UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
A Recognition Model of Geometry Theorem-Proving

Permalink
https://escholarship.org/uc/item/31p7h3b1]

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 14(0)

Authors
McDougal, Tom
Hammond, Kristian

Publication Date
1992

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/31p7h3b1
https://escholarship.org
http://www.cdlib.org/

A recognition model of

geometry theorem-proving

Tom McDougal
Kristian Hammond
University of Chicago Al Lab
1100 E. 58th Street
Chicago, IL 60637
(312) 702-1571
mcdougal@cs.uchicago.edu
hammond@cs.uchicago.edu

Abstract

This paper describes POLYA, a computer
program that writes geometry proofs. POLYA
actively collects features from a geometry
diagram on the basis of which it recognizes and
applies knowledge from known examples. We
present a vocabulary of visual targets, results,
and actions to support incremental parsing of
diagrams. We also show how scripts can be used
to organize visual actions into useful sequences.
We show how those sequences can be used to
parse diagrams and instantiate proofs. Finally,
we show how scripts represent the implicit
spatial knowledge conveyed by examples.

Introduction

Anyone who has struggled in a math class knows
the difference between understanding the solu-
tion to a problem and knowing how to come up
with that solution. In How to Solve It [1957],
mathematician and educator George Polya gives
advice to the student having trouble deriving
solutions. He breaks the problem-solving process
into four steps:

This work was supported in part by the University of
Chicago Department of Computer Science, AFOSR
grant number AFOSR-91-0112, DARPA contract
number F30602-91-C-0028, DARPA contract number
N00014-91-J-4092 monitored by the Office of Naval
Research, Office of Naval Research grant number
N00014-91-J-1185, and an internal fellowship from
UCSMP.

106

1. Understand the problem.
2. Devise a plan.

3. Carry out the plan.

4. Look back.

Most of the work occurs in the second step.
There Polya recommends drawing on experience:
“...It is often appropriate to start the work with
the question: Do you know a related problem?” [p.
9, italics in original]

How to Solve It is peppered with examples
from geometry. However, the history of geom-
etry theorem-proving in Al and Cognitive
Science contains little that resembles Polya’s four
steps (see [Koedinger & Anderson 1990] for a
review). Instead, nearly all computer programs
which construct geometry theorems do so using
forward and backward chaining of if-then rules
corresponding to the traditional theorems and
axioms of plane geometry. The programs have
differed from one another mostly in the heuristics
used to make the chaining approach tractable.

This paper describes a computer program,
POLYA, which constructs geometry proofs in the
way George Polya suggests. It devises a plan by
recognizing similarity to known examples; it
carries out the plan by mapping significant
features of the examples to the new case. POLYA
addresses some of the limitations of Koedinger
and Anderson’s Diagram Configuration model
(DC), resulting in a more cognitively plausible
model of geometry theorem-proving.

mailto:mcdougal@cs.uchicago.edu
mailto:haminond@cs.uchicago.edu

visual

action | Visual :
systenf diagra

visual
result

(script
selector)

script
recognizer

Figure 1: Selecting and executing scripts.

Overview of POLYA

POLYA accepts as input a problem statement and
a diagram. The problem statement consists of a
short list of “givens” and a goal. The diagram is
a bitmap drawing. POLYA marks the diagram to
reflect the givens, and then begins to parse the
diagram.

POLYA parses the diagram incrementally,
using visual actions to shift its focus of attention to
areas of likely interest in response to what it sees.
POLYA'’s knowledge of how to parse diagrams,
as well as its knowledge of how to write proofs,
is contained in scripts. Search scripts are
sequences of visual actions for detecting a
particular useful pattern or relationship in the
diagram. Proof scripts contain a sequence of
visual actions for verifying the relevance of an
example, and another sequence for mapping the
example to the current diagram.

POLYA's algorithm for selecting scripts and
running them is shown in figure 1. The steps are:

1. Select a script.

2. Perform each action in the script,
obtaining visual results. Add each
result to a list of perceptions.

3. Compare the visual result to the
prediction made by the active script.
Also compare the list of perceptions to
the triggering sets of inactive scripts.

4. Update the list of suggested scripts,
adding ones which have had their
triggering set satisfied.

5. Repeat until there are no more scripts or
until the proof is complete.

107

The rest of this paper will describe POLYA’s
visual system, its visual search knowledge, and
its proof-writing knowledge. We will illustrate
with a working example how these interact to
devise and carry out a plan.

POLYA's visual system

The design of POLYA’s visual system is
influenced by certain facts about the human
visual system. The human visual field has a very
small area (about 3 degrees) of high resolution at
the fovea with much lower resolution elsewhere.
This presents a computational advantage for
processing retinal images, but presents challenges
for gathering information. Much of the success of
human vision is due to our ability to shift the
fovea rapidly among areas of likely interest, with
additional processing relating those narrow per-
ceptions [Carpenter 1988]. These advantages and
challenges have inspired new research in active
vision [Ballard, Clark, Schwartz, Swain, Tistarelli,
etc.].

Focus of attention

Matching configuration schema against a
geometry diagram, as DC does in its first
problem-solving phase, reduces to NP-complete
subgraph isomorphism. The addition of a single
irrelevant line segment to a diagram can double
the time DC requires to parse it [Koedinger,
personal communication]. Koedinger and
Anderson [1990] acknowledge in their paper that
an accurate model of human problem solving
would integrate parsing and schema search.

This is what POLYA does. It parses the
diagram opportunistically, using what it sees
(visual results) to help it decide what to look at
next (visual targets). Figure 2 contains excerpts
from POLYA’s vocabulary of visual targets and
results. Note that POLYA can focus on pairs of
objects, such as two triangles or a point and a
segment, as well as on individual objects. In
focusing on pairs of objects, POLYA loses specific
information about the individual objects while
gaining relational information. For example,
looking at a pair of triangles yields no
information about markings on the individual tri-
angles; for that information POLYA must focus
on one triangle at a time.

What POLYA can look at | What POLYA sees Examples Visual result
Single point ray-pattern / X-HORIZ-UP
label LABEL-A
no. of angle marks y 1-ANGLE-MARK
pair of segments rel. lengths — 1<2
rel. extents DISJOINT
rel. orientation — PARALLEL
triangle number of sides marked TWO-MARKED-SIDES
no. of angles marked ONE-MARKED-ANGLE
no. of interior lines O-INTERIOR-LINES
basic shape OTHER-TRIANGLE-SHAPE
triangle pair symmetry T/B-SYMMETRIC
rel. sizes APPROX-SAME-SIZE
rel. extents SHARED-SIDE

Figure 2: Some of POLYA's visual targets and visual results.

Visual actions

Currently, POLYA has three types of actions
for shifting its focus from one target to another:
FIND, LOOK-AT, and COMPARE. All three shift
the focus and return a description (visual result)
of the target object(s). FIND shifts the focus to a
hypothesized object whose description is (partly)
known but whose location is not known. FIND
may return nil if no object matching the
description exists in the diagram. LOOK-AT shifts
the focus to an object whose location is known
but whose description is not known. COMPARE
shifts the focus to pairs of objects. FIND-
MARKED-SEGMENT, L O OK-AT-LOWER-LEFT-
VERTEX, and COMPARE-TRIANGLES are instances
of the three action types.

As one reasonableness criterion, we intend
that POLYA should be able to perform its visual
actions directly on a bitmap diagram. Currently,
however, POLYA computes its visual results
from coordinate listings of points, lines, and
segment and angle marks.

Geometric planning knowledge

POLYA'’s planning knowledge of where to look
in a diagram, as well as its knowledge of how to
write proofs, is contained in geometry scripts.
These are modelled after the scripts described in
[Schank & Abelson, 1977] and implemented in
SAM for understanding newspaper stories

108

[Cullingford 1978]. Scripts store routine actions
and sequences of events so that, once a script has
been selected, inferencing is tightly controlled.

POLYA has two kinds of scripts: search scripts
and proof scripts. Both kinds of scripts have one
or more triggering sets, sketchy lists of perceptual
features which suggest the relevance of the script.
A script becomes suggested when the
accumulated perceptions contain all elements of
the triggering set.

Search scripts

Search scripts direct the focus of attention to
potentially salient parts of the diagram. They
themselves do nothing with the visual results;
their purpose is to gather the features needed to
trigger proof scripts. The predictions usually
serve only as a check on the success of the visual
actions. ISOSC-LEGS search script (figure 3)
directs the focus to the legs of a triangle which
appears to be isosceles. POLYA has another,
similar script which directs the focus to the base
angles. The two scripts represent POLYA'’s
knowledge of the important parts of isosceles
triangles.

Proof scripts

Proof scripts may correspond to formal geometric
facts—axioms, theorems, and properties—or to
parts of complete proofs POLYA has seen. They

ISOSC-LEGS search script

Triggering set
DIAGRAM [left-right symmetry]
TRIANGLE [type = ISOSC-UP]

Sequence

1. Action = [look at left side of isosc. triangle]
Prediction = [generic segment]

2. Action = [look at right side of isosc. triangle]
Prediction = [generic segment]

3. Action = [compare the two segments]
Prediction = [segments share common endpoint]

Figure 3: A script to look at isosceles triangles.

are similar to the Diagram Configuration
schemas in DC. However, the proof-writing
knowledge of POLYA’s proof scripts is very
specific and uni-directional, whereas DC’s
schema may package multiple rules for forward
or backward inferencing.

Proof scripts have four parts:

1. A triggering set.

2. Averification sequence.

3. A template-filler sequence for locating
objects needed for the proof.

4. A proof template .

Once activated by a match against the
triggering set, proof scripts operate in three
phases. First, the verification sequence checks
that the relevant objects in the diagram are in the
proper configuration for the proof script to be
valid. Second, the template-filler sequence looks
again at the diagram to determine variable
bindings for the template. Third, the proof script
instantiates its template with the variable
bindings from the previous step.

The SSS-SHARED-SIDE proof script (figure 4)
can prove that two triangles are congruent to
each other if two pairs of sides are congruent and
if they share a third side (see the triangle-pair
example in figure 2). It is triggered on the basis
of a triangle visual result in which two of the
triangle’s sides are marked, and a triangle-pair
result in which the two triangles share a side.
Because these results may be separated in time,
there is no guarantee that they have anything to
do with each other, so the first actions of the S§5-
SHARED-SIDE script verify that each of the
triangles which share a side have two sides
marked. Additional actions locate the
corresponding pairs of marked sides, and the
shared unmarked side.

A complete proof generally requires more than
one proof script, and is thus a composite of

109

’gi.ahﬂmijde p_n_)_g! Kﬂ’m
Tad -
DIAGRAM [some symmetry]
TRIANGLE (2 sides marked]
TRIANGLE-PAIR [shared-side]

1. Action = [look at trianglel of triangle-pair]
Prediction = (2 sides marked]

2. Action = [look at triangle2 of triangle-pair]
Prediction = [2 sides marked]

3. Action = [look at shared side of triangle-pair]
Prediction = [unmarked segment]

Template-filler-sequence

1. Action = [look at triangle1 of triangle-pair]
Prediction = [2 sides marked|
Bind-to: ?TRIANGLE1

2. Action = [look at triangle2 of triangle-pair]
Prediction = [2 sides marked]
Bind-to: ?TRIANGLE2

3. Action = [find marked-side of ?trianglel]
Prediction = [marked-segment)
Bind-to: ?SIDE1A

4. Action = [look at symmetric partner of ?SIDE1 A]
Prediction = [marked-segment]
Bind-to: ?SIDE2A

5. Action = [compare ?SIDE1A & ?SIDE2A]
Prediction = [seg-pair similarly marked]
Bind-to: —

Proof template
1. Statement = (?SIDE1A = ?SIDE2A)
Reason = “As marked”
2. Statement = (?SIDE1B = 7SIDE2B)
Reason = “As marked”
3. Statement = (?SHARED-SIDE = ?SHARED-SIDE)
Reason = “Reflexive property (shared side).”
4. Statement = (?TRIANGLE] = ?TRIANGLE2)
5. Reason = “SSS with shared side.”

Figure 4: A script for proving two triangles
congruent, if they have two sides congruent and
share a third side.

several instantiated templates. POLYA currently
lacks a mechanism for organizing steps from
multiple templates in logical order.

Script selection

When more than one script is suggested, which is
frequently the case, POLYA chooses a script
essentially at random, except that preference is
given to proof scripts. This is adequate for the
current model, since the order in which
perceptions are gathered does not affect the final
solution.

Representing examples with scripts

Scripts capture the visual search and proof-
writing knowledge implicit in examples and
sample problems. Because this knowledge is
rarely, if ever, explicitly taught, we have relied on
a careful study of textbook examples to tell us
what POLYA's scripts should contain.

When the triangle congruence theorems are
introduced in one text [Rhoad et al., 1986], the
diagrams in the examples and first several
problems emphasize two types of patterns:
triangles with two parts marked (sides, angles, or
a combination), and triangles with three parts
marked. The associated skills are, respectively, to
identify what third side or angle would have to
be marked for a particular theorem to apply
(always two possible theorems), and to identify
which one theorem (if any) applies to the given
case.

To represent these skills, POLYA has search
scripts whose triggering sets consist of triangle-
visual-results with two angles marked, or two
sides marked, or one side and one angle. They
focus attention on the additional side or angle
which would be needed for a particular theorem,
and compare that object with its symmetric
partner in the other triangle. The proof scripts
for this section are triggered on the basis of three
marks (or two marks and some significant object-
pairing). Their verification sequences check that
the marked objects are in the proper
configuration.

An example

One problem POLYA can recognize is shown in
figure 5, a textbook problem from a section which
introduces isosceles triangles. To recognize this
problem and write its proof requires four search
scripts and two proof scripts. The search scripts
are a script which looks at the dominant triangle,
ISOSC-LEGS and 1S0OS C-ANGLES, discussed
earlier, and CONGRUENT-TRIANGLES. CON G-
RUENT-TRIANGLES focuses POLYA's attention
on the marked triangles in the lower-left and
lower-right corners.

The features collected by those four search
scripts complete the triggering sets for two proof
scripts: SSS-SIMPLE and a proof script specific to
this problem (3.6-PROBLEM-3). Of the two proof
scripts, POLYA arbitrarily chooses to run 3.6-
PROBLEM-3. As its verification sequence, this

110

po— R
Given: WS=TZ
WX =Yz S T
X =TY
Prove: WR=RZ
w
x Y Z

Figure 5: The example.

script COMPAREs the marked triangle with the
dominant isosceles triangle, predicting (correctly)
that they will share an angle.

The template contains two proof steps related
to two geometry rules:

1. Statement = (?BASE-ANGLE1 = ?BASE-
ANGLE2)
Reason = “Corresponding parts of
congruent triangles are congruent.”

2. Statement = (?SIDE1 = ?SIDE2)
Reason = “If two angles of a triangle are
congruent, then the sides opposite them
are congruent.”

The sequence of steps for binding the template
symbols is:

1. LOOK-AT-BASE-ANGLE1— ?BASE-
ANGLE1

2. (similarly for ?BASE-ANGLE2)

3. LOOK-AT-ISOSC-LEG1 — ?SIDEI

4. (similarly for ?SIDE2)

Step 1 in the template assumes that the smaller
triangles are congruent. This has not yet been
proven, but soon will be.

Now POLYA runs the SSS-SIMPLE proof script,
which represents an iconic example of side-side-
side triangle congruence. The template for SSS-
SIMPLE looks like this:

1. Statement = (?SIDE1A = 7SIDE2A)
Reason = “As marked”
2. Statement = (?SIDE1B = ?SIDE2B)
Reason = “As marked”
3. Statement = (?SIDE1C = ?SIDE2C)
Reason = “As marked”
4. Statement = (?TRIANGLE1 = ?TRIANGLE2)
Reason = “S55”

This template is filled in with the actions
LOOK-AT-SIDE1, LOOK-AT-SIDE2, and LOOK-AT-
SIDE3 on one of the corner triangles, and using
FIND-SYMMETRIC-SEGMENT to locate the
corresponding side in the other triangle. This
template completes the proof for this problem.

Discussion

POLYA is not really “solving” the problem
above, but merely recognizing it as a problem for
which it knows the solution. This is the simplest
type of reasoning from examples. Simple or not,
however, the example shows that POLYA’s
visual vocabulary is adequate for representing
both general patterns and specific solutions. The
example also suggests that search scripts can be
used for efficient diagram parsing. Finally, the
example shows shows how multiple search
scripts and proof scripts can interact to recognize
and write the proof of a known problem.

Conclusion

This paper has presented a new model of
geometry theorem-proving consistent with
George Polya’s steps of problem-solving.
POLYA constructs a proof plan and carries it out
through visual search and recognition. To
support this behavior we have defined a visual
system—a vocabulary of visual targets, results,
and actions—for representing and interacting
with diagrams. We have shown how search
scripts and proof scripts can be used to direct a
constrained focus of attention for efficient visual
parsing and for writing proofs. We have
described an algorithm that allows smooth
interaction of search scripts and proof scripts.

POLYA’s visual system is still evolving,
especially the vocabulary of visual actions. As
we add examples we find that new actions are
required, or at least new ways of describing
them. Generally the new actions stem directly
from new geometric concepts. For instance, to
handle isosceles triangles requires knowledge of
how to focus on the base angles. A full domain
knowledge of geometry will comprise a large set
of such context-specific visual actions.

We are anxious to test our model on a much
larger set of examples with a much larger set of
scripts. We expect that additional examples will
reveal gaps in our vocabulary of visual actions.
We expect the set of visual actions to grow
quickly for awhile, then level off to a stable
vocabulary of the visual skills required to parse
plane geometry diagrams.

Thus far the emphasis of our research has been
on reasoning from the diagram; POLYA currently
ignores the goal in the problem input. However,
we plan to incorporate some goal-directed

reasoning in POLYA. Certainly this is something
people do, and POLYA will need it to solve more
complicated problems.

Finally, we are interested in the expanding
POLYA into a case-based system which can learn
new cases in response to difficulties experienced
during problem-solving.

Acknowledgements

Many thanks to Paul Schiffer for his fine-tooth
editing of earlier drafts of this paper.

References

Ballard, D. H. (1991). “Animate vision.” Artificial
intelligence, Vol. 48.

Carpenter, R. (1988) Movements of the eyes. Pion.
Clark, J.]. & Ferrier, N. . (1988). “Modal control
of an attentive vision system.” Proceedings,

International Conference on Computer Vision.

Cullingford, R.(1978). Script application:
Computer understanding of newspaper stories.
Ph.D. Dissertation, Research Report #116.
Computer Science Dept., Yale University.

Koedinger, K. R. and Anderson, J. R. (1990).
“Abstract planning and perceptual chunks:
Elements of expertise in geometry.” Cognitive
Science, 14, 511-550.

McDougal, T. (1988) “A computational model for
the structural comparison of secondary plane
geometry problems.” M.A.T. Thesis,
University of Chicago.

Polya, G. (1957). How to solve it: A new aspect of
mathematical method, 2nd Ed. Princeton
University Press.

Rhoad, R., Whipple, R., and Milauskas, G. (1986)
Geometry for enjoyment and challenge.
McDougal, Littell.

Rojer, A.S. and Schwartz, E. L. (1990) “Design
considerations for a space-variant visual
sensor with complex-logarithmic geometry.”
Proceedings, Int'l Conference on Pattern
Recognition.

Schank, R., Abelson, R. (1977). Scripts, plans,
goals, and understanding. Lawrence Erlbaum.

Swain, M. J. (1991). “Low resolution cues for
guiding saccadic eye movements.” SPIE
advances in intelligent robot systems.

Tistarelli, M. & Sandini, G. (1990). “On the
estimation of depth from motion using an
anthropomorphic visual sensor.” Proceedings,
European Conference on Computer Vision.

	cogsci_1992_106-111

