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Abstract

Modern randomization methods in clinical trials are invariably adaptive,

meaning that the assignment of the next subject to a treatment group uses the

accumulated information in the trial. Some of the recent adaptive randomiza-

tion methods use mathematical programming to construct attractive clinical

trials that balance the group features, such as their sizes and covariate distribu-

tions of their subjects. We review some of these methods and compare their

performance with common covariate-adaptive randomization methods for

small clinical trials. We introduce an energy distance measure that compares

the discrepancy between the two groups using the joint distribution of the sub-

jects' covariates. This metric is more appealing than evaluating the discrepancy

between the groups using their marginal covariate distributions. Using numer-

ical experiments, we demonstrate the advantages of the mathematical pro-

gramming methods under the new measure. In the supplementary material,

we provide R codes to reproduce our study results and facilitate comparisons

of different randomization procedures.

KEYWORD S
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1 | INTRODUCTION

The statistics literature is replete with randomization methods for clinical trials. Their main goal is to ensure that sub-
jects are as comparable as possible between the treatment groups under study, so that inferences about the treatment
effects are not biased by differences between the groups. In recent decades, adaptive randomization methods1 have been
increasingly used to achieve greater statistical efficiency and reduce costs for conducting a clinical trial. These methods
assign subjects to treatment groups as they enroll in the trial using the accumulated data at hand.

Adaptive randomization methods are classified into three groups: covariate-adaptive, response-adaptive, and covari-
ate-adjusted response-adaptive (CARA) methods.1 Covariate-adaptive methods balance the distributions of the
covariates (prognostic factors) of the subjects across the treatment groups. Response-adaptive methods use
the responses from subjects who have received treatment to assign future subjects to treatment groups that appear to be

Received: 6 June 2023 Revised: 6 February 2024 Accepted: 26 March 2024

DOI: 10.1002/pst.2388

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Authors. Pharmaceutical Statistics published by John Wiley & Sons Ltd.

794 Pharmaceutical Statistics. 2024;23:794–812.wileyonlinelibrary.com/journal/pst

https://orcid.org/0000-0002-3658-0911
https://orcid.org/0000-0001-5568-3054
mailto:wkwong@ucla.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/pst


increasingly effective. CARA methods combine the ideas of covariate- and response-adaptive methods to generate the
treatment groups of a clinical trial. We refer to Rosenberger and Sverdlov2 and Rosenberger et al.3 for complete reviews
of these methods.

In this article, we study covariate-adaptive randomization methods to balance continuous covariates in small clini-
cal trials with two treatment groups (i.e., two-arm clinical trials). These trials arise in practice due to budget limitations
or because the disease under study is rare. They also arise due to ethical and physiological considerations that may be
involved in specific cohorts of subjects, such as infants4 or minority groups.5 Evans and Ildstad,6 Suresh,7 and Hoare
et al.8 discussed challenging issues of the design and analysis of small clinical trials. Our takeaway is that these
trials are practically relevant but their challenges are much less addressed in the literature.

A novelty of our study is that we use mathematical programming (MP; Bradley et al.9) to design clinical trials. MP is
a systematic approach to optimizing an objective function in terms of decision variables that must satisfy a set of con-
straints. For this reason, it has been used frequently in engineering, operations research, and recently in the construc-
tion of various optimal designs for linear and nonlinear models10–15 and fractional factorial designs,16,17 as well as for
analyzing data from screening experiments.18,19

In the MP literature, there are three adaptive randomization methods introduced by Williamson et al.,20 Bertsimas
et al.,21 and Bhat et al.22 The method of Williamson et al.20 is response-adaptive and assigns subjects to treatment
groups using a pre-computed assignment sequence, which maximizes the expected number of correct assignments
throughout the clinical trial. The method of Bertsimas et al.21 is covariate-adaptive and balances continuous covariates
by matching the means and variances of their marginal distributions between groups. The method of Bhat et al.22 is also
covariate-adaptive and balances continuous covariates by minimizing the prediction variance of a linear regression
model containing the treatment and covariate effects. An attractive feature of these methods is that they use the cumu-
lative information on the covariate values of the subjects already in the trial to randomize the next patient.

In this article, we compare the MP method of Bertsimas et al.21 with covariate-adaptive randomization methods that
fall within the minimization framework (Section 2). We chose the method of Bertsimas et al.21 over the method of Bhat
et al.22 because the former is model-free. In contrast, the method of Bhat et al.22 assumes a linear model a priori, which
may be incorrect, and consequently result in a suboptimal allocation scheme. To our knowledge, our comparison
between minimization methods and Bertsimas et al.21 method is new.

We compare the methods using two real two-arm clinical trials with up to 20 subjects and two or three continuous
covariates. The performance of covariate-adaptive methods for such small trials is not addressed in the literature and
so, our study fills that gap. Additionally, we propose a new measure of imbalance between two groups called the energy
distance,23 which compares the joint distribution of the covariates of the subjects. Our measure is more general than
the current ones that aim to balance the marginal distributions of each covariate across groups. We conclude that MP
methods are more attractive than standard covariate-adaptive methods for balancing the covariate distributions and
group sizes in the small two-arm clinical trials we considered. We also show that all methods fail to balance at least one
covariate in each trial, calling for method improvements for these cases. To facilitate the evaluation of the methods, we
provide R codes to produce the results in the paper and may also be used to evaluate other methods.

The remainder of the article is organized as follows. In Section 2, we review representatives of covariate-adaptive
methods to balance continuous covariate distributions in two-arm clinical trials. In Section 3, we present the method of
Bertsimas et al.21 and, in Section 4, we compare it with those representatives using two real clinical trials. In Section 5,
we conclude with remarks and future work directions to further investigate the utility of MP as a competitive way of
randomization in clinical trials.

2 | MINIMIZATION METHODS

Covariate-adaptive randomization methods are categorized into three groups: Stratified-block randomization, dynamic
hierarchical randomization, and minimization.24 Stratified-block randomization methods25 are two-stage procedures in
which subjects who enter the clinical trial are first assigned to a stratum using their covariates' values. Within each stra-
tum, subjects are assigned to a treatment according to a randomization procedure, such as permuted-block randomiza-
tion.1 Dynamic hierarchical randomization26 balances the subjects' covariates following a user-specified order of
importance. That is, a subject is assigned to a treatment group to balance the most important covariates first and then
the least important ones. Minimization methods27 sequentially assign subjects to treatments to balance all covariates
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simultaneously. Specifically, they assign a subject to the treatment group that would achieve the smallest degree of
imbalance across all covariates of the subjects in the trial.

We focus on minimization methods for clinical trials with two treatments and continuous covariates. These
methods can be further classified into two types depending on whether a linear regression model is assumed to link the
mean response to the treatments and the subjects' covariates. A method that makes such an assumption is introduced
by Atkinson.28–31 This method seeks the allocation of subjects to groups that minimizes the variance of the estimated
treatment effect in the linear regression model. Another method of this type is Bhat et al.22 discussed previously. To
limit the scope of this article, we do not include these methods in our study. Instead, we concentrate on minimization
methods that do not assume a linear regression model. In particular, we study the methods of Pocock and Simon,32

Nishi and Takaichi,33 and Ma and Hu,34 which are important model-free minimization methods.
We first discuss the general minimization framework. Next, we present the discrepancy measures used by Pocock

and Simon,32 Nishi and Takaichi,33 and Ma and Hu,34 and then the allocation rule for new subjects.

2.1 | The general framework

Minimization methods balance the marginal distributions of the covariates in the groups by minimizing a discrepancy
measure. To sequentially allocate a total of N subjects with p covariates, minimization methods undertake the steps
below.

Step 1. Recruit n0 <N initial subjects and allocate them into one or two groups.
Step 2. For each new subject to be included in the trial, do the following:

a. Construct two potential sets of groups by hypothetically assigning the new subject to groups one and two. In
one set, group one contains the subject, while in the other set, group two contains that subject. Using a discrep-
ancy measure, compare the two sets of groups in terms of the resulting marginal distributions of the
covariates.

b. Using the value of the discrepancy measure, determine the allocation of the subject.
c. Update the treatment groups and re-start Step 2.

Step 3. Terminate if N subjects have been in the trial.

In Step 1, the value of n0 can be as small as one for some minimization methods, such as Pocock and Simon.32 In
this case, we randomly assign the initial subject to a group. More elaborate minimization methods, such as Nishi and
Takaichi33 and Ma and Hu,34 need larger values of n0 and an initial allocation to both groups. This may be achieved
using random allocation or permuted-block randomization,1 which ensures that each group has the same number of
subjects. In this way, these methods equipoise the two groups at the beginning of the sequential allocation process in
Step 2.

In small clinical trials, the value of n0 should not be too large because the initial allocation method in Step 1 will
overtake the covariate-adaptive allocation in Step 2, limiting the gain in balancing the covariates. Finding the best value
of n0 is a practically relevant but challenging problem that we do not address here. Instead, we follow Ma and Hu34 and
use permuted-block randomization with blocks of size n0=2 and n0 ¼ 8 for all minimization methods discussed here.

2.2 | Discrepancy measures

A discrepancy measure allows us to determine the assignment of the t-th subject (n0 < t≤N) given that the previous
t�1 subjects have already been assigned to the treatment groups. In what follows, we denote the treatment group as
k� 1,2f g and the p subjects' covariates as Wj, j¼ 1,…,p. The sizes of groups one and two before allocating the t-th sub-
ject are n1 and n2, respectively.

2.2.1 | Difference in covariate groups

The discrepancy measure of Pocock and Simon32 uses the difference between the number of subjects with a specific
covariate value in the two groups. To use this measure, we first transform each continuous covariate Wj into a discrete
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variable, denoted by Zj, with a user-specified number of categories. For simplicity, we assume that all transformed
covariates Zj have c categories, which can be created using the quantiles of the distribution of Wj at probabili-
ties 1=c,2=c,…, c�1ð Þ=c.

Let njlk be the number of subjects in group k whose covariate Zj is at level l� 1,…,cf g, before allocating the t-th sub-
ject. We denote the categories of the covariates of the t-th subject as r1,r2,…,rp, and let njrjk be the number of subjects
in group k with Zj in category rj, before allocating the subject. Pocock and Simon32 calculate the individual discrepancy
between the two groups for the j-th covariate as

ΔdPSj ¼ njrj1þ1
� ��nj,rj2

�� ��� njrj1� nj,rj2þ1
� ��� ��:

A value of ΔdPSj smaller than zero means that the allocation of the t-th subject to group one is better than that to
group two. In this case, the difference between the number of subjects in category rj in the groups is smaller than the
difference that would be obtained if the subject were assigned to group two. If ΔdPSj is larger than zero, assigning the
t-th subject to group two is preferred. This is because this assignment reduces the gap between the number of subjects
with covariate Zj in category rj in the groups, compared to assigning the subject to group one. Specifically, the discrep-
ancy measure of Pocock and Simon32 computes the overall imbalance among all covariates using

DPS ¼
Xp
j¼1

ΔdPSj : ð1Þ

2.2.2 | Difference in means and variances

Nishi and Takaichi33 compare the mean and standard deviation of the marginal distributions of the covariates in the
two groups. Before allocating the t-th subject, we consider Wjk and Sjk as the mean and standard deviation, respectively,
of the j-th covariate in group k. For this covariate, we define the grand mean, Wj • , and grand standard deviation, Sj • ,
across the current groups as

Wj • ¼n1Wj1þn2Wj2

n1þn2
andSj • ¼

n1�1ð ÞS2j1þ n2�1ð ÞS2j2
n1þn2�2

 !1=2

:

To assess the benefit of adding the t-th subject to a group, we calculate the hypothetical mean and standard devia-
tion for the two groups including the subject. More specifically, we define W

þð Þ
j1 and W

þð Þ
j2 as the group means of the

j-th covariate given that the t-th subject is included in groups one and two, respectively. The group standard deviations,
S þð Þ
j1 and S þð Þ

j2 , of the j-th covariate are defined similarly. If group one includes the subject, the grand mean and grand
standard deviation across the groups would be updated with

W
1ð Þ
j • ¼ n1þ1ð ÞW þð Þ

j1 þn2Wj2

n1þn2þ1
andS 1ð Þ

j • ¼ n1S
þð Þ2
j1 þ n2�1ð ÞS2j2
n1þn2�1

0
@

1
A

1=2

:

If group two includes the subject, the updated mean and standard deviations are defined similarly and denoted as
W

2ð Þ
j • and S 2ð Þ

j • , respectively. That is, the coefficients of Wj2 and S2j2 in W
2ð Þ
j • and S 2ð Þ

j • carry the extra one.
Nishi and Takaichi33 measure the goodness of allocation of the t-th subject to group k in terms of the j-th covariate

using the function:

dj kð Þ¼jW þð Þ
jk �W

kð Þ
j • j � jWjk�Wj • j þ j S þð Þ

jk �S kð Þ
j • j � j Sjk�Sj • j : ð2Þ

The first two elements on the right-hand side of (2) are the absolute distance between the new mean of group k and
the new grand mean if subject t is in group k, and the absolute distance between the current mean of group k and the
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current grand mean. A small difference between these elements is preferred because this indicates that the mean of
group k with the new subject is closer to the grand mean. The last two elements of (2) are the absolute distance between
the new group-specific and grand standard deviations if subject t is in group k, and the absolute distance between the
current group-specific and grand standard deviations. Ideally, the difference between these elements is small too, as it
implies that the standard deviation of group k with the new subject is close to the grand standard deviation.

We define the individual discrepancy in the j-th covariate as ΔdNTj ¼ dj 1ð Þ�dj 2ð Þ. A positive value of ΔdNTj means
that assigning the t-th subject to group two reduces the gap between the mean and standard deviations of the distribu-
tions of covariate j in the two groups, compared to assigning the subject to the other group. A negative value of Δdj
means that the assignment of the t-th subject to group one results in the smallest gap.

The overall discrepancy measure of Nishi and Takaichi33 is

DNT ¼
Xp
j¼1

ΔdNTj þn1�n2

n1þn2
, ð3Þ

where the last term promotes subject assignments that create equal group sizes. So, the smaller the value of this term,
the closer n1 is to n2.

2.2.3 | Difference in distributions

The discrepancy measure of Ma and Hu34 compares the marginal distributions of the covariates in the two groups using
a Kernel density estimate.35 It is assumed that the covariates of the subjects in the trial are standardized to have a mean
of zero and a variance of one. The estimated density function for covariate Wj in group k is given by

f̂ jk wð Þ¼ 1
nkh nkð Þ

Xnk
i¼1

K
w�w0

ijk

h nkð Þ
� �

where K uð Þ is the Kernel function, h vð Þ the bandwidth function, and w0
ijk the j-th covariate value of the i-th subject in

group k in the standardized scale. Note that the density function is estimated using the covariate values of the t�1 sub-
jects already in the trial. Ma and Hu34 use the bandwidth function h vð Þ¼ v�0:2 and the normal Kernel
K uð Þ¼ 2πð Þ�1=2 exp �u2=2ð Þ.

For the t-th subject, the following function defines an individual discrepancy in Wj:

ΔdMH
j w0

tj

� �
¼ n1

n
f̂ j1 w0

tj

� �
�n2

n
f̂ j2 w0

tj

� �
, ð4Þ

where w0
tj is subject t

0
s j-th covariate value on the standardized scale. Equation (4) can then be interpreted as a weighted

difference between the probability that the j-th covariate value of the t-th subject comes from treatment one or two,
where the weights are the proportions of the groups. For example, if the groups are balanced and ΔdMH

j w0
tj

� �
>0, the

j-th covariate value of the new subject is more likely to follow the covariate distribution of group one, and therefore its
allocation to group two is preferred to balance the distributions. If ΔdMH

j w0
tj

� �
<0, the j-th covariate value of the new

subject is more likely to follow the covariate distribution of group two and so, its allocation to group one is preferred.
The overall discrepancy measure of Ma and Hu34 for all covariates is

DMH ¼
Xp
j¼1

ΔdMH
j w0

tj

� �
: ð5Þ

2.3 | Decision rule

In the minimization framework, the final allocation of the new subject is typically determined using the biased-coin
strategy of Efron.36 To this end, we first set a user-specified probability, P0, ranging from 1/2 to one. Next, we assign the
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new subject to group one or two with probability P and 1�P, respectively, where P depends on P0 and D, the discrep-
ancy measure value of the subject. Specifically, we have that

P¼
P0 if D<0,

1�P0 if D>0,

1=2 otherwise,

8><
>: ð6Þ

where we compute D using either (1), (3), (5), or (10) for the method of Bertsimas et al.21 discussed later.
The biased-coin strategy allows a minimization method to have randomness in allocating subjects to groups and

maintain approximately balanced groups in terms of the covariates.37 Allocation randomness reduces the possibility
that the user, say, a physician, knows the allocation rule in advance and interferes with it. For example, the user may
ignore the rule and assign the subject to the treatment that, in the user's opinion, would benefit the subject. In this case,
the user commits selection bias,1 which may invalidate the statistical conclusions of the trial.

If P0 ¼ 1=2 in (6), the assignment of the subject to a group is completely random, thus avoiding selection bias. How-
ever, this value can cause a severe imbalance in the covariates between the groups at the end of the recruitment. A
value of P0 equal to one results in groups with balance in their covariates, but a high risk of selection bias. This is
because the assignment is deterministic when the discrepancy measure value of the subject differs from zero. A value of
P0 between 1/2 and one is thus ideal as it gives the trade-off between covariate balance and allocation randomness. The
value should be such that it biases the assignment towards the best group according to the discrepancy measure
(to promote covariate balance) and provides a good degree of allocation randomness (to mitigate selection bias). Based
on the simulation study of Toorawa et al.38 on minimization methods, we use P0 ¼ 0:8 unless otherwise stated.

3 | A MINIMIZATION METHOD ROOTED IN MATHEMATICAL
PROGRAMMING

The covariate-adaptive method of Bertsimas et al.21 consists of solving a subclass of MP problems called mixed-integer
programming (MIP) problems.39 In a MIP problem, the goal is to determine the values of a set of discrete and continu-
ous decision variables to optimize a linear objective function while satisfying a set of constraints. A MIP problem for-
mulation has the form:

max x cTx ð7aÞ

subject to

Gx¼ b, ð7bÞ

Hx≤d, ð7cÞ

xi �ℤ, 8i�J ,

where x¼ x1,x2,…,xnð ÞT is an n�1 vector of decision variables, c is an n�1 constant vector, G is an m1�n constant
matrix, H is an m2�n constant matrix, b is an m1�1 constant vector, d is an m2�1 constant vector, and J is a non-
empty set of indices.

The above formulation is general and can be adapted to reflect the objective of a clinical trial. For example, in the
context of non-adaptive designs for two-arm clinical trials, the entries of x can take the value xi ¼ 1 if the i-th subject is
assigned to group one, and the value �1 otherwise. If n is even, the equality constraint in (7b) can indicate that the
group sizes are equal to n=2. This can be done by setting b¼ 0 and G¼ 1Tn , where 1n is the n�1 vector with all entries
equal to 1. If n is odd, (7c) can indicate that the absolute difference in the group sizes does not exceed one. We can
achieve this by setting d¼ 12 and H to the 2�n matrix 1n;�1nð ÞT . In this case, we should also set G¼ 0Tn to remove
(7b), where 0n is the n�1 vector with all entries equal to 0. A goal of the MIP problem may be to balance the average
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of the values of a covariate between the groups. To this end, the i-th entry of c in (7a) is set to the covariate value of the
i-th subject. The solution to this MIP problem is then the assignment of subjects to groups that minimizes the difference
between the average covariate values between them and satisfies the constraints.

Commercial optimization software such as GUROBI, MOSEK, and BARON can solve several types of MIP problems
using state-of-the-art optimization techniques.40 Throughout the solution process, the software provide both the best
feasible solution and the best bound for the objective function's optimal value obtained so far. If the objective value of
the best solution is equal to the best bound, the solution is optimal.

We present the covariate-adaptive randomization method of Bertsimas et al.21 and show that it falls within the min-
imization framework in Section 2.1. This close link between MP and minimization methods is new to the literature.

3.1 | Incorporating prior information on the covariates of future subjects

We denote the p�1 covariate vector of the i-th subject as wi ¼ wi1,wi2,…,wip
� �T

, where wij is the j-th covariate value of
this subject. We define the p�1 sample mean vector wt and the p�p empirical covariance matrix Σt of the covariate
vectors available before allocating the tþ1ð Þ-th subject as:

wt ¼ 1
t

Xt
i¼1

wi andΣt ¼ 1
t

Xt
i¼1

wi�wtð Þ wi�wtð ÞT :

To incorporate prior information on future subjects, Bertsimas et al.21 define the unknown covariate vectors for
these subjects as ~wi and their entries as ~wij, with i¼ tþ1,…,N and j¼ 1,…,p. These vectors are collected in the
p� N� tð Þ covariate matrix ~W¼ ~wtþ1; � � �; ~wN½ � that belongs to the set

U ~W ¼ ~W�ℝp� N�tð Þ j ~wi ¼wtþ Σtð Þ1=2ϵi, i¼ tþ1,…,N , E�UE

n o
,

where the p�1 vector ϵi ¼ ϵi1,…,ϵip
� �T

contains a random perturbation to the j-th covariate value of the i-th subject,
denoted by ϵij. The p� N� tð Þ matrix E¼ ϵtþ1; � � �;ϵN½ � that collects all perturbation vectors belongs to the uncer-
tainty set:

UE ¼ E�ℝp� N�tð Þ j Ek k2 ≤Γ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N� tð Þp

pn o
,

where Ek k2 is the Frobenious norm of E.
The tuning parameter Γ in UE controls how diffuse the information on the future subjects' covariate vectors is, with

respect to the covariate vectors of the subjects in the trial. A small Γ value implies that the covariate vectors of the
future subjects will be close to the covariate vector of the “average” subject in the trial. A large Γ value implies that
future subjects' covariate vectors may heavily depart from this subject. Bertsimas et al.21 suggest to choose a value of Γ
between 1/2 and four. This recommendation is supported by their numerical experiments involving real and synthetic
clinical trials.

3.2 | Problem formulation

The problem formulation of Bertsimas et al.21 for covariate-adaptive allocation determines the assignments of current
and future subjects that minimize the absolute difference in the means and variances of the covariates between the two
treatment groups. It is assumed that N is even and that both groups will end up with N=2 subjects. In their problem for-
mulation, the assignment of the i-th subject to a group is expressed using the binary decision variable xi, where
i¼ t,…,N . The variable xi takes the value of one if and only if the subject is assigned to group one. Otherwise, it takes a
value of zero, and the subject is assigned to group two. Regarding the subjects already in the trial, we also denote their
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group allocations using binary variables. Specifically, we use the binary variable x̂i which takes a value of one or zero if
and only if the subject is in group one or two, respectively, where i¼ 1,…, t�1.

Before allocating the t-th subject, we consider the mean of the j-th covariate from group k, denoted by Wjk, which
would be obtained at the end of the recruitment of subjects. Using the binary encoding for the group assignments, the
difference in the mean of the j-th covariate between the groups is

Wj1�Wj2 ¼ 2
N

Xt�1

i¼1

wij 2x̂i�1ð Þþwtj 2xt�1ð Þþ
XN
i¼tþ1

~wij 2xi�1ð Þ
( )

:

Bertsimas et al.21 compute an approximated variance of the j-th covariate under group k, denoted by Vjk, which
would be obtained at the end of the assignment of subjects. In this approximation, the covariate vectors are centered
around the j-th entry of the vector wt, instead of the mean vector of all subjects in the trial. In this way, we limit the
amount of uncertainty in the calculations of the group variances produced by the unknown covariate vectors of future
subjects. The difference between approximated variances of the j-th covariate under groups one and two is

Vj1�Vj2 ¼ 2
N

Xt�1

i¼1

wij�wtj
� �2

2x̂i�1ð Þþ wtj�wtj
� �2

2xt�1ð Þþ
XN
i¼tþ1

~wij�wtj
� �2

2xi�1ð Þ
( )

,

where wtj is the j-th entry of wt .
The problem formulation to obtain the optimal assignment of the t-th subject is

minx,W,V

Xp
j¼1

W 0
j • þρVj • ð8aÞ

subject to

W 0
j • ¼jWj1�Wj2 j , j¼ 1,…,p, 8 ~W�U ~W : ð8bÞ

Vj • ¼jVj1�Vj2 j , j¼ 1,…,p, 8 ~W�U ~W ð8cÞ

Xt�1

i¼1

x̂iþ xtþ
XN
i¼tþ1

xi ¼N
2
, ð8dÞ

xi � 0,1f g, i¼ t,…,N : ð8eÞ

This problem formulation has N� t binary decision variables in x¼ xt,xtþ1,…,xNð ÞT , 2p continuous decision vari-

ables in W¼ W 0
1 • ,W

0
2 • ,…,W 0

p •

� �T
and V¼ V1 • ,V 2 • ,…,Vp •

� �T
, 2p constraints involving the unknown covariate vec-

tors ~w in (8b) and (8c), and a linear constraint in (8d). Technically, the problem formulation is a robust MIP problem,41

because the values of some of the elements of (8b) and (8c) are uncertain.

The objective function in (8a) is a weighted sum of the absolute differences in the means and the approximated vari-
ances between the groups for all covariates. The weights are determined by the tuning parameter ρ, which controls the
trade-off between the imbalance in the group means and the approximated group variances. A large value of ρ empha-
sizes a close match between the approximated variances of the group in the covariates, while a small value emphasizes
a close match between the means of the groups.

The constraints in (8b) and (8c) give the absolute differences between the group means and the approximated group
variances of the covariates, respectively. The constraint in (8d) states that the size of group one must be N=2 at the end
of the trial. It also implies that the size of group two must also be N=2. The constraints contained within (8e) ensure
that the decision variables xi are binary.
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3.3 | Reformulation as a minimization method

Bertsimas et al.21 show that the problem formulation in (8a)–(8e) can be reformulated as a standard MIP problem,
whose solution involves the evaluation of two feasible solutions only. More specifically, we need to evaluate the two sets
of potential groups that would result if the t-th subject is allocated to group one or two. Here, we show that the covari-
ate-adaptive randomization method of Bertsimas et al.21 is actually a minimization method.

To see this, we first let vj be the j-th row of Σtð Þ1=2. In the alternative problem formulation of Bertsimas et al.,21 the
absolute difference between the group means for the j-th covariate in (8b) reduces to

N
2
W 0

j • ¼
Xt�1

i¼1

wij�wtj
� �

2x̂i�1ð Þþ wtj�wtj
� �

2xt�1ð Þ
�����

�����þΓ vj


 



2 N� tð Þ ffiffiffi
p

p
, ð9Þ

where xt � 0,1f g is the only decision variable. The uncertainty in the covariate values of future subjects is in the last
term of (9).

The expression for the absolute difference between the approximated group variances in the j-th covariate (Vj • ) is
slightly more complicated; see Bertsimas et al.21 There is one expression for the case where p¼ 1, and another for the
case where p≥ 2. We adopt the latter because our focus is on balancing several covariates simultaneously. In this case,
Vj • is the maximum of the quantities:

2
N

Xt�1

i¼1

wij�wtj
� �2

2x̂i�1ð Þþ wtj�wtj
� �2

2xt�1ð Þþ ~Γ vj


 

2

2 I k�n1� xt�1ð Þ

and

� 2
N

Xt�1

i¼1

wij�wtj
� �2

2x̂i�1ð Þ� wtj�wtj
� �2

2xt�1ð Þ� ~Γ vj


 

2

2 I k�n2� xt�1ð Þ,

where ~Γ¼Γ2 N� tð Þp, n1 ¼
Pt�1

i¼1 x̂i, n2 ¼ t�1�Pt�1
i¼1 x̂i, and I zð Þ is an indicator function that equals one if z≥ 0 and

zero otherwise. As with the difference in group means, the only decision variable in these expressions is xt and the
uncertainty in the future covariate values is in their last terms.

Since the minimization of Vj • is straightforward, Bertsimas et al.21 use the difference in the group (approximated)
standard deviations instead, so as to put the two competing objectives on the same scale and facilitate an intuitive
choice of the tuning parameter ρ. Therefore, the discrepancy measure of these authors is

DB ¼
Xp
j¼1

W 0
j • þρ

Xp
j¼1

V1=2
j • : ð10Þ

Using numerical experiments, Bertsimas et al.21 found that ρ¼ 6 generally leads to a good trade-off between the bal-
ance in terms of the group means and variances.

The minimization method follows the steps in Section 2.1 with few modifications. In Step 2, for each new subject to
be included in the trial, we set a value of the uncertainty parameter Γ at random from the interval 1=2,4½ �. The numeri-
cal experiments of Bertsimas et al.21 show that choosing the value of Γ independently at random at each time step pro-
tects against selection bias. Since the selection process of Γ incorporates randomness in the decision process, we
determine the final allocation of the subject using P0 ¼ 1 in (6).

4 | NUMERICAL COMPARISONS

In this section, we compare the minimization method of Bertsimas et al.21 with those in Section 2 using two real clinical
trials. First, we introduce the metrics to assess the balance in the covariate distributions across the groups and the ran-
domness in the treatment allocation of the methods. Next, we show the performance of the methods for each trial sepa-
rately and end the section with a discussion.
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We refer to the minimization methods of Pocock and Simon,32 Nishi and Takaichi,33 Ma and Hu34 and Bertsimas
and Weismantel39 as PS, NT, MH, and BKW, respectively. For the PS method, we use c¼ 3 categories for the surrogate
discrete covariates. The supplementary materials accompanying the article have an R implementation of all the minimi-
zation methods discussed here.

4.1 | Evaluation metrics

4.1.1 | Covariate balance

We use several evaluation metrics to measure the balance in the distributions of the covariates between the two treat-
ment groups. They include the absolute difference in the size of the groups, the absolute difference between the means
of the j-th covariate across the groups, and the absolute difference between the standard deviations of the j-th covariate
across the groups. Ideally, the values of these metrics are equal or close to zero.

The differences between the individual means and standard deviations for each individual covariate are marginal
metrics, because they measure the discrepancy between the marginal distributions of the covariates in the two groups.
However, they do not measure the discrepancies between the joint distributions of the covariates that generate the data.
Balance in the joint covariate distribution is more general than balance in the marginal distribution of each covariate
among the groups. This is because a joint covariate distribution balance implies a balance in each marginal
covariate distribution, regardless of whether the covariates are dependent or independent. In contrast, a balance in each
marginal covariate distribution may only achieve a balance in the joint covariate distributions of the groups when the
covariates are independent.

To measure the discrepancies in the joint distribution of the covariates among the groups, we use the energy dis-
tance.23 Let Wk be the Nk�p covariate matrix for the k-th group and wik be the i-th row of this matrix, where Nk is the
size of the k-th group at the end of the trial and k¼ 1,2. The energy distance for two independent random samples is

E¼ 2
N1N2

XN1

u¼1

XN2

v¼1




wu1�wv2




� 1
N2

1

XN1

u¼1

XN1

l¼1




wu1�wl1




� 1
N2

2

XN2

v¼1

XN2

m¼1




wv2�wm2




, ð11Þ

where



u


 is the L2-norm of vector u.

Szekely and Rizzo42 use the statistic E to test the homogeneity of two multivariate joint distributions. Using a per-
mutation test, they reject the hypothesis of equal joint distributions when the value of E is large. Therefore, in our con-
text, low values of the energy distance indicate that the joint covariate distributions of the groups are similar. To the
best of our knowledge, the energy distance is the first metric to evaluate minimization methods in terms of the balance
in the joint covariate distributions between the groups they produce.

The energy distance can assess the balance in the distributions of many covariates simultaneously using a single num-
ber. This is in contrast to marginal metrics such as the absolute difference between the group means or group standard
deviations of the covariates. To evaluate the quality of a clinical trial in terms of these metrics, we must compare several
values simultaneously, which can be cumbersome in the presence of many covariates. Therefore, the energy distance pro-
vides the user with a simple yet effective summary of the covariate balance in a trial, compared to marginal metrics.

4.1.2 | Allocation randomness

We evaluate the randomness of allocation of a minimization method using the Correct Guess (CG) probability.43,44

Recall that the sizes of groups one and two before allocating the t-th subject are n1 and n2, respectively, and that, in the
problem formulation of Bertsimas et al.,21 xt is one if the t-th subject is assigned to group one and it is zero otherwise.
At time step t, the CG probability is

CGt ¼
1 if n1 < n2 and xt ¼ 1ð Þ or n1 > n2 and xt ¼ 0ð Þ
1=2 if n1 ¼ n2ð Þ
0 if n1 > n2 and xt ¼ 1ð Þ or n1 < n2 and xt ¼ 0ð Þ

8><
>: :
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The value of CGt is one if the group sizes are unequal and we can determine the assignment of the t-th subject using
the smallest group size. If the group sizes are unequal but we cannot determine the assignment using this rule, the
value of CGt is zero. If the group sizes are equal at time t, CGt is 1/2.

We compute the CG probability for all treatment allocations in Step 2 of the minimization framework in Section 2.1.
That is, we calculate CGt for t¼n0þ1,n0þ2,…,N . We use the mean of the CGt values as an overall measure of alloca-
tion randomness.44 We prefer a low mean CG probability because this implies a low mean probability of guessing the
assignment of the next subject using the previous allocations. Simple randomization—in which we assign each subject
to a group completely at random and independently of the previous assignments—has a mean CG probability of 1/2.

4.2 | The pembrolizumab clinical trial

Sundahl et al.45 studied the safety of pembrolizumab when combined with sequential or concomitant body radiotherapy
in metastatic bladder cancer. The response under study was the dose-limiting toxicity measured on a specific scale. The
clinical trial consisted of 18 subjects whose prognostic factors included age, sex, hemoglobin concentration, a modified
proportion score of PD-L1, smoking status, among others. The subjects were enrolled into two equally sized groups.
Groups one and two were administered pembrolizumab using sequential and concomitant body ratiotherapy,
respectively.

We compare the actual assignment of the subjects to the two groups of Sundahl et al.45 with the minimization
methods to balance the continuous covariates: age, the modified proportion score of PD-L1, and hemoglobin concentra-
tion. To evaluate the methods, we standardized the covariates to have a mean of zero and a standard deviation of one.
We then applied each method 1000 times to balance the covariates in the standardized set.

Figures 1–6 show the results of the simulations. Specifically, Figures 1, 5, and 6 show the distribution of the absolute
difference between group sizes, the energy distance, and the mean CG probability, respectively, obtained by the
methods. Figures 2, 3, and 4 show the distribution of the difference in the mean and standard deviations of the groups
for age, modified proportion score of PD-L1, and hemoglobin concentration, respectively. Figures 2–5 have a horizontal
dashed line placed at the corresponding metric values observed in the clinical trial.

Regarding the absolute difference between the group sizes, Figure 1 shows that the median absolute difference is
two for the PS, NT, and MH methods. In contrast, the group absolute differences obtained by the BMW method are all
equal to zero. This is because, in contrast to the other methods, the BMW method enforces group size balance.

Figure 2A shows that all minimization methods improve the actual group assignment for the absolute difference
between group means of age. This is because at least 75% of the group mean differences for all methods are below the
dashed line. The BKW method has a lower median and third quartile of group mean differences than the rest.
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FIGURE 1 Boxplots of the absolute difference in group sizes obtained for the pembrolizumab trial.
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Figure 2B shows that all methods are better than the actual group assignment to balance the standard deviations of
age, because at least 75% of their absolute differences in the group standard deviations are below that obtained from the
actual assignment. The NT method is better than the others because both its median and third quartile of group mean
differences are smaller than those of the other methods.

Regarding the group means for PD-L1, Figure 3A shows that all minimization methods improve the actual assign-
ment of groups, since 75% of their absolute group mean differences are below the observed in the clinical trial. In this
case, the NT method is the most successful because it has a lower median absolute group difference than the others.
Regarding the group standard deviations for PD-L1, Figure 3B shows that at least 50% of the group absolute differences
obtained from the methods are smaller than the actual group difference in the clinical trial. The NT method is again
better than the rest because its median absolute difference in group standard deviation is smaller than the others.

Regarding hemoglobin concentration, Figure 4A shows that, to a large extent, all methods have greater absolute
group mean differences than the one observed in the clinical trial. This is because either the first or second quartile of
each method is above the dashed line in the figure. For the absolute group difference of the standard deviations,
Figure 4B shows that about 50% of the group differences for all methods are below the actual group difference observed.
In any case, the BKW method performs slightly better than the other methods for this covariate, as its median group
differences are smaller than the others.
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FIGURE 2 Boxplots of the absolute differences in group means and standard deviations for age in the pembrolizumab trial. The dashed

line shows the actual absolute differences. (A) Absolute difference in means, (B) Absolute difference in standard deviations.
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FIGURE 3 Boxplots of the absolute differences in group means and standard deviations for PD-L1 in the pembrolizumab trial. The

dashed line shows the actual absolute differences. (A) Absolute difference in means, (B) Absolute difference in standard deviations.
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Figure 5 shows that all methods are better at balancing the joint distribution of the covariates between the two
groups, than the actual group assignment. This is because at least 75% of the energy distance values for all methods are
smaller than 0.671, which was observed from the actual group assignment. The BKW and NT methods are the best in
terms of the energy distance, since they have a lower median energy distance value than the rest. However, the BKW
method has slightly lower median and third quartile values than the NT method.

Regarding randomness in assigning subjects to groups, Figure 6 shows that the median values of the mean CG prob-
ability are the same for all methods. However, the NT method tends to have a smaller mean CG probability than the
rest because its first and third quartiles are smaller than those of the others. In any case, the first quartile of the mean
CG probability is at least 1/2 for all methods.

4.3 | The infant spasms clinical trial

Chiron et al.46 studied the effect of vigabatrin on spasms due to tuberous sclerosis in infants. To this end, they con-
ducted a clinical trial with 22 infants whose prognostic factors included age, sex, and duration and frequency of spasms.
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FIGURE 4 Boxplots of the absolute differences in group means and standard deviations for hemoglobin in the pembrolizumab trial.

The dashed line shows the actual absolute differences. (A) Absolute difference in means, (B) Absolute difference in standard deviations.
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FIGURE 5 Boxplots of the energy distance values for the pembrolizumab trial. The dashed line shows the energy distance value

observed in the trial.
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As an alternative treatment, Chiron et al.46 used hydrocortisone which is a standard steroid. In the trial, the infants
were enrolled into two equally sized groups. One group was treated with vigabatrin while the other was treated with
hydrocortisone. To assess the efficacy of the treatments, the authors used the time to disappearance of the spasms, the
tolerability to the treatment, the evolution of the development quotient, among other responses.

We compare the actual group assignment of Chiron et al.46 with minimization methods to balance the continuous
covariates: frequency of infantile spasms (FIS) and age. Similarly to the pembrolizumab trial, we standardized these
covariates to have a mean of zero and a standard deviation of one, and executed each method 1000 times. Figures 7–11
visualize the simulation results for the infant spasms trial. Figures 7, 10, and 11 are similar to Figures 1, 5, and 6 for the
pembrolizumab trial. Figures 8 and 9 show the distribution of the difference in the mean and standard deviations of
the groups for the FIS and age, respectively. Figures concerning the balance in covariate distributions have a horizontal
dashed line placed at the observed metric values in the trial.
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FIGURE 6 Boxplots of the mean correct guess probability values for the pembrolizumab trial.
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FIGURE 7 Boxplots of the absolute difference in group sizes obtained for the infant spasms trial.
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Regarding the balance in the group sizes, Figure 7 shows that the BKW method is better than the others because all
its group size differences are zero. In contrast, the other methods have a median absolute difference between group
sizes equal to two.

Figure 8A shows that all minimization methods improve the actual group assignment in terms of the mean of the
FIS. This is because virtually all their absolute differences are smaller than the actual one indicated by the dashed line
in the figure. The NT method has the smallest median absolute group difference. Regarding the absolute difference in
the standard deviations for the FIS, Figure 8B shows that the BKW method has smaller first and second quartiles than
those of the other methods. However, none of the methods outperforms the actual group assignment in this case. This
is because the first quartiles of the absolute group differences of all methods are greater than the difference observed in
the clinical trial.

Figure 9 shows that the BWK and NT methods are generally better than the others in terms of balancing age, since
at least 75% of their group differences are below the differences observed in the trial. For the absolute difference in
group means, the NT method has the lowest median, but the BWK has the smallest third quartile and dispersion; see
Figure 9A. For the differences between group standard deviations, the BKW method has a median and third quartile
that are smaller than those of the other methods; see Figure 9B.

Figure 10 shows that all methods are better than the actual clinical trial in terms of the energy distance. This is
because the energy distance values of all the methods are smaller than the observed energy distance value, which was
0.79. The BKW method is the best in this case, as its first and third quartiles are smaller than those of the other
methods.
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FIGURE 8 Boxplots of the absolute differences in group means and standard deviations for FIS in the infant spasms trial. The dashed

line shows the actual absolute differences. (A) Absolute difference in means, (B) Absolute difference in standard deviations.
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FIGURE 9 Boxplots of the absolute differences in group means and standard deviations for age in the infant spasms trial. The dashed

line shows the actual absolute differences. (A) Absolute difference in means, (B) Absolute difference in standard deviations.
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Figure 11 shows that the MH method has smaller mean CG probability values than the other methods. This is
because all its quartiles are smaller than those of the others. However, none of the methods succeed in minimizing the
mean CG probability, since more than 75% of their values are higher than or equal to 1/2.

4.4 | Discussion

In Sections 4.2 and 4.3, we provided a detailed comparison of the minimization methods in terms of the balance in the
group sizes and the marginal and joint distributions of the covariates, as well as the randomness in the assignment of
subjects to groups. We presented the analysis separately for each evaluation metric. To help users select a minimization
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FIGURE 10 Boxplots of the energy distance values for the infant spasms trial. The dashed line shows the energy distance value

observed in the trial.

Method

M
ea

n 
C

or
re

ct
 G

ue
ss

 P
ro

ba
bi

lit
y

0.
00

0.
25

0.
50

0.
75

1.
00

BKW MH NT PS

FIGURE 11 Boxplots of the mean correct guess probability values for the infant spasms trial.
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method, we constructed a radar plot47 to visualize the overall performance of the methods in the trials. More specifi-
cally, the radar plot shows the average values for the absolute difference in group sizes, energy distance, and mean CG
probability obtained by the methods. Each corner of the plot corresponds to the highest average value of a metric
among all methods. Since lower average metric values are preferred, the points of a method should be close to the cen-
ter of the plot.

Figure 12A,B shows the radar plot for the pembrolizumab and infant spasms trial, respectively. On average, the
BKW method outperforms the other methods in terms of the absolute difference in group sizes and covariate balance
for both trials. This is because their average values for these metrics are closer to the center of the plot than those of the
other methods. Therefore, we recommend the BKW method if the goal is to balance the distributions of the covariates.
However, the BKW method has higher average values of the mean CG probability than the other methods in both tri-
als. If the goal is to minimize the mean CG probability, we recommend the NT or MH method because they have the
smallest average mean CG probability values for the pembrolizumab and infant spasms trial, respectively.

The conclusion of Figure 12 on the BKW method agrees with the literature on minimization methods, since balance
and allocation randomness are conflicting objectives.1,2 In other words, a minimization method with a good balance in
group sizes and covariate distributions tends to have a low degree of randomness in the assignment of subjects to
groups. In contrast, a method with a high degree of randomness of allocation typically performs poorly in terms of
balancing group sizes and covariate distributions. In any case, the summary of the covariate balance given by the
energy distance allows us to easily see this phenomenon using the radar plots in Figure 12. We therefore recommend
using the energy distance to evaluate the performance of minimization methods in terms of covariate balance.

The method of Bertsimas et al.21 has a tuning parameter ρ that controls the trade-off between the balance in the
group means and the group standard deviations of the covariates. In our study, we followed their recommendation and
used ρ¼ 6, thus favoring the balance in the group standard deviations over that of the group means. Using additional
experiments (not shown here), we studied the effect of the tuning parameter on the balance of marginal covariate distri-
butions, the energy distance, and the correct guess probability for the two trials. We found that decreasing the value of
ρ generally results in a better balance between the group means of the covariates at the expense of an increase in the
imbalance between the group standard deviations. The energy distance and the correct guess probability were not
severely affected by the value of ρ. In any case, none of the values that we tested significantly improved all metrics
simultaneously for both trials. We conclude that ρ¼ 6 works well for the clinical trials discussed here.

5 | CONCLUDING REMARKS

We studied the mathematical programming method of Bertsimas et al.21 to balance continuous covariates in small two-
arm clinical trials. We showed that this method belongs to the class of minimization methods that are well known in
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FIGURE 12 Radar plot of the average values for the absolute difference in group sizes, energy distance, and the mean correct guess

probability values for the pembrolizumab and infant spasms trial. (A) Pembrolizumab trial, (B) Infant spasms trial.
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the literature on clinical trials. We compared the method with the standard minimization methods of Pocock and
Simon,32 Nishi and Takaichi,33 and Ma and Hu,34 in terms of how well they balance the marginal and joint distribu-
tions of the covariates between the groups, and the randomness in the allocation of future subjects. For our two case
studies, we show that the method of Bertsimas et al.21 outperforms the other methods in terms of the balance in the
group sizes and covariate distributions. However, the method has a low degree of randomness in assigning subjects to
groups, which may result in selection bias. Remarkably, our study also shows that none of the methods is entirely suc-
cessful for our case studies, as they did not balance the marginal distribution of one of their variables. Therefore, better
methods are needed to balance the covariate distributions in small trials.

The radar plots in Section 4.4 allow us to compare the minimization methods in terms of three important dimen-
sions: balance in group sizes, covariate balance, and randomness in group assignment. However, another important
dimension of a small clinical trial is its ethics.48,49 For example, when studying a rare disease, a clinical trial in which
the most promising treatment is assigned more frequently to subjects than the other treatment is more attractive in
terms of ethics, compared to a completely randomized trial without selection bias. However, Rosenberger and Sverdlov2

show that it is difficult to develop a clinical trial with a high degree of randomization that is in accordance with ethics,
because these are conflicting objectives. To our knowledge, there are no mathematical programming approaches to
obtain clinical trials with a clear trade-off between these dimensions. Therefore, more research is needed in this direc-
tion. To this end, we can explore multi-objective mathematical programming50,51 to obtain a list of solutions (i.e., clini-
cal trials) that are good in at least one of the objectives and competitive in the others.
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