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Introduction

Cancers of the prostate, lung and colon are among the most
common malignancies diagnosed in men living in the
Western world. In fact, recent estimates have placed
prostate cancer as the most commonly diagnosed
malignancy, and the second leading cause of cancer-
related death among men in the United States (Landis et
al. 1998). Prostate cancer is comparatively less common
in other parts of the world, where the incidence and/or
mortality rates of other tumors, such as those that arise
from the mouth, pharynx and stomach exceed those of
prostate cancer.

Prostate cancer is unique among carcinomas in that it
is a slow growing malignancy that is diagnosed almost
exclusively in men over 50 years of age. Consequently,
when determining survival benefits associated with any of
the currently available forms of local treatment, at least ten
to fifteen years of follow-up is required before a true
survival benefit can be confirmed. Thus, for an individual
patient with competing co-morbidities, overall life
expectancy must be taken into consideration before

definitive local treatment can be recommended. It is for
this reason that some patients may require no treatment
whatsoever. This group may include patients who are
elderly with significant co-morbid conditions as well as
those patients with low grade, low volume disease. In this
regard, ‘watchful waiting’ has become a treatment option
that is unique to prostate cancer (Johansson et al. 1992,
Chodak et al. 1994).

For most men diagnosed with prostate cancer,
however, there is a high risk of disease progression if no
treatment is delivered. In these patients, the benefits
derived from local treatment with respect to disease-free
and overall survival must be balanced against potential
side-effects associated with such treatment. For patients
with favorable disease characteristics, such as a low pre-
treatment serum prostate specific antigen (PSA), a low
clinical stage, and a well or moderately differentiated
tumor, disease-free and overall survival five years
following treatment is excellent utilizing either radical
prostatectomy or radiotherapy as definitive local
treatment. However, these results have not been as
encouraging for patients with higher risk disease
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Abstract
Most human prostate tumors are adenocarcinomas which arise from the epithelial cells that line the
glands and ducts of the prostate. Consequently, the malignant epithelial cell, or more specifically
genetic damage suffered by that malignant epithelial cell, has been the major focus of prostate cancer
research to date. There is, however, increasing evidence to suggest that alterations in the stromal
microenvironment associated with a malignant epithelium may be necessary for progression of
carcinogenesis.

We have recently hypothesized that interactions between the stroma and epithelium become
altered as a result of genetic damage to the prostatic epithelial cell. During prostatic carcinogenesis,
this abnormal signaling may lead to changes in both the prostatic epithelium and smooth muscle with
concomitant loss of growth control. In this way, both a malignant epithelium and an abnormal or ‘tumor
stroma’ evolve.

The purpose of this article is to describe interactions between the stroma and epithelium of the
normal prostate, and then to summarize evidence suggesting that stromal cells derived from benign
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versus malignant sources may exert differential effects on epithelial cell growth and differentiation.
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characteristics (Catalona & Smith 1994, Walsh et al. 1994,
Zietman et al. 1994, Hanks et al. 1995, Zagars & Pollack
1995). These results, in combination with the potential
side-effects that have been associated with both surgery
and conventional external beam radiotherapy (including
urinary incontinence, rectal complaints and impotence),
have led to several newer treatment options aimed at
providing better results with fewer side-effects. However,
any benefit of these newer treatment modalities with
respect to disease-free survival or improved quality of life
remains unproven.

Our laboratory has begun to examine some of the
unique biological characteristics associated with prostate
cancer with the ultimate goal of formulating novel, non-
invasive treatmentment strategies. More than 95% of

human prostatic cancers are adenocarcinomas which arise
from the epithelial cells that line the glands and ducts of
the prostate (Stamey & McNeal 1992). Consequently,
most research to date on prostate cancer has examined
changes occurring in the prostatic epithelial cell as it
progresses from a normal to a frankly malignant
carcinoma cell. There is, however, a growing body of
evidence to suggest that, as a carcinoma evolves, changes
also occur in the stromal compartment associated with the
tumor. In many instances these changes may serve to
enhance the invasive and/or malignant potential of the
nascent epithelial tumor. With this in mind, we have
hypothesized that epigenetic influences originating from
stromal cells in the immediate vicinity of a prostatic tumor
may be critical in determining whether a particular tumor

Figure 1  Schematic representation of interactions between the prostatic stroma and prostatic 
epithelium during normal development, adulthood and carcinogenesis. (a) Testosterone acts through 
androgen receptors (AR) in the urogenital sinus mesenchyme to induce epithelial development and 
differentiation. In a reciprocal fashion, epithelium signals to mesenchyme to induce smooth muscle 
differentiation. (b) In the growth-quiescent adult prostate, testosterone acts through both smooth 
muscle and epithelial AR. Androgens act through prostatic smooth muscle AR to maintain prostatic 
epithelium in a fully differentiated, growth-quiescent state and through epithelial AR to stimulate 
secretory function of the fully differentiated epithelium. It is hypothesized that the epithelium also acts 
to maintain smooth muscle differentiation through paracrine acting factors. (c) Prostatic carcinogenesis 
appears to be initiated by genetic insult to the epithelium. This leads to a change in epithelial phenotype 
and aberrant local signaling between the epithelium and smooth muscle. (d) The aberrant local 
signaling described in (c) leads to phenotypic changes in both the stromal and epithelial compartments 
of the tumor. The stroma becomes a fibroblastic 'tumor stroma' which promotes epithelial mitogenesis. 
This would predictably lead to increased epithelial proliferation, migration and, ultimately, an invasive 
epithelial phenotype.
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assumes a slowly growing or an invasive phenotype
(Cunha et al. 1996, Hayward et al. 1996b, 1997b). It is
possible that, following genetic alteration to the prostatic
epithelium, signaling from the epithelium to the sur-
rounding smooth muscle becomes aberrant. This may
result in stromal dedifferentiation towards a fibroblastic
phenotype. One of the consequences of such a trans-
formation may be that the local microenvironment
changes from promoting epithelial homeostasis to
promoting epithelial mitogenesis. These changes would
be predicted to lead to increased epithelial prolif-eration,
migration and, ultimately, could enhance the in-vasive
potential of the genetically altered epithelial cell (Figs 1
and 2). 

The purpose of this article will be (1) to describe the
stroma of the normal (non-malignant) prostate, (2) to
summarize genetic changes that are known to occur in the

prostatic epithelium during carcinogenesis, (3) to present
evidence suggesting that stroma derived from non-
malignant sources may be able to alter the malignant
phenotype of prostatic carcinoma cells, (4) to summarize
the evidence in support of a ‘tumor stroma’, and (5) to
summarize data describing the role of tumor stroma in
prostatic carcinogenesis.

The stroma of the normal prostate
The human prostate is composed of two compartments:
(1) an epithelial compartment, which includes the
exocrine glands with their associated ductal structures,
and (2) a surrounding connective tissue stroma. The
stroma of the human prostate consists of a number of
different cell types. The most abundant cell type in this
compartment is the smooth muscle cell, which is derived

Figure 2  Immunohistochemical expression of smooth muscle α-actin and vimentin in the stroma of normal 
prostate and prostate cancer. (a) Smooth muscle α-actin expression in normal prostate. Note that the stroma is 
comprised predominantly of smooth muscle. (b) Smooth muscle α-actin expression in the stroma associated with 
prostate cancer. Note the paucity of immunostaining in this high power field. (c) Vimentin expression in normal 
prostate. Other than in blood vessels (which serve as positive internal controls), there is virtually no vimentin 
staining in the stroma of the normal prostate. (d) Vimentin expression in prostate cancer. Note the increased 
expression of this fibroblastic marker in the stroma associated with prostate cancer compared with the stroma of 
the normal prostate. The findings summarized in panels a-d suggest that the predominantly smooth muscle 
stroma of the normal prostate is altered in prostatic carcinogenesis to include vimentin-positive fibroblastic cells.
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from the mesenchyme of the embryonic urogenital sinus
(UGS). Other cell types located in the stroma of the normal
adult prostate include fibroblasts, nerves, endothelial cells
and vascular smooth muscle cells. In addition to being the
most abundant stromal cell type, the smooth muscle cell
appears to be the most important cell type with respect to
prostatic development and maintenance of homeostasis. In
this regard, changes in the smooth muscle cell may be
important in the evolution of prostatic carcinogenesis (see
below).

Tissue recombination experiments utilizing the
androgen insensitive testicular feminized (tfm) mouse
have established that an androgen responsive stroma is
necessary for the development of normal prostatic
epithelial architecture in the rodent (Cunha et al. 1987). In
adulthood, prostatic smooth muscle cells, which are
known to express androgen receptors (AR), interact with
epithelial cells and under androgenic conditions maintain
the epithelium in a fully differentiated, growth-quiescent
state (Cunha et al. 1996). This occurs both in the presence
and in the absence of epithelial AR expression which
emphasizes the paracrine nature of smooth muscle-
epithelial interactions. Human prostatic smooth muscle
cells, which also express AR, are believed to play a similar
role in maintaining prostatic homeostasis. However,
definitive experiments to confirm this role for human
prostatic smooth muscle cells are not possible given our
inability to access AR-deficient human fetal urogenital
sinuses.

Fibroblasts, which make up a large proportion of the
stroma of the rodent prostate, are found sporadically in the
normal human prostate. It has been suggested that these
cells are important in mediating epithelial proliferation in
the rodent prostate (Nemeth & Lee 1996). Their function
in the human prostate remains unclear; they may serve as
a scaffolding to keep smooth muscle bundles together, or
they may play an active role in organ homeostasis.

 Prostatic development occurs as a direct result of
androgenic stimulation of the fetal UGS. Analysis of
tissue recombinants composed of AR-positive wild type
urogenital sinus mesenchyme (UGM) plus AR-negative
tfm epithelium indicates that androgens act through AR in
the mesenchymal cells of the UGS to stimulate epithelial
proliferation, ductal branching morphogenesis, and
columnar cytodifferentiation. In rats and mice, prostatic
tissue can develop from the UGS derived from either a
male or a female embryo if appropriately stimulated by
androgens at critical developmental stages. In laboratory
rodents the initial phases of prostatic budding require
exposure to androgens prenatally. In contrast, ductal
branching morphogenesis, canalization and epithelial
cytodifferentiation all require postnatal androgenic
stimulation. These early developmental events occur
between birth and the onset of puberty, during which time

circulating androgen levels are very low. These
observations indicate that the developing prostate is
extremely sensitive to low levels of circulating androgen
(Donjacour & Cunha 1988).

Interactions between stroma and epithelium appear to
be reciprocal in nature. Not only does the developing
stroma induce epithelial development, but the developing
epithelium also induces primitive mesenchymal cells to
differentiate into smooth muscle (Cunha et al. 1992b).
Urogenital sinus mesenchyme grown in the absence of
epithelium will not form smooth muscle. Thus, the
development of prostatic smooth muscle in vivo requires
the presence of both epithelium and appropriate
androgenic stimulation. This ability of epithelium to
induce the formation of visceral smooth muscle is not
restricted to the prostate, but it appears to be a common
feature of many organs including the gut, uterus and
bladder (Haffen et al. 1982, Cunha et al. 1989, Baskin et
al. 1996).

 The differentiation of prostatic smooth muscle occurs
in an orderly manner with the sequential expression of a
number of characteristic markers, including vimentin,
actin, myosin, desmin and vinculin. The adult prostate, in
which the stroma contains fully differentiated smooth
muscle cells, is essentially growth-quiescent and
maintains very low and balanced levels of cellular
proliferation and cell death. It should be emphasized that
this growth-quiescent, homeostatic state exists in the
presence of high levels of circulating androgens. In the
adult rodent, androgens act directly on the prostatic
smooth muscle cells to maintain this fully differentiated
growth-quiescent state (Hayward et al. 1996b). We have
postulated that androgens act in a similar fashion in the
adult human prostate to maintain growth-quiescence
(Hayward et al. 1996b). Evidence supporting this
hypothesis is as follows. After castration, the well
recognized rapid regression of prostatic epithelium is
associated with an ordered loss of expression of the
various smooth muscle differentiation markers. This
appears to reflect a ‘dedifferentiation’ of the smooth
muscle cells. The loss of smooth muscle markers
following castration occurs in the order opposite to that to
which these markers were expressed during normal
development (Hayward et al. 1996a). In its final form, the
prostatic stroma of a long-term castrated animal reverts to
a stroma which contains fibroblasts or mesenchymal cells
that coexpress AR and vimentin. Very little expression of
the characteristic smooth muscle markers is evident in the
fully regressed prostate.

If exogenous androgens are subsequently admini-
stered to a long-term castrated animal, prostatic tissue will
respond in a highly coordinated manner, with the
differentiation of both stromal smooth muscle (again
expressing its characteristic markers) and a secretory
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epithelium (Bruchovsky et al. 1975). Thus, the relatively
undifferentiated fibroblastic cells in the prostatic stroma of
a castrated animal can respond to androgens by inducing
epithelial proliferation and columnar cyto-differentiation
while they revert back to highly differen-tiated smooth
muscle cells.

In summary, low levels of circulating androgens act
upon the mesenchymal cells of the developing prostate to
induce prostatic epithelial proliferation and differen-
tiation. In contrast, high circulating levels of androgen in
the adult act through the prostatic smooth muscle to
maintain a fully differentiated, growth-quiescent epithe-
lium. Proliferative effects of stroma on epithelium are
mediated through the stromal AR, while the epithelial AR
appears to be required only for the expression of prostatic
secretory proteins (Cunha & Young 1991, Donjacour &
Cunha 1993). In long-term castrated animals, exogenous
androgens initially promote prostatic epithelial
proliferation and cytodifferentiation as well as the re-
emergence of a smooth muscle stroma. Ultimately,
androgen replacement leads to regeneration of a fully
differentiated, growth-quiescent gland. These data suggest
that the local control of prostatic epithelial proliferation
and differentiation occurs through androgenic stimulation
of the prostatic stroma, and that the nature of the epithelial
response to such a stimulation is predominantly
determined by the nature of the stromal cells which are
stimulated. Thus, AR-expressing prostatic smooth muscle
cells appear to respond to androgenic stimulation by
inhibiting epithelial proliferation and maintaining
epithelial differentiation, while an AR-expressing
fibroblastic stroma (either the urogenital sinus
mesenchyme or the stroma from an androgen-deprived
adult prostate) may respond to androgens by stimulating
epithelial proliferation and eliciting columnar cyto-
differentiation.

Genetic changes in human                 
prostatic cancer
It appears that human prostate cancer begins with genetic
alteration to the prostatic epithelium. In this regard, a
variety of techniques have been useful in demonstrating
genetic abnormalities in the prostatic epithelium, both in
the primary tumor and at metastatic sites. However, none
of these techniques has successfully defined a specific
mutation that is characteristic for human prostate cancer.
Although no study to date has specifically addressed
genetic changes to the prostatic stroma during
carcinogenesis, preliminary data from our laboratory
using karyotypic analysis and comparative genomic
hybridization demonstrate the absence of gross genetic
alterations in the stromal cells surrounding a prostate
cancer.

The familial concentration of some prostate cancers
suggests that risk for this tumor may be inherited in an
autosomal dominant fashion. Risk factors for the inherited
form of this disease, including early age of onset and
multiple affected family members, has allowed for the
identification of some putative genetic abnormalities in
these patients (Carter et al. 1990, 1991, 1992, Smith et al.
1996). Loss of heterozygosity has been reported
frequently on chromosomes 10q, 7q and 16q in prostate
cancer specimens (Isaacs et al. 1995). This has resulted in
the recent description of a candidate tumor suppressor
gene, PTEN/MMAC1, for patients with inherited prostate
cancer (Suzuki et al. 1998). It must be emphasized,
however, that patients with hereditary prostate cancer
represent only a minority of prostate cancer patients.
Aside from these rare families, prostate cancer appears to
be a common but spontaneously arising disease with no
consistent pattern of genetic alteration.

Previous studies have described aberrant expression of
oncogenes, metastasis suppressor genes and tumor
suppressor genes in prostate tumor specimens. While
oncogenes such as ras, c-myc, c-sis and neu have been
shown to be overexpressed in prostate cancer samples, no
single oncogene is consistently overexpressed across a
wide range of prostate tumors (Peehl 1993, Wang & Wong
1997). As a result, neither the initiation nor progression of
prostate cancer can be linked to a specific oncogene.
While experimental overexpression of various oncogenes
has demonstrated the potential to initiate and/or promote
the disease (Thompson et al. 1989, 1993a,b, Bello et al.
1997, Webber et al. 1997), the relevance of these
interesting findings to clinical disease remains to be
established.

A second class of genes which may prove to be
important in human prostate cancer progression are the so
called ‘metastasis suppressor’ genes. Examples of such
genes include the KAI1 gene and thymosin-beta 15 (a
gene which appears to be related to cell motility). KAI1
has been mapped to human chromosome 11p11.2.
Introduction of this gene into the metastatic rat AT6.1
prostate cancer cells was shown to suppress prostate
cancer metastases (Dong et al. 1995). In the human,
expression of this gene appears to be reduced in cell lines
derived from metastatic prostate tumors (Dong et al. 1995,
1996a,b). Thymosin-beta 15, a 5.3 kDa protein, binds
actin monomers, thereby inhibiting actin polymerization
(Gold et al. 1997). In the rat Dunning tumor model, cell
motility has been shown to correlate well with metastatic
phenotype. Transfection of these tumor cells with anti-
sense thymosin-beta 15 has been shown to cause a
decrease in cell motility (Bao et al. 1996). Thymosin-beta
15 levels appear to be elevated in human prostate cancer,
and levels of this protein have been correlated with
Gleason grade (Bao et al. 1996). Additional studies have
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suggested that there may be other metastasis suppressor
genes important in human prostate cancer located on
chromosomes 8 and 10 (Ichikawa et al. 1996).

The tumor suppressor genes represent a third class of
genes that may demonstrate alterations in human prostate
cancer specimens. Mutations in the retinoblastoma (Rb)
gene have been reported to occur in prostate tumor
samples; however, such mutations are present in only a
minority of cases (Isaacs 1995, Kubota et al. 1995). p53
alterations are also inconsistently found in prostate cancer,
appearing in only 20% of cases. In contrast, alterations in
E-cadherin may be the most commonly detected defect in
human prostate cancers, with up to 50% of cases
demonstrating altered expression of this protein.

E-cadherin is a 120 kDa transmembrane glycoprotein
which is involved in epithelial cell adhesion (Birchmeier
& Behrens 1994, Birchmeier et al. 1995, Jiang 1996,
Shiozaki et al. 1996). The extracellular domain of E-
cadherin undergoes calcium-dependent homophilic inter-
actions in adherent junctions and along lateral epithelial
membranes. The cytoplasmic domain of E-cadherin is
associated with a group of proteins known as catenins that
link the intracellular domain of E-cadherin to the actin
microfilament network (Jiang 1996). A functional E-
cadherin system is required to maintain normal epithelial
morphology.

Regulation of E-cadherin is poorly understood. The
molecule is developmentally regulated in the embryo
where it is initially expressed coincident with the
appearance of epithelial tissue at the time of compaction
of the embryo. Epithelial to mesenchymal transformation
(i.e. the generation of mesoderm through the primitive
streak) is associated with loss of E-cadherin, while
mesenchymal to epithelial transformation (i.e. formation
of the nephron) is associated with increased expression of
E-cadherin (Hay & Zuk 1995). A critical role for E-
cadherin in development (Takeichi 1988) is underscored
by the observation that 'knockout' of the E-cadherin gene
in transgenic mice is embryonic lethal (Larue et al. 1994).
While regulatory elements have been identified in the E-
cadherin promoter (Behrens et al. 1992), the relevance of
these regulatory elements to the biology of E-cadherin
remains unclear.

An important role for E-cadherin expression in cellular
adhesion is demonstrated by the fact that cells lacking E-
cadherin are unable to aggregate or adhere. Furthermore,
neutralizing antibodies to E-cadherin cause adherent cells
to dissociate. Mutation or deletion of genes encoding E-
cadherin or the cadherin-associated proteins (catenins)
also render cells non-adherent. Transfection of E-
cadherin-negative cells with E-cadherin cDNA leads to
reversal of the non-adherent phenotype.

These concepts are of obvious importance to tumor
cell invasion and metastasis in the prostate and many other

organs. Experimental impairment of E-cadherin with
either antibodies or anti-sense cDNA converts non-
invasive cells into invasive ones (Vleminckx et al. 1991).
Moreover, loss of E-cadherin expression has been shown
to coincide with the transformation of a well differentiated
adenoma into a carcinoma using a transgenic mouse
model of pancreatic carcinogenesis (Perl et al. 1998). In
the prostate, decreased expression of E-cadherin in
invasive and metastatic cancers is associated with poor
prognosis (Giroldi et al. 1994, Umbas et al. 1994,
Shiozaki et al. 1996). While E-cadherin is consistently
expressed in normal epithelial cells (including prostatic
epithelium) and in various highly differentiated ‘non-
invasive’ carcinoma cells (including prostatic carcin-
omas), E-cadherin expression is considerably lower (or
entirely lacking) in poorly differentiated invasive
carcinoma cells (including prostatic carcinomas) (Umbas
et al. 1992, Giroldi & Schalken 1993, Birchmeier &
Behrens 1994, Giroldi et al. 1994, Jiang 1996).
Bussemakers et al. (1993) demonstrated that coincident
with the loss of E-cadherin expression, a variant of the rat
Dunning prostatic tumor spontaneously changed from a
well differentiated, androgen-responsive, slow growing
non-metastatic line into an anaplastic, androgen-
independent, rapidly growing metastatic line. Similarly,
patients with prostatic tumors that do not express E-
cadherin, or that have abnormal patterns of E-cadherin
expression, appear to have a poorer prognosis than
patients with prostatic tumors that express E-cadherin
normally (Umbas et al. 1994). The relatively common loss
of portions of chromosome 16 in human prostatic
carcinoma may result in deletion of all or part of the E-
cadherin gene which maps to 16q21 (Joos et al. 1995).
Other mechanisms that may cause dysfunction of
cadherin-mediated interactions include increased tyrosine
phosphorylation of β-catenin and mutational inactivation
of either the extracellular or intracellular domains of the
E-cadherin gene (Behrens 1993, 1994). This type of
mutational inactivation of the E-cadherin gene has not
been described in human prostatic carcinoma but has been
reported in endometrial and gastric cancers (Becker et al.
1993, Risinger et al. 1994). In some high grade prostatic
carcinomas, E-cadherin levels may remain relatively
normal while α-catenin may be absent (Isaacs et al. 1994).
The absence of α-catenin also renders the E-cadherin
system non-functional (Hulsken et al. 1994). For example,
impaired E-cadherin function in the PC3 prostatic
carcinoma cell line appears to be caused by homozygous
deletion of α-catenin (Morton et al. 1993)

Previous studies have suggested that ‘host factors’
may down-regulate E-cadherin expression in carcinoma
cells. This observation was made from experiments in
which virus-transformed MDCK cells (expressing high
levels of E-cadherin and exhibiting an adhesive
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phenotype) were transplanted into athymic mice. These
cells, which were originally shown to be non-invasive
based upon in vitro assays, produced invasive metastatic
tumors in vivo which contained both E-cadherin-positive
and E-cadherin-negative cells. When these metastatic E-
cadherin-negative cells were subsequently isolated and
examined in vitro, adherent E-cadherin-positive cells were
re-derived (Mareel et al. 1991). Although their precise
nature was not specified, unknown ‘host factors’ were
suggested to be involved in this down-regulation of E-
cadherin. Further studies, in which micro-encapsulated
virus-transformed MDCK cells were transplanted into
athymic rodent hosts, demonstrated that the loss of E-
cadherin expression in vivo required ‘immediate contacts
between tumor cells and host cells or upon host factors that
could not cross the capsule membrane’ (Vandenbossche et
al. 1994).

In order to determine if stromal cells are capable of
regulating E-cadherin expression, we have developed an
in vitro model system in which epithelial cells are       plated
onto a confluent lawn of fibroblastic cells which have been
derived from either a tumor or a non-tumor environment.
In addition to human prostatic stromal cells, we have also
used a rat Dunning-tumor derived stromal cell line
(DT3RPF; a generous gift from Dr Wallace McKeehan,
Texas A&M University, USA) and a benign mouse
embryonic fibroblastic cell line in our in vitro system
(Hayward et al. 1997a). Stromal cells were    grown to
confluence on positively charged microscope slides, after
which 5000/cm2 cells of the non-tumorigenic SV40T
immortalized human prostatic epithelial cell line BPH-1
were plated onto the confluent stromal lawn. Co-cultures
were then grown for 48 h. Control cultures composed of
stromal cells alone, or BPH-1 cells alone were also grown
on microscope slides for 48 h. Colony morphology
(assessed by cytokeratin expression) and E-cadherin
expression were examined using immunohisto-chemistry.

BPH-1 cells cultured for 48 h on a confluent lawn of
benign fibroblasts (of either human or rodent origin) grew
as discreet coherent colonies. Epithelial cells appeared to
be contact inhibited. Epithelial colonies had smooth
regular borders and epithelial cells appropriately
expressed E-cadherin along cell membranes. Few single
cells were observed. In contrast, BPH-1 cells cultured for
48 h on a confluent lawn of tumor-derived fibroblasts
(either from human prostate tumors or from the DT3RPF
cell line) grew as single cells or as small colonies with
irregular borders. Many cells appeared to overlap,
suggesting a loss of contact inhibition. E-cadherin
expression was either markedly decreased or undetectable
in epithelial cells grown in co-culture with the tumor-
derived fibroblasts (Fig. 3).

‘Benign’ stroma may induce 
differentiation of prostatic carcinoma cells
In the adult prostate, the stromal smooth muscle
apparently functions to maintain the surrounding
epithelium in a homeostatic, growth-quiescent state. We
have hypothesized that the undifferentiated stroma

Figure 3  Colony morphology and E-cadherin 
expression in BPH-1 cells grown on a confluent 
layer of 'benign' and carcinoma-associated 
fibroblasts. (a) BPH-1 cells grown on a confluent 
lawn of stromal cells derived from a normal (non-
malignant) prostate. Note the large epithelial 
colonies. (b) BPH-1 cells grown on fibroblasts 
derived from a prostatic tumor. Note the presence 
of smaller colonies and many single cells. 
Colonies have ragged, irregular edges. (c) E-
cadherin expression along the cell membranes of 
coherent BPH-1 cells grown on fibroblasts derived 
from a normal (non-malignant) prostate. In 
contrast E-cadherin expression was absent from 
BPH-1 cells grown on fibroblasts derived from 
prostatic tumors.
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associated with prostate cancer cells may promote
epithelial proliferation and the loss of epithelial
differentiation. Therefore, we have tested the hypothesis
that ‘benign’ stroma may be able to ‘normalize’ malignant
prostatic epithelium. The idea that interactions between
benign stroma and malignant epithelium could possibly
inhibit tumorigenic progression was examined by using
the rat Dunning prostatic adenocarcinoma R3327 (DT).
The stroma of this tumor is abnormal, being composed of
fibroblastic cells with an absence of smooth muscle. In
addition, the basement membrane between the epithelium
and the stroma is often discontinuous or excessively
reduplicated (Wong et al. 1992). These observations
raised the possibility that interactions between the stroma
and epithelium in this tumor system are abnormal. To test
the hypothesis that the malignant epithelial cells might be
modified by a more ‘normal’ stromal environment, small
fragments or epithelial cell suspensions of the DT were

grown for one month in male nude rodent hosts either
alone or in combination with ‘normal’ stromal pop-
ulations. These normal stromal populations included
either urogenital sinus mesenchyme (UGM) or seminal
vesicle mesenchyme (SVM) which are both potent
inducers of epithelial differentiation (Cunha et al. 1983,
1991b) (Fig. 4). Grafts of DT alone demonstrated a
characteristic histology, forming tumors that contained
small ducts which were lined by one or more layers of
undifferentiated squamous or cuboidal epithelial cells. In
contrast, DT epithelial cells grown in association with
UGM or SVM differentiated into tall columnar epithelial
cells which were arranged in large cystic ducts (Hayashi
et al. 1990, Hayashi & Cunha 1991, Wong et al. 1992,
Hayashi et al. 1996, Tam et al. 1997). These changes in the
histological appearance of the DT, which were induced by
the normal mesenchyme, were also associated with
marked changes in neoplastic growth (Hayashi & Cunha

Figure 4  Summary of the experimental protocol used to determine the 
effects of normal stroma (either seminal vesicle mesenchyme or 
urogenital sinus mesenchyme) on the proliferation and differentiation of 
the rat Dunning prostatic adenocarcinoma (adapted from Cunha et al. 
1991a).
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1991). For example, DT cells induced to differentiate by
SVM demonstrated markedly decreased tumorigenic
abilities with a significantly lower proliferation rate than
the parental Dunning tumor cells. In a subsequent
experiment, ducts from primary SVM+DT recombinants
were grafted directly into new male hosts or were
combined with fresh SVM to form secondary SVM+DT
recombinants. Both types of recombinants exhibited
minimal growth during a 3-month period and maintained
a highly differentiated state (Fig. 4). Conversely, control
grafts composed of DT alone formed large tumors which
weighed 5-7 g during the same time period. The marked
reduction in growth rate and the histological
differentiation of the SVM-induced DT epithelial cells
was found to be associated with a dramatic decrease in
cellular proliferation as determined by [3H]thymidine
labeling index (Hayashi & Cunha 1991). It should be
noted that smooth muscle cells, which were apparently
derived from the SVM, were found in close apposition to
the highly differentiated, relatively growth-quiescent DT
epithelium in these tissue recombinants (Wong et al.
1992).

Tumor-associated stromal cells

There is a growing body of evidence suggesting that, as a
carcinoma develops, changes occur in the surrounding
connective tissue stroma that may serve to enhance the
malignant potential of the nearby epithelium. The
appearance of this so-called ‘tumor stroma’ has been
demonstrated in a number of epithelial malignancies. For
example, the stroma associated with invasive breast
carcinoma is composed of activated or abnormal
myofibroblastic cells which are found in close apposition
to the tumor cell nests (Ronnov-Jessen et al. 1996). These
myofibroblastic cells are unique to the ‘tumor stroma’ as
they are not found in the normal breast tissue. However,
the emergence of these myofibroblastic cells is certainly
not specific to breast carcinoma. Myofibroblasts have also
been identified in the stroma associated with cervical
carcinoma, colon carcinoma, ovarian carcinoma and skin
cancer (Ronnov-Jessen et al. 1996). Other phenotypic
changes which have also been ascribed to these tumor-
derived fibroblasts include changes in the migratory
behavior of these cells in vitro (Schor et al. 1988a,b, 1991)
and alterations in gene and protein expression. For
example, stromal cells isolated from a number of
carcinomas, including those arising in the breast, skin and
lower gastrointestinal tract, have all been found to over-
express metalloproteinases such as MMP-2 and
stromelysin-3 (Basset et al. 1990, Poulsom et al. 1992,
1993). In addition, proteins such as dipeptidyl peptidase
IV (Atherton et al. 1992) and fibroblast activation protein
alpha (Scanlan et al. 1994) also appear to be selectively

expressed by tumor-associated fibroblasts. Because
stromal cells contribute to the formation of the
extracellular matrix, the appearance of a ‘tumor stroma’
may also lead to changes in the extracellular matrix
surrounding a carcinoma (Bosman et al. 1993).
Extracellular matrix proteins such as tenascin (Chiquet-
Ehrismann et al. 1986) and hyaluronan (Ronnov-Jessen et
al. 1996) are produced by these tumor-derived stromal
cells and may enhance the invasive potential of malignant
epithelial cells.

By altering the local environment of a carcinoma cell,
the ‘tumor stroma’ may be capable of modulating
malignant phenotype and behavior. This hypothesis has
been examined in experiments using MCF-7 breast
carcinoma cells in which these cells were placed in co-
culture with various types of fibroblastic cells (embryonic
or adult fibroblasts, normal or tumoral fibroblasts) (Adam
et al. 1994). The phenotype of the MCF-7 cells, including
their expression of estrogen receptor, progesterone
receptor, pS2 and cathepsin-D, was found to be dependent
on the type of fibroblast with which they were co-cultured.
This stromal modulation of epithelial cell phenotype
appeared to take place through paracrine signaling
mechanisms that were likely to be mediated by specific
growth factors. Growth factors such as platelet derived
growth factor (Ponten et al. 1994), insulin-like growth
factors (IGF)-I and -II (Ellis et al. 1994, Manni et al. 1994,
Singer et al. 1995), transforming growth factor-β1
(Ronnov-Jessen et al. 1996), interleukin-6 (Ronnov-
Jessen et al. 1996), hepatocyte growth factor/epithelial
scatter factor (Behrens 1993) and keratinocyte-growth
factor (Yan et al. 1993) have all been identified as putative
signaling molecules capable of modulating the function of
carcinoma cells.

Stromal cells surrounding and within a tumor may
have the capacity to facilitate tumor growth by supporting
neovascularization. For a tumor to grow beyond a few
millimeters in size, it must stimulate new blood vessel
growth (Brem et al. 1993). This stimulation of new blood
vessel formation has been termed angiogenesis.
Quantitation of the angiogenic response (determination of
‘microvessel density’) can be performed using specific
antibodies directed at antigens expressed in the newly
formed blood vessels. Recent studies have demonstrated
that microvessel density count may be of prognostic
importance in several solid tumors, including human
prostate cancer (Weidner et al. 1993, Hall et al. 1994,
Silberman et al. 1997).

Studies in the prostate have shown that microvessel
density count is significantly higher in adenocarcinoma
specimens than in benign prostate (Bigler et al. 1993).
Moreover, blood capillary architecture has been found to
change in the progression from benign prostatic tissue to
prostatic intra-epithelial neoplasia and finally to prostatic
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carcinoma (Montironi et al. 1993). With respect to
localization within a tumor, a higher degree of
vascularization is found at the center of a prostatic tumor
compared with the tumor edge (Siegal et al. 1995).
Microvessel density has been associated with other well
recognized prognostic indicators in human prostate cancer
including tumor Gleason grade (Wakui et al. 1992) and
pathological stage (Fregene et al. 1993, Brawer et al.
1994).

The angiogenic process in human prostate cancer
appears to require the presence of stromal cells. This has
been demonstrated in a co-culture system using the human
prostatic tumor cell line, PC-3, where the induction of
angiogenesis required the presence of stromal fibroblasts
(Janvier et al. 1997).

The above data suggest that the degree of tumor
neovascularization (which is dependent upon stromal
cells) may be related to tumor cell invasion and metastasis
in prostate cancer. Taken together, these suggest that
alterations in the tumor-associated stromal cells may have
an important role in prostate cancer progression. It is no
surprise, therefore, that some investigators have suggested
that without a ‘tumor stroma’ there would be no tumors
(Bosman et al. 1993, Ronnov-Jessen et al. 1996).

Abnormal stroma as a mediator of 
tumorigenesis in the prostate

The idea that stromal cells may facilitate prostatic
carcinogenesis has been investigated previously. Using an

in vivo mouse prostatic reconstitution system, Thompson
and colleagues infected either the urogenital sinus
(prostatic anlagen) or its individual mesenchymal (UGM)
or epithelial (UGE) components with a virus containing
the myc and ras oncogenes. In prostatic reconstitutions
containing uninfected UGM+infected UGE, epithelial
hyperplasias were detected. Similarly, in prostatic
reconstitutions composed of infected UGM+uninfected
UGE, stromal desmoplasias were observed. Carcinomas
were found only in prostatic reconstitutions in which both
UGM and UGE were infected (Thompson 1990,
Thompson et al. 1989, 1993a). These findings
demonstrated that changes were required both in the
epithelium and in the stromal microenvironment for
prostatic carcinogenesis to occur.

Several studies examining the role of stromal cells in
prostatic tumorigenesis have originated from the
laboratory of Leland Chung. Camps et al. (1990) reported
that co-inoculation of tumorigenic NbF-1 fibroblasts with
human PC-3 prostatic carcinoma cells accelerated tumor
growth and shortened tumor latency period. The
interaction between fibroblasts and epithelial cells in this
system was bi-directional – PC-3 cells reciprocally en-
hanced the tumorigenesis of sarcomatous NbF-1 fibro-
blasts. Similar studies have been extended to the human
LnCaP prostatic carcinoma cell line (Chung 1991, Chung
et al. 1991, Gleave et al. 1991, 1992, Wu et al. 1994). Co-
inoculation of LnCaP cells with various non-tumorigenic
fibroblasts demonstrated that fibroblasts differed in their
ability to promote prostatic carcino-genesis (Gleave et al.

Figure 5  Diagrammatic representation describing how both genetic and epigenetic determinants may 
influence prostatic cancer (CaP) progression. In this hypothesis, epigenetic factors may help to determine 
whether a particular tumor focus becomes a slowly growing, clinically insignificant cancer or a more rapidly 
growing, progressive cancer that will eventually threaten the host. PIN, prostatic intra-epithelial neoplasia.

Downloaded from Bioscientifica.com at 03/20/2020 12:29:30PM
via free access



Endocrine-Related Cancer (1998) 5 253-270

263

1991, 1992). Fibroblasts derived from rat urogenital sinus
mesenchyme and human bone, but not NIH 3T3 cells,
normal rat kidney fibroblasts or normal human lung
fibroblasts, enhanced tumorigenesis of ‘non-tumorigenic’
(as described by Gleave and colleagues) human LnCaP
cells in vivo. Conditioned media from bone fibroblasts, rat
urogenital sinus mesenchyme cells or NbF-1 fibroblasts
were also effective in stimulating growth of LnCaP cells
in vitro, while conditioned media from 3T3 cells, normal
rat kidney and normal human lung were ineffective in this
regard. Once again, this effect was bi-directional, as
LnCaP conditioned medium stimulated rat urogenital
sinus mesenchyme growth by up to 275%. These data
support the concept that fibroblasts can enhance
tumorigenesis in the human prostate, and that the trophic
effect of fibroblasts on prostatic carcinogenesis is not a
property of fibroblasts in general but is restricted to
selected fibroblastic cells.

As described above, we have hypothesized that
initiation of prostatic carcinogenesis involves genetic
alteration of the prostatic epithelium, after which there is
a sequential disruption in the reciprocal homeostatic
interactions between the prostatic smooth muscle and the
associated epithelium (Cunha et al. 1996, Hayward et al.
1996b, 1997a). This altered signaling leads to the de-
differentiation of both the emerging prostatic carcinoma
cells and the surrounding smooth muscle. Even though the
phenotype of the smooth muscle changes, the tumor-

associated stromal cells are postulated to remain
genetically normal (Fig. 5).

Using an in vivo model system, we have examined the
effects of carcinoma-associated fibroblasts on adjacent
epithelial cells. If our above hypothesis is correct, human
carcinoma-associated fibroblasts (CAF) should have
different effects on epithelial proliferation and
differentiation than ‘normal’ fibroblasts derived from
benign human prostatic tissue. We tested this hypothesis
using a tissue recombination model in which benign or
tumor-derived stromal cells isolated from human prostatic
tissue were recombined with either BPH-1 cells (a non-
tumorigenic, SV40T immortalized human prostatic
epithelial cell line) (Hayward et al. 1995) or
phenotypically normal human prostatic ductal organoids
(fragments of acini and ducts derived from benign prostate
which retain in vivo architecture). The resultant tissue
recombinants were grown beneath the renal capsule of
adult athymic nude rodent hosts. Control grafts were
composed of either epithelial or stromal cells alone and
were grown in conditions identical to the experimental
tissue recombinants. The amount of tissue recombinant
growth was determined by measuring wet weights.
Histopathological features of tissue recombinants were
determined in hematoxylin and eosin stained sections.

 Control grafts containing either benign or tumor-
derived stromal cells alone or epithelial cells alone
demonstrated minimal growth during the experimental
period. Tissue recombinants composed of normal prostatic
fibroblasts+BPH-1 cells also exhibited minimal growth
after sub-renal capsular grafting. In contrast, tissue
recombinants composed of carcinoma-associated
fibroblasts+BPH-1 cells exhibited striking growth after
sub-renal capsular grafting, reaching wet weights as high
as 5 g after 41 days (from an initial wet weight of
approximately 10 mg). Morphometric analysis demon-
strated that these tumors were predominantly epithelial
(80%), with a histological appearance that was consistent
with poorly-differentiated prostatic adenocarcinoma (Fig.
6).

Tumors were composed of poorly differentiated,
irregular epithelial cords. In some areas, epithelium
formed small glandular nests while in other areas
epithelium appeared as single cells that were intermingled
within a fibrous stroma. The epithelial nature of these cells
was confirmed immunohistochemically using a wide
spectrum anti-cytokeratin antibody. Furthermore,
epithelial cells within these tumors exhibited nuclear
staining with an antibody to SV40T antigen, confirming
their BPH-1 origin. The majority of epithelial cells
contained large, pleomorphic nuclei with large nucleoli.
Stromal cells were intermingled between the epithelial
cell nests throughout the tumor. In contrast to what was
seen with CAF+BPH-1 tissue recombinants, none of the

Figure 6  Photomicrograph of a tissue recombinant composed 
of human prostate carcinoma-associated fibroblasts and    
BPH-1 cells. This tissue recombinant was grown beneath the 
renal capsule of a male athymic mouse host for 21 days. This 
hematoxylin and eosin stained tissue section demonstrates the 
characteristic appearance of a poorly differentiated adeno-
carcinoma. Note that in some areas epithelial cells form nests 
that resemble glandular-like structures (arrows).
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grafts containing normal human ductal prostatic
organoids, including those prepared with carcinoma-
associated fibroblasts, exhibited significant growth.

These studies demonstrated that stromal cells derived
from benign and malignant sources were able to exert
differential effects on non-tumorigenic human prostatic
epithelial cells in vivo. Carcinoma-associated fibroblasts,
unlike normal fibroblasts, were capable of inducing an
invasive phenotype in an immortalized but non-
tumorigenic human prostatic epithelial cell line. The same
fibroblasts were unable to induce this phenotype in
genetically normal human prostatic epithelial cells, even
though effects on epithelial differentiation were observed.
These data suggest (1) that both genetic and epigenetic
changes may be important in human prostatic
carcinogenesis, (2) that carcinoma-associated fibroblasts
were able to stimulate progression of an initiated
epithelium while normal fibroblasts were incapable of
stimulating progression and (3) that carcinoma-associated
fibroblasts were incapable of causing initiation in a
genetically normal epithelium. Recent data obtained using
an in vitro co-culture system suggest that the carcinoma-
associated fibroblasts may be capable of increasing
proliferation and decreasing death rates of the BPH-1
human prostatic epithelial cells.

It should be noted that some of Chung’s initial studies
attempted to examine the ability of prostatic stromal cells
to stimulate carcinogenic progression in vivo by co-
inoculating prostatic stromal cells with prostatic epithelial
cells in a rodent host. In these studies, a non-tumorigenic
rat prostatic epithelial cell line (NbE-1 cells) was co-
inoculated with a tumorigenic cell line of rat prostatic
fibroblasts which formed sarcomas when grown alone
(NbF-1 cells) (Chung et al. 1989). As early as nine days
after transplantation, large ‘carcinosarcomas’ formed in
which epithelium comprised only 2-5% of the tumor mass.
The precise volume of epithelial growth was not
calculated in these studies, and any histopathological
changes that may have occurred in the epithelium as a
result of co-inoculation with the tumorigenic NbF-1 cells
were not specified. Furthermore, control experiments
examining the in vivo characteristics of epithelial cells
grown alone, or epithelial cells grown with a normal, non-
tumorigenic stroma were not described. Moreover, the
tumor growth period was not varied for any of the
experiments. Given the rapidity with which the tumors
formed, as well as the primarily sarcomatous appearance
of the tumors, it is likely that, instead of forming tumors
themselves, the benign epithelial cells in these grafts
remained benign epithelial cells ‘trapped’ within a NbF-1-
derived sarcoma.

It is important to note that our experiments differ from
those of Chung and colleagues in several ways. First,
Chung’s studies utilized tumorigenic fibroblasts that

formed sarcomas when grown alone. Our stromal cell
populations were genetically normal (by karyotypic
analysis and comparative genomic hybridization) and
were non-tumorigenic when grown alone. In fact, our
carcinoma-associated fibroblasts exhibited virtually no
growth during 6 weeks in vivo beneath the renal capsule.
Secondly, the histological appearance of the tumors in our
study was consistent with that of a poorly differentiated
adenocarcinoma. Sarcomatous elements were not
identified. This is in marked contrast to the primarily
sarcomatous tumors (carcinosarcomas) described by
Chung and colleagues. These important differences will
enable us to utilize our model system to examine the role
of stromal-epithelial interactions in the initiation and
progression of human prostatic cancer.

Mechanisms of stromal-epithelial 
signaling in the normal and neo-         
plastic prostate
The data summarized above lead to two opposite but
related ideas: (1) that carcinoma-associated stromal cells
can promote prostatic carcinogenesis, and (2) that normal
stromal cells may be able to inhibit prostatic carcino-
genesis by inducing differentiation and decreasing pro-
liferation of epithelium. These data indicate that a detailed
understanding of the signaling mechanisms between
stroma and epithelium could allow for the rational design
of therapies aimed at inhibiting prostate tumor growth.

Many studies have attempted to identify the signaling
molecules acting as paracrine mediators of stromal and
epithelial interactions in the developing and adult prostate.
In most studies to date, growth-quiescent adult prostatic
tissues have been utilized, and therefore the signaling
molecules that have been identified may be involved in
homeostasis rather than in carcinogenesis (Cunha et al.
1992a, Cunha 1994). There is currently no detailed picture
of the spatial and temporal expression patterns of many of
the growth factors found in the prostate. Considerations
such as the cell of origin of a particular growth factor
(epithelium, smooth muscle or fibroblast), the precise
localization of a growth factor or its receptor in relation to
proximal, intermediate or distal ductal architecture, and
the specific developmental stages when expression of a
particular growth factor occurs have not been adequately
examined.

In order to define better growth factor expression in
the prostate, we have recently developed species-specific
reverse transcription-PCR methods which examine the
expression of growth factors in heterospecific tissue
recombinants (i.e. rodent mesenchyme with human
epithelium). Using this method, it has been possible to
determine whether epithelial or stromal cells are
expressing specific growth factors (Horseman et al. 1997,
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Hayward et al. 1998). This technique does not require
disruption of organ architecture with potential adverse
modification of RNA expression. Our results to date have
demonstrated that growth factors and their receptors are
often expressed in multiple compartments of the growing
prostate gland.

For a limited number of growth factors, the expression
of ligand and receptor molecules is restricted to specific
and separate cell types. For example, expression of
hepatocyte growth factor and its receptor (c-met) is
localized to stromal and epithelial cells respectively. A
similar situation also exists for some members of the
fibroblastic growth factor (FGF) family, including FGF-7.
This growth factor is expressed by mesodermally derived
stromal cells, while its receptor (the FGF-R2 IIIb splice
variant) is exclusively expressed by epithelium.

Previous studies have demonstrated that specific
growth factors may play an important role in stromal-
epithelial signaling in the normal developing prostate.
Thus, it is possible that altered expression of these growth
factors may contribute to the development of prostatic
cancer. One such growth factor is FGF-7. During prostatic
development, FGF-7 is capable of imitating some of the
effects of testosterone. For example, the addition of
exogenous FGF-7 in the absence of testosterone can
induce ductal branching morphogenesis in organ cultures
of neonatal rat ventral prostate and mouse seminal vesicle
(Alarid et al. 1994, Sugimura et al. 1996). In addition, a
neutralizing antibody directed against FGF-7 was able to
inhibit androgen-induced ductal branching morpho-
genesis using this same rat ventral prostate model.
Although stromal cell expression of FGF-7 may be
regulated by androgens in vitro (Yan et al. 1992), RNAse
protection assays of FGF-7 and its receptor (FGF-R2 IIIb)
failed to show regulation of these genes by androgens in
vivo (Thomson et al. 1997). In prostate cancer, the switch
of FGF-7 receptor expression from the FGF-R2-IIIb to the
-IIIc splice variant in rat Dunning tumor cells may result
in altered FGF ligand-specific responsiveness of the
epithelium (Yan et al. 1993).

A second family of growth factors which may
potentially influence prostatic growth and carcinogenesis
are the IGFs. The exact role of the IGFs in prostatic
development and disease remains unclear. However,
recent experiments from our laboratory have shown that
IGF-I is required for normal prostatic growth. Fetal
prostatic rudiments harvested from both IGF-I and IGF
type 1 receptor knockout mice were grafted beneath the
renal capsule of male nude mouse hosts. Grafts were
allowed to grow for one month. After this time period, the
recovered tissue grafts were very small, with wet weights
of approximately 1-2 mg. This is compared with wet
weights of 30-50 mg for wild-type fetal prostatic grafts.
Histological examination of the IGF-I knockout and IGF

type 1 receptor knockout grafts demonstrated that
prostatic differentiation had occurred during this time
period, with the appearance of a few small ducts which
were lined by tall columnar secretory epithelium (A
Donjacour, unpublished observations). These data
suggested two important points: (1) that IGF-I was
required for normal prostatic growth, and (2) that local
production (or activation) of the ligand appears to be
important (normal levels of circulating IGF-I in the nude
mouse host did not induce normal prostatic growth in
grafts of IGF-I knockout prostates). Previous studies have
demonstrated inappropriately increased expression of
IGF-II both in benign prostatic disease and in other
carcinomas such as those arising in the breast (Ellis et al.
1994, Manni et al. 1994, Peehl et al. 1995, Singer et al.
1995, Tennant et al. 1996, Dong et al. 1997). In addition,
IGF-I appears to be down-regulated in human prostate
tumors (Peehl et al. 1995, Tennant et al. 1996, Dong et al.
1997). When taken together, these data support further
investigation into the regulation of IGF-I, IGF-II and the
type 1 IGF receptor in benign and malignant prostatic
disease.

Conclusions

The data summarized above suggest that both genetic and
epigenetic factors are important in the progression of
prostate cancer. Our recent in vivo and in vitro studies have
demonstrated that: (1) carcinoma-associated fibroblasts
do not form tumors when grown in the absence of
epithelium, (2) carcinoma-associated fibroblasts stimulate
progression of a genetically altered, non-tumorigenic
human prostatic epithelium towards a carcinomatous
phenotype, (3) the same fibroblasts are unable to stimulate
initiation of a genetically normal human prostatic
epithelium, and (4) stromal cells from non-malignant
sources do not promote tumorigenesis in a genetically
altered human prostatic epithelium under identical
conditions. Our in vitro studies have also demonstrated
that the stromal microenvironment may be capable of
regulating epithelial E-cadherin expression. These data do
not discount the possibility that epithelial cells with severe
genetic alterations can grow autonomously as malignant
tumors. Instead, they imply that interactions with the
stromal microenvironment are important determinants in
the progression from a normal prostatic epithelium to an
invasive carcinoma.

Prostate cancer can exist in two forms: either as a
latent, clinically insignificant tumor or as an aggressive
tumor which will progress without treatment. At the
present time, we have been unable to identify the specific
factors that determine the behavior of any given tumor
focus. The evidence presented above strongly suggests
that the stromal microenvironment may be capable of
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modulating the biological potential of a particular tumor.
This may be accomplished through regulation of tumor
neovascularity or through specific phenotypic changes in
the surrounding stromal cells that result in altered
expression of certain enzymes, cellular adhesion
molecules or growth factors.

The implications of our observations regarding tumor
growth are potentially very important from both a
diagnostic and a therapeutic perspective. For example, the
ability to identify tumor-associated stromal populations
which promote down-regulation of E-cadherin could be
extremely important for identifying patients at risk for
malignant progression of their prostatic adenocarcinoma.
From a therapeutic viewpoint, the prospect of targeting
therapy through the tumor-associated stroma to increase
epithelial E-cadherin expression could be used to maintain
prostatic tumors in a highly differentiated, non-invasive
state. This is not a far-fetched possibility as studies in
breast cancer patients have already demonstrated that
agents such as 9-cis-retinoic acid, tamoxifen, IGF-I and
tangeretin may up-regulate E-cadherin expression
(Anzano et al. 1994, Bracke et al. 1994, Morton et al.
1995).

Traditional therapy for all epithelial malignancies,
including prostate cancer, has been targeted at the
malignant epithelial cell. Due to its genetic instability, this
cell represents a ‘moving target’ for treatment. Although
carcinoma-associated fibroblasts are abnormal, pre-
liminary studies using karyotypic analysis and com-
parative genomic hybridization have demonstrated that
these cells do not possess gross genetic alterations. Thus,
they may provide a more stationary target at which to
direct treatment.
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