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†
 Chair of Technical Thermodynamics, RWTH Aachen University, Schinkelstrasse 8, 52062 4 

Aachen, Germany 5 

‡
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Barbara, CA 93106-5131, United States 7 

 8 

Discussions on Consequential Life Cycle Assessment (CLCA) have relied largely on partial or 9 

general equilibrium models. Such models are useful for integrating market effects into CLCA, 10 

but also have well-recognized limitations such as the poor granularity of the sectoral definition 11 

and the assumption of perfect oversight by all economic agents. Building on the Rectangular-12 

Choice-of-Technology (RCOT) model, this study proposes a new modeling approach for CLCA, 13 

the Technology Choice Model (TCM). In this approach, the RCOT model is adapted for its use 14 

in CLCA and extended to incorporate parameter uncertainties and suboptimal decisions due to 15 

market imperfections and information asymmetry in a stochastic setting. In a case study on rice 16 

production, we demonstrate that the proposed approach allows modeling of complex production 17 

technology mixes and their expected environmental outcomes under uncertainty, at a high level 18 

of detail. Incorporating the effect of production constraints, uncertainty, and suboptimal 19 

decisions by economic agents significantly affects technology mixes and associated greenhouse 20 

gas (GHG) emissions of the system under study. The case study also shows the model’s ability to 21 
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determine both the average and marginal environmental impacts of a product in response to 22 

changes in the quantity of final demand.  23 

 24 

 25 

INTRODUCTION 26 

Addressing global sustainability imperatives demands a substantial shift in today’s production 27 

and consumption patterns. The 2 degree Celsius climate target and Sustainable Development 28 

Goals, for example, require a material change within policy, technology, market, and consumer 29 

behaviors.
1–4
 Understanding the consequences of such changes for the environment, however, is 30 

challenging, in part because of our limited capacity to model the wide range of market 31 

transformations that such changes may trigger.
5
 It is therefore crucial to better understand the 32 

potential effects of policies on market responses to support environmental decision-making. 33 

An approach aiming to provide such understanding is Consequential Life Cycle Assessment 34 

(CLCA).
6–11 
CLCA aspires to determine the environmental consequences of decisions such as the 35 

introduction of a new technology,
12–14
 implementing a new policy,

15, 16
 or an increase in product 36 

demand.
17–19
 While the literature on CLCA has steadily increased in recent years, debate 37 

continues regarding its operational models for the choice of technologies, and the implications of 38 

uncertainties.
7, 20
 39 

 40 
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For modeling market effects, CLCA studies have relied largely on partial equilibrium (PE) and 41 

computational general equilibrium (CGE) models.
9, 21–25

 While PE models focus on a subset of 42 

markets within an economy, CGE models consider all sectors of an economy. The advantage of 43 

both PE and CGE models lies in their ability to determine the quantity and price of products 44 

jointly based on econometrically derived underlying data. Furthermore, such models often cover 45 

multiple regions. Kløverpris et al., for example, modeled the effect of corn consumption on the 46 

use of land based on a CGE model covering 57 sectors in 87 regions.
25, 26
  47 

Nevertheless, equilibrium models are also criticized for their underlying theoretical 48 

assumptions, which may not be observed in real markets.
27, 28
 For example, equilibrium models 49 

assume that all economic agents possess perfect oversight and that independently made decisions 50 

by each agent lead to a global economic optimum. In reality, however, economic agents may 51 

make suboptimal decisions, for example due to imperfect information, and most economic 52 

decision-making by individual agents may not lead to a global optimum. Equilibrium models 53 

also assume that all markets are in equilibrium, and that prices and demands are determined 54 

based on fixed elasticities. These elasticities are, in principle, econometrically inferred, but they 55 

are often based on outdated values or proxy data.
27
 In addition, in PE and CGE models, sectoral 56 

or product resolutions are generally poor. Consequently, PE and CGE models are not suitable for 57 

modeling changes introduced at a detailed process-level, or determining substitution effects 58 

among alternative technologies serving the same market. These substitution effects, however, are 59 

crucial, for example, for modeling the environmental impact of introducing a new technology 60 

producing an established product, as discussed by the authors in previous work.
29 
 61 

 62 
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Moreover, CLCA is often exposed to large uncertainties.
27, 30, 31

 A main source of uncertainty in 63 

CLCA arises from difficulties in modeling changes in the composition of technology mixes used 64 

to supply markets or to produce intermediate flows as a response to changes under study.
31, 32
 65 

One way to address such uncertainties is to test multiple scenarios showing the range of potential 66 

outcomes under different assumptions.
31, 32
 This approach, however, may result in an extremely 67 

wide range of possible outcomes and must rely on an often subjective choice of selective 68 

scenarios. Therefore, methods to systematically address large uncertainties in CLCA have been 69 

called for.
7, 33
  70 

While various methods for uncertainty assessment have been utilized for LCA including 71 

Analytical Error Propagation
34, 35
 and Monte Carlo simulation

36–38
, they are typically not applied 72 

to CLCAs. A major barrier to using such methods in CLCA lies in the choice of technologies, 73 

which is typically made independently from the mathematical formulation of the consequential 74 

model, rather than being integrated into the model. Therefore, the interdependence between 75 

technology choices and other sources of uncertainty, for example in process parameters and 76 

prices, cannot be explored by means of mathematical uncertainty assessment in existing CLCA 77 

models. 78 

 79 

In this work, we propose the Technology Choice Model (TCM) as a new operational 80 

framework for CLCA. The model simultaneously determines technology choices in multiple 81 

markets, while systematically considering parameter uncertainties, suboptimal decisions, and 82 

factor constraints. As a result, TCM enables the modeling of both market effects and 83 

environmental impacts at a high level of detail. 84 
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In the following section, we introduce the basic structure of TCM. The basic structure 85 

integrates technology choices and lays the foundation for a comprehensive uncertainty 86 

assessment. The model inherits its basic structure from  the Rectangular Choice-of-Technology 87 

(RCOT) model,
39
 which is an economic input-output model that allows for more than one 88 

technology for producing one product. Practical applications of the RCOT model have been 89 

presented for the analysis of the choice between irrigation technologies for agricultural 90 

production,
40
 and the choice between bio- and petroleum-based fuels.

41
 91 

In the subsequent section, we expand the basic structure of TCM to account for uncertainty and 92 

variability in process parameters, prices, factor constraints, and final demand. In addition, we 93 

allow for suboptimal decisions by economic agents. The application of TCM is demonstrated in 94 

a hypothetical case study on rice production. 95 

 96 

BASIC STRUCTURE OF THE TECHNOLOGY CHOICE MODEL (TCM) 97 

In RCOT, technology choices directly result from the model: given all existing technology 98 

options, a cost minimization objective determines which technologies are used to which extent, 99 

taking into account constraints in factor availability. In this section, the RCOT model of the 100 

economic input-output literature is adapted into a CLCA formulation. For this purpose, we 101 

follow the notations of the generalized calculus for LCA by Heijungs and Suh,
42
 
43
 which are 102 

shortly summarized in the following.  103 

 104 

Generalized calculus for LCA 105 

In Heijungs and Suh,
42
 the life cycle inventory model is described as a product system 106 

consisting of unit processes that exchange intermediate flows (functional flows) and elementary 107 
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flows (to and from the environment). The exchange of intermediate flows between unit processes 108 

is described in the technology matrix A. In this matrix, rows represent intermediate flows, while 109 

columns represent processes.  A coefficient aij of the technology matrix A describes the 110 

intermediate flow i, which is produced (for ��� 	> 	0) or absorbed (for ��� < 	0) by process j. The 111 

net intermediate flows leaving the product system are specified in the functional unit vector f 112 

representing the unit quantity that the LCA study is based upon. For an invertible technology 113 

matrix A and a given functional unit vector f, a scaling vector s can be calculated from 114 

� = 
��.																																																																																	(1)	  115 

The elementary flow matrix B describes the elementary flows of the unit processes. In the ISO 116 

standards on LCA (ISO 14040
44
 and 14044

45
), elementary flows are defined as “material or 117 

energy entering the system being studied that has been drawn from the environment without 118 

previous human transformation, or material or energy leaving the system being studied that is 119 

released into the environment without subsequent human transformation”. In the elementary flow 120 

matrix, elementary flows are represented by rows, while the columns represent the same 121 

processes as in the technology matrix A. The matrix is defined such that a coefficient bej shows 122 

the elementary flow e of unit process j entering (for ��� < 	0) or leaving (for ��� > 	0) the 123 

system. Multiplying the elementary flow matrix B with the scaling vector s yields the Life Cycle 124 

Inventory (LCI) vector g representing the total elementary flows associated with the functional 125 

unit f: 126 

� = �� = �
��.																																																																			(2)	

The characterization matrix Q contains characterization factors transforming the elementary 127 

flows into environmental impact flows. The characterization factor of elementary flow e for 128 
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impact category z is represented by the coefficient qze of the characterization matrix Q. The total 129 

environmental impacts expressed in impact vector h are calculated such that 130 

ℎ = �� = ��
��.																																																																	(3)	

 131 

Basic formulation of the Technology Choice Model 132 

The generalized calculus for LCA by Heijungs and Suh
42
 presented in the previous section 133 

requires a square technology matrix A, i.e., the same number of processes and intermediate 134 

flows. Which technology is utilized to produce which intermediate flow is thus pre-determined 135 

for the application of Equations 1-3. In contrast, the RCOT model provides a platform under 136 

which technology choices are determined by the model within market conditions and constraints.  137 

Following RCOT, suppose that intermediate flows (functional flows such as products) can be 138 

produced by more than one process, in which case the number m of processes in the product 139 

system exceeds the number n of intermediate flows.
39
 The resulting � × � technology matrix is 140 

rectangular since there are more columns than rows.  For a given functional unit f and a 141 

rectangular technology matrix 
, multiple feasible solutions for the scaling vector � may exist, 142 

because intermediate flows can be produced by more than one process. In other words, the 143 

system is underdetermined. To determine a unique solution, one or more additional criteria are 144 

needed to choose between feasible solutions, which in fact serve as criteria for technology 145 

choices. 146 

Further suppose that products will be produced in the most economical way, i.e. using 147 

technologies that belong to the least expensive production pathway. The term “production 148 

pathway” is thereby defined as the entire chain of processes used to produce a product, from the 149 

extraction of raw materials to the production of the final product. In addition, factor constraints 150 
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determine the maximum potential production volume of technologies. The production of 151 

agricultural products, for example, is constrained by the amount of cropland available. To 152 

implement criteria for technology choices and factor constraints in CLCA, we introduce the 153 

linear programming formulation of the RCOT model
39
 to the generalized calculus for LCA.

42
 154 

We define a � × �	 factor requirement matrix F containing the factor inputs of the unit 155 

processes measured in physical units. Typical factors are labor, taxes, and natural resources. The 156 

factor requirement matrix F is constructed such that a coefficient fkj describes the amount of 157 

factor k needed by process j. We further define a � × 1 unit price vector κ. An element κk of κ 158 

represents the unit price of factor k. In addition, we define a vector c of factor constraints (the 159 

term noted as ‘factor endowment’ in Duchin and Levine
39
). An element ck of c quantifies the 160 

maximum available amount of factor k. The coefficients for unconstrained factors are set to ∞. 161 

Finally, we define a final demand vector y containing the final demand yi for each commodity i. 162 

In contrast to the functional unit vector f in the previous section, the final demand vector y in this 163 

model contains the total final demand for products from the production system. The formulation 164 

of basic TCM follows: 165 

� �	! = "′#�																																																																									(4)	

	�. %.							
� = &	166 

																				 	 	 	 	 	 		�� ≥ 0	167 

		 	 	 	 	 	 	#� ≤ ).	168 

The objective function ! of the model represents the factor costs associated with the final 169 

demand &. The constraint 
� = & ensures that the final demand & is produced. The constraint 170 

�� ≥ 0 specifies that the output of each process is positive. The last constraint ensures that the 171 
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total factor use calculated by #�  does not exceed the factor availability expressed by the 172 

constraints vector c.  173 

Finally, once the scaling vector � is calculated, the total elementary flows � as well as the 174 

environmental impacts ℎ associated with the final demand & can be calculated from 175 

 176 

� = ��																																																																											(5)	

and 177 

                                                                 ℎ = �� = ���.																																																																			(6)	178 

 179 

Basic TCM has the following properties:  180 

(1) All processes are chosen in a way that minimizes the factor costs associated with the 181 

final demand &. 182 

(2) If an intermediate flow can be produced only by processes with identical outputs along 183 

the production chain (either single outputs or the same combination of multiple 184 

outputs), it is supplied by exactly one process.  185 

(3) If an intermediate flow can be produced by processes with different multiple outputs 186 

along the production chain (co-products), it will be supplied by either one process or by 187 

a combination of processes.  188 

(4) If there are binding factor constraints for any process on the least expensive production 189 

pathway, this production pathway will be used until the constraint applies and then 190 

complemented by one or several other production pathways representing the next-191 

lowest-cost option for the supply of the final demand. 192 

 193 
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TCM, as a generalized framework, is independent of the resolution in the underlying data. 194 

Therefore, it can utilize detailed, engineering-level data suitable for process LCAs, as well as 195 

input-output tables that RCOT utilizes. This feature also enables connecting detailed foreground 196 

systems with an input-output background system via hybrid approaches.
43, 46
  197 

In addition to economic factor constraints, product systems may also be constrained in the 198 

availability of environmental factors of production, e.g. emissions of pollutants, generation of 199 

waste, use of natural resources and ecosystem services. The implementation of environmental 200 

factor constraints in basic TCM is discussed in section 1 of the supporting information. 201 

 202 

STOCHASTIC TECHNOLOGY CHOICE MODEL 203 

The basic TCM presented in the previous section estimates the environmental impacts ℎ 204 

associated with the final demand &  in a deterministic way based on the specified input 205 

parameters. This deterministic approach disregards the uncertainty inherent in these input 206 

parameters and may therefore yield misleading results.
47
 For example, the results of a 207 

comparative LCA of two products may be misleading if the differences are not significant. 208 

Addressing uncertainties in LCA is therefore crucial for reliable decision support.
47
 209 

Uncertainties in LCA are manifold and have been categorized in various ways.
48
 Huijbregts

49
 210 

distinguishes between (1) parameter uncertainty, (2) model uncertainty, (3) uncertainty due to 211 

choices, (4) spatial variability, (5) temporal variability, and (6) variability between 212 

objects/sources. While all of these uncertainties are applicable to basic TCM, in this work, we 213 

focus on (1), and (3) to (6). The term “uncertainty” is understood as discrepancy between a 214 

quantity used in the study and the true value of that quantity,
10
 whereas the term “variability” 215 

refers to inherent variations in the real world, e.g. seasonal and spatial variation of 216 
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precipitation.
50, 47
 In addition to uncertainties in the data typically used in LCA, TCM is subject 217 

to uncertainties in factor constraints and in the final demand. For example, the amount of natural 218 

resources classed as a factor constraint, and future final demands are generally estimated. 219 

Various methods have been used to quantify uncertainties in LCA, e.g. analytical error 220 

propagation,
34
 calculations with fuzzy logic,

51
 and stochastic methods such as Monte Carlo 221 

simulation.
36–38
 While the application of these methods is becoming increasingly common in 222 

attributional LCA, examples and methods for a comprehensive quantitative uncertainty 223 

assessment in CLCA are still missing.  224 

In this section, we expand basic TCM (Equations 4-6) to account for uncertainties and 225 

variability. We therefore first identify parameters subject to uncertainty and variability in TCM, 226 

and discuss their impact on technology choices and environmental impacts. Subsequently, we 227 

stochastically propagate these uncertainties into the CLCA results using Monte Carlo simulation. 228 

The combination of basic TCM and Monte Carlo simulation is denoted ‘stochastic Technology 229 

Choice Model (stochastic TCM)’. 230 

 231 

Effect of uncertainty in TCM 232 

Uncertainty and variability in input parameters 233 

In TCM, the input parameters in A, B, Q, F, κ, c and y may be subject to both uncertainty and 234 

variability. Uncertainties in A, F, and κ affect the factor costs of the product system, which 235 

determine the choice of technologies. To illustrate the effect of uncertainties in A, F, and κ on the 236 

choice of technologies, we assume a product system in which the final demand can be produced 237 

via 3 different production pathways. The factor costs of the 3 production pathways are illustrated 238 

in Figure 1, and represent the sum of factor costs along the entire production pathway that are 239 
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associated with the production of one unit of output. The bars show single value estimates of the 240 

factor costs, while the error bars specify the uncertainties. Without uncertainties, the choice of 241 

technologies is obvious: all technologies on production pathway P1 are chosen, because P1 is the 242 

lowest-cost option. Considering uncertainty, however, we find that there is a certain probability 243 

for each production pathway to be the lowest-cost option. Pathway P3, for example, may be 244 

cheaper than the other pathways if its factor cost is overestimated while the costs of the other 245 

pathways are underestimated. Thus, the expected environmental impact associated with the final 246 

demand is not equal to the environmental impact of a single production pathway. It is given by 247 

the sum of the environmental impacts of all 3 production pathways weighted by their respective 248 

probability of being the lowest-cost option.  249 

Uncertainties in y directly affect the total amount of products produced, while uncertainties in 250 

both y and c may affect technology mixes if factor constraints are binding. The effect of changes 251 

in y is further discussed in the case study section.  252 

Uncertainties in �  and �  affect the elementary flows and environmental impact flows 253 

associated with a given scaling vector s. Uncertainties in � and � may also affect the choice of 254 

technology in the model with environmental factor constraints (see Equation S1).   255 
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 256 

 257 

Figure 1: Factor costs of three hypothetical production pathways P1, P2, P3 for a product. The 258 

columns show the expected values, while the error bars refer to the inherent uncertainty. 259 

Uncertainty due to suboptimal decisions 260 

In basic TCM, technologies are chosen based on minimization of factor costs. This approach 261 

reflects the assumption that economic agents make optimal decisions to minimize their factor 262 

costs. In reality, however, decisions in the market may not be optimal for several reasons. One is 263 

imperfect information or information asymmetry in the market.
52
 Due to imperfect information, 264 

decision-makers may not know all decision alternatives (e.g. suppliers for a certain raw material) 265 

and the potential outcome of the decision alternatives (e.g. present and future prices). Another 266 

reason lies in non-market influences such as personal relationships and patriotism. A business 267 

owner, for example, may choose a supplier with whom he/she has a friendly relationship or 268 

family ties. More fundamentally, human decisions are not always rational.
53, 54
  269 

In TCM, the effect of suboptimal decisions can be simulated as random noise in the choice of 270 

technologies. This random noise causes a diversification of raw material supplies and 271 

technologies used. The integration of uncertainties and suboptimal decisions is discussed in the 272 

following section. 273 

 274 
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Modeling of uncertainties in stochastic TCM 275 

Stochastic TCM addresses uncertainties in basic TCM using Monte Carlo simulation. Monte 276 

Carlo simulation is a widely accepted method to quantify uncertainties in LCA.
10
 The idea of 277 

Monte Carlo simulation is to stochastically propagate uncertainties in input parameters into the 278 

model’s results. To perform a Monte Carlo simulation of TCM, we first need to quantify the 279 

uncertainties inherent in the model.  280 

Uncertainties and variability in input parameters can be quantified as probability distributions. 281 

Data on probability distributions of process parameters can be obtained from LCA databases. 282 

Ecoinvent,
55
 for example, specifies probability distributions for almost all data items. Probability 283 

distribution for prices can be determined based on historic data under the assumption that the 284 

volatility of future prices equals the volatility of a certain timeframe in the past. 285 

The quantification of uncertainties due to suboptimal decisions is more difficult, because no 286 

literature values on these uncertainties exist. In the context of TCM, suboptimal decisions are 287 

understood as random noise in decision-making, and hence technology choices. The choice of 288 

technologies is based on the costs of individual processes determined by factor requirements and 289 

prices. Introducing a random error to the determination of the factor cost therefore results in a 290 

random error in the choice of technologies. In this way, uncertainty due to suboptimal decisions 291 

can be translated into additional parameter uncertainty.  292 

To simulate the effect of suboptimal decisions, we add an additional row to the factor 293 

requirement matrix F. This row specifies the requirement of an additional factor representing 294 

suboptimal decisions, which is normally distributed and has an expected value of zero. The 295 

standard deviation of the amount of this additional factor required by each process is defined as 296 
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percentage   of the expected cost of running the respective process. Consequently, the standard 297 

deviations for the additional row in F are calculated by 298 

,-,/00 =  "1#.     (7) 299 

In this equation, " contains the expected factor prices and # the expected factor requirements 300 

before adding the additional row. Subsequently, we add an additional entry to the factor price 301 

vector ", which corresponds to the newly added row in #. This additional entry has an expected 302 

value of 1 and a standard deviation of 0. Due to the modifications in # and ", we introduce an 303 

error in the factor cost calculations for each process representing suboptimal decisions.  304 

Once the probability distributions of all input parameters are defined, we can perform the 305 

Monte Carlo simulation. The Monte Carlo simulation is a stepwise procedure: in each step v, the 306 

parameters of TCM are varied according to their respective probability distribution, and the 307 

scalars sv, gv, and hv are calculated. After n steps, we determine the arithmetic mean of the n 308 

results from the Monte Carlo simulation for all elements in s, g, and h. The mean values 309 

represent the expected values of these elements, and hence the CLCA results.  310 

The resulting mean-scaling vector �2�/3  allows us to determine the expected production 311 

volumes of each process, as well as technology mixes for the production of each flow. 312 

Production volumes are determined by the scaling vector entry of a technology in �2�/3 313 

multiplied by the expected value of the output of this technology specified in A. The share of a 314 

technology in a technology mix is determined by the ratio of the production volume of this 315 

technology and the sum of the production volumes of all technologies producing the same 316 

product. The elements in �2�/3  and ℎ2�/3  represent the expected elementary flows and 317 

environmental impacts of the production system, respectively. 318 

 319 
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CASE STUDY 320 

In this section, we apply stochastic TCM to a case study investigating the environmental 321 

impacts of producing processed rice. The results from stochastic TCM are compared with those 322 

from basic TCM to show the effect of uncertainties and suboptimal decisions. In the case study, 323 

the final demand for processed rice is 1 Mt, while the functional unit is defined as “production of 324 

1 kg processed rice”. The case study is designed to demonstrate the application of the model and 325 

does not aim to provide implications for real-life rice production. It is therefore based on 326 

hypothetical data. The rice production system, however, is inspired by an existing production site 327 

in the Punjab Province in Pakistan.
 
The data base for this case study, as well as the Matlab

56
-file 328 

used to determine the case study results are available in the supporting information. 329 

 330 

Rice production system 331 

The rice production system is illustrated in Figure 2. Producing processed rice in the rice 332 

factory requires raw rice, electricity, and thermal energy. The raw rice is produced in small-scale 333 

farms surrounding the factory. Electricity is provided by a coal-fired power plant. Thermal 334 

energy can be generated by three different types of boilers fueled by natural gas, wood pellets, 335 

and rice husk, respectively. Natural gas is supplied by the national gas grid. Wood pellets are 336 

produced in the vicinity of the rice factory. Rice husk is co-produced with raw rice at the farms. 337 

The use of rice husk for thermal energy generation, however, requires the collection of rice husk 338 

at farms, involving an additional transportation demand. For simplicity, we assume that the farms 339 

are located in five different zones with average transportation distances of 100 km (zone 1), 200 340 

km (zone 2), 300 km (zone 3), 400 km (zone 4), and 500 km (zone 5). The amount of rice husk 341 
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available in each zone is assumed to be sufficient to satisfy about 20% of the thermal energy 342 

demand of the rice factory. Rice husk not used at the factory is burned at the fields.  343 

Consequently, there are technology choices for the supply of rice husk and for thermal energy. 344 

Rice husk can be provided by farms in 5 different zones, while thermal energy can be produced 345 

from rice husk but also from natural gas and wood pellets. These technology choices ultimately 346 

lead to 7 potential fuel choices for thermal energy generation: rice husk from 5 zones, natural 347 

gas, and wood pellets.  348 

For the 7 fuel types, we assume the following order of factor costs associated with thermal 349 

energy production beginning with the lowest: (1) rice husk from zone 1, (2) rice husk from zone 350 

2, (3) natural gas, (4) rice husk from zone 3, (5) wood pellets, (6) rice husk from zone 4, and (7) 351 

rice husk from zone 5. The expected values of these factor costs and their standard deviations are 352 

illustrated in Figure S1 of the supporting information. 353 

 354 

Figure 2: Process flow sheet of the rice production system  355 

 356 
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Mathematical formulation of TCM for the case study 357 

The product system is comprised of the following 15 processes: rice factory, rice farming, rice 358 

husk boiler, natural gas boiler, wood pellet boiler, 5 processes for rice husk collection, natural 359 

gas supply, wood pellet supply, burning of rice husk, power plant, and transportation by truck. 360 

The unit processes are represented by the columns of the matrices A, B, and F. The product flows 361 

include processed rice, unprocessed rice, thermal energy, rice husk at factory, rice husk at farm, 362 

natural gas, wood pellets, electricity, and transportation. These flows are specified by the rows of 363 

the technology matrix A and the coefficients of the final demand vector y. Furthermore, 11 364 

production factors are defined: operation of rice factory, cultivation of land, 5 factors 365 

representing purchases of rice husk in the 5 zones, extraction of natural gas, operation of power 366 

plant, extraction of coal (used in power plant), and operation of truck. The cost factors are 367 

collected in the cost factor matrix F, while the respective prices are expressed by the price vector 368 

" . For simplicity, we only consider 2 elementary flows, namely CO2 and CH4, which are 369 

expressed by the rows of the intervention matrix B. The respective characterization factors are 370 

specified in the characterization matrix Q. Finally, factor constraints are defined in the 371 

constraints vector c for the quantity of rice husk available in each zone. 372 

We assume that parameters in 
, �, #, κ , and c, except for the main process outputs in A, 373 

follow a normal distribution with a standard deviation of 10%. The main outputs of processes in 374 


 have a standard deviation of 0, because the uncertainty of other parameters is defined in 375 

relation to the main outputs. Furthermore, all uncertainties are assumed to be independent from 376 

each other. 377 

All matrices and vectors used in the case study are provided in the Excel-file ‘TCM Case 378 

Study Data.xlsx’ in the supporting information. 379 
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Case study results  380 

Results of basic TCM 381 

The case study results of basic TCM are shown in columns (1) and (2) in Figure 3. Without 382 

considering factor constraints (column (1)), all thermal energy is produced from rice husk from 383 

zone 1 in the basic model.  Rice husk from zone 1 is chosen, because it has the lowest expected 384 

factor costs, and is assumed to be available without any limits. In the model with factor 385 

constraints (column (2)), in contrast, thermal energy is produced from rice husk from zones 1 386 

and 2, as well as from natural gas. Multiple production pathways are chosen, because the amount 387 

of rice husk available in each zone is constrained. Rice husk from zone 1 represents the lowest 388 

cost option, but can only satisfy about 20% of the total thermal energy demand due to factor 389 

constraints. It is therefore complemented by rice husk from zone 2, which is the second lowest-390 

cost option and can provide another 20% of the total energy demand. After all rice husk from 391 

zones 1 and 2 is utilized, additional thermal energy needed is generated from natural gas. This 392 

production pathway represents the next-lowest cost option and is available without limits in the 393 

model.  394 

In a decision-making context, it is important to note that the global warming impact in the 395 

model result is substantially higher when considering factor constraints (about 0.9 kg CO2e/kg 396 

v.s. 1.3 kg CO2e/kg), because rice husk must be fetched from afar. Fetching rice husk from afar 397 

increases the transportation needs, and hence, also the cost of rice husk to the extent that natural 398 

gas becomes economically favorable. Without considering such constraints, costs, and associated 399 

market responses, the environmental benefit of a new technology can be overestimated.  400 
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 401 

Figure 3: Thermal energy production mixes (columns, left axis) and resulting climate change 402 

impacts (markers on solid line, right axis) based on basic TCM and stochastic TCM with and 403 

without binding factor constraints and suboptimal decisions. 404 

Results of stochastic TCM 405 

Columns (3) to (6) in Figure 3 show the results of stochastic TCM reflecting uncertainties in 
, 406 

�, #, κ , and c. The consideration of these uncertainties leads to a diversification of the thermal 407 

energy production mix, where wood pellets and rice husk from zone 5 enter the market, 408 

absorbing part of the nearby rice husk supplies and natural gas. Parametric uncertainties 409 

considered in these results can arise from various origins including price fluctuations, 410 

measurement errors, and seasonality in supplies. Additionally, the effect of suboptimal decisions 411 

is illustrated in columns (4) to (6) in Figure 3. The percentage   specified in the column labels 412 
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states the factor   used to model suboptimal decisions in the respective scenario (cf. Equation 7). 413 

The higher this factor   is, the more equally distributed the shares of individual technologies in 414 

technology mixes are. Hence, suboptimal decisions lead to an increase in market share of less 415 

competitive technologies in TCM. In our particular example, the consideration of uncertainties 416 

and suboptimal decisions in stochastic TCM reduces the expected global warming impact of rice 417 

production (solid line in Figure 3). Modeling the potential outcome of suboptimal decisions, e.g. 418 

due to market imperfections and behavioral aspects, is important, because it helps understand the 419 

potential discrepancy between the designed and real outcomes of a policy. 420 

Figure 4 shows the effect of varying the final demand from 0 to 1 Mt, using TCM with factor 421 

constraints and suboptimal decisions ( = 10%). Varying the final demand allows us to show 422 

what would happen if consumers made different consumption decisions, e.g. due to changes in 423 

prices and incomes, legislation, or desire to contribute to sustainability. The shaded areas 424 

illustrate the shares of energy carriers in the technology mix (left vertical axis). The dashed line 425 

represents the marginal climate impact per functional unit, while the solid line shows the average 426 

climate impact per functional unit. For a final demand below 0.2 Mt of processed rice, no factor 427 

constraints apply. In this range, the amount of rice husk available in each zone is sufficient to 428 

satisfy the total thermal energy demand. Consequently, mostly rice husk from zone one is used, 429 

because it has the lowest factor costs. As long as no factor constraints apply, the technology mix 430 

is constant and the marginal climate impact equals the average climate impact per functional 431 

unit. For a final demand above 0.2 Mt, one or more factor constraints become binding: the 432 

thermal energy demand of the rice factory exceeds the amount of thermal energy that can be 433 

generated from rice husk from zone 1. This constraint results in an increased use of rice husk 434 

from other zones, natural gas, and wood pellets. Since these changes in the technology mix are 435 
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induced by changes in final demand, the resulting climate impact also depends on the final 436 

demand. Consequently, in presence of factor constraints, the marginal climate impact per 437 

functional unit differs from the average climate impact per functional unit. The non-linear 438 

relationship between climate impact and final demand can be determined using TCM. 439 

 440 

Figure 4: Effect of varying the final demand in TCM with factor constraints and suboptimal 441 

decisions (  = 10% ; cf. Equation 7) on thermal energy production mix (shaded areas, left 442 

vertical axis), marginal climate impact per functional unit (dashed black line, right vertical axis), 443 

and average climate impact per functional unit (solid black line, right vertical axis) 444 

This result casts light on another important variable for decision-making that traditional LCAs 445 

often ignore: the scale of production and consumption.
57–60
 In the presence of constraints, the 446 

market may favor different technologies under different scales of production and consumption, 447 

which in turn affect the policy outcome. Figure 4 shows that the system may generate larger-448 

than-expected GHG emissions when the demand for processed rice rises beyond 0.2 Mt/year.  449 
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DISCUSSION 450 

There is no doubt that understanding the environmental consequences of an action, which 451 

consequential LCA aims at measuring, is of great importance for policy-makers. An operational 452 

framework enabling the modeling of technology choices at an engineering-level detail, however, 453 

has been lacking in CLCA literature. In this paper, we presented an operational approach to 454 

model discrete technology choices at process-level detail, while systematically considering 455 

parameter uncertainty, suboptimal decisions, and factor constraints. In TCM, products are 456 

produced by technology mixes rather than single technologies, where the shares of individual 457 

technologies within these technology mixes are determined by the cost of production, factor 458 

constraints, uncertainties, and suboptimal decisions. By this means, TCM models market effects 459 

and environmental impacts of a product system and its changes at a high level of detail. The case 460 

study shows that considering uncertainty is not only essential for understanding the quality of 461 

CLCA results but may also lead to substantially different results.  462 

 463 

Equilibrium models v.s. Technology Choice Model 464 

Here we briefly discuss the advantages and limitations of TCM as compared to other modeling 465 

approaches widely used for CLCAs. In the literature, Partial Equilibrium (PE) models and 466 

General Equilibrium Models (GEMs)—and CGE models as their operational form—are 467 

frequently used as a modeling framework for CLCA. Unlike PE and CGE models, TCM can be 468 

formulated as a purely process-based model based on engineering estimates and measurement 469 

data. PE and CGE models, in contrast, are based on elasticities derived from econometric 470 

analyses. These elasticities are determined on an aggregated sector basis which typically 471 

distinguishes less than 60 sectors per country. Therefore, the level of detail of PE and CGE 472 
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models is substantially lower compared to TCM. A high level of detail as provided by TCM is 473 

crucial, for example, for modeling substitution effects among technologies producing the same 474 

product, or to explore the effect of a policy on technological change.
29
  475 

PE and CGE models are criticized for assuming perfect cost-minimization for all economic 476 

agents. This assumption has been relaxed in stochastic TCM by allowing for suboptimal 477 

decisions. In the case study, considering suboptimal decisions has been shown to significantly 478 

affect technology choices as well as expected climate impacts.  In this work, suboptimal 479 

decisions are understood as technology choices that do not result in the minimization of factor 480 

costs.  481 

In contrast to TCM, on the other hand, PE and CGE models determine demand changes due to 482 

price changes in all considered markets. In TCM, these changes are captured for intermediate 483 

products, but not for final product markets, i.e. markets of products with non-zero entries in y. 484 

Nevertheless, if reliable data on the price elasticity of demand is available, TCM can be 485 

expanded to account for changes in final product demand due to price change. For this purpose, 486 

the demand at time t + 1 can be determined in response to the price in time t using the price 487 

elasticity of demand.
29
 Also, the data requirement for TCM can be higher than for PE or CGE, 488 

and unlike CGE models, TCM captures only a part of the entire economic system. However, 489 

TCM can be extended to cover broader economic systems by employing hybrid approaches, 490 

where the foreground system is modeled in process-level detail, while the rest of the economy is 491 

modeled using input-output data.
43, 46

  492 
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Limitations and future research 493 

In TCM, suboptimal decisions are treated as random phenomena. In reality, however, 494 

suboptimal decisions may be systematic: a potential reason for suboptimal decisions is that 495 

decision-makers may have objectives other than cost minimization. A company, for example, 496 

may decide to use renewable feedstocks along the entire supply chain to demonstrate 497 

commitment to environmental protection, even if these feedstocks may be more expensive. In 498 

this case, technology choices are suboptimal regarding the cost minimization objective, but 499 

optimal with regard to the decision-makers’ objective. Furthermore, in this case, decisions on 500 

feedstock choices are correlated. Correlations between suboptimal decisions, as well as 501 

conflicting objectives are currently not captured in TCM and remain a topic for future research. 502 

In addition, the degree to which economic agents make suboptimal decisions still needs to be 503 

investigated in the context of TCM. Thus, our modeling approach for suboptimal decisions 504 

represents only an initial step towards acknowledging the effect of suboptimal decisions in the 505 

model, and needs further refinement to capture the full complexity of the topic.  506 

 507 

TCM allows the consideration of factor constraints in LCA, which have rarely been addressed 508 

quantitatively in the literature. These constraints may largely affect technology mixes, as shown 509 

in the case study. While our case study demonstrated the use of constraints for factor availability 510 

only, in reality, production systems may be subject to additional constraints. Chemical industries, 511 

for example, may be constrained in the use of certain chemicals imposing material health risks.
61
 512 

Operation of energy technologies is affected by regulation, transmission and storage capacity, 513 

among other things.
62, 63
 Additional constraints may be further incorporated into the general 514 

TCM framework. 515 
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It is also important to note that all parameter uncertainties in our case study were assumed to 516 

be independent from each other. In reality, uncertainties may be correlated, in which case, this 517 

correlation can be incorporated into the Monte Carlo simulation, if the correlation between input 518 

parameters can be estimated.
49
 519 

TCM presented in this paper aims at operationalizing CLCA focusing on the question of 520 

technology choice based on a transparent and reproducible modeling framework. While taking 521 

into account economic principles, uncertainty, and suboptimal decisions in technology choices, 522 

there are many more aspects to be further explored, including technology lock-in and path 523 

dependency, rebound effect, delay mechanisms, and inertia in market behavior, to name a few. 524 

Follow-up research on such topics as well as additional case studies using TCM would be 525 

desirable. 526 

Operationalizing TCM at a large scale requires additional information to existing and 527 

established process life cycle inventory (LCI) databases. In particular, reliable price data is 528 

crucial in applying TCM to existing process LCI databases. In addition, understanding factor 529 

constraints and capacity limitations would be essential in transforming existing process LCI 530 

databases for TCM. In order to materialize the benefits of TCM, efforts must be made to develop 531 

related meta-data protocols and collect additional data required.  532 
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