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ABSTRACT: Ternary organic solar cells (OSCs) provide a convenient
and effective means to further improve the power conversion efficiency
(PCE) of binary ones via composition control. However, the role of the
third component remains to be explored in specific binary systems.
Herein, we report ternary blend solar cells by adding the narrow-band-gap
donor PCE10 as the mediator into the PBDB-T:IDTT-T binary blend
system. The extended absorption, efficient fluorescence resonance energy
transfer, enhanced charge dissociation, and induced tighter molecular
packing of the ternary blend films enhance the photovoltaic properties of
devices and deliver a champion PCE of 10.73% with an impressively high
open-circuit voltage (Vo) of 1.03 V. Good miscibility and similar
molecular packing behavior of the components guarantee the desired
morphology in the ternary blend films, leading to solar cell devices with
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over 10% PCEs at a range of compositions. Our results suggest that ternary systems with properly aligned energy levels and
overlapping absorption among the components hold great promises to further enhance the performance of corresponding binary

ones.

KEYWORDS: energy transfer, induced crystallization property, molecular mediator, nonfullerene acceptors, ternary solar cell

B INTRODUCTION

Organic solar cells (OSCs) have become an attractive
photovoltaic technology on account of the flexibility, low-
cost fabrication, and the great potential for high throughput
large-area production.' ™ Device performances have been
improved significantly in the past few years owing to the
great advancement of new materials, better control of film
morphology, and the optimization of device architecture.””"”
In particular, a recent burst of research interest in nonfullerene
acceptors (NFAs) represents the most exciting progress in the
field of OSCs. Owing to the greater tunability of optical and
electronic properties of NFAs, the power conversion efficiency
(PCE) of NFA-based OSC devices has exceeded 15% that is
far beyond the most efficient fullerene-based OSC devi-
ces.""™*° However, the disadvantages of intrinsically limited
absorption properties of organic photovoltaic materials and
inferior film morphology of some binary blend films impede
the further improvement of the PCE. The ternary blend
strategy exploits a single active layer containing three different
components,” ~>* which offers a mix-and-match solution to
improve spectral coverage,”*”*° realize the desirable energy-
level cascade,”””® facilitate exciton separation and charge
transport,” ' decrease the density of trap states, suppress
charge recombination,”””” and eventually achieve a high PCE.
At the same time, an in-depth understanding of the basic
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working mechanisms®**® that govern the charge dynamics of

devices would make it possible to fabricate ternary solar cells
with simultaneously enhanced open-circuit voltage (Voc),
short-circuit current density (Jsc), and fill factor (FF).***’

So far, a lot of novel NFAs with tunable energy levels and
excellent photovoltaic performances have been synthesized,
providing more choices for fabricating highly efficient ternary
OSCs. High-performing NFAs almost unanimously feature a
fused-ring core such as dithienothiophen[3,2-b]-pyrrolobenzo-
thiadiazole (TPBT),'**® dithienothiophen[3,2-b]-
pyrrolobenzotriazole (BZPT),*” indacenodithiophene
(IDT),** indacenodithieno[3,2-b]thiophene (IDTT),**
or their derivatives. All of these NFA molecules show good
solubility in chloroform, chlorobenzene, and even environ-
mentally benign hydrocarbon solvents. Ternary solar cells
based on these NFAs have exhibited excellent photovoltaic
performance over 14%.**~*" At the same time, insight into the
effect of the third component on the photophysical processes,
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Figure 1. (a) Chemical structures and (b) energy-level diagrams of PBDB-T, IDTT-T, and PCE10; (c) extinction coefficients of PBDB-T, IDTT-

T, and PCEIO0 in the films.
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Figure 2. (a) Typical J—V curves of the binary devices and the ternary device with the highest PCE. (b) Plots of Jc, Vo, FF, and PCE at different
PCE10 weight ratios. (c) The EQE curves of ternary devices with different PCE10 weight ratios. (d) Difference EQE spectra.

film morphology, and photoelectric conversion process has
also been investigated.

Recently, we reported a new A—D-—A-structured NFA
IDTT-T with a wide band gap, which contains two weakly
electron-deficient N-ethyl thiabarbituric acid terminal groups
and an electron-donating indacenodithienothiophene core.
When paired with a polymer donor for fabricating OSCs, the
devices showcase a high V¢ of 1.01 V, together with an energy
loss of 0.57 eV in 9.2% efficiency single-junction NFA OSCs."
The device has an attractive V¢, but suffers from relatively
low FF and J;, giving rise to only modest PCE that is less than
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10%. Inspired by the ternary strategies, here we report a new
kind of ternary OSCs by adding a narrow-band-gap polymer
PCE10 as a mediator to the PBDB-T:IDTT-T binary blend
system for elevating the FF and Jsc. Thanks to the efficient
energy transfer, induced crystallization properties, and the
improved charge-transfer efficiency, photovoltaic performance
of the ternary solar cells is considerably enhanced over the
corresponding binary devices, with a PCE enhancement from
8.99 to 10.73%, a Jgc increase from 13.15 to 15.78 mA cm™2,
and a FF increase from 64.21 to 66.02%.

https://dx.doi.org/10.1021/acsami.9b23516
ACS Appl. Mater. Interfaces 2020, 12, 16387—16393
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Table 1. Summary of Device Performance of Ternary Solar Cells at Different Weight Ratios of PCE10

PBDB-T:PCE10:IDTT-T Jsc (mA cm™)

10:0:10 13.15 (12.83)"
9:1:10 14.18 (13.79)"
8:2:10 14.80 (14.43)"
7:3:10 15.78 (15.62)"
5:5:10 16.15 (15.88)"
2:8:10 15.61 (15.17)°
0:10:10 14.72 (14.53)"

Voc (V) FF (%) PCE (%)
1.065 64.21 8.99” (8.66 + 0.09)°
1.055 65.02 9.737 (9.52 + 0.11)°
1.045 65.48 10.13" (9.97 + 0.14)°
1.030 66.02 10.73% (10.53 + 0.15)°
1.015 64.88 10.63" (10.42 + 0.15)°
1.005 63.40 9.94" (9.74 + 0.13)°
0.995 58.01 8.50” (8.23 + 0.11)°

“Jsc calculated from external quantum efficiency (EQE) curves. “The best PCE. “Average PCE from 10 devices.

B EXPERIMENTAL SECTION

The experimental details are shown in the Supporting Information.

B RESULTS AND DISCUSSION

Figure 1a shows the chemical structures of PBDB-T, IDTT-T,
and PCE10, and the corresponding energy-level alignment is
depicted in Figure 1b. Compared to the pioneering study by
Zhan et al. that employed ITIC as the narrow-band-gap NFA
for OSCs,*”” weakly electron-withdrawing N,N’-diethyl thio-
barbituric acid (TBA) end groups are employed to replace the
strongly electron-accepting cyano indone groups to give a
novel wide band-gap NFA IDTT-T. The lowest unoccupied
molecular orbital (LUMO) energy level of IDTT-T is —3.51
eV and is significantly higher than that of ITIC, which would
contribute to the high V¢ in binary and ternary OSC devices.
The absorption spectra of the thin films of PBDB-T, IDTT-T,
and PCE10 show the lowest-energy peaks at around 620, 627,
and 700 nm, with extinction coefficients of 8.15 X 10% 1.81 X
10°, and 1.10 X 10° cm™', respectively (Figure 1c). PCE10
exhibits the onset absorption at around 800 nm, which
broadens the photon harvesting range when compared with the
PBDB-T:IDTT-T blend film. Therefore, incorporation of
PCEI10 into the binary mixture could harvest photons more
effectively in the spectroscopic region between 670 and 790
nm (Figure S1). Furthermore, PBDB-T and IDTT-T show
overlapped absorption between 550 and 650 nm, confirming
effective photon harvesting in this energy range. Slightly
decreased absorption in the ternary blend films in this region
would not lead to a decrease in photocurrent due to the large
extinction coefficient. Overall, improved Jg¢ is anticipated on
account of the absorption features of such ternary blends.
OSC devices were fabricated based on an inverted structure
of indium-tin-oxide (ITO)/sol—gel ZnO/active materials/
MoO;/Al (see the Supporting Information for details of the
fabrication process). The representative current density—
voltage (J—V) curves of two binary OSCs and the best-
performing ternary solar cell under one standard sun
illumination are displayed in Figure 2a, and the main
photovoltaic parameters are summarized in Table 1. The
optimal PBDB-T:IDTT-T-based binary devices show a PCE of
8.99%, a moderate Jgc of 13.15 mA cm™? and a notably high
Voc of 1.065 V, which correlates well with the large gap
between the LUMO energy level of IDTT-T and the highest
occupied molecular orbital (HOMO) of PBDT-T. The
PCE10:IDTT-T-based binary solar cell shows a PCE of
8.50%, a higher Jc of 14.72 mA cm™?, and an inferior FF of
58.01%. For the ternary solar cells, PBDB-T:PCE10 weight
ratios are progressively varied, while the overall donor/
acceptor ratio is fixed at 1:1. Figure 2b shows that the Jsc
values of the ternary solar cells increase significantly, which
peaks at S0 wt % PCE10. FF values of the devices enhance to
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66.02% when 30 wt % PCE10 is employed as the third
component and then decrease. Contrary to the trends in Jgc
and FF variations, V¢ is monotonically decreased upon
increasing the weight ratio of PCE10. Such V¢ dependence
on compositions in ternary blend devices indicates that both
PBDB-T and PCEI1O effectively collect the holes without
energy-level pinning. The HOMO level of PCE10 is higher
than PBDB-T, thus PCE10 may potentially act as trapping site
for holes from PBDB-T. If this occurs, however, the energy
level will be pinned to PCE10 and a constant Vi irrelevant to
the composition of PCE10 is expected, which contrasts with
our observations. The lack of energy-level pinning also
corroborates well with the enhanced hole mobility in ternary
devices (see discussions later), which supports that PCE10
does not act as hole trapping sites. On the other hand, PCE10
acts as an electron relay station between PBDB-T and IDTT-T
due to the cascade-aligned LUMO energy levels (Figure 1c)
that facilitate electron transfer.”’ In other words, photoinduced
electrons from PBDB-T could transfer to either PCE10 or
IDTT-T and the electrons from excited PCE10 to IDTT-T are
also effective.

External quantum efficiency (EQE) spectra of the
corresponding devices were measured to prove the Jsc
improvement and confirm the contribution of ternary
components to the photocurrent. As shown in Figures 2c
and S2, the PBDB-T:IDTT-T-based binary device shows a
primary EQE response within the limited range of 500—700
nm, which results in the low integrated current density (J;,,) of
12.83 mA cm™> EQE response of the PCE10:IDTT-T-based
binary solar cell is mostly in the spectrum range between 500
and 800 nm (calculated J,: 14.53 mA cm ). The EQE
difference is plotted in Figure 2d, showing that EQE response
of the ternary solar cell in the range of 700—800 nm is
gradually enhanced with the addition of PCE10 from 0 to 100
wt %, which correlates well with the absorption feature of
PCE10. The EQE values in the range between 550 and 650 nm
are also increased regardless of the slightly decreased
absorption intensity when the component of PCEI10 is less
than S0 wt %. As we know, EQE depends on incident
photoabsorption and free charge carrier recombination and
EQE values would elevate when the increased free carriers
induced by light absorption are large than the decreased free
carrier due to the recombination. In this contribution, the
absorption property of ternary blend films within the region of
550—650 nm is no longer the limited factor in EQE
improvement because of its large extinction coefficient and
the enhanced exciton separation and charge carrier collection
would be responsible for the increased EQE values. In
addition, the Jsc values from integrating the EQE spectra are
close to those from device measurements (Table 1).

https://dx.doi.org/10.1021/acsami.9b23516
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Figure 3. (a) PL spectra of PBDB-T:IDTT-T, PCE10:IDTT-T binary blend films and PBDB-T:PCE10:IDTT-T ternary blend film; (b) ], versus

Vg curves of solar cells with different amounts of PCE10.

To understand the improvement of device performance and
related physical processes in the ternary blend systems, steady-
state photoluminescence (PL) spectroscopic studies of
individual component films and different ternary thin films
were performed. As shown in Figure S3, the binary PBDB-T
and PCE10 blend film shows PL behavior characteristic of
fluorescence resonance energy transfer (FRET). The PL peaks
for PBDB-T and PCE10 were at 680 and 760 nm, respectively.
For the PBDB-T:PCE10 binary blend film, there is only one
maximum peak at the position of 753 nm, which is similar to
the PL peak position of PCE10. In addition, the emission peak
of PBDB-T shows an obvious overlap with the absorption of
PCE10. The eflicient nonradiative energy transfer also
indicates the well-mixed and close packing (within 10 nm)
properties,”’ which is also likely responsible for the high
component tolerance. The ternary blend film shows more
efficient quenching than corresponding binary blend films
(Figure 3a), an indication of the improved charge-transfer
process when PCE10 is added as a molecular mediator.
Further studies on the charge generation and separation
process in ternary devices are carried out by investigating the
saturation photocurrent density (J,,,) and charge separation
probabilities P(E,T).>> As shown in Figure 3b, the higher
photocurrent density (J,,) of ternary devices at a low effective
voltage (V,¢) indicates more efficient exciton separation and
charge collection. The P(E,T) of the devices, calculated based
on the J;/Jq ratio under short-circuit conditions, are 95.9,
96.3, and 94.2% for PBDB-T:PCE10:IDTT-T-based devices at
weight ratios of 10:0:10, 7:3:10, and 0:10:10, respectively. The
ternary device has the highest P(E,T) value, corresponding to a
higher charge dissociation rate that leads to improved Jg- and
FF. Another parameter, the maximum exciton generation rate
(Gpay), is calculated by the equation J,,, = gLG,,,,, where q is
the elementary charge and L is the film thickness. For PBDB-
T:PCE10:IDTT-T-based devices at weight ratios of 10:0:10,
7:3:10, and 0:10:10, the corresponding G, are 8.57 X 10¥
m> s (J,, = 1371 Am™2),1.02 X 10®¥* m™3s7! (J,, = 163.8
A m™), and 9.76 X 10”7 m™> s (J, = 156.1 A m™2),
respectively. The highest G,,,, in the ternary cell indicates that
more excitons are generated after adding PCE10 as the third
component, which is also associated with broader absorption,
efficient FRET between PBDB-T and PCE10, and charge
transfer in the ternary blend system. We also investigated the
carrier-transport property by using the space charge limited
current (SCLC) method (see the Supporting Information and
Figures S4 and SS for details of device fabrication and
measurement). The hole and electron mobilities are 5.01 X
10™* and 2.52 X 107* cm® V7! s7! for the binary PBDB-

T:IDTT-T-based device and 5.32 X 107* and 2.87 x 10™* cm’
V! s7! for the best ternary device, respectively. Both hole and
electron mobilities are increased in the ternary device,
corroborating well with the enhanced FF and Jsc in such
solar cells.

Transmission electron microscopy (TEM) studies reveal
that (Figure 4) there is no obvious phase separation in the

Figure 4. TEM images of PBDB-T:PCE10:IDTT-T blend films at
different weight ratios.

PCE10:IDTT-T binary blend film, which is not ideal for
charge transportation and leads to inferior FF of 58.01%. For
the PBDB-T:IDTT-T binary blend film, some degree of
nanofibrillar phase separation emerges but is not clearly
defined. The fiber-like bicontinuous charge transportation
networks are more obvious in PBDB-T:PCE10:IDTT-T-based
ternary blend films at weight ratios of 7:3:10, 5:5:10, which is
conducive to balancing charge generation and transportation
and therefore lead to higher Js- and FF. The width for the
nanofibers is around 15 nm in the 7:3:10 ternary thin film, in
accordance with the ideal size for nanophase segregations.
More insight into the effect of PCE10 on the ternary blend
film morphology is obtained from the grazing incidence wide-
angle X-ray scattering (GIWAXS) experiment. The scattering
patterns of three pure films and the ternary blend films with
different weight ratios of PCE10 are shown in Figures S6 and
Sa. The GIWAXS patterns of PBDB-T and PCEI10 indicate
that these two electron donors form crystallites with a
preferred face-on orientation. X-ray scattering arcs of IDTT-
T were observed along both in-plane and out-of-plane (OOP)
directions, suggesting the random arrangement of crystallites
with no preferred orientation. The corresponding OOP line-
cut profiles (Figure Sb and S7) display (100), (200), and

https://dx.doi.org/10.1021/acsami.9b23516
ACS Appl. Mater. Interfaces 2020, 12, 16387—16393
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Figure 5. (a) GIWAXS patterns and (b) OOP line cuts of PBDB-T:PCE10:IDTT-T blend films at different weight ratios.

(300) peaks at 0.31, 0.62, and 0.93 A™" and (010) peak at 1.71
A7" in the OOP direction, indicating lamellar stacking of
PBDB-T main chains via 7—7 stacking. PCE10 also shows an
(010) peak at 1.59 A™' with a d spacing of 3.95 A. For the
ternary blend films with higher PBDT-T compositions, the
OOP line cut shows the third-order reflection peak at 0.93 A™,
arising from the lamellar packing of PBDT-T, as well as two z-
stacking peaks that are associated with PBDT-T and IDTT-T,
respectively. The high-order peak at 0.93 A™" disappeared for
the PBDB-T:PCE10:IDTT-T blends at weight ratios of 5:5:10,
2:8:10, and 0:10:10, together with the blending of the two 7-
stacking peaks into indistinguishable reflection, which may
suggest that the suppressed lamellar stacking correlates to the
decreased FF and device performance. Furthermore, closer
m—m stacking of the conjugated backbone was observed when
the weight ratio of PCE10 increased from 0 to 30 wt %. The d
spacing of one of the 7-stacking peaks decreased from 4.24 A
for the 10:0:10 blend to 4.12 A for the 7:3:10 blend film. The
tighter packing would facilitate carrier transport and suppress
charge recombination, which also correlates well with the
enhanced carrier mobility measured by the SCLC method.

B CONCLUSIONS

Our work have demonstrated that the PCE of PBDB-T:IDTT-
T-based solar cells could be enhanced by adding a narrow-
band-gap polymer PCE10 as the third component. The
extended absorption, efficient FRET, enhanced charge
dissociation, and tighter molecular packing of the ternary
blend films in this contribution increase the Jgc from 13.15 to
16.15 mA cm™2 The optimized ternary blend solar cells deliver
a champion PCE of 10.73% with a Jc of 15.78 mA cm™2, a FF
of 66.02%, and a high Vi of 1.03 V. It also represents a rare
example for the ternary solar cell device with the PCE larger
than 10% together with a V¢ greater than 1 V. In addition, the
ternary OSC devices exhibit over 10% PCEs at a range of
compositions as a result of good component miscibility and
favorable film morphology within a certain composition
window. This work proves that efficient energy transfer and
induced crystallization can improve the performance of ternary
devices. More comprehensive studies associated with FRET
and crystallization to improve the photovoltaic properties are
currently ongoing in our lab.
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