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Abstract

Recent advances in the Internet of Things (IoT) technologies have enabled the use
of wearables for remote patient monitoring. Wearable sensors capture the patient’s
vital signs, and provide alerts or diagnosis based on the collected data. Unfortunately,
wearables typically have limited energy and computational capacity, making their use
challenging for healthcare applications where monitoring must continue uninterrupted
long time, without the need to charge or change the battery. Fog computing can allevi-
ate this problem by offloading computationally intensive tasks from the sensor layer to
higher layers, thereby not only meeting the sensors’ limited computational capacity but
also enabling the use of local closed-loop energy optimization algorithms to increase
the battery life. Furthermore, the patient’s contextual information – including health
and activity status – can be exploited to guide energy optimization algorithms more
effectively. By incorporating the patient’s contextual information, a desired quality of
experience can be achieved by creating a dynamic balance between energy-efficiency
and measurement accuracy. We present a run-time distributed control-based solution
to find the most energy-efficient system state for a given context while keeping the
accuracy of decision making process over a certain threshold. Our optimization al-
gorithm resides in the Fog layer to avoid imposing computational overheads to the
sensor layer. Our solution can be extended to reduce the probability of errors in the
data collection process to ensure the accuracy of the results. The implementation of
our fog-assisted control solution on a remote monitoring system shows a significant
improvement in energy-efficiency with a bounded loss in accuracy.
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1 Introduction

Continuous clinical-level monitoring of patients conditions is imperative in an
ample range of medical applications. For instance, monitoring post-operative
patients to detect early signs of health deterioration can significantly improve
care outcomes. Current technologies can only provide clinical-level monitor-
ing in hospital settings, where the patient is in a controlled environment and
traditional sensors can be used. However, once discharged, patients are left
in a vulnerable position. Achieving clinical-level monitoring in everyday set-
tings would have a tremendous impact on patients health, but is a technological
challenge that has not been solved yet.

Internet of Things (IoT) technologies have been recently widely used to
build systems capable of continuously monitoring subjects, acquiring a vari-
ety of biosignals [24, 41, 25]. The healthcare IoT paradigm proves a way to
ubiquitous and personalized monitoring of individual’s conditions in everyday
settings. However, these technologies have several limitations that make con-
tinuous high-quality sensing difficult. In fact, these sensors have limitations in
terms of storage, computation load and energy supply. Furthermore, different
from hospital environments, in everyday settings the activities the monitored
subject engages may cause a degradation of the quality of the signals due to the
movement between the skin and the sensor. Some wearable sensors, such as,
Photoplethysmogram (PPG), Electrocardiogram (ECG), and Electromyography
(EMG) are particularly influenced by this effect and may suffer a significant loss
of accuracy.

Interestingly, different activities may cause a different degree of degradation.
For instance, motion artifacts affecting the measured signal when the subject
is “Running” are much larger compared to those generated when the person
is “Sitting” or “Sleeping”. Achieving the same Signal-to-Noise Ratio (SNR) in
all the activities and, thus, the same detection quality, requires the tuning of
the sensing power to that of the noise. In other words, higher sensing energy
could be used when the patient is “Running”, and a lower energy could be used
when the patient is “Sitting”. Nonetheless, wearable sensors are manufactured
in industry for worst case scenario in terms of noise level, corresponding to a
large sensing power, which results in a high energy consumption and a short
battery lifetime. The layered and pervasive IoT infrastructure can be used to
support solutions enabling the adaptation of sensing parameters to the joint
person-technology system state. The ability of the system to track its own state
and determining optimal parameters can be connected with the general concept
of “self-awareness”. Herein, we extend this notion across the layers of the IoT
infrastructure, and focus patient’s activity as a main driver of adaptation due
to the specific application domain.

In the computing literature, the general notion of context captures the state
of the system, including any descriptor of the user’s state. User’s activity is
considered as a subclass of context information, whose estimation and track-
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Fig. 1: PPG sensors consisting of two light sources and one light sensor

ing requires the acquisition of signals from sensors and the implementation of
inference algorithms. Intuitively, imposing a further burden on the sensor to
have them connect with each other and implement algorithms is not a suit-
able option. Therefore, the needed “semantic” support necessarily comes from
the higher layers of the IoT infrastructure, which has sufficient resources to
perform signal fusion and processing. In particular, fog and edge computing
resources [36, 37], which are connected to the mobile devices through 1-hop low
latency wireless links, are particularly indicated to host compute-intense tasks
informing system-level control. Implementing optimization algorithms control-
ling the sensor layer on the fog layer can avoid imposing overheads to the sensor
layer while being able to rapidly respond to changes thanks to the local con-
trol. I In this chapter, we propose approaches using the real-time connection
between the sensors and the fog layer to build a context-aware and self-aware
control loop determining the sensing power used by wearable sensors.

The rest of the chapter is organized as follows. Section 2 provides a back-
ground in remote patient monitoring. Section 3 discusses researches done in
energy efficient sensor control. Section 4 discusses the design challenges in
healthcare IoT. Proposed energy-efficient fog computing is defined in section
6. Section 7 concludes the chapter.

2 Background

Remote health monitoring is a promising approach to extend reactive and proac-
tive healthcare solutions for populations at-risk beyond traditional clinical set-
tings. Such a service allows continuous monitoring of patients in their daily rou-
tines, enabling early intervention services in case of health deterioration [8, 41].
Moreover, it has the potential to alleviate medical costs and hospital visits for
patients, improving their quality of life as well as independent living. Internet-
of-Things (IoT) as an advance network of objects can be advantageously applied
in such applications.

IoT-based systems leverage a variety of sensors, communication infrastruc-
tures and computing resources to deliver monitoring solutions [21, 12, 24]. In
the context of remote health monitoring in every day settings, these systems
demand continuous data acquisition with high-level quality attributes, where
various vital signs should be collected seamlessly while end-users are involved
in daily routines.

In this context, Photoplethysmography (PPG) is a promising non-invasive
mechanism to capture various vital signs for users in every day settings. PPG is
a non-obtrustive optical method employed to measure blood volume variations
in the microvascular bed of tissues [2]. The blood variations are associated with
cardiac and respiratory activities. They also reflects an estimate of arterial
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Fig. 2: Power Spectral Density (PSD) of one-minute PPG signal

oxygen saturation. Accordingly, the PPG method is widely used in several
wearable and IoT-based systems, through which different vital signs such as
heart rate, respiration rate and oxygen saturation (i.e., SpO2) are extracted.
The PPG method often contains two light sources along with one light sensor,
placed on a body organ such as fingertip (see Figure 1). The light sources emit
red and infrared lights to the tissue, while the light sensors absorb the light
reflection from the tissue, capturing the PPG waveforms which correspond to
the amount of oxygenated Hemoglobin molecules in the veins.

Different techniques have been proposed to obtain heart rate and respiration
rate from the PPG waveform (i.e., red or infrared waveform) [14, 33]. Feature-
based techniques are designed to obtain the vital signs by extracting certain
features (e.g., maximum intensity of the pulse and baseline variations) from the
signal [26]. These techniques, nevertheless, are susceptible to the presence of
motion artifacts and surrounding noises which distort the features.

Alternatively, filter-based techniques extract the vital signs, leveraging band-
pass filters [20]. In this context, two band pass filters are designed according
to the respiration and heartbeat frequency ranges. Initially, the cutoff fre-
quencies are set to 0.1-1 Hz (6-60 breath rate/minute) and 0.5-180 Hz (30-180
beats/minute) for the respiration rate and heart rate extraction, respectively.
The boundaries are, then, narrowed down to the vital signs’ frequencies to mit-
igate the noise. In this regard, the cutoff frequencies are dynamically selected
exploiting the peak values in the power spectral density (PSD) of the signal [30]
(see Figure 2). Leveraging the band-pass filters, the respiratory and heartbeat
signals are extracted. Then, a peak detection algorithm is performed to obtain
local maximum points in the derivative of the bio-signals. The time interval be-
tween two consecutive peaks indicate the heart rate and respiration rate values.

Despite the heart rate and respiration rate, the SpO2 is derived from both
infrared and red waveforms. As shown in Figure 3, four features (i.e., ACIR,
ACRED, DCIR and DCRED) are first extracted. Then, the SpO2 is determined
using the following equations:

R =
ACRED.DCIR
ACIR.DCRED

, (1)

SpO2 = αR2 + βR+ γ (2)

where α, β and γ are constants obtained from the sensor’s specification [32].
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Fig. 3: PPG waveforms and the four features extracted for SpO2 calculation

3 Related Topics

In healthcare IoT applications, sensors are frequently energy bottleneck of the
system. Algorithms to reduce energy consumption of sensors have been widely
studied. Different approaches have been proposed including sensor sleep schedul-
ing [43] and power aware cognitive communication protocols [1]. Specifically, in
healthcare applications, one of the most important considerations is designing
energy efficient protocols.

For instance, interconnecting bio-sensors mounted or embedded on body via
Wireless Body Area Network (WBAN) can be implemented with energy efficient
Multiple Access Control (MAC) protocol. MAC layer is responsible to manage
data packet transmissions from the sensors across the network. Characteristics
like scheduling duration of sensor sleep time, path routing and scheduling duty
cycles are MAC protocol adjustment methods that can extend battery life of
wearables [10].

Chang et. al proposed a routing protocol for WBAN considering expected
transmission count and residual energy metrics for optimal path selection [13].
Pradhan et. al compared energy consumption in four protocols, 802.15.4, IEEE
802.15.6, SMAC and TMAC as hybrid MAC protocols in healthcare [34].

Scheduling sleep duration of the sensors are proposed to enhance the energy
efficiency by reducing the unnecessary idle listening. Scheduling sleeping periods
to match the needs of different applications in sensor networks are proposed[15,
44, 42, 46]. In 2017, Kaur et al. [27] proposed a solution to determine sleep
intervals of sensors based on their remaining battery level, usage history, and
quality of the measured signal. Zhang et al. [45] reduced the computational
complexity by formulating the sleep scheduling while also paying attention to
the network reliability in WBANs [45].

Typically, these methods are utilized to improve energy efficiency in a sys-
tem level, turning attention away from the context. For applications in the
healthcare domain, sensory data type, biosignals, sent to the gateway magnifies
the importance of data accuracy impacted by both the context of environment
and the dynamics of the system itself. Received data in the gateway can be
managed using fog-assisted energy efficient optimization algorithms to find op-
timal solutions for the sensor’s configurations to maximize the sensor’s battery
life while maintaining reliability.

Studies conducted by Zois et al. [47, 48, 49] focused on detecting activity
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of an individual by gathering partial observations from the sensors considering
gateway as the energy bottleneck. However, the objective of these frameworks,
based on Markov Decision Process theory, is that of detecting the activity itself,
and the focus is on the optimization of data transfer to a sink. In contrast,
we propose using the activity as a context to control sensing accuracy in an
edge-based architecture to extend the lifetime of sensors.

4 Design Challenges

As we discussed earlier, a remote patient monitoring system is expected to make
the patients’ vital signs available and collectible for healthcare professionals
wirelessly. Furthermore, it was mentioned that the PPG signal is a good source
for at least three vital signs.

Even though the use of PPG signal is a good source of data, it imposes the
system to several challenges. The first challenge is the behavior of the PPG
signal in different contexts. The typical PPG signal displayed in Figure 3 is
recordable in the hospital setting when the patient is sitting or lying on the bed
without movement. This typical PPG signal consists of two parts: AC part
which oscillates with each heartbeat and DC part which forms the baseline of
the signal. The AC part is the result of the changes in the amount of oxygenated
hemoglobin in the blood and the changes in the DC part are due to the pressure
applied from other body tissues to the blood vessels. For example, during the
respiration process, the change in the size of lungs applies pressure to blood
vessels and causes a low-frequency oscillation in the DC part. These kind of
changes in the DC part enable us to measure the respiration rate from the
DC part oscillation frequency by filtering the AC part. Such changes in the DC
part creates a challenge in signal processing when the patient has some activities.
Each body movement causes a change in the DC part and more intense activities
make larger changes in the signal baseline. When the amplitude of changes is
larger than the amplitude of AC part, the detection of heartbeat peaks would
be more difficult. In addition, when the body movements are rhythmic (e.g.
walking, jogging, running) with a frequency close to respiration, the calculation
of respiration rate is also rather difficult.

The other challenge in the PPG signal acquisition is the amount of noise in
the signal. Ambient light diffuses to the exposed body tissues close to the sensor
spot and causes a level of noise to the recorded signal. Although increasing the
brightness of LEDs in the PPG sensor reduces the effect of ambient light noise,
it increases also the power consumption in the sensor node.

The last PPG-related challenge is that the most parts of signal processing
are not possible to carry out with low power microcontrollers of wearable sensor
nodes. The sensor node should send the raw signal to a gateway or cloud server
for further processing. This, in turn, requires more power for radio transmis-
sion. In the following sections, we describe the solutions to cover the mentioned
challenges.

5 IoT System Architecture

Internet of Things is a term for describing methods that enable us to sense and
control a variety of parameters and objects wirelessly through the Internet. De-
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Fig. 4: IoT system architecture

veloping a system based on IoT has several benefits in comparison to traditional
wireless sensors and remote control approaches. The most significant character-
istic of IoT is its well-organized distribution of energy sources, data storage, and
processing power. As shown in Figure 4 a common architecture of IoT-based
remote health monitoring application consists of three layers. The first layer
belongs to the sensor nodes that are recording and reporting the patient state
including medical parameters, activity level, posture, location, and environment
properties. Sensor nodes send the collected data to one or more gateway devices
which are placed close to the patients so that energy cost of radio communi-
cation between sensors and gateways remains at a low level. In the gateway
layer, the devices have their own storage and processing units powerful-enough
to perform pre-processing and fog-computing actions before transferring data to
the cloud server. The pre-processing actions may include data filtering, data fu-
sion, data analysis, compression, and encryption. Fog-computing methods may
be used to offload a portion of cloud-based tasks to the gateway device at the
edge of the network to reduce the bandwidth need, data size, and server load.
In the cloud layer, the server receives collected data from several gateways and
stores the data recorded from all patients. Such a huge amount of data enables
the cloud server to compare patients with their earlier conditions, with other
patients in the same condition, and the consequences of the current condition
in other patients. The server then would be able to learn from the patients’
history and predict the future of patients’ health.

In our setup, we use a battery-powered microcontroller connected to a digital
I2C PPG sensor, a 3D accelerometer sensor, a temperature sensor, and a WiFi
transmission module as our sensor devices. The amount of power required
to drive LEDs in the PPG sensor is configurable, the sensors node is able to
receive configurations from the gateway device remotely. The other configurable
parameters are the recording and hibernation durations. The gateway is a WiFi-
enabled Linux machine which receives the recorded data, performs fog-assisted
optimization algorithms, decides about the configuration of the next recording
period, and sends the new settings back to the sensor device. The cloud server
gets updated with all collected data and updates the RMSE values for the
gateway over longer periods of time.
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5.1 Fog Computing and Its Benefits

Fog computing leverages the concept of Geo-distribution of networks at the
edge, enabling local/hierarchical data analysis, decision making, and storage [11,
37, 36]. Prevalence of connected devices and IoT-based systems demands an
intermediary layer of computation, in which the local solutions provide low-
latency responses, load balancing, and adaptivity for system behavior.

With the growth of IoT-based systems, a rapid increase in the number of
connected devices has led to a massive volume of data that needs to be processed
[16, 17]. Cloud computing has, thus far, provided scalable and on-demand stor-
age and processing resources to fulfill the requirement of IoT. However, most re-
cent IoT-based applications require mobility, low-latency response, and location-
awareness [38]. Moreover, the latency of data transmission between the edge
and the cloud is unsatisfactory especially in latency-sensitive systems such as
health monitoring [17]. In this regards, Cisco states that “Today’s cloud models
are not designed for the volume, variety, and velocity of data that the IoT gen-
erates.” [40]. Therefore, fog computing can be considered as a complementary
solution for the cloud computing paradigm to enable such latency demanding
applications [31] as it can relocate location dependent, time-dependent, mas-
sive scale, and latency-sensitive tasks from the cloud server to the edge of the
network [23].

Fog computing provides several lightweight services at the edge of the net-
work, locally analyzing data collected from heterogeneous connected devices.
Depending on the computational capacity of the edge servers or gateway de-
vices, such fog-based services can include not only conventional tasks such as
protocol conversion but also local data processing applications, some of which
are outlined as follows. There is a variety of applications such as data filter-
ing and data fusion to ensure high-level data quality at the edge, improving
the data accuracy and performing data abstraction [36, 9]. Such applications
can decrease the amount of data that should be sent to the cloud server and
subsequently save external bandwidth. Moreover, local decision-making is a so-
lution at the edge by which the system’s availability and reliability are increased
particularly when the Internet connection is poor [6]. Adaptive sensing and ac-
tuation is another application that intelligently tunes the system’s configuration
at the edge according to the context information [4]. Such a dynamic recon-
figuration can considerably improve the system-driven quality attributes such
as energy efficiency. Certain security related services can be also performed at
the edge, protecting data from unauthorized access (e.g., authentication, data
encryption/decryption, anomaly detection, etc.) [36, 39].

In summary, fog computing provides several benefits to the system. The
benefits include (but not limited to) i) local processing, notification, and actua-
tion with short latency, ii) interoperability and reconfigurability for the system,
iii) energy efficiency for sensor nodes, and, iv) mobility support for the users,
and v) reliability and availability of the service. Storing data close to the sensor
network and processing it locally leads to quick notification and rapid response.
Acting as a power manager, fog computing can reduce and optimize the energy
consumption of the sensor nodes while not imposing the management overheads
to the sensors.
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Fig. 5: The high level system architecture

6 Fog-assisted Runtime Energy Management in Wearable
Sensors

Based on the design challenges discussed in Section 4, it is desired to create a
platform that leverages portable sensors coupled with a layered communication
and processing architecture for local control purposes. Accommodating runtime
optimization algorithms at the edge enables the deployment of smart solutions
to control the settings of the sensors. Configurations/knobs such as sampling
frequency and transmission rate can also be used to control the communication
delay and bandwidth between sensor and fog layer. However, in this chapter, we
only focus on controlling the sensor’s sensing power to minimize energy which
does not influence the communication characteristics of the system (i.e., the
volume of transmitted data is unchanged). Energy efficient algorithms need
to consider the environmental situation to find a robust and optimal solution.
Daily activities, in particular strenuous ones, impact the quality of sensor’s mea-
surements. For instance, the noise caused by body movements during running
is strong enough to significantly distort the PPG signal. In contrast, physical
activities such as, sleeping or sitting impose less motion artifacts. Therefore,
smaller energy budgets can be assigned to the sensor to satisfy similar thresh-
old of accuracy. This highlights the necessity of context-awareness in managing
quality and energy of characteristics of sensors at the edge.

The high level view of our proposed fog-assisted architecture is shown in
Figure 5. The architecture consists of three different phases as Observe, Decide
and Act.

• Observe: Collecting data from a PPG sensor and an Accelerometer along
with the battery state of charge of the sensor node and transmitting it
wirelessly to the fog layer.

• Decide: i) Preprocessing and filtering the data received from the sensor
layer, ii) extracting vital signs from the PPG signal, iii) detecting activity
of a user from collected Accelerometer data, iv) modeling the statistics of
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activity dynamics, v) calculating the transition probabilities between ac-
tivity states, vi) modeling transition probabilities between battery states
during charging and discharging modes, and vii) implementing optimiza-
tion algorithms to utilize the user’s activity model, battery transitioning
model, and vital signs to find an optimal solution for the sensor’s power
level.

• Act: Regulating the sensor node’s power level based on the optimal solu-
tion derived in the fog layer.

In addition, the activity model, vital signs, and the user’s history of activity
are stored in the cloud for further analysis. Notifications on detecting abnormal-
ities in vital signs are transmitted to the cloud to warn the clinicians. Section
6.1 discusses the concept of computational self-awareness in the proposed IoT
architecture, using the three processes of Observe, Decide and Act, while Sec-
tion 6.2 presents the proposed energy optimization algorithms to control the
sensor layer.

6.1 Computational Self-awareness

Computational self-awareness enables a computing system to act reliably, op-
timally, and adaptively, despite the radical changes in its own state and envi-
ronment [29, 28, 35, 18]. Computational self-awareness therefore requires the
computing system to be empowered by knowledge about both itself as well as
the surrounding environment. By exploiting computational self-awareness prin-
ciples, the system’s dynamic behavior can be managed to provide a high-level
of quality of service, allowing accurate optimization schemes. Computational
self-awareness has thus far been investigated in various applications including
cyber-physical systems, remote health monitoring and, mobile applications [29,
5, 7].

Within healthcare applications, the system leverages semantic information
including the synergy between the system, the individual, and the surrounding
environment. In this regard, self-awareness is performed in computing systems
via a closed-loop framework where three different phases – Observe, Decide, and
Act (ODA) – are deployed together with reflective models of the system [22,
19]. (Figure 5) shows the application of the ODA loop, together with reflective
models of the battery and activity, in the IoT-based health monitoring system
architecture. Using the self-aware enhanced ODA-loop, the cognitive fog layer
adaptively configures the sensor nodes to provide a high-level of accuracy as
well as enhancing the energy and bandwidth efficiency of the system.

In each iteration, first, data collection is performed via the sensor network,
obtaining internal (e.g., system status) and external (e.g., user’s health sta-
tus) data. Second, the collected data are fed to data analytic approaches and
models are created. Then, the best behavior (i.e., the system’s configuration)
is determined according to the recent observation. The selected configuration
should satisfy both the system’s and application’s requirements. Third, if adap-
tation in system behavior is needed, the changes are applied, and the selected
configuration is implemented.
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6.2 Energy Optimization Algorithms

In our proposed IoT system architecture, the fog layer is equipped with a cog-
nitive optimization algorithm that tracks the dynamics of the sensor and user’s
activity to offer an optimal solution for the sensor’s energy level. Our opti-
mization formulation centers around the minimization of energy expenditure of
a sensor node while satisfying the application requirements in terms of mea-
surement accuracy. Measurement accuracy is directly influenced by the power
level chosen in the sensor. Figure 6 demonstrates the process of modeling ac-
curacy measurement as a function of power level in a PPG sensor. We first
start by introducing the error in the accuracy of measurements. We use Root
Mean Squared Error(RMSE) between vital signs extracted from PPG signal
(e.g., SpO2, heart rate, and respiration rate) and the true values of the ex-
tracted features. The ground-truth features are extracted from the following
three sensors:

• A chest band using an ECG sensor to collect the reference heart-rate

• An airflow sensor placed on the user’s upper lip to measure the true value
of respiratory rate

• A precise PPG sensor with higher power consumption to extract SpO2

We set the PPG sensor’s power level (e.g., U) to all possible values. Higher
power levels lead to more energy consumption as well as higher accuracy of
measurements. In order to incorporate context-awareness in our problem for-
mulation, we assume users are engaged in different activities. Based on the
intensity of the activity, a different amount of motion artifact will be observed
in the signal. We consider the following list of activities: “Sleeping”, “Sit-
ting”, “Walking”, “Jogging” and “Running”. RMSE is calculated for different
combinations of the sensor’s power level for different user’s activities (e.g., X).
Comparing the true values of the vital signs as references to the measured val-
ues is a proper metric to model the accuracy. Therefore, the proposed approach
can model the error in the accuracy of extracted vital signs (e.g., ε(X,U)) as a
function of sensing power level in the sensor and the activity of an individual.

Consider that the Probability Density Function (PDF) of error denoted by
ρ(ε(X,U)) to follow a Gaussian distribution. Therefore, we can define the prob-
ability of error as the tail probability of normal distribution when the user’s
activity X = x and the power level of the sensor is U = u where,

Pτ (X,U) =

∫ τ

−∞
ρ(ε(X,U) | X = x, U = u)dε. (3)

The threshold τ determines the maximum threshold in error tolerance. For in-
stance, larger values of τ shows that larger values of RMSE is acceptable in
calculating the error probability Pτ (X,U). We now define the regions of abnor-
mal vital signs by marking the vital signs y as abnormal and assign a Gaussian
PDF with calculated mean ma and variance σa (e.g., fa(y|X) ∼ N (ma, σa)).
Herein, the probability of abnormal vital signs ubiquity can be distinguished
from the normal vital signs with threshold θ. Considering the user’s activity
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Fig. 6: Modeling accuracy of measurements (e.g. ε(X,U)) in PPG sensor using
RMSE.

X = x, the probability of existence of abnormal vital signs can be written as,

Pθ(X) =

∫ ∞
θ

fa(y | X =x)dy. (4)

Equation 3 along with the marked abnormal vital signs in Equation 4 can
be used to determine the probability of abnormality misdetection. The proba-
bility of abnormality misdetection is a metric to determine the possibility that
abnormal vital signs are not detected due to error in sensor’s measurements. In
fact, probability of misdetection can be defined as a joint event of ubiquity of
abnormal vital signs and sensor’s error tolerance. We proved in [4] that upper
bound for probability of misdetection in abnormality (e.g. PD) can be written
as,

PD(X,U) = Pθ(X)Pτ (X,U). (5)

We use formulation of PD(X,U) as the main presentation of deterioration
risk factor. After modeling the probability of misdetection, we can define the
important factors to be optimized. On one hand, lower power levels in the sensor
consumes less energy leading to the ability to monitor a patient for a longer time.
However, the signal captured by the sensor is distorted by noise due to low
Signal to Noise Ratio (SNR). On the other hand, using higher energy levels in
the sensor increases the energy consumption leading to shorter battery life, but
enhances the accuracy of the extracted vital signs. Therefore, it is important
to find an optimal solution as a trade off between energy consumption (e.g.,
CTX(U)) as a result of choosing power level U and desired level of satisfactory
in probability of misdetection. The optimization problem can be defined as:

(a) minimizing cost function of energy consumption over constraints of prob-
ability of misdetection;
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Fig. 7: Optimization algorithm implementation.

minimize
U

CTX(U)

subject to PD(X,U) ≤ η

or, equivalently,

Pτ (X,U) ≤ η

Pθ(X)
= ζ

(6)

or (b) defining total cost function of energy consumption and probability of
misdetection with parameter 0 ≤ ω ≤ 1 to control the importance weight of the
two factors;

Ctotal(X,U) = ωPD(X,U) + (1− ω)CTX(U). (7)

Therefore, the optimization problem can be written as:

minimize
U

Ctotal(X,U) (8)

Defining an optimization problem based on the cost function requires finding an
optimal solution for the power level of the sensor. Solutions to the optimization
problems can be proposed to minimize the accumulated cost function over finite
time horizon or minimizing the instantaneous cost. Therefore, both methods
find an optimal power level for the sensor. Figure 7 demonstrates the process
of implementing the optimization algorithm.

Two approaches are proposed in this chapter to solve the optimization prob-
lem, (i) myopic strategy and (ii) Markov Decision Processes (MDP) strategy.
In addition, the performance of aforementioned strategies are compared.

6.2.1 Myopic Strategy

Optimizing the instantaneous cost function results in implementing real-time al-
gorithms with linear time complexity known as the myopic strategy. Intuitively,
myopic strategy finds an optimal solution for the sensor’s power level based on
instantaneous activity states. Myopic strategy can find the lowest power level
in Equation 6 that satisfies the maximum probability of misdetection. This
strategy can be implemented on the edge devices with limited memory and
computations to calculate real-time solution for the sensor’s power level. In
order to find a solution based on a longer perspective to avoid possible outage
and performance reduction, a strategy that evaluates the outcome of all possi-
ble actions can be proposed. Next section discusses MDP strategy that allows
optimization of power level over a temporal horizon.
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6.2.2 MDP Strategy

Optimizing the accumulated cost over time horizon can be achieved by tracking
the history of dynamics of the system as well as exploring different possible
actions to achieve longer perspective of solutions. MDP is a strategy that cal-
culates the optimal power level in the sensor by using a sliding window over a
finite time horizon by tracking the stochastic state of the system. Stochastic
model in MDP consists of user’s activity as the contextual state and battery’s
state of charge as the self state. We consider that the battery is quantized as
distinct battery states. We model the transitioning probabilities between bat-
tery states depending on a possible power level chosen as the action. Finite
battery states can be defined as Q = {Q1, Q2, ..., QK} with Q1 as the battery
state completely discharged and QK as the fully charged state. We can de-
fine transitioning probabilities from battery state Qk to Qk′ with the possible
discrete power levels U ∈ {U0, U1, U2, ..., Um},

q(k′|k, U) , P (Q′k|Qk, U) (9)

Considering the transition probabilities defined in Equation 9, the dynamics of
the battery can be modeled as a Markovian process with the states transitioning
shown in Figure 8.

Fig. 8: Markov chain of battery states during charging and discharging.

In addition, Markov model tracks the changes in activity of a user as state
space X in {“Sleeping”, “Sitting”, “Walking”, “Jogging”, “Running”}. Note
that activities during the day change over time and building different models is
a necessity. Therefore, we uniformly break down the daily activity into n smaller
periods. We consider Markov model corresponding to ith period in {1, 2, ..., n}
each with duration of 24

n hours.
Figure 9 shows the example of Markov chain for activities during one period.

This type of model is updated to the change of subject’s context over time and
personalized based on the daily activity. We build the Markov chain transi-
tioning from activity Xj to Xj′ during period i with the following transition
probabilities,

pi(j
′|j) =P (Xij′ |Xij) (10)
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Fig. 9: Markov chain of activities of an individual during one period.

The total state of the system can be written as the joint event state space of
battery state Qk and activity state Xij . We prove that the transition prob-
abilities in joint states is the multiplication of battery and activity transition
probabilities [3]. The resulting Markov chain with proposed state transitions
considering the changes of activity as a function of the time of the day is shown
in Figure 10.

Fig. 10: Markov chain of joint battery and activity states during period 1 to n.

We take advantage of the non-homogeneous Markovian model, where tran-
sition probabilities are calculated depending on the period of the day. The
optimization algorithm then chooses an optimal action U∗ such that the accu-
mulated cost function over the finite time horizon N can be calculated based on
the instantaneous cost function. Herein, with problem formulation in Equation
7 we have:

U∗ = argmin
U

E

(
N∑
t=0

γt [Ctotal]

)
(11)

Where, γ is the discount factor taking values commonly between 0.9 and 1.
Figure 11 shows the comparison between two strategies myopic with problem

formulation presented in Equation 6 and MDP with problem formulation shown
in equation 8 for a subject during 24 hours of monitoring. The daily activity
of the subject is divided into 4 periods of 6 hours (e.g., i = {1, 2, 3, 4}) . For
each period, the transition probability between activity is trained based on the
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Fig. 11: 24-hour health monitoring of a healthy person . (a) User’s activity level.
(b) Optimal sensor’s power level. (c) battery state tracking based on
sensor’s power level. (d) Probability of error expected regarding the
user’s activity. The red line, and grey line indicate the myopic and
MDP methods, respectively.

history gathered from one week of activity monitoring. Markov chain for each
period is modeled based on the transition probabilities shown in Figure 9. Since
the activity model of a user changes over time, the transition probabilities need
to be updated regularly. We calculated the average transition probabilities for
each period over one week of activity data. The trained model is used for the
following week to find the optimal solution. In addition, we evaluated our results
for activities of 14 subjects. For each subject, the model is updated weekly to
adapt the system to its change throughout the time. The results are evaluated
for four weeks of data to calculate average energy consumption in the PPG
sensor layer using myopic and MDP strategies. The joint battery and activity
states are modeled and the corresponding Markovian model based on the period
of day is used to find an optimal solution in MDP strategy.

We compared MDP and myopic strategies by setting the parameter ω in
Equation 7 to 0.17 and the threshold for probability of error to 0.002 (e.g., ζ
in Equation 6). For the sake of fair comparison, the parameters ω and ζ are
chosen in the way that average probability of misdetection over four weeks for
both myopic and MDP methods become the same. Parameter ω determines the
importance of optimizing total cost function in MDP. For values close to 0, the
energy consumption will have higher impact on the cost function. Therefore,
MDP chooses policies to minimize energy consumption in the sensor. Whereas,
ω close to 1 stress the importance of probability of misdetection in Equation
7. In this case, MDP chooses the optimal actions to fulfill minimization of
probability of misdetection. During one month of monitoring, the fixed average
probability of error will achieve 0.26 by setting ω = 0.17 in MDP and ζ =
0.002 in myopic strategies. Figure 11 (a) shows the activity of this subject
for 24 hours starting at 10 pm to 10 PM of the following day. Figure 11 (b)
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shows comparison of optimal actions taken using the two proposed methods.
This sensor’s sensing power level could be chosen in 5 different settings, U ∈
{U0, U1, U2, U3, U4, U5}. Power levels in aforementioned PPG sensor can be
used with corresponding current levels (e.g., U1 = 0.8 mA, U2 = 3.5 mA,
U3 = 6.3 mA, U4 = 9.2 mA and U5 = 12 mA). For each current level, the
power consumption is specified. For instance, current level U0 indicates the
sensor is in the sleeping mode. The power consumption is {69.3 mW, 73.26
mW, 79.86 mW, 84.15 mW, 89.43 mW}, respectively for the rest of the current
levels. We set the battery states so that the PPG sensor reduces 1 level of state
during 1 hour of sensing when the current level U1 is chosen. The highest current
level U5 consumes 5 levels of battery during one hour. Therefore, the battery
is discharged after 30 hours of using the lowest current level U1. Figure 11 (c)
shows the battery state tracking using the optimal actions in both strategies
with Q = {Q1, , Q2, ..., Q30} as the battery states. The optimal action changes
the battery state over time. It is shown that MDP strategy can extend the
battery lasting twice more compared to myopic method. This is useful since the
frequency of charging the battery is less resulting in planning wisely on using
the energy resources. Figure 11 (d) demonstrates the probability of error with
respect to the action taken in both methods. Note that it is assumed that the
sensor will be forced to go to sleeping mode U0 when the battery is discharged
which results in probability of error to be 1. Myopic method finds an optimal
solution just based on the current activity of a user without considering that
the chosen action will discharge the battery faster and this will increase the
likelihood the battery drainage during vigorous activities including, walking,
jogging, and running which requires accurate monitoring. Myopic has a linear
time complexity leading to solving the optimization problem in real-time. This
method specifically is practical when the model of activity of a subject is not
available for training Markovian model. During one month of monitoring, we
observed the average of 12% reduction in energy consumption comparing MDP
with myopic fulfilling the same probability of error. The increase in battery
lasting was observed with 2× in MDP.

Figure 12 compares two methods of MDP, myopic and selection of constant
power level. In this experiment, average error probability is calculated as a func-
tion of average energy consumption during one month for 14 subjects. Results
indicate that in these three methods, choosing parameters in MDP strategy can
save energy compared to myopic method. For instance, for a fixed average error
probability of 0.32, MDP consumes 3.8 KJ, while myopic consumes 4.46 KJ and
static power level with U4 = 9.2 mA. Therefore, MDP can observe average of
12% reduction in energy consumption while fulfilling the same error probabil-
ity. In addition, highest power level U5 = 12 mA consumes slightly less power
while the average error probability of 0.25 is achieved. Our model takes into
consideration that the user charges the battery with probability of one only
when they are sleeping or sitting but not walking, jogging or running. Choosing
high power levels leads to a faster drainage of battery meaning that the user
needs to recharge the battery more frequently. During the charging process, the
probability of error is 1. Therefore, the average probability of error in U5 = 12
mA is higher than using U4 = 9.6 mA during the one month of monitoring the
14 subjects.
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Fig. 12: Average probability of error as a function of energy consumption (KJ) in
four weeks averaged over 14 subjects. Comparison between three meth-
ods of MDP, myopic and static power consumption. Myopic method is
evaluated based on ζ ∈ {0.0002, 0.002, 0.045, 0.07, 0.1} in Eq. 6. MDP is
evaluated based on ω ∈ {0.172, 0.176, 0.177, 0.188, 0.3, 0.4, 0.5, 0.6, 0.7}
in Eq. 8. Static power consumption is calculated based on U ∈
{0.8 mA, 3.5 mA, 6.2 mA, 9.2 mA, 12 mA}

7 Conclusions

The 3-layer IoT paradigm has opened new avenues of monitoring patients out of
hospital using wearable sensors. Such a system includes wearables with tight en-
ergy constrains making it critical to empower these sensors with runtime energy
management approaches. User context can be exploited to minimize the mea-
surement energy with a minimal loss of measurement accuracy, however, such
algorithms require contextual information to control the energy budget in the
sensor to monitor subjects accurately imposing energy overhead on the sensor
layer. Energy-constrained wearable sensors cannot often afford such an over-
head, however, if a proper architecture is used, the overhead can be migrated to
the next layer (i.e., smart gateways at the fog layer) enabling local fog-assisted
control of sensors. The fog layer provides an opportunity to perform real-time
control of the sensor’s configurations. In this chapter, we demonstrated opti-
mization methods to address a two fold goal, minimizing the energy consumption
while fulfilling satisfactory threshold of probability of misdetection in abnormal-
ity. We used the key idea of context-awareness to bring accurate solutions to the
optimization algorithms. We proposed two methods, optimizing instantaneous
cost function known as, myopic strategy and MDP as the solution to accumu-
lated cost function over finite time horizon. We compared results of MDP and
myopic during monitoring a subject for 24 hour and we observed average of 2x
battery life extension in MDP strategy compared with myopic strategy.
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