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ABSTRACT

Around 1920, Wishart began researching how different sets of data could be connected. He focused

on the eigenvalues of matrices, which are special numbers that can inform us about the structure

of the data. This work laid the foundation for Random Matrix Theory, a field that combines ideas

from linear algebra and probability.

In the 1950s, Wigner, an American physicist, used Random Matrix Theory to study the behavior

of eigenvalues in large matrices. He found that as the size of the matrices became very large, the

distribution of eigenvalues tended to form a semicircle shape. This unexpected result, known as

Wigner’s Semicircle Law, showed that the distribution of eigenvalues was not normal, but instead

resembled a semicircle.

This project aims to prove Wigner’s Semicircle Law using concepts from probability, linear al-

gebra, and rigorous mathematical proofs. The goal is to provide a clear explanation of the proof

and to understand the reasoning in why this happens. The aim of demonstrating the proof of the

semicircle law is to present the work in a manner that is understandable to a wide variety of people,

even those without a background in mathematics. By doing this, we hope to understand why the

semicircle law holds and whether it remains true under different assumptions.
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1. INTRODUCTION

In the realm of random matrix theory, Wigner’s semicircle law stands as a cornerstone result,

illuminating profound connections between probability theory, linear algebra, and combinatorics.

At its core, the semicircle law describes the limiting behavior of the eigenvalue distribution of large

symmetric (or Hermitian) random matrices. To appreciate this law’s significance, we delve into

the definitions of a semicircle, the eigenvalues of random matrices, and the Catalan numbers.

2. WHAT IS AN EIGENVALUE?

In the context of matrices, eigenvalues represent scalars that describe how a matrix stretches or

compresses vectors in certain directions. When discussing the moments of the Wigner’s semicircle

distribution, these moments are connected to the moments of the eigenvalues. Specifically, the kth

moment of the semicircle distribution relates to the kth moment of the eigenvalues.

3. FIGURE 1 DESCRIPTION

Number of matrices and size: num matrices specifies the number of random symmetric ma-

trices to generate, and matrix size specifies the size of each matrix (2000x2000 in this case).

Generating random symmetric matrices: For each matrix, it generates a random matrix A with

elements between -1 and 1. It is the average over multiple random matrices.

Making A symmetric: It then creates a symmetric matrix A by setting the lower triangle of A

equal to its transpose, ensuring symmetry.

Normalizing A: It normalizes A such that the maximum absolute value of its eigenvalues is 1.
4



FIGURE 1. Eigenvalue distribution of a random matrix.

Computing the histogram: It computes the histogram of the eigenvalues of A, using hist(eig(A),

floor(sqrt(matrix size))), where floor(sqrt(matrix size)) determines the num-

ber of bins for the histogram.

Plotting the histogram and semicircle: It plots the histogram of the eigenvalues (num eigenvalues)

normalized by the maximum count, along with the semicircle distribution (plot(cos(t),

sin(t), ’r--’, ’LineWidth’, 4)), which is the expected distribution of eigenvalues

for large random matrices.

Saving the figure: It saves the generated figure as a PNG file (’my figure.png’).
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Overall, this code provides a visualization of the distribution of eigenvalues of random symmetric

matrices and compares it to the semicircle distribution, which is a theoretical distribution for such

matrices.

A semicircle, in a mathematical context, refers to the shape of a half-circle arc. In probability

theory, the semicircle distribution is characterized by its probability density function, resembling

the upper half of a circle. The Semicircle distribution, also known as the Wigner semicircle distri-

bution, is defined as probability distribution that describes the spectral density of certain random

matrices. Its name comes from its shape, resembling a semicircle when plotted. This distribution

is centered at the origin and extends symmetrically in both positive and negative directions, with a

radius that can be adjusted.

Imagine drawing a semicircle on a graph, centered at (0, 0) and extending from -R to R on the x-

axis. The probability density function (PDF) of the semicircle distribution is essentially the height

of this semicircle, adjusted to fit the desired radius and center. The distribution’s parameters, a

(center) and r (radius), determine the specific shape and size of the semicircle.This distribution

arises naturally in the study of random matrices, particularly in the context of symmetric matrices

with independent and identically distributed entries. As the size of these matrices grows, their

eigenvalues, representing key characteristics of the matrices, tend to follow the semicircle distri-

bution. This convergence to the semicircle law is a remarkable phenomenon, illustrating the deep

interplay between probability and linear algebra.

The theorem and its assumptions: Wigner’s semicircle theorem is a result in random matrix theory

that describes the distribution of eigenvalues in large symmetric random matrices. Specifically,

the theorem states that as the size of the matrix becomes large, the density of eigenvalues near the

origin converges to a semicircle shape in the complex plane.

Formally, let A be an N × N symmetric matrix with entries aij that are independent random

variables. The entries are typically assumed to have a common distribution with zero mean and
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variance 1/N , although other distributions are possible. The semicircle law states that the density

of eigenvalues of A near the origin converges to a semicircle distribution as N approaches infinity.

This semicircle distribution is given by the probability density function:

The main result of Wigner’s semicircle theorem is the description of the limiting distribution of the

eigenvalues of large symmetric random matrices. Specifically, as the size of the matrix approaches

infinity, the density of eigenvalues near the origin converges to a semicircle shape in the complex

plane. This semicircle distribution has a specific mathematical form, which can be derived from

the assumptions mentioned above.

Wigner’s semicircle Theorem and Assumptions

According to the introduction of the book ”Introduction to Random Matrices” by Anderson G.,

Guionnet A., and Zeitouni O., it states that the theorem is

Theorem 1 (Wigner’s Theorem). ”For a Wigner matrix, the empirical measure LN converges

weakly, in probability, to the standard semicircle distribution. In greater detail, Theorem 2.1.1

asserts that for any f ∈ Cb(R), and any ε > 0,

lim
N→∞

P (|h(LN , fi)− h(σ, fi)| > ε) = 0.

Start with two independent families of i.i.d., zero mean, real-valued random variables {Xi,j}1≤i<j

and {Xi}1≤i, such that E[X2
1,2] = 1 and, for all integers k ≥ 1, rk := max

(
E|X1,2|k

)
< ∞.

Consider the (symmetric) N ×N matrix XN with entries

XN(j, i) = XN(i, j) =

{
Xi,j√
N
, if i < j, ”(Anderson, 6− 7)

Furthermore, the Catalan numbers, ubiquitous in combinatorics, unexpectedly find a role in the

context of the semicircle law. These numbers count various structures, such as the number of ways
7



to parenthesize an expression or the number of paths in a grid, and remarkably, they appear in

the coefficients of the moments of the semicircle distribution. This connection underscores the

profound unity in mathematics, where seemingly disparate concepts harmonize to reveal hidden

symmetries and structures.

In this paper, we explore the intricacies of Wigner’s semicircle law, examining its origins, im-

plications, and connections to other areas of mathematics. Through this exploration, we aim to

illuminate the beauty and depth of mathematics, where patterns emerge from randomness, and

structures intertwine across seemingly distinct domains.

Wigner’s semicircle theorem is a result in random matrix theory that describes the distribution of

eigenvalues in large symmetric random matrices. Specifically, the theorem states that as the size

of the matrix becomes large, all the eigenvalues converge to a semicircle.

• Symmetric Matrices: Wigner’s semicircle theorem applies to large symmetric matrices.

These matrices have real entries and satisfy the property that A = AT , where AT denotes

the transpose of A.

• Randomness/independence: The above diagonal entries are typically assumed to be in-

dependent random variables, meaning that the value of one entry does not depend on the

values of the other entries.

• Large Matrix Size: The theorem is concerned with the behavior of the eigenvalues as

the size of the matrix becomes large. In the limit of large matrix size, certain statistical

properties of the eigenvalues converge to a specific distribution.

• Variance/Mean: We assume that the variance Var(Xij) = 1, and the Expectation E(Xij) =

0 for each entry.

• Moments: For each k > 0, there is a constant Ck such that E(Xk
ij) ≤ Ck.

2.1.1 Why are the moments of the semicircle distribution given by the Catalan numbers?
8



We will be showing why this is true.

Reasoning:

The kth moment of the semicircle distribution is defined by the integral

m2k :=
1

2π
xk
√
4− x2 dx.

When considering the moment m2k, where k is a positive integer, it is important to note that this

moment is related to the standard semicircle distribution, denoted by σ. The standard semicircle

distribution is characterized by its density function, which is symmetric about the origin. When

the moment m2k is computed, it involves integrating a function that is symmetric about the origin

over a symmetric interval.

When k is odd, the integral and xk
√
4− x2 is an odd function, symmetric about the origin, leading

to a net integral of zero over the symmetric interval. This symmetry causes equal and opposite

contributions to the integral on each side of the origin, resulting in cancellation.

On the other hand, for even k, the integrand becomes an even function, which is not symmetric

about the origin but symmetric about the y-axis. This symmetry ensures that the positive contribu-

tions on one side are exactly balanced by equal positive contributions on the other side, leading to

a non-zero integral.

Therefore, for odd k, the integral m2k evaluates to zero, while for even k, it evaluates to a non-zero

value. This property is essential for understanding the moments of the semicircle distribution and

its connections to other mathematical concepts, such as the Catalan numbers.

If k is even, our first step will be to show why

m2k = 22k

2kπ

∫ π
2

−π
2
sin2k(θ) cos2(θ) dθ and how this connects with the Catalan numbers.
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2.1.1 The Semicircle distribution, Catalan numbers, and Dyck Paths

The Semicircle Distribution, Catalan Numbers, and Dyck Paths

Define the moments mk = ⟨σ, xk⟩. Recall the Catalan numbers:

Ck =

(
2k
k

)
k + 1

=
(2k)!

(k + 1)!k!
.

We now check that for all integers k,

m2k = Ck, m2k+1 = 0

Indeed, m2k+1 = 0 by symmetry, while

m2k =

∫ 2

−2

x2kσ(x)dx =
2 ∗ 2k

2kπ

∫ π
2

−π
2

sin2k(θ) cos2(θ)dθ

We define the standard semicircle distribution as the probability distribution σ(x) dx on R with

density as:

σ(x) =
1

2π

√
4− x2

We will now being to prove how we got from left to right:

m2k =

∫ 2

−2

x2kσ(x)dx =
2 ∗ 2k

2kπ

∫ π
2

−π
2

sin2k(θ) cos2(θ)dθ

We know that σ(x) on R is given by:

σ(x) =
1

2π

√
4− x2
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Now we plug it in

m2k =

∫ 2

−2

x2k 1

2π

√
4− x2 dx

=
1

2π

∫ 2

−2

x2k
√
4− x2 dx

Through trig identities, we now substitute

x = 2 sin(θ),

dx = 2 cos(θ) dθ.

=
1

2π

∫ 2

−2

[2 sin(θ)2k]
√
4(2 sin(θ)2) 2 cos(θ) dθ

Upper bound:

2 = 2 sin(θ) (divide both sides by 2)

1 = sin(θ)

θ =
π

2

Lower bound:

−2 = 2 sin(θ) (divide both sides by 2)

−1 = sin(θ)

θ = −π

2
11



Simplification:√
4− 4 sin2(θ) =

√
4(1− sin2(θ)) (since 1− sin2(θ) = cos2(θ))

= 2 cos(θ)

Incorporate the new bounds and the simplification

=
1

2π

∫ π/2

−π/2

(2 sin(θ))2k2 cos(θ) 2 cos(θ) dθ

=
1

2π
· 2 · 2 · (22k)

∫ π
2

−π
2

(sin(θ))2k cos2(θ) dθ =
2(22k)

π

∫ π
2

−π
2

(sin2k(θ)) cos2(θ) dθ

Therefore, we have just proven that:

m2k =

∫ 2

−2

x2kσ(x)dx =
2(22k)

π

∫ π
2

−π
2

sin2k(θ) cos2(θ)dθ

Now we want to prove:

2(22k)

π

∫ π
2

−π
2

(sin2k(θ)) cos2(θ) dθ =
2(22k)

π

∫ π
2

−π
2

sin2k(θ) dθ − (2k + 1)m2k

Prove it from left to right:

cos2 θ = 1− sin2 θ

m2k =

∫
sin2k(θ)(1− sin2(θ)) dθ

=

∫
sin2k(θ) dθ −

∫
sin2k+2(θ) dθ
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Using Integration by parts

u = sin2k+1(θ), v = − sin(θ) :

du = (2k + 1) sin2k(θ) cos(θ), dv = − cos(θ) dθ,

=

∫
sin2k(θ) dθ +

[
− cos(θ) sin2k+1(θ)

∣∣∣π/2
−π/2

−
∫

−(2k + 1) sin2k(θ) cos2(θ) dθ

]

When plugging in π
2

for θ, we know that − cos
(
π
2

)
= 0, so it cancels out.

This leaves us with
∫
sin2k(θ) dθ −

(∫
(2k + 1) sin2k(θ) cos2(θ) dθ

)

m2k =
22k

π(2k+2)

∫ π
2

−π
2
sin2k(θ) dθ

Using u-substitution and integration by parts with

u = sin2k−1(θ), v = − cos(θ),

du = (2k − 1) sin2k−2(θ) cos(θ) dθ, dv = sin(θ),

uv-
∫

v du =

[
2 · 22k

π
sin2k−1(θ)(− cos(θ))

]π
2

−π
2

−
∫ π

2

−π
2

(− cos(θ)) · (2k − 1) sin2k−2(θ) cos(θ) dθ

m2k =
2 · 22k

(2k + 2)π
· (2k − 1) · πm2k−2

2 · 22k−2

cancel out 2 and π and reduce
13



m2k−2 =
2 · 22k−2

π

∫ π
2

−π
2

sin2k−2(θ) cos(θ) dθ

multiply by π and divide by 2 · 2k−2

=
π ·m2k−2

2 · 22k−2
=

∫ π
2

−π
2

sin2k−2(θ) cos(θ) dθ

=
2 · 22k · (2k − 1)

π · (2k + 2)
· π

2 · 22k−2
·m2k−2

Cancel π and 2k and 2k−2 can be factored out.

=
4(2k − 1)

2k + 2
·m2k−2(1)

USING INDUCTION FROM THE FORMULA TO THE CATALAN NUMBERS

Base Case: For k = 1, we have M2 =
4(2(1)−1)
2(1)+2

·M0 = 2·M0. If we have M0 = σ(x) = 1
2π

√
4− x2,

we know that the area of
√
4− x2 is 2π. Therefore, multiplying this with 1

2π
gives us 1, which

satisfies the base case, for k=1. Since M0 = 1 (base case for Catalan numbers), we get M2 = 2.

Now, let’s express M2 in terms of Catalan numbers.
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For the equation σ(x) dx on R with density as:

σ(x) =
1

2π

√
4− x2

Inductive Hypothesis: Assume that the formula holds for k − 1, i.e., M2(k−1) = Ck−1.

Inductive Step: Now, let’s prove the formula for k:

M2k =
4(2k − 1)

2k + 2
·M2k−2

Ck−1 =
(2(k − 1))!

k!(k − 1)!

With our inductive hypothesis, we assumed:

Ck−1 = M2k−2.

M2k =
4(2k − 1)

2k + 2
· (2(k − 1))!

k!(k − 1)!
=

4(2k − 1)

2k + 2
· (2k − 2)!

k!(k − 1)!

Simplifying further:

M2k =
4((2k − 1)!)

2(k + 2)k!(k − 1)!
· 2k
2k

Simplify: (2k-1)! · (2k) = 2k! and (k-1)! · k = k! and (2k+2) can be rewritten as 2(k+1)

M2k =
4(2k)!

2(k + 1)(k)!(k)! · 2

Simplify: cancel 2 =

M2k =
2(2k)!

2(k + 1)(k)!(k)!
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Simplify: cancel 2 again =

M2k =
(2k)!

(k + 1)(k)!(k)!

Simplify (k+1) · (k)! = (k+1)! Finally the solution is

M2k =
(2k)!

(k + 1)!(k)!

4. SPECIAL VS. UNSPECIAL WALKS.

The expected kth power of eigenvalues can be related to a sum over closed walks of length k.

E(λk
i ) =

1

n
E(Tr(Ak)) =

1

n

∑
Walks

 ∏
edges (i,j)

X(i,j)


1. Sum over unspecial group → 0

2. Sum over special group → Catalan

Consider a graph whose vertices are given by the rows of the matrix, with each pair (i, j) connected

by an edge labelled by the entry Xi,j .

(1) First Equation:

• E(λk
i ): This represents the expected value of the kth power of the ith eigenvalue (λi)

of a random matrix.

• E(Tr(Ak)): This represents the expected value of the trace of the kth power of a

random matrix A. The trace of a matrix is the sum of its diagonal elements.

•
∑

Closed walks of length k edges (i, j): This part relates to the concept of closed walks in a

graph associated with the matrix A. The sum is taken over all closed walks of length

k, and for each walk, you take the product of the corresponding matrix elements.

In the context of Wigner’s semicircle theorem, this equation might be used to relate the

statistical properties of the eigenvalues of certain random matrices to the properties of the
16



matrices themselves. The sum over closed walks captures the contributions of different

paths in the matrix, which can be related to the behavior of eigenvalues.

The sum of the walks in this equation includes many walks, with three examples being three dif-

ferent types of walks

We classify the walks into three groups

• Group 1: Walks which have some edge used exactly once

• Group 2: Walks which use every edge exactly twice and involve exactly k
2
+ 1 vertices

• Group 3: Walks which involve fewer than k
2
+ 1 vertices

”

(1) Unspecial group 1: Some edge is used only once. The sum representing the kth moment

involves a considerable number of terms. We will provide separate limits on the number of

terms and the magnitude of each term.

Number of terms: To describe our walk, we must specify (1) which vertices are visited

(at any point) in the walk and (2) which of those vertices is visited at each specific step in

the walk. (3) The denominator/scaling = nk+1 :

k = The number of vertices visited.The denominator is denoted as nk+1

Expectation will be 0

(2) Special: k/2 + 1 vertices, where each edge is used exactly twice. For each edge, each

such walk contributes to 1 because from our assumptions the expectation squared = 1. In

addition, it remains to compute the number of terms. Each walk corresponds to picking

k
2
+1 vertices (This is where P (n, k

2
+1) comes from) (in order) and choosing which steps

are forward and backward (where C k
2

comes from). Furthermore, We divide by n
k
2
+1 to
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account for, where we are scaling down the entries. Also, we are dividing it by n because

we are averaging over the eigenvalues.

List of what’s explained:

P (n, k
2
+ 1) Choose k/2 + 1 vertices.

Ck/2 = the number of walks.

1 = Expectation of the walk.

nk/2+1 = 1√
n

scaling down entries.

1
n
= averaging over the eigenvalues.

In conclusion: P (n, k
2
+1)

nk/2+1 · Ck/2 · 1 −→ nk/2+1

nk/2+1·Ck/2
= Ck/2.

With this Final equation we see that with P (n, k
2
+1)

nk/2+1 as it goes to infinity it will equal 1.

Therefore, with 1 ·Ck/2 · 1 = Ck/2

(3) Unspecial group 2:

Everything in unspecial group 2 is very similar to the special group case we have just

explained. However, there are some differences.

Question: There are 4 terms, but for each of those 4 terms is it the same or different??

The expectation of a single walk wouldn’t be 1 anymore compared to the special walks,

rather it would be a constant. When being scaled, the expectation goes to 0 as n goes

to infinity. Now, since the the number of vertices is smaller, (specifically exponent of n

smaller). The denominator stays the same as the special walk. However, the numerator is

the small power of n goes to 0.

Notes:

Fewer than k/2 + 1 vertices are used.

The vertices < k/2 + 1, i.e., ≤ k+1
2

.

Numerator: ≤ n(
k+1
2 ).

Denominator: n(
k
2
+1).

Ck/2: ≤
(
k+1
2

)k, k steps = this represents the number of walks ≤ k/2 choices per step.

E(walk) ≤ C.

18



In the end, we get nk+1
2

n
k
2 +1

· Ck/2 · C Therefore, in nk+1
2

n
k
2 +1

the numerator is smaller then the

denominator, making this go to zero. So we are left with 0 ·Ck/2 · C.

Example 1:

1

2

3

4

1

2

3

4
5

6

Example 2:

1

2

3

4

1

2
3

4

5
6

Example 3:
19



37

18

1

2
34

5

6

Example 4:

1

2 3

1

2
3

4
5

6

The sum representing the kth moment involves a considerable number of terms. We will provide

separate limits on the number of terms and the magnitude of each term.

Number of terms: To describe our walk, we must specify (1) which vertices are visited (at any

point) in the walk and (2) which of those vertices is visited at each specific step in the walk. (3)

The denominator/scaling = nk+1 :

k = The number of vertices visited.The denominator is denoted as nk+1

20



Looking at Example 1: Concerning (1): We assume our walk visits at most 4 vertices. Since there

are a total of n vertices, the number of choices for those vertices is at most n(n−1)(n−2)(n−3).

Regarding (2): The walk consists of 5 steps. In each step, we have at most 4 choices for which

vertex to visit (it must be a vertex from (1)).

Regarding (3): The denominator would be n5 since there are 4 vertices.

Combining (1) and (2), we find that the number of walks is at most 45 ·n · (n−1) · (n−2) · (n−3).

Additionally, combining the denominator we get = n(n−1)(n−2)(n−3)
n5 × 45

The expression (n4)
(n5)

× 45 simplifies to 1
n
× 45, which indeed approaches zero as n approaches

infinity.

1 → 2 → 4 → 1 → 3 → 2 → 1

1 2 3 4 5 6

E(X12) = 0, E(X24) = 0, E(X41) = 0, E(X2
23) = 1

E(X12X24X41X
2
23) = E(X12)E(X24)E(X41)E(X2

23) = (0 · 0 · 0 · 1) = 0

Therefore, the expectation is zero.

Just like Example 1, any walk 1 has 0 expectation in general.

In conclusion, from Example 1, we see that some edges are used exactly once, which gives us that

the expectation is 0. This is known as an Unspecial group 1.

Looking at example 2 (Generality):

Special:

21



Vertices ≈ nk/2 + 1

Scaling/denominator:
1

n
k
2
+1

choices F vs. B: C k
2

Group 2 (Example 2) (k=6)

1 → 2 → 3 → 2 → 4 → 2 → 1

F F B F B B

E(X2
12) = 1, E(X2

23) = 1, E(X2
24) = 1

E(X12X23X23X24X24X12) = E(X2
12)E(X2

23)E(X2
24) = 1

(1 · 1 · 1) = 1

E(X2
12) = 1, E(X2

23) = 1, E(X2
24) = 1

E(X12X23X23X24X24X12) = E(X2
12)E(X2

23)E(X2
24) = 1

(1 · 1 · 1) = 1

Therefore, our expectation is 1.

Choose F vs. B = C3

Finding the Sum: = n(n−1)(n−2)(n−3)·C3

n4 ≈ n4

n4 · (C3) −→ C3 (Can relate to Catalan walks)
22



Since in this case we use each edge exactly twice this. Then we chose k/2+1 vertices and it gives

us the Catalan numbers. Therefore, is an example of a special walk.

Example 3:

We see in Example 3 there are only 3 verticies. The vertices are 3, 7 ,18. Since there are only 3

vertices, the numerator will be smaller then the denominator

= n(n−1)(n−2)(37)·Constant
n4

Note: the power of the n’s:

= n3

n4

Therefore, since the bottom power is bigger the expectation heads to zero.

In conclusion, if we use fewer than 4 vertices it heads to zero. This is known as Unspecial group

2.

Example 4:

1 → 2 → 1 → 3 → 1 → 2 → 1

1 2 3 4 5 6

E(X2
12X

4
23X

2
24) = E(X2

12)E(X4
23)E(X2

24)

Given the assumptions E(X2
12) = 1 and E(X2

24) = 1,

= E(X4
23) ≤ D
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Since we don’t have an assumption that gives us the expectation

beyond the second power, we let it equal a constant, denoted by D

in this case.

Vertices: n(n-1)(n-2)(n-3); n4

Scaling/Denominator = 1
n5

Choose F vs. B = C4

Expectation Equation:

= n(n−1)(n−2)(n−3)·C4

n4

= n4

n4 · (C4) −→ C4 (Catalan numbers) Since in this case we use each edge exactly twice this and

chose k/2 + 1 vertices this means that it is also a special walk.
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Why is Wigner’s semicircle Law relevant??

Wigner’s semicircle law is a pivotal result in random matrix theory, a branch of mathematics fo-

cused on matrices whose entries are random variables. This law provides a profound insight into

the distribution of eigenvalues in large random symmetric matrices, offering a simplified model

for understanding complex systems. Originating from the work of Eugene Wigner and Freeman

Dyson in the mid-20th century, Wigner’s semicircle law has become a fundamental concept with

wide-ranging applications in mathematics and physics.

At the core of Wigner’s semicircle law is the behavior of eigenvalues in large symmetric matri-

ces with independent and identically distributed entries. As the size of the matrix grows infinitely

large, the density of eigenvalues follows a semicircular shape when properly normalized. This

distribution, known as the semicircle distribution, indicates that eigenvalues are more likely to

cluster around the center of the semicircle and less likely to be found at the edges. One of the most

remarkable aspects of Wigner’s semicircle law is its universality. This means that the semicircle

distribution emerges in various random matrix ensembles, regardless of the specific distribution

of matrix entries. This universality property allows researchers to apply the insights from random

matrix theory to analyze complex systems in physics, statistics, and beyond.

In quantum mechanics, Wigner’s semicircle law plays a crucial role in understanding the distribu-

tion of energy levels in certain quantum systems. For example, in nuclear physics, the energy lev-

els of atomic nuclei can be approximated using random matrix ensembles, providing insights into

nuclear structure and behavior. The semicircle law also appears in statistical physics, where it de-

scribes the density of states of disordered systems such as amorphous solids or glasses. Moreover,

Wigner’s semicircle law has intriguing connections to number theory. Specifically, the distribution

of zeros of the Riemann zeta function, a central object in number theory, is conjectured to be re-

lated to the eigenvalue distribution of certain random matrix ensembles. This connection highlights
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the deep interplay between seemingly unrelated areas of mathematics and physics, showcasing the

broad impact of Wigner’s semicircle law. In conclusion, Wigner’s semicircle law stands as a cor-

nerstone of random matrix theory with profound implications across various disciplines.

Its universality, connection to other areas of mathematics and physics, and ability to simplify the

study of complex systems make it a powerful and versatile tool for researchers. Whether analyz-

ing the energy levels of atomic nuclei or investigating the distribution of zeros in number theory,

Wigner’s semicircle law continues to inspire new discoveries and insights in mathematics and

physics. I have tried to proof this law and show it’s relevancy in the real world.

Motivation

Wigner’s development of the semicircle law in the 1950s was motivated by the need for a mathe-

matical framework to describe the energy levels of heavy nuclei, which exhibited statistical regu-

larities despite the complexity of nuclear interactions. His key insight was to model the interactions

between nucleons in a nucleus using a random symmetric matrix, where each matrix element rep-

resented the interaction strength between two nucleons. By analyzing the eigenvalues of these ran-

dom matrices, Wigner aimed to uncover the underlying distribution that governed the behavior of

nuclear energy levels. Through meticulous calculations and pioneering mathematical techniques,

Wigner showed that as the size of the random matrices grew to infinity, the distribution of eigen-

values converged to a semicircular shape. This semicircle law was a remarkable discovery, as it

provided a universal description of the spectral properties of large random matrices, independent

of the specific details of the matrix entries. The significance of Wigner’s semicircle law extends

far beyond its original application in nuclear physics. It has become a fundamental result in ran-

dom matrix theory, with implications in diverse fields such as quantum chaos, statistical physics,

and number theory. The universality of the semicircle law has been confirmed in various random

matrix ensembles, demonstrating its broad applicability and deep connections to other areas of

mathematics and physics. In quantum chaos, the semicircle law provides insights into the quantum
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behavior of classically chaotic systems, where the energy levels exhibit statistical patterns analo-

gous to those of random matrices. In statistical physics, the semicircle law describes the density of

states in disordered systems, shedding light on the macroscopic properties of complex materials.

Furthermore, the semicircle law has sparked new developments in number theory, particularly in

the study of the Riemann zeta function. The connection between the distribution of zeros of the

Riemann zeta function and the eigenvalue distribution of random matrices has led to conjectures

about the universality of certain number-theoretic phenomena. Overall, Wigner’s creation of the

semicircle law was a transformative moment in mathematics and physics, providing a powerful

tool for understanding the behavior of complex systems with random interactions. Its universality

and deep connections to other areas of science underscore its significance and ensure its enduring

legacy in the scientific community.

Future Research topics from this

Expanding on the research into Wigner’s semicircle law offers a wealth of intriguing avenues for

further exploration. One compelling direction involves investigating generalizations of the semi-

circle law to different random matrix ensembles, such as the Gaussian Unitary Ensemble (GUE) or

the Gaussian Orthogonal Ensemble (GOE). This exploration would delve into how various matrix

ensembles impact the distribution of eigenvalues and whether the concept of universality extends

to these ensembles. Another fascinating path could involve studying non-symmetric random ma-

trices, such as those in the GUE, to analyze how eigenvalue distributions and spacing statistics

differ from those of symmetric matrices.

Moreover, delving into the applications of random matrix theory in quantum information theory

could yield valuable insights into entangled states, quantum channels, and quantum algorithms.

This could lead to advancements in quantum computing and communication. Furthermore, ex-

ploring the use of random matrix theory in financial mathematics could offer new perspectives on
27



modeling stock price movements, portfolio optimization, and risk management strategies. Addi-

tionally, investigating the connections between random matrix theory and quantum chaos could

provide deeper insights into the spectral statistics of chaotic quantum systems.

Another avenue worth exploring is the application of random matrix theory in machine learning,

particularly in analyzing the performance of deep learning models and neural networks. Addition-

ally, studying the connections between random matrix theory and random graph theory could lead

to a better understanding of complex networks and large-scale systems. Furthermore, exploring

the connections between random matrix theory and number theory, particularly in relation to the

Riemann zeta function and the distribution of prime numbers, could uncover new insights at the

intersection of these fields. Finally, developing computational methods for efficiently simulating

and analyzing large random matrices could open up new possibilities for exploring the properties

of these matrices in high-dimensional systems.
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