segments in the background geometry, one segment for each of the

light operators, with the segments meeting at a cubic vertex; see figure 1. The segment

corresponding to the operator Op has one endpoint on the vertex, with the other ending at

the conical defect or BTZ horizon. The resulting formula for the conformal block is more

intricate than the case considered in [22], but is still quite compact. By expanding this result

for small cross ratio, we are able to check against the corresponding result obtained directly

from the CFT recursion relation, and we indeed find agreement. We also verify agreement

with the monodromy approach.

We also provide a simple argument that explains the agreement between the bulk geodesic

approach and the monodromy approach. This is done by thinking about the backreaction

on the metric produced by the configuration of particle geodesics. The relation to the CFT

monodromy approach is especially transparent in the Chern-Simons formulation of AdS3

gravity [66, 67], and this lets us establish that the solution sourced by the geodesics is in

direct correspondence with a solution of the monodromy problem.

The geodesic approximation is only valid to first order in the light operator dimensions,

while the full conformal block of course receives contributions at all orders. In the bulk we

can think about solving Einstein’s equations order by order to compute these corrections.
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∆φ

h′
l

hl

hp

Figure 2.1: Geodesic configuration. The disk represents a slice of a conical defect or BTZ

geometry, as supported by the heavy operator. Light operators are represented by geodesic

segments as shown.

Equivalently, this can be phrased in terms of solving the monodromy problem at higher

orders. We verify that the second order solution indeed yields a result in agreement with

that obtained from the recursion relation.

Before proceeding, we would like to emphasize that a motivation for carrying out the work

presented here is to eventually apply these results to computations that are not entirely

dictated by symmetry. For instance, semi-classical correlation functions computed in the

BTZ geometry display a specific form of information loss [68]. In the present context such

correlation functions arise in a manner in which it is clear what effects have been thrown

out, namely non-vacuum blocks and 1/c corrections, and this might be a useful way to

think about what is needed to restore purity. For a calculation of one loop corrections of

holographic entanglement entropy, see [69].
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2.2 Conformal blocks

In this section we briefly review the definition of conformal blocks in 2D CFT, as well as some

of the methods available to compute them, either in a series expansion or in the semi-classical

limit.

2.2.1 Definitions

We follow the conventions of [33]. The correlation function of four primary operators is

expanded as

〈O1(∞,∞)O2(1, 1)O3(x, x)O4(0, 0)〉 =
∑
p

Cp
34C

p
12F21

34 (p|x)F21

34(p|x) , (2.1)

where O1(∞,∞) = limz1,z1→∞ z
2h1
1 z2h1

1 O1(z1, z1) inside the correlator. The expansion å is

obtained by using the O1O2 and O3O4 OPEs, together with the fact that the OPE coefficients

involving Virasoro descendants are related by conformal symmetry to those of the primaries.

Each term in å corresponds to the virtual exchange of a primary Op together with all of its

Virasoro descendants.

The conformal block F21
34 (p|x) admits a series expansion,

F21
34 (p|x) = xhp−h3−h4F̃21

34 (p|x) , F̃21
34 (p|x) =

∞∑
n=0

[F̃21
34 ]nx

n (2.2)
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with [F̃21
34 ]0 = 1. At the next two orders we have2

[F̃21
34 ]1 =

(hp + h2 − h1)(hp + h3 − h4)

2hp

[F̃21
34 ]2 =

A+ C

B

A = (hp + h2 − h1)(hp + h2 − h1 + 1)
[
(hp + h3 − h4)(hp + h3 − h4 + 1)(4hp +

c

2
)

− 6hp(hp + 2h3 − h4)
]

C = (hp + 2h2 − h1)
[
4hp(2hp + 1)(hp + 2h3 − h4)− 6hp(hp + h3 − h4)(hp + h3 − h4 + 1

]
B = 4hp(2hp + 1)(4hp +

c

2
)− 36h2

p

(2.3)

Higher order terms are readily computed using a convenient recursion relation [54].

2.2.2 Heavy-light correlators, and the semi-classical limit

It will now be convenient to define a rescaled stress tensor and rescaled conformal weights.

If TCFT and h denote the usual stress tensor and conformal weight, we now define T and ε

as

TCFT (z) =
c

6
T (z) , h =

c

6
ε, (2.4)

In terms of which the OPE is

T (z)O(0) =
ε

z2
O(0) +

6

c

1

z
∂O(0) + . . . . (2.5)

The semi-classical limit of the conformal blocks is defined by taking c→∞ at fixed ε, where

ε refers to the external operators O1,2,3,4 as well as the internal primary Op. In this limit

there is good evidence, though no direct proof, that the conformal blocks exponentiate

F̃21
34 (p|x) = e−

c
6
f̃21
34 (εi;x) . (2.6)

This can be verified directly to the first few orders in the x expansion using the recursion

relation obtained in [54] and reviewed in appendix A. It has been verified to high order in [70].

2Note that 6.191 in [33] is incorrect; see the errata.
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We will be interested in the case in which the four-point function involves two operators of

equal dimension εh, with the other two operators having dimensions εl and ε′l. Here the

subscripts stand for “heavy” and “light”, in the sense that we will be consider εl, ε
′
l � 1 so

that we can expand perturbatively in these quantities. Note though that our usage of “light”

is somewhat nonstandard, since this label is often applied to operators whose dimension h

is held fixed as c→∞, which is not the case here.

In particular, the correlator of interest is (suppressing henceforth the dependence on

anti-holomorphic quantities)

〈h|Ol′(1)Ol(x)|h〉 = 〈Oh(∞)Ol′(1)Ol(x)Oh(0)〉 , (2.7)

expanded in the x → 1 OPE channel. As indicated, we can think of this correlator as the

two-point function of light operators in the excited state created by the heavy operators. To

expand in conformal blocks, first use invariance under z → 1− z to write

〈Oh(∞)Ol′(1)Ol(x)Oh(0)〉 = 〈Oh(∞)Oh(1)Ol(1− x)Ol′(0)〉 (2.8)

so that the expansion is

〈h|Ol′(1)Ol(x)|h〉 =
∑
p

Cp
ll′C

p
hhFhhll′ (p|1− x)Fhhll′ (p|1− x) . (2.9)

Suppressing the labels, we then write, in the semi-classical limit,

F(1− x) = (1− x)hp−hl−h
′
lF̃(1− x) = (1− x)

c
6

(εp−εl−ε′l)e−
c
6
f̃(1−x) . (2.10)

As noted above, the recursion relation can be used to compute f̃(x) in a power series,

although the results rapidly get complicated. To simplify we further expand f̃(x) in the light

operator dimensions. More precisely, we replace

εl → δεl , ε′l → δε′l , εp → δεp (2.11)
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and then expand in δ. At linear order in δ we find

f̃δ(x) =
1

2
(ε′l − εl − εp)x

− 1

16

(1− 4εh)(ε
′
l − εl)2

εp
x2 +

[
ε′l − εl

4
− (ε′l + εl)εh

6

]
x2 −

[
εh
12

+
3

16

]
εpx

2

− 1

16

(1− 4εh)(ε
′
l − εl)2

εp
x3 +

[
ε′l − εl

6
− (ε′l + εl)εh

6

]
x3 −

[
εh
12

+
5

48

]
εpx

3

+ . . .

(2.12)

while at quadratic order in δ we have

f̃δ2(x) = − 1

48
(16εh − 3)(ε′l − εl)2x2 +

1

72
(16εh − 3)(ε′l + εl)εpx

2 +
1

144
(16εh − 3)ε2px

2

− 1

48
(16εh − 3)(ε′l − εl)2x3 +

1

72
(16εh − 3)(ε′l + εl)εpx

3 +
1

144
(16εh − 3)ε2px

3

+ . . . .

(2.13)

The expansions continue to higher orders in x and δ.

2.2.3 Monodromy method

A convenient method for computing the semi-classical conformal block is the monodromy

method. This is well reviewed in [22,63], and so we will be brief. We consider the differential

equation

ψ′′(z) + T (z)ψ(z) = 0 (2.14)

with

T (z) =
εh
z2

+
ε′l

(z − 1)2
+

εl
(z − x)2

+
εl + ε′l
z(z − 1)

+
x(1− x)

z(1− z)(z − x)
cx(x) (2.15)

T (z) can be thought of as the stress tensor in the presence of the operators appearing in the

four-point function (2.7). Up to the free parameter cx, its form is fixed by demanding that

it have the correct double poles and asymptotic behavior. Noting that the simple pole term

at z = x is T (z) ∼ cx
z−x , along with the OPE æ, we see that cx is related to the x-derivative

of the conformal block. We can then integrate as

f(1− x) = −
∫
cx(x)dx (2.16)

where F = e−
c
6
f in the semi-classical limit.
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cx(x) is determined by demanding that the two independent solutions of (2.14) undergo

a specific monodromy as we go around a contour that encloses the singularities at z = 1, x,

the monodromy being fixed by the dimension of the primary εp. Specifically, the monodromy

matrix M is required to have eigenvalues

λ± = eiπ(1±
√

1−4εp) . (2.17)

The problem is tractable in perturbation theory, where we can expand in the dimensions

of the light operators, or in 1− x. For the former we write

ψ = ψ(0) + ψ(1) + ψ(2) + . . .

T (z) = T (0) + T (1) + T (2) + . . .
(2.18)

with

T (0) =
εh
z2

T (1) =
ε′l

(z − 1)2
+

εl
(z − x)2

+
εl + ε′l
z(z − 1)

+
x(1− x)

z(1− z)(z − x)
c(1)
x

T (2) =
x(1− x)

z(1− z)(z − x)
c(2)
x

(2.19)

The equations are then

(ψ(0))′′ + T (0)ψ(0) = 0

(ψ(1))′′ + T (0)ψ(1) = −T (1)ψ(0)

(ψ(2))′′ + T (0)ψ(2) = −T (1)ψ(1) − T (2)ψ(0)

(2.20)

The zeroth order solutions are

ψ
(0)
± (z) = z

1±α
2 , α =

√
1− 4εh (2.21)

We then obtain solutions at the next two orders as

ψ
(1)
± (z) =

[
− 1

α

∫ z

dzψ
(0)
− T (1)ψ

(0)
±

]
ψ

(0)
+ (z) +

[
1

α

∫ z

dz
ψ

(0)
+ T (1)ψ

(0)
±

W

]
ψ

(0)
− (z)

ψ
(2)
± (z) =

[
− 1

α

∫ z

ψ
(0)
−
(
T (1)ψ

(1)
± + T (2)ψ

(0)
±
)]
ψ

(0)
+ (z)

+

[
1

α

∫ z

ψ
(0)
+

(
T (1)ψ

(1)
± + T (2)ψ

(0)
±
)]
ψ

(0)
− (z)

(2.22)
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In this form it is easy to read off the monodromy matrix as we encircle z = 1, x. Writing

M = M (0) +M (1) +M (2) + . . . we have M (0) = I and

M
(1)
++ = − 1

α

∮
dzψ

(0)
− T (1)ψ

(0)
+ , M

(1)
+− =

1

α

∮
dzψ

(0)
+ T (1)ψ

(0)
+

M
(1)
−+ = − 1

α

∮
dzψ

(0)
− T (1)ψ

(0)
− , M

(1)
−− =

1

α

∮
dzψ

(0)
+ T (1)ψ

(0)
−

(2.23)

and similarly for M (2). The integrals are easily computed using residues. Now let us give a

few examples.

• First order in ε′l = εl, εp

This case was consired in [22]. Using M
(1)
++ = M

(1)
−− = 0, the equation determining cx is

M
(1)
+−M

(1)
−+ = −4π2ε2p , (2.24)

yielding

cx = −
[

1

x
+
α

x

(
x
α
2 + x−

α
2

x
α
2 − x−α2

)]
εl +

α

x(x
α
2 − x−α2 )

εp (2.25)

This gives (choosing the integration constant so that f̃(0) = 0)

fδ(1− x) =

[
lnx+ 2 ln

(
x−

α
2 − xα2
α

)]
εl − ln

(
x−

α
4 − xα4

4α(x−
α
4 + x

α
4 )

)
εp (2.26)

Using

f̃δ(x) = f(x) + (εp − εl − ε′l) lnx (2.27)

and expanding in x we verify agreement with (2.12).

• First order in ε′l 6= εl, εp

We now allow for two independent light operators. The result turns out to agree precisely

with (3.30), the latter being obtained from a bulk computation.

• Second order in ε′l = εl with εp = 0

In this case we solve M (2) = 0. In general this is quite complicated due to the complexity

of the second order solution ψ(2). To give a very simple illustration, we choose the light

operators as above, and further expand to lowest nontrivial order in 1− x, which gives

c(2)
x =

[
− 2

45
εh +

22

135
ε2h

]
ε2l (1− x)3 + . . . (2.28)
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which yields

f̃δ2(x) = fδ2(x) =

[
− 1

90
εh +

11

270
ε2h

]
ε2l x

4 + . . . (2.29)

This matches the result from the recursion relation (the term one order beyond those given

in (2.13)). It is simple to extend to higher orders in x, if desired.

2.3 Semi-classical conformal blocks from bulk geodesics

In [22] it was observed that the conformal block with ε′l = εl and εp = 0 can be reproduced by

computing the length of a geodesic in an asymptotically AdS3 background. In this section

we show how to extend this to reproduce the conformal block for general values of ε′l, εl, εp,

assuming all are small.

2.3.1 Setup

It is conceptually easiest work in global coordinates corresponding to CFT on the cylinder.

The geometry related to the operator Oh by the state-operator correspondence is

ds2 =
α2

cos2 ρ
(

1

α2
dρ2 − dt2 + sin2 ρdφ2) (2.30)

which is obtained from global AdS3 by t→ αt, φ→ αφ, although in (2.30) we take φ ∼= φ+2π.

Here α is the same quantity as in (2.21). For α2 > 0 (2.30) represents a conical defect with

a singularity at ρ = 0. We define w = φ+ itE, with tE = it.

For α2 < 0 we instead have a BTZ black hole with event horizon at ρ = 0, provided that

we change the identifications to t ∼= t+ 2π. Since we take φ ∼= φ+ 2π, we will mainly restrict

to the α2 > 0 case.

Now consider computing AdS correlation functions of the operators Ol and Ol′ . The light

operators are placed at:

Ol′(w = 0) , Ol(w) . (2.31)

We work on a fixed time slice of the conical defect, so that w = φ. An operator of dimension

(h, h) is dual to a bulk field of mass m = 2
√
h(h− 1). Since we are always assuming
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h ∼ c � 1, this is m = 2h � 1. In this regime, the scalar field is well approximated by

a point particle, and correlation functions can be computed in terms of regulated geodesic

lengths. To compute the conformal block involving the exchanged primary Op we propose the

following simple prescription, which we will subsequently verify in particular cases, and then

justify on general grounds. Working on a fixed t slice, we take the external light operators

to be inserted as in (2.31). Attached to the boundary point w = 0 is a segment of geodesic

corresponding to a particle of mass ml′ = 2hl′ . Similarly, a ml = 2hl geodesic segment is

attached at w. The primary operator is represented by a geodesic segment attached at ρ = 0

in the background (2.30). The three geodesic segments meet at a cubic vertex, located at

some point in the interior of (2.30). The worldline action is, after stripping off a factor of c
6
,

S = ε′lLl′ + εlLl + εpLp (2.32)

where the Ls denote the regulated lengths of the geodesics.3 The location of the cubic vertex

is obtained by minimizing S. This yields a contribution to the correlation function on the

cylinder

G(w) = e−
c
6
S(w) . (2.33)

This is related to the conformal block on the plane by the conformal transformation z = eiw,

F(1− z) = z−hlG(w)
∣∣∣
w=−i ln z

, (2.34)

where the factor of z−hl takes into account the transformation of the operator Ol. In terms

of the functions f and f̃ ,

f(1− z) = εl ln z + S(w)
∣∣
w=−i ln z

f̃(1− z) = εl ln z + (εp − εl − ε′l) ln(1− z) + S(w)
∣∣
w=−i ln z

(2.35)

Each geodesic segment is obtained by extremizing the standard worldline action I =

ε
∫
dλ
√
gµν

dxµ

dλ
dxν

dλ
, where we choose λ to be proper length. Geodesics thus obey

1

cos2 ρ
ρ̇2 +

p2
φ

α2
cot2 ρ = 1 (2.36)

3Note that it is h that appears here rather than m = 2h, since we are computing the chiral half of the
correlator.
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where the conserved momentum conjugate to φ is

pφ = α2 tan2 ρ φ̇ . (2.37)

This gives

cos ρ =
1√

1 + p2
φ/α

2

1

coshλ
(2.38)

The regulated length is defined by imposing a cutoff near the boundary, at cos ρ = Λ−1.

As a simple example, consider the case ε′l = εl with εp � εl. In this regime we can

first work out the geodesic connecting the two boundary points. Attached to this will be a

geodesic connecting the midpoint with ρ = 0. To first order in εp/εl we can neglect the fact

that the latter geodesic will “pull” on the former. A simple computation yields for the εl

geodesic

cos ρ =
sin αw

2

coshλ
. (2.39)

Its regulated length is given by

2Ll = 2λ
∣∣
cos ρ=Λ−1 = 2 ln

(
sin

αw

2

)
+ 2 ln

(
Λ

2

)
. (2.40)

The length of the εp geodesic is

Lp =

∫ cos ρ=sin αw
2

0

dρ

cos ρ
= − ln

(
tan

αw

4

)
. (2.41)

The contribution to the correlator is then

G(w) = e−2hlL1−hpLp =

(
tan αw

4

)hp(
sin αw

2

)2h1
, (2.42)

where we dropped an uninteresting w-independent prefactor.4 After a little bit of algebra,

we then find

f(1− x) =

[
lnx+ 2 ln

(
x−

α
2 − xα2
α

)]
εl − ln

(
x−

α
4 − xα4

4α(x−
α
4 + x

α
4 )

)
εp , (2.43)

in agreement with (2.26). Note that although we assumed εp � εl, since the result is linear

it turns out to agree with (2.26), where no such assumption was made.

4This includes the dependence on the regulator Λ. Here and elsewhere we simply drop such regulator
dependent terms, since they contribute no w-dependence.
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Although we mainly focus on α > 0, the result (2.43) makes sense in the α→ 0 limit. In

this case the bulk metric becomes Poincaré AdS after a coordinate rescaling. The εp geodesic

now disappears down the infinite throat towards the Poincaré horizon.

In the above, the worldines were taken to extremize the action, which implies that the

stress tensor of the particles is covariantly conserved. This is needed in order that the

particles can consistently couple to gravity, a fact that we will need later when we explain

the relation between the geodesic approach and the monodromy approach. In this regard,

we also note that we only need to require that the worldlines extremize the action, and they

need not furnish a global minimum.

2.3.2 Result for general light operators

Working in a fixed-t slice, our goal is to find the minimum value of the worldline action (2.32)

as a function of the angular separation ∆φ of the light operators Ol, Ol′ . We are interested

in the regime where the action is minimized by a configuration in which all three worldlines’

lengths are nonzero. This requires each of the three weights εl, ε
′
l, εp to be less than the sum

of the other two. In the complementary case, where one of the three weights is greater than

or equal to the sum of the other two, it is simple to minimize the action but the relation to

the CFT picture breaks down.

By varying the action with respect to the location of the cubic vertex, one finds that at

the vertex

εlẋ
µ
l + ε′lẋ

µ
l′ + εpẋ

µ
p = 0 (2.44)

where the dots denote derivatives with respect to a proper length parameter that increases

away from the vertex. The problem of computing the minimum value of S is identical to

that of computing the energy in equilibrium of three elastic “rubber bands” whose tensions

are εl, ε
′
l, εp, independent of their lengths. Equation (2.44) is the equilibrium condition of

vanishing net force on the cubic vertex.

36



The angular and radial components of equation (2.44) are

εlpφ + ε′lp
′
φ = 0 (2.45a)

εl

√
1−

p2
φ

α2 tan2 ρ
+ ε′l

√
1−

p′φ
2

α2 tan2 ρ
= εp (2.45b)

where ρ is the radial coordinate of the cubic vertex and

pφ = α2(tan2 ρl)φ̇l (2.46)

is the conserved momentum along worldline l that comes from the metric’s φ-translation

isometry, with p′φ defined similarly.

The sign of each square root in equation (2.45b) is positive if the corresponding worldline

approaches the cubic vertex from radially outward and negative if it approaches from inward.

When |ε2l − ε′2l | < ε2p equations (2.45) can only be true if both square roots are positive,

meaning both worldlines must approach the cubic vertex from the outward direction. On

the other hand when |ε2l − ε′2l | > ε2p equations (2.45) require the worldline corresponding to

the smaller of εl, ε
′
l to approach the vertex from the inward direction.

Equations (2.45) also imply

(pφεl)
2

α2 tan2 ρ
=

(p′φε
′
l)

2

α2 tan2 ρ
= µ2 (2.47)

where µ > 0 is defined by

µ2 =
ε2l + ε′l

2 − ε2p/2
2

− (ε2l − ε′l2)2

4ε2p
. (2.48)

µ2 is positive as a consequence of the assumption that each of the three weights εl, ε
′
l, εp is

less than the sum of the other two.

In light of equation (2.45a) it is useful to characterize the shapes of geodesics l, l′ with a

single parameter rather than the redundant set (pφ, p
′
φ). We define

P :=
εl
αµ

pφ = − ε′l
αµ

p′φ (2.49)

and assume without loss of generality that P ≥ 0. Equation (2.47) implies that P is in fact

the tangent of the ρ coordinate of the cubic vertex.
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When both worldlines approach the vertex from outward, the angular separation ∆φ

between their endpoints is

∆φ =
µ

αεl

∫ ∞
1

du

u
√

1 + (Pu)2
√
u2 − (µ/εl)2

+ (εl → ε′l) . (2.50)

The integration variable u is related to the radial coordinate ρ by u = (tan ρ)/P . When

one of the worldlines approaches the vertex from inward instead, one must add to the right

hand side of equation (2.50) the angle that worldline sweeps out while its radial coordinate

is smaller than that of the cubic vertex. An expression for that angle is

φ(ρ< arctanP ) =
2µ

αεs

∫ 1

µ/εs

du

u
√

1 + (Pu)2
√
u2 − (µ/εs)2

, (2.51)

where εs is the smaller of εl, ε
′
l.

We will need to solve equation (2.50) for P as a function of ∆φ. One can put the equation

in the form

eiα∆φ =

(
cos γ cosψ + i sinψ

cos γ + i sin γ sinψ

)(
cos γ′ cosψ + i sinψ

cos γ′ + i sin γ′ sinψ

)
, (2.52)

where the angles ψ, γ, γ′ are all between 0 and π/2 and are defined by cotψ = P , cos γ = µ/εl,

cos γ′ = µ/ε′l.

We may trade out ψ for a new variable z defined by cosψ = (z + z−1)/2, sinψ =

(z − z−1)/2i. Equation (2.52) is equivalent to

eiα∆φ =

(
z + z cos γ + sin γ

1 + cos γ + z sin γ

)(
z + z cos γ′ + sin γ′

1 + cos γ′ + z sin γ′

)
. (2.53)

This is a quadratic equation for z. It can be rewritten as a quadratic equation for P and

solved to yield

P =
εl + ε′l

2µ
cot θ −

√
ε2p − (εl − ε′l)2 sin2 θ

2µ sin θ
. (2.54)

We have introduced θ := α∆φ/2.

The expression for P in equation (2.54) gives, via equation (2.49), the conserved momenta

pφ, p′φ of worldlines l, l′ in terms of the angular separation ∆φ between their endpoints. In the

case where one worldline approaches the cubic vertex from inward equation (2.54) continues

to hold.
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Now, the variation of the action (2.32) with respect to the locations xµl , xµl′ of the world-

lines’ boundary endpoints is

dS = εlgµν ẋ
µ
l dx

ν
l + ε′lgµν ẋ

µ
l′dx

ν
l′ . (2.55)

Here the dot denotes a derivative with respect to a proper length parameter that decreases

away from the boundary. (In the picture where the worldlines are rubber bands and S is

their energy, the right hand side of equation (2.55) is the work required to move the ends

of the rubber bands.) It follows that the change in the action from a small increase in the

angular separation ∆φ of the wordlines’ endpoints is

dS = αµPd∆φ . (2.56)

The endpoints are at the locations of the light operators, (2.31). Their angular separation

is w, and so
∂S

∂w
= αµP (2.57)

where P is given by equation (2.54), and the variable θ is related to w by θ = αw/2. Equation

(2.57) can be integrated to give

S(w) = (εl + ε′l) ln sin θ + εparctanh
cos θ√

1− β2 sin2 θ
− |β|εp ln

(
|β| cos θ +

√
1− β2 sin2 θ

)
(2.58)

where β := (ε′l − εl)/εp.

Plugging this into (2.35), it yields

f(1− z) = εl ln z + (εl + ε′l) ln sin θ + εparctanh
cos θ√

1− β2 sin2 θ

− |β|εp ln

(
|β| cos θ +

√
1− β2 sin2 θ

) (2.59)

with

cos θ =
zα/2 + z−α/2

2
, sin θ =

zα/2 − z−α/2
2i

. (2.60)

This result can be verified by checking that it agrees with the result from the monodromy

approach, and also by expanding in z and verifying agreement with the result of the recursion

relation. Also, it is straightforward to verify that upon setting ε′l = εl we recover (2.26).
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The results in this section hold for the special case that the endpoints of the εl and

ε′l geodesics lie on a common time slice on the boundary. In appendix B we study the

generalization to unequal times and explain how the correct conformal blocks emerge in this

case as well.

2.4 Relation between geodesic and monodromy approaches

In this section we explain why computing the action for bulk geodesics gives answers for

the semi-classical conformal blocks that agree with those of the monodromy approach. The

argument is very simple. Given a geodesic configuration, we can work out the linearized met-

ric perturbation sourced by the particles. This perturbation gives rise to a boundary stress

tensor that can be identified with T (z) appearing in the monodromy method. The mon-

odromy conditions arise by requiring that Einstein’s equations are obeyed at the geodesics.

Each geodesic segment carries a conserved momentum pφ, which can be identified with the

accessory parameter cx, since it appears as the residue of a simple pole in T (z). Finally,

pφ = dS
dφ

, just as cx is related to the derivative of f . This establishes the relation between

the geodesic action S and the function f appearing in the monodromy method.

We first show how to relate the simple pole in T (z) to pφ. We consider a metric with the

usual Fefferman-Graham expansion near the boundary,

ds2 = dρ2 + e2ρg(0)
µν dx

µdxν + g(2)
µν dx

µdxν + . . . (2.61)

and take g
(0)
µν dxµdxν = dwdw. We also include a particle with worldline action

Sh = 2h

∫
dλ

√
gµν

dxµ

dλ

dxν

dλ
, (2.62)

with λ equal to proper length. We consider the case that the worldline pierces the boundary

at some location w0, and we wish to consider the Einstein equations near this point. Ex-

panding the Einstein equations for large ρ to first order, the only non vanishing equations
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read

g
(2)
ww = 2πhδ(2)(w − w0)

∂wg
(2)
ww − ∂wg(2)

ww = −4πpwδ
(2)(w − w0)

∂wg
(2)
ww − ∂wg(2)

ww = −4πpwδ
(2)(w − w0)

(2.63)

where the (rescaled) mass and canonical momentum are c
6
ε = h and c

6
pµ = 2hdx

µ

dλ
, c being

the usual Brown-Henneaux central charge, c = 3`/2G. Now, the components of g
(2)
µν are just

the boundary stress tensor, g
(2)
µν = Tµν (rescaled as in (2.4)). Thus,

∂wT = −2πε∂wδ
(2)(w − w0) + 4πpwδ

(2)(w − w0)

∂wT = −2πε∂wδ
(2)(w − w0) + 4πpwδ

(2)(w − w0) .
(2.64)

Using ∂w
1
w

= 2πδ(2)(w), and pw =
pφ
2

we find

T (w) =
ε

(w − w0)2
+

pφ
w − w0

+ . . .

T (w) =
ε

(w − w0)2
+

pφ
w − w0

+ . . .
(2.65)

where . . . denote non-singular terms. By the usual relation between canonical momentum

and the variation of the action under a change of boundary conditions we have c
6
pφ = dSh

dφ
.

The relation to the formulas appearing in monodromy approach is now clear: just as cx

appeared as the residue of the simple pole in the stress tensor and was related to derivative

of f , the same is true of pφ, now related to the derivative of the geodesic action.

The final step to demonstrate the equivalence of the two approaches is to to show how

the monodromy conditions arise in the bulk. We first note that the full bulk metric will take

the form

ds2 = dρ2 − Tdw2 − Tdw2 + (e2ρ + TTe−2ρ)dwdw . (2.66)

This is a solution of the source free Einstein’s equations if ∂wT = ∂wT = 0. At the location

of the particle worldlines these equations are corrected, as in (2.64).

We now pass to the Chern-Simons formulation of 2+1 gravity with negative cosmological

constant. This was employed in a closely related context in [60]. The metric is replaced by
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an SL(2) × SL(2) connection,

A =

 1
2
dρ e−ρTdw

−eρdw −1
2
dρ

 , A =

 −1
2
dρ eρdw

−Te−ρdw 1
2
dρ

 . (2.67)

Now consider the holonomy of this connection around a closed contour C, which we take to

lie at fixed ρ. Focussing just on A,

Hol[C] = Pe
∮
A . (2.68)

In the absence of matter the holonomy would be trivial, since Einstein’s equations are equiv-

alent to flatness of the connections. But for a contour that encircles a particle worldline,

the holonomy will pick up a contribution fixed by the mass of the particle. To relate this to

the monodromy approach, we note that computing Hol[C] is equivalent to computing the

monodromy of the system of differential equations

dψ

dw
= Aψ (2.69)

where ψ is a two component vector. The bottom component obeys

ψ′′2 + Tψ2 = 0 , (2.70)

which we recognize as the ODE appearing in (2.14).

We focus on a contour that encircles the two operator insertion points at 0 and w. This

contour encircles the worldline corresponding to the exchanged primary Op. It is then clear

that if T is such that the monodromy of the differential equation (2.70) is related to εp in

the correct way, then the holonomy of the Chern-Simons connection will be such that we

solve the Einstein equations in the presence of the particle worldline.

Summarizing, we see that given a linearized solution of Einstein’s equations in the pres-

ence of particle worldlines we can find a solution of the monodromy problem. Further, the

action of the bulk solution agrees with the function f appearing in the exponent of the

semi-classical conformal block.
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2.5 Discussion and subsequent developments

We have achieved a clean AdS3 bulk interpretation of the semi-classical conformal blocks,

extending the observations in [22]. To linear order in the light operator dimensions, we

simply have to find the equilibrium configuration of three geodesic segments joined at cubic

vertex, propagating in a geometry dual to the heavy operators. We close with a couple of

observations and questions for the future.

It is straightforward in principle to go to higher orders in the light operator dimensions

to reproduce the O(ε2L) correction [71] to the conformal block. From the bulk point of view,

this just corresponds to solving Einstein’s equations order by order in Newton’s constant.

Phrased in the language of the Chern-Simons formulation, the problem consists of finding

locally flat connections with specified holonomies around contours representing the locations

of the worldlines [72]. As at linear order, this is the same problem as in the monodromy

approach.

While our work has focused on four-point conformal blocks, others have subsequently

used geodesic networks to compute higher-point blocks [73–75]. In this case one has more

worldlines attached with additional cubic vertices. Conformal blocks on higher genus Rie-

mann surfaces have also been considered [76,77], as well as conformal blocks with two pairs

of heavy operators [78] which both create conical defects.

We have focused here on the semi-classical conformal block, which is the leading term in

the large c expansion. More generally, we can think of writing

F̃(x) = e−
c
6

(f̃ (0)(x)+ 1
c
f̃ (1)(x)+...) . (2.71)

In terms of the loop expansion in the bulk, we expect that f̃ (1) is given by the effects of

1-loop fluctuations around the classical background. One can use the recursion relation to

compute terms in f̃ (1)(x) [79]. For example, setting ε′l = εl and εp = 0, we find, at linear
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order in δ,

f̃ (1)(x) =
3

16
(4εh − 1)x2 +

3

16
(4εh − 1)x3 +

1

512
(4εh − 1)(4εh + 87)x4

− 3

4
(4εh − 1)εlx

2 − 3

4
(4εh − 1)εlx

3 − 1

14400
(5296ε2h + 37392εh − 9675)εlx

4 + . . .

(2.72)

where the . . . denote terms higher order in εl and in x. It is important to note that to

obtain this we first extract the large c asymptotics for general values of εl, ε
′
l and εp, and

only afterwards set ε′l = εl and εp = 0. The terms in the first line are puzzling, as they are

nonzero even upon setting εl = 0. It will be interesting to understand their physical origin.

Once the bulk interpretation of the full conformal block is established, including the

subleading 1/c effects, we can think of using this information to interpret specific CFT

correlators. It will be interesting to apply this to the black hole context, where the problem

of information loss can be phrassed in terms of such correlators. Very significant progress in

these directions has been made [80–86].

Another interesting direction to consider is the extension to higher spin theories, where

the Virasoro algebra is enhanced to a W-algebra. In [60] it was established that the semi-

classical vacuum block admits a bulk realization in terms of a Wilson line [87–89] embedded

in an asymptotically AdS3 background with higher spin fields excited. A natural question is

how to extend this story beyond the vacuum block.
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APPENDIX

2.A Recursion relation

The series expansion of the conformal block can be computed using the recursion relation

presented in [54]. We first write

F̃34
21 (x) =

(
16q

x

)hp+ 1−c
24

(1− x)
c−1
24
−h2−h3θ3(q)

c−1
2
−4

∑
i hiH(c, hp, hi, q) (2.73)

where H(c, hp, hi, q) is the quantity that will be computed by the recursion relation. q is

related to x by

q = eiπτ , τ = i
K(1− x)

K(x)
, K(x) =

1

2

∫ 1

0

dt

[t(1− t)(1− xt)] 1
2

(2.74)

or equivalently

x =

(
θ2(q)

θ3(q)

)4

(2.75)

This gives

16q = x+
1

2
x2 +

21

64
x3 +

31

128
x4 +

6257

32768
x5 + . . . (2.76)

External conformal dimensions hi are written in terms of λi as

hi =
c− 1

24
+ λ2

i (2.77)

We further define

α± =

√
1− c

24
±
√

25− c
24

λpq = α+p+ α−q

∆mn(c) =
c− 1

24
+

(α+m+ α−n)2

4

(2.78)

The recursion relation is then

H(c, hp, hi, q) = 1 +
∑

m>0,n>0

(16q)mnRmn(c, hi)H(c,∆mn +mn, hi, q)

hp −∆mn(c)
(2.79)

with

Rmn(c, hi) = −1

2

∏
p,q(λ2 + λ1 − λpq

2
)(λ2 − λ1 − λpq

2
)(λ3 + λ4 − λpq

2
)(λ3 − λ4 − λpq

2
)∏′

k,l λkl
(2.80)
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The product in the numerator is taken over p = −m+1,−m+3, . . . ,m−3,m−1; q = −n+

1,−n+3, . . . , n−1. The product in the denominator is taken over k = −m+1,−m+2, . . . ,m;

l = −n+1,−n+2, . . . n, and the prime means that we omit (k, l) = (0, 0) and (k, l) = (m,n).

2.B Extension to operators at different times

Equation (2.35) gives the relation between the value of the worldline action (2.32) and the

corresponding conformal block when the two light operators lie on the same time slice. In

this appendix we argue that the extension of (2.35) to operators at different times is

f(1− z) + f̄(1− z̄)− εl ln zz̄ = 2S(φ, τ) (2.81)

where S(φ, τ) is the worldline action as a function of the location (φ, τ) on the cylinder of

the light operator Ol, with O′l fixed at (φ, τ) = (0, 0). The relation between (φ, τ) and (z, z̄)

is z = eiw, z̄ = eiw̄ with w = φ + iτ , w̄ = φ − iτ . Recall that f is defined in terms of

the holomorphic conformal block F by F = e−
c
6
f . Similarly f̄ is defined in terms of the

antiholomorphic conformal block F̄ by F̄ = e−
c
6
f̄ .

To regularize the worldline action we place the boundary at cos ρ = ε, where the cutoff ε

is independent of φ and τ .

Given that equation (2.35) holds for real w, the two sides of equation (2.81) agree when

τ = 0. Their derivatives with respect to τ agree as well; they both vanish by τ → −τ
symmetry. The left hand side of equation (2.81) is the real part of a holomorphic function of

φ+ iτ and therefore satisfies Laplace’s equation. Thus if S(φ, τ) satisfies Laplace’s equation(
∂2

∂φ2
+

∂2

∂τ 2

)
S(φ, τ) = 0 (2.82)

then equation (2.81) must hold for all values of (φ, τ) for which S(φ, τ) is defined.

We now want to show that S(φ, τ) indeed satisfies (2.82). Let S̃(x, y) be the worldline

action as a function of the location x of operator Ol and the location y in AdS3 of the cubic

vertex. Let x0 be given and let y0 be the y that minimizes S̃(x0, y). Under the displacement
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(x0, y0)→ (x0 + dx, y0 + dy) the action S̃ becomes, to quadratic order in the displacements,

S̃(x0 + dx, y0 + dy) =S(x0)− εlvµdxµ +
1

2
Kµνdy

µdyν

+ εl

(
dxµdxν

(
e−2Llgµν +

1

2
vµvν

)
− 2e−Ll (gµν − vµvν) dxµdyν

)
.

(2.83)

Every tensor on the right hand side lives at the point x0. In particular, dyµ is the parallel

transport of dy to the point x0 and gµν is the metric at x0. vµ is the unit vector pointing

from x0 down the geodesic toward y0, and Ll is the length of that geodesic. Because x0 is on

the boundary e−Ll is proportional to the cutoff, ε. Equation (2.83) is true to zeroth order in

the cutoff.

The term 1
2
Kµνdy

µdyν captures the change in the worldline action from the changes in

lengths of geodesics l′ and p and also the part of the length change of geodesic l that is

independent of dx. The explicit form of K is

Kµν = εl(2gµν − 3vµvν) + ε′l(2gµν − 3v′µv
′
ν) + εp sin ρ0v

p
µv

p
ν (2.84)

where the unit vectors v′, vp point from the cubic vertex down the corresponding geodesics

and have been parallel transported to x0, and ρ0 is the ρ coordinate of the vertex.

Given a particular dx, the function S̃(x0 + dx, y0 + dy) is minimized for some particular

value of dy, call it dy∗, which is the solution to the linear equation

Kµνdy
ν
∗ = 2εle

−Ll (gµν − vµvν) dxν . (2.85)

Substituting for dy∗ in S̃(x0+dx, y0+dy∗) gives the minimized worldline action at x = x0+dx

to second order in dx:

(x0 + dx) =S(x0)− εlvµdxµ + εldx
µdxν

(
e−2Llgµν +

1

2
vµvν

)
− εle−2Lldxµ (gµρ − vµvρ) (K−1)ρσ(gσν − vσvν)dxν

(2.86)

where (K−1)µσKσν = δµν . From equation (2.86) one can read off

∇µ∇νS(x) = εl
(
2e−2Llgµν + vµvν

)
− 2εle

−2Ll (gµρ − vµvρ) (K−1)ρσ(gσν − vσvν). (2.87)
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The point x0 is on the boundary cylinder, and so gµν , vµvν , Kµν are all of order ε−2, in

the sense that their components in the (ρ, φ, τ) coordinate system are of order ε−2. gµν and

(K−1)µν are both of order ε2. Keeping only the most divergent terms in equation (2.87) we

find

∇µ∇νS(x) = εlvµvν +O(ε−1). (2.88)

Finally, we restrict to displacements dx that keep x on the boundary cylinder. Letting nµ

be the unit inward-pointing normal vector at x, the two-dimensional Laplacian of x is

∇2S = (gµν − nµnν)∇µ∇νS(x) = εl
(
1− (n · v)2

)
+O(ε). (2.89)

To lowest order in ε the quantity n · v is unity, and so

∇2S = 0 +O(ε). (2.90)

Thus the regularized worldline action satisfies Laplace’s equation, which concludes the proof

of equation (2.81).
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CHAPTER 3

Geodesic Witten diagrams

We develop a new method for decomposing Witten diagrams into conformal blocks. The steps

involved are elementary, requiring no explicit integration, and operate directly in position

space. Central to this construction is an appealingly simple answer to the question: what

object in AdS computes a conformal block? The answer is a “geodesic Witten diagram,”

which is essentially an ordinary exchange Witten diagram, except that the cubic vertices

are not integrated over all of AdS, but only over bulk geodesics connecting the boundary

operators. In particular, we consider the case of four-point functions of scalar operators, and

show how to easily reproduce existing results for the relevant conformal blocks in arbitrary

dimension.

3.1 Introduction

The conformal block decomposition of correlation functions in conformal field theory is a

powerful way of disentangling the universal information dictated by conformal symmetry

from the “dynamical” information that depends on the particular theory under study; see

e.g. [30–32,38,39,90,91]. The latter is expressed as a list of primary operators and the OPE

coefficients amongst them. The use of conformal blocks in the study of CFT correlation

functions therefore eliminates redundancy, as heavily utilized, for instance, in recent progress

made in the conformal bootstrap program, e.g. [28, 92].

In the AdS/CFT correspondence [8–10], the role of conformal blocks has been somewhat

neglected. The extraction of spectral and OPE data of the dual CFT from a holographic

correlation function, as computed by Witten diagrams [10], was addressed early on in the
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development of the subject [52, 93–99], and has been refined in recent years through the

introduction of Mellin space technology [21, 46, 100–104]. In examining this body of work,

however, one sees that a systematic method of decomposing Witten diagrams into conformal

blocks is missing. A rather natural question appears to have gone unanswered: namely, what

object in AdS computes a conformal block? A geometric bulk description of a conformal block

would greatly aid in the comparison of correlators between AdS and CFT, and presumably

allow for a more efficient implementation of the dual conformal block decomposition, as it

would remove the necessity of actually computing the full Witten diagram explicitly. The

absence of such a simpler method would indicate a surprising failure of our understanding of

AdS/CFT: after all, conformal blocks are determined by conformal symmetry, the matching

of which is literally the most basic element in the holographic dictionary.

In this paper we present an appealingly simple answer to the above question, and demon-

strate its utility via streamlined computations of Witten diagrams. More precisely, we will

answer this question in the case of four-point correlation functions of scalar operators, but

we expect a similar story to hold in general. The answer is that conformal blocks are com-

puted by “geodesic Witten diagrams.” The main feature of a geodesic Witten diagram that

distinguishes it from a standard exchange Witten diagram is that in the former, the bulk

vertices are not integrated over all of AdS, but only over geodesics connecting points on the

boundary hosting the external operators. This representation of conformal blocks in terms

of geodesic Witten diagrams is valid in all spacetime dimensions, and holds for all conformal

blocks that arise in four-point functions of scalar operators belonging to arbitrary CFTs (and

probably more generally).

To be explicit, consider four scalar operators Oi with respective conformal dimensions

∆i. The conformal blocks that appear in their correlators correspond to the exchange of

primaries carrying dimension ∆ and transforming as symmetric traceless tensors of rank `;

we refer to these as spin-` operators. Up to normalization, the conformal partial wave1 in

1Conformal partial waves and conformal blocks are related by simple overall factors as we review below.
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CFTd is given by the following object in AdSd+1:∫
γ12

dλ

∫
γ34

dλ′Gb∂(y(λ), x1)Gb∂(y(λ), x2)×Gbb(y(λ), y(λ′); ∆, `)×Gb∂(y(λ′), x3)Gb∂(y(λ′), x4)

(3.1)

γij denotes the bulk geodesic connecting boundary points xi and xj, with λ and λ′ denoting

the corresponding proper length parameters. Gb∂(y, x) are standard scalar bulk-to-boundary

propagators connecting a bulk point y to a boundary point x. Gbb(y(`), y(`′); ∆, `) is the bulk-

to-bulk propagator for a spin-` field, whose mass squared in AdS units is m2 = ∆(∆−d)−`,
pulled back to the geodesics. The above computes the s-channel partial wave, corresponding

to using the OPE on the pairs of operators O1O2 and O3O4. As noted earlier, the expres-

sion (3.1) looks essentially like an exchange Witten diagram composed of two cubic vertices,

except that the vertices are only integrated over geodesics. See figure 4.2. Note that al-

though geodesics sometimes appear as an approximation used in the case of high dimension

operators, here there is no approximation: the geodesic Witten diagram computes the exact

conformal block for any operator dimension.

As we will show, geodesic Witten diagrams arise very naturally upon dismantling a

full Witten diagram into constituents, and this leads to an efficient implementation of the

conformal block decomposition. Mellin space techniques also provide powerful methods, but

it is useful to have an approach that can be carried out directly in position space, and that

provides an explicit and intuitive picture for the individual conformal blocks.

For the cases that we consider, the conformal blocks are already known, and so one of

our tasks is to demonstrate that (3.1) reproduces these results. One route is by explicit

computation. Here, the most direct comparison to existing results is to the original work of

Ferrara, Gatto, Grillo, and Parisi [30–32], who provided integral representations for confor-

mal blocks. In hindsight, these integral expressions can be recognized as geodesic Witten

diagrams. Later work by Dolan and Osborn [38,39,90] provided closed-form expressions for

some even-d blocks in terms of hypergeometric functions. Dolan and Osborn employed the

very useful fact that conformal partial waves are eigenfunctions of the conformal Casimir

operator. The most efficient way to prove that geodesic Witten diagrams compute conformal
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Figure 3.1: This is a geodesic Witten diagram in AdSd+1, for the exchange of a symmetric

traceless spin-` tensor with m2 = ∆(∆ − d) − ` in AdS units. Its main feature is that the

vertices are integrated over the geodesics connecting the two pairs of boundary points, here

drawn as dashed orange lines. This computes the conformal partial wave for the exchange

of a CFTd primary operator of spin ` and dimension ∆.

partial waves is to establish that they are the correct eigenfunctions. This turns out to be

quite easy using embedding space techniques, as we will discuss.

Having established that geodesic Witten diagrams compute conformal partial waves, we

turn to showing how to decompose a Witten diagram into geodesic Witten diagrams. We

do not attempt an exhaustive demonstration here, mostly focusing on tree-level contact and

exchange diagrams with four external lines. The procedure turns out to be quite economical

and elegant; in particular, we do not need to carry out the technically complicated step

of integrating bulk vertices over AdS. Indeed, the method requires no integration at all, as

all integrals are transmuted into the definition of the conformal partial waves. The steps
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that are required are all elementary. We carry out this decomposition completely explicitly

for scalar contact and exchange diagrams, verifying that we recover known results. These

include certain hallmark features, such as the presence of logarithmic singularities due to

anomalous dimensions of double-trace operators. We also treat the vector exchange diagram,

again recovering the correct structure of CFT exchanges.

Let us briefly mention how the analysis goes. The key step is to use a formula expressing

the product of two bulk-to-boundary propagators sharing a common bulk point as a sum

of bulk solutions sourced on a geodesic connecting the two boundary points. The fields

appearing in the sum turn out to be dual to the double-trace operators appearing in the

OPE of the corresponding external operators, and the coefficients in the sum are closely

related to the OPE coefficients. See equation (3.81). With this result in hand, all that is

needed are a few elementary properties of AdS propagators to arrive at the conformal block

decomposition. This procedure reveals the generalized free field nature of the dual CFT.

The results presented here hopefully lay the foundation for further exploration of the use

of geodesic Witten diagrams. We believe they will prove to be very useful, both conceptually

and computationally, in AdS/CFT and in CFT more generally.

The remainder of this paper is organized as follows. In section 2 we review relevant

aspects of conformal blocks, Witten diagrams, and their relation. Geodesic Witten diagrams

for scalar exchange are introduced in section 3, and we show by direct calculation and via

the conformal Casimir equation that they compute conformal blocks. In section 4 we turn

to the conformal block decomposition of Witten diagrams involving just scalar fields. We

describe in detail how single and double trace operator exchanges arise in this framework.

Section 5 is devoted to generalizing all of this to the case of spinning exchange processes.

We conclude in section 6 with a discussion of some open problems and future prospects.

The ideas developed in this paper originated by thinking about the bulk representation

of Virasoro conformal blocks in AdS3/CFT2, based on recent results in this direction [1, 22,

59, 64, 105, 106]. The extra feature associated with a bulk representation of Virasoro blocks

is that the bulk metric is deformed in a nontrivial way; essentially, the geodesics backreact
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on the geometry. In this paper we focus on global conformal blocks (Virasoro blocks are of

course special to CFT2), deferring the Virasoro case to a companion paper [2].

3.2 Conformal blocks, holographic CFTs and Witten diagrams

Let us first establish some basic facts about four-point correlation functions in conformal field

theories, and their computation in AdSd+1/CFTd. Both subjects are immense, of course; the

reader is referred to [35,107] and references therein for foundational material.

3.2.1 CFT four-point functions and holography

We consider vacuum four-point functions of local scalar operators O(x) living in d Euclidean

dimensions. Conformal invariance constrains these to take the form

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =

(
x2

24

x2
14

) 1
2

∆12
(
x2

14

x2
13

) 1
2

∆34 g(u, v)

(x2
12)

1
2

(∆1+∆2)(x2
34)

1
2

(∆3+∆4)
, (3.2)

where ∆ij ≡ ∆i−∆j and xij ≡ xi−xj. g(u, v) is a function of the two independent conformal

cross-ratios,

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (3.3)

One can also define complex coordinates z, z, which obey

u = zz , v = (1− z)(1− z) . (3.4)

These may be viewed as complex coordinates on a two-plane common to all four operators

after using conformal invariance to fix three positions at 0, 1,∞.

g(u, v) can be decomposed into conformal blocks, G∆,`(u, v), as

g(u, v) =
∑
O

C12O C
O

34G∆,`(u, v) (3.5)

where O is a primary operator of dimension ∆ and spin `.2 Accordingly, the correlator can

2In this paper we only consider scalar correlators, in which only symmetric, traceless tensor exchanges
can appear. More generally, ` would stand for the full set of angular momenta under the d-dimensional little
group.
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be written compactly as a sum of conformal partial waves, W∆,`(xi):

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑
O

C12O C
O

34W∆,`(xi) (3.6)

where

W∆,`(xi) ≡
(
x2

24

x2
14

) 1
2

∆12
(
x2

14

x2
13

) 1
2

∆34 G∆,`(u, v)

(x2
12)

1
2

(∆1+∆2)(x2
34)

1
2

(∆3+∆4)
. (3.7)

Each conformal partial wave is fixed by conformal invariance: it contains the contribution

to the correlator of any conformal family whose highest weight state has quantum numbers

(∆, `), up to overall multiplication by OPE coefficients. It is useful to think of W∆,`(xi) as the

insertion of a projector onto the conformal family of O, normalized by the OPE coefficients:

W∆,`(xi) =
1

C12OCO34

〈O1(x1)O2(x2)P∆,`O3(x3)O4(x4)〉 (3.8)

where

P∆,` ≡
∑
n

|P nO〉〈P nO| (3.9)

and P nO is shorthand for all descendants of O made from n raising operators Pµ. We will

sometimes refer to conformal blocks and conformal partial waves interchangeably, with the

understanding that they differ by the power law prefactor in (3.7).

Conformal blocks admit double power series expansions in u and 1− v, in any spacetime

dimension [38]; for ` = 0, for instance,

G∆,0(u, v) = u∆/2

∞∑
m,n=0

(
∆+∆12

2

)
m

(
∆−∆34

2

)
m

(
∆−∆12

2

)
m+n

(
∆+∆34

2

)
m+n

m!n!
(
∆ + 1− d

2

)
m

(∆)2m+n

um(1− v)n . (3.10)

Higher ` blocks can be obtained from this one by the use of various closed-form recursion

relations [90, 92]. Especially relevant for our purposes are integral representations of the

conformal blocks [30–32]. For ` = 0,

G∆,0(u, v) =
1

2β∆34

u∆/2

∫ 1

0

dσ σ
∆+∆34−2

2 (1− σ)
∆−∆34−2

2 (1− (1− v)σ)
−∆+∆12

2

× 2F1

(
∆ + ∆12

2
,
∆−∆12

2
,∆− d− 2

2
,
uσ(1− σ)

1− (1− v)σ

) (3.11)
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where we have defined a coefficient

β∆34 ≡
Γ
(

∆+∆34

2

)
Γ
(

∆−∆34

2

)
2Γ(∆)

. (3.12)

The blocks can also be expressed as infinite sums over poles in ∆ associated with null states

of SO(d, 2), in analogy with Zamolodchikov’s recursion relations in d = 2 [54, 108, 109];

these provide excellent rational approximations to the blocks that are used in numerical

work. Finally, as we revisit later, in even d the conformal blocks can be written in terms of

hypergeometric functions.

Conformal field theories with weakly coupled AdS duals obey further necessary conditions

on their spectra.3 In addition to having a large number of degrees of freedom, which we will

label4 N2, there must be a finite density of states below any fixed energy as N → ∞;

e.g. [5, 15, 26, 55]. For theories with Einstein-like gravity duals, this set of parametrically

light operators must consist entirely of primaries of spins ` ≤ 2 and their descendants.

The “single-trace” operators populating the gap are generalized free fields: given any

set of such primaries Oi, there necessarily exist “multi-trace” primaries comprised of con-

glomerations of these with some number of derivatives (distributed appropriately to make a

primary). Altogether, the single-trace operators and their multi-trace composites comprise

the full set of primary fields dual to non-black hole states in the bulk. In a four-point func-

tion of Oi, all multi-trace composites necessarily run in the intermediate channel at some

order in 1/N .

Focusing on the double-trace operators, these are schematically of the form

[OiOj]n,` ≈ Oi∂2n∂µ1 . . . ∂µ`Oj . (3.13)

These have spin-` and conformal dimensions

∆(ij)(n, `) = ∆i + ∆j + 2n+ `+ γ(ij)(n, `) , (3.14)

3Finding a set of sufficient conditions for a CFT to have a weakly coupled holographic dual remains an
unsolved problem. More recent work has related holographic behavior to polynomial boundedness of Mellin
amplitudes [110,111], and to the onset of chaos in thermal quantum systems [112].

4We are agnostic about the precise exponent: vector models and 6d CFTs are welcome here. More
generally, we refer to the scaling of CT , the stress tensor two-point function normalization, for instance.
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where γ(ij)(n, `) is an anomalous dimension. The expansion of a correlator in the s-channel

includes the double-trace terms5

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 ⊃
∑
m,`

P (12)(m, `)W∆(12)(m,`),`(xi) +
∑
n,`

P (34)(n, `)W∆(34)(n,`),`(xi)

(3.15)

Following [15,21], we have defined a notation for squared OPE coefficients,

P (ij)(n, `) ≡ C12OC
O

34 , where O = [OiOj]n,` . (3.16)

The 1/N expansion of the OPE data,

P (ij)(n, `) =
∞∑
r=0

N−2rP (ij)
r (n, `) ,

γ(ij)(n, `) =
∞∑
r=1

N−2rγ(ij)
r (n, `) ,

(3.17)

induces a 1/N expansion of the four-point function. Order-by-order in 1/N , the generalized

free fields and their composites must furnish crossing-symmetric correlators. This is precisely

the physical content captured by the loop expansion of Witten diagrams in AdS, to which

we now turn.

3.2.2 A Witten diagrams primer

See [107] for background. We work in Euclidean AdSd+1, with RAdS ≡ 1. In Poincaré

coordinates yµ = {u, xi}, the metric is

ds2 =
du2 + dxidxi

u2
. (3.18)

The ingredients for computing Witten diagrams are the set of bulk vertices, which are read

off from a Lagrangian, and the AdS propagators for the bulk fields. A scalar field of mass

m2 = ∆(∆− d) in AdSd+1 has bulk-to-bulk propagator

Gbb(y, y
′; ∆) = e−∆σ(y,y′)

2F1

(
∆,

d

2
; ∆ + 1− d

2
; e−2σ(y,y′)

)
(3.19)

5Unless otherwise noted, all sums over m,n and ` run from 0 to ∞ henceforth.
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where σ(y, y′) is the geodesic distance between points y, y′. In Poincaré AdS,

σ(y, y′) = log

(
1 +

√
1− ξ2

ξ

)
, ξ =

2uu′

u2 + u′2 + |x− x′|2 . (3.20)

Gbb(y, y
′; ∆) is a normalizable solution of the AdS wave equation with a delta-function

source,6

(∇2 −m2)Gbb(y, y
′; ∆) = −2πd/2Γ(∆− d−2

2
)

Γ(∆)

1√
g
δ(d+1)(y − y′) . (3.21)

The bulk-to-boundary propagator is

Gb∂(y, xi) =

(
u

u2 + |x− xi|2
)∆

. (3.22)

We will introduce higher spin propagators in due course.

A holographic CFT n-point function, which we denote An, receives contributions from all

possible n-point Witten diagrams. The loop-counting parameter isGN ∼ 1/N2. At O(1/N2),

only tree-level diagrams contribute. The simplest such diagrams are contact diagrams, which

integrate over a single n-point vertex. Every local vertex in the bulk Lagrangian gives rise

to a contact diagram: schematically,

L ⊃
n∏
i=1

∂piφ∆i,`i ⇒ A Contact
n (xi) =

∫
y

n∏
i=1

∂piGb∂(y, xi) (3.23)

where Gb∂(y, xi) are bulk-to-boundary propagators for fields with quantum numbers (∆i, `i),

and pi count derivatives. We abbreviate∫
y

≡
∫
dd+1y

√
g(y) . (3.24)

There are also exchange-type diagrams, which involve “virtual” fields propagating between

points in the interior of AdS. The simplest tree-level Witten diagrams are shown in figure

3.2.

We focus henceforth on tree-level four-point functions of scalar fields φi dual to scalar

CFT operators Oi. For a non-derivative interaction φ1φ2φ3φ4, and up to an overall quartic

6We use this normalization for later convenience. Our propagator is 2πd/2Γ(∆− d−2
2 )/Γ(∆) times the

common normalization found in, e.g., equation 6.12 of [107].
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Figure 3.2: Tree-level four-point Witten diagrams for external scalar operators. On the left

is a contact diagram. On the right is an exchange diagram for a symmetric traceless spin-`

tensor field of dual conformal dimension ∆. Here and throughout this work, orange dots

denote vertices integrated over all of AdS.

coupling that we set to one, the contact diagram equals

AContact
4 (xi) = D∆1∆2∆3∆4(xi) =

∫
y

Gb∂(y, x1)Gb∂(y, x2)Gb∂(y, x3)Gb∂(y, x4) . (3.25)

D∆1∆2∆3∆4(xi) is the D-function, which is defined by the above integral. For generic ∆i,

this integral cannot be performed for arbitrary xi. There exists a bevy of identities relating

various D∆1∆2∆3∆4(xi) via permutations of the ∆i, spatial derivatives, and/or shifts in the ∆i

[97,113]. Derivative vertices, which appear in the axio-dilaton sector of type IIB supergravity,

for instance, define D-functions with shifted parameters. When ∆i = 1 for all i,

2x2
13x

2
24

Γ
(
2− d

2

)
πd/2

D1111(xi) =
1

z − z

(
2Li2(z)− 2Li2(z) + log(zz) log

1− z
1− z

)
. (3.26)

This actually defines the D-bar function, D1111(z, z). For various sets of ∆i ∈ Z, combining

(3.26) with efficient use of D-function identities leads to polylogarithmic representations of

contact diagrams.

The other class of tree-level diagrams consists of exchange diagrams. For external scalars,

one can consider exchanges of symmetric, traceless tensor fields of arbitrary spin `. These
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are computed, roughly, as

AExch
4 (xi) =

∫
y

∫
y′
Gb∂(y, x1)Gb∂(y, x2)×Gbb(y, y

′; ∆, `)×Gb∂(y
′, x3)Gb∂(y

′, x4) . (3.27)

Gbb(y, y
′; ∆, `) is shorthand for the bulk-to-bulk propagator for the spin-` field of dimen-

sion ∆, which is really a bitensor [Gbb(y, y
′; ∆)]µ1...µ`; ν1...ν` . We have likewise suppressed all

derivatives acting on the external scalar propagators, whose indices are contracted with those

of [Gbb(y, y
′; ∆)]µ1...µ`; ν1...ν` . Due to the double integral, brute force methods of simplifying

exchange diagrams are quite challenging, even for ` = 0, without employing some form of

asymptotic expansion.

The key fact about these tree-level Witten diagrams relevant for a dual CFT interpre-

tation is as follows. For contact diagrams (3.25), their decomposition into conformal blocks

contains the infinite towers of double-trace operators in (3.15), and only these. This is

true in any channel. For exchange diagrams (3.27), the s-channel decomposition includes a

single-trace contribution from the operator dual to the exchanged bulk field, in addition to

infinite towers of double-trace exchanges (3.15). In the t- and u-channels, only double-trace

exchanges are present. The precise set of double-trace operators that appears is determined

by the spin associated to the bulk vertices.

Higher-loop Witten diagrams are formed similarly, although the degree of difficulty in-

creases rapidly with the loop order. No systematic method has been developed to compute

these.

3.2.2.1 Logarithmic singularities and anomalous dimensions

When the external operator dimensions are non-generic, logarithms can appear in tree-level

Witten diagrams [52, 94, 97]. These signify the presence of perturbatively small anomalous

dimensions, of order 1/N2, for intermediate states appearing in the CFT correlator. Let us

review some basic facts about this.

In general, if any operator of free dimension ∆0 develops an anomalous dimension γ, so

that its full dimension is ∆ = ∆0 + γ, a small-γ expansion of its contribution to correlators

60



yields an infinite series of logs:

G∆0+γ,`(u, v) ≈ u
∆0−`

2

(
1 +

γ

2
log u+ . . .

)
. (3.28)

In the holographic context, the double-trace composites [OiOj]n,` have anomalous dimensions

at O(1/N2). Combining (3.14), (3.15) and (3.17) leads to double-trace contributions to

holographic four-point functions of the form

A4(xi)
∣∣∣
1/N2
⊃
∑
m,`

(
P

(12)
1 (m, `) +

1

2
P

(12)
0 (m, `)γ

(12)
1 (m, `)∂m

)
W∆1+∆2+2m+`,`(xi)

+
∑
n,`

(
P

(34)
1 (n, `) +

1

2
P

(34)
0 (n, `)γ

(34)
1 (n, `)∂n

)
W∆3+∆4+2n+`,`(xi)

(3.29)

where ∂mW∆1+∆2+2m+`,` ∝ log u and likewise for the (34) terms. These logarithmic singu-

larities should therefore be visible in tree-level Witten diagrams. In top-down examples of

AdS/CFT, the supergravity fields are dual to protected operators, so the γ(ij)(n, `) are the

only (perturbative) anomalous dimensions that appear, and hence are responsible for all

logs.

For generic operator dimensions, the double-trace operators do not appear in both the

O1O2 and O3O4 OPEs at O(N0), so P
(ij)
0 (n, `) = 0. On the other hand, when the ∆i are

related by the integrality condition ∆1 + ∆2 −∆3 −∆4 ∈ 2Z, one has P
(ij)
0 (n, `) 6= 0 [52].

3.2.2.2 What has been computed?

In a foundational series of papers [93–97,114–117], methods of direct computation were devel-

oped for scalar four-point functions, in particular for scalar, vector and graviton exchanges.

Much of the focus was on the axio-dilaton sector of type IIB supergravity on AdS5 × S5 in

the context of duality with N = 4 super-Yang Mills (SYM), but the methods were gradually

generalized to arbitrary operator and spacetime dimensions.

This effort largely culminated in [96, 117] and [97]. [96] collected the results from all

channels contributing to axio-dilaton correlators in N = 4 SYM, yielding the full correlator

at O(1/N2). In [117], a more efficient method of computation was developed for exchange

diagrams. It was shown that scalar, vector and graviton exchange diagrams can generically
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be written as infinite sums over contact diagrams for external fields of variable dimensions.

These truncate to finite sums if certain relations among the dimensions are obeyed.7 These

calculations were translated in [97] into CFT data, where it was established that logarith-

mic singularities appear precisely at the order determined by the analysis of the previous

subsection. This laid the foundation for the modern perspective on generalized free fields.

Further analysis of implications of four-point Witten diagrammatics for holographic CFTs

(e.g. crossing symmetry, non-renormalization), and for N = 4 SYM in particular, was per-

formed in [38,113,118–128]. A momentum space-based approach can be found in [129,130].

More recent work has computed Witten diagrams for higher spin exchanges [131, 132].

These works develop the split representation of massive spin-` symmetric traceless tensor

fields, for arbitrary integer `. There is a considerable jump in technical difficulty, but the

results are all consistent with AdS/CFT.

3.2.3 Mellin space

An elegant alternative approach to computing correlators, especially holographic ones, has

been developed in Mellin space [100,133]. The analytic structure of Mellin amplitudes neatly

encodes the CFT data and follows a close analogy with the momentum space representation

of flat space scattering amplitudes. We will not make further use of Mellin space in this paper,

but it should be included in any discussion on Witten diagrams; we only briefly review its

main properties with respect to holographic four-point functions, and further aspects and

details may be found in e.g. [21,46,101–104,134–136].

Given a four-point function as in (3.2), its Mellin representation may be defined by the

integral transform

g(u, v) =

∫ i∞

−i∞
ds dtM(s, t)ut/2v−(s+t)/2Γ

(
∆1 + ∆2 − t

2

)
Γ

(
∆3 + ∆4 − t

2

)
Γ

(
∆34 − s

2

)
Γ

(−∆12 − s
2

)
Γ

(
s+ t

2

)
Γ

(
s+ t+ ∆12 −∆34

2

)
.

(3.30)

7For instance, an s-channel scalar exchange is written as a finite linear combination of D-functions if
∆1 + ∆2 −∆ is a positive even integer [117].
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The integration runs parallel to the imaginary axis and to one side of all poles of the inte-

grand. The Mellin amplitude is M(s, t). Assuming it formally exists, M(s, t) can be defined

for any correlator, holographic [100] or otherwise [137, 138]. M(s, t) is believed to be mero-

morphic in any compact CFT. Written as a sum over poles in t, each pole sits at a fixed twist

τ = ∆− `, capturing the exchange of twist-τ operators in the intermediate channel. Given

rhe exchange of a primary O of twist τO, its descendants of twist τ = τO + 2m contribute a

pole

M(s, t) ⊃ C12OC
O

34

Q`,m(s)

t− τO − 2m
(3.31)

where m = 0, 1, 2, . . .. Q`,m(s) is a certain degree-` (Mack) polynomial that can be found

in [103]. Note that an infinite number of descendants contributes at a given m. n-point

Mellin amplitudes may be likewise defined in terms of n(n−3)/2 parameters, and are known

to factorize onto lower-point amplitudes [104].

Specifying now to holographic correlators at tree-level,8 the convention of including ex-

plicit Gamma functions in (3.30) has particular appeal: their poles encode the double-trace

exchanges of [O1O2]m,` and [O3O4]n,`. Poles in M(s, t) only capture the single-trace ex-

changes, if any, associated with a Witten diagram. In particular, all local AdS interactions

give rise to contact diagrams whose Mellin amplitudes are mere polynomials in the Mellin

variables. In this language, the counting of solutions to crossing symmetry in sparse large N

CFTs performed in [15] becomes manifestly identical on both sides of the duality. Exchange

Witten diagrams have meromorphic Mellin amplitudes that capture the lone single-trace

exchange: they take the form9

M(s, t) = C12OC
O

34

∞∑
m=0

Q`,m(s)

t− τO − 2m
+ Pol(s, t) . (3.32)

8This is the setting that is known to be especially amenable to a Mellin treatment. Like other approaches
to Witten diagrams, the Mellin program has not been systematically extended to loop level (except for
certain classes of diagrams; see Section 3.6). Because higher-trace operators appear at higher orders in 1/N ,
some of the elegance of the tree-level story is likely to disappear. The addition of arbitrary external spin in
a manner which retains the original simplicity has also not been done, although see [101].

9For certain non-generic operator dimensions, the sum over poles actually truncates [46,100]. The precise
mechanism for this is not fully understood from a CFT perspective. We thank Liam Fitzpatrick and Joao
Penedones for discussions on this topic.
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Pol(s, t) stands for a possible polynomial in s, t. The polynomial boundedness is a signature

of local AdS dynamics [103,110]. Anomalous dimensions appear when poles of the integrand

collide to make double poles.

A considerable amount of work has led to a quantitative understanding of the above

picture. These include formulas for extraction of the one-loop OPE coefficients P
(ij)
1 (n, `)

and anomalous dimensions γ
(ij)
1 (n, `) from a given Mellin amplitude (Section 2.3 of [21]); and

the graviton exchange amplitude between pairwise identical operators in arbitrary spacetime

dimension (Section 6 of [131]).

3.2.4 Looking ahead

Having reviewed much of what has been accomplished, let us highlight some of what has

not.

First, we note that no approach to computing holographic correlators has systematically

deconstructed loop diagrams, nor have arbitrary external spins been efficiently incorporated.

Save for some concrete proposals in Section 3.6, we will not address these issues here.

While Mellin space is home to a fruitful approach to studying holographic CFTs in

particular, it comes with a fair amount of technical complication. Nor does it answer the

natural question of how to represent a single conformal block in the bulk. One is, in any

case, left to wonder whether a truly efficient approach exists in position space.

Examining the position space computations reviewed in subsection 3.2.2, one is led to

wonder: where are the conformal blocks? In particular, the extraction of dual CFT spectral

data and OPE coefficients in the many works cited earlier utilized a double OPE expansion.

More recent computations of exchange diagrams [131,132] using the split representation do

make the conformal block decomposition manifest, in a contour integral form [139]: integra-

tion runs over the imaginary axis in the space of complexified conformal dimensions, and

the residues of poles in the integrand contain the OPE data. This is closely related to the

shadow formalism. However, this approach is technically quite involved, does not apply to

contact diagrams, and does not answer the question of what bulk object computes a single
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conformal block.

Let us turn to this latter question now, as a segue to our computations of Witten dia-

grams.

3.3 The holographic dual of a scalar conformal block

What is the holographic dual of a conformal block? This is to say, what is the geometric

representation of a conformal block in AdS? In this section we answer this question for

the case of scalar exchanges between scalar operators, for generic operator and spacetime

dimensions. In Section 3.5, we will tackle higher spin exchanges. At this stage, these

operators need not belong to a holographic CFT, since the form of a conformal block is fixed

solely by symmetry. What follows may seem an inspired guess, but as we show in the next

section, it emerges very naturally as an ingredient in the computation of Witten diagrams.

Let us state the main result. We want to compute the scalar conformal partial wave

W∆,0(xi), defined in (3.7), corresponding to exchange of an operator O of dimension ∆

between two pairs of external operators O1,O2 and O3,O4. Let us think of the external

operators as sitting on the boundary of AdSd+1 at positions x1,2,3,4, respectively. Denote the

geodesic running between two boundary points xi and xj as γij. Now consider the scalar

geodesic Witten diagram, which we denote W∆,0(xi), first introduced in Section 3.1 and

drawn in Figure 4.2:

W∆,0(xi) ≡∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)×Gbb(y(λ), y(λ′); ∆)×Gb∂(y(λ′), x3)Gb∂(y(λ′), x4) ,

(3.33)

where ∫
γ12

≡
∫ ∞
−∞

dλ ,

∫
γ34

≡
∫ ∞
−∞

dλ′ (3.34)

denote integration over proper time coordinates λ and λ′ along the respective geodesics.
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Then W∆,0(xi) is related to the conformal partial wave W∆,0(xi) by

W∆,0(xi) = β∆12β∆34W∆,0(xi) . (3.35)

The proportionality constant β∆34 is defined in equation (3.12) and β∆12 is defined analo-

gously.

The objectW∆,0(xi) looks quite like the expression for a scalar exchange Witten diagram

for the bulk field dual to O. Indeed, the form is identical, except that the bulk vertices

are not integrated over all of AdS, but rather over the geodesics connecting the pairs of

boundary points. This explains our nomenclature. Looking ahead to conformal partial

waves for exchanged operators with spin, it is useful to think of the bulk-to-bulk propagator

in (3.33) as pulled back to the two geodesics.

Equation (3.35) is a rigorous equality. We now prove it in two ways.

3.3.1 Proof by direct computation

Consider the piece of (3.33) that depends on the geodesic γ12, which we denote ϕ12
∆ :

ϕ12
∆ (y(λ′)) ≡

∫
γ12

Gb∂(y(λ), x1)Gb∂(y(λ), x2)Gbb(y(λ), y(λ′); ∆) . (3.36)

In terms of ϕ12
∆ (y(λ′)), the formula for W∆,0 becomes

W∆,0(xi) =

∫
γ34

ϕ12
∆ (y(λ′))Gb∂(y(λ′), x3)Gb∂(y(λ′), x4) . (3.37)

It is useful to think of ϕ12
∆ (y), for general y, as a cubic vertex along γ12 between a

bulk field at y and two boundary fields anchored at x1 and x2. We may then solve for

ϕ12
∆ (y) as a normalizable solution of the Klein-Gordon equation with a source concentrated

on γ12. The symmetries of the problem turn out to specify this function uniquely, up to a

multiplicative constant. We then pull this back to γ34, which reduces W∆,0(xi) to a single

one-dimensional integral along γ34. This integral can then be compared to the well-known

integral representation for G∆,0(u, v) in (3.11), which establishes (3.35).

To make life simpler, we will use conformal symmetry to compute the geodesic Witten
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diagram with operators at the following positions:

W∆,0(u, v) ≡ 1

C12OCO34

〈O1(∞)O2(0)P∆,0O3(1− z)O4(1)〉

= u
−∆3−∆4

2 G∆,0(u, v)

(3.38)

where, as usual, O1(∞) ≡ limx1→∞ x
2∆1
1 O(x1). We implement the above strategy by solving

the wave equation first in global AdS, then moving to Poincaré coordinates and comparing

with CFT. We work with the global AdS metric

ds2 =
1

cos2 ρ
(dρ2 + dt2 + sin2 ρdΩ2

d−1) . (3.39)

The relation between mass and conformal dimension is

m2 = ∆(∆− d) (3.40)

and so the wave equation for ϕ12
∆ (y) away from γ12 is

(
∇2 −∆(∆− d)

)
ϕ12

∆ (y) = 0 , (3.41)

or

(
cos2 ρ∂2

ρ + (d− 1) cot ρ∂ρ + cos2 ρ∂2
t −∆(∆− d)

)
ϕ12

∆ (y) = 0 . (3.42)

At γ12, there is a source. To compute (3.38), we take t1 → −∞, t2 →∞, in which limit the

geodesic becomes a line at ρ = 0, the center of AdS. This simplifies matters because this

source is rotationally symmetric. Its time-dependence is found by evaluating the product of

bulk-to-boundary propagators on a fixed spatial slice,

Gb∂(t, t1)Gb∂(t, t2) ∝ e−∆12t . (3.43)

Therefore, we are looking for a rotationally-symmetric, normalizable solution to the following

radial equation:

(
cos2 ρ∂2

ρ + (d− 1) cot ρ∂ρ + cos2 ρ∆2
12 −∆(∆− d)

)
ϕ12

∆ = 0 . (3.44)
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The full solution, including the time-dependence and with the normalization fixed by equa-

tion (3.36), is

ϕ12
∆ (ρ, t) = β∆12 × e∆1t1−∆2t2

2F1

(∆ + ∆12

2
,
∆−∆12

2
; ∆− d− 2

2
; cos2 ρ

)
cos∆ ρ e−∆12t .

(3.45)

Now we need to transform this to Poincaré coordinates, and pull it back to γ34. The

relation between coordinates is

e−2t = u2 + |x|2 , cos2 ρ =
u2

u2 + |x|2 . (3.46)

Although the field ϕ12
∆ is a scalar, it transforms nontrivially under the map from global to

Poincaré AdS because the bulk-to-boundary propagators in its definition (3.36) transform

as

Gb∂(t1, y) = |x1|∆1Gb∂(y, x1) , Gb∂(t2, y) = |x2|∆2Gb∂(y, x2) . (3.47)

After stripping off the power of x1 needed to define the operator at infinity, the field in

Poincaré coordinates is

ϕ12
∆ (u, xi) = β∆12 × 2F1

(∆ + ∆12

2
,
∆−∆12

2
; ∆− d− 2

2
; cos2 ρ

)
cos∆ ρ e−∆12t (3.48)

where on the right hand side ρ and t are to be viewed as functions of the Poincaré coordinates

u, xi via (3.46).

Now we want to evaluate our Poincaré coordinates on the geodesic γ34. With our choice of

positions in (3.38), γ34 is a geodesic in an AdS3 slice through AdSd+1. Geodesics in Poincaré

AdS3 are semi-circles: for general boundary points z3, z4,

2u2 + (z − z4)(z − z3) + (z − z4)(z − z3) = 0 . (3.49)

In terms of the proper length parameter λ′,

z(λ′) =
z3 + z4

2
+
z3 − z4

2
tanhλ′ ,

z(λ′) =
z3 + z4

2
+
z3 − z4

2
tanhλ′ ,

u(λ′) =
|z3 − z4|
2 coshλ′

.

(3.50)
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Plugging in z3 = 1− z, z3 = 1− z, z4 = z4 = 1 into (3.50) and then (3.46), we find

cos2 ρ
∣∣
γ34

=
1

2 coshλ′
|z|2

e−λ′ + |1− z|2eλ′ ,

e−2t
∣∣
γ34

=
e−λ

′
+ |1− z|2eλ′

2 coshλ′
.

(3.51)

Therefore, the pullback of ϕ12
∆ to γ34 is

ϕ12
∆ (u(λ′), xi(λ′)) = β∆12(2 coshλ′)

−∆12−∆
2 (e−λ

′
+ |1− z|2eλ′)∆12−∆

2 |z|∆

× 2F1

(
∆ + ∆12

2
,
∆−∆12

2
; ∆− d− 2

2
;

1

2 coshλ′
|z|2

e−λ′ + |1− z|2eλ′
)
.

(3.52)

Finally, we need to evaluate Gb∂(y(λ′), 1− z)Gb∂(y(λ′), 1) in (3.37). Plugging (3.50) into

the propagator (3.22), we get

Gb∂(y(λ′), 1− z)Gb∂(y(λ′), 1) =
e∆34λ′

|z|∆3+∆4
. (3.53)

We may now assemble all pieces of (3.37)–(3.38): plugging (3.52) and (3.53) into (3.37)

gives the geodesic Witten diagram. Trading z, z for u, v we find, in the parameterization

(3.38),

W∆,0(u, v) = β∆12 u
∆−∆3−∆4

2

∫ ∞
−∞

dλ′(2 coshλ′)
−∆12−∆

2 (e−λ
′
+ veλ

′
)

∆12−∆
2 e∆34λ′

× 2F1

(
∆ + ∆12

2
,
∆−∆12

2
; ∆− d− 2

2
;

1

2 coshλ′
u

e−λ′ + veλ′

)
.

(3.54)

Defining a new integration variable,

σ =
e2λ′

1 + e2λ′
, (3.55)

we have

W∆,0(u, v) =
β∆12

2
u

∆−∆3−∆4
2

∫ 1

0

dσ σ
∆+∆34−2

2 (1− σ)
∆−∆34−2

2 (1− (1− v)σ)
−∆+∆12

2

× 2F1

(
∆ + ∆12

2
,
∆−∆12

2
; ∆− d− 2

2
;
uσ(1− σ)

1− (1− v)σ

)
.

(3.56)

Comparing (3.56) to the integral representation (3.11), one recovers (3.35) evaluated at the

appropriate values of x1, ..., x4. Validity of the relation (3.35) for general operator positions

is then assured by the identical conformal transformation properties of the two sides.
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3.3.2 Proof by conformal Casimir equation

In the previous section we evaluated a geodesic Witten diagramW∆,0 and matched the result

to a known integral expression for the corresponding conformal partial wave W∆,0, thereby

showing that W∆,0 = W∆,0 up to a multiplicative constant. In this section we give a direct

argument for the equivalence, starting from the definition of conformal partial waves.

Section 3.3.2.1 reviews the definition of conformal partial waves W∆,` as eigenfunctions of

the conformal Casimir operator. We prove this definition to be satisfied by geodesic Witten

diagrams W∆,0 in section 3.3.2.3, after a small detour (section 3.3.2.2) to define the basic

embedding space language used in the proof.

The arguments of the present section are generalized in section 3.5.5 to show thatW∆,` =

W∆,` (again, up to a factor) for arbitrary exchanged spin `.

3.3.2.1 The Casimir equation

The generators of the d-dimensional conformal group SO(d + 1, 1) can be taken to be the

Lorentz generators LAB of d + 2 dimensional Minkowski space (with LAB antisymmetric in

A and B as usual). The quadratic combination L2 ≡ 1
2
LABL

AB is a Casimir of the algebra,

i.e. it commutes with all the generators LAB. As a result, L2 takes a constant value on

any irreducible representation of the conformal group, which means all states |P nO〉 in the

conformal family of a primary state |O〉 are eigenstates of L2 with the same eigenvalue. The

eigenvalue depends on the dimension ∆ and spin ` of |O〉, and can be shown to be [38]

C2(∆, `) = −∆(∆− d)− `(`+ d− 2) . (3.57)

The SO(d+ 1, 1) generators are represented on conformal fields by

[LAB,O1(x1)] = L1
ABO(x1) , (3.58)

where L1
AB is a differential operator built out of the position x1 of O1 and derivatives with

respect to that position. The form of the L1
AB depends on the conformal quantum numbers

of O1. Equation (3.58) together with conformal invariance of the vacuum imply the following
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identity, which holds for any state |α〉:

(L1
AB + L2

AB)2〈0|O1(x1)O2(x2)|α〉 = 〈0|O1(x1)O2(x2)L2|α〉 . (3.59)

Consistent with the notation for L2, we have defined

(L1
AB + L2

AB)2 ≡ 1
2
(L1

AB + L2
AB)(L1AB + L2AB) . (3.60)

As discussed in section 3.2.1, one obtains a conformal partial wave W∆,` by inserting into

a four-point function the projection operator P∆,` onto the conformal family of a primary O
with quantum numbers ∆, `:

W∆,`(xi) =
1

C12OCO34

∑
n

〈0|O1(x1)O2(x2)|P nO〉〈P nO|O3(x3)O4(x4)|0〉 . (3.61)

Applying the identity (3.59) to the equation above and recalling that each state |P nO〉 is an

eigenstate of L2 with the same eigenvalue C2(∆, `), we arrive at the Casimir equation

(L1
AB + L2

AB)2W∆,`(xi) = C2(∆, `)W∆,`(xi) . (3.62)

One can take this second-order differential equation, plus the corresponding one with 1, 2↔
3, 4, supplemented with appropriate boundary conditions, as one’s definition of W∆,` [140].

Regarding boundary conditions, it is sufficient to require that W∆,` have the correct leading

behavior in the x2 → x1 and x4 → x3 limits. The correct behavior in both limits is dictated

by the fact that the contribution to W∆,` of the primary O dominates that of its descendants

since those enter the OPE with higher powers of x12 and x34.

We will prove that geodesic Witten diagrams W∆,0 are indeed proportional to conformal

partial waves W∆,0 by showing that W∆,0 satisfies the Casimir equation (3.62) and has the

correct behavior in the x2 → x1 and x4 → x3 limits. The proof is very transparent in the

embedding space formalism, which we proceed now to introduce.

3.3.2.2 Embedding space

The embedding space formalism has been reviewed in e.g. [35,131,140]. The idea is to embed

the d-dimensional CFT and the d + 1 dimensional AdS on which lives the geodesic Witten
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diagram both into d + 2 dimensional Minkowski space. We give this embedding space the

metric

ds2 = −(dY −1)2 + (dY 0)2 +
d∑
i=1

(dY i)2 . (3.63)

The CFT will live on the projective null cone of embedding space, which is the Lorentz-

invariant d-dimensional space defined as the set of nonzero null vectors X with scalar mul-

tiples identified: X ≡ aX. We will use null vectors X to represent points in the projective

null cone with the understanding that X and aX signify the same point. The plane Rd can

be mapped into the projective null cone via

X+(x) = a|x|2, X−(x) = a, X i(x) = axi (3.64)

where we have introduced light cone coordinates X± = X−1 ±X0. Of course, any nonzero

choice of the parameter a defines the same map.

Conformal transformations on the plane are implemented by Lorentz transformations in

embedding space. As a specific example, we may consider a boost in the 0 direction with

rapidity λ. This leaves the X i coordinates unchanged, and transforms X± according to

X+ → eλX+, X− → e−λX− . (3.65)

A point X(x) = (|x|2, 1, xi) gets mapped to (eλ|x2|, e−λ, xi) which is projectively equivalent

to X(eλxi). Thus boosts in the 0 direction of embedding space induce dilatations in the

plane.

Any field Ô on the null cone defines a field O on the plane via restriction: O(x) ≡
Ô(X(x)). Since Ô is a scalar field in embedding space, the SO(d+ 1, 1) generators act on it

as

[LAB, Ô(X)] = (XA∂B −XB∂A)Ô(X) . (3.66)

The induced transformation law for O is the correct one for a primary of dimension ∆ if and

only if Ô satisfies the homogeneity condition

Ô(aX) = a−∆Ô(X) . (3.67)
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Thus in the embedding space formalism a primary scalar field O(x) of dimension ∆ is

represented by a field Ô(X) satisfying (3.67). Below, we drop the hats on embedding space

fields. It should be clear from a field’s argument whether it lives on the null cone (as O(X))

or on the plane (as O(x)). Capital letters will always denote points in embedding space.

Meanwhile, AdSd+1 admits an embedding into d+2 dimensional Minkowski space, as the

hyperboloid Y 2 = −1. Poincare coordinates (u, xi) can be defined on AdS via

Y + =
u2 + |x|2

u
, Y − =

1

u
, Y i =

xi

u
. (3.68)

The induced metric for these coordinates is the standard one, (3.18).

The AdS hyperboloid sits inside the null cone and asymptotes toward it. As one takes

u→ 0, the image of a point (u, xi) in AdS approaches (Y +, Y −, Y i) = u−1(|x2|, 1, xi) which

is projectively equivalent to X(xi). In this way, the image on the projective null cone of the

point xi ∈ Rd marks the limit u→ 0 of the embedding space image of a bulk point (u, xi).

Isometries of AdS are implemented by embedding space Lorentz transformations, and so

are generated by

LAB = YA∂B − YB∂A . (3.69)

The Casimir operator L2 = 1
2
(YA∂B − YB∂A)(Y A∂B − Y B∂A) is interior to the AdS slice

Y · Y = −1. That is, for Y belonging to the AdS slice, L2f(Y ) depends only on the values

of f on the slice. In fact, applied to scalar functions on AdS the operator L2 is simply the

negative of the Laplacian of AdS:

L2f(Y ) = −∇2
Y f(Y ) (3.70)

as long as Y is on the AdS slice. This fact, which is not surprising given that L2 is a second-

order differential operator invariant under all the isometries of AdS, can be checked directly

from (3.69).

3.3.2.3 Geodesic Witten diagrams satisfy the Casimir equation

The geodesic Witten diagram W∆,0(xi) lifts to a function W∆,0(Xi) on the null cone of em-

bedding space via a lift of each of the four bulk-to-boundary propagators with the appropriate
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homogeneity condition

Gb∂(y, aXi) = a−∆iGb∂(y,Xi), i = 1, 2, 3, 4 . (3.71)

The geodesics in AdS connecting the boundary points X1 to X2 and X3 to X4 lift to curves

in embedding space which can be parameterized by

Y (λ) =
e−λX1 + eλX2√−2X1 ·X2

Y (λ′) =
e−λ

′
X3 + eλ

′
X4√−2X3 ·X4

(3.72)

The geodesic Witten diagram is

W∆,0(Xi) =

∫
γ34

F (X1, X2, Y (λ′); ∆)Gb∂(Y (λ′), X3)Gb∂(Y (λ′), X4) (3.73)

where we have isolated the part that depends on X1, X2:10

F (X1, X2, Y
′; ∆) =

∫
γ12

Gb∂(Y (λ), X1)Gb∂(Y (λ), X2)Gbb(Y (λ), Y ′; ∆) . (3.74)

F (X1, X2, Y
′; ∆) is the lift to embedding space of ϕ12

∆ (y) defined in (3.36). The bulk argu-

ments of the bulk-to-boundary propagators have been promoted from points y in the bulk to

points Y in embedding space. Although the propagators are defined only on the AdS slice,

there is no ambiguity because Y (λ) and Y ′(λ′) always lie in the AdS slice.

The function F (X1, X2, Y
′; ∆) is manifestly invariant under simultaneous SO(d + 1, 1)

rotations of X1, X2, Y
′, and therefore it is annihilated by (L1 + L2 + LY

′
)AB. This means

(L1
AB + L2

AB)F (X1, X2, Y
′; ∆) = −LY ′ABF (X1, X2, Y

′; ∆) (3.75)

and so (since of course L1
AB commutes with LY

′
AB)

(L1
AB + L2

AB)2F (X1, X2, Y
′; ∆) = (LY

′
)2F (X1, X2, Y

′; ∆) . (3.76)

Recall that (LY
′
)2 is−∇2

Y ′ . The function F (X1, X2, Y
′; ∆), which depends on Y ′ via the bulk-

to-bulk propagator Gbb(Y (λ), Y ′; ∆), is an eigenfunction of −∇2
Y ′ with eigenvalue −∆(∆−d).

10The fact that the bulk-to-bulk propagator satisfies the Laplace equation was used to similar effect in [117].
In particular, [117] defines a quantity A(y′, x1, x2) that is similar to F (X1, X2, Y

′; ∆), except that the vertex
is integrated over all of AdS instead of along a geodesic.
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Thus we conclude that F (X1, X2, Y
′; ∆) is an eigenfunction of (L1

AB +L2
AB)2 with eigenvalue

C2(∆, 0), and therefore that

(L1
AB + L2

AB)2W∆,0(Xi) = C2(∆, 0)W∆,0(Xi) . (3.77)

Note that agreement does not hinge on what the actual eigenvalue is: it is guaranteed by

the fact that the bulk-to-bulk propagator and the conformal partial wave furnish the same

highest weight representation of SO(d+ 1, 1).

Furthermore, the behavior in the limit x2 → x1 of the bulk-to-boundary and bulk-to-

bulk propagators guarantees the geodesic Witten diagram to have the power-law behavior

W∆,0(xi)→ (constant)×|x12|∆−∆1−∆2 in that limit, and similarly in the x4 → x3 limit. This

proves W∆,0 is equal to the conformal partial wave W∆,0 up to a constant factor.

Looking back at the proof, we can see why the bilocal function integrated between the

geodesics had to be precisely the bulk-to-bulk propagator Gbb(y, y
′; ∆). To get (3.77) we

needed that function to be the appropriate eigenfunction of the Laplacian, and to get the

correct limiting behavior we needed it to be the eigenfunction with normalizable boundary

conditions at infinity. It also crucial that the vertices be integrated over geodesics rather

than arbitrary curves or over all of AdS. A non-geodesic curve would introduce extra data

to specify the curve, which would not be conformally invariant. Integrating the vertices over

all of AdS (which would give the full Witten diagram) allows y and y′ to collide, but the

bulk-to-bulk propagator acted on by the wave operator picks up a source contribution when

y = y′, hence the diagram would not be an eigenfunction of the Casimir operator in this

case; indeed we know that it is a sum of eigenfunctions with different eigenvalues.

3.3.3 Comments

We close this section with a few comments.
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3.3.3.1 Geodesic versus ordinary Witten diagrams

A natural question is why, intuitively, a relation like (3.35) is true. Let us offer two motiva-

tional remarks.

The first is that there are two ways to integrate a bulk point while preserving conformal

invariance. One is over all of AdS, which defines a Witten diagram, while the other is over

a geodesic. The latter is clearly over a smaller range, which makes it seem at least plausible

that it represents a conformal partial wave rather than a full correlator. Indeed, the only

obvious conformally invariant objects that appear in four-point functions are the correlator

itself, and the conformal partial waves.

The second is a heuristic “derivation” starting from the exchange Witten diagram, A Exch
4 .

Consider taking the following limit of heavy external operators,

∆1,2,3,4 →∞ , ∆12,∆34 fixed . (3.78)

As reviewed in Section 3.2 and computed in the next section, the full diagram equals a

single trace exchange of O, plus infinite towers of double trace exchanges of [O1O2]m,0 and

[O3O4]n,0. On the CFT side, the double-trace exchanges are exponentially smaller in this

limit than that of the single-trace exchange, simply because the conformal partial waves

decay exponentially as the internal operator dimension tends to infinity. So the Witten

diagram reduces to the single-trace block in the limit. On the bulk side, the heavy limit

restricts the cubic vertices to lie on geodesics, so AExch
4 reduces toW∆,0, the geodesic Witten

diagram. This establishes equality between W∆,0 and W∆,0 in the limit (3.78). To complete

the argument we need to use the fact that the conformal block G∆,0 only depends on ∆i

through ∆12 and ∆34, as can be seen from the recursion relations in [90]. Furthermore,

G∆,0 and W∆,0 only differ by a prefactor which has exponents linear in ∆i (a form which

is invariant as ∆i → ∞); see (3.7). Using these two facts, it follows that if W∆,0 and W∆,0

agree in the regime (3.78), then they agree for all values of ∆i and ∆.

Note that the geodesic restriction ensures that a cut down the middle of the diagram

crosses only the internal line, representing the CFT primary; contrast this with the exchange
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Witten diagram, where integration over all of AdS ensures that the cut will sometimes cross

two external lines, representing the (infinite towers of) double-trace operators.

3.3.3.2 Simplification of propagators and blocks

In even d, CFTd scalar conformal blocks can be resummed into hypergeometric functions.

An apparently unrelated simplification occurs for AdSd+1 scalar bulk-to-bulk propagators,

which are rational functions of S ≡ e−2σ(y,y′) rather than hypergeometric. From (3.19), the

even d propagators are, at low d,

d = 2 : Gbb(y, y
′; ∆) = S∆/2 1

1− S
d = 4 : Gbb(y, y

′; ∆) = S∆/2 (3−∆)S + (∆− 1)

(∆− 1)(1− S)3

d = 6 : Gbb(y, y
′; ∆) = S∆/2 (5−∆)(∆− 4)S2 + 2(∆− 5)(∆− 1)S − (∆− 2)(∆− 1)

(∆− 2)(∆− 1)(S − 1)5
.

(3.79)

The geodesic representation of the scalar conformal blocks reveals that these simplifications

have a common origin. Conversely, the lack of simplification of the propagator in odd d

gives a new perspective on why generic odd d conformal blocks cannot be reduced to special

functions.

3.3.3.3 Relation to Mellin space

It is worth noting that the spin-` conformal block has a Mellin representation with exponen-

tial dependence on the Mellin parameter: up to normalization [102],

G∆,`(s, t) = eπi(
d
2
−∆)

(
eπi(t+∆−d) − 1

) Γ
(

∆−`−t
2

)
Γ
(

2d−∆−`−t
2

)
Γ
(

∆1+∆2−t
2

)
Γ
(

∆3+∆4−t
2

)P∆,`(s, t) (3.80)

where P∆,`(s, t) is a degree-` Mack polynomial. (In the scalar case, ` = 0.) It has been

argued that for holographic CFTs with a gap, the Mellin amplitudes for their correlators

are polynomially bounded at large s, t. It is interesting that despite its exponential growth

at large t, the Mellin representation of a conformal block does have a semiclassical AdS

description.

77



In [110], it was argued that starting with (3.80), one recovers the Mellin amplitude for the

full spin-` exchange Witten diagram by writing it as a sum over its poles and dropping all

other contributions.11 Evidently, this is the Mellin transform, so to speak, of the liberation

of bulk vertices from the geodesics to all of AdS.

3.4 The conformal block decomposition of scalar Witten diagrams

We begin our treatment with the technically simplest case: tree-level four-point functions

in AdS involving only scalar fields. All of the key steps will be visible in the decomposition

of the four-point contact diagram, out of which the geometric representation of the scalar

conformal block will naturally emerge. We then move on to the exchange diagram and, in

the next section, to fields with spin.

3.4.1 An AdS propagator identity

The main technical tool that we will employ is an identity obeyed by AdS bulk-to-boundary

propagators. Consider two scalar fields dual to gauge-invariant scalar operators O1,O2 of

conformal dimensions ∆1,∆2, respectively. Now consider a product of their bulk-to-boundary

propagators, from points x1 and x2 on the boundary to the same point y in the bulk. Then

the following identity holds:

Gb∂(y, x1)Gb∂(y, x2) =
∞∑
m=0

a12
m ϕ12

∆m
(y) (3.81)

where ϕ12
∆m

(y) is the field solution defined in (3.36). The bulk-to-bulk propagatorGbb(y(λ), y; ∆m),

running from the geodesic to the original bulk point y, is for a scalar field with mass

m2
m = ∆m(∆m − d), where

∆m = ∆1 + ∆2 + 2m . (3.82)

11This is true up to polynomial contributions from contact diagrams.
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Figure 3.3: The identity (3.81) obeyed by AdS scalar propagators. The internal line repre-

sents bulk-to-bulk propagator for a scalar field of mass m2 = ∆m(∆m − d). a12
m and ∆m are

defined in (3.82) and (3.83), respectively.

The a12
m are coefficient functions of ∆1,∆2 and d:

a12
m =

1

β∆m12

(−1)m

m!

(∆1)m(∆2)m(
∆1 + ∆2 +m− d

2

)
m

. (3.83)

This identity is depicted in Figure 3.3.

In words, the original bilinear is equal to an infinite sum of three-point vertices integrated

over the geodesic γ12, for fields of varying masses m2
m = ∆m(∆m − d). To prove this, we

work in global AdS with t1 → −∞, t2 → +∞, whereupon γ12 becomes a worldline at ρ = 0.

We already solved for ϕ12
∆m

(y) in (3.45). Plugging that solution into (3.81), we must solve

(cos ρ)∆1+∆2 =
∞∑
m=0

a12
mβ∆m12(cos ρ)∆m

2F1

(
∆m + ∆12

2
,
∆m −∆12

2
; ∆m −

d− 2

2
; cos2 ρ

)
.

(3.84)

Expanding as a power series in cos2 ρ, the unique solution is given by ∆m in (3.82) and a12
m

in (3.83).

The identity (3.81) is suggestive of a bulk operator product expansion, where the prop-

agation of two boundary fields to the same bulk point is replaced by an infinite sum over

field solutions. Note that the dimensions ∆m are those of the scalar double-trace operators

[O1O2]m,0 at leading order in 1/N . As we now show, this fact ensures that the decomposition
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of a given Witten diagram involving Gb∂(y, x1)Gb∂(y, x2) includes the exchange of [O1O2]m,0,

consistent with the generalized free field content of the dual CFT.

3.4.2 Four-point contact diagram

We want to compute the four-point scalar contact diagram (3.25), for all operator dimensions

∆i generic. We reproduce the integral here:

D∆1∆2∆3∆4(xi) =

∫
y

Gb∂(y, x1)Gb∂(y, x2)Gb∂(y, x3)Gb∂(y, x4) . (3.85)

A helpful pictorial representation of the following calculation is given in Figure 3.4.

Using our geodesic toolkit, the evaluation of this diagram is essentially trivial. First, we

use the identity (3.81) on the pairs (12) and (34). This yields

D∆1∆2∆3∆4(xi) =
∑
m,n

a12
ma

34
n

∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)

×
∫
y

Gbb(y(λ), y; ∆m)Gbb(y, y(λ′); ∆n)

×Gb∂(y(λ′), x3)Gb∂(y(λ′), x4) .

(3.86)

Next, we use

Gbb(y, y
′; ∆) =

〈
y
∣∣∣ 1

∇2 −m2

∣∣∣y′〉 (3.87)

to represent the product of bulk-to-bulk propagators integrated over the common bulk point

y as∫
y

Gbb(y(λ), y; ∆m)Gbb(y, y(λ′); ∆n) =
Gbb(y(λ), y(λ′); ∆m)−Gbb(y(λ), y(λ′); ∆n)

m2
m −m2

n

(3.88)

where we used completeness,
∫
y
|y〉〈y| = 1. The integrated product is thus replaced by a

difference of unintegrated propagators from γ12 to γ34. This leaves us with

D∆1∆2∆3∆4(xi) =
∑
m,n

a12
ma

34
n

m2
m −m2

n

×(∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)×Gbb(y(λ), y(λ′); ∆m)× Gb∂(y(λ′), x3)Gb∂(y(λ′), x4)

−
∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)×Gbb(y(λ), y(λ′); ∆n)× Gb∂(y(λ′), x3)Gb∂(y(λ′), x4)

)
.

(3.89)
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Figure 3.4: The decomposition of a four-point scalar contact diagram into conformal partial

waves disguised as geodesic Witten diagrams. Passage to the second line uses (3.86), and

passage to the last line uses (3.88). The last line captures the infinite set of CFT exchanges

of the double-trace operators [O1O2]m,0 and [O3O4]n,0. We have suppressed OPE coefficients;

the exact result is in equation (3.90).
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But from (3.33), we now recognize the last two lines as conformal partial waves! Thus, we

have

D∆1∆2∆3∆4(xi) =
∑
m,n

a12
ma

34
n

m2
m −m2

n

(W∆m,0(xi)−W∆n,0(xi)) . (3.90)

This is the final result. In the CFT notation of section 3.2, we write this as a pair of single

sums over double-trace conformal partial waves,

D∆1∆2∆3∆4(xi) =
∑
m

P
(12)
1 (m, 0)W∆m,0(xi) +

∑
n

P
(34)
1 (n, 0)W∆n,0(xi) (3.91)

with squared OPE coefficients

P
(12)
1 (m, 0) =

(
β∆m12 a

12
m

)(
β∆m34

∑
n

a34
n

m2
m −m2

n

)

P
(34)
1 (n, 0) =

(
β∆n34 a

34
n

)(
β∆n12

∑
m

a12
m

m2
n −m2

m

) (3.92)

where m2 = ∆(∆− d) as always. The structure of the answer is manifestly consistent with

CFT expectations: only double-trace operators [O1O2]m,0 and [O3O4]n,0 are exchanged.

We will analyze this result more closely after computing the exchange diagram.

3.4.3 Four-point exchange diagram

Turning to the scalar exchange diagram, we reap the real benefits of this approach: unlike an

approach based on brute force integration, this case is no harder than the contact diagram.

A pictorial representation of the final result is given in Figure 3.5.

We take all external dimensions ∆i, and the internal dimension ∆, to be generic. The

diagram is computed as

AExch
4 (xi) =

∫
y

∫
y′
Gb∂(y, x1)Gb∂(y, x2)×Gbb(y, y

′; ∆)×Gb∂(y
′, x3)Gb∂(y

′, x4) . (3.93)

Expanding in the s-channel (12)-(34), the algorithm is the same as the contact case.
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Figure 3.5: The decomposition of a four-point scalar exchange diagram (upper left) into

conformal partial waves, for an exchanged scalar φ of mass m2 = ∆(∆−d). We have skipped

the intermediate steps, which are nearly identical to those of the contact diagram. The term

in the upper right captures the single-trace exchange of the scalar operator dual to φ. The

second line captures the infinite set of CFT exchanges of the double-trace operators [O1O2]m,0

and [O3O4]n,0. We have suppressed OPE coefficients; the exact result is in equations (3.96)–

(3.97).

First, use (3.81) twice to get

AExch
4 (xi) =

∑
m,n

a12
ma

34
n

∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)

×
∫
y

∫
y′
Gbb(y(λ), y; ∆m)Gbb(y, y

′; ∆)Gbb(y
′, y(λ′); ∆n)

×Gb∂(y(λ′), x3)Gb∂(y(λ′), x4) .

(3.94)83



This is of the same form as the contact diagram, only we have three bulk-to-bulk propagators

and two integrations. We again use (3.87) to turn the second line into a sum over terms with

a single bulk-to-bulk propagator:∫
y

∫
y′
Gbb(y(λ), y; ∆m)Gbb(y, y

′; ∆)Gbb(y
′, y(λ′); ∆n)

=
Gbb(y(λ), y(λ′); ∆m)

(m2
m −m2

∆)(m2
m −m2

n)
+

Gbb(y(λ), y(λ′); ∆)

(m2
∆ −m2

m)(m2
∆ −m2

n)
+

Gbb(y(λ), y(λ′); ∆n)

(m2
n −m2

m)(m2
n −m2

∆)
.

(3.95)

Recognizing the remaining integrals as conformal partial waves, we reach our final result:

AExch
4 (xi) = C12∆C

∆
34W∆,0(xi) +

∑
m

P
(12)
1 (m, 0)W∆m,0(xi) +

∑
n

P
(34)
1 (n, 0)W∆n,0(xi)

(3.96)

where

C12∆C
∆

34 =

(
β∆12

∑
m

a12
m

m2
∆ −m2

m

)(
β∆34

∑
n

a34
n

m2
∆ −m2

n

)

P
(12)
1 (m, 0) =

(
β∆m12

a12
m

m2
m −m2

∆

)(
β∆m34

∑
n

a34
n

m2
m −m2

n

)

P
(34)
1 (n, 0) =

(
β∆n34

a34
n

m2
n −m2

∆

)(
β∆n12

∑
m

a12
m

m2
n −m2

m

)
.

(3.97)

Its structure is precisely as required by AdS/CFT: in addition to the double-trace exchanges

of [O1O2]m,0 and [O3O4]n,0, there is a single-trace exchange of the operator dual to the

exchanged field in the bulk of dimension ∆.

Comparing (3.97) to (3.92), we can immediately read off a new identity relating the

double-trace OPE coefficients of the contact and exchange diagrams:

P
(12)
1 (m, 0)

∣∣
Contact

P
(12)
1 (m, 0)

∣∣
Exch

= m2
m −m2

∆

(3.98)

and likewise for P
(34)
1 (n, 0). This is quite simple. One can quickly check this against the

d = 4 example in Appendix B of [5].
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3.4.4 Further analysis

3.4.4.1 OPE factorization

Notice that the squared OPE coefficients in (3.97) and (3.92) factorize naturally into terms

associated with the (12) and (34) channels. To emphasize this, it is useful to define12

α34
s ≡

∑
n

a34
n

m2
s −m2

n

(3.99)

for some mass squared m2
s = ∆s(∆s − d), and similarly for α12

s . This allows us to write the

Witten diagrams in a tidy form as

D∆1∆2∆3∆4(xi) =
∑
m

a12
mα

34
m W∆m,0(xi) +

∑
n

α12
n a

34
n W∆n,0(xi) (3.100)

and

AExch
4 (xi) = α12

∆α
34
∆ W∆,0(xi) +

∑
m

a12
mα

34
m

m2
m −m2

∆

W∆m,0(xi) +
∑
n

α12
n a

34
n

m2
n −m2

∆

W∆n,0(xi) .

(3.101)

For compactness in the above equations we have used W∆,0 in place of W∆,0. Recall that

W∆,0 is a rescaling of the standard conformal partial wave, W∆,0(xi) = β∆12β∆34W∆,0(xi).

The coefficient relating W∆,0 to W∆,0 clearly factorizes.

Writing the OPE coefficients in terms of the coefficients a12
m , a

34
n and masses mm,mn,m∆

makes their origin transparent. But the sum defining α34
s can actually be performed, yielding

α34
s =

Γ(∆3 + ∆4)

Γ(∆3)Γ(∆4)
(F (∆s,∆3,∆4) + F (d−∆s,∆3,∆4)) (3.102)

where

F (∆s,∆3,∆4) ≡ 1(
∆s − d

2

)
(∆s −∆3 −∆4)

× 4F3

 ∆3+∆4

2
, ∆3+∆4+1

2
, ∆3+∆4−∆s

2
,∆3 + ∆4 − d

2

∆3+∆4

2
− d

4
, ∆3+∆4

2
− d−2

4
, ∆3+∆4−∆s+2

2

∣∣∣− 1

 .

(3.103)

12We observe a likeness between α34
s and calculations in [42] of ` = 0 double-trace anomalous dimensions

due to heavy operator exchange; see Section 4.3 therein. It is not immediately clear to us whether there is
a deeper statement to be made.
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3.4.4.2 Recovering logarithmic singularities

Recall from Section 3.2 that when the external operator dimensions obey ∆1+∆2−∆3−∆4 ∈
2Z, logarithms appear in tree-level Witten diagrams due to anomalous dimensions of double-

trace operators. In brute force calculation of the AdS integrals, these logarithms are extracted

by isolating the relevant integration range. In Mellin space, they appear as double poles in

the Mellin amplitude.

In the present approach, these logarithms fall out trivially as algebraic conditions. Con-

sidering the scalar four-point contact diagram written in the form (3.90), for instance, we

see that terms for which m2
m = m2

n give rise to derivatives of conformal blocks, and hence

to logarithms. This is equivalent to the condition ∆m = ∆n or ∆m = d−∆n. Since d ∈ Z,

both of these are equivalent to ∆1 + ∆2 −∆3 −∆4 ∈ 2Z, which is precisely the integrality

condition stated above. Identical structure is visible in (3.95): logarithms will appear when

any of m2
m,m

2
n,m

2
∆ coincide.

As an explicit example, let us consider D∆∆∆∆(xi). Then (3.91) can be split into m 6= n

and m = n terms, the latter of which yield logarithms:

D∆∆∆∆(xi) =
∞∑
n=0

2a∆∆
n

(∑
m6=n

a∆∆
m

m2
n −m2

m

)
W2∆+2n,0(xi) +

(
(a∆∆
n )2

∂nm2
n

)
∂nW2∆+2n,0(xi) .

(3.104)

This takes the form of the ` = 0 terms in (3.29), with

P1(n, 0) = 2β2
(2∆+2n) ∆∆a

∆∆
n

(∑
m6=n

a∆∆
m

m2
n −m2

m

)
+

(a∆∆
n )2

∂nm2
n

∂n
(
β2

(2∆+2n) ∆∆

)
(3.105)

and

1

2
P0(n, 0)γ1(n, 0) =

(a∆∆
n )2

∂nm2
n

β2
(2∆+2n) ∆∆ . (3.106)

As an aside, we note the conjecture of [15], proven in [21], that

P1(n, `) =
1

2
∂n(P0(n, `)γ1(n, `)) . (3.107)

We have checked in several examples that this is obeyed by (3.105)–(3.106). It would be

interesting to prove it using generalized hypergeometric identities.
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3.4.5 Taking stock

We close this section with some perspective. Whereas traditional methods of computing

Witten diagrams are technically involved and require explicit bulk integration [95] and/or

solution of differential equations [117], the present method skips these steps with a minimum

of technical complexity. It is remarkable that for neither the contact nor exchange diagrams

have we performed any integration: the integrals have instead been absorbed into sums over,

and definitions of, conformal partial waves.

For the contact diagram/D-function, we have presented an efficient algorithm for its

decomposition into spin-0 conformal blocks in position space. Specific cases of such decom-

positions have appeared in previous works [5, 15], although no systematic treatment had

been given. Moreover, perhaps the main virtue of our approach is that exchange diagrams

are no more difficult to evaluate than contact diagrams.

D-functions also appear elsewhere in CFT, including in weak coupling perturbation the-

ory. For example, the four-point function of the 20′ operator in planar N = 4 SYM at weak

coupling is given, at order λ, by [141]

〈O20′(x1)O20′(x2)O20′(x3)O20′(x4)〉
∣∣
λ
∝ D1111(z, z) (3.108)

where D1111(z, z) was defined in (3.26). The ubiquity of D-functions at weak coupling may

be related to constraints of crossing symmetry in the neighborhood of free fixed points [137].

3.5 Spinning exchanges and conformal blocks

The OPE of two scalar primary operators yields not just other scalar primaries but also

primaries transforming in symmetric traceless tensor representations of the Lorentz group.

We refer to such a rank-` tensor as a spin-` operator. Thus, for the full conformal block

decomposition of a correlator of scalar primaries we need to include blocks describing spin-`

exchange. The expression for such blocks as geodesic Witten diagrams turns out to be the

natural extension of the scalar exchange case. The exchanged operator is now described by

a massive spin-` field in the bulk, which couples via its pullback to the geodesics connecting
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the external operator insertion points. This was drawn in Figure 4.2.

In this section we do the following. We give a fairly complete account of the spin-1 case,

showing how to decompose a Witten diagram involving the exchange of a massive vector field,

and establishing that the geodesic diagrams reproduce known results for spin-1 conformal

blocks. We also give an explicit treatment of the spin-2 geodesic diagram, again checking

that we reproduce known results for the spin-2 conformal blocks. More generally, we use

the conformal Casimir equation to prove that our construction yields the correct blocks for

arbitrary `.

3.5.1 Known results

Conformal blocks with external scalars and internal spin-` operators were studied in the early

work of Ferrara et. al. [30]. They obtained expressions for these blocks as double integrals.

It is easy to verify that their form for the scalar exchange block precisely coincides with

our geodesic Witten diagram expression (3.33). We thus recognize the double integrals as

integrals over pairs of geodesics. Based on this, we expect agreement for general `, although

we have not so far succeeded in showing this due to the somewhat complicated form for the

general spin-` bulk-to-bulk propagator [131, 132]. Some more discussion is in section 3.5.6.

We will instead use other arguments to establish the validity of our results.

Dolan and Osborn [39] studied these blocks using the conformal Casimir equation. Closed-

form expressions in terms of hypergeometric functions were obtained in dimensions d =

2, 4, 6. For example, in d = 2 we have

G∆,`(z, z) = |z|∆−`×[
z`2F1

(
∆−∆12 + `

2
,
∆ + ∆34 + `

2
,∆ + `; z

)
× 2F1

(
∆−∆12 − `

2
,
∆ + ∆34 − `

2
,∆− `; z

)
+ (z ↔ z)

] (3.109)
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and in d = 4 we have

G∆,`(z, z) = |z|∆−` 1

z − z×[
z`+1

2F1

(
∆−∆12 + `

2
,
∆ + ∆34 + `

2
; ∆ + `; z

)
× 2F1

(
∆−∆12 − `

2
− 1,

∆ + ∆34 − `
2

− 1; ∆− `− 2; z

)
− (z ↔ z)

]
(3.110)

The d = 6 result is also available, taking the same general form, but it is more complicated.

Note that the d = 2 result is actually a sum of two irreducible blocks, chosen so as to be

even under parity. The irreducible d = 2 blocks factorize holomorphically, since the global

conformal algebra splits up as sl(2,R) ⊕ sl(2,R). An intriguing fact is that the d = 4 block is

expressed as a sum of two terms, each of which “almost” factorizes holomorphically. Results

in arbitrary dimension are available in series form.

Since the results of Dolan and Osborn are obtained as solutions of the conformal Casimir

equation, and we will show that our geodesic Witten diagrams are solutions of the same

equation with the same boundary conditions, this will constitute exact agreement. Note,

though, that the geodesic approach produces the solution in an integral representation. It

is not obvious by inspection that these results agree with those in [39], but we will verify

this in various cases to assuage any doubts that our general arguments are valid. As noted

above, in principle a more direct comparison is to the formulas of Ferrara et. al. [30].

3.5.2 Geodesic Witten diagrams with spin-` exchange: generalities

Consider a CFTd primary operator which carries scaling dimension ∆ and transforms in

the rank-` symmetric traceless tensor representation of the (Euclidean) Lorentz group. The

AdSd+1 bulk dual to such an operator is a symmetric traceless tensor field hµ1...µ` obeying

the field equations

∇2hµ1...µ` − [∆(∆− d)− `]hµ1...µ` = 0 ,

∇µ1hµ1...µ` = 0 .
(3.111)
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Our proposal is that the conformal partial wave W∆,`(xi) is given by the same expression

as in (3.33) except that now the bulk-to-bulk propagator is that of the spin-` field pulled

back to the geodesics. The latter defines the spin-` version of the geodesic Witten diagram,

W∆,`(xi): its precise definition is

W∆,`(xi) ≡∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)×Gbb(y(λ), y(λ′); ∆, `)×Gb∂(y(λ′), x3)Gb∂(y(λ′), x4)

(3.112)

and Gbb(y(λ), y(λ′); ∆, `) is the pulled-back spin-` propagator,

Gbb(y(λ), y(λ′); ∆, `) ≡ [Gbb(y, y
′; ∆)]µ1...µ`,ν1...ν`

dyµ1

dλ
. . .

dyµ`

dλ

dy′ν1

dλ′
. . .

dy′ν`

dλ′

∣∣∣
y=y(λ), y′=y(λ′)

.

(3.113)

To explicitly evaluate this we will use the same technique as in section 3.3.1. Namely,

the integration over one geodesic can be expressed as a normalizable spin-` solution of the

equations (3.111) with a geodesic source. Inserting this result, we obtain an expression for

the geodesic Witten diagram as an integral over the remaining geodesic. If we call the above

normalizable solution hν1...ν` , then the analog of (3.37) is

W∆,`(xi) =

∫
γ34

hν1...ν`(y(λ′))
dy′ν1

dλ′
. . .

dy′ν`

dλ′
Gb∂(y(λ′), x3)Gb∂(y(λ′), x4) . (3.114)

As in section 3.3.1, we will specifically compute

W∆,`(z, z) ≡ 1

C12OCO34

〈O1(∞)O2(0)P∆,`O3(1− z)O4(1)〉

= |z|−∆3−∆4G∆,`(z, z)

(3.115)

now written in terms of (z, z) instead of (u, v) to facilitate easier comparison with (3.109)

and (3.110). We recall that this reduces γ12 to a straight line at the origin of global AdS.

The form of γ34 is given in (3.50), from which the pullback is computed using

cos2 ρ
∣∣
γ34

=
1

2 coshλ′
|z|2

e−λ′ + |1− z|2eλ′ ,

e2t
∣∣
γ34

=
2 coshλ′

e−λ′ + |1− z|2eλ′ ,

e2iφ
∣∣
γ34

=
(1− z)eλ

′
+ e−λ

′

(1− z)eλ′ + e−λ′
.

(3.116)
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We also recall

Gb∂(y(λ′), 1− z)Gb∂(y(λ′), 1) =
e∆34λ′

|z|∆3+∆4
. (3.117)

Carrying out this procedure for all dimensions d at once presents no particular complications.

However, it does not seem easy to find the solution hν1...ν` for all ` at once. For this reason,

below we just consider the two simplest cases of ` = 1, 2, which suffice for illustrating the

general procedure.

3.5.3 Evaluation of geodesic Witten diagram: spin-1

In the global AdSd+1 metric

ds2 =
1

cos2 ρ
(dρ2 + dt2 + sin2 ρdΩ2

d−1) (3.118)

we seek a normalizable solution of

∇2Aµ − [∆(∆− d)− 1]Aµ = 0 , ∇µAµ = 0 (3.119)

which is spherically symmetric and has time dependence e−∆12t. A suitable ansatz is

Aµdx
µ = At(ρ, t)dt+ Aρ(ρ, t)dρ . (3.120)

Assuming the time dependence e−∆12t, the divergence free condition implies

∂ρ
(
tand−1 ρAρ

)
−∆12 tand−1 ρAt = 0 (3.121)

and the components of the wave equation are

cosd−1 ρ

sind−1 ρ
∂ρ

(
sind−1 ρ

cosd−3 ρ
∂ρAt

)
+
(
∆2

12 cos2 ρ− (∆− 1)(∆− d+ 1)
)
At

− 2∆12 cos ρ sin ρAρ = 0

cosd−1 ρ

sind−1 ρ
∂ρ

(
sind−1 ρ

cosd−3 ρ
∂ρAρ

)
+

(
∆2

12 cos2 ρ− d− 1

sin2 ρ
− (∆− 1)(∆− d+ 1)

)
Aρ

+ 2∆12 cos ρ sin ρAt = 0 .

(3.122)
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The normalizable solution is

Aρ = ∆12 sin ρ(cos ρ)∆
2F1

(
∆ + ∆12 + 1

2
,
∆−∆12 + 1

2
,∆− d− 2

2
; cos2 ρ

)
e−∆12t

At =
1

∆12 tand−1 ρ
∂ρ(tand−1 ρAρ)

(3.123)

where we have inserted a factor of ∆12 in Aρ to ensure a smooth ∆12 → 0 limit. In particular,

setting ∆12 = 0 we have Aρ = 0 and

At = (cos ρ)∆−1
2F1

(
∆ + 1

2
,
∆− 1

2
,∆− d− 2

2
; cos2 ρ

)
. (3.124)

It is now straightforward to plug into (3.114) to obtain an integral expression for the confor-

mal block. Because the general formula is rather lengthy we will only write it out explicitly

in the case ∆12 = 0. In this case we find (not paying attention to overall normalization

factors)

W∆,1(z, z) = |z|∆−∆3−∆4−1(1− |1− z|2)∫ 1

0

dσσ
∆+∆34−1

2 (1− σ)
∆−∆34−1

2

(
1− (1− |1− z|2)σ

)−∆+1
2

× 2F1

(
∆ + 1

2
,
∆− 1

2
,∆− d− 2

2
;
|z|2σ(1− σ)

1− (1− |1− z|2)σ

)
.

(3.125)

Setting d = 2, 4, it is straightforward to verify that the series expansion of this integral

reproduces the known d = 2, 4 results in (3.109),(3.110) for ∆12 = 0. We have also verified

agreement for ∆12 6= 0.

3.5.4 Evaluation of geodesic Witten diagram: spin-2

In this section we set ∆12 = 0 to simplify formulas a bit. We need to solve

∇2hµν − [∆(∆− d)− 2]hµν = 0 , ∇µhµν = 0 , hµµ = 0 . (3.126)

hµν should be static and spherically symmetric, which implies the general ansatz

hµνdx
µdxν = fρρ(ρ)gρρdρ

2 + ftt(ρ)gttdt
2 +

1

d− 1
fφφ(ρ) tan2 ρ dΩ2

d−1 . (3.127)

We first impose the divergence free and tracelessness conditions. We have

hµµ = fρρ + ftt + fφφ . (3.128)
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We use this to eliminate fφφ,

fφφ = −fρρ − ftt . (3.129)

Moving to the divergence, only the component ∇µhµρ is not automatically zero. We find

∇µhµρ = f ′ρρ +
d+ 1

cos ρ sin ρ
fρρ −

cos ρ

sin ρ
fρρ +

cos ρ

sin ρ
ftt = 0 (3.130)

which we solve as

ftt = − tan ρf ′ρρ +

(
1− d+ 1

cos2 ρ

)
fρρ . (3.131)

We then work out the ρρ component of the field equation,

∇2hρρ − [∆(∆− d)− 2]hρρ = f ′′ρρ +

(
d+ 3

cos ρ sin ρ
− 2 cot ρ

)
f ′ρρ −

(∆ + 2)(∆− d− 2)

cos2 ρ
fρρ .

(3.132)

Setting this to zero, the normalizable solution is

fρρ = (cos ρ)∆+2
2F1

(
∆

2
,
∆ + 2

2
,∆− d− 2

2
; cos2 ρ

)
. (3.133)

This completely specifies the solution, and we now have all we need to plug into (3.114). We

refrain from writing out the somewhat lengthy formulas. The series expansion of the result

matches up with (3.109) and (3.110) as expected.

3.5.5 General spin: proof via conformal Casimir equation

As in the case of scalar exchange, the most efficient way to verify that a geodesic Witten

diagram yields a conformal partial wave is to check that it is an eigenfunction of the conformal

Casimir operator with the correct eigenvalue and asymptotics.

We start from the general expression (3.112). A rank-n tensor on AdS is related to a

tensor on the embedding space via

Tµ1...µn =
∂Y M1

∂yµ1
. . .

∂Y Mn

∂yµn
TM1...Mn . (3.134)

In particular, this holds for the bulk-to-bulk propagator of the spin-` field, and so we can

write

Gbb(y, y
′; ∆, `) = [Gbb(Y, Y

′; ∆)]M1...M`,N1...N`

dY M1

dλ
. . .

dY M`

dλ

dY ′N1

dλ′
. . .

dY ′N`

dλ′
. (3.135)

93



Now, [Gbb(Y, Y
′; ∆)]M1...M`,N1...N` only depends on Y and Y ′. Since Y M dYM

dλ
= 1

2
d
dλ

(Y ·Y ) = 0,

when pulled back to the geodesics the only contributing structure is

[Gbb(Y, Y
′; ∆)]M1...M`,N1...N` = f(Y · Y ′)Y ′M1

. . . Y ′M`
YN1 . . . YN` . (3.136)

We also recall a few other useful facts. Lifted to the embedding space, the geodesic connecting

boundary points X1 and X2 is

Y (λ) =
eλX1 + e−λX2√−2X1 ·X2

. (3.137)

The bulk-to-boundary propagator lifted to the embedding space is

Gb∂(Xi, Y ) ∝ (Xi · Y )−∆i . (3.138)

We follow the same strategy as in the case of scalar exchange. We start by isolating the

part of the diagram that contains all the dependence on X1,2,

FM1...M`
(X1, X2, Y

′; ∆) =∫
γ12

Gb∂(X1, Y (λ))Gb∂(X2, Y (λ))[Gbb(Y (λ), Y ′; ∆)]M1...M`,N1...N`

dY M1

dλ
. . .

dY M`

dλ
.

(3.139)

Here, Y (λ) lives on γ12, but Y ′ is left arbitrary. This is the spin-` generalization of ϕ12
∆ (y)

defined in (3.36), lifted to embedding space. We now argue that this is annihilated by the

SO(d+1,1) generators L1
AB+L2

AB+LY
′

AB. This generator is the sum of three generators in the

scalar representation, plus a “spin” term acting on the free indices N1 . . . N`. This operator

annihilates any expression of the form g(X1 ·X2, X1 · Y ′, X2 · Y ′)XN1 . . . XN` , where each X

stands for either X1 or X2. To show this, we just note the SO(d+1,1) invariance of the dot

products, along with the fact that XN is the normal vector to the X2 = 0 surface and so is

also SO(d+1,1) invariant. From (3.136)-(3.138) we see that FN1...N`(X1, X2, Y
′; ∆) is of this

form, and so is annihilated by L1
AB + L2

AB + LY
′

AB. We can therefore write

(L1
AB + L2

AB)2FN1...N`(X1, X2, Y
′; ∆) = (LY

′

AB)2FN1...N`(X1, X2, Y
′; ∆)

= C2(∆, `)FN1...N`(X1, X2, Y
′; ∆)

(3.140)
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where we used that (LY
′

AB)2 is acting on the spin-` bulk-to-bulk propagator, which is an eigen-

function of the conformal Casimir operator13 with eigenvalue (3.59). The relation (3.140)

holds for all Y ′, and hence holds upon integrating Y ′ over γ34 with any weight. Hence we

arrive at the conclusion

(L1
AB + L2

AB)2W∆,`(xi) = C2(∆, `)W∆,`(xi) (3.141)

which is the same eigenvalue equation obeyed by the spin-` conformal partial wave, W∆,`(xi).

The short distance behavior as dictated by the OPE is easily seen to match in the two cases,

establishing that we have the same eigenfunction. We conclude that the spin-` geodesic

Witten diagram is, up to normalization, equal to the spin-` conformal partial wave.

3.5.6 Comparison to double integral expression of Ferrara et. al.

It is illuminating to compare our expression (3.112) to equation (50) in [31], which gives the

general result (in d = 4) for the scalar conformal partial wave with spin-` exchange, written

as a double integral. We will rewrite the result in [31] in a form permitting easy comparison

to our formulas. First, it will be useful to rewrite the scalar bulk-to-bulk propagator (3.19)

by applying a quadratic transformation to the hypergeometric function,

Gbb(y, y
′; ∆) = ξ∆

2F1

(
∆

2
,
∆ + 1

2
,∆ + 1− d

2
; ξ2

)
. (3.142)

Next, recall that in embedding space the geodesics are given by (3.72), from which we

compute the quantity ξ with one point on each geodesic

ξ−1 = −Y (λ) · Y (λ′) =
1

2

eλ+λ′x2
13 + eλ−λ

′
x2

14 + e−λ+λ′x2
23 + e−λ−λ

′
x2

24

x12x34

. (3.143)

We also define a modified version as

ξ−1
− = −dY (λ)

dλ
· dY (λ′)

dλ′
=

1

2

eλ+λ′x2
13 − eλ−λ

′
x2

14 − e−λ+λ′x2
23 + e−λ−λ

′
x2

24

x12x34

. (3.144)

Comparing to [31], we have ξ−1 = λ+ and ξ−1
− = λ−.

13Note that the conformal Casimir is equal to the spin-` Laplacian up to a constant shift: (LY
′

AB)2 =
∇2
` + `(`+ d− 1) [142].
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With these definitions in hand, it is not hard to show that the result of [31] takes the

form

W∆,`(xi) =

∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)

× C ′`(2ξ−1
− )Gbb(y(λ), y(λ′); ∆)×Gb∂(y(λ′), x3)Gb∂(y(λ′), x4) .

(3.145)

Here Gbb(y(λ), y(λ′); ∆) is the scalar bulk-to-bulk propagator (3.142), and C ′`(x) is a Gegen-

bauer polynomial. This obviously looks very similar to our expression (3.112), and indeed

agrees with it for ` = 0. The two results must be equal (up to normalization) since they are

both expressions for the same conformal partial wave. If we assume that equality holds for

the integrand, then we find the interesting result that the pullback of the spin-` propagator,

as written in (3.113), is equal to C ′`(2ξ
−1
− )Gbb(y(λ), y(λ′); ∆). The general spin-` propaga-

tor is very complicated (see [131, 132]), but apparently has a simple relation to the scalar

propagator when pulled back to geodesics. It would be interesting to verify this.

3.5.7 Decomposition of spin-1 Witten diagram into conformal blocks

In the case of scalar exchange diagrams, we previously showed how to decompose a Witten

diagram into a sum of geodesic Witten diagrams, the latter being identified with conformal

partial waves of both single- and double-trace exchanges. We now wish to extend this to the

case of higher spin exchange; we focus here on the case of spin-1 exchange for simplicity. A

picture of the final result is given in Figure 3.6.

As discussed in section 3.2, given two scalar operators in a generalized free field the-

ory, we can form scalar double trace primaries with schematic form [O1O2]m,0 ∼ O1∂
2mO2

and dimension ∆(12)(m, 0) = ∆1 + ∆2 + 2m + O(1/N2), and vector primaries [O1O2]m,1 ∼
O1∂

2m∂µO2 with dimension ∆(12)(m, 1) = ∆1 +∆2 +1+2m+O(1/N2). The analysis of [15],

and later [21,131,132] demonstrated that these conformal blocks, and their cousins [O3O4]n,0

and [O3O4]n,1, should appear in the decomposition of the vector exchange Witten diagram,

together with the exchange of a single-trace vector operator. The computations below will

confirm this expectation.

The basic approach is the same as in the scalar case, although the details are more com-
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Figure 3.6: The decomposition of a four-point vector exchange diagram (upper left) into

conformal partial waves. The term in the upper right captures the single-trace exchange

of the dual vector operator. The second line captures the CFT exchanges of the ` = 0

double-trace operators [O1O2]m,0 and [O3O4]n,0. Likewise, the final line captures the CFT

exchanges of the ` = 1 double-trace operators [O1O2]m,1 and [O3O4]n,1.

plicated. Before diving in, let us note the main new features. In the scalar case a basic step

was to write, in (3.81), the product of two bulk-to-boundary propagators Gb∂(y, x1)Gb∂(y, x2)

as a sum over solutions ϕ12
∆ (y) of the scalar wave equation sourced on the γ12 geodesic. Here,

we will similarly need a decomposition of Gb∂(y, x1)∇µGb∂(y, x2), where ∇µ is a covariant
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derivative with respect to bulk coordinates y. It turns out that this can be expressed as a

sum over massive spin-1 solutions and derivatives of massive scalar solutions. This translates

into the statement that the spin-1 exchange Witten diagram decomposes as a sum of spin-1

and spin-0 conformal blocks, as noted above.

Now to the computation. We consider a theory of massive scalars coupled to a massive

vector field via couplings φi∇µφjA
µ. The Witten diagram with vector exchange is then

AVec
4 (xi) =

∫
y

∫
y′
Gb∂(y, x1)∇µGb∂(y, x2)×Gµν

bb (y, y′; ∆)×Gb∂(y
′, x3)∇νGb∂(y

′, x4) . (3.146)

Our first task is to establish the expansion

Gb∂(y, x1)∇µGb∂(y, x2) =
∑
m

(cmAm,µ(y) + bm∇µϕm(y)) (3.147)

where Am,µ(y) and ϕm(y) denote the solutions to the massive spin-1 and spin-0 equations

sourced on γ12, found earlier in sections 3.5.3 and 3.4.1, respectively.14 m labels the masses of

the bulk fields, to be determined shortly. We will not attempt to compute the coefficients cm

and bm, which is straightforward but involved, contenting ourselves to determining the spec-

trum of conformal dimensions appearing in the expansion, and showing how the expansion

coefficients can be obtained if desired.

Following the scalar case, we work in global AdS and send t1 → −∞, t2 →∞. Dropping

normalizations, as we shall do throughout this section, we have

Gb∂(y, x1)∇ρGb∂(y, x2) = sin ρ (cos ρ)∆1+∆2−1e−∆12t

Gb∂(y, x1)∇tGb∂(y, x2) = (cos ρ)∆1+∆2e−∆12t .
(3.148)

Letting ∆
(`)
m denote the dimension of the corresponding spin, we have, from (3.123) and

14ϕm is just ϕ12
m , whose superscript we suppress for clarity, and likewise for ϕn and ϕ34

n .
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(3.45),

ϕm = 2F1

(∆
(0)
m + ∆12

2
,
∆

(0)
m −∆12

2
; ∆(0)

m −
d− 2

2
; cos2 ρ

)
(cos ρ)∆

(0)
m e−∆12t

Am,ρ = ∆12 sin ρ (cos ρ)∆
(1)
m

2F1

(
∆

(1)
m + ∆12 + 1

2
,
∆

(1)
m −∆12 + 1

2
,∆(1)

m −
d− 2

2
; cos2 ρ

)
e−∆12t

Am,t =
1

∆12 tand−1 ρ
∂ρ(tand−1 ρAm,ρ)

(3.149)

The various terms have the following powers (cos2 ρ)k in an expansion in powers of cos2 ρ,

Gb∂(y, x1)∇ρGb∂(y, x2) : k =
∆1 + ∆2 − 1

2
+ q

Am,ρ : k =
∆

(1)
m

2
+ q

∇ρϕm : k =
∆

(0)
m − 1

2
+ q

Gb∂(y, x1)∇tGb∂(y, x2) : k =
∆1 + ∆2

2

Am,t : k =
∆

(1)
m − 1

2
+ q

∇tϕm : k =
∆

(0)
m

2
+ q (3.150)

where q = 0, 1, 2, . . .. Comparing, we see that we have the right number of free coefficients

for (3.147) to hold, provided we have the following spectrum of dimensions appearing

∆(0)
m = ∆1 + ∆2 + 2m

∆(1)
m = ∆1 + ∆2 + 1 + 2m (3.151)

with m = 0, 1, 2, . . .. The formulas above can be used to work out the explicit coefficients

cm and bm. We noted at the beginning of this subsection that this spectrum of dimensions

coincides with the expected spectrum of double-trace scalar and vector operators appearing

in the OPE, at leading order in large N .
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We may now rewrite (3.146) as15

AVec
4 (xi) =

∑
m,n

∫
y

∫
y′

(cmAm,µ(y) + bm∇µϕm(y))Gµν
bb (y, y′; ∆) (cnAn,ν(y

′) + bn∇νϕn(y′)) .

(3.152)

We expand this out in an obvious fashion as

AVec
4 (xi) = AAA(xi) +AAφ(xi) +AφA(xi) +Aφφ(xi) . (3.153)

The next step is to relate each term to geodesic Witten diagrams, which we now do in turn.

3.5.7.1 AAA

We have

AAA =
∑
m,n

cmcn

∫
y

∫
y′
Am,µ(y)Gµν

bb (y, y′; ∆)An,ν(y
′) . (3.154)

The solution Am,µ(y) can be expressed as

Aµm(y) =

∫
γ12

Gb∂(y(λ), x1)∇νGb∂(y(λ), x2)Gµν
bb (y(λ), y; ∆(1)

m )

= −∆2

∫
γ12

Gb∂(y(λ), x1)Gb∂(y(λ), x2)
dyν(λ)

dλ
Gµν
bb (y(λ), y; ∆(1)

m ) . (3.155)

The second equality follows from the relation ∇µGb∂(x, y(λ)) = −∆dyµ(λ)

dλ
Gb∂(x, y(λ)), which

is easily verified for a straight line geodesic at the center of global AdS, and hence is true in

general. Using this we obtain (dropping the normalization, as usual)

AAA =
∑
m,n

cmcn

∫
y

∫
y′

∫
γ12

∫
γ34

[
Gb∂(y(λ), x1)Gb∂(y(λ), x2)

dyµ(λ)

dλ

]
×
[
Gµν
bb (y(λ), y; ∆(1)

m )Gbb,να(y, y′; ∆)Gαβ
bb (y′, y(λ′); ∆(1)

n )
]

×
[
Gb∂(y(λ), x3)Gb∂(y(λ), x4)

dy′β(λ′)

dλ′

]
. (3.156)

The bulk-to-bulk propagator for the vector field obeys

(
∇2 −m2

)
Gµν
bb (y, y′; ∆) = δµν(y − y′) (3.157)

15Following the precedent of Section 3.4, all quantities with an m subscript refer to the double-trace
operators appearing in the O1O2 OPE, and those with an n subscript refer to the double-trace operators
appearing in the O3O4 OPE.
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where δµν(y − y′) denotes a linear combination of gµνδ(y − y′) and ∇µ∇νδ(y − y′). Using

this, and the fact that the propagator is divergence free at non-coincident points, we can

verify the composition law∫
y′
Gµν
bb (y, y′; ∆)Gbb,να(y′, y′′; ∆′) =

1

m2 − (m′)2

(
Gbb

µ
α(y, y′′; ∆)−Gbb

µ
α(y, y′′; ∆′)

)
. (3.158)

We use this relation twice within (3.156) to obtain a sum of three terms, each with a single

vector bulk-to-bulk propagator. Note also that these propagators appear pulled back to the

geodesics. Each term is thus a geodesic Witten diagram with an exchanged vector, that is,

a spin-1 conformal partial wave. The spectrum of spin-1 operators that appears is

∆ , ∆1 + ∆2 + 1 + 2m , ∆3 + ∆4 + 1 + 2n , m, n = 0, 1, 2, . . . (3.159)

So the contribution of AAA is a sum of spin-1 conformal blocks with internal dimensions

corresponding to the original exchanged field, along with the expected spin-1 double trace

operators built out of the external scalars.

3.5.7.2 AAφ and AφA

We start with

AφA =
∑
m,n

cmbn

∫
y

∫
y′
∇µϕm(y)Gµν

bb (y, y′; ∆)An,ν(y
′) . (3.160)

Next we integrate by parts in y, use ∇µG
µν
bb (y, y′; ∆) ∝ ∇νδ(y − y′), and integrate by parts

again, to get

AφA =
∑
m,n

bmcn

∫
y′
∇µϕm(y′)Aµn(y′) . (3.161)

Now we write Aµn(y′) as an integral over γ34 as in (3.155) and then again remove the bulk-

to-bulk propagator by integrating by parts. This yields

AφA =
∑
m,n

bmcn

∫
γ34

Gb∂(y(λ′), x3)Gb∂(y(λ′), x4)
dyµ(λ′)

dλ′
∇µϕm(y(λ′)) . (3.162)
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Writing ϕm as an integral sourced on γ12 we obtain

AφA =
∑
m,n

bmcn×∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)
d

dλ′
Gbb(y(λ), y(λ′); ∆(0)

m )Gb∂(y(λ′), x3)Gb∂(y(λ′), x4) .

(3.163)

Integrating by parts and using d
dλ′

(
Gb∂(y(λ′), x3)Gb∂(y(λ′), x4)

)
∝ Gb∂(y(λ′), x3)Gb∂(y(λ′), x4)

we see that AφA decomposes into a sum of spin-0 exchange geodesic Witten diagrams. That

is, AφA contributes a sum of spin-0 blocks with conformal dimensions

∆1 + ∆2 + 2m , m = 0, 1, 2, . . . (3.164)

By the same token AAφ yields a sum of spin-0 blocks with conformal dimensions

∆3 + ∆4 + 2n , n = 0, 1, 2, . . . (3.165)

3.5.7.3 Aφφ

We have

Aφφ =
∑
m,n

bmbn

∫
y

∫
y′
∇µϕm(y)Gµν

bb (y, y′; ∆)∇νϕn(y′) . (3.166)

Integration by parts reduces this to

Aφφ =
∑
m,n

bmbn

∫
y

∇µϕm(y)∇µϕn(y) . (3.167)

Now rewrite the scalar solutions as integrals over the respective geodesic sources,

Aφφ =
∑
m,n

bmbn

∫
y′

∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)Gb∂(y(λ), x3)Gb∂(y(λ), x4)

×∇µ′Gbb(y(λ), y′; ∆(0)
m )∇µ′Gbb(y

′, y(λ′); ∆(0)
n ) . (3.168)

The composition law analogous to (3.158) is easily worked out to be∫
y′
∇µ′Gbb(y(λ), y′; ∆(0)

m )∇µ′Gbb(y
′, y(λ′); ∆(0)

n ) = cmnGbb(y(λ), y(λ′); ∆(0)
m )

+ dmnGbb(y(λ), y(λ′); ∆(0)
n )

(3.169)
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with some coefficients cmn and dmn that we do not bother to display here. Inserting this in

(3.168) we see that Aφφ decomposes into a sum of scalar blocks with conformal dimensions

∆1 + ∆2 + 2m , ∆3 + ∆4 + 2n , m, n = 0, 1, 2, . . . (3.170)

3.5.7.4 Summary

We have shown that the Witten diagram involving the exchange of a spin-1 field of dimension

∆ decomposes into a sum of spin-1 and spin-0 conformal blocks. The full spectrum of

conformal blocks appearing in the decomposition is

scalar : ∆1 + ∆2 + 2n , ∆3 + ∆4 + 2n

vector : ∆ , ∆1 + ∆2 + 1 + 2n , ∆3 + ∆4 + 1 + 2n (3.171)

where n = 0, 1, 2, . . .. This matches the spectrum expected from 1/N counting, including

single- and double-trace operator contributions. With some patience, the formulas above

can be used to extract the coefficient of each conformal block, but we have not carried this

out in full detail here.

While we have not explored this in any detail, it seems likely that the above method can

be directly generalized to the case of arbitrary spin-` exchange. The split (3.153) will still

be natural, and a higher spin version of (3.158) should hold.

3.6 Discussion and future work

In this paper, we have shed new light on the underlying structure of tree-level scattering

amplitudes in AdS. Four-point scalar amplitudes naturally organize themselves into geodesic

Witten diagrams; recognizing these as CFT conformal partial waves signals the end of the

computation, and reveals a transparency between bulk and boundary with little technical

effort required. We are optimistic that this reformulation extends, in some manner, to

computations of generic holographic correlation functions in AdS/CFT. To that end, we close

with some concrete observations and proposals, as well as a handful of future directions.
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Figure 3.7: Some examples of loop diagrams that can be written as infinite sums over tree-

level diagrams, and hence decomposed into conformal blocks using our methods.

Adding loops It is clearly of interest to try to generalize our techniques to loop level. We

first note that there is a special class of loop diagrams that we can compute already using

these methods: namely, those that can be written as an infinite sum of tree-level exchange

diagrams [100]. For the same reason, this is the only class of loop diagrams whose Mellin

amplitudes are known [100]. These diagrams only involve bulk-to-bulk propagators that all

start and end at the same points; see Figure 3.7 for examples. Careful study of the resulting

sums would be useful.

More generally, though, we do not yet know how to decompose generic diagrams into

geodesic objects. This would seem to require a “geodesic identity” analogous to (3.81) that

applies to a pair of bulk-to-bulk propagators, rather than bulk-to-boundary propagators. It

would be very interesting to find these, if they exist. Such identities would also help to

decompose an exchange Witten diagram in the crossed channel.

Decomposition of Witten diagrams in the crossed channel The present work studies

the decomposition of an s-channel exchange Witten diagram into s-channel partial waves.

It is clearly of interest to understand, using the language of geodesic Witten diagrams, how

the same diagram decomposes into t-channel partial waves, which corresponds to using the
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Figure 3.8: This is the basic constituent that emerges in applying our technology to the

decomposition of a five-point tree-level Witten diagram. However, it is not equal to the

five-point conformal partial wave, as discussed in the text.

OPE on the pairs of operators O1O3 and O2O4. As explored in [5], the statement is that

the basic scalar exchange Witten diagram decomposes into t-channel partial waves involving

only scalar double trace operators [O1O3]n,0 and [O2O4]n,0. As we mention above, this

decomposition seems to require new geodesic identities involving bulk-to-bulk propagators.

Derivative interactions We have primarily focused on decomposing Witten diagrams

with non-derivative interactions. For example, the contact diagram of figure 3.4 is based on

the interaction φ1φ2φ3φ4. We would like to be able to efficiently decompose Witten diagrams

with derivative interactions too, like φ1∇µ1∇µ2 ...∇µkφ2φ3∇µ1∇µ2 ...∇µkφ4; a precise version

of the identity in equation (3.147) would be sufficient to treat the k = 1 case, but we would

like to generalize that to add more Lorentz indices. We anticipate that this identity exists

and involves propagators of massive fields of spin ` ≤ k.

Adding legs Consider for example a five-point correlator of scalar operators 〈O1(x1) . . .O5(x5)〉.
We can define associated conformal partial waves by inserting projection operators as

W∆,`;∆′,`′(xi) = 〈O1(x1)O2(x2)P∆,`O5(x5)P∆′,`′O3(x3)O4(x4)〉 . (3.172)

Using the OPE on O1O2 and O3O4, reduces this to three-point functions. The question is,

can we represent W∆,`;∆′,`′(xi) as a geodesic Witten diagram?
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Suppose we try to dismantle a tree level five-point Witten diagram. For definiteness, we

take `′ = ` = 0. All tree level five-point diagrams will lead to the same structures upon using

our geodesic identities: namely, they can be written as sums over geodesic-type diagrams,

each as in Figure 3.8, which we label Ŵ∆a,0;∆b,0(xi). This is easiest to see starting from a φ5

contact diagram, and using (3.81) on the pairs of propagators (12) and (34). In that case,

∆a ∈ {∆m} and ∆b ∈ {∆n}. As an equation, Figure 3.8 reads

Ŵ∆a,0;∆b,0(xi) =

∫
γ12

∫
γ34

Gb∂(y(λ), x1)Gb∂(y(λ), x2)

×
∫
y5

Gbb(y(λ), y5; ∆a)Gb∂(y5, x5)Gbb(y5, y(λ′); ∆b)

× Gb∂(y(λ′), x3)Gb∂(y(λ′), x4) .

(3.173)

Note that the vertex at y5, indicated by the orange dot in the figure, must be integrated

over all of AdS. Could these diagrams be computing W∆a,0;∆b,0(xi) as defined above? The

answer is no, as a simple argument shows. Suppose we set ∆5 = 0 in (3.173), which requires

∆a = ∆b ≡ ∆. From (3.172) it is clear that we must recover the four-point conformal partial

wave with the exchanged primary (∆, 0). So we should ask whether (3.173) reduces to the

expression for the four-point geodesic Witten diagram, W∆,0. Using Gb∂(y5, x5)|∆5=0 ∝ 1,

the integral over y5 becomes∫
y5

Gbb(y(λ), y5; ∆)Gbb(y5, y(λ′); ∆) ∝ ∂

∂m2
∆

Gbb(y(λ), y(λ′); ∆) . (3.174)

Therefore, the ∆5 = 0 limit of (3.173) does not give back the four-point partial wave, but

rather its derivative with respect to m2
∆, which is a different object.

We conclude that although we can decompose a five-point Witten diagram into a sum

of diagrams of the type in Figure 3.8, this is not the conformal block decomposition. This

raises two questions: what is the meaning of this decomposition in CFT terms, and (our

original question) what diagram computes the five-point partial wave?

External operators with spin Another obvious direction in which to generalize is to

consider correlation functions of operators carrying spin. As far as the conformal blocks go,

partial information is available. In particular, [91] obtained expressions for such blocks as
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differential operators acting on blocks with external scalars, but this approach is limited to

the case in which the exchanged operator is a symmetric traceless tensor, since only such

operators appear in the OPE of two scalar operators. The same approach was taken in [143].

Explicit examples of mixed symmetry exchange blocks were given in [144].

Our formulation in terms of geodesic Witten diagrams suggests an obvious proposal for

the AdS computation of an arbitrary conformal partial wave: take our usual expression

(3.1), now with the bulk-to-boundary and bulk-to-bulk propagators corresponding to the

fields dual to the respective operators. Of course, there are many indices here which have to

be contracted, and there will be inequivalent ways of doing so. But this is to be expected,

as in the general case there are multiple conformal blocks for a given set of operators,

corresponding to the multiplicity of ways in which one spinning primary can appear in the

OPE of two other spinning primaries. It will be interesting to see whether this proposal turns

out to be valid. As motivation, we note that it would be quite useful for bootstrap purposes

to know all the conformal blocks that arise in the four-point function of stress tensors.

After the publication of this paper, the geodesic Witten diagram construction has indeed

been extended to external operators with spin [145–147] as well as to antisymetric tensor

exchange [148]. The natural extension to fermionic conformal blocks [149] has also been

shown to hold [150].

A related pursuit would be to decompose all four-point scalar contact diagrams, including

any number of derivatives at the vertices. This would involve a generalization of (3.147) to

include more derivatives.

Virasoro blocks and AdS3/CFT2 Our calculations give a new perspective on how to

construct the dual of a generic Virasoro conformal block: starting with the geodesic Witten

diagram, we dress it with gravitons. Because Virasoro blocks depend on c, a computation

in semiclassical AdS gravity would utilize a perturbative 1/c ∼ GN expansion. In [2], we

put the geodesic approach to use in constructing the holographic dual of the heavy-light

Virasoro blocks of [105], where one geodesic essentially backreacts on AdS to generate a

conical defect or black hole geometry. It would be worthwhile to pursue a 1/c expansion
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around the geodesic Witten diagrams more generally.

A closely related question is how to decompose an AdS3 Witten diagram into Virasoro,

rather than global, blocks. For a tree-level diagram involving light external operators like

those considered here, there is no difference, because the large c Virasoro block with light

external operators reduces to the global block [108]. It will be interesting to see whether

loop diagrams in AdS3 are easier to analyze using Virasoro symmetry.

Assorted comments The geodesic approach to conformal blocks should be useful in deriv-

ing various CFT results, not only mixed symmetry exchange conformal blocks. For example,

the conformal blocks in the limits of large τ , ` or d [151–157], and subleading corrections to

these, should be derivable using properties of AdS propagators. One can also ask whether

there are similar structures present in bulk spacetimes besides AdS. For instance, an analog

of the geodesic Witten diagram in a thermal spacetime would suggest a useful ingredient

for parameterizing holographic thermal correlators16. Perhaps the existence of a dS/CFT

correspondence suggests similar structures in de Sitter space as well.

Indeed, since this paper’s publication Geodesic Witten diagram technology has been

developed for conformal field theories with boundary [160, 161], for p-adic CFTs [162], and

– under the name Geodesic Feynman Diagrams [163,164] – for computing BMS blocks [165]

with application to flat space holography .

It is natural to wonder whether there are analogous techniques to those presented here

that are relevant for holographic correlators of nonlocal operators like Wilson loops or surface

operators, perhaps involving bulk minimal surfaces.

Let us close by noting a basic fact of our construction: even though a conformal block is

not a semiclassical object per se, we have given it a representation in terms of classical fields

propagating in a smooth spacetime geometry. In a bulk theory of quantum gravity putatively

dual to a finite N CFT, we do not yet know how to compute amplitudes. Whatever the

prescription, there is, evidently, a way to write the answer using geodesic Witten diagrams.

16It turns out that holographic torus conformal blocks can be computed by Witten diagrams without
geodesics [158,159].
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It would be interesting to understand how this structure emerges.
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CHAPTER 4

Semiclassical Virasoro Blocks from AdS3 Gravity

4.1 Introduction

Correlation functions in conformal field theories admit a decomposition in terms of conformal

blocks, obtained by using the OPE to reduce products of local operators at distinct points to

a sum of local operators at a single point, and collecting the contribution of operators lying

in a single representation of the conformal algebra; see e.g. [30–33,38,39,53,91]. This yields

a concrete algorithm to go from the basic CFT data — a list of primary operators and their

OPE coefficients — to correlation functions. The conformal blocks are fully determined by

conformal symmetry, and so are universal to all CFTs. They feature prominently in many

applications of CFT, including in the conformal bootstrap program [28,92] and in the study

of the emergence of bulk locality from CFT [15,55,100].

Given a consistent theory of gravity in AdS, one can compute correlation functions that

obey CFT axioms, and hence admit a decomposition into conformal blocks. A natural

question is: what object in AdS gravity computes a CFT conformal block? In previous

work [3] we answered this question for AdSd+1/CFTd for any d. There, an elegant prescription

was found in the case of four-point conformal blocks with external scalar operators. The main

result is that a conformal block — more precisely, a conformal partial wave — is obtained

from a “geodesic Witten diagram.” This is essentially an ordinary exchange Witten diagram

but with vertices integrated over geodesics connecting the external operators, rather than

over all of AdS. See Figure 4.2. The case of d = 2 is special because the global conformal

algebra is enhanced to two copies of the Virasoro algebra. The corresponding Virasoro

conformal blocks are much richer objects, containing an infinite number of global conformal

blocks. In the present work we address the bulk construction of the Virasoro blocks.
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Unlike the case of global blocks, Virasoro blocks depend on the central charge c of the

theory. Because we will be working in the context of classical gravity, and 1/c plays the role

of ~ in the bulk, we must restrict attention to the regime c→∞, corresponding to so-called

semiclassical Virasoro blocks. There are various ways to take this limit, corresponding to the

manner in which the operator dimensions behave as c → ∞. Two natural choices bookend

the spectrum of possibilities: either keep all operator dimensions fixed, or let all operator

dimensions scale linearly with c. As we review in Section 4.2, analytical expressions for the

Virasoro blocks have been derived at various points on this spectrum using CFT techniques.

Indeed, with a few exceptions [53,62,166], these are some of the only analytical expressions

for Virasoro blocks available.

In what follows, we will present a framework that computes all known semiclassical

Virasoro blocks using 3D gravity. Partial results on bulk derivations of Virasoro blocks are

already known [1, 22, 106], and we will incorporate and reproduce them here. One object

whose bulk dual has not been constructed as yet is the elegant formula obtained recently

by Fitzpatrick, Kaplan and Walters (FKW) [105], for the four-point conformal block in the

case that two external operator dimensions grow linearly in c, while the rest remain fixed

(see (4.2.10) and (4.2.11)). This is known as the “heavy-light limit.” By combining the

ideas of [1,22,106] with our other work on global blocks [3], we will indeed arrive at a more

complete story for the holographic construction of semiclassical Virasoro blocks. We provide

a diagrammatic overview in Figure 4.1.

Our main results can be summarized as follows. First, it is well-known that in the

c → ∞ limit with operator dimensions held fixed, the Virasoro block reduces to the global

block [54,108]. Therefore, the geodesic Witten diagram provides the bulk construction of the

Virasoro block in this simple limit. More significantly, we will reproduce the FKW result in

the heavy-light limit. The main idea is essentially to start with the geodesic Witten diagram

for the global block, and allow one of the geodesics to backreact on AdS3. This sets up

a conical defect or BTZ geometry for the remaining part of the geodesic Witten diagram

corresponding to the light operators; explicit computation leads quickly to the correct result.

(The appearance of a defect or black hole depends on whether the heavy operator dimension
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Perturbative 

heavy limit

Heavy-light limit

Global limit

Light

Heavy

Figure 4.1: The spectrum of gravity duals of large c Virasoro blocks. Operator dimensions

increase from bottom to top; hi and hp denote external and internal holomorphic operator

dimensions, respectively. In the limit of fixed dimensions, the Virasoro block becomes the

global block, represented by a geodesic Witten diagram. Upon ramping up two external

dimensions to enter the heavy-light regime, the bulk dual becomes a geodesic Witten diagram

evaluated in a conical defect geometry. Further taking the remaining dimensions to scale

with c, albeit perturbatively, one minimizes the worldline action of a cubic vertex of geodesics

in the presence of the defect. This is equivalent to making a saddle-point approximation to

the heavy-light geodesic Witten diagram. Not shown is the fully non-perturbative Virasoro

block for all heavy operators, whose form is unknown.

is above or below the black hole threshold, h = c/24.) Interpolation amongst the various

semiclassical limits may be systematically computed, in principle, by treating backreaction

effects, providing an intuitive bridge between the different regimes. We will explicitly demon-
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strate in Appendix 4.4, for instance, that the saddle-point approximation to the geodesic

Witten diagram for the heavy-light block manifestly reduces to the worldline prescription

for the perturbative heavy blocks given in [1]. This correctly interpolates between the two

regimes. We have therefore provided a bulk construction for all known semiclassical Virasoro

blocks.

4.2 Review of semiclassical Virasoro blocks

We consider a four-point function of Virasoro primary operators Oi(zi, zi) on the plane,

〈O1(z1, z1)O2(z2, z2)O3(z3, z3)O4(z4, z4)〉 . (4.2.1)

Oi has holomorphic and anti-holomorphic conformal weights (hi, hi), respectively. Using

SL(2,C) invariance, three of the operators can be taken to specified locations. It will be

convenient to thereby consider

〈O1(∞,∞)O2(0, 0)O3(z, z)O4(1, 1)〉 , (4.2.2)

where O1(∞,∞) = limz1,z1→∞ z
2h1
1 z2h1

1 O1(z1, z1) inside the correlator. A basis for the Hilbert

space of the CFT consists of the set of primary states |Op〉 (equivalently, local primary

operators Op) and their Virasoro descendants, i.e. the set of irreducible highest weight

representations of the Virasoro algebra. This implies the existence of a Virasoro conformal

block decomposition of the four-point function,

〈O1(∞,∞)O2(0, 0)O3(z, z)O4(1, 1)〉 =
∑
p

C12pC
p
34F(hi, hp, c; z − 1)F(hi, hp, c; z − 1) ,

(4.2.3)

where the sum runs over all irreducible representations of the Hilbert space. We use hi

to stand for h1,2,3,4. For simplicity, we have assumed equal left- and right-moving central

charges. The fact that the holomorphic and anti-holomorphic Virasoro algebras commute

with each other leads to holomorphic factorization for given p.

The Virasoro blocks can be conveniently defined using a projector, which we denote Pp,

acting within the Hilbert space. The s-channel Virasoro block is obtained by inserting this
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projector between the operators O2 and O3:1

〈O1(∞,∞)O2(0, 0)PpO3(z, z)O4(1, 1)〉 = F(hi, hp, c; z − 1)F(hi, hp, c; z − 1) . (4.2.4)

We refer to F(hi, hp, c; z − 1) alone as the Virasoro block.2

Unlike for global conformal blocks, no closed-form expressions for Virasoro blocks are

known, except in some very special cases [53,62,166]. We briefly mention what is known in

general. OPE considerations reveal that F(hi, hp, c; z) has the structure zhp−h3−h4f(z), where

f(z) is analytic in the unit disk. Zamolodchikov [54, 108] has provided recursion relations

allowing one to efficiently compute terms in the power series expansion of f(z) around the

origin. These recursion relations can be solved [167, 168]. The expansion coefficients are

rational functions of the conformal weights, which rapidly become extremely complicated.

The coefficients have also been computed using combinatorial methods inspired by the AGT

correspondence [169,170].

Of greater relevance here is the semiclassical limit corresponding to taking c→∞. If hi

are all held fixed in the limit, the Virasoro block simply reduces to the global block, which

is a hypergeometric function [32]:

lim
c→∞
F(hi, hp, c; z − 1) = (z − 1)hp−h3−h4

2F1(hp − h12, hp + h34; 2hp; z − 1) . (4.2.5)

where hij ≡ hi−hj. Instead, we are interested in the case in which we hold fixed some ratios

hi/c. If all ratios hi/c are held fixed in the limit, then one can apply Zamolodchikov’s mon-

odromy method (well reviewed in [22,63]) to determine the semiclassical Virasoro block. The

equations resulting from this approach turn out to be equivalent to those of 3D gravity with

negative cosmological constant; this becomes especially transparent in the Chern-Simons

formulation (see e.g. [1]). However, this is still too complicated to admit an exact solution.

Progress can be made in perturbation theory by taking h3/c, h4/c, hp/c � 1, keeping h1/c

1We won’t concern ourselves with the normalization of this function, which is fixed by matching its small
z behavior to the O1O2 and O3O4 OPEs, and throughout will freely discard any z-independent prefactors.

2In d-dimensional conventions, as in [3], this projection is better known as a conformal partial wave.
However, in 2d CFT literature, one often finds the convention used here, in which the z → 1 expansion of
the block itself starts at (z − 1)hp−h3−h4 , as opposed to (z − 1)hp .
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and h2/c finite. Results obtained in this approach can be found in [1,22,106]. The 3D grav-

ity picture in this case consists, at lowest order in the above small parameters, of particle

worldlines moving in a background geometry of the “heavy” operators h1,2. Higher orders

in perturbation theory account for the backreaction of the particles on the geometry. We

called this the perturbative heavy limit in Figure 4.1.

Let us give slightly more detail. To distinguish heavy and light operators we now write

h1 = hH1 , h2 = hH2 , h3 = hL1 , h4 = hL2 . (4.2.6)

The bulk prescription for computing the semiclassical Virasoro block to first order3 in

hL1/c, hL2/c, hp/c � 1 was first explained in [22] in the simplified case of hL1 = hL2 , hH1 =

hH2 , hp = 0, which corresponds to the vacuum Virasoro block. The heavy operators backreact

to generate the metric

ds2 =
α2

cos2 ρ

(
dρ2

α2
+ dτ 2 + sin2 ρ dφ2

)
, (4.2.7)

with φ ∼= φ+ 2π. For real α < 1, this is a conical defect solution with a singularity at ρ = 0;

for α2 < 0 it becomes a BTZ black hole after Wick rotation. This can be thought of as

representing the geometry sourced by a particle of mass m2 = 4hH1(hH1 − 1) sitting at the

origin of global AdS3, where

α =

√
1− 24hH1

c
. (4.2.8)

The “light” operators are incorporated by a geodesic in the background (4.2.7) connecting

their locations on the boundary. The appearance of geodesics makes sense because these

operators, while parametrically lighter than the heavy operators, still have hL1/c, hL2/c fixed

in the large c limit. The Virasoro vacuum block is then simply given by e−mL, where

m2 = 4hL1(hL1 − 1), and L is the geodesic length, regulated with a near boundary cutoff.

An elementary computation yields e−mL ∝
∣∣sin αw

2

∣∣−4hL1 , which is the correct result derived

from CFT [22].

3This regime can also be described as holding fixed hL1,L2,p, and then working to first order in 1/hL1,L2,p.
These two procedures turn out to agree, as discussed in [105].
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In [1] this was further generalized to allow for hL1 6= hL2 and hp 6= 0. The picture is now of

three geodesic segments, living in the geometry (4.2.7), and joined at a cubic vertex. Two of

the geodesics are anchored at the locations of OL1 and OL2 , while the geodesic corresponding

to Op stretches between the cubic vertex and the singularity at ρ = 0. The location of the

cubic vertex is found by extremizing the total geodesic action S = mpLp + m1L1 + m2L2,

and then the Virasoro block in this regime is obtained from e−S. In [1] it was explained

why this prescription works, by thinking about the relationship between Zamolodchikov’s

monodromy method and the linearized backreaction produced by these worldlines.

4.2.1 The heavy-light semiclassical limit

The case considered in the present work corresponds to

c→∞ with
hH1

c
,
hH2

c
, hH1 − hH2 , hL1 , hL2 , hp fixed . (4.2.9)

This so-called “heavy-light limit” was considered recently in [105]. By a clever use of con-

formal mappings, they were able to relate the Virasoro block in this limit to a global block,

with a result

〈OH1(∞,∞)OH2(0, 0)PpOL1(z, z)OL2(1, 1)〉 → F (hi, hp, c; z − 1)F(hi, hp, c; z − 1) ,

(4.2.10)

with

F (hi, hp, c; z − 1) = z(α−1)hL1 (1− zα)hp−hL1
−hL2 2F1

(
hp + h12, hp −

H12

α
, 2hp; 1− zα

)
,

(4.2.11)

where α was defined in (4.2.8), and

h12 ≡ hL1 − hL2 , H12 ≡ hH1 − hH2 . (4.2.12)

Note that in the definition of α it doesn’t matter whether hH1 or hH2 appears, since we are

taking (hH1 −hH2)/c→ 0 in the limit. Setting α = 1 yields the global conformal block. The

result (4.2.10) can be checked by expanding in z − 1 and matching to the series expansion

(up to some finite order).
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Our goal in the remainder of this paper is to show how to reproduce this result from

AdS3 gravity. To this end, it will also useful to rewrite the result on the cylinder, z = eiw,

with w = φ + iτ . Taking into account the usual transformation rule for primary operators,

and dropping a constant multiplicative prefactor, we have, in the heavy-light limit,

〈OH1(τ = −∞)OH2(τ =∞)PpOL1(w,w)OL2(0, 0)〉 → F(hi, hp, c;w)F(hi, hp, c;w) ,

F(hi, hp, c;w) =
(

sin
αw

2

)−2hL1 (
1− eiαw

)hp+h12

2F1

(
hp + h12, hp −

H12

α
, 2hp; 1− eiαw

)
.

(4.2.13)

4.3 Semiclassical Virasoro blocks from AdS3 gravity

4.3.1 Bulk prescription

The bulk recipe for reproducing (4.2.13) is easy to motivate once we recall some previous

results. As reviewed above and made clear in Figure 4.1, the heavy-light limit (4.2.9) sits

halfway between two other large c limits: holding all hi and hp fixed, or holding ratios hi/c

and hp/c fixed. While the bulk prescription for computing the Virasoro block in the latter

limit was just described in the previous section, the prescription for the former limit may be

extracted from more recent work [3], as we now discuss. We can thus obtain the prescription

for computing the heavy-light block as a middle ground between those known results.

Consider setting α = 1 in (4.2.13), which as noted above yields the global conformal block.

This is equivalent to holding all hi fixed as c→∞. In [3], a simple bulk setup for computing

conformal partial waves for symmetric, traceless spin-` exchange was proposed and proven in

arbitrary spacetime dimension. The picture is that of a geodesic Witten diagram, as we now

explain in the setting of AdS3/CFT2. Consider the global block corresponding to exchange

of Op. For simplicity, we take Op to be spinless, so hp = hp ≡ ∆/2. To define the geodesic

Witten diagram, we begin with an ordinary exchange Witten diagram in AdS3, where the

exchanged field is a scalar of mass m2 = ∆(∆ − 2). In the full Witten diagram, the cubic

vertices are integrated over all of AdS; to compute instead the geodesic Witten diagram, and

hence the global conformal block, we restrict the integration to the bulk geodesics γ12 and
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Figure 4.2: This is a geodesic Witten diagram in AdSd+1, for the exchange of a symmetric

traceless spin-` tensor with m2 = ∆(∆− d)− ` in AdS units, introduced in [3]. The vertices

are integrated over the geodesics connecting the two pairs of boundary points, here drawn

as dashed orange lines. This computes the conformal partial wave for the exchange of a

CFTd primary operator of spin ` and dimension ∆. When d = 2, this yields the product

of holomorphic and anti-holomorphic global conformal blocks. To compute the heavy-light

Virasoro blocks instead, we allow one geodesic to backreact, creating a conical defect.

γ34 connecting the indicated boundary points. Then the geodesic Witten diagram for scalar

exchange, denoted W∆,0, is

W∆,0(xi) =∫
γ12

dλ

∫
γ34

dλ′Gb∂(x1, y(λ))Gb∂(x2, y(λ))×Gbb(y(λ), y(λ′); ∆)×Gb∂(x3, y(λ′))Gb∂(x4, y(λ′)) ,

(4.3.1)

where λ and λ′ denote proper length. See Figure 4.2. Gb∂ and Gbb are bulk-to-boundary and

bulk-to-bulk propagators, respectively. We use the convention that x denotes a point on the

boundary, and y a point in the bulk. Up to normalization factors that can be found in [3],

(4.3.1) is equal to the corresponding product of holomorphic and anti-holomorphic global

blocks for Op exchange. This generalizes nearly verbatim to d > 2. While it is familiar that
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geodesics can appear in Witten diagrams as an approximation in the case that the mass of

the corresponding field is large, here there is no approximation: (4.3.1) is an exact expression

for fields of any mass, i.e. any operator dimensions.

Now we need to generalize this to α 6= 1. This is equivalent to taking the heavy-light limit

(4.2.9) instead of keeping all hi fixed. In the geodesic Witten diagram picture, we now want

to “scale up” the dimensions h1 and h2 with large c. This suggests a rather natural proposal:

let γ12 backreact, and evaluate (4.3.1) in the new spacetime. This is most naturally phrased

if, as in (4.2.13), we take the heavy operators to be located at past and future infinity. Then

the γ12 geodesic, which sits at ρ = 0, will backreact on the AdS3 geometry to generate a

conical defect or BTZ black hole, with metric (4.2.7). To obtain the heavy-light Virasoro

block, we still compute (4.3.1), but now with the propagators for the light operators being

defined in the conical defect metric (4.2.7) that is produced by the heavy operators.4 We

can think of this as the conical defect and light particle geodesic exchanging a bulk field

corresponding to the primary Op. This provides a pleasingly intuitive picture for the heavy-

light Virasoro block. We have drawn this setup in Figure 4.3, and in the middle frame of

Figure 4.1.

We may also reason starting from the worldline picture described in Section 4.2, which

computes the Virasoro block in the limit of fixed hi/c and hp/c. We can obtain the heavy-

light block by “undoing” the saddle-point approximation for the propagation of the light

fields hL1,L2,p, while keeping the conical defect geometry sourced by the heavy fields. This

again suggests the picture in terms of the geodesic Witten diagram in the conical defect

background. Actually, at first glance there appears to be a mismatch between the worldline

picture in [1] and the approach presented here. Namely, in [1] the worldlines of the light

fields meet at a vertex whose location is found by minimizing the total worldline action.

The location of this vertex typically does not lie on the geodesic connecting the external

light operators. By contrast, here the interactions are constrained to occur on the geodesic.

Despite this apparent difference, the results agree, as we explain in appendix 4.4.

4Actually, in the next section this statement will be refined slightly.
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OH,1(0) OH,2(∞)

hp

OL,1(z1) OL,2(z2)

z = z̄ = 0

(a) Poincaré coordinates

OH,2

OH,1

hp

OL,1
OL,2

(b) Global coordinates

Figure 4.3: Bulk setup for computing a heavy-light semiclassical Virasoro block. The heavy

operators OH1,2 set up a conical defect geometry centered at the dotted line in the bulk.

The conical defect sources a bulk field dual to the exchanged primary operator Op. The

external light operators OL1,2 interact with the bulk field along a geodesic; in particular, the

interaction vertex is to be integrated over the bulk geodesic (dashed orange line) connecting

the light operator insertion points. In the Poincaré figure, the corresponding Virasoro block

in the CFT is indicated by the dashed black lines.

In the remainder of this section we verify our prescription by direct computation, showing

how the bulk diagram reproduces (4.2.13). We will restrict to the case that all operators are

spinless, obeying h = h (in the next section we consider the case h 6= 0 and h = 0.)

4.3.2 Evaluating the geodesic Witten diagram

We now reproduce (4.2.13) using the geodesic Witten diagram in the conical defect back-

ground. Let us use CFT2 notation to denote this as W2hp,0. With the operators at the

specified configurations, we want to compute

W2hp,0(w)≡
∫ ∞
−∞

dλ

∫ ∞
−∞
dλ′Gb∂(τ1 = −∞, τ(λ))Gb∂(τ2 =∞, τ(λ))

×G(α)
bb (y(λ), y(λ′); 2hp)G

(α)
b∂ (w1 = 0, y(λ′))G

(α)
b∂ (w2 = w, y(λ′)) ,

(4.3.2)

where G(α) is a propagator in the conical defect metric (4.2.7). In the first line, we have

specifically highlighted the τ -dependence to make clear that these operators generate in- and
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out-states on the cylinder. We will assemble this integrand piece-by-piece.

We first recall a few facts. A bulk scalar field φ dual to a CFT operator O of dimension

(h, h) has mass m2 = 4h(h − 1) and obeys (∇2 −m2)φ = 0 in the absence of interactions.

The bulk-to-boundary propagator in global AdS (i.e. α = 1) is

Gb∂(x
′, y) =

(
cos ρ

cosh(τ − τ ′)− sin ρ cos(φ− φ′)

)2h

. (4.3.3)

Similarly, the scalar bulk-to-bulk propagator in global AdS, which obeys the wave equation

with a delta function source, is,

Gbb(y, y
′; 2h) = ξ2h

2F1(h, h+
1

2
, 2h; ξ2) =

e−2hσ(y,y′)

e−2σ(y,y′) − 1
, (4.3.4)

where ξ is related to the chordal distance ξ−1−1, and σ(y, y′) is the geodesic distance between

the two bulk points:

σ(y, y′) = ln

(
1 +

√
1− ξ2

ξ

)
, ξ =

cos ρ cos ρ′

cosh(τ − τ ′)− sin ρ sin ρ′ cos(φ− φ′) . (4.3.5)

In (4.3.2), we need to evaluate the propagators for the light external and internal operators

in the conical defect geometry. We will obtain these by taking the global AdS results (4.3.3)–

(4.3.5) and making the replacements τ → ατ and φ → αφ, which takes the metric to that

of the conical defect. It should be noted that this does not in fact produce the proper bulk-

to-boundary propagator for the conical defect, because the periodicity φ ∼= φ + 2π is not

respected. Therefore, the Virasoro block computed using this propagator will not be single-

valued under φ ∼= φ+2π. However, this is in fact what we want, because the Virasoro blocks

have a branch cut and are not single-valued. This branch cut will be correctly reproduced

using these non-single-valued propagators.

Having established that, we begin our calculation. The product of heavy operator prop-

agators, with endpoints anchored at past and future infinity, and evaluated at ρ = 0, is

(dropping a prefactor)

Gb∂(τ1 = −∞, τ)Gb∂(τ2 =∞, τ) = e−2H12τ . (4.3.6)

Noting that λ = ατ is proper time at the origin, (4.3.6) gives the first line of (4.3.2). For

the light external and internal operators we use the bulk-to-boundary propagator in the
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conical defect geometry, as described above. To pull them back to the geodesics we need

an expression for the geodesic itself, connecting the insertion points of the external light

operators. Consider a geodesic beginning and ending at points w1 and w2 on the boundary,

respectively. To simplify matters, we will take the two points to lie on a common time slice,

so that w12 = w1 − w2 is real. We then have

cos ρ(λ) =
sin αw12

2

coshλ
, e2iαw(λ) =

cosh(λ− iαw12

2
)

cosh(λ+ iαw12

2
)
eiα(w1+w2) . (4.3.7)

The bulk-to-boundary propagators for the light fields evaluated on the geodesic then work

out to be

G
(α)
b∂ (w1, y(λ′)) =

e−2hL1
λ′

(sin αw12

2
)2hL1

, G
(α)
b∂ (w2, y(λ′)) =

e2hL2
λ′

(sin αw12

2
)2hL2

. (4.3.8)

Plugging into (4.3.2), we set w1 = 0, w2 = w. Finally, the bulk-to-bulk propagator for the

field of dimension hp evaluated with one endpoint at ρ = 0 at time τ , and the other on the

geodesic at time τ ′ = 0, is

G
(α)
bb (y(λ), y(λ′); 2hp) = ξ2hp

2F1(hp, hp +
1

2
, 2hp; ξ

2) , ξ =
sin αw12

2

coshλ coshλ′
. (4.3.9)

Putting everything together, we get the following integral expression

W2hp,0(w) =
(
sin αw

2

)2hp−2hL1
−2hL2

∫ ∞
−∞

dλ

∫ ∞
−∞

dλ′e−
2H12
α

λ−2h12λ′(coshλ coshλ′)−2hp

× 2F1

(
hp, hp +

1

2
, 2hp;

(sin αw
2

)2

(coshλ coshλ′)2

)
.

(4.3.10)

The integrals can be evaluated by writing the series expansion of the hypergeometric function

and using some identities. This is carried out in subsection 4.3.3 and the result is

W2hp,0(w) ∝
(
sin αw

2

)2hp−2hL1
−2hL2 × 2F1

(
hp + h12, hp −

H12

α
, 2hp; 1− eiαw

)
× 2F1

(
hp + h12, hp −

H12

α
, 2hp; 1− e−iαw

)
,

(4.3.11)

which matches (4.2.13). (Recall that we have systematically dropped all normalization fac-

tors.) This is one of our main results.
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It is also illuminating to reduce the expression forW2hp,0(w) to a single integral as follows.

Consider the part of the integral depending on λ,5

ϕp(y
′) =

∫ ∞
−∞

dλGb∂(τ1 = −∞, λ
α

)Gb∂(τ2 =∞, λ
α

)Gbb(y(λ), y′; 2hp)

= α

∫ ∞
−∞

dτe−2H12τGbb(ρ = 0, τ ; y′; 2hp) . (4.3.12)

In (4.3.2), y′ is pulled back to the light geodesic, but we leave it general here. ϕp(y
′) obeys

(∇2−4hp(hp−1))ϕp = 0 away from a delta function source at ρ = 0; is rotationally invariant;

has a time dependence e−2H12τ ; and has normalizable falloff at the AdS boundary. These

properties uniquely fix ϕp, and by solving the field equation in the conical defect background

we find

ϕp(y
′) = (cos ρ′)2hp

2F1

(
hp +

H12

α
, hp −

H12

α
, 2hp; cos2 ρ′

)
e−2H12τ ′ . (4.3.13)

The geodesic corresponding to the external light operators thus propagates in the conical

defect dressed by the scalar field solution ϕp(y(λ′)) corresponding to the primary Op:

W2hp,0(w) =

∫ ∞
−∞

dλ′ ϕp(y(λ′))Gb∂(w1 = 0, y(λ′))Gb∂(w2 = w, y(λ′))

=
(

sin
αw

2

)2hp−2hL1
−2hL2

∫ ∞
−∞

dλ′e−2h12λ′−2
H12
α
λ′(coshλ′)−2hp

× 2F1

(
hp +

H12

α
, hp −

H12

α
, 2hp;

sin2 αw
2

cosh2 λ′

)
.

(4.3.14)

This formula can also be seen to reproduce (4.2.13).

To summarize the results of this section, we verified a simple bulk prescription for re-

producing the semiclassical heavy-light Virasoro block, involving a light particle geodesic

interacting with a heavy particle worldline via the exhange of a light intermediate field. To

be precise, our computation doesn’t quite allow us to extract the individual factors F and

F in (4.2.13) because of our restriction to real w. This limitation will be overcome in the

next section.

5This field solution was denoted ϕ12
∆ (y′) in [3].

123



4.3.3 Evaluating the geodesic integrals

Equation (4.3.10) above gives an integral expression which reproduces the Virasoro confor-

mal block with an exchanged scalar of conformal dimensions (hp, hp). In this appendix we

evaluate the integrals and put the result into a form that can be readily compared with the

known formula (4.2.13) for the conformal blocks.

We begin with the integral expression

I =

∫ ∞
−∞

dλe−
2H12
α

λ(coshλ)−2hp

×
∫ ∞
−∞

dλ′e−2h12λ′(coshλ′)−2hp
2F1

(
hp, hp +

1

2
, 2hp;

(sin αw
2

)2

(coshλ coshλ′)2

)
.

(4.3.15)

In terms of which equation (4.3.10) reads

W2hp,0(w) =
(
sin αw

2

)2hp−2hL1
−2hL2 × I. (4.3.16)

Notice that I receives divergent contributions from large λ or λ′ unless∣∣H12

α

∣∣ < hp and |h12| < hp. (4.3.17)

In what follows we assume that these conditions are met. A similar assumption was necessary

in [1].

We expand the hypergeometric function in powers of x ≡ sin2 αw
2

to find

I =
∞∑
n=0

(∫ ∞
−∞

dλ e−
2H12
α

λ(coshλ)−2n−2hp

)(∫ ∞
−∞

dλ′ e−2h12λ′(coshλ′)−2n−2hp

)
(hp)n(hp + 1

2
)n

(2hp)nn!
xn ,

(4.3.18)

where (h)n = Γ(h+n)
Γ(h)

is the Pochhammer symbol. Condition (4.3.17) ensures that both

integrals above are finite. They are given by∫ ∞
−∞

dλ e−
2H12
α

λ(coshλ)−2n−2hp = 22m−1B
(
m− H12

α
,m+ H12

α

)
,∫ ∞

−∞
dλ′ e−2h12λ′(coshλ′)−2n−2hp = 22m−1B (m− h12,m+ h12) ,

(4.3.19)

where B is the beta function B(p, q) = Γ(p)Γ(q)
Γ(p+q)

. Substituting for the integrals in equation

(4.3.18) and then using twice the identity

Γ(2hp + 2n) = 22nΓ(2hp)(hp)n(hp + 1
2
)n , (4.3.20)
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which follows from the Legendre duplication formula, we find

I =
24hp−2Γ(hp + H12

α
)Γ(hp − H12

α
)Γ(hp + h12)Γ(hp − h12)

Γ(2hp)Γ(2hp)

×
∞∑
n=0

(hp + H12

α
)n(hp − H12

α
)n(hp + h12)n(hp − h12)n

(2hp)n(hp)n(hp + 1
2
)nn!

xn .

(4.3.21)

We recognize the sum on the second line as the power series of a 4F3 hypergeometric function.

Let N stand for the factor in the top line multiplying this function. Then

W2hp,0(w) = N
(
sin αw

2

)2hp−2hL1
−2hL2

4F3

 hp + H12

α
, hp − H12

α
, hp + h12, hp − h12

2hp, hp, hp + 1
2

∣∣∣ sin2 αw
2

 .

(4.3.22)

To facilitate comparison with the result (4.2.13), we would like to write this 4F3 hypergeo-

metric function as a product of 2F1 functions. To that end we employ the identity

4F3

 a, b− a, a′, b− a′
b
2
, b+1

2
, b

∣∣∣ z2

4(z − 1)

 = 2F1

(
a, a′, b; z

)
2F1

(
a, a′, b;

z

z − 1

)
, (4.3.23)

which is valid when z /∈ {1,∞}. Using this identity with

z = 1− eiαw , a = hp + h12 , a′ = hp − H12

α
, b = 2hp , (4.3.24)

one finds

W2hp,0(w) = N
(
sin αw

2

)2hp−2hL1
−2hL2 × 2F1

(
hp + h12, hp −

H12

α
, 2hp; 1− eiαw

)
× 2F1

(
hp + h12, hp −

H12

α
, 2hp; 1− e−iαw

)
,

(4.3.25)

which matches (4.2.13). This is the result (4.3.11) quoted above.

4.4 Recovering the worldline approach

In previous work [1] we presented a bulk construction for conformal blocks in a special case

of the heavy-light limit (4.2.9) considered here. Here we show how that construction arises

as a saddle point approximation to the present, more general one.
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Specifically, we worked to first order in the limit where hL1 , hL2 , hp are large, and in

addition assumed hH1 = hH2 . In that case we showed the Virasoro conformal partial wave,

W , to be W ∝ e−2Sfree , where Sfree is found by minimizing the action

S = hL1LL1 + hL2LL2 + hpLp (4.4.1)

of a configuration of worldlines in the conical defect background. The worldlines Li originate

at the external light operators’ positions, worldline p originates at the conical defect, and

all three meet at a cubic vertex in the bulk. Here Lp is the length of worldline p and LLi

is the length of worldline Li regularized by putting the boundary points at large but finite

distance from the origin.

The subscript “free” on Sfree is meant to emphasize that the vertex joining worldlines

L1, L2, p is unconstrained: it will go wherever in the bulk it needs to go in order to make S

as small as possible, and in particular it need not lie on the geodesic connecting the light

operators’ positions.

Meanwhile, in the present approach, setting hH1 = hH2 and taking hL1 , hL2 , hp large, the

geodesic Witten diagram (4.3.1) becomes

W ∝
∫
dλ

∫
dλ′e−2S(y(λ),y(λ′)) , (4.4.2)

where S(y(λ), y(λ′)) is the action of the worldline configuration in which the vertex joining

L1, L2, p is located at y(λ) and the one joining p to the defect is located at y(λ′). With

the light operator dimensions large, S is large, and the leading behavior of the integral in

(4.4.2) is dominated by the immediate neighborhood of the point (λ, λ′) that minimizes S.

Therefore

W ∝ e−2Sgeo[hL1
, hL2

, hp] , (4.4.3)

with Sgeo found by minimizing the worldline action (4.4.1) with respect to the positions of

the two cubic vertices, but now with both vertices constrained to lie on their respective

geodesics.

Clearly Sgeo and Sfree are different (and Sgeo > Sfree). Nevertheless, the two prescriptions

W ∝ e−Sfree and W ∝ e−Sgeo are in fact the same up to overall normalization, because the
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difference between Sfree and Sgeo is a constant, independent of the operator locations, as we

will now show.

4.4.1 Equivalence of the minimization prescriptions

Agreement between the prescriptions follows from the following two observations. Here h is

some positive number:

(a) Sfree[hL1 , hL2 , hp] = Sfree[hL1 + h, hL2 + h, hp]− Sfree[h, h, 0], up to a constant.

(b) Sgeo[hL1 , hL2 , hp] = Sfree[hL1 +h, hL2 +h, hp]−Sfree[h, h, 0] in the limit h� hL1 , hL2 , hp.

It is easy to see that (a) and (b) together imply Sfree = Sgeo up to a constant, as desired.

We work on the cylinder. Property (a) can be read off from the expression obtained in [1]

for Sfree as a function of the separation w12 between the light external operators:

Sfree[hL1 , hL2 , hp] = (hL1 + hL2) log sin
αw12

2
+ hp arctanh

hp cos αw12

2√
h2
p − (hL2 − hL1)2 sin2 αw12

2

− |hL2 − hL1| log

(
|hL2 − hL1 | cos αw12

2
+
√
h2
p − (hL2 − hL1)2 sin2 αw12

2

)
+ constant .

(4.4.4)

Only the first term and the constant change upon substituting hL1,2 → hL1,2 + h and the

change in the first term is precisely Sfree[h, h, 0].

Proceeding now to prove (b), we start from the fact that when h is much larger than

hL1 , hL2 , hp the function

S = (hL1 + h)LL1 + (hL2 + h)LL2 + hpLp (4.4.5)

is minimized when the total length of worldlines L1 and L2 is as small as possible, i.e. when

their union is a geodesic. The location of the vertex is then found by minimizing S subject

to that constraint. Therefore in the limit h� hL1 , hL2 , hp

Sfree[hL1 + h, hL2 + h, hp] = Sgeo[hL1 + h, hL2 + h, hp] . (4.4.6)
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Now, the position of the intersection vertex that gives Sgeo depends on the light operator

dimensions only through their difference, and a shift of both dimensions by the same amount

h merely shifts Sgeo by h(LL1 + LL2). Thus equation (4.4.6) is equivalent to

Sfree[hL1 + h, hL2 + h, hp] = Sgeo[hL1 , hL2 , hp] + h(LL1 + LL2) , (4.4.7)

and (b) follows from the fact that Sfree[h, h, 0] = h(LL1 + LL2).

4.5 Final comments

We conclude with a few remarks.

At a purely technical level, one aspect of our scalar field computation that could be

improved would be to relax the reality condition on w. This would allow us to cleanly

separate the individual chiral blocks from their product. This is straightforward in principle,

but it turns out to be technically challenging to evaluate the resulting integrals in this case.

We also mentioned some technical subtleties with our higher spin calculation in the main

text.

Moving into more novel territory, our techniques may be combined with gravitational

perturbation theory to derive new results away from the strict limits considered so far. For

instance, the semiclassical heavy-light Virasoro block is the leading term in a 1/c expansion

of the exact Virsaoro block expanded around the limit (4.2.9). These 1/c corrections can be

worked out explicitly in a power series expansion in 1 − z using Zamolodchikov’s recursion

relation, or the more efficient recursion relation of [105] adapted to the heavy-light limit

specifically. See [1] for some explicit results, and [167] for closed-form, albeit complicated,

expressions for coefficients at any order in 1/c. These results should correspond to quantum

fluctuations of the background geometry. It would be interesting to try to reproduce these

from a bulk analysis.

Similarly, it would also be interesting to see how the simple relation between the global

and Virasoro blocks is modified at subleading orders in 1/c, in the global limit of large c

with dimensions fixed. This may be computed in the bulk by incorporating graviton loop
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corrections to the AdS3 geodesic Witten diagram.

It would be natural to generalize the heavy-light limit to CFTs with W -symmetry. Semi-

classical WN conformal blocks for vacuum exchange have been computed in [60] with all

charges scaling with c in some manner; it would be useful to loosen that requirement.

An important open question in the world of Virasoro blocks is whether there is a compact

form for the semiclassical Virasoro block where all operator dimensions scale linearly with c.

This is the limit usually considered in the context of Liouville theory. Whatever the answer

for this block, the expectation is that its bulk dual involves a spacetime with interacting

conical defects, not unlike a multi-centered black hole solution. This connection can be seen

via the correspondence between Zamolodchikov’s monodromy equations and the Einstein

equations expressed in Chern-Simons form; see e.g. [1, 60]. Understanding this picture in

detail, and what it implies for various questions in CFT – e.g. two-interval Rényi entropies

[64,65] – would be very interesting.
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