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Diffusion-controlled evaporating

perfectly wetting meniscus in a

channel

Jean-Pierre Njante∗ and S.J.S. Morris

Department of Mechanical Engineering

University of California

Berkeley, California 94720

July 28, 2012

Though diffusion-controlled evaporation from capillaries has been studied1

since the work of Stefan, except for the work of Derjaguin et al. (1965), the2

interface is treated as a plane surface having known contact angle of 90◦.3

Here, by contrast, the interface location is determined as part of the solution4

of a free boundary problem coupling hydrodynamic and diffusion fields. We5

make the following simplifying assumptions. (a) Liquid and vapour at the6

interface are in local thermodynamic equilibrium; as a result, evaporation is7

limited by diffusion of the vapour molecules in the gas. (b) The system is8
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effectively isothermal; though evaporation induces liquid temperature differ-9

ences, they are kinetically negligible. Given (a) and (b), the vapour partial10

pressure is related to the liquid pressure by the Kelvin equation. Though11

the hydrostatic contact angle is zero, the stationary evaporating meniscus12

exhibits an apparent contact angle; Θ is determined chiefly by a capillary13

number Ca = µℓVs/γ based on surface tension γ, liquid viscosity µℓ, and a14

velocity scale Vs set by evaporation. Though microphysics must be included15

in the free boundary problem in order to resolve a hydrodynamic singularity16

at the contact line, Θ is insensitive to the microphysical details.17

1 Introduction18

Poulard et al. (2005) have studied experimentally and theoretically the evap-19

oration of a droplet of chemically pure liquid from a perfectly wetted sub-20

strate into a mixture of vapour phase with an inert component. For their21

experimental conditions, evaporation is controlled by steady diffusion within22

the gas mixture. According to the well-known solution for that diffusion23

problem, evaporation is concentrated near the apparent contact line. Con-24

servation of mass requires liquid flow towards the contact region, and the25

pressure differences induced to drive this liquid flow also distort the liquid-26

gas interface. As a result, the perfectly wetting evaporating system exhibits27

an apparent contact angle: Θ is a property of the small-scale flow induced28

by the evaporation, and vanishes (for a perfectly-wetting system) at equi-29

librium. The authors show that the time evolution of the droplet planform30

radius can be understood, at least qualitatively, by assuming the droplet to31
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be a spherical cap, and combining a mass balance including evaporative losses32

with a constitutive equation relating Θ to evaporation rate and to contact33

line velocity. This constitutive equation was written down using heuristic34

reasoning.35

As a first step towards deriving a quantitative expression for the apparent36

contact angle in that geometry, here we pose and solve completely the free37

boundary problem describing the evaporating meniscus of a perfectly wetting38

liquid in a long narrow channel. This geometry offers two advantages over39

that of the droplet. The meniscus can be kept stationary in an experiment40

and, provided the capillary number based on the evaporatively–induced liq-41

uid flow is small, the mathematical problem is one–dimensional. Owing to a42

separation of lengthscales, its numerical solution is not trivial, however. In43

order for vapour diffusion from the meniscus to the channel mouth to be ap-44

proximately one–dimensional, the channel must be long compared with the45

wall spacing. As a result, the thin wetting films on each wall are also long.46

As shown by Derjaguin et al.(1965), in very narrow channels, mass transport47

by liquid flow along these films can be comparable to the axial mass flow by48

diffusion along the gas column. Our numerical scheme must resolve those49

large–scale axial features, in addition to the small–scale axial flow occur-50

ring within the apparent contact region where the apparent contact angle is51

formed. Using these numerical solutions, we show that the meniscus exhibits52

an apparent contact angle Θ varying as the cube root of the capillary number53

based on evaporation rate. (Of course we also predict the evaporation rate54

as a function of experimentally–controllable parameters.)55
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2 Boundary Value Problem56

Figure 1 shows the geometry of interest: an evaporating meniscus of a com-57

pletely wetting pure liquid with uniform surface tension γ is formed in the58

gap between two horizontal flat plates of gap thickness 2a. The plates are59

initially at common temperature Tw with the surroundings. The pure liquid60

evaporates into a binary mixture of its own vapour and an inert component.61

Evaporation occurs because the vapour partial pressure decreases from its62

saturation value psat at the bulk meniscus to φpsat at the channel exit; here,63

φ is the relative humidity in the distant gas and psat the saturation vapour64

pressure at the uniform temperature Tw of the channel walls. Evaporation65

draws liquid into the contact region; near the wetted walls, the resulting66

pressure differences distort the phase interface, creating an apparent contact67

angle, Θ. We define the origin O at the point where the visible meniscus68

appears to intersect the lower wall, and define L as the distance from O to69

the channel exit; to keep the interface fixed relative to the wall, liquid is con-70

tinuously fed into the channel at the same rate 2ṁ as it is being evaporated.71

Because the liquid is completely wetting, the visible meniscus is preceded72

by a thin wetting film; we assume that within this thin film, disjoining pres-73

sure Π is related to film thickness h∗ by Π = A/h3
∗
, where A is the dispersion74

constant. Together A and γ define a length scale (A/γ)1/2; this length scale75

is of molecular dimensions. We assume that the channel gap thickness 2a is76

large compared with the molecular scale; 1 ≫ [A/(a2γ)]1/2. Owing to this77

separation of scales, the extended meniscus has an inner–and–outer struc-78

ture: for φ = 1, the system is in hydrostatic equilibrium; for this case, Renk79

et al (1978) showed that the outer visible meniscus is a semicircle of radius80
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a; the inner solution consists of a non–uniform wetting film in which the81

capillary and disjoining pressures are comparable in magnitude. Far from82

the apparent contact line, defined by the intersection of the semicircle with83

the channel walls, the thickness of the wetting film approaches the uniform84

value (aA/γ)1/3; this thickness is, of course, small compared with a. In this85

paper, we analyse the effect of evaporation on that hydrostatic picture.86

To analyse the evaporating meniscus, we use the separation of scales de-87

scribed above. The inner region now consisting of the quasi–parallel liquid88

film, and the corresponding portion of the gas column. Within this region,89

the lubrication approximation holds within the film and, across the gas col-90

umn, the partial pressure is uniform. Owing to these two conditions, the91

unknowns depend only on distance along the wall, and the mass transport92

within the inner region is determined by problem (1) containing only ordinary93

differential equations. For the gas, the outer region is bounded by the visible94

circular arc meniscus, and the chord joining the points where that meniscus95

intersects the channel walls. Within this region, the vapour partial pressure96

p∗v satisfies the steady diffusion equation subject to the boundary condition97

that on the gas–liquid interface, p∗v = psat, together with the boundary con-98

dition that on the chord, p∗v matches to the solution of the inner problem.99

We assume that the capillary number νℓṁ/aγ based on liquid kinetic100

viscosity νℓ and (half) the evaporation-rate ṁ is small compared with unity.101

This condition ensures that on the length scale a, the interface remains a102

circular arc even in the presence of evaporation. Within the contact region,103

however, the pressure differences required to drive liquid towards the region of104

maximum evaporation become sufficiently large to distort the phase interface.105
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Within this region, the unknowns p∗v(x∗), p
∗

ℓ(x∗), h∗(x∗), and the constant ṁ106

are determined by the following free boundary value problem,107

ṁ =
h3
∗

3νℓ

dp∗ℓ
dx∗

+
aDv

RvTw

dp∗v
dx∗

, (1a)

p− p∗ℓ = γ
d2h∗

dx2
∗

+
A

h3
∗

, (1b)

p∗v = psat +
ρsat
ρℓ

(p∗ℓ − pb); (1c)

p∗v(−L) = φpsat, p∗v(x∗ → a) → psat, (1d,e)

h∗(−L) =

(

A

p− p∗ℓ

)
1

3

,
d2h∗

dx2
∗

(x∗ → a) → 1

a
(1f,g)

where ρℓ is the liquid density, pb the bulk liquid pressure, p the total pressure108

in the gas, Rv the specific gas constant, Dv the binary diffusion coefficient,109

and ρsat the saturation vapour density at Tw. We now interpret (1).110

Equation (1a) is a statement of mass balance across a cross-section of the111

channel. It expresses the mass flow rate ṁ due to evaporation in the lower112

half of the channel as the sum of the mass flow rates occurring within the113

liquid and gas phases. On the right hand side, the first term describes the114

mass flow due to a Poiseuille flow within the thin quasi-parallel liquid film;115

the second term describes the mass flow by axial diffusion of vapour through116

the gas column, and is merely the simplified form of Fick’s first law,117

ṁx = − aDv

RvTw

dp∗v
dx∗

, J∗ =
dṁx

dx∗
(2a,b)

Equation (2) neglects the motion induced within the gas mixture; it is a118

good approximation when the saturation vapour pressure is small compared119
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with the total pressure in the gas. The full form of that equation, including120

induced motion in the gas, is given as equation (28a) in appendix A.3. The121

mass balance equation (1a) also neglects Marangoni flows; this is a good122

approximation if the liquid is chemically pure, and temperature differences123

along the liquid–gas interface are negligibly small.124

Equation (1b) is a statement of force balance normal to the interface. It125

states that the pressure force on an interfacial element balances the resultant126

force due to capillarity and disjoining pressure. On the right hand side, the127

first term gives the equation of capillarity for a slowly tapered film, whose128

slope is significantly small compared with unity; the second term describes129

the disjoining pressure for a uniform film. Here, the adsorption forces are re-130

stricted to the London-van der Waals dispersion forces. Even though Truong131

and Wayner (1993) and Levinson et al (1993, figure 3) showed that the in-132

verse cube dependence for the disjoining pressure is appropriate only for film133

thicknesses less than 20nm, we use it here as the effects of disjoining pressure134

become insignificant for film thicknesses greater than that anyway.135

Equation (1c) is a simplification of the Hertz-Knudsen equation, see the136

discussion in appendix A.1. It states that liquid and vapour at the interface137

are in local thermodynamic equilibrium; as a result, evaporation is controlled138

by stationary diffusion of the vapour molecules in the gas. Though evapora-139

tion induces liquid temperature differences, we have assumed that they are140

kinetically negligible; this approximation is justified in Appendix A.2. In the141

model of the Stefan diffusion tube described by Bird et al (2006, §18.2), the142

kinetic equation (1c) is simplified by assuming that liquid pressure differ-143

ences are negligibly small, even within the contact region where evaporation144
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is strongest. By accounting for liquid pressure differences, equation (1c)145

couples the dynamical processes in the liquid to those in the gas phase.146

Boundary conditions (1e,g) are obtained by matching the outer limit of147

the inner solution to the inner limit of the outer solution. Specifically, bound-148

ary condition (1g) ensures that the interface curvature at the outer edge of149

the inner region matches smoothly to the uniform curvature of the outer150

circular arc meniscus; the other boundary condition (1e) is a matching con-151

dition on the vapour partial pressure. The vapour pressure at the outer edge152

of the inner region is equal to the saturation vapour pressure because for153

small capillary number, changes in liquid pressure along the outer meniscus154

are negligibly small. Therefore p∗ℓ = pb to a first approximation, and it follows155

from equation (1c) that p∗v = psat along the outer circular arc meniscus.156

Because capillary pressure is negligible within the long tapered wetting157

film, boundary condition (1f) on the film thickness at the channel mouth158

is obtained by setting surface tension γ = 0 in equation (1b). This is the159

thin film solution described by Derjaguin et al (1965). The other boundary160

condition (1d) fixes the vapour pressure at the channel mouth. Unlike the161

outer boundary conditions (1e,g), we did not use the asymptotic forms for162

the film thickness and liquid pressure along the long tapered film because163

that asymptotic solution contains the mass flow ṁ, which is not known a164

priori. According to equation (1g), the film thickness grows parabolically165

with distance as x∗ → a; the effects of disjoining pressure are therefore166

negligible at the outer edge of the inner region. Consequently, the outer limit167

of the stress equation (1b) requires that we chose the constant pb = p− γ/a.168

We non-dimensionalize (1) by letting,169
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Θs =

(

A

γa2

)
1

6

, hs = aΘ2

s, xs = aΘs (3a-c)

where hs and xs are the characteristic dimensions of the contact region for170

hydrostatic state (Renk et al. 1978, equations 2, 10, 21). In the numerical171

analysis described in §3, we start with the hydrostatic solution and then use172

continuation to obtain solutions for φ < 1; the film thickness scale hs and173

the axial scale xs are convenient choices for that numerical analysis.174

We introduce dimensionless variables (without asterisks) by175

pℓ =
a

γ
(p∗ℓ − pb), x =

x∗

xs
, h =

h∗

hs
. (4a-c)

To non-dimensionalize (1), we first eliminate the vapour partial pressure in176

favour of the liquid pressure using equation (1c); then substituting (4) into177

the resulting problem (1), we find that the unknowns h and pℓ satisfy the178

following dimensionless boundary value problem: for −χ/Θs ≤ x < ∞,179

d

dx

[(

h3

3β
+ 1

)

dpℓ
dx

]

= 0, (5a)

1− pℓ =
d2h

dx2
+

1

h3
; (5b)

pℓ(−χ/Θs) = −α, pℓ(x → ∞) → 0, (5c,d)

h(−χ/Θs) =

(

1

1 + α

)
1

3

, h(x → ∞) → x2

2
(5e,f)

We have differentiated equation (1a) once so as to eliminate the integration180

constant ṁ. Boundary conditions (5d,f) are applied at infinity because the181
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slope unit Θs << 1 owing to the separation of length scales described at182

the beginning of this section. However, boundary conditions (5c,e) are not183

applied at minus infinity because for x < 0, the solution continues to depend184

upon χ through the length of the gas column. Matching condition (1g) on185

the interface curvature far from the apparent contact line has been integrated186

and replaced with its asymptotic form (5f). Because the independent variable187

now appears explicitly in that boundary condition, the problem is no longer188

autonomous; as a result, the origin is fixed at the apparent contact line and189

can no longer be arbitrarily chosen. Four independent parameters appear in190

the dimensionless boundary value problem, namely; α, β, χ, and Θs.191

α =
aρℓ
γρsat

psat(1− φ), β =
νℓρsatγDv

ρℓRvTwA
, χ =

L

a
(6a-c)

According to equations (1c, d, e), the liquid pressure decreases from pb at the192

bulk meniscus to pb − ρℓpsat(1− φ)/ρsat at the channel mouth; α is the ratio193

of the pressure-difference ρℓpsat(1− φ)/ρsat driving the resulting flow to the194

pressure-difference γ/a across the bulk meniscus. For fixed α and position195

x, the parameter β controls the fraction of the total mass flow transported196

by axial diffusion in the gas. The parameter χ is the channel’s aspect ratio.197

For use in subsequent analysis, we define198

f =
ṁ

ṁs
where ṁs =

aDvpsat
RvTwL

(1− φ) (7a,b)

According to the simplified form of Fick’s law, ṁs is the diffusive transport199

caused by a gradient (1− φ)psat/L of vapour concentration. The integration200

constant f is the ratio of the total evaporation from the capillary to ṁs.201
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Table 1 shows representative values for the parameters in the theory. We202

have used A = 10−21J for the dispersion constant, a = 10µm for capillary203

radius, and φ = 0.3 for the relative humidity in the distant gas. All material204

properties are evaluated at the uniform wall temperature Tw = 298K. The205

slope unit Θs is small as expected whereas α is generally large, except when206

the system is near hydrostatic equilibrium. In general, 0.01 < β < 1.207

3 Numerical Method208

The governing equations (5) are numerically solved using the NAG routine209

D02TKF, which uses the collocation method to approximate the solution210

at certain specified locations within the problem domain; solution values211

anywhere else within the problem domain are obtained using polynomial212

interpolation. The routine uses variable steps in x with deferred correction.213

The codes and numerical scheme are discussed at length in Njante (2012).214

We use the finite domain size x = [−χ/Θs, 1/Θs] for the computation.215

Since the slope unit Θs << 1, we solve for Θs → 0; and for α → ∞ because216

then a contact angle is established. These limiting solutions complicate the217

analysis for the following two reasons: first, the resulting system of non-linear218

algebraic equations, for the coefficients of the basis functions, becomes very219

ill-conditioned as α → ∞; secondly, the problem domain becomes infinite in220

the limit as Θs → 0. This work alleviates both difficulties by using continu-221

ation in the parameters α and Θs. Specifically, numerical solutions are first222

obtained for the hydrostatic case α = 0 and Θs > 0 using the initial approx-223

imations; p = 0 and h = 1. The obtained solutions are then used as initial224
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guesses in the solution for α = α + ∆α and Θs = Θs − ∆Θs. The process225

is repeated until we obtain solutions for the values α and Θs that we desire.226

If the value of Θs is not too small, then continuation in Θs is unnecessary.227

For a desired value of Θs → 0, continuation must be used in order to avoid a228

possible numerical singularity in the Jacobian used in the Newton iteration.229

Figure 2 compares the numerical solution of problem (5) without approx-230

imation with the analytic solution obtained by neglecting capillarity in the231

differential equations (Njante 2012, equation 3.2). Within the long slowly232

tapered section of the meniscus, capillarity is negligible. This explains the233

good agreement between the two solutions in that part of the meniscus. The234

agreement confirms the robustness and accuracy of our numerical scheme.235

In the thermal model, DasGupta et el (1993) integrated the corresponding236

equations using the shooting method. This problem differs from the thermal237

problem because the solution continues to depend on both constants in the238

starting series. It is for this reason that we decided to solve the problem239

as a boundary value problem. One consequence of solving the problem as a240

boundary value problem is that the contact angle cannot be directly obtained241

from the model problem using a local analysis around the contact region;242

unless the constant k described in §4 is obtained using an iterative process.243

It is for this reason that we scale the problem, making sure that the interface244

curvature does not vanish at the outer edge of the problem domain. Once245

the numerical solutions are obtained on these set of scales, the contact angle246

can then be extracted from the computed values of h as explained in §5.247
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4 Rescaling the equations248

By its definition, the apparent contact angle Θ = bΘs, where the proportion-249

ality constant b is obtained by solving problem (5). Because the solution to250

problem (5) is a function of the parameters α, β, χ and Θs, so is the propor-251

tionality constant: b = b(α, β, χ,Θs). Though problem (5) is conveniently252

solved numerically, obtaining a correlation between b and the control param-253

eters is non-trivial. For this work, dimensional analysis is used to obtain a254

correlation between b and the control parameters α, β, χ,Θs. The correlation255

coefficient is obtained by comparing the result from dimensional analysis to256

the numerical solution to problem (5). To begin, we rescale (1) by letting257

ηs =

(

νℓaDvρsat
RvTwρℓ

)
1

3

, ξs =

(

γρsatLηs
ρℓpsat(1− φ)

)
1

3

(8a-c)

The thickness scale ηs is the film thickness at which diffusion along the gas258

column balances liquid flow along the film. The length ξs is the axial scale259

at which Poiseuille flow driven by gradient in capillary pressure balances260

the mass loss from the capillary. By their definition, both length scales are261

independent of the dispersion constant A. The axial scale ξs is a decreasing262

function of the potential difference psat(1− φ) driving the evaporation.263

Table 2 shows estimates for the film thickness scale ηs and axial length264

scale ξs for different channel sizes. We have used A = 10−21J for the dis-265

persion constant, L = 5a for the film length, and φ = 0.3 for the relative266

humidity in the distant gas. Material properties are evaluated at the uniform267

wall temperature Tw = 298K. The material considered is water. As can be268

seen from the table, the axial scale ξs << a and the apparent contact angle,269
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which is proportional to the slope unit ηs/ξs, is about a tenth of a radian.270

We now define new variables by271

η =
h∗

ηs
, ξ =

x∗

ξs
(9a,b)

Substituting these new variables into problem (1), we find that the interface272

shape η satisfies the following boundary value problem: for −∞ < ξ < ∞,273

[

η3

3
+ 1

] [

3β

ση4
dη

dξ
− d3η

dξ3

]

= f ; (10a)

as ξ → ∞ :
d2η

dξ2
→ 1

σ
(10b)

as ξ → −∞ : η →
(

β

c− σfξ

)
1

3

(10c)

The domain is the real line because ξs << a as shown in Table 2. According274

to the mass balance equation (1a), for h∗ << ηs, transport is by diffusion275

along the gas column; boundary condition (10c) on the film thickness at276

minus infinity is therefore obtained by neglecting both capillarity and film277

transfer in equation (10a). The integration constant c is obtained by match-278

ing the thin film solution (10c) to the film thickness at the channel exit. At279

the channel exit, ξ = −L/ξs and η3 = 1/β(1+α), so that c = β2(1+α)−αf .280

The pressure ratio281

σ =

(

α

χ
Θsβ

1/6

)2/3

(11)

compares the pressure jump γηs/ξ
2
s across the interface within the region282

where evaporation is maximised to the pressure jump γ/a across the interface283
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at infinity. A contact angle is thus formed if σ >> 1. To verify this result,284

we apply the limit σ → ∞ to equations (10) to show that η satisfies285

[

η3

3
+ 1

]

d3η

dξ3
= −f ; with

d2η

dξ2
→ 0 as ξ → ∞, (12a,b)

and a matching condition at −∞, to be explained. According to the inner286

problem (10), the film thickness grows parabolically with distance as ξ → ∞.287

This parabolic growth is necessary for matching the inner solution to the288

circular arc meniscus described in §2. The limit σ → ∞ is singular for two289

reasons: first, disjoining pressure is negligible; an inner region Ia is therefore290

necessary to satisfy the thin film boundary conditions. Secondly, because291

the interface curvature vanishes at ∞, according to (12b), the film thickness292

grows linearly with distance as ξ → ∞; as a result, problem (12) does not293

describe the parabolic arc meniscus. An outer region Ic is therefore necessary;294

otherwise, matching to the circular arc meniscus will be impossible. The two295

regions, i.e Ia and Ic, are connected together by an intermediate region Ib.296

We integrate the intermediate problem (12) to show that for ξ → ∞,297

dη

dξ
= k − 3f

2k3
ξ−1 + o (1) , p = − 3f

2k3
ξ−2 + o (1) (13a,b)

where k is an integration constant. Equation (13b) shows that the the vapour298

pressure asymptotically approaches the saturation pressure at the outer edge299

of the intermediate region; as a result, the vapour pressure is asymptotically300

equal to the saturation pressure throughout the entire region described by301

the parabolic are meniscus; evaporation from the parabolic arc meniscus is302

therefore asymptotically negligible. All the evaporation thus occurs within303
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sub-regions Ia and Ib. However, as concluded by Njante(2012, equation 3.4),304

for α → ∞, evaporation from the precursor film is negligible; as a result, the305

intermediate region Ib determines the total evaporation from the capillary.306

Equation (13a) shows that the apparent contact angle is well defined. The307

correction term of O (ξ−1) is included to stress that the slope approaches a308

limit at infinity. The stationary evaporating meniscus thus differs from the309

moving isothermal meniscus. The dynamic contact angle in that problem310

is poorly-defined: though the curvature vanishes at infinity, the slope there311

continues to grow as (ln ξ)1/3 (see de Gennes 1985, Equation 4.29). The slope312

thus depends weakly on position x whereas in the present case, it approaches313

a limit at infinity. Because the slope approaches a limit at the outer edge314

of the intermediate region, an apparent contact angle Θ is established there.315

Specifically, Θ = (ηs/ξs)k. Comparing with Θ = bΘs, we find that316

b = kβ1/6
√
σ where k = lim

σ→∞

lim
η→∞

(

dη

dξ

)

. (14a,b)

We have used equations (3a,6) to express ηs/ξsΘs as a function of the control317

parameters. By (14b), a contact angle is established for σ → ∞. However,318

because Θ ∼ ηs/ξs, the expression for Θ does not contain a/ξs. Consequently,319

the contact angle Θ can be of order unity, even though σ = aηs/ξ
2
s >> 1.320

5 Obtaining b numerically321

According to boundary condition (1f), the interface curvature approaches a322

constant at the outer edge of region I; the film thickness thus grows parabol-323

ically with distance as x → ∞. If the parabola so defined has a zero, then a324
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contact angle is defined by the slope at h = 0. Since the entire interface does325

not have a constant curvature, an apparent contact angle is defined by first326

computing the constant curvature profile for large h, and then extrapolate327

down to h = 0. To give a precise definition of Θ using this method, we multi-328

ply the asymptotic relation d2h/dx2 ∼ 1 by 2dh/dx, and then integrate once329

in x to show that (dh/dx)2 ∼ 2h + b2, where b2 is the integration constant.330

We therefore use the definition Θ = bΘs, where the integration constant331

b2 = lim
σ→∞

lim
h→∞

[

(

dh

dx

)2

− 2h

]

(15)

According to boundary value problem (5), for α = 0, the system is in hy-332

drostatic equilibrium; for α > 0, the liquid pressure at the channel exit is333

less than the bulk liquid pressure. As a result, liquid flows from the bulk334

meniscus into the contact region; σ is proportional to the pressure gradient335

driving that flow. The limit σ → ∞ in equation (15) therefore ensures that336

the liquid motion is strong enough to distort the liquid-gas interface and337

also to create an apparent contact angle Θ. The other limit h → ∞ picks338

out the constant curvature part of the phase interface, and also ensures that339

the apparent contact angle defined by equation (15) is independent of film340

thickness. Numerical solutions are now used to establish the existence of Θ.341

Figure 3 shows the interface curvature d2h/dx2 computed without ap-342

proximation from the inner problem (5) as a function of film thickness h;343

on the right hand side of the figure, d2h/dx2 → 1, as required by boundary344

condition (5f). Near the origin, however, d2h/dx2 → 1 has a local maximum345

for 3 of the 4 curves. The maximum value is an increasing function of the346

potential difference psat(1− φ) driving evaporation. For φ = 1, the system is347
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in hydrostatic equilibrium; for φ < 1, the partial pressure at the channel exit348

is less than the value required for the liquid to coexist in equilibrium with349

its vapour, and as a result, liquid evaporates from the extended meniscus.350

This explains why the interface shape is not perturbed for σ → 0, bottom351

curve. For σ → ∞ however, the flow becomes strong enough to perturb the352

interface, and as a result, creates an apparent contact angle, see the top three353

curves. Figure 3 therefore supports the limit define in equation (15).354

Figure 4 shows the squared interface slope (dh/dx)2 computed from the355

inner problem (5) without approximation as a function of film thickness h;356

as expected, (dh/dx)2 is an increasing function of the potential difference357

driving evaporation. On the right hand side of the figure, (dh/dx)2 grows358

linearly with h; this linear growth marks the constant curvature portion of359

the phase interface. The limit h → ∞ in equation (15) thus picks out the360

constant curvature part of the phase interface as claimed earlier. As can be361

seen from the graphs, the interface curvature becomes uniform only for film362

thicknesses h > 10. Therefore to extract b from the computed values of h,363

we first discard all data for h < 10, and then fits a straight line to the rest364

using the least square method. The intercept of that line determines b2.365

6 Computation of k366

Computing k directly from (10) requires significant computing power. For367

this reason, we find k by comparing the scaling relation (14) to the numerical368

solution for b obtained in the previous section. To begin, we note that because369

the solution to (10) depends on σ and β, so is the integration constant k.370
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Consequently, for σ → ∞, the constant k is a function of β alone. Therefore371

keeping β fixed, equation (14) predicts that a plot of b against β1/6
√
σ should372

give a straight line, whose slope k depends on the size of β alone.373

Figure 5 shows the integration constant b computed from (5) using the374

method described in §5 as a function of β1/6
√
σ. As expected, b is a linear375

function of β1/6
√
σ; the slope k of each line is a function of β. The very376

small scatter in the numerical solutions is a clear indication that k is a very377

weak function of β. Armed with this information, we plot b as a function of378

the parameter βδβ1/6
√
σ, where the exponent δ << 1 is chosen, by trial and379

error, so as to collapse the numerical solutions onto a single straight line.380

Figure 6 shows that the choice δ = 4/225 collapses the numerical solutions381

onto a single straight line as βδβ1/6
√
σ → ∞; this implies that the slope382

parameter b → sβδβ1/6
√
σ as βδβ1/6

√
σ → ∞, where s is the slope of the line.383

The figure shows that the numerical solutions collapse onto the straight line384

only for values of βδβ1/6
√
σ > 3. Therefore, to obtain s from the numerical385

solutions, we first discard all data for βδβ1/6
√
σ < 3, and then fits a line to386

the rest using the least square method. The slope of that line determines s.387

Using this method, we find that s ≃ 1.76. The related expression for b is388

b = 1.76β4/225β1/6
√
σ as σ → ∞ (16)

Equation (16) provides a useful correlation between b, σ, and β. Comparing389

this result to the scaling relation (14), we find that k = 1.76β4/225, which390

is a very weak function of β as suggested in figure 5. The corresponding391

expression for the apparent contact angle, Θ = (ηs/ξs)k, is given by392
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Θ = kCa1/3 where Ca =
νℓṁs

γηs
(17a,b)

We have used equation (8) for ηs/ξs and the definition Ca = µℓVs/γ for a393

capillary number based on a velocity scale Vs = ṁs/ρℓηs set by evaporation.394

By its definition, Ca is independent on the dispersion constant A; and as a395

result, micro-physics affects Θ only through the integration constant k. We396

recall that k = 1.76β4/225 is a function of the dispersion constant through β.397

Figure 7 shows k as a function of β. The graph shows that the contact398

angle depends very weakly on micro-physics, except for β → 0. Physically,399

the film thickness at which the contact angle is established is proportional400

to the parameter β1/3. Therefore for β → 0, the contact angle is established401

at the scale where disjoining pressure is significant. This also explains why402

the contact angle varies weakly with β for large β; here, Θ is established at403

a scale where disjoining pressure is insignificant. These effects can also be404

explained by first noting that β measures the viscous resistance to liquid flow;405

which implies that for large β, liquid motion, and hence the distortion of the406

interface, occurs at a much larger scale than that at which disjoining pressure407

is significant. Figure 7 covers a sufficiently wide range of β, including the408

range typical in applications. Specifically, it covers 10−3 ≤ β ≤ 103, and the409

figure shows that over this range of β, the integration constant410

1.5 < k < 2.0 so that Θ = 1.75Ca1/3 (18a,b)

with very little error. Equation (18b) expresses the apparent contact angle411

as a function of a single parameter Ca depending only on well-known macro-412
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physical properties. Though micro-physics must be included in the boundary413

value problem in order to resolve a hydrodynamic singularity at the contact414

line, Θ is insensitive to the microphysical details. The insensitivity of Θ to415

the value of the dispersion constant has been obtained before for the thermal416

problem by Stephan and Busse (1992) and by Morris (2001). In agreement417

with the heuristic argument of Poulard et al (2005, Equation 14), Θ varies418

as the one-third power of a capillary number based on the evaporation rate.419

Unlike the thermal problem, the apparent contact angle for a diffusion420

controlled evaporating meniscus is a function of the capillary size. To explain421

why, we first note that the contact angle increases with the evaporation rate,422

irrespective of the boundary condition driving the evaporation. In the case423

of a diffusion-controlled evaporating system however, the rate of evaporation424

is proportional to the capillary radius. This explains why the contact angle425

here increases with the outer length scale. In the thermal problem, the outer426

length scale enters the problem only through an outer boundary condition427

describing the bulk meniscus. Because a local analysis around the contact428

region does not include that outer boundary condition, the apparent contact429

angle for the thermal problem is independent on the outer length scale.430

7 Conclusion431

To analyse the evaporating meniscus, we have used the separation of scales432

described in §2. The inner region consists of a quasi–parallel liquid film, and433

the corresponding portion of the gas column. Within this region, the lubri-434

cation approximation holds within the film and, across the gas column, the435
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partial pressure of the vapour is uniform. Owing to these two conditions, the436

unknowns depend only on distance along the wall, and the mass transport437

within the inner region is determined by boundary value problem (1) con-438

taining only ordinary differential equations. For the gas, the outer region is439

bounded by the visible circular arc meniscus, above which the vapour partial440

pressure p∗v is asymptotically equal to the saturation pressure throughout the441

entire region. The first conclusion of this work is that the liquid and vapour442

flow is completely determined by the solution of the inner problem (1).443

Poulard et al (2005) have shown experimentally that the diffusion con-444

trolled meniscus of a perfectly wetting system exhibits an apparent contact445

angle; Θ vanishes when the system is in hydrostatic equilibrium, and is an446

increasing function of the potential difference (1 − φ)psat driving evapora-447

tion. For the first time, we have posed and solved a boundary value problem448

whose solution exhibits an apparent contact angle. We give the condition un-449

der which the apparent contact angle will be observed; as Figure 3, we give450

numerical results demonstrating this condition. As equation (16), we give a451

scaling law describing the dependence of Θ on the control parameters in the452

theory. Lastly, as equation (18b) we give an explicit formula for Θ as a func-453

tion of a capillary number Ca, depending only on well-known macro-physical454

properties; even though microphysics must be included in the boundary value455

problem in order to resolve a hydrodynamic singularity at the contact line,456

the apparent contact angle Θ is insensitive to the microphysical details.457

22



A Derivation of the Governing Equations458

A.1 Conditions Under Which The Simplified Kinetic459

Equation (1c) Holds460

Let P(T, p∗ℓ) be the local co-existence pressure; i.e the vapor pressure required461

for liquid and vapor to co-exist at temperature T and pressure p∗ℓ . Then462

by kinetic theory, CJ∗/λ = (P − p∗v), see Cammenga (1980). Liquid thus463

evaporates at any point along the interface if the vapor pressure on the gas464

side of the interface is less than the co-existence pressure. Also, let po be the465

vapor pressure at the exit of the channel, and To the temperature at which466

liquid and vapor co-exist when both are at pressure po. Then following Morris467

(2000), the kinetic equation is simplified by expanding (P − p∗v) in a Taylor468

series about the reference state (po, To). To a first order approximation,469

CJ∗

λ
=

ρsQ

To

(T − To) +
ρs
ρℓ

(p∗ℓ − po)− (p∗v − po) (19)

where ρℓ is the liquid density, Q the latent heat of vaporization, C the speed of470

sound in the gas, λ =
√

2σ/π a kinetic constant, σ the specific heat ratio, and471

ρs the saturation vapour density at temperature To. In the thicker portions472

of the meniscus, i.e on the scale of the channel gap thickness, diffusion is473

rate limiting; as a result, the term on the left of (19) vanishes far from the474

contact line. Hence, we apply the condition that J → 0 at infinity to obtain475

0 =
ρsQ

To
(Tw − To) +

ρs
ρℓ

(pb − po)− (ps − po) (20)
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where far from the wall, the interface temperature is assumed to be equal to476

the wall temperature; evaporative cooling is therefore taken as negligible at477

infinity. ps is the saturation pressure at temperature To. Equation 20 gives478

To as a function of the boundary values pb, ps, po, and Tw which are all given479

as part of the solution. By subtracting equation 20 from 19, we obtain480

CJ∗

λ
=

ρsQ

To
(T − Tw) +

ρs
ρℓ

(p∗ℓ − pb)− (p∗v − ps) (21)

In equation 21, To can be replaced by Tw because |Tw − To| << To in appli-481

cations. We have therefore eliminate To and po in favour of known boundary482

values. Because there is no build up of mass at the interface, specie mass bal-483

ance there requires that the rate of transfer of molecules across the interface484

be equal to the diffusion flux evaluated at the interface. Specifically485

−Λ
∂p∗v
∂n

=
ρsQ

Tw
(T − Tw) +

ρs
ρℓ

(p∗ℓ − pb)− (p∗v − ps) (22)

where Λ = CDv/λRvTw is the mean free path of the vapor molecules in486

the gas. The mixed boundary condition (22) couples the dynamical pro-487

cesses in the surrounding gas to those in the liquid phase. This coupling of488

the different physics make direct analysis difficult. We therefore make the489

following simplifying assumptions: (i) The continuum approximation holds490

within the surrounding gas; as a result, liquid and vapor at the interface are491

in local thermodynamic equilibrium. (ii) The system is effectively isother-492

mal; though evaporation induces liquid temperature differences, they are493

kinetically negligible for the slow evaporation processes considered here.494

Given (i) and (ii), equation 22 simplifies to495
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p∗v = ps +
ρs
ρ
(p∗ℓ − pb) (23)

A.2 Conditions for Isothermal Evaporation496

The latent heat consumption caused by evaporation at the interface induces497

temperature gradients within the drop, substrate, and surrounding gas. One498

can estimate the order of magnitude for temperature differences within the499

drop by making use of the energy balance κ▽T · n1 = QJ∗ at the interface,500

where κ is the liquid thermal conductivity, n1 the unit normal to the interface501

with the other parameters defined above. The energy balance states that all502

heat conducted from the wall to the interface is absorbed as latent heat.503

Because there is no build up of mass at the interface, the evaporative flux504

term J is estimated using Fick’s law J = Dv▽c · n2, where n2 is the unit505

normal at the interface into the gas and c = p∗v/RvTw. Eliminating J between506

the two equations, Fick’s law and energy balance, we find that at the interface507

κ
∂T

∂n1

=
QDv

RvTw

∂p∗v
∂n2

(24)

To a first approximation, the vapour flow occurs in a half-space and so has508

just one length scale δ/Θ, where δ is a characteristic film thickness. Near509

the contact line, where temperature differences across the drop are highest,510

the liquid flow occurs in a wedge of contact angle Θ, and so has two length511

scales δ/Θ and δ. Then, according to equation 24, we estimate that512
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∆T ∼ Θ
QDv

κRvTw
ps(1− φ) (25)

where ps is the saturation vapour pressure, φ the relative humidity in the dis-513

tant gas, and ∆T the characteristic temperature difference across the drop.514

According to equation 22, temperature differences within the drop are kinet-515

ically negligible if the first term on the right is negligibly small as compared516

to the third term; i.e if ρsQ∆T/Tw << ps(1− φ), which translates to517

ǫ =
ρsQ

2DvΘ

κRvT 2
w

<< 1 (26)

Both ǫ and ∆T depend on the drop size through Θ. The parameter ǫ is given518

in Sultan et al (2005, row 7, table 2) as the ratio of a thermal expansion519

number to a kinetic Peclet number; in their notation ǫ = χ/Pek.520

In table 3, we give some estimates for the parameters. Values of Θ for the521

first two rows are taken from Cachile et al (2002); the last row from Deegan522

et al (2000). The relative humidity φ = 0 for the organic liquids and φ = 0.4523

for water. The table shows that temperature gradients, and hence Marangoni524

flows, become increasingly significant as the drop thickness increases; i.e for525

drops with large Θ. This does not mean that heat conduction becomes the526

controlling mechanism because for that to happen, the drop size must be527

small compared with the mean free path Λ of the vapour in the gas.528

A.3 Derivation of Equation (1a)529

To simplify the problem, we assume that transport of the vapour molecules in530

the gas is by axial diffusion only; though there are concentration gradients in531
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the radial direction, they are negligibly small in the limit a/L → 0. Balancing532

mass on the differential control volume in figure ??a requires that533

ṁx + ṁg − ṁx+dx =
d

dt
msys (27)

Where ṁx is the rate at which mass is entering the control volume, ṁg the534

rate at which mass is generated within the control volume, ṁx+dx the rate535

at which mass is leaving the control volume, and msys the total mass within536

the control volume at any given instant. These quantities are given as537

ṁx =
Dvp

RvTw
Ac(x)

d

dx
ln

(

1− pv
p

)

(28a)

ṁg = J(x)dAs (28b)

ṁx+dx = ṁx +
dṁx

dx
dx (28c)

Where Ac(x) is the cross-sectional area of the channel, dAs the surface area538

of the differential element, pv(x) the vapour pressure, J(x) the evaporative539

mass flux normal to the interface, p the total gas pressure, Dv the binary540

diffusion coefficient, Rv the specific gas constant, and Tw the wall tempera-541

ture. Equation 28a expresses Fick’s first law; it assumes that the medium542

into which evaporation occurs is stationary, and that the gas mixture is ideal.543

Taylor expanding equation 28a gives us 28c. For a channel made up of two544

parallel plates, Ac(x) = a − h(x) and dAs = dx per unit depth of channel.545

Due to symmetry, we have considered only the lower half of the channel.546

Under steady state conditions, equations 27 and 28 gives547
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J =
Dvp

RvTw

d

dx

[

(a− h)
d

dx
ln

(

1− pv
p

)]

(29)

Using lubrication theory, the mass flow rate in the thin quasi-parallel liquid548

film is related to the local evaporative mass flux J by549

d

dx

[

h3

3ν

dpℓ
dx

]

= J (30)

Equation (30) neglects shear stress at the interface. We now eliminate J550

between equations (29) and (30); then integrate once to show that551

h3

3ν

dpℓ
dx

− Dvp

RvTw

(a− h)
d

dx
ln

(

1− pv
p

)

= −ṁ (31)

For pv/p → 0 and for h << a, equation (31) reduces to (1a).552
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Liquid 10−4α β Θs

Heptane 0.5529 0.2072 0.0282

Octane 0.4550 0.3107 0.0277

Water 1.3280 0.2113 0.0228

Table 1: Estimates of parameters

a(µm) ηs(nm) ξs(nm) ηs/ξs 10−3a/ξs

10 12 76 0.154 0.13

1000 55 590 0.093 1.69

Table 2: Characteristic dimensions of the contact region

Liquid Θ(rad) ∆T (K) ǫ

Octane2 0.015 0.10 0.007

Heptane2 0.030 0.23 0.011

Water5 0.26 15.62 1.56

Table 3: Estimates for ∆T and ǫ
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Figure 1: The evaporating meniscus in a channel as seen on the scale of the channel gap

thickness 2a. The origin is at point O, with the positive x-axis to the right.
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Figure 2: Liquid pressure (p∗ℓ − pb)a/γ as a function of position x∗/a: open circles,

analytic solution obtained from problem (5) by neglecting the first term on the right

of equation (5b); solid curve, computed without approximation from (5). With χ = 3,

α = 10, β = 0.2, and Θs = 0.01: for χ, α, β, and Θs, see (6) and (3) respectively.
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Figure 3: Interface curvature a(d2h∗/dx∗2) computed without approximation from the

inner problem (5) as a function of film thickness h = h∗/hs. The curves represent values

computed for: A, σ = 10; B, σ = 6; C, σ = 4; D, σ = 0.5. The length scale hs is defined

in equation (3) while the parameters β and σ are defined in equations (6,11).
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Figure 4: Squared interface slope (γa2/A)1/3(dh∗/dx∗)2 computed without approxima-

tion from the inner problem (5) as a function of film thickness (γ/aA)1/3h∗. Broken curves

represent values computed for: A, σ = 10; B, σ = 6; C, σ = 4. These are the same values

used in computing figure 3. The solid line represents a line fit for large h, using the least

square method. See definitions (11,6) for the parameters σ and β respectively.
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Figure 5: Slope parameter b as a function of the parameter β1/6
√
σ: Symbols denote

values computed without approximation from problem (5) using the definition (15) of b:

Triangles, β = 10; open circles, β = 0.1; plus sign, β = 1; and squares for selected values

of β between 0.01 and 30. These values include the range typical in applications.
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Figure 6: Slope parameter b as a function of the parameter β4/225β1/6√σ: Symbols

denote values computed without approximation from problem (5) using the definition (15)

of b: Triangles, β = 10; open circles, β = 0.1; plus sign, β = 1; and squares for selected

values of β between 0.01 and 30. These values include the range typical in applications.
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Figure 7: Effects of micro-physics on Θ.
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