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Abstract

Data-driven filtration and segmentation of mesoscale neural dynamics

by

Sydney C. Weiser

The neocortex contains a constellation of sensory-motor regions whose functional interactions

provide the basis of cognition and behavior. Simultaneously recording neuronal group activity

across the cortical hemispheres is essential for understanding the nature of information flow

across cerebral networks. Moreover, unbiased and robust methods for measuring functional

interactions across the cortex within individual living subjects is critical for substantive tests

of genetic and environmental factors that influence brain development and function. To this

end, we image pan-neuronally expressed genetically encoded calcium indicators transcranially

across the neocortex of unanesthetized, behaving mice throughout development. Recording

from behaving mice produces a unique set of challenges, including optical and blood artifacts

associated with movement. In addition, areal patterning of the cortex can vary among individu-

als, ages, and genotypes thus an unbiased, flexible workflow for video acquisition and analysis

is necessary for producing high quality segmentations of functional structure across neocor-

tex. To address these challenges, we have developed an eigendecomposition-based workflow

that isolates hemodynamic and optical artifacts to recover underlying calcium activity patterns,

and segments independent regions of the brain to create maps of functional units across the

developing cortex. These unique, data-driven maps provide a reference for understanding de-

velopmental, genetic, as well as individual variation between functional units of the brain, and
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provide a method for extracting optimized time courses from the cortical surface without the

need for stimulation-based mapping or anatomical post-processing and alignment. In addition,

we quantify the quality of separation of independent sources and use the resulting metrics as

feedback to optimize our video acquisition parameters. The open source methods developed

here are flexible enough to be utilized with various subject ages and genotypes, as well as nu-

merous experimental configurations and computer architectures. Here we additionally present

applications of these methods to anesthesia and development datasets. Overcoming these chal-

lenges opens the possibility of using these techniques to help address a number of key objectives

in neuroscience, including the quantification of robust inter-areal dynamics between functional

motifs across cerebral networks.
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Chapter 1

Introduction

1.1 Activity Patterns Instruct Circuit Maturation

The mammalian cerebral cortex is formed over an extended developmental time course,

ranging from several months for a rodent to many years for a human [64]. Coupled with genetic

programs, neural activity patterns play a critical role in this developmental process [66, 39, 37].

Cortical neurons exhibit correlated calcium transients even before cortical layers are

finished developing [39]; first within the cortical column [38], then throughout local and global

networks as circuits mature [3, 37]. This process has been shown to be critical for neural

development by refining networks, both through anatomical and functional connections [3].

Networks are tuned gradually through this process, with increasingly fast and complex patterns

[3], until the brain switches into a more adultlike state at eye opening [13, 34].

The refinement of neural circuits is highly plastic and dynamic, and continues through-

out adulthood, shaping local and global networks that allow us to learn new skills and adapt to
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new situations [25, 58]. However, the extended ontogenetic period for the neocortex, together

with its latent plasticity for synaptic rewiring, also make the cortex especially susceptible to

intrinsic or extrinsic factors that disrupt neuronal function [64]. Serious cortical malformations

can arise when neurotransmission is disrupted, such as maternal use of epilepsy medication or

in-utero exposure to pollutants [29, 47, 12, 59].

We are beginning to understand how activity patterns during development wire in-

dividual maps within primary sensory areas [3, 2, 50], yet we still know little about how this

activity influences the cortex’s functional networks. This aspect of brain development is criti-

cal for our understanding of neurodevelopmental disorders, since most mental disorders affect

balance of local and global networks of the brain, rather than the function of a single area

[61, 10, 7, 74].

In particular, the role of neural dynamics within localized functional networks are

particularly understudied. Alzheimer’s patients have altered regional connectivity, but little to

no differences in global networks [7], while patients with schizophrenia have altered regional

connectivity and global networks [48]. These studies have all been performed by observing

differential localized clustering on the smallest resolution available in fMRI–the regional level

[26]. It is very likely that sub-regional functional differences can also be detected, on the order

of communications between cortical columns in sub-regional areas. However, these networks

are too small to effectively study with the relatively low spatiotemporal resolution of fMRI.

Understanding the dynamics of the developing brain provide insight into how small

perturbations in neural circuits can lead to drastically different local and global activity pat-

terns, resulting in altered behavior [16]. These questions have been left unanswered due to
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technological limitations; however, recent advances in bioengineering and computational sci-

ence necessary now allow us to address these questions. Genetic and pharmocological tools

allow easy modification of sensory inputs and dynamics within the brain. Recent advances

in calcium imaging technologies allow us to monitor neural activity across populations in the

whole neocortex with high enough spatiotemporal resolution to see subregional networks [11].

In addition, advancements in computational bandwith have let to practical improvements in the

analysis of dense multivariate datasets, such as those found in high resolution scientific imaging.

We are combining the power and flexibility of mouse genetics with various engi-

neering, computational, mathematical, and biological techniques to provide new insight into

the developing local and global networks of the brain. Knowing how these networks interact

during development is crucial for understanding how genetic or environmental factors can mis-

regulate activity patterns and thus alter the functional maturation of circuits and networks [48].

This may lead to altered maturation of the cerebral cortex and ultimately the development of

neurological disorders such as autism or schizophrenia [16, 61].
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1.2 Mesoscale Calcium Imaging

We record developmental neural activity patterns at high spatiotemporal resolution,

transcranially imaging fluorescence from a genetically encoded calcium indicator across the

entire mouse neocortex. Calcium dynamics are necessary and sufficient for neurotransmission,

and calcium indicators are being increasingly widely used in wide-field population imaging

studies due to their high signal quality, and ease of targeted expression [11].

The genetically encoded calcium indicator, GCaMP6s, is expressed in all neurons

under the control of the Snap25 promoter. This results in uniform cortical expression of the flu-

orescent transgene by three days after birth in mice [4, 60]. Calcium influx due to neuronal ac-

tivity causes intracellular GCaMP6s to change into an active conformation that fluoresces green

light [11]. Increases in action potentials lead to an additive increases in neural fluorescence; re-

gions with brighter fluorescence correspond to an increase in neural activation frequency [11].

We expose and illuminate the cranium with blue wavelength light and capture fluo-

resced green light with a sCMOS camera. To observe the spatiotemporal properties of these

population neural activity patterns, we crop the video to only neural tissue (neocortex, olfactory

bulbs, and superior colliculus when visible), and compare the change in fluorescence over the

mean fluorescence: ∆F/F (fig. 1.1).

We record these signals at very high resolution (2160x2560 px, ∼ 6.75um/px), and

capture sub-regional mesoscale dynamics, with scale ranging from complex activation patterns

in high-order circuits, to individual barrel activations, to whole cortical lobe activity patterns.

During development, the skull is thin enough to clearly see these patterns transcranially, with
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Figure 1.1: a) Recording schematic and fluorescence image of transcranial calcium imaging

preparation, cropped to cortical regions of interest. b) Sample video montage of video frames

after dF/F filtering.

very little diffusion.

Transcranial imaging leaves the skull and dura intact for a recording procedure that

is minimally invasive, allowing us to record activity patterns that are highly sensitive to anes-

thetics [4]. Even under light doses of isoflurane, spontaneous visual signals are severely in-

hibited during development [4]. Thus, the mice must be unanesthetized during the recording

process. Body or facial movements create large fluctuations in autofluorescence of the brain

and blood vessels [41], which produce significant artifacts in the data. Furthermore, growing

evidence suggests that even light anesthesia has a significant impact on brain activity patterns

/cite{tan spatial 2015}, further explored in sec. 3.1.
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1.3 Separating Neural Signal from Artifacts

Historically, the most common way to reduce blood and movement associated arti-

facts in neuroscience experiments of all kinds (i.e. electrophysiology, intrinsic signal imaging,

fluorescent dye imaging) is by preventing motion, often through induced motor paralysis or

anesthesia [CITATIONS]. Inducing motor paralysis fundamentally changes the signals we’re

interested in, by inhibiting motor activity, and growing evidence suggests that network behavior

can be very different under even light anesthesia [67, 63].

There exist a variety of methods that use a multi-wavelength collection system to esti-

mate and correct for backscattering and other hemodynamic associated effects [28, 27, 42, 69].

We attempted multi-wavelength correction methods, but found that at the light levels neces-

sary for good signal collection, it was nearly impossible to shield these alternating light sources

from the young animal, who would grow increasingly agitated at the flashing from the alternat-

ing light sources. These techniques offer corrections of signal from the absorbance of GCaMP

fluorescence by hemoglobin, but do not remove movement, recording artifacts, vessel contrac-

tion artifacts, or optical aberrations often present on the surface of recordings from young (<P5)

mice.

Eigendecompositions have previously been used to identify and filter components of

signal [34, 28, 4], and present a flexible method of filtering that is not hardware dependent, and

can be applied to any video dataset regardless of the recording hardware or parameters.

6
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Figure 1.2: Different eigendecomposition algorithms project along different axes. PCA projects

along the dimension of greatest variation (vertical), while ICA projects along the most non-

Gaussian axis (horizontal).

1.4 Eigendecompositions for Artifact Removal

Eigendecompositions are a set of common signal processing tools that are used to

identify underlying patterns in a dataset and transform a dataset from its original dimensions

into a new set of dimensions. The original signal is then represented as a linear combination of

these components. They are commonly used for data compression or blind source separation.

Principal Component Analysis (PCA) is the most widely known eigendecomposi-

tion. It iteratively removes eigenvectors from the data by projecting along the axis of maximal

variation (fig. 1.2). Independent Component Analysis (ICA) is another eigendecomposition

algorithm. Rather than finding the axis of maximal variation, ICA projects across the most non-

Gaussian axis detected [32]. Since random variable are represented as Gaussian distributions,
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Figure 1.3: The ideal eigendecomposition ideal blind source separator unmixes observations

into their underlying source signals. Observations (top) are a mixed sampling of different true

source signals. In this case, we have a linear mixture of a sine, sawtooth, and square wave. Ap-

plying eigendecomposition blind source separators such as ICA and PCA result in compressed

or identified signal source representations. Image source: [1].

this effectively isolates statistically independent sources.

ICA is commonly used as a temporal blind source separator to isolate various inde-

pendent time series, such as mixed source audio recordings (fig. 1.3). Observations come from

mixed signal sources (i.e. different instruments or voices). An eigendecomposition can be used

to try to approximate these signals. In fig. 1.3, ICA recovers near approximations to the 3 source

signals. One caveat to this approach is that the extracted sources are unordered, unscaled, and
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Figure 1.4: Example Components from a PCA decomposition on a P14 animal (top) demon-

strate a mixed morphology of signal, with blood vessel effects. Example components from an

ICA decomposition (bottom) demonstrate a more clean separation of signal and artifact.

can have inverted sign. In this case, the sawtooth signal is inverted, and the signals are all on

vastly different scales from the original data. However, their relative scale is preserved, and

when the sources are multiplied by the generated mixing matrix, the original data can be easily

recovered in a lossless transformation. Notably, the original data can also be rebuilt from any

combination of components. If the square wave represented an unwanted artifact, the original

data could be rebuilt with only the sawtooth and sine components. To optimally filter the data,

signal and artifact components must be fully separated such that no components represent a

mixture of signal and artifact. When applied to video data, a spatial ICA decomposition can

be applied to generate spatial components. These spatial components correspond to the differ-

ent sources of signal, and every frame is represented as a linear combination of these different

spatial signals.

Some calcium recording processing pipelines use spatial PCA decompositions for

the identification and isolation of hemodynamics in recordings [34, 28]; however, since PCA

is optimized for compressing data by pulling out the maximum amount of signal in as few
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components as possible. This produces components that are a mixture of signal and artifact

(fig. 1.4, top). Therefore, removing hemodynamic artifacts with Principal Component Analysis

inevitably removes signal from the data as well. To reduce the intermixing of components,

we have implemented an alternative ICA-based eigendecomposition (detailed in sec. 2.1). This

assumption results in a more complete isolation of individual signals from an intermixed dataset,

resulting in superior signal separation for artifact filtration (fig. 1.4, bottom).

ICA decomposition results in a more complete separation of neural signal and artifact

than other decomposition methods. As a result, when the artifact components are removed from

the video, filtration is achieved with less remaining artifacts, and with less alteration of neural

signal. ICA is commonly used for fMRI and EEG data [17], but had not previously been applied

successfully for mesoscale calcium imaging.

However, the lower spatiotemporal resolution of fMRI and data leads to different

results for ICA segmentation. For EEG data, artifacts are often temporal, such as pulse readings

contaminating electrical activation signals. [43] The scale of fMRI data results in components

that correspond to intrinsic connectivity networks, rather than identification of individual areas,

and artifacts that represent global artifact effects, rather than spatially localized effects [45].

In this sense, ICA segmentation can be a marker of signal quality, and is sensitive to

the signal sources in a given dataset. Since EEG and fMRI datasets are relatively limited in their

available spatial resolution, the effect of signal recording resolution on ICA decomposition of

neural signal sources had not yet been studied.
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1.5 Determining Recording Quality

Researchers have been recording calcium dynamics at frame rates ranging from 5-

100Hz [54, 4, 69], often with little to no justification for recording at different spatial resolu-

tions. In addition, recording resolution highly varies between different setups, but is often in the

range of 512x512 (0.2 MP) to 256x256 (0.06 MP) pixels for the entire cortical surface, and is

often further spatially binned [54, 4, 5]. Selection of spatial resolution is often dependent on the

video observer’s perceived quality of the image, rather than a quantified comparison of signal

content.

We recorded all data at much higher resolution (2560x2160 px, 5.5MP; 10Hz). In

sec. 2.2, we downsampled to determine how spatial and temporal resolution affected signal

quality and source separation in our dataset. We believe this thorough approach to determine

signal quality should be used to optimize neural signal recording on any recording system.

11



1.6 Spatial Reference in the Developing Cortex

For adult calcium imaging recordings, it is common to use sensory stimulation to

identify specific regions in the neocortex, and align a reference map based on the location of

these defined regions [70, 54, 5]. Even if these maps are reliable for the location of primary

sensory areas, they often lack specificity in higher order areas, or even completely lack sub-

regional divisions [56]. This is especially true in areas with a high degree of interconnectedness,

with overlapping functionality, such as motor cortex [51]. Moreover, there is growing evidence

that the shape and location of higher order regions vary from subject to subject [75, 19].

In addition, functional regions of the mouse brain are not well characterized during

development. Stimulation-based mapping is not necessarily reliable, since sensory systems are

not necessarily responsive to external stimuli throughout development. During this time, exter-

nal sensory stimuli do not reliably provide functional input for developing primary or secondary

visual and auditory cortical areas [8], and cannot be used for mapping regions. Even if these

regions can be reliably mapped, there is no reference map established for the developing mouse

cortex, so a full cortical map including higher order areas cannot be defined based on stimulation

during development.

Furthermore, mice with genetic abnormalities may have different cortical maps. For

example, Mouse lines such as Lmo4 [9], Fgf8, or Emx2 [20] where the cortical lobes are pro-

portioned differently within the neocortex. In addition, the BTBR (Black and Tan Brachyury)

is a mouse line that is commonly used for its lack of a corpus callosum and its autism-like

phenotypes, also displays different cortical proportions [15, 65].
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An alternative to functional mapping is histological tissue post-processing and imag-

ing. Histological procedures can outline primary sensory areas, but do not provide information

about the development of higher-order regions of the brain. Additionally, Histological mapping

procedures are time-consuming to implement across a developmental timeline, and are difficult

to precisely align to functional imaging. It is not clear how functional maps may be scaled

differently in animals with different genetic or background abnormalities, and creating maps

based on histology for every mouse line throughout development would be tedious, time con-

suming, difficult to align with functional recordings, and does not provide information about

higher-order areas.

When reference cortical maps are used for video segmentation and signal extraction,

improper alignment or misinformed regional boundaries can lead to a loss in dynamic range

between signals across a regional border. By improperly averaging together signals from differ-

ent sources, the extracted time series becomes intermixed, and is thus less useful for analyses,

especially for spatial clustering.

Some researchers spatially downsample their videos until they can easily compute pixelwise

correlations for various seeds across the cortex [70, 54], however these grid-based downsam-

pling systems treat the cortex as a uniform sheet, and are not optimized for functional recordings

either.

We know that most cortical processing happens within columnar structures, that vary

in local and long-range connectivity. These columns are highly organized within localized

neighborhoods, in nested hierarchical systems [52, 51]. Cortical neurons are not equally con-

nected to their neighbors–the network shifts at conserved functional borders. For example, the
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mouse forelimb and hind limb are neighbors in the sensory topological map, yet are not very

functionally or anatomically linked for their close proximity [52, 53, 56].

Different recording methods offer insights into various levels of these hierarchical

networks. Thus, to extract the most information from a recorded dataset, the level of parcellation

must reflect the quality and sources present within the data. Thus we need a flexible method

that respects functional boundaries of the cortex, is flexible to age, genotype, and individual

variation. Previously, a method for creating optimized cortical maps for any functional video

data was missing. In sec. 2.3, we present a processing pipeline using ICA that optimizes signal

segmentation and functional mapping of the neocortex.

We aim to address these gaps in mesoscale imaging, and develop a computational

method that filters the data (sec. 2.1), assesses input data quality (sec. 2.2), and spatially seg-

ments (sec. 2.3) the cortex into discrete regions for optimal time course extraction (sec. 2.4). To

make these methods as flexible as possible and as applicable to both developmental and adult

mesoscale imaging, the following experiments all use P21 mice. In sec. 3.2, we explore the

application of these methods to developing mouse cortex.
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Chapter 2

ICA-based Filtering and Segmentation

We have developed an algorithm that filters and compresses mesoscale imaging data

using Independent Component Analysis. Metrics that summarize the quality and separation

of input signal are automatically generated. These metrics can be used for various purposes,

including determining the optimal spatiotemporal resolution or recording duration for data col-

lection.

Additionally, a data-driven segmentation of the cortical surface is generated from the

ICA decomposition. This method of segmentation optimizes the information represented in

a reduced set of timecourses, while preserving the spatial structure and dynamic range of the

original dataset.
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2.1 ICA Filtration

A spatial ICA decomposition produces a series of spatial components and a mixing

matrix, representative of the component’s influence at each frame in the video (fig. 2.1). The

components are sorted by influence over the video variance, and flipped so that they all represent

positive effects (see methods: sec. 7). The independent components can be sorted into 3 major

categories based on their spatiotemporal properties: signal components, artifact components,

and noise components (not shown).

Signal components represent a distinct area of cortical tissue, which we refer to as it’s

cortical domain. The spatial morphology of these signal components can vary greatly. In spa-

tial domain and eccentricity. Occasionally signal components can also contain a secondary or

tertiary domain, with similar enough activation patterns to be identified as a single neural com-

ponent. The second signal component appears to represent a higher order visual network, with

multiple domains on the left hemisphere, and a small mirrored domain on the right hemisphere.

Artifact components can take many forms, including various blood vessels and ar-

teries, movement artifacts, optical surface artifacts, etc. The top two artifact examples likely

represent hemodynamics from the superior saggital sinus vein with the bottom artifact likely

represents blood flow through the middle cerebral artery [73]. A very high resolution map of

the vessel patterns can potentially be rebuilt from these components, with branching structures

as small as ∼ 12µm in diameter (shown above in zoom panel). Noise components lack a spatial

domain, and have little to no temporal structure. Noise sorting is further detailed in sec. 2.2.

Signal and artifact components can be sorted manually in graphical user interface (fig. 5.1) or
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Figure 2.1: Independent Component Analysis (ICA) video decomposition schematic. A dF/F

movie is decomposed into a series of statistically independent components that are either neural,

artifact, or noise associated (not displayed). Each component has an associated time course from

the ICA mixing matrix. Signal components can be rebuilt into a filtered movie. Alternatively,

artifact components can be rebuilt into an artifact movie. Circular panels show higher resolution

spatial structure in example components.
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with a machine learning classifier (sec. 5.4).

Video data can be reconstructed using any combination of these components. In par-

ticular, a filtered video can be constructed by excluding all artifact components. The noise

components can be additionally excluded for denoising video data with high spatial noise. For

our analyses, we did not exclude ICA noise components when rebuilding. The artifact movie

can also be reconstructed to verify that desired signal was not removed with the artifact filtration

(see sec. 5.3).
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2.2 Noise Sorting and Resolution Analysis

Non-noise (signal and artifact) components can be separated from noise components

from their visual differences, as well as from their log temporal variances, or lag-1 autocorre-

lations. Non-noise components have spatial structure and a high lag-1 autocorrelation, corre-

sponding to waves of calcium activity in a specific location. Conversely, noise components are

highly dispersed across the cortex, and have a low lag-1 autocorrelation. The lag-1 autocorrela-

tion metrics from these two groups are so polarized, that it is straightforward to separate these

populations by their lag-1 autocorrelation alone (fig. 2.2a).

To automate this sorting process, a two-peak kernel density estimator (KDE) was fit to

the histogram of lag-1 autocorrelation data. The KDE distribution is an easy way to summarize

the two major peaks, as well as the minima between them, defined as the noise cutoff.

The locations of these peaks, and the minima between them is highly stable across our 8 P21

test recordings (see Methods–sec. 7–for animal details). We found the non-noise peak (p1)

at an autocorrelation of 0.94± 0.01, and a noise peak (p2) at 0.13± 0.01. The central cutoff

minima was slightly more variable, with an autocorrelation value of 0.61±0.05. A high degree

of separation between these peaks (dp−p = 0.82± 0.01; p < 0.001) suggests that the signal

and noise signal sources were completely separated, and thus all signal sources were distinctly

identified.

To test how this separation is affected by spatiotemporal resolution and video dura-

tion, we altered properties of the input video and observed its effects on the quality of signal

separation through lag-1 autocorrelation distributions. Reducing the spatial resolution resulted
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Figure 2.2: a) Distributions for lag-1 autocorrelation (black) and temporal variance (purple) are

displayed for components 1-1200. A dotted line representing the cutoff determined from the

distribution in the right panel. In the right panel, a horizontal histogram on the lag-1 autocor-

relation with a two-peaked kernel density estimator (KDE) fit reveals a two peaked-histogram,

summarized by a barbell line. Group data for each peak, as well as the central cutoff value is

summarized by the boxplots on the right (n=16). b) 2-peaked KDE fits of horizontal histogram

distributions under various spatial downsampling conditions, with barbell summary lines on the

right. After spatial resolution decreases beyond 2088umˆ2/px, this two peak structure collapses,

and an x denotes the primary histogram peak. c) 2-peaked KDE fits of horizontal histogram dis-

tributions under various temporal downsampling conditions, with barbell summary lines on the

right. d) Component stabilization for different length video subsets of six 20-minute video

samples. Individual thin lines show polynomial fit to signal or artifact components under each

time condition. Thick lines denote the curve fit of the mean number of components in each

category across these six experiments. The group distribution of components at 20 minutes is

summarized by the boxplot on the right (n=16).

20



in a steady decrease in peak separation, until the dual peaked structure collapsed at a resolution

of 2088µm2/px (fig. 2.2b).

Increasing the sampling rate above 10Hz showed little to no effect on the peak to peak

distance (∆p−p < 0.01), and a slight decrease in the autocorrelation of the primary peak (∆p1 =

0.03), but temporal downsampling below 10Hz resulted in a shifting of the signal and noise

peaks (∆p1 = 0.06), and a reduction in the peak to peak distance (∆p−p = 0.02). Since temporal

dynamics of GCaMP6s are not expected to 8Hz (CITE), this result agrees with our original

choice of temporal sampling at 10Hz. Together, this suggests that the separation quality of our

captured dynamics are highly sensitive to spatial resolution, and not as sensitive to temporal

resolution. We considered collecting spatial samples higher than our current resolution of ∼

6.75µm/px, but it was not possible with our current camera setup, and would result in extremely

large datasets.

To determine the ideal duration of video collected, we calculated the number of sig-

nificant signal and noise components for various video durations (for component sorting, see

sec. 5.4). We found that a for ICA decompositions on an activity patterns from a P21 mouse,

the number of noise and artifact components leveled off by 20 minutes of recording. Population

analyses showed that this number was highly similar among P21 mice (n signal components:

244± 25.7; n artifact components: 87.2± 20.7). However, when we tested duration on other

developmental time points, the required duration for stabilization varied (see sec. 3.2).
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2.3 Generating Domain Maps

In addition to their applications for filtering, the components also are a rich source

of information about spatial distributions of signal within the cortex. Components across the

cortex show a wide diversity of spatial characteristics, and represent a detected independent unit

of signal. We use the spatial domain footprints of each signal component to create a create a

data-driven ‘domain map’ of the cortical surface by taking a maximum projection through each

component layer (fig. 2.3a; for details, see methods:sec. 7). For analysis, 8 maps were created,

with an average of 230± 14 detected domains. Domains were then sorted into regions, by a

combination of network analysis, reference comparison, and manual sorting (see sec. 5.6 for

additional information).

Domains did not exhibit uniform spatial characteristics across the neocortex. Dif-

ferent detected regions have different spatial characteristics such as area (ANOVA F=161.6,

p < 0.001), as well as eccentricity (ANOVA F=47.4, p < 0.001). Generally, higher order and

motor regions (R, V+, Ss, Mm, Ml) had larger domains than primary sensory areas (V1, A, Sc,

Sb, S) (ANOVA F=558.4, p < 0.001), and also exhibited higher eccentricity (ANOVA F=199.6,

p < 0.001).

To test the meaning of these maps, a series of comparisons were performed. Pairs

of maps were overlayed on top of each other (fig. 2.3), and every domain was compared to its

nearest domain in the comparison map (see methods for details: sec. 7). The Jaccard overlap

was calculated for each of these domain pairs, and quantified for each pair of map comparisons.

For a null hypothesis, randomly generated Voronoi maps were also compared (see methods for
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Figure 2.3: a) Schematic of domain map creation. A maximum projection is taken through

each blurred signal component to form a domain map. Cortical domains are assigned to one

of 10 identified regions, with region divisions denoted by the bold lines. b) Domain area and

eccentricity by region. Population analysis of distribution of spatial characteristics individual

domains within defined regions across multiple recordings (n=16). c) Example overlay of one

domain map on another from the same animal. Individual domain or region overlap is calculated

using the Jaccard index (intersect / union). d) Population analysis of the Jaccard index for

domain and region overlap comparisons. Maps are generated from a different recording on the

same animal, a littermate, a non-littermate, or a randomly generated voronoi map. Significance

is calculated using a ANOVA two-way t tests with Holm-Sidak correction.
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details: sec. 7).

Maps generated from different recordings from the same animal were found to be

highly overlapping, and hence more similar (fig. 2.3, top; p < 0.001). There was no significant

difference in comparisons between littermates vs non littermates. Non-littermate map compar-

isons were significantly more similar to each other than to voronoi maps (p < 0.001).

We additionally quantified whether detected regions were similar across map compar-

isons. We again found that comparison between maps from the same animal were highly similar

(fig. 2.3, bottom; p < 0.001), no difference was found between littermates and non-littermates,

and comparisons between different animals were significantly more similar than a comparison

between a region map and a randomly generated voronoi map (p < 0.001). In summary, re-

gions and domains are similar between recordings either in the same or on different animals,

compared to a null map distribution.
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2.4 Extracting Optimized Time Courses

At full resolution, there are approximately 1.5 million pixels along the surface of

the cortex–far too many sources for most network analyses, which work best on 10-300 time

series. We propose that these data-driven domain maps are an optimal method for extracting

time courses from the cortical surface. Time series were extracted by averaging the filtered

movie under each domain. This results in a series of ∼ 230 time series per video recording,

representing a ∼ 6,500-fold reduction in size (fig. 2.4a).

To test how well the full filtered video was represented in these time series, we rebuilt

‘mosaic movies’, where each domain is represented by its mean extracted signal at any given

time point (fig. 2.4b). Comparing the borders of the large higher order visual activation, one

can see visually that the data appears more distorted in the voronoi and grid. To numerically

compare whether this method of time course extraction was superior to alternate methods, we

also compared mosaic movies rebuilt with either grid or voronoi maps.

The residuals between the mosaic movies and the filtered movies were compared to

the total spatial variation in the filtered movie to quantify the amount of total signal represented

by the extracted time courses (fig. 2.4c, left). In nearly every experiment, the optimized domain

map performed better than any other time course extraction method, and accounted for 68±1.2

% of the total spatial signal in the filtered video (n=8).

Domain maps generated from different videos from the same animal performed nearly

as well as the optimized domain maps created from the video compared (fig. 2.4c, right). These

maps performed significantly better (p = 0.01) than the grid maps, and much better than the
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Figure 2.4: a) Schematic of mean time courses extracted from different domains generated from

a domain map. Different dynamics are observed from time courses extracted from different

domains. b) Example of mosaic movie frames rebuilt from just the information stored in mean

domain time courses. The filtered movie is replicated in the upper left corner. The upper right

image corresponds to the representation of the same video frame rebuilt from the extracted

domain time series. The left and right bottom panels correspond to the representation of the

same video frame rebuilt from the extracted domain time series from either voronoi or grid

maps, respectively. c) Percent total signal of the filtered video represented by extracted time

courses. Percent of overall video signal captured in domain maps was calculated from one

video from each animal (green circle; n=8), and compared to a map generated from a separate

video calculated from the same animal (green triangle). Percent total signal represented by time

courses extracted from grid (blue square) or randomly generated (blue diamond) maps were

compared as controls. In the right panel, the percent signal relative to the domain map percent

signal was summarized in a box plot. d) Variation between time courses extracted with each

map method was then quantified as a sum signal variation for each experiment. In the right

panel, the sum signal variation for each comparison map relative to the optimized domain map

sum signal variation was summarized in a box plot.
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Figure 2.5: Example correlation maps generated from timecourses extracted from domain map

segmentations (left) compared to grid segmentations (right).

voronoi maps (p < 0.001).

Compared to saving the full ICA compressed dataset, saving these extracted time

courses and all associated metadata results in a file size of ∼ 100MB, for a ∼ 60 fold additional

compression. One potential benefit to accounting for the underlying regions of the brain while

extracting time courses is reducing the amount of times that an extracted mean signal is diluted

by signal from a neighboring region. Properly restricting time series extraction to statistically

independent units should enhance the dynamic range between extracted time series.

To test whether domain maps extracted time courses better extract the full range

of variation in the cortical surface, we compared the total variation between time courses re-

built under domain maps from the same video, same animal, or control grid and voronoi maps

(fig. 2.4d, left). When normalized to the performance of the optimized domain map, domain

maps from the same animal again had similar performance, but grid and voronoi maps per-
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formed significantly worse (p < 0.001; fig. 2.4d, right). There is a ∼ 15% reduction in signal

variation in grid or voronoi maps compared to domain map extracted time courses.

The example shown in fig. 2.5 shows a single example of correlation maps generated

from time series from either the domain map ([fig:correlation-example], left), or the grid map

([fig:correlation-example], right). The borders of sensory regions such as primary visual cortex

(V1) and auditory cortex are visible in the domain map borders, but are blurred out in the

grid representation. These clean borders for time series extraction are invaluable for network

analyses.
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2.5 Conclusions

We have shown that high resolution imaging of mesoscale cortical calcium dynam-

ics combined with data-driven decomposition using ICA results in an optimized extraction of

neural source signals. We demonstrate that these methods provide precise isolation and filtra-

tion of video artifacts due to movement, optical deformations, or blood vessel dynamics while

recovering cortical source signals with minimal alteration.

Previous attempts at ICA filtration and segmentation in neuroscience have been less

than ideal for identifying unmixed sources [21, 45, 14, 44, 55], likely due to the insufficient

spatial sampling required for complete signal separation, and insufficient components extraction

through ICA.

Here we report that signal separation from mesoscale calcium dynamics recorded

across the cortical surface is the most complete at the highest spatial resolution tested (2560x2160

px; 5.5MP). Temporal resolution had less of an effect on ICA signal separation; we found that a

10Hz sampling rate was sufficient. These metrics for signal quality are automatically generated

by our algorithm, and can be used to optimize signal collection on any given experimental setup

(age, genotype, recording duration, resolution, etc). The number of components identified is

highly stable after recording sufficient duration of dynamics, and provides a quick metric for

spatial complexity of neural signal across the neocortex.

We further demonstrate an ICA-based method for using these components to perform

a data-driven mapping of the captured cortical dynamics, resulting in a superior isolation of the

various signal sources on the cortical surface. Using optimized signal extraction results in a
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higher dynamic range of extracted time series, and thus would produce correlation maps and

network analyses with enhanced separation between neighboring regions. Stimulation exper-

iments or anatomical post-processing of brain tissue could provide insights on how well the

sorted domain regions correspond with known functional units of the brain. If these maps align

well to anatomical regions, they can additionally be used as a reference for in-vivo cortical

mapping, with potential applications in live feedback or targeted injection experiments.

An additional benefit is the highly compressed data format. The original or video can

be rebuilt with relatively little loss of information from a reduced set of ICA components, for

a ∼ 10x reduction in file size. This results in a representation of a high resolution video that is

much more manageable to work with on a local computer.

These methods are flexible for any age, genotype, or drug condition. This method

of segmentation may provide insights into the underlying cortical anatomy; however further

experiments are necessary for confirmation. We believe these methods can be used to generate

metrics of spatial complexity. We further explore this through applied analyses in the following

chapter.
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Chapter 3

Applied Analyses

To test our artifact filtration and the usefulness of our spatial segmentation and signal

extraction for generating useful analytics on a wide variety of datasets, we applied our methods

to various conditions that alter spatiotemporal properties of cortical networks. First, we present

the effects of isoflurane anesthesia on cortical networks. Then, we investigated spatial properties

of the cortex during the first two weeks postnatally, from birth to eye opening.
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Figure 3.1: Example dFoF frames from videos sequentially recorded from the same animal

under different isoflurane conditions.

3.1 Anesthesia

Surgical anesthesia in veterinary or clinical settings often use inhaled halogenated

ethers, such as isoflurane, desflurane, or sevoflurane. Like many general anesthetics, the mech-

anism of action in vivo for isoflurane is not well understood. We do know that it is a positive

allosteric modulator of GABA-A receptors [33, 35]. It has been shown that anesthesia affects

information transfer between primary and higher order regions, and affects neural correlation

patterns [71, 49, 72, 40].

This research has been conducted to analyze regional network changes using defined

coordinate systems, but little has been done to analyze local circuit changes within functional

units. To test whether our segmentation methods could identify differential spatial structure

under different anesthesia conditions, we filtered videos, then applied our segmentation analysis

to 3 different P21 mice under 4 increasing isoflurane levels (see methods:sec. 7).

Visually, videos recorded from animals under 0.25% isoflurane appeared fairly similar

to videos recorded under 0% isoflurane fig. 3.1. However by 0.5% isoflurane, there seemed to

be a loss of spatial complexity; patterns appeared highly symmetric. By 1% isoflurane, most
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localized activity within the cortex was lost–there were some weak symmetric activations, such

as the one shown in fig. 3.1.

Before doing any analysis, we first tested whether isoflurane affected the duration

of time required for component stabilization, by performing a component stabilization test

(fig. 3.2a), similar to the signal/artifact test applied in sec. 2.2. Surprisingly, we found that

the addition of isoflurane did not seem to extend the duration of video data required for compo-

nent stabilization. However, it did decrease the overall number of components detected. Even

isoflurane concentrations as low as 0.25% had an impact on the number of components detected

(p < 0.01).

The number of detected domains increased slightly at 0.25%, but was not statistically

significant. Further increases in domains with higher isoflurane levels were all significant (p <

0.001). Number of domains detected for each isoflurane condition were as follows: (0%: 230 ±

14 domains; 0.25%: 208 ± 20 domains; 0.5%: 129 ± 10 domains; 1%: 67 ± 8 domains). The

average size of a domain slightly increased between 0% and 0.25% isoflurane (p < 0.001). As

isoflurane was further increased, the size of the average domain increased even more (p< 0.001;

fig. 3.2b).

The domain maps generated for each of these conditions is displayed in (fig. 3.2c).

By 1% isoflurane, the domain map was severely impacted, and large portions of the body core

were not detected as belonging to any component at all. This suggests that these regions were

rarely if ever active during the 20-minute video segment. Since these maps were so impacted by

isoflurane, we applied the 0% map to the video under each condition for time series extraction

for further analyses. In fig. 3.2d, we verified that this loss of structure was due to very little
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Figure 3.2: Spatial analysis of cortical activity under anesthesia. a) Component stabilization

curves under various isoflurane conditions. Duration of the video is varied by 100s, and the

number of significant components are compared. Light lines represent a 2nd degree polynomial

approximation of the number of components detected for each animal under each condition.

Thick lines represent a 2nd degree polynomial fit to all data points under each given isoflurane

condition. Distribution of non-noise components for each isoflurane condition is summarized

by the box plot on the right. b) Size of domain detected under each isoflurane condition. c)

Example domain maps generated from a single animal under each isoflurane conditions. d) Ex-

ample domain time series standard deviation for a single animal under each isoflurane condition,

generated from 0% domain map.
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signal over the somatosensory core area. As expected, The activity level, measured by the time

series standard deviation from each domain, reported very little signal in somatosensory core

areas.

To test how temporal properties differed under these isoflurane conditions, we ex-

tracted time series from cortical domains calculated from the 0% isoflurane video, and com-

pared wavelet-based temporal metrics (see methods: sec. 7) for time series extracted under each

of the 4 isoflurane conditions (fig. 3.3).

When we looked on the population level, we again found that the time series stan-

dard deviation significantly slighly decreased as with light anesthesia (fig. 3.3a; p < 0.05). As

isoflurane further increased, the temporal standard deviation dropped even lower (p < 0.001).

The range of frequencies with significant power for any given domain time series (fig. 3.3b)

decreased under higher isoflurane (p < 0.01).

Under light isoflurane, domains varied greatly in their dominant frequency (fig. 3.3c), as mea-

sured by the maximum wavelet signal to noise ratio (see sec. 7). However under higher isoflu-

rane levels, this diverse structure collapsed into a narrow range of frequencies (fig. 3.3c; p <

0.01). This suggests that in addition to its loss of spatial structure, the temporal dynamics across

the cortex were also simplified.

We next performed a network analysis to further explore how the cortical functional

structure is affected by isoflurane anesthesia. First, we generated network connectivity maps.

Since the number of domains detected per region varied between animals, we calculated the

percentage of highly correlated (wavelet coherence > 0.4) domains for each pair of region

comparisons (fig. 3.3c).
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Figure 3.3: The effects of anesthesia on time series and network connectivity under isoflurane

anesthesia. a) Boxplot of the temporal standard deviation of domain time series under different

isoflurane conditions. Drug animals 1, 2, and 3 are plotted on the left, center, and right, respec-

tively. Each boxplot represents the distribution of events detected from time series extracted

from domains within a single animal. b) Boxplot of range of significant wavelet frequencies

detected from domain time series under different isoflurane conditions. c) Boxplot of the domi-

nant detected frequency in domain time series under different isoflurane conditions. d) Average

intra-regional connectivity network for animals under each isoflurane condition. Each compari-

son represents the percent of domains within each region that were highly correlated (coherence

> 0.4) with regions in the comparison target (n=3 animals per condition). e) Comparison of av-

erage network strength between different anesthesia levels. The difference was taken between

network maps of increasing anestheia levels. Region comparisons in red represent an increase

in connectivity as isoflurane was increased. Regions in blue represent a decrease in connectivity

as isoflurane was increased.
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Interdomain connectivity, represented by the diagonal under each isoflurane condi-

tion, was generally quite high, shown in the example network cross-coherence in fig. 3.3d. The

overall coherence (as measured by mean percent coherent regions) increased as isoflurane levels

increased (ANOVA F=13.70, p < 0.01).

The localized network structure as seen in the 0% isoflurane example became blurred and dis-

tributed globally across the cortex as anesthesia increased. Even though the anatomical structure

has not been altered, the increase in coherence across multiple networks suggests that the 0%

domain map is not an ideal way to represent the new spatiotemporal structure under isoflurane.

In conclusion, we found that even sub-surgical level of isoflurane anesthesia drasti-

cally affects spatial, temporal, and network interaction dynamics across the cerebral cortex. The

number of identified ICA components, and the resulting domain map are reflective of the relative

spatiotemporal complexity of the underlying neural signal. When temporal and spatial network

dynamics simplify under increasing isoflurane, there is a reduction in unique signal sources. As

a result, the ICA components and domain maps simplify as well, and reduce in number. Thus,

even extremely light, sub-surgical levels of isoflurane reduced the spatial complexity of the

cortical domain mosaic, showing that GABAergic neurotransmission shapes functional group

dynamics in neocortex.
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Figure 3.4: Filtering results for a P2 video recording. The raw dFoF video (left) is ICA filtered,

to remove detected optical, surface blood, and hemodynamic artifacts. The center panel show

what information was removed from the given frame by the ICA filter. The right panel shows

the filtered video at the given frame. In this frame, the olfactory bulbs and superior colliculus

are also shown, but were not used in this section’s analysis.

3.2 Development

We also applied our filtering and segmentation methods on animals across early post-

natal development. Filtering was highly successful for our young mice. Before the skull is

developed enough to hold its shape under pressure, experiments on these young mice often

have so many blood and optical surface artifacts that the data is unusable. In fig. 3.4, we pro-

vide an example frame of a filtering result on a P2 mouse recording. The filtering successfully

removed hemodynamic, surface blood, and surface optical artifacts, thus rescuing the useability

of this recording. Without this artifact filtering, we could not perform analyses on animals this

young.

Similar to our P21 data, signal components could be identified throughout a range of

developmental ages (fig. 3.5a). The spatial characteristics of these components varied some-

what, along with the number of multi-domains detected per signal component.

38



P2 P6 P10 P14 P21

b.

.008

.004

0

-.004

d.

c.

e.

a.

P2 P6 P10 P14 P21

Figure 3.5: ICA metrics summarizing spatial changes across the cortex during development.

a) Example ICA components extracted from different regions throughout select development

time points (P2, P6, P10, P14, and P21). Each column corresponds to examples selected from a

single animal. Rows correspond to similar components in distinct regions selected for compari-

son. b) Number of cortical signal components detected from 30-minute recordings from various

mice throughout early postnatal development. Points are recordings from individual animals,

with the group mean and standard deviation marked with a line and whiskers. c) Percentage

signal components detected with multi-domains detected from 30-minute recordings from var-

ious mice throughout early postnatal development. d) the number of cortical domains extracted

from ICA decompositions from 20 and 30 minute datasets across development. In the bottom

panel, this relationship is adjusted to calculate the number of domains per mm2. P21 data is

presented as a 20-minute recording, since 30-minute decompositions were not possible. d) Ex-

ample domain maps calculated from example animals across development. The same animals

are used as presented in (a).
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a. b.

Figure 3.6: Determining the ideal length of recording for videos from different age mice. a)

Number of cortical signal components detected in a 20-minute video (red) compared to the

number of cortical signal components detected in a 30-minute video (black) for the first two

weeks postnatally. b) Comparison of the number of signal components detected in a 20-

minute video compared to the number of signal components detected in a 30-minute video.

A dashed line represents the unity relationship, where the number of components are equal in

each decomposition.

The number of cortical signal components detected throughout development rose

sharply for the first postnatal week, before an inflection point around p6-p8, where the num-

ber of signal components decreases throughout the second postnatal week (fig. 3.5b). When

we quantified the number of multi-domain signal components, there seem to be two distinct

populations. In the first postnatal week, only ∼ 15% of components had multiple domains. In

the second postnatal week, the number of multiple domain components nearly doubled. This

property remained constant at 3 weeks postnatal (P21).

Since this number of resulting components was much higher, we tested the effect of

increasing our video duration to 30 minutes. We found that between P5-P12, there was an in-

crease in the number of detected cortical domains when video duration was increased (fig. 3.6).

For this reason, we used 30-minute videos for the rest of the development experiements. P21

data contained too many samples to be processed as 30-minute segments, so the data was pro-

cessed in 20-minute segments.
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In addition to the number of signal components detected, we also quantified the den-

sity of domains identified by the domain map throughout development. This trend followed the

same pattern as the number of independent components (fig. 3.5d, top). This trend remained

even after correcting for cortical area, though the inflection point shifts slightly towards P5 or P6

(fig. 3.5d, bottom). Spatially, the cortical surface appears highly disorganized, with relatively

uniform domains until P10, where the adult-like patterns and diversity in domains begin to take

shape.

It is known that cortical projection neurons send out extensive projections throughout

development, with maximal multi projections around P8 cite{fame development 2011}. These

projections are rapidly tuned through early postnatal development, and reach near adult-like

circuitry by P12 [57]. Here, we find nearly identical patterning in our independent component

and domain map metrics.

Using the number of identified independent components or domains provides a sim-

ple, unbiased metric for spatial complexity.

Since this metric is not dependent on any external references or maps, it is easy to

extend this analysis to mice with altered genetic or environmental influences for which reference

maps have not been defined. We aim to apply this analysis to other mice such as the acollasal

mouse line BTBR [15] or genetically engineered Ephrin mutants [18].
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Chapter 4

Conclusions

Here we have introduced data-driven methods for automated artifact filtering, quality

analysis, spatial complexity analysis, domain segmentation, and optimized time series extrac-

tion from high resolution mesoscale calcium dynamics. These methods are flexible enough to

be applied to any mice, regardless of age, drug and genotype conditions, without any manual

parameter adjustment.

The automated extraction of time series allows for easy comparison of different con-

ditions, without the need for external maps. These extracted time series are optimized for rep-

resenting identified functional units in the cortical surface. By increasing the variance between

extracted signals, correlation matrices thus have a higher dynamic range.

Our isoflurane experiments show that under light to moderate sub-surgical levels of

anesthesia, the cortical surface undergoes a vast reduction in functional complexity.

Changes in temporal activation patterns explained some of these changes, but changes in spatial

metrics were even more extreme, and reflective of the simplification of patterns evident from
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visually observing functional group dynamics.

Intracortical projection, and activity-dependent circuit refinement and maturation are

key features of early postnatal brain development. This process previously been quantified on a

cellular level, but little work has been done studying the refinement of local functional circuits in

the neocortex. To quantify this, a measure of spatial complexity is necessary. Here, we present

the first attempt at quantify spatial functional complexity of the neocortex during development.

These results line up with known changes in cellular and network behavior during development.

Now that we have produced a reference for how spatial complexity develops in the

neocortex, we can compare how different drugs, environmental effects, or genetic differences

affect this process. Better understanding of various processes controlling spatial complexity

during development can give us a better idea of how the process of circuit maturation can

have lasting effects on brain networks and dynamics. This could potentially lead us to a better

understanding of brain disorders with altered circuit and network dynamics, such as autism and

schizophrenia.
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Chapter 5

Supplemental Information

5.1 Graphical User Interface

We developed a Tkinter-based graphical user interface (GUI) for browsing compo-

nents and associated metrics and data. Since tkinter is installed natively on most operating sys-

tems, this does not require any additional installations. This interface was originally developed

for browsing PCA decompositions, and could be also applied to any other eigendecomposition

saved in a similar hdf5 formatted file.

The GUI is primarily designed for manual selection or validation of component sort-

ing (fig. 5.1a). Pages of components are presented 15 at a time, and the user is prompted to select

components to toggle them between signal (cool/warm colormap) or artifact (black/white col-

ormap). In addition to this first page, six other pages are available for viewing various properties

of the dataset. The second page displays the component, timecourse, wavelet decomposition,

and frequency power for any given component (fig. 5.1b).
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a. b.

d.c.

Figure 5.1: A Tkinter-based graphical user interface (GUI) for browsing independent compo-

nents, and associated data. a) 15 independent components, order 60-74 by variance. Com-

ponents displayed in grey are selected as artifact either manually or using a machine learning

classifier. A click on the display for any given component manually toggles its classification as

either signal or artifact associated. Components colored in the cool/warm colormap are signal

associated. Components colored in the black/white colormap are artifact associated. Buttons on

the bottom panel control GUI movement through the dataset. The text panel at the bottom dis-

plays where the index for the signal/noise cutoff. b) The component viewer displays additional

temporal metrics about any given component. The top controls allow movement through the

dataset by manual scrolling with (+/-) buttons, up/down keys, or through typing a desired com-

ponent in the text box. PC timecourse displays the mixing matrix timecourse extracted by the

IC operation for the given components. The Wavelet power spectrum is displayed in the bottom

right, and an integrated wavelet or fourier representation is available on the bottom left. 0.96

significance as estimated by the null hypothesis is displayed as a dot-dash line. c) The domain

map correlation page shows the pearson cross correlation value between a selected seed do-

main and every other domain detected on the cortical surface. The seed domain can be changed

through the arrow keys, the (+/-) buttons, or by clicking on a different domain on the displayed

domain map. d) The Component region assignment page allows manual region assignment for

each domain. After the region is selected from the menu on the right, each domain clicked on

the domain map is assigned to that region. 45



The third page displays the variance of each component, compared to an estimate of

the noise floor. The fourth page displays an old method of segmentation where each domain’s

gaussian cutoff binarized spatial footprint is displayed as an overlapping histogram. This page

is only available if the binarized domains are calculated and saved.

The fifth page shows the calculated domain maps as described in sec. 2.3. Selecting

any region displays a pearson timecourse cross correlation map between the selected domain

and every other domain on the cortical surface (fig. 5.1c).

The sixth page shows a domain map with a selection tool for assigning region identification to

each identified domain (fig. 5.1d). The seventh page shows a tool displaying how components

were sorted into noise and non-noise groups based on the lag-1 autocorrelation, as described in

sec. 2.2.

When the GUI is exited with the save (‘s’) command, all updates to region assignment

or artifact assignment are saved to the data hdf5 file. To save storage space, all calculations

happen within the python instance running the GUI, rather than being stored in the hdf5 file.

We found a laptop with 16GB of RAM was more than enough to run and operate the GUI.
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5.2 Mean Filtration

ICA decomposition must take place after frame mean subtraction, and removes only

spatial artifacts, not intensity artifacts that affect the entire frame. Therefore, when blood flow

artifacts are so intense that they increase the overall frame intensity significantly, additional

filtration is required. These mean intensity artifacts, when left unfiltered, can misrepresent the

underlying signal.

This artifact could be due to tissue specific changes in optical paths during periods

of high blood flow–either by proteins obscuring or scattering optical fluorescence from deeper

GFP, or due to endogenous fluorescence of other proteins that are known to bleach quickly [76].

Visually, these artifacts are characterized by a sudden, intense increase in frame mean, followed

by a slow decay in intensity.

To determine the proper frequency cutoff for filtration, we compared our GCaMP

mean time series frequency distributions to a control transgenic-GFP fluorescence that was

not linked to neural activity (fig. 5.2). The significant frequencies shared between the control

data were between 0-0.5Hz, and we used this as our cutoff for mean filtration. After removal

of these frequencies, frames that had previously exhibited these mean intensity artifacts were

significantly improved (fig. 5.2, bottom right). This results in a more accurate representation of

just the neural signal without the optical artifacts from the change in tissue.
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Figure 5.2: The mean time series must be extracted in order to perform ICA. To reduce large

intensity artifacts, the mean time series must also be filtered. a) 100s examples of mean time

series signals from P21 animals with various genotypes: our experimental mice, mice from

a GFP-astrocyte line, mice from a GFP-microglia line, and wild type mice lacking any GFP

on a Bl/6 background. b) The wavelet power ratio for time series from each genotype (n=3

per category). Since the endogenous fluorescent GFP controls (2 and 3) had significant power

spectra up until 0.5Hz that the GCaMP data lacked, a 0-0.5Hz high pass wavelet filter was

applied to the data. The 0.5Hz cutoff line is marked as a dotted red line. c) Example of the

effect of mean filtering. Left panel is the original frame of the movie with an unfiltered mean.

The widespread activation across the cortical surface is likely due to blood autofluorescence.

In the center panel, the mean is re-added, but intensity across brain regions is slightly elevated

relative to the original frame because of the removal of the intense blood vessel contraction

artifact while retaining the same mean. After filtering, the signal intensity across brain regions

is more localized to individual domains. This likely represents the amount of underlying signal

without additional blood autofluorescence.
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5.3 Filtering and Compression Residuals

The full ICA decomposition has as many components as the number of frames in the

original video (12000 for a 20-minute 10Hz video). However, many of these components are

noise-associated and represent an insignificant amount of information in the original dataset.

To be conservative, the signal and artifact components are all saved, as well as an

additional portion of noise components, such that 25% of the components saved are noise asso-

ciated. This results in a limited loss of information, mainly in non-cortical tissue surrounding

the neocortex where there was little signal originally. The spatial residuals of lost signal is stored

by default with every ICA decomposition, so that signal quality can be monitored (fig. 5.3).

Saving this reduced dataset results in an output file size ∼ 10x smaller than the orig-

inal video, with very little loss of information (spatial signal lost is 3.4− 05 % of the total

signal). An additional benefit of saving in this file format, is its portability and usability–Rather

than locally storing a 64GB data file, a 6.4GB file can be opened and stored locally on most

personal computers. While the full 64GB of RAM is still required for opening the full video,

localized time series or video segments can be rebuilt with minimal RAM requirements.
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Figure 5.3: Comparison of spatial and temporal information content through compression and

filtering. a) The original spatial information captured as quantified by a mean subtracted abso-

lute value projected spatially (left) or temporally (right). b) The difference in information be-

tween the original input data and the rebuilt ICA projection after only saving a cropped portion

of the noise components. The difference movie is projected spatially or temporally to visualize

where information was lost in compression. c) Information removed by artifact filter. The ar-

tifact movie is rebuilt and projected spatially or temporally to visualize where information was

modified by the ICA-based artifact filter.
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5.4 Component Sorting

Signal and artifact components can be easily manually differentiated by their spa-

tiotemporal properties. We originally did this by manual examination and classification in a

custom built GUI (sec. 5.1). To reduce the amount of human interaction necessary for interact-

ing with the data, we trained a machine learning classifier to sort these components instead.

We first extracted a series of spatial and temporal metrics from each component

(fig. 5.4). Neural calcium signal components have distinct localized spatial domains, and often

have smoother time courses, dominated by frequencies in the 2-8Hz range. Artifact compo-

nents can a variety of spatial structures, including dispersed branching structures, indicative of

a blood vessel artifact, or arcs on the border of the cortex, representing surgery artifacts. Arti-

fact components can have varying temporal properties, such as movement associated spikes, or

sudden jumps in level, where reflectance on the surgical surface was altered. These additional

surgical artifacts can also be removed with the blood artifacts, cleaning up previously unusable

data. We performed spatial binarizations based on a single tailed gaussian threshold cutoff,

and applied morphometric analyses to extract spatial components. For temporal components,

a wavelet decomposition was applied and various frequency metrics were extracted. No single

metric was enough to differentiate signal and artifact components, since distributions are largely

overlapping. When visualized as the first two components of a SVD decomposition (fig. 5.5,

bottom), it is visually apparent that the neural components cluster more tightly together, while

the artifact components occupy a wider spread of metric space. For this reason, we applied a

machine learning classifier for component sorting.
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Figure 5.4: a) An example of a spatial map of a signal component and its associated time series.

b) Extracted artifacts can be either hemodynamic or noise associated. Images displayed rep-

resent an example hemodynamic and movement artifact. These components have timecourses

that are different from each other, and from the signal component. c) Example signal and ar-

tifact components are binarized by thresholding the pixel intensity histogram. The histogram

is displayed vertically, highlighting the single tail detected in yellow. The spatial result of this

threshold binarization is displayed on the right, with circular panels highlighting the difference

in detected binarized structure detected between signal and artifact components. d) Example

time series from signal and artifact components are displayed in terms of relative intensity. The

power-noise ration is displayed below; the signal component had significant power between

0-3Hz, while the artifact component only had significant power below 0.25Hz. e) Comparison

of distributions from example extracted spatial, spatial morphometric, temporal, and frequency

metrics.
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Figure 5.5: Schematic of machine learning approach for ICA component sorting. The P21 ICA

dataset was split into testing and training groups. The training group was used to train the

classifier, and the testing subset with manual component assignment was used for validation of

the classifier’s performance. The performance of novel data was then compared against a lab

member’s independent assessment of the component assignment to generate validation metrics.

On the top right panel, score, precision, and recall metrics are calculated for the testing subset

of the classifier trained on 1000 different random divisions of data. In the bottom right panel,

score, precision, and recall are displayed for a set of 5 novel datasets. The bottom two panels

represent the first two dimensions of a SVD decomposition of our metric data. In the left panel,

the distribution is colored by manual human selection. In the right panel, the distribution is

colored by the classifier’s confidence in each classification.
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We then trained a machine learning voting classifier to distinguish signal and artifact

components based on their spatial and temporal extracted metrics (fig. 5.5). Our ICA dataset of

manually assigned components and their associated metrics was split into a training and testing

subset. The classifier was trained on the training subset, then tested on the testing subset. This

resulted in a classifier with a score, precision, and recall of >90%. When tested against 5

novel datasets it had not been previously exposed to, the classifier did even better, with score,

precision, and recall all >95%. This confidence was roughly on the order of human precision

for component sorting.

After implementing this classifier, data could fully processed on a computing cluster

without any need for a graphical login. Thus, we could process, sort, extract time series, and

generate metrics without the need to process or store data on a local computer.
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5.5 Wavelet Analysis

The wavelet decomposition [68] was used for frequency power analysis, mean signal

filtration, and will be applied in sec. 3.1 as a measure of signal correlation. Wavelet decom-

position takes a signal (fig. 5.6a) and transforms it into a continuous time-frequency domain,

similar to a spectrogram (fig. 5.6c). In addition to this time-frequency domain, phase informa-

tion is stored in an additional matrix (not shown). A wavelet distribution must be chosen to

represent the shape of the ‘wave’ that we are convoluting with our signal. A sine-like wave

would provide extremely accurate information about the frequency of the signal at any point at

time, but sacrifice precision on the temporal accuracy of the signal. A gaussian distribution, or

derivative-of-gaussian distribution would provide high accuracy on the location of the signal,

but less information on the frequency. We used a ω = 4 Morlet wavelet wave (fig. 5.6b) to

slightly bias toward temporal accuracy.

The wavelet power spectra (fig. 5.6c, top) represents the power of the wavelet con-

volved with the source signal at any given time point, for any possible frequency. When this

signal is integrated over time, a power spectrum (fig. 5.6c, top right) is produced.

We used a red noise model for significance for our data, which is fit based on the autocorrelation

of each input signal. The noise floor is shown on the power spectrum as a dotted line.

The wavelet power spectra can also be normalized to this noise floor (fig. 5.6c, bot-

tom). This view highlights where significant signal was present in our dataset, and is more

useful for visual interpretation. The power spectra for the regular and normalized power spectra

are displayed again in fig. 5.6d, with a more regular frequency axis.
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Figure 5.6: A visual summary of wavelet power methods. a) An example time dF/F series

extracted from a component time series. b) The ω = 4 Morlet wave used for wavelet decom-

position. c) The power of the wavelet decomposition at each time point across the possible

fourier-converted frequency range (top) along with it’s integrated power spectrum, compared to

the noise distribution.

In the bottom panel, the power ratio is displayed with an evenly spaced frequency axis. The

power of the wavelet decomposition at each time point across the possible fourier-converted

frequency range (top) along with it’s integrated power spectrum, compared to the noise distri-

bution.
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Similar to eigendecompositions, the original data can be reconstructed from the full

power and phase matrices with little to no loss of information. We can use this property to

selectively filter ranges of frequencies, which we apply for mean signal filtering in sec. 5.2.

We use the normalized power spectra to generate temporal properties of mean signals

in sec. 5.2, for sorting independent components based on temporal properties in component

sorting sec. 5.4, and to generate time series properties in sec. 3.1.

Two signals can be compared in wavelet-space by convolving their power and phase

matrices to calculate coherence. This value varies between 0 and 1, and can be used to represent

the similarity of two signals. We do this to calculate network interactions in sec. 3.1.
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5.6 Region Assignment

Regions were assigned to domains by a combination of data-driven and manual se-

lection methods. First, a hierarchical clustering was computed using time series generated from

each domain, giving us a starting map (fig. 5.7a). We also looked at images generated by visu-

alizing time course metrics plotted over each cortical domain (fig. 5.7b). We included metrics

such as the percent of the cortical area covered by each domain, the spatial extent of the do-

main, the standard deviation of the domain time course, and the significant frequency range of

the domain time series, as quantified through its wavelet power spetrum. These metrics gave

us some metrics for dividing higher order from primary sensory regions. We also took into

account the expected functional regions as delineated by the Allen Brain Institute’s functional

map [56] (fig. 5.7c). Together, we used all this information to manually assign region flags to

each domain. fig. 5.7d shows this final assignment. A machine-learning classifier could likely

be trained for automated domain sorting.
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Figure 5.7: Using data-guided methods to assign domains to cortical regions. a) Hierarchical

clustering based on Pearson’s correlation produces a set of ∼ 13 regions across the cortical

surface. b) Domains colored by various calculated spatial and temporal metrics to aid region

assignment. Region area is calculated as a percent of the total cortical surface. Region extend

ranges from 0 to 1 and calculates the relative area of a domain to its bounding box. Temporal

standard deviation is calculated from the extracted time series, and frequency range size is

calculated from wavelet significance. c) The Allen Brain atlas map [56] is additionally used for

reference. d) The final manually assigned region, with associated labels.
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Chapter 6

Abbreviations and Terms Defined

P21 - postnatal day 21

∆F/F (dFoF) - change in fluorescence over mean fluorescence

ICA - Independent Component Analysis

PCA - Principal Component Analysis

BTBR - Black and Tan Brachyury (Mouse Line)

Domain Map - maximum projection map of ICA components

Domain - A single contiguous unit from a domain map, represents an ICA component’s maxi-

mal region of influence

Mosiac Movie - a video representation of the time series extracted under each domain in the

domain map
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Region Abbreviations (Used in Region Maps in fig. 2.3 and fig. 3.3.

Key Region

R Retrosplenial

V+ Higher Order Visual

A Auditory

Ss Somatosensory Secondary

Sc Somatosensory Core

Sb Somatosensory Barrel

S Somatosensory (Other)

Mm Motor Medial

Ml Motor Lateral

O Olfactory
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Chapter 7

Methods

Mice

All animal studies were conducted in accordance with the UCSC Office of Animal Research

Oversight andInstitutional Animal Care and Use Committee protocols. Snap25 GCaMP6s

transgenic mice (JAX: 025111), microglial GFP (JAX: 005582), and astrocyte GFP (MGI:

3843271) were maintained in UCSCs mouse facilities. Transgene presence was determined

through genotyping before any procedure was performed. The expression of this transgene

resulted in pan-neuronal expression of GCaMP6s throughout the nervous system.

Surgical procedure

All mice were anesthetized with isoflurane (2.5% in pure oxygen) for the procedure. Gen-

eral anesthesia was first induced in an isoflurane chamber then maintained with a nose cone.

Body temperature was maintained at 37C for the duration of the surgery and recovery using a
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feedback-regulated heading pad. Lidocaine (1%) was applied subcutaneous on the scalp, fol-

lowed by careful removal of skin above the skull. If the eyes were open, opthalmic ointment

was used protect the eyes. The head was glued using cyanoacrylate to two head bars, one across

the back of the skull and the other on the lateral parietal bone. For young animals (P2 - P9),

they were left on a heated platform for the duration of the recording. For animals that could

crawl/walk (P10 - P21), the mice were transfer to a rotating disk for the duration of the record-

ing. At the end of the recording session, the animal was either euthanized or perfused and the

brain dissected.

Recording calcium dynamics

In-vivo wide-field fluorescence recordings were collected in a minimally invasive manner. Imag-

ing through the skull by single-photon excitation light from two blue LED light produces a green

fluorescent signal that is collected through coupled 50mm Nikon lenses (f5.6 / f1.2, optical

magnification 1x) into a scientific cMOS camera (PCO Edge 5.5MP, 6.5µm pixel resolution).

Excitation light was filtered with a 480/30 nm bandpass and the emission signal was filtered

with 520/36 nm bandpass. Data collection was performed in a dark, quiet room with minimal

changes in ambient light or sound. Each video segment consisted of a set of continuously col-

lected images at 10 frames per second for 10 minutes. Raw data was written directly as a set of

16 bit multi-image TIFF files. Generally the total amount of recorded data for each animal was

40 min and the amount of time in between video segments was less than 1 minute. When video

length over 20 minutes was used, multiple videos were concatenated together.
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Recordings used

For the quantifications in ICA-based Filtering and Segmentation (sec. 2), the following animals

were used. All of the animals were of the genotype Snap25-GCaMP6s, and between 21-22 days

of age. 40 minutes of data were recorded from each animal. Animals recorded on the same date

were littermates.

Date Animal Number Condition

190506 1 Control

2 Control

190508 3 Control

4 Control

190408 5 PPE

6 PPE

190423 7 PPE

8 PPE

Example components, videos, and video stills for filtering and segmentation were all

generated from data recorded from animal 4.

Spatial resolution analyses were performed on a single 20 minute segment from a dif-

ferent animal (191019). Temporal resolution analyses were performed on a 10 minute recording

at 20Hz from this same animal. Recording was performed as specified in “Recording calcium

dynamics”, apart from the temporal resolution.
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4 P21 control animals were used to determine the frequency ranges of hemodynamic

artifacts for mean filtering were recorded from the following mouse lines: microglia GFP, as-

trocyte GFP, and wildtype mice on the same Bl/6 that lacked the Snap25 GCaMP6s transgene.

Mean filtration

Mean filtration was performed with a wavelet filter. First, time series signals were fitted with

a ω = 4 morlet wave for a wavelet decomposition using code adapted from C. Torrence and

G. Compo [68], available at URL: http://paos.colorado.edu/research/wavelets/ Significance was

determined using the red-noise model fit to the time series autocorrelation.

Frequency distributions are all displayed as the ratio of the wavelet power integrated over the

time series, relative to the noise cutoff. For wavelet filtering, the original signal was rebuilt

excluding all frequency signals in a certain range. In our case, we omitted frequencies between

0-0.5Hz.

ICA decomposition and saving

ICA was performed using FastICA [32], implemented through python’s sklearn decomposition

[1]. The ICA decomposition was applied to the flattened 2-D representation of the video data

under the cortical ROI mask. The mean time series is pre-subtracted from the array before

SVD decomposition or ICA decomposition, since ICA cannot separate sources with a mean

signal effect. The filtered, unfiltered mean, and associated metadata are all saved. Data is stored

and saved in this flattened format for storage optimization. Components are locally spatially
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reconstructed for visualization in the GUI.

Requesting the full number of components resulted in extremely lengthy processing

times. To reduce the processing time, the data was preprocessed through Singular Value De-

composition (SVD) whitening, and noise components were cropped. To ensure that no signal

was lost, and there were ample dimensions left for ICA separation, the cutoff between SVD

signal and noise was identified, and components were cropped to 5 times the SVD signal to

noise cutoff value. This cutoff can be adjusted through the svd multiplier option while ICA

projecting.

After calculating and sorting the ICA results, excessive noise components are re-

moved from the dataset for compression. The cutoff was determined by identifying the inflec-

tion point in the lag-1 autocorrelation distribution with a two-peaked KDE fit, as detailed in

sec. 2.2. Components were saved such that 75% of the components saved were signal and arti-

fact, and 25% of the components saved were noise associated. If not enough noise components

were returned by the ICA decomposition, there is a risk that signals were not sufficiently isola-

tion, so the ICA decomposition was repeated with a higher SVD cutoff until enough additional

noise components were included.

ICA returns unsorted components that are unsorted and often flipped. Components

were first sorted by their time series variance. Signal components were characterized by a

single tailed gaussian distribution (detailed in methods: binarization). If the tail was negative,

the component was flipped spatially and temporally. In this way, components were all identified

as positive affectors for visualization, and movie rebuilding was not affected.

All code used in this paper will be available on github under www.github.com/ackmanlab/pyseas
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or as a package–pySEAS in the python package index (pip install seas).

Data processing

ICA decompositions were run on single node on a computing cluster. 10 minute videos could be

processed on a node with 512 GB of RAM, while 20 minute videos often required larger nodes,

depending on the number of components requested. All data could be processed on a node with

1024 GB of RAM. After ICA processing, most map creation and time series processing could

be computed on local computers with 16-32GB of RAM.

Compression and filtering residuals

Compression residuals are calculated while saving the ICA decomposition results. The original

movie is rebuilt from the reduced ICA results, and residuals are calculated by taking the absolute

value of the difference between the two videos. The spatial and temporal projection of this

absolute difference movie is saved as the spatial and temporal residuals of the decomposition,

and is stored as metadata with each ICA decomposition.

Statistical significance

Statistical significance was calculated using a paired t-tests from statsmodel.formula.api

with Holm-Sidak multiple testing correction. When comparing two small, related samples,

ttest rel from scipy.stats was used instead.

The following symbols are used to indicate statistical significance in figures:
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Symbol Meaning

ns p > 0.05

p ≤ 0.05

p ≤ 0.01

* p ≤ 0.001

Component classification

We used an ensemble random forest classifier from the scikit-learn [1] package to train and

classify between signal and artifact activity. We first manually scored our components as signal

or artifact associated. These were later used for training as well as validation. The data was

randomly split into two subsets: the training set contained 70% of the dataset, and the testing

set other contained 30%. We trained an ensemble of decision tree classifiers using the training

set, including extracted features of the cortical dynamics and human classification scores. After

training, the machine classifier predicted classification scores on the testing subset. We then

validated the machine classification with a set of human classifications to generate accuracy

(percent correct classifications), precision (correctly classified artifacts / all selected artifacts),

and recall (correctly classified artifacts / missed artifacts) scores for various randomly generated

data subsets.
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Component binarization

Spatial metrics for component classification were generated from the binarized representation

of each component. The spatial histogram of pixel intensity across each component can be

visualized as a single tailed gaussian distribution centered around 0, where the tail represents

the spatial domain of each component.

The two edges of the distribution are first identified. The boundary closer to 0 is taken

as the edge of the central noise distribution, and the pixels between the noise distribution and

the wider tail are included in the binarized version of the component.

Spatial metric generation

The following spatial metrics were generated for each independent component for component

sorting.

The spatial minima and maxima were identified from the smallest and largest pixel value present

in the components.

The center of mass is also detected for each component. If a binarized domain was detected,

the thesholded area is additionally calculated.

Wavelet temporal metric generation

The following temporal metrics were generated for each independent component for component

sorting. The time series maxima, minima, lag-1 autocorrelation, and standard deviation were

calculated for each component.
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Using wavelet analysis, the following frequency metrics were additionally generated.

The highest and lowest values detected for significant frequencies were identified, as well as the

size of the significant span of frequencies. The most significant dominant frequency frequency

was identified, and the signal to noise ratio at this value was also stored.

Domain map creation

Domain maps were created by separating the cortex into regions represented by different ICA

components. Each component was blurred by a 51-pixel kernel, then the maximum projection

was taken through the component layers.

The resulting data is a cortical map that denotes the component with maximum influence over

any given pixel.

This map was then further processed to get rid of domains smaller than 1/10th the

mean domain. Any domain smaller than this size is checked to see if the second most significant

component would produce a larger continuous structure. If after a few loops of this, pixels

cannot be assigned into a larger structure, the points are excluded from the final map. Indices

are then adjusted such that any non-continuous regions represented by the same domain are

assigned to different units.

Olfactory bulbs were included in map generation, but domains were highly variable,

and were excluded from map quantifications.
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Jaccard map comparisons

For every domain or region in the original map, the nearest neighbor was identified in the

comparison map with a KNN tree. To quantify the spatial similarity of each identified domain

or region, the Jaccard index (spatial overlap / union) was then calculated. For each comparison,

n Jaccard indices were calculated, where n is the number of identified units in the original map.

When comparing maps generated from different animals, the optimal alignment was

calculated by shifting the second map up to 100 pixels in any direction. The optimal direction

was determined by maximizing the Jaccard overlap. Each generated map was compared to one

map from the same animal, one littermate, and two non-littermates, as well as one randomly

generated voronoi map.

Voronoi map creation

Voronoi maps were created to match the same number of domains or regions as the original

map, n, and shares the same cortical mask as the original map.

To create this map, n points were distributed randomly across the cortical mask. To turn these

points into regions, the voronoi diagram was created using the scipy spatial package [62] and

was applied as a voronoi map.

Grid map creation

Grid maps were created to match or exceed the same number of units as the original map, and

share the same cortical mask as the original map. A uniformly spaced 2D grid was placed
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over the original map, and resulting units were counted. If the number of resulting spatial

units exceeded that of the original map by < 15, the map was accepted as a valid comparison.

Otherwise, the map was rejected and a new grid map was calculated.

Region assignment

[[ assigning regions ]]

Key Region

R Retrosplenial

V+ Higher Order Visual

A Auditory

Ss Somatosensory Secondary

Sc Somatosensory Core

Sb Somatosensory Barrel

S Somatosensory (Other)

Mm Motor Medial

Ml Motor Lateral

O Olfactory
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Residuals and total signal analyses

To quantify the amount of signal present in the original movie that was not included in the

domain map, residuals were calculated by subtracting the ‘mosaic movie’, representing time

series from each spatial domain from the original movie. The absolute value was then applied

so that all numbers represented a positive difference, and residuals were summed to create a

single value. The time series was not re-added to either the original movie or mosaic movie,

since this can be easily summarized as a different temporal metric. To represent the amount

of relative variation to the original dataset, this number was compared to the summed absolute

value of the mean-subtracted original movie.

Variation analysis

To quantify the variation between time series, the variance at each time point was calculated

by calculating the variance between that time point at each extracted time series, then summing

across all time points.

Isoflurane recordings

Isoflurane recordings were performed on 3 different Snap25-GCaMP6s mice:

Date Animal Number

200108 1

200109 2
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Date Animal Number

200110 3

20 minutes were recorded from each animal with the isoflurane nose cone in place,

with no oxygen or isoflurane applied. Next, 20 minutes were recorded from each animal with

oxygen flow but no isoflurane. This is the 0% isoflurane condition. Maps generated from animal

3 were used for example figures.

For the 0.25%, 0.5%, and 1% isoflurane recordings, the isoflurane dose was increased,

the animal was allowed to adjust to the higher isoflurane level for 20 minutes, then an additional

20 minutes of data were recorded for each condition.

Anesthesia network analysis

For network analyses, time series and region classifications were extracted from the 0% domain

map generated from each animal. Time series were grouped by the 10 regions as defined in

methods: region assignment. Within each group, time series were compared to all other ex-

tracted time series through wavelet coherence. A percentage metric was generated to determine

what percent of time series were highly correlated (coherence > 0.4) to time series extracted in

the compared region. Coherence was calculated by applying the algorithms described in [22] to

the wavelet package by Torrence and Compo [68].

This percentage of highly associated time series was then combined across all animals

under the given condition, then subtracted to identify group differences.
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