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Abstract of the Thesis

Power Capture (PowCap) Board for Non Intrusive

Load Monitoring and Power Line Communication

Exploration and Development

by

Vikram Balakrishnan

Master of Science in Electrical Engineering

University of California, Los Angeles, 2013

Professor Greg Pottie, Chair

Mains electrical lines in buildings and houses contain a wealth of information about devices

that can potentially be exploited through research. However, accessing information through

the circuit breaker can be quite difficult due to dangerous high voltages and lack of infras-

tructure for data logging. The Power Capture Board (PowCap) system was created to solve

this problem of end-to-end access. It stores high quality analog signals from a circuit breaker

to an open centralized database. It is composed of a customized high power tolerant analog

front-end block connected to a digitizer that is an Ettus Research software defined radio

board (USRP). The USRP has the ability to collect high-resolution analog voltages with a

24-bit ADC and generates 1 Terabyte of high-resolution data a day. These rich datasets are

downloadable through the web and can now be generated on a daily basis to provide signal

processing opportunities that did not exist before.
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CHAPTER 1

Introduction

With urban development, energy expenditure in cities increases dramatically. According to

a report from Department of Energy [Hut99], office equipment will be the fastest-growing

commercial end use sector between 1998 and 2020. The recent data from the Commercial

Buildings Energy Consumption Survey (CBECS), a national sample survey project of the

U.S. Energy Information Administration, reported that 19% of the total energy of U.S. office

buildings is attributed to plug load energy use, such as office equipment, the computers, and

other energy use [plu11]. So their power management is important. In a demand response

(DR) framework, a building gets signals (demands) from the utility to reduce the power of

appliances (response) [AE08, AE07].

However, plug loads are very diverse; just blindly shutting them off can be very problem-

atic as they may not be safely turned off. Therefore, classifying the type of plug load and

recognizing the state of the load is useful for the building energy management system. For

example, the energy management system can shut down preempted loads (such as lamps or

idle computers) and save non-preempted loads (such as busy computers).

My research was inspired by an excellent paper out of The University of Washington[GRP10]

showing that the electrical noise traveling along the AC signal in an average home contains

clues about the devices running on the circuit. When devices are turned on or off, they leave

a transient marker on the line. Additionally many modern devices utilize switching-mode

power supplies (SMPS) for their more compact design and higher efficiency, but this switch-

ing leaves traces on the mains AC signal in the form of high frequency noise. By processing

these signals, it is possible to identify which devices are running and how much power they

are using. Looking at noise on the AC line is not a new idea, but the algorithms that exist

1



Figure 1.1: Power Capture Board, revision 1.

for device detection are often closely guarded secrets of the groups that develop them. The

Power Capture Board (PowCap) was thought up as a universal hardware platform that could

be used to spur more open research into this area (see Figures 1.1 and 1.2), in addition to

providing a versatile general use wide-band analog front end.

The rest of this paper is organized as follows: Chapter 2 describes the design of our first

revision hardware unit, the Power Capture Board; Chapter 3 goes over design and analysis

of a power line transceiver; Chapter 4 discusses our final hardware revision and analyzes the

data from the most recent deployments and Chapter 5 presents an experiment and analysis

accomplished with our hardware system.

2



Figure 1.2: An example of the noise that can be seen on the line created by, among other

things, power supplies of consumer electronics.
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CHAPTER 2

The Power Capture Board (PowCap)

The Power Capture Board (PowCap) is designed to take in two signals: AC voltage and

AC current. The voltage reading is picked up directly off the mains via capacitive coupling

that is then sent through a resistor divider that attenuates the signal to safe voltages. The

capacitive coupling serves an additional safety purpose: the board and users are protected

by Y-rated safety caps designed to breakdown “open.” The current is delivered from a

wideband current transformer via BNC connector. Once these signals are captured, the

user has several options. For power measurements, the main 60Hz AC signal is of primary

concern, but for any noise analysis, the 60Hz line will dominate readings. To filter out

this AC wave, a Twin-T notch filter that can be accessed through a digital interface to a

programmable microcontroller. From there, the signal can be filtered again with a full range

from a low pass of 1KHz to a high pass at 1MHz and six band pass ranges in between.

These filters are all accessible through the microcontroller, and they are all optional; for

each filter stages, there exists a bypass option. Finally, a programmable gain stage at the

output readies our signal before being fed to an external USRP unit. Each of these stages

is described in Figure 2.1. Finally, the board contains its own linear power supply built in

to supply noise free DC rails to all of the ICs.

While designed with AC mains analysis in mind, the board has been shown to be remark-

ably versatile. The features discussed have been used to read and condition a wide variety

of analog signals and prepared them for digitization through a USRP device. GnuRadio is a

powerful open platform toolkit designed for software-defined radio construction, this makes

it particularly easy to apply to any analog signal analysis.
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Figure 2.1: The main signal path of the PowCap board contains four stages: 1) Coupling 2)

Notch Filtering 3) Band Filtering 4) Gain.

2.1 Input Connections (Stage 1)

Stage 1 (see Figure 2.2) is our voltage and current input: how we bring these signals from

the real world into our Analog circuitry. The voltage and current front ends are explained

in more detail below. After this input stage, the following conditioning stages are mirrored

for current and voltage paths.

2.1.1 Current Front End

Our current sensor is a high quality wideband current transformer from Pearson Electronics,

Inc[Inc]. A high end model was selected for its feature set. The inductor coil is able to open

completely so that it can be attached around fixed wires, as would be expected with most

main lines that come in from the street, without needing to cut them. This transformer
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Figure 2.2: The first stage of the signal path on the PowCap board: Capacitive coupling and

a voltage divider for the voltage path. (Note: BNC connections bring in the current signal

from an external current transformer.)

measures the current of the enclosed wire, and then produces a voltage output. It has

a 50ohm output impedance. The 411C[pea] has a band pass of 25Hz to 20MHz and the

sensitivity is 0.1V/A. This voltage output is available through a BNC connection that plugs

directly into the PowCap board. From there, the signal can connect to a Twin-T Notch or

be sent directly to the filter bank. While most switch mode power supplies[Pre98] switch

in the frequency range of 50kHz to 1MHz we are interested in seeing what other types of

EMI might be present. Low frequency events such as motors will also likely be able to be

identified. Future applications could easily use a less advanced current transformer.
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2.1.2 Voltage Front End

Figure 2.2 shows our voltage input consisting of a simple voltage divider in series with safety

rated capacitors. Y2 capacitors are rated for up to 300VAC, but are designed to withstand

much larger voltage spikes. Y2 caps should be used whenever their failure could result in

electric shock. There are multiple stages of self-healing dielectrics and, if the dielectrics

can’t heal, the capacitor is designed to fail “open.” All of these characteristics make Y rated

capacitors perfect for protecting users and the board from the high voltage mains. Behind

these capacitors is a simple voltage divider that feeds into a buffer circuit. It should be noted

that this voltage front end acts like a high pass filter, with the cutoff frequency set by the

values of the voltage divider resistors (in our design, about 20Hz).

The LTspice model is available as a supplement.

2.2 Preliminary Filter (Stage 2)

Stage two (see Figure 2.3) provides an option of filtering out of the 60Hz mains signal via a

Twin-T Notch Filter.

After the signal is lowered to a reasonable voltage (nominally 4.2V), it is isolated with a

buffer circuit and then passed into the first filter stage. In order to more easily observe higher

frequency effects, it is essential to filter out the 60Hz mains signal. This improves our ability

to analyze the residual high frequency noise. This low amplitude “noise” was originally riding

on the 60Hz wave, but there is a risk of losing vital fidelity due to the high amplitude 60Hz

signal. We make this noise the dominant signal by removing, or filtering, this 60Hz signal,

giving us a much better look at the high frequency switching signals, commonly referred to

as EMI, riding on top of the AC signal. However, if we want to calculate fundamental usage

statistics, like power, we need to be able to look at the 60Hz wave; to provide flexibility,

the filter is fed through a MUX along with a bypass line. Through the use of an on-board

microcontroller, or manual on-board switch, a multiplexer can send either signal path through

to the next stage. The implemented 60Hz notch filter topology consists of two cascaded active
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Figure 2.3: The second stage of the signal path on the PowCap board: a Twin-T notch filter

on both current and voltage signal paths.

Twin-T notch filters[Inc69]. The entire stage was simulated using LTspice[Tec] (see Figure

2.4), a free circuit design software package from Linear Technology.

2.3 Variable Filter Stage (Stage 3)

After being isolated through another buffer stage, the signal is sent to a variable filter array

(see Figure 2.5). This stage offers us the option to apply custom analog filtration to identify

and isolate the most data rich, or EMI rich, frequency bands. For example, many switching

power supplies operate in the high tens of kilohertz. For this range it would be sensible to

run our signals through the 1KHz-100KHz band-pass filter.

We include the following analog filters on our board to do this without losing any infor-

mation: 1kHz low-pass, 1kHz to 100kHz band-pass, 100kHz to 250kHz band-pass, 250kHz
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Figure 2.4: Schematic and frequency analysis of the 60Hz Twin-T Notch Filter.

to 500kHz band-pass, 500kHz to 2MHz band-pass, and 2MHz high-pass filter. Our filters

are designed with a dual op-amp Sallen-Key topology[Jon01]; a well-documented topology

allowing for easy filter edge modification. Supplementary LTspice models are available for

further exploration of the filter response of these circuits.

2.4 Programmable Gain Amplifier (Stage 4)

The final step before the signal leaves our board is a programmable gain stage (see Figure 2.6).

This allows us to condition our signal so that it is appropriately scaled for its destination.

For example, the Analog-to-Digital Converter (ADC) on a USRP require an input signal of

no more than 2V peak-to-peak swing. At the same time, if the signal is significantly lower

than 2Vp-p, we can boost the voltage so that we do not lose any resolution; that is we can

maximize our dynamic range. For this task, we employ National Semiconductor’s LMP8100

Programmable Gain Amplifier[lmp].
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Figure 2.5: The third stage of the signal path on the PowCap board consists of an array of

filters for each signal path: a 1kHz low-pass, 1kHz to 100kHz band-pass, 100kHz to 250kHz

band-pass, 250kHz to 500kHz band-pass, 500kHz to 2MHz band-pass, and a 2MHz high-pass

filter.

2.5 Supplementary Blocks

All ICs need power and on a noise-sensitive board like PowCap, a particularly “clean” power

supply was needed. An off-the-shelf switching power supply is potentially risky as, even with

good routing practice, the supply’s switching noise could bleed throughout the board and

affect the primary signal path. Buying an external linear power supply seemed wasteful,

as a custom power supply could easily be designed/implemented. A custom power supply

(PSU) also gives full flexibility to accommodate any voltage rails required, which expands

our choices for ICs. Power is provided by a parallel path from the wall to a Tamura 120/10V

transformer[tam] (see Figure 2.7). The AC signal is half-wave rectified and then regulated
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Figure 2.6: The fourth stage of the signal path on the PowCap board: programmable gain

amplifiers for each signal path.

into four rails: +/- 2.5V and +/-5V. The lower voltage range is required by the quad op-

amps used in all of our filter topologies, while the MUX’s and microcontroller require the

5V rail.

For the multiplexer choices, several combinations of 2x1 and a 8x1 MUXs were incorpo-

rated to accomplish computer controlled routing between and around the filters (see Figure

2.7). A 2x1 MUX sets whether the 60Hz notch or the bypass path is outputted. A larger 8x1

MUX connects all of the Low/High/Band -pass filters, still leaving a couple of connections

free for additional inputs that can be routed manually. Again, the circuitry is mirrored,

once for the voltage path and once for the current path; that is why the majority of signal

circuitry appears to be duplicated. For troubleshooting and as a backup, a dipswitch is

attached to all mux connections to allow for manual switching between pathways.

The MUX’s along with the output gain stages can all be controlled by a programmable mi-

11



Figure 2.7: This figure highlights the main supplementary blocks on the PowCap board: the

power supply (PSU), input and out(I/O) connections, mechanical switches, and microcon-

troller (MCU).

crocontroller (see Figure 2.7). The microcontroller utilized on PowCap is an ATMEGA32U4;

it is a simple 8-bit controller with USB interface[atm]. This is the same chip used in com-

mon DIY development boards like the Teensy[PR]. The software uses a lightweight USB

framework for AVRs (LUFA[Cam]). It is loaded with a DFU USB “bootloader” so that it

can be programmed without using any specialized programming hardware. The firmware

can be viewed in the appendix.

For easy testing and interface with other devices, I/O is accomplished with an array of

BNC connectors (see Figure 2.7) that can: 1) insert input signals, connected or disconnected

with 0ohm resistors on the board. 2) Output our conditioned signals from our programmable

op-amps. These additional I/O paths are useful to test custom inputs through a signal

generator, or to look directly at the output signal on a scope.
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2.6 Prototyping

Like most projects, PowCap went through several levels of design and revisions. The follow-

ing sections trace our path from theoretical conception to a highly functional analog interface

that can sense both voltage and current; and amplify relevant bandwidths.

2.6.1 Voltage Divider

The first step was to see if 115VAC line voltage could be coupled onto a board and safely

divided down to manageable amplitude. Due to local electronic stocks, the first design used

X2 rated caps. X2 caps can take high voltage but don’t fail open; they are recommended

primarily for low-pass filtering. With the idea of a simple capacitive coupling, we began

piecing together a simple circuit. The results were immediate, though it would take some

fine-tuning to perfect the component values. The X caps were 2.2uF, though there were

also experiments done with several different capacitor sizes (10nF and .1uF). The goal was

to attenuate the voltage signal down to a level either the USRP could take in, 2Vp-p, and

later a level the buffer could handle, about 2.5Vp-p. The resistor values had to be chosen

carefully so that the resulting RC filter circuit does not have too high a cutoff frequency.

That is, it is OK to lose some low frequency data, but it is important not to lose any high

frequency switching noise.

A collection of various test topologies can be seen in Figure 2.8 , assembled on early stage

prototype boards.

2.6.2 60Hz Filtering

After we could reliably extract our attenuated line voltage signal, the next step was to filter

out the 60Hz. We picked up a simple single-stage topology from a filter design book, and

put it onto a board. The op-amp needed power, so we designed a simple linear power supply

that served as the foundation for the multi-rail PSU implemented in the PowCap board.

The resulting prototype circuit can be seen in Figure 2.9. This early 60Hz filter model is
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Figure 2.8: Prototype resistor divider circuit. The caps on the left are supporting two

different topologies. The caps on the right are .1uF Y2 caps, here they are connected with

some experimental values. The LTspice models from these experiments are submitted as

supplemental documentation.

in the LTspice schematic in Figure 2.10. Simulations of the schematic are shown in Figures

2.11 and 2.12.
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Figure 2.9: A prototype resistor divider and 60Hz notch filter. We are using a simple switch,

with a built in fuse-holder, as a go-between for the line input to the board. This device

can be seen as black housing with metallic protrusions on the bottom left. On the board,

the transformer feeds stepped down voltage, at a 100:12 ratio, to a half-wave rectifier. The

resulting capacitor-smoothed DC voltage is then sent through two voltage regulators to get

rails of +/-2.5V to feed the op-amp. Not surprisingly, this is very similar to the design

adopted in the PowCap board.
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Figure 2.10: The prototype 60Hz notch filter design in schematic form. Included at the top

of the diagram is the input capacitive coupling and resistor divider circuit. This was included

due to a lack of a buffer stage between the input and the notch filter; as a result the notch

filter is loading the resistor divider and vice versa.
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Figure 2.11: The prototype 60Hz notch filter signal response. The input 60Hz sign wave

(green) is filtered out as shown by the output signal (blue).

Figure 2.12: Frequency response of the prototype 60Hz notch filter.
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CHAPTER 3

Power Line Communication

3.1 Introduction

While sensing information from the mains, it became clear that the effects of signal propa-

gation along the circuits in the home have adverse and unpredictable effects on the signals

themselves. To better understand these effects, it is helpful to have the capability to trans-

mit, in addition to receive, signals across the lines. This gives us information to develop

good circuit models, while also providing a good foundation to incorporate power line com-

munication (PLC) capability into our designs. Already we know our original PowCap board

will need two more channels, one voltage and one current, in order to be able to cover both

phases of a typical home. There is some coupling between the phases, but there are also

”dead zones” in one phase that are not visible when sensing on the other[GRP10]. For larger

buildings, it is to be expected that dead zones will develop due to a combination of power

line parasitics and the low amplitude of emi signals. In these cases, having additional boards

that can be deployed to different areas and communicate between themselves for collabora-

tion on load identification is a natural step for scaling up existing systems. The significance

of PLC capability and additional applications for our PLC design are discussed further in

chapter 6.

This chapter explores a working communication hardware platform from which a USRP

could be used to modulate and then transmit or demodulate/receive signals over a conven-

tional power line circuit in the house or workplace. The power lines or “mains” of a building

makes for a very noisy environment, so it seemed that the same techniques developed for

transmitting through increasingly crowded airwaves would adapt well to the EMI filled spec-
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Figure 3.1: The Power Capture Board.

trum of power lines. However, as with any real-world application, the first step was to build

functional hardware. Once I was comfortable transmitting simple signals, and eventually

higher bandwidths of shifted baseband data, I transitioned to modulated signals, starting

with AM and FM and created a reliable foundation for QAM and OFDM.

This chapter will begin with a simple explanation of the hardware along with difficulties

encountered during design and deployment. While this application is heavy on communica-

tion theory, the lessons learned during hardware design had a strong effect on choosing trans-

mission features. For example, I noticed a strong resonation with my coupling transformer

and my high pass filter boosting my transmission power at 100kHz. So, taking advantage of

this, I did much of my experimentation around this frequency. The extra power maximized

my SNR and pushed my signal further through, often highly lossy, mains circuit lines.

3.2 Hardware Design

Figure 3.1 is a picture of the original Power Capture board (PowCap). As demonstrated

earlier, PowCap is designed to take in two signals, AC voltage and AC current. The voltage
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Figure 3.2: PowCap Board operational flowchart.

reading is picked up directly off the mains through a resistor divider that attenuates our signal

to safe voltages; the board is protected by Y-rated safety caps. The current is delivered from

a wideband current transformer via BNC connector. Once these signals are captured, the

user has a lot of options. For power measurements, it is important to see the main AC

signal, but for any noise analysis, the 60Hz line will dominate readings. To filter out the

AC wave, we have a Twin-T notch filter that can be accessed through our interface for the

programmable microcontroller. From there, the signal can be filtered again with everything

from a low pass of 1KHz to a high pass at 1MHz and a half dozen band pass ranges in

between. Again these filters are all accessible through the microcontroller, and they are all

optional; for each filter stage, there exists a bypass option. Finally, there is a programmable

gain stage at the output before the signal is fed to a USRP unit. This signal flow is modeled

in Figure 3.2. The board also has its own linear power supply built in to supply noise free

DC rails to all of the ICs.

While designed with AC mains analysis in mind, the board is actually quite versatile. The

features discussed could be used to read and condition any analog signal and prepare it for

digitization through a USRP device. GnuRadio is a powerful open platform toolkit designed

for software-defined radio construction, but it is easy to apply to any analog analysis.

For this project, the PowCap board was my model for a power line receiver. At a

minimum, all that was needed was to add was a transmitter. The PLC board (see Figure

3.3) is essentially a downsized PowCap board, with bi-directional functionality.

In addition to a high-power current amplifier to transmit a signal out, the method of cou-

pling to the line was also changed. Instead of using Y capacitors, I instead used a coupling

transformer; specifically a Schaffner Pulse Transformer[sch]. The benefit was a traditionally
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Figure 3.3: The Powerline Communication Board.

safer system, as transformers provide industry-standard, and consumer electronics required,

galvanic isolation for the secondary. The risk of incorporating inductive coupling was po-

tentially inducing some resonant effects, which would also affect performance of other active

circuits like the filters. Sure enough, despite careful isolation, the frequency response of my

board was not immune to the transformer’s effects. In the attached video, two amplitude

peaks can clearly be seen between 1kHz and 1MHz and that matches up with the phase

diagram when analyzing part of the receiving circuit. A resonance effect is clearly visible at

100kHz. This effect was seen in my early simulations, as I did not expect my high pass circuit

on the primary side to interact so severely with my band pass circuits on the secondary. It

is only the combination of these effects that creates the frequency response seen in Figure

3.10.

This issue was addressed by removing one filter and turning it into a dual buffer stage.

Now there is only a high pass effect that cuts off at 35kHz as can be seen in Figure 3.5.

There is good reason to return to a coupling capacitor for the next revision, as it would

allow me a wider access to the spectrum on the powerline.
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Figure 3.4: Frequency response of receiving circuit and bandpass filter with inductive effects

of transformer.

Figure 3.5: Frequency response of receiving circuit and bandpass filter with inductive effects

of transformer.
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The filters are designed with a Sallen-Key topology for easy analysis and even easier

modification. Please look at the LTspice models if you are curious. Videos of its operation

can seen in the attached documentation.

The final step before the signal leaves the board is a trip through a programmable op-

amp. This allows the user to condition our signal so that it is appropriate for the destination

of the output. For example, if we are feeding this signal into the Analog-to-Digital Converter

(ADC) on a USRP, we would want to ensure that the output signal is not more than 2V

peak-to-peak. At the same time, if the signal is significantly lower than 2Vp-p, we can

boost the voltage so that we do not lose any resolution. For this task, we employ National

Semiconductor’s LMP8100 Programmable Gain Amplifier.

The MUX’s along with the output gain stages can all be controlled by a programmable

microcontroller. The microcontroller is a ATMEGA32U4; it is a simple 8-bit controller

with USB interface. This is the same chip used in common DIY development boards like

the Teensy. The software uses the lightweight USB framework for AVRs (LUFA). It is

loaded with a DFU USB “bootloader” so it can programmed without using any programming

hardware. The firmware is discussed in Appendix A.

The transmitter utilizes a Linear Technology 1210 Current Amplifier to drive our signal

across the line. It is heavily over specified and is capable of delivering an amp of current. I

did not want to risk the signal dissipating, or not propagating across functional distances,

due to lack of power. It is now clear that much lighter FETs can be used, but the flexibility

of a powerful transmitter was useful for analyzing power versus distance capabilities.

3.3 Baseband

Figures 3.6 and 3.7 show scope screenshots a recorded audio sample. The baseband signal is

in the auditory range, 0-20kHz (Figure 3.6) which is then shifted to 100kHz-120kHz (Figure

3.6).
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Figure 3.6: “Baseband” audio signal, DC to 20kHz.

Figure 3.7: Baseband signal shifted to higher frequencies, 100kHz to 120kHz.
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Figure 3.8: Gnuradio companion signal processing diagram for a simple FM transceiver.

3.4 Frequency Modulation

My first transmitter implementation is shown in Figure 3.8. I transmitted a 500kHz band-

width signal at various points between 100kHz and 1MHz., and incorporated the narrow

band FM block. My frequency deviation was 5kHz.

A FM transceiver was built, sourced from a data file containing my baseband audio data,

by the block diagram. Again I was only transmitting a 500kHz bandwidth signal with 5kHz

deviation. This self-imposed limitation was mainly due to hardware constraints. We will

discuss environmental bandwidth limitations later in this chapter.

3.5 Evaluation

I have included videos of my experimentation. The first two show simple proof of concept: my

board is able to both transmit and receive signals across household/lab electronic wiring. To

provide a less noisy environment, which was necessary to analyze the behavior of my board,

an isolation transformer was used as the “power line environment.”

The next step was transmitting more complex data. This was accomplished by using

an audio recording of my laptop playing a popular song, several minutes in length. This

file was recorded and stored through the tools available in GNURadio. Since I had a high

pass filter on the receiver path of my board, I could not transmit this signal at its baseband
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Figure 3.9: Gnuradio companion signal processing diagram for a simple FM transceiver[rad].

Figure 3.10: A frequency modulation implementation visualized on MATLAB. The data was

exported from python.
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(0-20kHz) and expect my board to receive it. So I simply shifted it to a higher frequency.

I successfully transmitted the song at 100kHz - 500kHz, and 500kHz - 1Mhz range. The

required bandwidth was of course 20kHz, or the audible frequencies. The third video is a

quick demonstration of this output signal on an oscilloscope. It is very similar to the pictures

shown in Figures 3.6 and 3.7.

The next step was to modulate the frequency in FM. The details of the modulation are

described in the previous section. Given the severe limitations of power lines at higher fre-

quencies, especially above 1MHz, I limited the transmitting bandwidths to between 100kHz

and 1MHz. My transmitting daughterboard is also a low frequency daughterboard, which

has a limit of about 3MHz for transmission. There is a reluctance to go very far above

these frequencies as most household wiring is only designed to accommodate signals up to

400Hz[PBA10, ti]. That said, many retail PLC systems operate in the kilohertz to mega-

hertz range, and detailed modeling of building wiring as transmission lines can be performed

for exact specifications. In the NESL lab setting, however, as frequencies go higher, my ex-

periments showed the losses over distance increase exponentially. Hundreds of kilohertz was

the sweet spot for my experiments. I was able to get transmission throughout my lab and

apartment (about 50 feet in wall length, but possibly much longer in wiring). I have read

from other experiments that such propagation occurs at detectable levels in signals around

150kHz throughout large buildings. This is promising for any application of powerline com-

munications.

After transmission and reception of an audio sample, there is a significant increase in

white noise, but much of it can easily be filtered out. I have included the unfiltered, raw,

recording so that the effects of the transmission are unaltered. This audio sample was

converted to a data file in GNU Radio and was then frequency modulated and transmitted

into an isolation transformer. The same board then received the signal (through a different

path) and then sent the data into the USRP. I filtered out the frequencies besides 100-

500kHz and demodulated the remaining signal in that range. These values were then stored

to another data file. The attached “transmitted” .mp3 recording was recorded from that

demodulated signal.
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CHAPTER 4

The PowCapMobile Deployment Suite

From the breadth of prior study, it became clear that there was a lack of real life raw

data available online for analysis. A deployed system, in a realistic environment with real

loads and a natural usage pattern, would provide invaluable data for analysis and testing.

Such data could be used on everything from cutting-edge NILM algorithms, on both high

and low frequency data, to occupancy sensing/detection algorithms, to power usage models;

the analysis possibilities are endless. To obtain this data, a new board would be required,

one that is optimized for field deployment. This board is the PowCapMobile which, when

combined with a Linux box and a USRP, is capable of taking four input signals, conditioning

them, and a high fidelity digital recording. These systems, together, are referred to as the

PowCapMobile Deployment Suite: a shockproof, robust, analog data-acquisition system. In

this chapter we will analyze the components of this system, take an in-depth look a the

data we acquired from a private homestead, and discuss the database in place at NESL that

makes this invaluable data, for the first time, accessible to the research community.

4.1 The PowCapMobile Board

From revision 1 there were several areas that were targeted for improvement in revision 2.

This board would need to be deployable and handle two phases of power, meaning it would

have to handle two voltage and two current paths. The board would also need to be shrunk

in order to be deployed at remote locations.

Another functional correction was the use of an IC level shifter between the MCU and

the PGAs. The MCU ran off of 5V while the input signals on the PGA required the input
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Figure 4.1: The PowCapMobile Board.

signals to be no larger than 2.5V. This error was not noticed immediately in revision 1 but

eventually started creating faulty behavior in the amplifiers. Functionality was restored by

manually shifting the signal, but in revision 2 the issue was fixed with a Maxim level-shifting

IC.

The power rails generated from the linear power supply were just barely acceptable in

revision 1. There was an unexpected voltage drop after the transformer and rectifier stage

that left the supplied voltages to the regulators on the edge of their operational range. To

improve the accuracy and reliability of our voltage supply, the transformer was upgraded

slightly to a 25VAC output as opposed to a 20VAC output in revision 1. This gave us, via

center-tap, DC rails of +/- 12.5V instead of +/-10V, which resulted in high quality outputs

and more stable behavior from the voltage regulators.

The signal path of revision 2, called PowCapMobile for it’s smaller layout, is shown in

Figure 4.1. Much of it is similar to revision 1 so only major differences will be discussed in

any depth.
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4.1.1 Primary Signal Path

PowCapMobile is designed to take in four signals: two AC voltages and two AC currents. The

main approach was to remove unnecessary circuitry coupled with a clever layout structure.

Many of our diagnostic connections were also removed in the second revision in the name

of space. These diagnostics included testpoints and manual switches, to control multiplexer

functionality, which we no longer needed now that the firmware was fully operational. The

main functional blocks are described below in more detail (see Figure 4.3):

Stage 1:

Much like revision 1, the voltage signals are capacitively coupled onto the board via Y2 safety

caps and dropped via resistor dividers. The current signals are recorded with an external

current transformer and connected as voltage signals to BNC inputs.

Stage 2:

From there the signals are routed through a MUX controlled 60-Hz notch filter. The number

of notch filters was doubled from two to four to accommodate the new voltage and current

lines.

Stage 3:

After the notch, the signals are routed through one of four MUX controlled band pass filter

stage. The main difference in this signal path compared to revision one is that we removed

six filter options in stage 3 with one bandpass option. So instead of a total of twelve filters

for two signal paths in this stage, we now utilize four filters for four signal paths. Again,

by using a dual op-amp Sallen-Key topology, this filter is easily modifiable to any desired

frequency range. For our purposes, 100kHz to 250kHz was experimentally determined the

ideal band to pickup household SMPS EMI.

Stage 4:

And finally a PGA stage before leaving the board via BNC connector. There are four

LMP8100 amplifiers as a final stage before each BNC output. This serves to regulate the

output voltage in order to maximize the dynamic range of the USRP ADCs.

To achieve the smaller footprint we desired, without sacrificing signal integrity, the ma-
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Figure 4.2: The main signal path of the PowCap board contains four stages: 1) Coupling

2) Notch Filtering 3) Band Filtering 4) Gain. Note how when compared with the new

PowCapMobile revision in Figure 4.3, it is easy to follow the same signal path flow.

Figure 4.3: The signal path stages of the PowCapMobile Board.
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Figure 4.4: The supplementary blocks of the PowCap Board. The same system blocks can

be seen in our PowCapMobile design in Figure 4.5.

jority of the digital components were moved to the back side of the board. This included the

MCU, MUXs, level shifter chip, USB interface, and mcu programmer interface (see Figure

4.5). In particular, the level shifter utilized a Maxim MX3014.

Since the PowCapMobile was going to be deployed in environments where the system

could potentially receive environmental interference, additional safety and protection fea-

tures were implemented. Input fuses to limit current drawn by the board provided high

level protection for components and material that might have shorted the board to ground.

Additional ESD circuit protection was placed at key nodes throughout the board where

high sensitivity ICs might be at risk. These protection circuits also, theoretically, shielded

exposed nodes from occasional high voltage spikes that occur in in the home due to loading

irregularities or environmental factors like lightning discharge.
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Figure 4.5: The supplementary blocks of the PowCapMobile Board.

4.2 The Universal Software Radio Peripheral (USRP)

From our custom board the conditioned signals are fed into a Universal Software Radio

Peripheral (USRP) Model 1 (see Figure 4.6). This version features an Altera Cyclone FPGA,

64 MS/s dual ADCs, and USB 2.0 PC interface allowing up to 8MS/s data rate. The USRP1

can take two daughterboards, for which we use two LFRX board. LFRX daughterboards

(see Figure 4.7) utilize high-speed op-amps for each input (each board has two) and couples

them to the ADC. The ADC output is processed by the FPGA into two real-mode signals

or a single I-Q pair. We use the latter format for all of our sampling through the PowCap

deployments. These boards are optimized to handle “low frequency” input signals ranging

from DC to 30MHz, more than suitable a range for SMPS EMI which usually hovers in the

hundreds of kilohertz.

While the USRP system, along with the GNURADIO software package, is capable of

doing a great deal of pre and post processing, we limit its functionality to data conversion.

Once the raw data is recorded into a data file, it is accessible for analysis via any analysis

tool. Our analysis is done primarily using the Python programming language and MATLAB.

Unpacking the data: Our I-Q data stream is stored as a complex32 binary stream. I have

posted example code in Appendix B and C demonstrating how to easily convert this data
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Figure 4.6: The native case of the USRP1 utilized in the PowCapMobile Deployment

Suite[usr].

Figure 4.7: One of the two Low Frequency Receiver (LFRX) daughterboards[lfr] used in the

USRP1.
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format to a data structure that is readily recognizable within MATLAB and Python.

4.3 The PowCapMobile Deployment Suite

For a complete deployment, the key components of data acquisition via PowCapMobile board

were integrated into the PowCapMobile Deployment Suite. The three main components

are: Linux PC running gnuradio, PowCapMobile Board, and a USRP1 with two LFRX

daughterboards (see Figures 4.8 and 4.9).

4.3.1 Case

For security and stability, all three devices are securely mounted into a shock resistant

container. The PowCapMobile board, in particular, was mounted with insulating screws

and was isolated from the metal drawer in which it was attached. This was important to

prevent the high voltage mains being shorted to the metal ground of the box, potentially

endangering users and damaging other electrical components.

4.3.2 External Connections

The Deployment Suite interfaces with each voltage phase through standard wall plugs. Stan-

dard NEMA 5 insulated plugs can be extracted several feet from the case to be plugged in

nearby.

Current is connected through the use of two 60A 0-3V output current transformers.

Each current transformer is hooked up to a screw mount adapters on top of external BNC

interfaces. This particular connection provides a flexible input interface for a wide variety

of analog signals should the box be needed to record data from a different source.

4.3.3 System interfaces

The PC, USRP, and PowCapMobile all interface through USB 2.0 connections. The board

hardware is directed via a LUFA virtual serial port. The BNC outputs from the PowCap-
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Figure 4.8: Front panel view of the PowCapMobile deployment suite. Note: The tray with

the PC is on the right and the tray with the USRP1 and PowCapMobile Board is on the

left.

36



Figure 4.9: View of USRP1 (left) and PowCapMobile (right) mounted inside of our Pow-

CapMobile Deployment suite.
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Mobile are directly attached to SMA inputs on the USRP daughterboards. The USRP is

attached to the Linux PC with USB and is controlled directed by system drivers included

in gnuradio.

4.3.4 Auto-connectivity

The Linux OS, on power up, automatically connects into the NESL lab via a persistent VPN

call. This allows for true remote data collection and development, as anyone who has VPN

access into the lab can then access the Linux box and perform live experiments or setup

long-term data collection.

4.3.5 Data Collection Protocols

At full sample rates, even short time samples can result in huge file sizes. To deal with this

deluge of data, I came with some basic protocols for data recording. Files can be segmented

into smaller pieces, the default being 1 hour segments. One hour of data at a 1MHz sample

rate results in a file size of 25GB per phase (one phase includes voltage and current lines).

By segmenting our data files, we minimize the chance of file corruption. Additionally,

it isolates our entire data set from unexpected errors in the data collection script. While

at lower sampling rates it might be possible to stream data live across a local internet

connection, at these full sampling rates such “wireless” transfers were unfeasible. Instead two

5.1TB external hard disks were attached to the PC for data storage. As they filled up, they

were physically brought to the lab and uploaded to dedicated NAS server. Through the use

of a custom script, hardisks could be added or removed during the course of data collection

and new files would be automatically stored in any new recognized drives. This theoretically

allows for data collection over long spans of time and is limited only by laboratory server

space.
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4.4 Experimental Setup (Deployment)

For our experimental setup (see Figures 4.10 and 4.11), we were generously given access to a

large sized family home in the Greater Los Angeles area. This house had access to outlets for

each phase located next to the main breaker panel. One current transformer was attached

to each current phase entering the house while a voltage connection was made with a socket

associated with each phase.

To provide a rich recording for deep spectral analysis, a full sample rate of 1MHz was

used. Over two phases, this resulted in about 10 days of raw data; each phase is stored

in one-hour segments. Using custom scripts, the data is easily traversable with the simple

user input of start and end times. The files have all been uploaded to a dedicated PowCap

NAS server (see Figures 4.12, 4.13, and 4.14). From here the data is accessible to any group

who wishes to analyze the experimental data, and efforts are under way to make the data

accessible to those outside the UCLA community as well. This would be either by uploading

the raw data to a 3rd party “big data” server and/or by making the NAS server accessible

via some external protocol.

Using a simple Python script, the data can be plotted as shown in Figure 4.15. The

labels “V1” and “V3” correspond to labeled I/O connectors on the deployment suite. This

particular window shows just a 200 millisecond snapshot of the voltage and current lines

on the first day of data acquisition. This window length is useful for check features of the

voltage and current signals visually, and was mainly used debug faulty or noisy connections.

Analysis of such rich datasets provides memory challenges, especially when looking at the

data in full fidelity.

“Ground truth” was provided by existing power monitoring sensors (see Figures 4.16 and

4.17). Voltage, current, and power levels are provided for each phase and a subpanel con-

taining an assortment of loads in the house. The first phase of experimentation was simply

validation of the recorded data; that is, ensuring measured values matched up with these

ground-truth calculations. The next phase involves taking detailed information about indi-

vidual loads in the home to compare their transition events with various features extracted
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Figure 4.10: PowCapMobile deployed in a private residence.
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Figure 4.11: Current transformers attached to the mains. Current readings are relayed as

voltage values over BNC to the PowCapMobile board.
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Figure 4.12: Custom NAS server to house data from residential home.

Figure 4.13: Data storage on dedicated NESL NAS server.
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Figure 4.14: File storage format on dedicated NAS server. Note, individual phase data has

been captured and stored in time-stamped and date-stamped one-hour segments.

from the raw sample sets.
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Figure 4.15: Here we see 200 millisecond windows of data as displayed by our custom python

analysis software.

44



Figure 4.16: “Ground truth:” current, voltage, and power data provided by sensors already

installed in the home. Data is stored in daily files within the Dropbox folder.

Figure 4.17: “Ground truth:” current, voltage, and power data provided by sensors already

installed in the home. Here we can see how the data is stored in text files. This data is

extracted and establishes a basis by which we compare our experimental measurements.
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CHAPTER 5

PowCap: Experiment and Validation

After the hardware development resulted in a working PowerCapture board, collaboration

with groups specializing in signal analysis was an obvious application. Through these col-

laborations, initial verification and validation of our data procurement methodology was

accomplished. The results of analyzing this data led to a load detection framework and a

formal proposition for a new, low overhead, power-sensing system. The experiments, analy-

sis, system proposition, and conclusions are presented in this chapter. The work presented

in this chapter was done in close collaboration with two students from Professor Lei He’s

Design Automation Lab (EDA) at UCLA: Ph.D candidate Wei Wu and Ph.D candidate

Wenyao Xu.

5.1 Experiment Setup

In our experiments, we implemented a prototypical system methodology. Approaching the

NILM problem from a fresh perspective meant capturing as much data as possible within

the entire noise spectrum. As a result, the prototypical hardware actually used was designed

to be on the higher end as shown in Figure 5.1. However, the quality of load identification

possible with solely low frequency analysis shifted the focus to the potential of a low cost

system; we will explore this idea in detail later in this chapter.

During data collection, we use seven different appliances, including a) LED lamp, b)

incandescent lamp, c) Macbook Pro, d) Fan1 (Speed 2), e) Fan (Speed 1), f) Heater and g)

Microwave oven, as a case study to verify the proposed system. Figure 5.2 is a picture of all

1The fan has two speed options, and Speed 2 is stronger than Speed 1
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Figure 5.1: High end, prototypical hardware: an isolation transformer for safety, an

insulation-stripped power strip for current sensing of one or more devices, and the Pow-

Cap Board for signal conditioning.

the appliances evaluated in our experiments. The nominal power is each appliance is listed

in Table 5.1.

To evaluate the algorithm on our prototype, we first perform the feature training by

turning on the appliances consecutively and generated the feature library for future appliance

matching. Next, the current and voltage data are collected for each appliance at 500Hz and

the proposed nearest-neighbor algorithm is applied to identify the appliance.

5.2 Algorithm

5.2.1 Algorithm Overview

The framework of the proposed algorithm for appliance feature extraction and recognition

is illustrated in Figure 5.3. It consists of two stages, the training stage and the recognition

stage.
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Figure 5.2: Appliances used in the experiments

Table 5.1: The Description of Appliances in the Experiments

Appliance ID Name Power (W)

a LED Lamp 15W

b Incandescent Lamp 25W

c Macbook 200W

d Fan (Speed 2) 50W

e Fan (Speed 1) 30W

f Small Heater 180W

g Microwave Oven 1000W

Training Stage

In the training stage, the algorithm learns the features from the training sequence. Here

we define the training sequence as a sequence of sampled raw data with ground truth (the

appliance label). Figure 5.4 shows an example of training data with 7 different appliances.

Features are extracted from each window cell to form a local feature vector. All the local

feature vectors from the same appliance training data are then pooled together and quantified

through an unsupervised clustering algorithm to construct the golden feature vector. The

center of each generated cluster is treated as a unique feature primitive for appliances. All

of the feature sets together form the feature library for recognition.

Recognition Stage
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In the recognition stage, we segment the test data and extract the feature to represent the

input. Then we classify the unknown test data to the appliance class that has the most similar

features. In the remainder of this section, we present the details of the key components of

this framework.

5.2.2 Appliance Features

Various features, such as voltage, current, power, power factor, spectrum and noise pattern,

have been adopted to distinguish different appliances [PRK07, GRP10, KBN10, GOB11,

JSB12]. As far as how the feature is extracted, we can divide the features into two groups:

features that require high sample rates (high frequency features) and low sample rate features

(low frequency features).

In the spectrum of the current/voltage signals, the noise pattern is a typical high sample

rate feature. These high frequency features are usually known as electromagnetic interfer-

ence (EMI) of appliances and can be utilized to identify the appliance with a proper data

acquisition and processing system. However, the expense and effort required to extract these

EMI features is a common drawback of these systems. Normally, a high sample rate (up to

1MHz) is usually required to capture the EMI signature, which results in high cost and also

high computational complexity of the appliance identification system. Moreover, most of the

appliances in a building are parallel connected to the powerline. In other words, their EMI

signatures are mixed together. Therefore, even if we can measure and identify the appliances

from the EMI signature, there is no ground to know which appliance is plugged in which

power strip.

Besides EMI, other features, such as the Peak-Peak current, real power, reactive power

and power factor, are also valuable information for alternating current (AC) power systems.

In our work, we define those features as shown below:

• Peak-peak current (IP−P ): the difference between the maximum and minimum

current in one cycle of 60Hz, IP−P = max(i)−min(i);
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Figure 5.5: Real power and reactive power

• Real (Active) Power (P): The power calculated by integrating the product of the

current and the voltage. Preal = 1
τ

∫ τ
0
i(t)v(t)dt;

• Apparent Power (|S|): The apparent power is calculated by the rms voltage and

rms current. In alternating current systems, |S| = 1
2
IP−PVP−P

• Reactive Power (Q): As the real/reactive and the apparent power satisfies: |S|2 =

P 2 + Q2, then once we get the P and |S|, it is easy to calculate the Q.

• Power Factor : The power factor is the ratio of active power to the total power.

Figure 5.5 shows the real power, reactive power and the peak-peak current of a few

appliances. It is not difficult to visually observe the difference in these features from appliance

to appliance.
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Figure 5.6: Peak-peak current and the slide window identification on current transition

In our algorithm we chose the real power, the reactive power and the peak-peak current as

our 3 key features. We did not use the power factor and the apparent power for 2 reasons: 1)

they are correlated with the real power and the reactive power; 2) the identification accuracy

using the aformentioned 3 features was sufficient to identify our chosen appliances.

5.2.3 Segmentation

In order to identify an appliance from the raw data, we have to first know when the appli-

ance is running and when the information is only background noise. As a result, the data

segmentation is of great importance to the appliance identification. We tried two different

approaches of data segmentation: first applying slide window detection to detect the change

of current, and second using a firm threshold to detect magnitude of the current. Below

are the detailed discussions of these two methods. For our algorithm, we chose the current

threshold method.
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Transition Detection using Slide Window

Each turn on and off behavior of the appliance is combined with changes in current or power.

The idea of segmentation is to detect the transitions in the current sequence. An example

of current transition is illustrated in Figure 5.6. Figure 5.6a is the original current data,

while Figure 5.6b depicts the change of current (blue curve) and the identification result

(red circles).

In this example, most of the current transitions are identified. However, it is quite

unstable and it may miss some small transitions as illustrated in Figure 5.6b.

Current Threshold

Another straightforward approach to identify the segment of data is to use a hard current

threshold, which is the adopted method in our algorithm. As only one appliance can be

plugged into one outlet at a time, the current drain from each outlet can be either 0 or the

current of the appliance. As there is no background load in our application, we can apply

the current threshold approach. Figure 5.7 illustrates the detection results of the threshold

approach.

Generally, the slide window approach evaluates the change of current which, as a transient
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behavior, is easily contaminated by transient noise on the power line. Particularly, for

appliances with a large protective capacitor, it is difficult to identify the current transition

because the transition might be smoothed by the capacitor. If we try to cancel the noise by

calculating the average current in a short time window, the averaging itself serves to smooth

the features of the current transition. However, the current threshold approach evaluates

the average of the current in each time window (1/60s), which only filters the noise and

nominally maintains an accurate value for the current, leading to better performance in this

application.

5.2.4 Feature Extraction and Feature Library

Three features are first extracted from the raw data in each time window. These three

features, real power, reactive power, and peak-peak current, are not usually constant but

appear as a distribution due to the measurement noise and the other interferences. The

extracted features of a LED (the 1st appliance in Figure 5.4) over a few time windows are

illustrated in Figure 5.8.

To build the feature library, we do not store the extracted feature in all time windows.

As illustrated in 5.8, we only calculate the centroid of these features for each appliance and

store them in a 3-dimensional space. After a training stage with each of the appliances, we

generate a lookup table containing the feature centroid, Feature = (P,Q, IP−P ), for future

appliance identification.

5.2.5 Low-complexity Appliance Matching

Once we have the feature centroid of the appliance from the training stage, we then apply

a Nearest Neighbor [AMN98] algorithm to match the appliance in question to the closest

appliance feature in the lookup table. In other words, the algorithm selects an appliance by

minimizing the distance between the measured feature centroid, FMeasured and the feature

centroid in the library.

The size of the feature lookup table in Nearest Neighbor is linear related to the number
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Figure 5.8: Extract the centroid from the distribution of three features

of appliance types and features. In this paper, we extracted three different features, and the

space complexity will be only:

S(n) = 3n (5.1)

where n is the number of appliance types. In Nearest Neighbor, the matching time complexity

is also proportional to the appliance type number [AMN98]. In this way, we can see that the

Nearest Neighbor based matching algorithm has linear complexity in both space and time.

Because we target a light weight system at the outlet level, the nearest neighbor approach

is more suitable for our application.

Nearest Neighbor is not the only solution for matching applications. For example, Nearest

Subspace (NS) [Tsu99] is also a well-known approach for feature matching. In this paper,

we used Nearest Neighbor instead of Nearest Subspace because of the concerns on time and

space complexity.
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5.3 Feature Space Distribution

To investigate the unique characteristics of these appliances, we put them in the feature

space and plotted the distribution. After a few improvements on the algorithm, most of the

appliances (with the exception of the Macbook) can be identified by the proposed system at

a precision higher than 97%.

5.3.1 Transition Noise:

As mentioned in [GOB11], the identification of appliances with small power consumption

is a common problem for the appliance identification system. During the first trial, the

proposed algorithm was not functioning well when distinguishing the LED lamp (LED) from

the incandescent lamp (Lamp) and the Fan operating at speed 1. To figure out the reason, we

checked their feature distribution in both the training session and the identification session

and found that the centroid was not correctly representing the distribution of features. The

centroid deviated due to the transition noise experienced during the ON/OFF state of the

appliance. As illustrated in Figure 5.9, the features of the LED lamp are wildly distributed

in the feature space. The dots far away from the centroid correspond to the spiking transient

observed during the ON/OFF transition in the LED (seen in Figure 5.4).

In Figure 5.9, those dots, contaminated by transition noise, noticeably shift the position

of the centroid. To alleviate the effect of transition noise, we screen the signal around the

transition period during both the training and identification stages. The centroid calculated

after removing the transient noise is shown in Figure 5.8. Finally, after the training process,

we get the feature centroid of all seven appliances in Figure 5.10.

5.3.2 Identification

The Nearest Neighbor identification of the appliance is achieved by finding the closest cen-

troid (in Figure 5.10) to the measured feature centroid. In figure 5.10, it is still difficult to

distinguish the LED from the lamp as their centroids are very close and the distribution of
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Figure 5.9: LED features with transition noises
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Figure 5.10: Features distributions and centroids for all 7 appliances
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−2.5 −2 −1.5 −1 −0.5 0 0.5
x 10−3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1  

Real Power

 

R
ea

ct
iv

e 
Po

w
er

1LED
1LED Centroid
2Lamp
2Lamp Centroid
3Macbook
3Macbook Centroid
4Fan2
4Fan2 Centroid
5Fan1
5Fan1 Centroid
6Heater
6Heater Centroid
7Microwave
7Microwave Centroid

Figure 5.12: P −Q view of Features distributions and centroids

features is overlapped in the feature space. However, if we switch to the 2-D view of P−IP−P

in Figure 5.11, it is much easier to distinguish between them.

Also, from the view of P − IP−P (Figure 5.11), the Lamp and the Fan1 are overlapped,

but if we switch to the view of P −Q (Figure 5.12), they are clearly separated.

In other words, the feature selecting is critical to the accuracy of identification. Appli-

ances that looks the same or similar in one dimension could be distinct in another dimension.

In the proposed algorithm framework, it is possible to improve the accuracy for future iden-

tification by adding more meaningful feature-to-feature space.
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Table 5.2: Confusion Table of Recognition on 7 Difference Appliances

a b c d e f g Total Recall

a 116 0 0 0 0 0 0 116 100%

b 0 107 7 0 0 0 2 116 92%

c 0 0 116 0 0 0 0 116 100%

d 0 0 0 116 0 0 0 116 100%

e 0 0 0 0 116 0 0 116 100%

f 0 0 44 0 0 70 2 116 60%

g 0 0 0 0 0 0 116 116 100%

Total 116 107 167 116 116 70 120

Precision 100% 100% 69% 100% 100% 100% 97%

5.3.3 Appliance Features

Features unique to certain appliances are also interesting. In Figure 5.12, we can observe

that the features of the LED, lamp, Fan1, Fan2 and Heater are centralized as they are

stably working in one mode. However, the features of the Macbook look like a strip because

the charging current of the Macbook increases during the charging process. In yet another

example we see that the features of the microwave oven are distributed in 2 parts. The dots

on the left-hand side can be explained by the mechanical rotating tray, and the right-hand

part is generated by the heating function of the microwave oven.

5.3.4 Negative Real Power

An abnormal result we observed was that the real power sometimes becomes negative. To

analyze this, we plot the real power verses time in Figure 5.13.

In Figure 5.13, the real power is negative even when there is no active appliance. This

negative real power is not caused by the appliance, but the measurement system. Further

investigation indicates that the negative real power is introduced by the phase difference

between the current and the voltage signals. This is due to the mismatched delay in these

59



0 20 40 60 80 100

−4

−3

−2

−1

0

1

2

x 10−4

time/second

 

 
Real Power

Figure 5.13: Real Power P

60



two channels. This means the “real power” we calculated is the real power of our entire

system, but not the correct one for each load. The results could potentially be compensated

for accuracy once the analog hardware-induced effects are properly analyzed and modeled.

5.4 Recognition Results

For this part, we discuss the recognition performance of our load identification system. For

performance evaluation, we adopt a 10-fold cross validation strategy. Specifically, we divide

the whole dataset into 10 sets. At one time, 5 sets are used to build the training data and

the remaining 5 sets for testing. The whole procedure iterates 10 times.

Table 5.2 shows the confusion table with respect to appliance recognition. In Table 5.2,

we notice that a) LED lamp, d) Fan (Speed 2) and e) Fan (Speed 1) are always correctly

recognized and never confused with other appliances. This reinforces our visual observa-

tions that the electrical features from these devices are significantly different. Contrastingly,

c) Macbook Pro and f) Heater are confused with each other the most. Specifically, the

corresponding precision and recall are 69% and 60% respectively. This observation can be

explained by the sophisticated charging system of the Macbook. It sometimes generates

abnormal pulses during the charging and the features of these pulses usually deviate from

the centroid and create a failed identification. This indicates that the selected features in

Section 3 are not reliable enough to distinguish them. Furthermore, it is interesting that ap-

pliances with similar power are not necessarily “close” to each other in a feature space [such

as b)incandescent lamp and e)fan (Speed 1)], and those with distinct powers are sometimes

alike to each other [such as c)Macbook and g)Heater]. We consider these issues central to

our efforts to improve the recognition performance in future work.

5.5 Proposed System

In this section, we introduce the hardware architecture and main components of proposed

load identification system in details. While our experiments were done with hardware that
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Figure 5.14: System Topology.

was capable of wide-band signal capture and conditioning, we bypassed much of this func-

tionality and down-sampled our ADC data to 500Hz. Replacing this “data dumbing down”

procedure with simple, cheaper hardware, the hardware system should be able to be inte-

grated in a real outlet.

5.5.1 System Architecture

The topology of the proposed system under demand response framework is illustrated in

Figure 5.14. It consists of a central “server” and a few load identification systems at the

outlet level. Each node identification system is designed to satisfy three functionalities:

1)identify the appliance from the sensed raw data, such as the load current and the voltage

on the power line; 2)communicate with the “server”, for example, send the identification

result to the “server” and receive the commands from it; 3)turn ON/OFF the appliance.

To avoid raw data transmission from the load identification system to the “server”, all

the identification work is conducted at the outlet level. This concept also enhances the

scalability of the system as each identification system at outlet level is lightweight to the

“server”.

Figure 5.15 is the hardware architecture of the outlet level system. There are five com-
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Figure 5.15: Load Identification Hardware Architecture

ponents including sensors, a relay module, ADCs, a Microcontroller Unit (MCU) and a

communication module. As the relay and communication modules are easily accessible from

the electronic markets, the following discussion will focus on the sensor, the ADC and the

MCU components.

5.6 Analytical Review

This chapter discusses a low cost and efficient load identification system with good experi-

mental accuracy. The algorithm flow includes two phases. In the first phase, the algorithm

learns the features of each appliance by a sequence of raw data with appliance label (the

ground truth). While in the second phase, it adopts the nearest neighbor matching to find

the closest matched appliance in a 3-dimension feature space. This is done by considering

three features: the real power, reactive power and the peak-peak current.

Since the algorithm only uses these three features at a data rate of 60Hz, the sample rate

of raw data can be as low as 500Hz. Under this sample rate, the proposed system is far more

efficient than existing EMI approaches, which usually require sophisticated hardware that

can filter and sample at frequencies around 1MHz. Moreover, the computational complexity

is also very low as the Nearest Neighbor algorithm is easy to implement and compute. Our
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experiments on 7 appliances suggest that our proposed system could get accurate identifica-

tion results while employing very simple hardware and minimal computational power.

As a preliminary prototype, there are also a few limitations and potential future improve-

ments under the current hardware and algorithm framework. First, the proposed system

will need to have good accuracy when identifying appliances with small power consumption.

However, for appliances with very similar power consumption and power factor, such as two

notebooks with different brands, it is very difficult to identify them using only low frequency

features. Given the modern requirements of large buildings, it is possible that simply clas-

sifying a load as a “notebook” would be sufficient to determine whether power to the load

could be switched off. Second, we need to maintain the feature library for identification

processes. It becomes inconvenient to identify the unknown appliance if it has to go through

the learning process to be registered in the library. One possible solution is to change the

identification module to a classifier and include a confidence factor. Then the system will

try to identify the appliance under test to one category. If the classifier is not confident

enough, that is, the confidence factor is too low, the appliance under test will be considered

as “unknown” to avoid an unplanned deactivation of the outlet by the building’s energy

management system. Another approach could involve an exhaustive load characterization

with the goal of building a large “ground truth” library. Coupled with a confidence factor

and some calibration, this could prevent the need for excessive “load learning” once the

system is deployed to an operational environment.
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CHAPTER 6

Detection Algorithms: A Broader Analysis

Our experimental efforts in the previous chapter yielded low-frequency features that enable

highly accurate load detection. The features implemented are basic, however, and K-Nearest

Neighbor (kNN) is a very simplistic machine learning algorithm. The focus of this chapter

will be to dive deeper into potential features and apply a wider array of machine learning

algorithms to the loads tested. For this analysis we import normalized features extracted

from our raw data into a tabspace text file. Such files can be easily imported into an open

source data mining software such as Orange [ora]. We will use this software to construct and

test a variety of features and algorithm types.

6.1 2D Feature Set evaluated via 10-fold Cross Validation

Here we compare each algorithm implemented on a smaller number of features to see how

each perform in such a case. There was no scientific method used to select Real and Reactive

Power as the two features over other permutations, they were chosen simply to compare the

capability of the chosen machine learning algorithms. The normalized data is plotted in

Figure 6.1.

6.1.1 Naive Bayes

Naive Bayes classifier is a probabilistic classifier that assumes high level of independence

between features [Nai]. The Naive Bayes classifier comes from Bayes theorem: P (B|A) =

P (B|A)P (A)

P (B|A)P (A)+P (B|Ā)P (Ā)
which relates the probabilities of A and B with the conditional proba-

bilities of A and B. The classifier is set up to use relative frequency to determine prior class
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Figure 6.1: Scatter plot of normalized Real and Reactive Power.
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Figure 6.2: Nomogram of Naive Bayes classifier for the Macbook.

probabilities instead of the Laplace estimate. The LOESS window is set to 0.5 with 100

LOESS sample points. The nomogram of our classifier for the Macbook load can be seen

in Figure 6.2. The confusion table for the detection accuracy of all seven loads is shown in

Table 6.1. The identification accuracy is quite good for all loads, over 90%, except for the

LED lamp and the small heater.

6.1.2 Support Vector Machines (SVM)

Support Vector Machines classifies data by constructing a hyperplane in the attribute space

with the goal of maximizing the margin between instances of different classes [SVM]. We

implement this classifier by specifying a “linear kernel” classifier:

D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1

and setting the numerical tolerance to 0.001. We will discuss SVM parameter optimization

later on in this chapter. An excerpt of the SVM prediction performance is shown in Figure

6.3. The complete confusion matrix is shown in Table 6.2. Similar to Naive Bayes we notice

a difficulty when classifying the LED lamp and the Incandescent lamp as they are often
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Table 6.1: Confusion Table of Recognition utilizing Naive Bayes

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 65% 15% 0% 0% 0% 20% 0% 20

Bulb 10% 90% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 90% 0% 0% 10% 0% 20

Fan2 0% 0% 0% 96% 4% 0% 0% 25

Fan1 0% 0% 0% 8% 92% 0% 0% 25

Heater 0% 0% 36% 0% 0% 64% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 15 21 27 26 24 22 60 195

Table 6.1: This is performed with 10-fold Cross Validation using a 2D feature set extracted

from experimental data. Note: difficulty differentiating between LED and Incandescent

bulbs as well as Macbook vs. Heater.

mistaken for each other. The other major identification difficulty involves the small heater

being mistaken for the Macbook. We saw this same issue with our kNN using three features.

We will address ways to overcome this problem later in this chapter.

6.1.3 Nearest Neighbor (kNN)

Nearest neighbor, as described in the previous chapter, identifies loads by finding the shortest

distance to the nearest feature centroid [KNN]. The algorithm is repeated here in order to

fairly compare this kNN iteration with the other tested algorithms using our normalized

2-dimensional feature set in a 10-fold cross validation methodology. The confusion matrix

can be seen in Table 6.3.

Similar to our results in the previous chapter, we see “confusion” when identifying be-

tween the Macbook and small heater. There is a also a persistent confusion when identifying

between the LED and incandescent bulb. This problem seems apparent for all classification

methods.
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Figure 6.3: Prediction table excerpt of SVM classifier.

Table 6.2: Confusion Table of Recognition utilizing Support Vector Machines

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 50% 45% 0% 0% 0% 5% 0% 20

Bulb 90% 10% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 95% 0% 0% 5% 0% 20

Fan2 0% 0% 0% 96% 4% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 12% 0% 28% 0% 0% 60% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 31 11 26 24 26 17 60 195

Table 6.2: This is performed with 10-fold Cross Validation using a 2D feature set extracted

from experimental data. Note: extreme difficulty differentiating between LED and Incan-

descent bulbs as well as Heater vs. Macbook and LED.
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Table 6.3: Confusion Table of Recognition utilizing Nearest Neighbor

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 60% 30% 0% 0% 0% 10% 0% 20

Bulb 30% 70% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 90% 0% 0% 10% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 8% 0% 8% 0% 0% 84% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 20 25 25 25 60 195

Table 6.3: This is performed with 10-fold Cross Validation using a 2D feature set extracted

from experimental data. Note: difficulty in differentiating between LED and Incandescent

bulbs.

6.2 3D Feature Set evaluated via 10-fold Cross Validation

Continuing with our experimental data set, we will now test all three features using 10-fold

cross validation. This will serve as a useful comparison in the next section when we will

use a separate training data set to train our algorithm models. The scatter plot of the 3-

dimensional data set can be seen in Figure 6.4. The workflow for our analysis using Orange

visual programming can be seen in Figure 6.5.

Using a 10-fold cross validation analysis we generate identification models for Naive Bayes,

SVM, and Classification Tree [Cla] (see Figures 6.6, 6.7, and 6.8). These models, along with

simple kNN analysis, give us the improved confusion matrices seen in Tables 6.4, 6.5, 6.6,

and 6.7. The successful predictions of each algorithm are compared in Figure 6.9. While

the Classification Tree seems to be the best overall performer, Nearest Neighbor and SVM

perform as well or better when detecting the Macbook. When analyzing the performance of

the SVM algorithm, the extra feature set seemed to improve the accuracy significantly for

LED and Incandescent detection. The LED false positives labelled as Incandescent in the
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Figure 6.4: Scatter plot of normalized Peak to Peak Current, Real Power, and Reactive

Power.

2D set was replaced with a majority correctly identified as incandescent. This recognition

could still be improved and we will address this goal in the next section.

6.3 3D Feature Set with Training Data

A 3-dimensional feature set was shown to be effective at load identification with reasonable

accuracy. This section will use a custom selected training data set with which we train

our classifiers before then exposing them to the experimental data set used in the previous

sections. Our experimental data set (see Figure 6.11) was chosen for its particularly “noisy”

characteristics. Our training data (see Figure 6.10) is chosen carefully to be a cleaner rep-

resentation of our load characteristics with these features. The goal with using this training

set is to get better detection by providing clearer expectations for expected attribute fea-

ture spaces. The efficacy of this approach is immediately apparent with the performance

of the simple kNN algorithm (see Table 6.8) where the identification accuracy is perfect.
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Figure 6.5: Orange workflow for analysis of 3D feature set with 10-fold cross validation.

Figure 6.6: Nomogram of Naive Bayes classifier for the LED Lamp.
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Figure 6.7: Prediction table excerpt of SVM classifier.

Figure 6.8: Decision tree for 3-dimension data set.
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Table 6.4: Confusion Table of Recognition utilizing Nearest Neighbor

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 80% 15% 0% 0% 0% 5% 0% 20

Bulb 15% 85% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 95% 0% 0% 5% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 8% 0% 0% 92% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 19 20 21 25 25 25 60 195

Table 6.4: This is performed with 10-fold Cross Validation using a 3D feature set extracted

from experimental data.

Table 6.5: Confusion Table of Recognition utilizing Naive Bayes

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 80% 15% 0% 0% 0% 5% 0% 20

Bulb 5% 95% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 90% 0% 0% 10% 0% 20

Fan2 0% 0% 0% 96% 4% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 36% 0% 0% 64% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 17 22 27 24 26 19 60 195

Table 6.5: This is performed with 10-fold Cross Validation using a 3D feature set extracted

from experimental data. Note: significant difficulty identifying Heater vs. Macbook.
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Table 6.6: Confusion Table of Recognition utilizing Support Vector Machines

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 45% 50% 0% 0% 0% 5% 0% 20

Bulb 35% 65% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 90% 0% 0% 10% 0% 20

Fan2 0% 0% 0% 96% 4% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 20% 0% 0% 80% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 16 23 23 24 26 23 60 195

Table 6.6: This is performed with 10-fold Cross Validation using a 3D feature set extracted

from experimental data. Note: severe difficulty separating LED and Incandescent Bulb

loads.

Table 6.7: Confusion Table of Recognition utilizing Classification Tree

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 100% 0% 0% 0% 0% 0% 0% 20

Bulb 0% 100% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 85% 0% 0% 10% 5% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 8% 0% 0% 92% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 19 25 25 25 60 195

Table 6.7: This is performed with 10-fold Cross Validation using a 3D feature set extracted

from experimental data.
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Figure 6.9: Scatter plot of machine learning algorithm successful predictions when utilizing

3-dimensional feature set.

This makes sense as the tighter load features in the hand-picked training data yields more

precise classifier centroids, providing a more accurate model by which to judge and identify

the centroids extracted from the experimental data.

Naive Bayes (see Table 6.9) had some improvement when differentiating between LED

and incandescent lamps, but seemed to perform slightly poorer than 10-fold cross validation

when differentiating between fan speeds. SVM (see Table 6.10) trained on training data

resulted in a severe preference for identifications of the lamp loads as LED, resulting in a

high false positive as LED for the incandescent events. Some of this LED lamp dominance

even leaked into our detection for small heater. Meanwhile, all Macbook events were labelled

as small heater, indicating a complete loss of accuracy in Macbook detection. In our 10-fold

cross validation scheme the small heater was occasionally mistaken for the Macbook but

only 10% of the time. Compared to the minor improvements in the classification of other

loads, this iteration of our SVM algorithm was a bit of a disaster. Later in this section we

will discuss how we can optimize the SVM algorithm to take better advantage of our custom

training data set.

The Classification Tree (see Table 6.11) was able to resolve the inaccuracies in Macbook

detection, correctly disaggregating it from the heater and microwave oven; resulting in a
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Figure 6.10: Scatter plot of training data: normalized Peak to Peak Current, Real Power,

and Reactive Power.

100% identification accuracy. A comparison of successful load predictions can be seen as a

scatter plot in Figure 6.15.

6.3.1 SVM Optimization

Given the complete meltdown of the SVM model when using a training set, there was an

effort to see what went wrong and if the SVM algorithm could be better optimized. The

training data seemed to improve or perfect load identification with all other algorithms, so

it seemed fair to assume there was a problem with the way SVM was implemented. Using a

built-in parameter selection tool in LIBSVM, the derived optimal parameters were entered

into our SVM tool in Orange. The SVM model was then retrained yielding an “optimized”

model. This optimization results are displayed in a new confusion matrix (Table 6.12) after

having been tested the same experimental data. Surprisingly this results in a near perfect

identification of our loads, with some remaining inaccuracy when separating the Macbook
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Figure 6.11: Scatter plot of experimental data: normalized Peak to Peak Current, Real

Power, and Reactive Power.

Figure 6.12: Nomogram of Naive Bayes classifier for the LED Lamp.
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Figure 6.13: Prediction table excerpt of SVM classifier.

Figure 6.14: Decision tree for 3-dimension data set.
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Table 6.8: Confusion Table of Recognition utilizing Nearest Neighbor

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 100% 0% 0% 0% 0% 5% 0% 20

Bulb 0% 100% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 100% 0% 0% 0% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 0% 0% 0% 100% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 20 25 25 25 60 195

Table 6.8: This is performed with algorithms using a 3D feature set extracted from a training

data set and tested on an experimental data set.

Table 6.9: Confusion Table of Recognition utilizing Naive Bayes

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 85% 15% 0% 0% 0% 0% 0% 20

Bulb 10% 90% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 90% 0% 0% 10% 0% 20

Fan2 0% 0% 0% 96% 4% 0% 0% 25

Fan1 0% 0% 0% 4% 96% 0% 0% 25

Heater 0% 0% 36% 0% 0% 64% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 19 21 27 25 26 18 60 195

Table 6.9: This is performed with algorithms using a 3D feature set extracted from a training

data set and tested on an experimental data set. Note: there is still significant inaccuracy

when identifying the Heater vs. Macbook.
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Table 6.10: Confusion Table of Recognition utilizing Support Vector Machines

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 95% 0% 0% 0% 0% 5% 0% 20

Bulb 90% 10% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 0% 0% 0% 100% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 12% 0% 0% 0% 0% 88% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 40 2 0 25 25 43 60 195

Table 6.10: This is performed with algorithms using a 3D feature set extracted from a

training data set and tested on an experimental data set. Note: there is extreme inaccuracy

when trying to identify the Incandescent Bulb vs. the LED load.

Table 6.11: Confusion Table of Recognition utilizing Classification Tree

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 100% 0% 0% 0% 0% 0% 0% 20

Bulb 0% 100% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 100% 0% 0% 0% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 8% 0% 0% 92% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 19 25 25 25 60 195

Table 6.11: This is performed with algorithms using a 3D feature set extracted from a

training data set and tested on an experimental data set.
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Figure 6.15: Scatter plot of machine learning algorithm successful predictions when utilizing

3-dimensional feature set extracted from training data.

from the heater. A scatter plot comparing this new SVM model to the other algorithms

trained on the training data set can be seen in Figure 6.17. A comparison of our SVM

algorithms extracted from 3-dimensional data sets can be seen in Figure 6.16.

6.4 4D Feature Set evaluated via 10-fold Cross Validation

To push SVM and Naive Bayes to perfect identification we need to incorporate additional

features. While they no longer contribute to the narrative of a low-frequency load detection

system, the use of high frequency features in conjunction with the low-frequency features

we’ve already extracted should be a powerful tool for load analysis. In this section we will

use “Center Frequency” as a fourth feature, extracted from the high frequency switching

behavior some loads power supplies inject back on to the mains. This new feature dataset

is plotted in the scatter plot in Figure 6.18.

The confusion matrices for the four machine learning algorithms can be seen in Tables

6.13, 6.14, 6.15, and 6.16. While SVM joined Nearest Neighbor and Classification Tree with

perfect identifications, Naive Bayes still mis-categorized some Fan (speed 1) events as Fan

(speed 2). A comparison of algorithm prediction accuracies is presented as a scatter plot in

Figure 6.19. We solve the remaining misclassifications from the Naive Bayes model in the
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Table 6.12: Confusion Table of Recognition utilizing “Optimized” Support Vector Machines

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 100% 0% 0% 0% 0% 0% 0% 20

Bulb 0% 100% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 90% 0% 0% 10% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 0% 0% 0% 100% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 18 25 25 27 60 195

Table 6.12: This is performed with algorithms using a 3D feature set extracted from a

training data set and tested on an experimental data set. An optimized parameter selection

results in a superior model and near perfect classification results.
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Figure 6.16: Scatter plot of Support Vector Machines learning algorithm successful predic-

tions when utilizing 3-dimensional feature set extracted from training data. The three SVM

models are compared here on their performance identifying the same 3-dimensional feature

set.
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Figure 6.17: Scatter plot of machine learning algorithm successful predictions when utilizing

3-dimensional feature set extracted from training data. The SVM algorithm is plotted using

the most accurate (optimized) model.

next section.

6.4.1 Feature Extraction: Center Frequency

To observe high frequency effects, raw voltage signals sampled at 1mega-sample/second is

subjected to a Fourier Transform (FFT) which reveals the power spectral density (PSD) at

all frequencies from 0 to 500kHz. By windowing and traversing this frequency spectrum, we

can detect consistent noise injection at certain frequencies over the significant random noise

that exists on the line. Using an experimentally calibrated threshold (see Figure 6.20) we

detect and associate the location of these energy contributions to each of our loads. The

average frequency at which these detections take place (within the windowed area) is called

the “center frequency” and it is this value that we included as a feature in this section.

In some cases, loads inject noise at multiple frequencies; sometimes due to harmonics but

other times due to multiple operational modes of the power supply (PSU) or load. For the

sake of simplifying this feature, we only used a subjectively determined “dominant” center

frequency per load. We can see in Figure 6.18 with the Microwave Oven that even this one
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Figure 6.18: Scatter plot of normalized Center Frequency vs. normalized Reactive Power.
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Table 6.13: Confusion Table of Recognition utilizing Nearest Neighbor

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 100% 0% 0% 0% 0% 5% 0% 20

Bulb 0% 100% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 100% 0% 0% 0% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 0% 0% 0% 100% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 20 25 25 25 60 195

Table 6.13: This is performed with 10-fold Cross Validation using a 4D feature set extracted

from experimental data.

Table 6.14: Confusion Table of Recognition utilizing Naive Bayes

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 85% 15% 0% 0% 0% 0% 0% 20

Bulb 10% 90% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 90% 0% 0% 10% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 4% 96% 0% 0% 25

Heater 0% 0% 0% 0% 0% 100% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 20 26 24 25 60 195

Table 6.14: This is performed with 10-fold Cross Validation using a 4D feature set extracted

from experimental data.
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Table 6.15: Confusion Table of Recognition utilizing Support Vector Machines

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 100% 0% 0% 0% 0% 0% 0% 20

Bulb 0% 100% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 100% 0% 0% 0% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 0% 0% 0% 100% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 20 25 25 25 60 195

Table 6.15: This is performed with 10-fold Cross Validation using a 4D feature set extracted

from experimental data.

Table 6.16: Confusion Table of Recognition utilizing Classification Tree

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 100% 0% 0% 0% 0% 0% 0% 20

Bulb 0% 100% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 100% 0% 0% 0% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 0% 100% 0% 0% 25

Heater 0% 0% 0% 0% 0% 100% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 19 25 25 25 60 195

Table 6.16: This is performed with 10-fold Cross Validation using a 4D feature set extracted

from experimental data.
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Figure 6.19: Scatter plot of machine learning algorithm successful predictions when utilizing

4-dimensional feature set.

center frequency event still resulted in what appears to be a 2-stage operational behavior.

This likely is due to a different power supply being used to power the panel and controls

while a higher capacity PSU supplies oven operation.

Figure 6.20: Thresholding of power spectral density (PSD) for feature extraction.
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6.5 6D Feature Set evaluated via 10-fold Cross Validation

6.5.1 Features: Transitional Voltage Spikes

Up until now the established feature set only contains “regular” events that occur when a

load is running. Peak-to-Peak Current, Real/Reactive Power, and Center Frequency are all

behaviors that are visible throughout the operation of a load and give useful insight into

the way the load draws power. For the next feature set, it seemed prudent to move away

from these relatively “steady” features and instead look at transient effects that these loads

generate on the line. When switching a new load on and off, there are noticeable voltage

and current spikes on the line. By analyzing and characterizing these spikes hopefully we

can give our learning algorithms enough data to completely isolate each load type from

others and perfectly identify all of our loads. Given the various behaviors of our diverse

load set, the voltage spike feature is separated into two categories: Voltage Spike at device

turn-on (rising), and Voltage Spike at device turn-off (falling). These two features have been

normalized and plotted as a scatterplot in Figure 6.21.

This new feature set, when coupled with the previously discussed four features, results in

a perfect load identification with all our learning algorithms. Naive Bayes, our last remain-

ing algorithm yet to achieve perfect classification, with these two transient features finally

performs an unblemished characterization. The confusion matrix showing Naive Bayes clas-

sifier’s correct prediction can be seen in Table 6.17.

6.6 Optimizing Feature Sets

Now that we have shown that all of our algorithms can achieve perfect classification, the

next step is to go back and see which features can be filtered out while preserving our

identification accuracy. In other words, what is the fewest number of features that can result

in a perfect classification? At the same time, looking back to our analysis at the beginning

of this chapter, can we achieve perfect classification with as few as two feature sets?

One motivation that will guide our search is the use of features extracted from voltage-
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Figure 6.21: Scatter plot of normalized Falling Voltage Spike (left) and Rising Voltage Spike

(right) vs. normalized Real Power.

Table 6.17: Confusion Table of Recognition utilizing Naive Bayes

LED Bulb Macbook Fan2 Fan1 Heater Microwave Total

LED 85% 15% 0% 0% 0% 0% 0% 20

Bulb 10% 90% 0% 0% 0% 0% 0% 20

Macbook 0% 0% 100% 0% 0% 0% 0% 20

Fan2 0% 0% 0% 100% 0% 0% 0% 25

Fan1 0% 0% 0% 4% 96% 0% 0% 25

Heater 0% 0% 0% 0% 0% 100% 0% 25

Microwave 0% 0% 0% 0% 0% 0% 100% 60

Total 20 20 20 26 24 25 60 195

Table 6.17: This is performed with 10-fold Cross Validation using a 6D feature set extracted

from experimental data.
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only measurements. While combining current and voltage features allows for powerful de-

tection and identification, collecting current data is significantly more difficult than voltage

data. For one, voltage signal noise can be seen “upstream” and “downstream.” So a voltage

connection at one outlet can perceivably see all the noise injected from nearby plugs regard-

less of where the connection is in the circuit. A current probe at the same point would only

be able to detect current usage at outlets that are further downstream from the outlet being

measured. All prior series outlets and any parallel lines would be invisible. As a result, to

capture the current usage of an entire building, current probes would need to placed on the

mains entering the building; a utility area that is not always easily accessible.

We can summarize our goals as follows: 1) Can we achieve perfect classification with as

little as a 2-dimensional feature space? 2) Can we achieve perfect classification with features

extracted only from voltage measurements?

To take a analytically quantitative approach to find our ideal features, we utilize a kNN

algorithm to compute the quality of each feature pair. To rank each feature pair, we calculate

a “score” for each feature set. This score is calculated with the following expression:

P̄ = E(Pf (y|x)) =
1

N

N∑
i=1

Pf (yi|xi)

Evaluating feature permutations the top scoring feature pairs are displayed in Figure 6.22.

Of these feature pairs, three can be obtained from only voltage measurements: 1) Frequency

vs. Rising Voltage Spike, 2) Frequency vs. Falling Voltage Spike, and 3) Rising Voltage Spike

vs. Falling Voltage Spike . The three highest scoring feature sets (see Figures 6.23, 6.24 and

6.25) are evaluated over our four machine learning algorithms in Figures 6.26, 6.27, 6.28,

and 6.29. From these plots it is clear that we can achieve perfect classification with two 2-

dimensional feature sets: 1) Frequency vs. Peak to Peak Current and 2) Frequency vs. Rising

Voltage Spike. Of the three features that comprise these two feature pairs, only Frequency

and Rising Voltage Spike can be obtained from voltage only measurements. Therefore we

can confidently say that the optimal feature pair is Frequency vs. Rising Voltage Spike.
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Figure 6.22: Top scoring feature pairs.

Figure 6.23: Scatter plot comparing Frequency vs. Peak to Peak Current
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Figure 6.24: Scatter plot comparing Frequency vs. Rising Voltage Spike
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Figure 6.25: Scatter plot comparing Falling Voltage Spike vs. Center Frequency
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Figure 6.26: Nearest Neighbor classification accuracy when run on optimal feature pairs.
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Figure 6.27: Naive Bayes classification accuracy when run on optimal feature pairs.
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Figure 6.28: SVM classification accuracy when run on optimal feature pairs.
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Figure 6.29: Classification Tree classification accuracy when run on optimal feature pairs.
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CHAPTER 7

Conclusions

For many NILM detection schemes there is a strong need for accurate sensing of the power

lines. To perform sensing in such a volatile and even hazardous environment, specialized

hardware is required. The PowCap board was presented as our answer for this need, demon-

strating functionality for receiving data at one voltage (capacitively coupled) and at one

current line (current transformer to BNC). On board filtering and gain stages were provided

via serial controlled firmware with a python front end. After extracting key features from

these signals we showed we can accurately predict the loads attached, with perfect accu-

racy for most of the experimental loads. The loads that had poorer prediction ratios had

clear weaknesses with respect to the chosen features. There is good reason to think that

further analysis to discover additional features, and incorporating them into our algorithm,

will improve on these results.

It was demonstrated that the PowCap Board acts as a natural receiver in a communica-

tion system where the power lines act as the transmission medium. It was a small jump to

implement, with simple circuitry, a transmitter in parallel with our mains coupled “receiver”

thereby allowing the board to function as a power line transceiver. We demonstrated, via

experiments with baseband and FM modulation, that the theory was sound and outlined the

opportunity for modern modulation schemes used in crowded airways to be implemented in

the noisy atmosphere of the power lines.

In this thesis we showed how the design of these prior systems lead to the development

of the PowCapMobile Board. This board, when combined with a Linux box and a USRP,

is capable of taking four input signals, conditioning them, and converting them to digital

data at a very high fidelity. These systems, together, are referred to as the PowCapMobile
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Deployment Suite: a shockproof, robust, analog data-acquisition system. Files are stored

on local drives in a complex binary format and are segmented into one hour divisions. The

tools are highly customizable, allowing for custom file lengths, sample rates, digital gain,

and target directory. Existing experimental data has been uploaded to a dedicated NAS

server, which allows for easy access for anyone interested in analyzing household mains data.

The files are read with a custom python software toolkit (see Appendix D) that windows the

data and allows for various plotting or file-storage options.

We have presented several systems that provide flexible sensing and transmitting capa-

bilities over the power line. In the following sections we discuss our findings and further

explore their significance and potential looking forward.

7.1 PowCap: Looking Forward

Sensing voltage and current with the PowCap board resulted in high accuracy load detection

using highly optimized low frequency features. This gave good promise to the potential for

a low-cost low sample-rate load detection system; potentially one cheap enough to install

at each outlet with relay functionality. This ties in nicely to some hopes for a “smart grid”

that would allow for remote detection and control of loads in homes. Ostensibly, this control

would be given to power providers: the electric company. When each outlet detects the

type of load plugged in and notifies the smart meter, via wireless connection or power line

communication, the system can decide if higher power but low priority loads should be shut

off.

This simple application serves to balance the loading of the grid throughout the day.

Electricity, unlike gas for a vehicle, cannot be stored easily; or rather, it cannot be stored

efficiently. As a result, when a power plant generates electricity, it needs to be utilized

immediately or it goes to waste. This has led power plants to heavily research load usage

patterns, in an attempt to better predict load needs so that plants can wind up and wind

down energy generation as demand fluctuates throughout the day. This creates a few prob-

lems, the most costly of which is unnecessary overhead. Power grids are often designed for
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their peak requirements, not their average requirements. This makes sense as in the middle

of a hot day, air conditioning usage is likely to drive energy consumption to a peak. If the

grid cannot support this peak load, then there would be blackouts. However, by designing a

grid for this peak situation, it means the grid is often underutilized. There is extra capacity

that, for most of the time, is going to waste. This capacity is not cheap, it is realized in in-

frastructure as thicker wires, larger transformers, more generators (running idle in non-peak

scenarios), and more power plants. If loads could be balanced throughout the day, month,

and year, then utilities could optimize the use of the infrastructure to minimize operational

and baseline costs. This means less wasted energy, which means cheaper energy costs.

Back to our smart meters, it is easy to see how having knowledge of individual load

characteristics and control of the power supply to such loads, a power company might utilize

self-defined personal preferences from a customer’s profile to make decisions about what

loads are essential and what loads are non-essential at any given time. A washer turning on

in the middle of a hot day might be a low-priority for a household, and be a good candidate

to be disconnected as everyone’s air conditioners are driving up the demand. As the evening

comes and the weather cools, demand drops so the washer switches back on and continues

its cycle. In this way, the energy demands are “balanced” so that they are as constant as

possible throughout the day, month, and year.

7.1.1 Machine Learning Algorithms

In the process of developing a system for load monitoring and control, we took the time

to analyze how popular machine learning algorithms perform when executed on our data.

It is clear that certain algorithms, like kNN and Classifier Tree, are simply better suited

for accurately classifying data of this variety and scope. For more advanced algorithms like

SVM and Naive Bayes, we demonstrated how a flexible feature set and good training data

goes a long way towards ensuring optimal results. Finally, we worked our way back from a

6-dimensional feature set to a simple 2-dimensional feature set derived from voltage charac-

teristics only: Frequency vs. Rising Voltage Spike. Demonstrating perfect characterization
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with only two features that can be obtained from a more accessible point (voltage connection

at any outlet) we clearly demonstrated the value of an in-depth algorithm analysis. At one

point in our analysis a 4-dimensional feature set still yielded imperfect results with a Naive

Bayes classifier; but only through the addition of extra features and retroactive analysis of

feature permutations was a superior classification accuracy reached with fewer data points

than any other successful approach.

The main question looking forward is how to modify our approach when dealing with

more complex experimental setups. A half-dozen loads in a lab setting are much more

easily identified with simple algorithms and a couple of features than three dozen loads in

an industrial building. A diverse set of features is going to be a key consideration, along

with a clever algorithm selection. A classifier tree seems an effective foundation for sifting

through a large number of classifications and making the most of each feature set. Deploying

multiple feature sets per branch or utilizing other learning algorithms within a branch is a

potential method for solving difficult branch-level classifications. Like the work in this thesis

has shown going from two features, to six features, and back to two features again; often

learning methodologies must be overpowered to achieve accuracy, only then can they be

paired back down to an optimal efficiency. It is likely that for more complex situations,

a large number of features and algorithms will need to be employed in parallel. Once the

scope of the environmental system is understood, the complexity of the classification system

can be brought down in a way that minimally impacts accuracy. The hope should be that,

with time and experience, commonalities between certain environments can be exploited. As

different types of loads are identified in different types of environments, certain approaches

will hopefully become consistently more successful than others. With enough data a potential

meta-classifier could be designed which identifies the type of environment and then deploys

the algorithms and optimizations best suited for that space.
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7.2 PowCap with PLC: Looking Forward

When sensing in the environment of the mains, it is useful to understand how signals prop-

agate. To this end, our research into a transceiver that operates over the power line gives

both insight and functionality into a closely related area to NILM. Off the shelf systems, like

The Energy Detective (TED)[TED], utilize power line communication to transfer informa-

tion between sensors and the main processing unit. In our own systems, the PowCap Board

is more than capable of processing the signals and acting like a receiver. Simply adding a

transmitter function opens up the possibility to have multiple devices throughout a large

building, communicating with each other, sharing information about new transitions, and

compensating for “dead spaces” in large circuits caused by transmission losses. Using the

advances in communication theory coupled with known models of mains circuits, optimal

encoding techniques can be applied to overcome noise and operational bandwidth limitations.

The benefit of power line transmission does not end there. An interesting issue with NILM

as a field is the question of privacy. Most of the data that can be acquired from any outlet

can also be seen by potentially malicious viewers. External or remote electrical outlets could

be used by a snooper to view the noise characteristics of a home and potentially identify load

usage. Looking at load usage patterns, or even simply monitoring the activity on the mains,

this viewer could then determine household patterns of activity. Low activity might suggest

the owners are not at home, and might motivate a robbery. To obscure such malicious uses

of NILM systems, it might be an effective strategy to “mimic” the signature of loads that

are not actually on. The same NILM system that recognizes certain features as associated

with a certain load, could convert those features back into an output and transmit them out

onto the power lines. The goal here is not traditional power line communication, but rather

to simply make it appear that certain loads are running when they are not. The internal

software could easily resolve what loads are being transmitted versus those that are being

sensed, and prevent any disruption to the installed load detection algorithms. However, to

an external viewer, certain loads would appear to turn “on” and “off” with no clear pattern.

This might preclude this viewer from committing a more malicious act, such as a robbery,
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by making the household appear to have unpredictable schedules.

A similar situation took place in the NESL lab where a lab member’s house was being

monitored, intentionally and voluntarily, by a TED unit. The owner of the building was

insisting on charging for utilities based on the TED readings, instead of simply forwarding

the energy company bills. To prove that systems like the TED are unreliable, the PowCap

system was used to analyze the TED system and discerned the details of its PLC protocol.

Once it was clear that the sensors spoke to the MCU through the power line, a simple

capacitively coupled MOSFET was tuned to the transmission frequency, around 150kHz,

and broadcast a high amplitude sine wave to jam these signals. The result was that the

TED could not resolve any changes in state, and continued to report the previous state.

The reference documents[jam] cite a link to a video demonstrating this effect, where a load

is turned on, jammed, and then turned off. Due to the jamming, the TED continues to

report the load, and overall energy consumption, as being the same as when the light was

on even though it was off. While there isn’t always a jamming signal being broadcast at

transmits frequencies, it was a convincing argument that a system primarily utilizing power

line communications at reasonably high frequencies was in danger of losing signal integrity

especially from other high power loads using switching power supplies operating at similar

frequencies. The injected EMI could easily act as a jamming signal to suppress or disrupt

the PLC functionality. Such a vulnerable system was not a good candidate for a billing

methodology, whereas the power meter, which is hardwired onto the mains voltage and

current, provides secure and direct measurements.

7.2.1 Proposed IEEE Specification: Load ID Broadcasting

An obvious approach to load identification that arose from this research was the idea of self-

identifying loads. The idea is that, under a hypothetical industry-wide spec, power supplies

would include self-identifying start-up circuitry. Since it is clear we can observe heavily

filtered high frequency EMI injected onto the line, detecting primary current sinking and

sourcing functionality is trivial. This start-up functionality could encode detailed information
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about the device type, serial identification, and revision. Further, it could also include

information about the device’s current mode of operation, or list all modes of operation and

allow any sensing system to distinguish between them.

The beauty of this model is that there is little to no overhead cost. The additional

circuitry required to encode such a transmission on the PSU is negligible if it is incorporated

at the integrated circuit (IC) stage. Newer PSUs are already incorporating FPGAs for high

levels of programmability and customizability; from these Power Management IC (PMIC)

solutions, even dense startup coding could be implemented with minimal effort from design

teams. Sensing would also require little to no additional development. Modern smart meters

already incorporate FPGAs into their power meters, and take detailed data on voltage and

current usage. Programming them to interpret simple encoded messages onto predetermined

frequencies would likely only require a software update of the meters. These systems are

currently over-designed in order to accommodate future developments such as the system

proposed here, and such functionality likely exists already. This particular capability is well

documented in this paper due to our extensive analysis of sensing signals on the mains; both

intentionally transmitted signals and coupled noise signatures.

With the understanding the technical capability exists, the next step would be define

the specifics of how such a protocol would be defined. Frequency “bands” would be defined

for different classes of loads, lower power loads being given lower frequencies while higher

power loads would be tasked to transmit their code at higher frequencies. This would scale

well with the transmission characteristics of powerlines in the home and workplace, allowing

the “strongest” loads to transmit at the least efficient frequencies, and the “weakest” (low

power) loads to transmit at optimized powerline frequencies. Within these power-dependent

frequency bands, additional delineation would be defined by load type. An example of such

segmentation, using common consumer electronic power levels [powb, powa], is as follows: 0

to 10W, 10 to 25W, 25 to 100W, 100 to 1kW, and 1kW plus. Coding methodologies that

exist for overcrowded wireless communication would apply nicely to these narrow bands

where many loads might be starting up in a coordinated fashion. Being able to decode

multiple simultaneous startups would be a minimum requirement for such a system, but this
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is an obtainable goal for an industry-wide adopted protocol.

7.3 PowCapMobile Deployment Suite: Looking Forward

As shown earlier, these other system designs culminated in the PowCapMobile Deployment

Suite: combining USRP data converters and a PC for a fully functional deployable unit.

While this system is optimized for high voltage readings on two of the channels, it could

conceivably take data from any source. This means the deployment suite can act as an

analog front end to any source signal, with the BNC-connected “current inputs” ideal for

lower voltages and the “voltage inputs” capable of handling higher voltages. These signals

can be conditioned to good amplitudes for data conversion, and then fed into the USRP.

The fact that the hardware is all automated through simple python scripts simplifies this

functionality into a very accessible platform. Individuals with no hardware experience can

obtain high quality digitization of any real world signals they wish to study and analyze.

For students and individuals with strong signals and programming backgrounds, this is an

invaluable tool.

Continuing in the spirit of “enabling” other users, the data acquired from the deployment

in a family home is available on a dedicated NESL NAS server. This data can be visualized,

segmented, under sampled, and/or downloaded to a private machine. When combined with

provided ground truth information, this data repository becomes the first of its kind to offer

extremely high fidelity data on a real household load network. For the first time, students,

academics, and professionals can analyze and experiment on data parsed for their specific

needs without having to custom build, install, and operate a high voltage hardware sensing

system. For teams needing a hardware system for their own data collection and analysis, our

system is fully open source and available for recreation. The PowCapMobile board, firmware,

Gnuradio code, and system design are all published and free to use; as all academic research

should be. The purpose of this is to really open up the field to those who otherwise would

not be able to lend their talents in signal analysis, machine learning, and general signal

processing. Perhaps the next leap forward in load detection will come from an individual

104



who was simply looking at data provided on a NESL NAS server.
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APPENDIX A

Firmware excerpts for PowCap MCU

A.1 commands.c

Includes SPI setup for PGA control and MUX signals for filter selection.

#include ”commands . h”

#include <stdlib . h>

#include ”SPI . h”

void cb_gainC1 ( char ∗param ) { // current1 gain

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

f o r ( int i=0;i<val ; i++) {

LEDs_ToggleLEDs ( LEDS_LED1 ) ;

}

SELECT1 ( ) ;

SPI_MaterTransmit ( val ) ;

UNSELECT1 ( ) ;

}

void cb_gainV1 ( char ∗param ) { // voltage1 gain

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

f o r ( int i=0;i<val ; i++) {

LEDs_ToggleLEDs ( LEDS_LED1 ) ;

}
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SELECT0 ( ) ;

SPI_MaterTransmit ( val ) ;

UNSELECT0 ( ) ;

}

void cb_gainC2 ( char ∗param ) { // current2 gain

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

f o r ( int i=0;i<val ; i++) {

LEDs_ToggleLEDs ( LEDS_LED1 ) ;

}

SELECT3 ( ) ;

SPI_MaterTransmit ( val ) ;

UNSELECT3 ( ) ;

}

void cb_gainV2 ( char ∗param ) { // voltage2 gain

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

f o r ( int i=0;i<val ; i++) {

LEDs_ToggleLEDs ( LEDS_LED1 ) ;

}

SELECT2 ( ) ;

SPI_MaterTransmit ( val ) ;

UNSELECT2 ( ) ;

}

void cb_filterV1 ( char ∗param ) { // voltage BP f i l t e r MUX decision ”n”

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

switch ( val ) {

case 0 : //BP ON

PORTF |=(1<<4) ;

LEDs_TurnOnLEDs ( LEDS_LED1 ) ;
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break ;

case 1 : //BP OFF

PORTF &=˜(1<<4) ;

LEDs_TurnOffLEDs ( LEDS_LED1 ) ;

break ;

}

}

void cb_filterC1 ( char ∗param ) { // current1 BP f i l t e r MUX decision ”n”

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

switch ( val ) {

case 0 : //BP OFF

PORTF |=(1<<5) ;

LEDs_TurnOnLEDs ( LEDS_LED1 ) ;

break ;

case 1 : //BP ON

PORTF &=˜(1<<5) ;

LEDs_TurnOffLEDs ( LEDS_LED1 ) ;

break ;

}

}

void cb_filterV2 ( char ∗param ) { // voltage BP f i l t e r MUX decision ”n”

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

switch ( val ) {

case 0 : //BP ON

PORTF |=(1<<6) ;

LEDs_TurnOnLEDs ( LEDS_LED1 ) ;

break ;

case 1 : //BP OFF

PORTF &=˜(1<<6) ;

LEDs_TurnOffLEDs ( LEDS_LED1 ) ;

break ;

}

}
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void cb_filterC2 ( char ∗param ) { // current BP f i l t e r MUX decision ”n”

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

switch ( val ) {

case 0 : //BP OFF

PORTF |=(1<<7) ;

LEDs_TurnOnLEDs ( LEDS_LED1 ) ;

break ;

case 1 : //BP ON

PORTF &=˜(1<<7) ;

LEDs_TurnOffLEDs ( LEDS_LED1 ) ;

break ;

}

}

void cb_notchV1 ( char ∗param ) { // voltage1 60hz notch f i l t e r MUX decision ”n”

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

switch ( val ) {

case 0 :

PORTF |=(1<<0) ;

LEDs_TurnOnLEDs ( LEDS_LED1 ) ;

break ;

case 1 :

PORTF &=˜(1<<0) ;

LEDs_TurnOffLEDs ( LEDS_LED1 ) ;

break ;

}

}

void cb_notchC1 ( char ∗param ) { // current1 60hz notch f i l t e r MUX decision

char ∗s ;

int16_t val ;
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s = param ;

val = strtol ( param ,&s , 1 6 ) ;

LEDs_ToggleLEDs ( LEDS_LED1 ) ;

switch ( val ) {

case 0 :

PORTF |=(1<<1) ;

LEDs_TurnOnLEDs ( LEDS_LED1 ) ;

break ;

case 1 :

LEDs_TurnOffLEDs ( LEDS_LED1 ) ;

PORTF &=˜(1<<1) ;

break ;

}

}

void cb_notchV2 ( char ∗param ) { // voltage2 60hz notch f i l t e r MUX decision ”n”

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

switch ( val ) {

case 0 :

PORTE |=(1<<6) ;

LEDs_TurnOnLEDs ( LEDS_LED1 ) ;

break ;

case 1 :

PORTE &=˜(1<<6) ;

LEDs_TurnOffLEDs ( LEDS_LED1 ) ;

break ;

}

}

void cb_notchC2 ( char ∗param ) { // current2 60hz notch f i l t e r MUX decision

char ∗s ;

int16_t val ;

s = param ;

val = strtol ( param ,&s , 1 6 ) ;

LEDs_ToggleLEDs ( LEDS_LED1 ) ;

switch ( val ) {

case 0 :

PORTD |=(1<<7) ;
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LEDs_TurnOnLEDs ( LEDS_LED1 ) ;

break ;

case 1 :

LEDs_TurnOffLEDs ( LEDS_LED1 ) ;

PORTD &=˜(1<<7) ;

break ;

}

}

A.2 filters.c

Sets startup conditions for gain and MUX selections.

#include <avr/io . h>

#include ”filters . h”

void filters_MasterInit ( void ) {

//Turn off JTAG by switching JTD pin high ( twice within 4 cycles )

//−this gives us access to i/o pins PF4 , PF5 , PF6 , and PF7 on the atmega16u4

MCUCR |= (1<<7) ;

MCUCR |= (1<<7) ;

//sets voltage and current BP MUX to passthrough/OFF ( PSU l i n e )

PORTF &= ˜(1<<PF4 ) ;

PORTF &= ˜(1<<PF5 ) ;

//PORTF |= (1<<PF4 ) ;

//PORTF |= (1<<PF5 ) ;

//sets voltage and current BP MUX to passthrough/OFF ( alt l i n e )

PORTF &= ˜(1<<PF6 ) ;

PORTF &= ˜(1<<PF7 ) ;

//sets 60Hz Notch OFF f o r Voltage and Current lines ( PSU input )

//PORTF |= ((1<<PF0 ) |(1<<PF1 ) ) ;

PORTF &= ˜(1<<PF0 ) ;

PORTF &= ˜(1<<PF1 ) ;
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//sets 60Hz Notch OFF f o r V and I lines ( alternate input )

PORTE &= ˜(1<<PE6 ) ;

PORTD &= ˜(1<<PD7 ) ;

/∗

//sets voltage MUX to 60Hz Notch passthrough (001)

PORTF &= ˜(1<<PF4 ) ;

PORTF &= ˜(1<<PF5 ) ;

PORTF |= (1<<PF6 ) ;

//sets current MUX to 60Hz notch passthrough (000)

PORTF &= ˜(1<<PF7 ) ;

PORTE &= ˜(1<<PE6 ) ;

PORTD &= ˜(1<<PD7 ) ;

∗/

}

A.3 FSM.c

#include <avr/io . h>

#include ”FSM . h”

#include ”commands . h”

#include <ctype . h>

void init_callbacks ( ) {

f o r ( int i=0;i<NUMBER_CMDS ; i++){

cb_command [ i ] . id = 0 ;

cb_command [ i ] . fxn = NULL ;

}

}

void setup_callbacks ( ) {

init_callbacks ( ) ;

cb_command [ 0 ] . id = GAINC1 ;

cb_command [ 0 ] . fxn = cb_gainC1 ;

cb_command [ 1 ] . id = GAINV1 ;

cb_command [ 1 ] . fxn = cb_gainV1 ;

cb_command [ 2 ] . id = FILTERV1 ;

cb_command [ 2 ] . fxn = cb_filterV1 ;

cb_command [ 3 ] . id = FILTERC1 ;

cb_command [ 3 ] . fxn = cb_filterC1 ;
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cb_command [ 4 ] . id = NOTCHV1 ;

cb_command [ 4 ] . fxn = cb_notchV1 ;

cb_command [ 5 ] . id = NOTCHC1 ;

cb_command [ 5 ] . fxn = cb_notchC1 ;

cb_command [ 6 ] . id = GAINC2 ;

cb_command [ 6 ] . fxn = cb_gainC2 ;

cb_command [ 7 ] . id = GAINV2 ;

cb_command [ 7 ] . fxn = cb_gainV2 ;

cb_command [ 8 ] . id = FILTERV2 ;

cb_command [ 8 ] . fxn = cb_filterV2 ;

cb_command [ 9 ] . id = FILTERC2 ;

cb_command [ 9 ] . fxn = cb_filterC2 ;

cb_command [ 1 0 ] . id = NOTCHV2 ;

cb_command [ 1 0 ] . fxn = cb_notchV2 ;

cb_command [ 1 1 ] . id = NOTCHC2 ;

cb_command [ 1 1 ] . fxn = cb_notchC2 ;

}

int16_t search_callback ( COMMAND ∗cmd ) {

f o r ( int i=0;i<NUMBER_CMDS ; i++) {

i f ( cmd−>command == cb_command [ i ] . id ) {

// LEDs_ToggleLEDs ( LEDS_LED1 ) ;

cb_command [ i ] . fxn ( cmd−>param ) ;

r e turn 0 ;

}

}

r e turn −1;

}

void init_FSM ( ) {

FSM_State = WAITING_CMD ;

init_command(&cmd ) ;

}

void init_command ( COMMAND ∗cmd ) {

cmd−>command = 0 ;

cmd−>param [ 0 ] = ' \0 ' ;

}

void set_command ( COMMAND ∗cmd , int16_t c ) {
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i f ( VALIDCMD ( c ) ) {

cmd−>command = c ;

FSM_State = PARAM1 ;

} e l s e {

init_FSM ( ) ;

}

}

void set_param0 ( COMMAND ∗cmd , int16_t p ) {

i f ( isxdigit ( p ) ) {

cmd−>param [ 0 ] = ( char ) p ;

cmd−>param [ 1 ] = ' \0 ' ;

FSM_State = PARAM2 ;

} e l s e {

init_FSM ( ) ;

}

}

void set_param1 ( COMMAND ∗cmd , int16_t p ) {

i f ( isxdigit ( ( int ) p ) ) {

cmd−>param [ 1 ] = ( char ) p ;

cmd−>param [ 2 ] = ' \0 ' ;

FSM_State = RUN ;

} e l s e {

init_FSM ( ) ;

}

}

void process_byte ( int16_t rxbyte ) {

switch ( FSM_State ) {

case WAITING_CMD :

set_command(&cmd , rxbyte ) ;

break ;

case PARAM1 :

set_param0(&cmd , rxbyte ) ;

break ;

case PARAM2 :

set_param1(&cmd , rxbyte ) ;

break ;

case RUN :

i f ( i s s p a c e ( rxbyte ) ) {

search_callback(&cmd ) ;

init_FSM ( ) ;
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break ;

}

default :

init_FSM ( ) ;

break ;

}

}

A.4 SPI.c

Defines SPI control registers and sets MOSI and SCK pins.

#include <avr/io . h>

#include ”SPI . h”

void SPI_MasterInit ( void ) {

//Set Direction For MOSI and SCK PIN

DDR_SPI = (1<<DD_MOSI ) |(1<<DD_SCK ) |(1<<DD_SS ) |(1<<DD_SS2 ) |(1<<DD_SS3 ) |(1<<DD_SS4 ) ;

//Set SPI Control Registers

PORT_SPI = PORT_SPI | PSS ;

PORT_SPI = PORT_SPI | PSS2 ;

PORT_SPI = PORT_SPI | PSS3 ;

PORT_SPI = PORT_SPI | PSS4 ;

SPCR = (1<<SPE ) |(1<<MSTR ) |(1<<SPR0 ) |(1<<CPOL ) ;

}

void SPI_MaterTransmit ( char cData ) {

SPDR = cData ;

whi l e ( ! ( SPSR & (1<<SPIF ) ) ) ;

}
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APPENDIX B

Python Source for PowCapMobile Data Acquisition

Modified Gnuradio code to take in 4 channels of data stored into two files. Files are segmented

into custom lengths of time (default is 1 hour), this is to prevent generating very large data

files that are more prone to corruption. Finally, the files are stored in locally specified

locations, and recording stops once target directories no longer contain enough space for the

next file (with some healthy buffer).

from gnuradio import gr

from gnuradio import uhd

from gnuradio import eng_notation

from gnuradio . eng_option import eng_option

from optparse import OptionParser

import datetime

import tempfile

import sys

import time

import numpy

import logging

import os

import configobj

fconfig = file (” uhd_to_file . ini ”)

config = configobj . ConfigObj ( infile = fconfig )

l og = logging . getLogger (” To File ”)

l og . setLevel ( logging . INFO )

l og . addHandler ( logging . StreamHandler ( sys . stdout ) )
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class GetData_top_block ( gr . top_block ) :

def __init__ ( self ) :

gr . top_block . __init__ ( self )

parser = OptionParser ( option_class=eng_option )

parser . add_option (”−a ” , ”−−args ” , type=”string ” , default=””,

he lp=”UHD device address args , [ default=%d e f a u l t ] ” )

parser . add_option (”” , ”−−spec ” , type=”string ” , default=None ,

he lp=”Subdevice of UHD device where appropriate ”)

parser . add_option (”−A ” , ”−−antenna ” , type=”string ” , default=None ,

he lp=”select Rx Antenna where appropriate ”)

parser . add_option (”−s ” , ”−−samp−rate ” , type=”eng_float ” , default=1e6 ,

he lp=”s e t sample rate ( bandwidth ) [ default=%d e f a u l t ] ” )

parser . add_option (”−f ” , ”−−freq ” , type=”eng_float ” , default=None ,

he lp=”s e t frequency to FREQ ” , metavar=”FREQ ”)

parser . add_option (”−g ” , ”−−gain ” , type=”eng_float ” , default=None ,

he lp=”s e t gain in dB ( default is midpoint ) ”)

parser . add_option (”” , ”−−avg−alpha ” , type=”eng_float ” , default=1e−1,

he lp=”Set fftsink averaging factor , default=[%d e f a u l t ] ” )

parser . add_option (”” , ”−−averaging ” , action=”store_true ” , default=False ,

he lp=”Enable fftsink averaging , default=[%d e f a u l t ] ” )

parser . add_option (”” , ”−−ref−scale ” , type=”eng_float ” , default=1.0 ,

he lp=”Set dBFS=0dB input value , default=[%d e f a u l t ] ” )

parser . add_option(”−− f f t−s i z e ” , type=”int ” , default=1024 ,

he lp=”Set number of FFT bins [ default=%d e f a u l t ] ” )

parser . add_option(”−− f f t−rate ” , type=”int ” , default=30,

he lp=”Set FFT update rate , [ default=%d e f a u l t ] ” )

parser . add_option (”−t”,”−−timeout ” , type=”int ” , default=3600 ,

he lp=”Set l ength of data files ( seconds ) , [ default=%d e f a u l t ] ” )

parser . add_option (”−p”,”−−filePath ” , type=”string ” , default=”/media/PowCapRawData/←↩

testData ” ,

he lp=”Set path where you want data saved , [ default=%d e f a u l t ] ” )

( options , args ) = parser . parse_args ( )

i f len ( args ) != 0 :

parser . print_help ( )

sys . exit (1 )

self . options = options

self . show_debug_info = True

self . u = uhd . usrp_source ( device_addr=options . args ,

stream_args=uhd . stream_args ( ' f c32 ' , channels=range (2 ) ) )

self . filePath = options . filePath

i f self . filePath == ”distributed ” :
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self . filePathID = 1

pr in t ”Drive List ( f o r distributed storage ) : ”

f o r drive in config [ ” drives ” ] :

p r i n t drive

e l s e :

self . filePathID = 0

self . timeout = options . timeout

#Set both daughterboards to RX

#Each daughterboard produces one complex binary IQ data stream .

self . u . set_subdev_spec (” A : AB B : AB ”)

self . u . set_samp_rate ( options . samp_rate )

input_rate = self . u . get_samp_rate ( )

# s e t initial values

i f options . gain is None :

# i f no gain was specified , use the mid−point in dB

g = self . u . get_gain_range ( )

options . gain = float ( g . start ( )+g . stop ( ) ) /2

i f options . freq is None :

# i f no freq was specified , use the mid−point

r = self . u . get_freq_range ( )

options . freq = float ( r . start ( )+r . stop ( ) ) /2

#self . set_gain ( options . gain )

# Set the antenna

i f ( options . antenna ) :

self . u . set_antenna ( options . antenna , 0)

self . mainsdatas = [ ]

self . startStream ( )

def getfname ( self ) :

date = datetime . datetime . now ( )

#drives = [ ' Pandora ' , 'Box ' ]

drives = config [ ” drives ” ]

#pr i n t drives

driveFound = False
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i f self . filePathID :

l og . i n f o (” Running distributed file storage . ” )

f o r drive in drives :

self . filePath = ”/media/” + drive + ”/ PowCapData”

log . i n f o (” ( distributed ) Checking drive ” + drive + ” . ” )

i f not ( self . getspace ( ) ) :

l og . i n f o (” ( distributed ) Enough space , saving to : ” + drive + ” . ” )

fname1 = self . filePath + ”/ mains_” + \

date . strftime (”%y%m%d %H%M%S”)+ ”−chan %d” % 1 + ” . dat”

fname2 = self . filePath + ”/ mains_” + \

date . strftime (”%y%m%d %H%M%S”)+ ”−chan %d” % 2 + ” . dat”

driveFound = True

break

# elif x == len ( drives ) :

i f not driveFound :

l og . warning (” ( distributed ) Not enough space in ALL LISTED drives ! ” )

sys . exit (1 )

elif not ( self . getspace ( ) ) :

fname1 = self . filePath + ”/ mains_” + \

date . strftime (”%y%m%d %H%M%S”)+ ”−chan %d” % 1 + ” . dat ”

fname2 = self . filePath + ”/ mains_” + \

date . strftime (”%y%m%d %H%M%S”)+ ”−chan %d” % 2 + ” . dat ”

log . debug (” Write filename %s ,%s ” % ( fname1 , fname2 ) )

re turn ( fname1 , fname2 )

fname = property ( getfname )

def getspace ( self ) :

#returns the number of free Bytes on target drive

s = os . statvfs ( self . filePath )

space = ( ( s . f_bsize ∗ s . f_bavail ) / (1024∗1024) )

#switch out bavail f o r bfree to f i n d free blocks f o r priviledged and unpriviledged←↩

users respectively

l og . i n f o (” Check space remaining in target drive : %dMB” % space )

l og . debug (” preferred file system block s i z e : %s ” % s t r ( s . f b s i z e ) )

l og . debug (” number of blocks available to non−super user : %s ” % s t r ( s . f b a v a i l ) )

#required space (25 MB/s required )

spaceReq = 25 ∗ self . timeout

#Data at 1e6 sample rate consumes about 17MB/ sec of space , this prevents ←↩

overloading the HD ( with buffer of 25MB/ sec )
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i f space < ( spaceReq ) :

l og . warning (” Not enough space in target drive ! ” )

r e turn 1

e l s e :

l og . i n f o (” Target drive has enough space : (%sMB requ i r ed ) ” % spaceReq )

re turn 0

def startStream ( self ) :

fnames = self . fname

f o r n in range ( len ( fnames ) ) :

mainsdata = gr . file_sink ( gr . sizeof_gr_complex , fnames [ n ] )

self . mainsdatas . append ( mainsdata )

self . connect ( ( self . u , n ) , self . mainsdatas [ n ] )

def restart ( self ) :

#stops taking data and restarts the process

f o r n in range ( len ( self . mainsdatas ) ) :

self . disconnect ( ( self . u , n ) , self . mainsdatas [ n ] )

self . mainsdatas = [ ]

def run ( self , max_noutput_items=100000) :

l og . i n f o (” Starting capture ”)

self . start ( max_noutput_items )

try :

l og . i n f o (” Going to sleep f o r %d s e c s ” % s e l f . t imeout )

time . sleep ( self . timeout )

except KeyboardInterrupt :

self . stop ( )

sys . exit (1 )

l og . i n f o (” Capture complete , stopping capture ”)

self . stop ( )

l og . i n f o (” Wait f o r capture to r e turn ”)

self . wait ( )

self . restart ( )

self . startStream ( )

self . run ( )

i f __name__ == ' main ' :
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try :

GetData_top_block ( ) . run ( )

except KeyboardInterrupt :

l og . i n f o (” Exiting ”)
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APPENDIX C

MATLAB Source for PowCapMobile Data Conversion

The IQ converters in the USRP store their digitized outputs as complex binary values, where

one channel is defined by the value of the real component and the other channel is defined

by the imaginary component.

This simple script converts 32 bit complex IQ data into real values stored in a column

vector.

%

% Copyright 2001 Free Software Foundation , Inc .

%

% This f i l e i s part o f GNU Radio

%

% GNU Radio i s f r e e so f tware ; you can r e d i s t r i b u t e i t and/ or modify

% i t under the terms o f the GNU General Publ ic L i cense as pub l i shed by

% the Free Software Foundation ; e i t h e r v e r s i on 3 , or ( at your opt ion )

% any l a t e r v e r s i o n .

%

% GNU Radio i s d i s t r i b u t e d in the hope that i t w i l l be us e fu l ,

% but WITHOUT ANY WARRANTY; without even the impl i ed warranty o f

% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

% GNU General Publ ic L i cense f o r more d e t a i l s .

%

% You should have r e c e i v e d a copy o f the GNU General Publ ic L i cense

% along with GNU Radio ; s e e the f i l e COPYING. I f not , wr i t e to

% the Free Software Foundation , Inc . , 51 Frankl in Street ,

% Boston , MA 02110−1301 , USA.

%

func t i on v = read_complex_binary ( filename , count )

%% usage : read complex b inary ( f i l ename , [ count ] )
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%%

%% open f i l ename and return the contents as a column vector ,

%% t r e a t i n g them as 32 b i t complex numbers

%%

m = nargchk (1 , 2 , narg in ) ;

i f ( m )

usage ( m ) ;

end

i f ( narg in < 2)

count = I n f ;

end

f = fopen ( filename , ' rb ' ) ;

i f ( f < 0)

v = 0 ;

e l s e

t = fread (f , [ 2 , count ] , ' f l o a t ' ) ;

f c l o s e ( f ) ;

v = t ( 1 , : ) + t ( 2 , : ) ∗i ;

[ r , c ] = s i z e ( v ) ;

v = reshape (v , c , r ) ;

end
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APPENDIX D

Python Source for PowCapMobile Data Conversion

and Analysis

D.1 Analysis Toolset

Here is our Python toolset for analyzing our collected data.

from gnuradio import gr

import numpy as np

import matplotlib . pyplot as plt

import scipy

from StringIO import StringIO

import time

import logging

import os

import sys

from datetime import datetime , timedelta

l og = logging . getLogger (” To File ”)

l og . setLevel ( logging . INFO )

l og . addHandler ( logging . StreamHandler ( sys . stdout ) )

class FindFile ( ) :

def __init__ ( self , folderPath , date , time ) :

self . path = folderPath

self . date = date

self . time = time

self . datetime = datetime . strptime ( self . date + self . time , '%y%m%d%H%M%S ' )

l og . i n f o (” Searching f o r file containing data at . . . ” )
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l og . i n f o ( self . datetime )

l og . i n f o ( ” . . . in path : ”+self . path )

f o r r , d , f in os . walk ( self . path ) :

file_list = f

#we only want to look at given path and not any deeper dirs

break

i f len ( file_list ) == 0 :

l og . warning (” No files found in given path ! ” )

e l s e :

l og . i n f o (”%d f i l e s found in path” % len ( f i l e l i s t ) )

#check f o r files with word ”mains” in them

file_list = [ k f o r k in file_list i f ' mains ' in k ]

#check f o r files with required start date

#file_list = [ k f o r k in file_list i f self . date in k ]

found_list = [ ]

file_list . s o r t ( )

#latest files f o r quick look

self . latestFiles = [ file_list [−4] , file_list [−3] , file_list [−2] , file_list←↩

[−1] ]

f o r files in file_list :

datetime_temp = datetime . strptime ( files [ 6 : 1 2 ] + files [ 1 3 : 1 9 ] , '%y%m%d%H%←↩

M%S ' )

i f self . datetime >= datetime_temp :

found_list . append ( files )

#p r i n t found_list

file_list = found_list

file_list . s o r t ( )

i f len ( file_list ) == 0 :

l og . warning (” No file found with requested date ”)

e l s e :

self . foundPath = [ file_list [−2] , file_list [−1] ]

l og . i n f o (” Found data files : %s ” % ' , ' . j o i n (map( s t r , s e l f . foundPath ) ) )

self . checkFile ( )
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#We check to see i f our file is large enough to likely contain our data

def checkFile ( self ) :

f o r chan in self . foundPath :

s = os . stat ( self . path + chan )

size_bytes = s . st_size

#define datetime of found file

file_datetime = datetime . strptime ( chan [ 6 : 1 2 ] + chan [ 1 3 : 1 9 ] , '%y%m%d%H%M%S ' )

#compute how far found file is from requested data

diff_datetime = self . datetime − file_datetime

#p r i n t ”%d seconds ” % d i f f t i m e

#since data is recorded at 17MB/s : 1 second = 1024∗1024∗17 bytes of data

i f diff_datetime > timedelta ( seconds = ( size_bytes /(1024∗1024∗17) ) ) :

l og . warning (” FileCheck : %s may not conta in reques ted data po int ” % chan←↩

[ 2 0 : 2 6 ] )

e l s e :

l og . i n f o (” FileCheck : %s i s l i k e l y with in range f o r reques ted data ” % chan←↩

[ 2 0 : 2 6 ] )

class ParseData ( ) :

def __init__ ( self , filePath , startSec , endSec , winSec , sample_rate = 1e6 ) :

plt . ion ( )

self . fig = plt . f i g u r e ( )

self . sub = self . fig . add_subplot (221)

self . sub2 = self . fig . add_subplot (223)

self . sub3 = self . fig . add_subplot (222)

self . sub4 = self . fig . add_subplot (224)

self . samp_rate = int ( sample_rate /2) #i and q channels are 1/2 complex rate

self . num_channels = 2

self . startpoint = startSec ∗ self . samp_rate #s e t startpoint in file

self . endpoint = ( endSec−startSec ) ∗ self . samp_rate #s e t endpoint in file

self . fileName = filePath #s e t file path

self . win_size = int ( winSec ∗ self . samp_rate )#s e t window s i z e in file

#note , self . samp_rate = 1 second of samples f o r each channel

fileobj = open ( self . fileName [ 0 ] )

fileobj2 = open ( self . fileName [ 1 ] )

jcount = 0

count = 0
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chunk_size = self . win_size ∗16 #reads 200K steps into file = 200ms

fileobj . seek ( int ( self . startpoint ∗ 16) )

fileobj2 . seek ( int ( self . startpoint ∗ 16) )

whi l e count < self . endpoint/self . win_size :

chunk = fileobj . read ( chunk_size )

chunk2 = fileobj2 . read ( chunk_size )

Data = np . reshape ( np . frombuffer ( chunk , dtype=scipy . complex64 ) , (−1 , 1) )#self .←↩

num_channels ) )

Data2 = np . reshape ( np . frombuffer ( chunk2 , dtype=scipy . complex64 ) , (−1 , 1) )#←↩

self . num_channels ) )

#p r i n t Data

l og . i n f o (” Plot %d of %d” % ( count +1, i n t ( s e l f . endpoint / s e l f . w i n s i z e ) ) )

l og . i n f o (” ( traversing %d seconds in %f second windows ) ” % ( i n t ( endSec−←↩

s t a r t S e c ) , winSec ) )

self . scope_data ( Data , Data2 )

#need sleep time f o r plotting

time . sleep ( . 0 5 )

count = count+1

raw_input (” press any key to exit ”)

def chunk ( self , fObject ) :

whi l e True :

segment = fObject . read ( int ( self . win_size ∗16) )

yield segment

def scope_data ( self , Data , Data2 ) :

dat1 = Data . r e a l

dat2 = Data . imag

dat3 = Data2 . r e a l

dat4 = Data2 . imag

i f not hasattr ( self , ”run_once ”) :

self . run_once = True

x = np . arange ( 0 , len ( dat1 ) )

self . l i n e = self . sub . p l o t (x , dat1 ) [ 0 ]

self . line2 = self . sub2 . p l o t (x , dat2 ) [ 0 ]

self . line3 = self . sub3 . p l o t (x , dat3 ) [ 0 ]

self . line4 = self . sub4 . p l o t (x , dat4 ) [ 0 ]

self . sub2 . set_title (” Line1 Current ( C4 ) ”)
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self . sub . set_title (” Line1 Voltage ( V3 ) ”)

self . sub4 . set_title (” Line2 Current ( C2 ) ”)

self . sub3 . set_title (” Line2 Voltage ( V1 ) ”)

l og . i n f o ( ”c_binary l ength : %d” % len ( Data ) )

l og . i n f o ( ” r e a l bin l ength : %d” % len ( dat1 ) )

l og . i n f o ( ”imag bin l ength : %d” % len ( dat2 ) )

x = np . arange (0 , len ( Data ) )

self . l i n e . set_data (x , dat1 )

self . line2 . set_data (x , dat2 )

self . line3 . set_data (x , dat3 )

self . line4 . set_data (x , dat4 )

self . fig . canvas . draw ( )

D.2 Test Bench

From this test bench, start time and end times and commands utilize the toolset to traverse

files, provide some optional processing, and either plot them or store them in new files.

from PowCapTools import ParseData

from PowCapTools import FindFile

def main ( ) :

fileName = ' /home/henry/ Nes lStore /vikram/powcapData/Jason−Drive /←↩

mains 130313 030126−chan 1 . dat '

start_at_second = 1

end_at_second = 20

window_second = 200e−3

sampRate = 1e6

analysis = ” p lo t ”

fileCat = ' /NASPOW/Data1/EX2−PowCapData/ '

year = ' 13 '

month = ' 04 '

day = ' 20 '
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datestr = year+month+day

hour = ' 11 '

minute = ' 15 '

second = ' 05 '

timestr = hour+minute+second

f_search = FindFile ( fileCat , datestr , timestr )

fileCatPath = [ fileCat + f_search . foundPath [ 0 ] , fileCat + f_search . foundPath [ 1 ] ]

p = ParseData ( fileCatPath , 0 , 20 , window_second , sampRate )

main ( )
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