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What Varying the Learning Task and Category Structure Reveals About Inference Learning 
 

Seth Chin-Parker (chinparkers@denison.edu) 
Department of Psychology, Denison University 

Granville, OH 43023 USA 
 

Abstract 
A core issue in the cognitive sciences is understanding 
how people acquire conceptual knowledge. One way 
that people can acquire this knowledge is through the 
inference of missing feature information. Recent studies 
have proposed a shift away from the idea that inference 
learning results in knowledge of the internal structure 
of the categories being learned. The current study varies 
the inference learning task and the category structure 
being learned in order to examine these claims. The 
results provide little support for the notion that 
participants are acquiring either exemplar knowledge or 
a simple set of rules as a result of inference learning. 
Keywords: categories and concepts, inference learning. 

 
During the past decade, inference learning has been 

studied as a form of category learning (e.g. Sweller & 
Hayes, 2010; Yamauchi & Markman, 1998). Inference 
learning occurs as a participant predicts a missing feature 
value of an item when the category membership is explicitly 
available. For instance, the participant is shown a fictional 
bug, identified as a “DEEGER”, that is missing its legs. 
Possible values for the missing legs are provided, and the 
participant predicts which would occur with that bug. As the 
participant continues to make inferences of this sort and 
receives feedback on those predictions, she acquires 
knowledge of the categories the bugs are drawn from. 

Most previous research in this area has focused on 
comparing inference learning to classification learning. The 
current study focuses specifically on inference learning in 
order gain insight into that learning paradigm. One view of 
category learning is that the category knowledge acquired 
reflects that information about the category and its members 
that allows for a successful completion of the learning task 
(Markman & Ross, 2003). According to this view, inference 
learning leads to the acquisition of information about how 
features occur within the categories of interest. This can be 
as simple as learning the most likely feature value given the 
category label. However, this knowledge can also include 
more rich information about the internal structure of the 
category, e.g. the co-occurrence of feature values (Chin-
Parker & Ross, 2002), variation among the feature values 
(Yamauchi & Markman, 2000), or abstract relations that 
exist between the features (Erickson, Chin-Parker, & Ross, 
2005). Successful inference learning depends on realizing 
the category structure so that feature inferences can reflect 
how the features are instantiated within the category 
members. Although Johansen and Kruschke (2005) echo the 
notion that different learning tasks can lead to the 
acquisition of different category knowledge, they propose 
that inference learning results in a set of rules specifying 

only the association between the category label and the 
inferred feature values as opposed to a richer sense of the 
internal structure of the categories. More recently, Sweller 
and Hayes (2010) have proposed that inference learning 
results in the acquisition of exemplar knowledge under 
certain conditions, a claim that runs counter to much of the 
previous work examining inference learning. Although 
exemplar knowledge can be useful for many category-based 
tasks, inference learning seems to require a more unitary 
representation of the category to be successful. 

The current study explores these claims by varying both 
the inference task and the structure of the categories being 
learned. Participants learned about categories that had a 
family resemblance (FR) structure. They either inferred only 
the prototypical feature values or both the prototype-
consistent feature values and exceptions to those values. 
This manipulation has been used in previous studies 
(Nilsson & Olsson, 2005; Sweller & Hayes, 2010), and it 
has been proposed that inferring all feature values leads to 
exemplar learning. However, the effect of this manipulation 
on inference learning has not been fully explored. In this 
study, the participants also either learned a category 
structure where the feature values were shared across the 
categories or one where the feature values associated with 
each category were independent of one another. By 
examining the effect of the category structure, we can gain 
some insight into what knowledge is acquired through 
inference learning and how it is represented.  

The working hypotheses for this study are based on the 
premise that successful inference learning involves selecting 
the most likely feature value in terms of the internal 
structure of the categories as opposed to a simple set of rules 
or exemplars. Several dependent measures are examined, 
including inference accuracy during learning and typicality 
ratings of both studied and novel items after the learning. 
Previous research (e.g. Sweller & Hayes, 2010) has shown 
that the manipulation of the inference task affects inference 
accuracy during learning. As noted prior, the inference task 
prompts the learner to select the most likely feature value 
given the category structure – this strategy leads to accurate 
inference of the prototype-consistent feature values but 
leads to poor accuracy when prototype-exception values are 
predicted. This in turn affects what participants are able to 
learn about the categories. Because their learning task better 
matches the category structure, the typicality ratings of the 
participants who infer only the prototype-consistent feature 
values will better reflect the FR structure of the categories. 
The effect of the category structure on participant 
performance will be more complex. Due to the nature of 
inference task, it is not obvious that the category structure 

625



manipulation will affect accuracy during learning because 
both category structures instantiate the prototypical feature 
values the same within the FR structure. However, I do 
predict that the participants who infer the feature values that 
are not shared across the categories will better realize the 
FR structure because they can focus on how specific feature 
values are distributed within each category. The participants 
who interact with the categories that share feature values 
will show less learning of the FR structure because they 
would have to realize the distribution of the feature values 
both within and across the categories to fully appreciate the 
category structure. What these results show about the 
underlying representation of category knowledge acquired 
from inference learning will be addressed in the Discussion.  

Experiment 
Methods 
Participants Ninety-six undergraduates from a Midwest 
college received participation credit for an Introductory 
Psychology class in return for their participation. 
Design The experiment was a 2 (category structure) X 2 
(inference task) independent samples design. During the 
learning task, the participants learned a category structure in 
which the feature values occurred across the categories, the 
cross-category structure, or the feature values were specific 
to each category, the independent-category structure. The 
structures of the categories learned are explained further in 
the Materials section of this paper. Also, participants either 
inferred both prototype-consistent and prototype-exception 
feature values (exception inference conditions) or only the 
prototype-consistent feature values (consistent inference 
conditions). The design resulted in four learning conditions: 
the cross-exception condition (C-E), the cross-consistent 
condition (C-C), the independent-exception condition (I-E), 
and the independent-consistent condition (I-C). Participants 
were randomly placed into a learning condition upon arrival 
at the experimental session. 
Materials The stimuli were drawings of “bugs”, labeled 
Deegers and Koozles (see Figure 1). The bugs varied along 
four features: the legs, antenna, tail, and wings. The stimuli 
XXXXXXXXX 
Figure 1: Example Stimuli – Category Prototypes 
 

 

   
 
 

DEEGER (1111)   KOOZLE (0000) 

Table 1: Category Structures Used in the Experiment 
 

Cross-Category Structure 
  Deeger  Koozle 

Learning 1110  0001 
Items  1101  0010  
  1011  0100 
  0111  1000 
Prototype 1111         0000 

Independent-Category Structure 
  Deeger  Koozle 

Learning 1112  0003 
Items  1121  0030  
  1211  0300 
  2111  3000 
Prototype 1111         0000 
 
were pretested to confirm that the feature values carried 
similar weights when participants were asked to make 
similarity judgments. 

The categories (see Table 1) were defined by prototype, 
and during the learning task the participants interacted with 
bugs that matched the prototype on three of the four feature 
values (the prototype-consistent features), but had one 
feature value that did not match the prototype (the 
prototype-exception feature). The value of the prototype-
exception feature depended on the category structure. In the 
cross-category structure, the values for prototype-exception 
features were the values associated with the prototype of the 
other category (e.g. a value of 0 for the prototype-exception 
feature in the Deeger category). In the independent-category 
structure, there was no overlap in the feature values 
associated with the two categories. For the learning stimuli, 
the feature that was to be inferred was removed from the 
picture of the bug, and pictures of each feature value were 
prepared in isolation so they could be displayed alongside 
the incomplete bug during the learning task as described in 
the Procedures section. Sixteen blocks of the learning 
exemplars were constructed so that during each learning 
block the participant would interact with each item once and 
each feature was inferred once for each category. 

The items for typicality-rating task were based on the FR 
structure in Table 1. Participants rated the prototype of each 
category, 1-off items, 2-off items, 3-off items, and category 
conflict items. The values of the prototype-exception 
features of these items varied as to whether they were from 
the cross-category, e.g. a value of 0 for a Deeger, or from 
the independent-category, e.g. a value of 2 for a Deeger. 
The 1-off items did not match the category prototype on one 
feature value, the 2-off items did not match on two feature 
values, and the 3-off items did not match on three feature 
values. The category conflict items had no prototype-
consistent feature values (e.g. items 0000 and 2222 for the 
Deeger category). There were four 1-off items, six 2-off 
items, four 3-off items, and one category conflict item for 
each of the types of mismatch feature values, whether cross-
category or independent-category values. Including the 
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category prototype, there were 31 items from each category 
in the typicality-rating task. The stimuli for the single-
feature classification task consisted of each of the feature 
values instantiated alone on the generic head-body form 
used for all bugs in the study. 
Procedure The participants worked individually at a 
computer, seated roughly two feet from a 17” CRT monitor. 
Participants were told that they would be asked a series of 
questions about fictional bugs during the study. After this 
initial introduction to the study, instructions and reminders 
were presented on the computer. 

The order of the sixteen learning blocks was randomized 
for each participant, as was the order of the presentation of 
the learning items within each block. For each trial of the 
learning task, a fixation point was followed by one of the 
learning items centered on the screen. As described in the 
Materials section, the bug was missing one of four features 
(the legs, wings, antenna, or tail). A notification of the 
category membership for the bug, either “This bug is a 
DEEGER” or “This bug is a KOOZLE”, was presented in 
large font above the bug. To the right of the bug were the 
two possible values for the missing feature, the prototype-
consistent value and the prototype-exception value. The 
location of each of the features, whether above or below the 
vertical center of the screen, was randomly determined each 
trial. Once the participant clicked on one of the feature 
values using the computer mouse, the initial picture of the 
bug was replaced with a complete version, all features were 
shown, and the participant was provided feedback on their 
inference. Either “CORRECT” appeared in a green font or 
“INCORRECT” appeared in a red font on each side of the 
bug for two seconds. The image of the bug remained for two 
seconds after the feedback before the next trial began. 

After completing the 16 learning blocks, the participant 
was provided instructions for the typicality-rating task. The 
items seen during the task were blocked by category, and 
the order of the items within each block was random. The 
order of the categories was balanced across the participants. 
As in the learning, each trial was preceded by a short 
fixation point. The bug was presented in the center of the 
screen with the question, “How typical is this bug of a 
(DEEGER/KOOZLE)?” below it. Below the question was a 
seven-point typicality rating scale that was anchored at 1 
(“Not at all typical”), 4 (“Somewhat typical”), and 7 (“Very 
typical”). The participant clicked on their rating using the 
computer mouse. Once the participant rated the 31 items in 
one of the category blocks, the other category block 
followed. No feedback was given during the task. 

The final transfer task was the single-feature classification 
task. During this task, the feature values that were seen 
during the learning task were presented individually in a 
random order. Each feature value was preceded by a 
fixation point and was centered on the screen. On each side 
of the image were the category labels, “DEEGER” and 
“KOOZLE”. The participant clicked on her classification 
for each feature value using the computer mouse. No 
feedback was provided during this task. 

Results 
Figure 2 shows the mean learning performance for each 

of the conditions organized by the learning block quartiles. 
A 2 (category structure) X 2 (inference task) X 4 (learning 
block quartile) mixed ANOVA showed a significant main 
effect of learning block quartile, F(3, 276) = 43.23, p < 
.001, ηp

2 = 0.32, no main effect of category structure, F(1, 
92) = 0.00, p > .50, and a main effect of the inference task, 
F(1, 92) = 186.35, p < .01, ηp

2 = 0.67. There was an 
interaction between the learning block quartile and inference 
task, F(3, 276) = 13.58, p < .001, ηp

2 = 0.13. As can be seen 
in Figure 2, the consistent-inference participants improved 
in their performance while the exception-inference 
participants showed much less improvement across the 
learning blocks. There was no effect of the category 
structure on this pattern. In the final learning block, 34 of 
the 48 consistent-inference participants were perfect at 
inferring the missing feature value, while only 4 of the 48 
exception-inference participants did so. In contrast, 24 of 
the 48 exception-inference participants made four or fewer 
correct inferences in the final learning block. 

Table 2 presents the mean typicality ratings for each of 
the item types by condition. It is important to note that all 
participants rated the typicality of items that had exception 
feature values seen during learning and items that had 
exception feature values not seen during learning. The 
analyses and tables that follow are organized to reflect this. 

The analyses of the typicality ratings first focus on the 
typicality slope - the slope and intercept of the line that best 
fit each participant’s ratings of the items from prototype to 
the conflict item. A near zero slope indicates that varying 
the number of prototype-consistent feature values has little 
effect on the typicality rating. A positive slope indicates that 
rated typicality increased as fewer feature values match the 
prototype (not expected if the FR structure is learned). A 
negative slope reflects that the participant is rating items 
XXXXX 
Figure 2: Learning Performance by Quartile 
 

 
Figure Note: Error bars represent +/- 1 SE 
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Table 2: Mean (and SD) of Typicality Ratings by Item  
2a: Exception Feature Values Match Learning 
   Item Type 
 Proto 1-0ff 2-0ff 3-Off     Conflict 
C-E 5.21 5.18 4.40 4.18 3.94  
 (1.80) (0.96)  (1.34)  (1.43)  (1.86)  
I-E 5.15 5.45 4.80 4.51 4.29  
 (1.68)  (0.96)  (1.26)  (1.40)  (1.82) 
C-C 5.96 5.20 3.86 2.86 2.13 
 (1.63) (0.81)  (1.02)  (1.45)  (1.78) 
I-C 6.08 5.47 4.98 4.49 4.29 
 (1.43)  (0.92)  (1.13)  (1.53)  (1.79) 

2b: Exception Feature Values Mismatch Learning 
   Item Type 
 Proto 1-0ff 2-0ff 3-Off     Conflict 
C-E 5.21 2.53 1.97 1.72 1.67 
 (1.80) (1.40)  (1.04)  (0.95)  (1.14) 
I-E 5.15 3.80 3.14 2.72 2.77 
 (1.68) (1.18)  (0.95)  (0.92)  (1.74) 
C-C 5.96 3.79 2.61 1.97 1.48 
 (1.63)  (1.82)  (1.15)  (0.89)  (0.87) 
I-C 6.08 4.49 3.45 2.77 2.25 
 (1.43) (1.07)  (0.98)  (1.22)  (1.45) 
Note: The prototype ratings are reported twice to allow for 
comparison across all levels in the tables above. 
 
that share fewer feature values with the prototype as less 
good members of the category. The slope intercept provides 
an indication of the typicality rating assigned to the more 
typical members of the category. The mean slope and slope 
intercepts were computed across the items that had 
prototype-exception values seen during learning (match 
slopes) and those that introduced the prototype-exception 
values not seen during learning (mismatch slopes). These 
values are reported in Table 3. The slope intercepts are not 
addressed here because of space. 

The match slopes for all participants were analyzed using 
a 2 (category structure) X 2 (inference task) ANOVA. This 
analysis showed a main effect of category structure, F(1, 92) 
= 8.93, p < .01, ηp

2 = 0.09, a main effect of inference task, 
F(1, 92) = 15.60, p < .01, ηp

2 = 0.15, and an interaction 
between category structure and inference task, F(1, 92) = 
4.62, p = .03, ηp

2 = 0.05. The participants that had been 
exposed to the cross-category structure during learning 
tended to have more negative match slopes than those 
exposed to the independent-category structure, and the 
participants in the consistent-inference conditions had more 
negative match slopes than those in the exception-inference 
conditions. The participants in the C-C condition had a 
mean match slope that was twice as large as any other 
condition leading to the interaction. 

The mismatch slopes were similarly analyzed. A 2 
(structure) X 2 (inference) ANOVA revealed a non-
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

Table 3: Mean (and SD) Slope and Slope Intercept Values 

      Exception Values      Exception Values  
       Match Learning     Mismatch Learning 
            Slope           Slope 
     Slope      Intercept     Slope      Intercept 
C-E      - 0.35        5.28       - 0.79      4.20 
      (0.53)      (1.31)      (0.52)    (1.20) 
I-E       - 0.26      5.36       - 0.58      4.68 
      (0.44)      (1.22)      (0.58)     (1.46) 
C-C      - 1.00       6.00      - 1.07      5.31 
      (0.62)      (1.13)      (0.42)     (1.70) 
I-C      - 0.46        5.97      - 0.94      5.69 
      (0.46)      (1.10)      (0.55)     (1.10) 
 
significant effect of structure, F(1, 92) = 2.63, p = .11, ηp

2 = 
0.03, a main effect of inference, F(1, 92) = 9.28, p < .01, ηp

2 
= 0.09, and no interaction between the factors, F(1, 92) = 
0.10, p = .75. The participants in the consistent-inference 
conditions had higher mismatch slopes on average than the 
participants in the exception-inference conditions. 

The assessment of the typicality slopes is useful, but the 
slope summarizes the change across the levels of typicality. 
In order to look at the changes in the ratings at a more fine-
grained level, I calculated for each participant how much the 
typicality ratings changed from the prototype to the 1-off 
items, the 1-off to 2-off items, etc. This provided four 
“drop” values for each participant. Each drop value 
indicated how the typicality ratings changed as an additional 
feature value mismatched the prototype. Using the four drop 
values, each participant’s performance was categorized: 
consistent drop meant at least three of the four values were 
greater than 0.25, consistent reversal meant that three of the 
four values were less than -0.25, flat meant that three of the 
four values were between -0.25 and 0.25, and inconsistent 
meant that the drops varied across these ranges. Table 4 
shows these patterns organized by condition and whether 
the values of the exception features matched (Table 4a) or 
mismatched (Table 4b) those seen during the learning. 
Organizing the patterns into two types, Consistent and 
Other1, there is a obvious effect of the condition, χ2

(3, 96) = 
13.72, p < .01, φc = 0.38. Only the C-C condition had a 
majority of the participants showing a consistent drop across 
these items in the typicality rating task when the prototype-
exception feature values matched those seen during 
learning. There is also an effect of condition on the patterns 
observed in the typicality ratings for the items with the 
mismatched exception feature values, χ2

(3, 96) = 11.31, p =  
.01, φc = 0.34. The typicality ratings of the C-E condition 
did not consistently reflect the typicality gradient. The I-E 
condition was more consistent in their ratings. Most of the 
consistent-inference participants showed a consistent change 
in their typicality ratings. It is important to note that nearly 

                                                
1 Combining the reversal, flat, and inconsistent into one grouping 
to contrast with consistent is necessary for the analysis because of 
the small number of participants with the flat and reversal patterns. 
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Table 4: Distribution of Participant Typicality Drop 
Patterns Within the Conditions 
 

4a: Exception Feature Values Match Learning 
 Consistent     Reversal      Flat     Inconsistent 
C-E         9  1   2     12 
I-E         6  2   4     12 
C-C        18  1   1      4 
I-C         9  0   3     12 
 

4b: Exception Feature Values Mismatch Learning 
 Consistent     Reversal      Flat     Inconsistent 
C-E         8  1   8     7 
I-E        13  1   3     7 
C-C        16  0   4     4 
I-C        19  0   0     5 

 
all participants who were categorized as having a flat 
response pattern with the mismatch items (especially those 
in the C-E condition) actually rated the prototype rather high 
but the introduction of any feature value not seen during 
learning resulted in a low typicality rating. 

The final measure was the single feature classification 
accuracy. It is important to remember that in this task the 
cross-category conditions (C-E and I-E) classified eight 
feature values while the independent-category conditions (I-
E and I-C) classified sixteen feature values. All four 
conditions, C-E (M = 0.79, SD = 0.14), I-E (M = 0.87, SD = 
0.15), C-C (M = 0.89, SD = 0.19), and I-C (M = 0.86, SD = 
0.14), were above chance when classifying the feature 
values (all p < .01). A 2 (category structure) X 2 (inference 
task) ANOVA showed no effect of category structure, F(1, 
92) = 0.89, p = .35, ηp

2 = 0.01, no effect of inference task, 
F(1, 92) = 1.84, p = .18, ηp

2 = 0.02, and a marginally 
significant interaction between category structure and 
inference task, F(1, 92) = 3.12, p = .08, ηp

2 = 0.03. The 
interaction term approaches significance, reflecting the 
similar performance of all conditions except for the C-E 
condition. Both the C-C and I-E conditions were 
significantly more accurate than the C-E condition (both ps 
< .05), and the difference between the C-E and I-C 
conditions approached significance (p = .07). 

Discussion 
The results of this experiment provide some insight into 

the nature of inference learning. To facilitate discussion, a 
brief summary of the experimental conditions follows. The 
cross-exception (C-E) condition performed poorly during 
the learning task, and their typicality ratings showed 
restricted knowledge of the FR category structure. When the 
exception values matched those seen during learning, the 
typicality slope was small and inconsistent across the 
participants in the condition. When rating the mismatch 
items, the participants in the C-E condition gave any item 
with a novel feature value a low rating; the number of 

prototypical values had little impact on their ratings. The 
independent-exception (I-E) condition, like the C-E, had 
difficulty during the learning. Their typicality ratings for the 
matched items were also similar to the other exception-
inference condition. However, when they were rating the 
typicality of the mismatch items, they showed more 
sensitivity to the FR structure. The cross-consistent (C-C) 
condition performed very well during the learning. Their 
typicality ratings showed that they were sensitive to the FR 
structure of the categories they learned, and this was evident 
whether they were rating items that had exception features 
that matched those that they had seen during learning or not. 
The independent-consistent (I-C) condition also did well 
during the learning task. In the matched slope analyses, the 
typicality slope of the I-C condition was somewhat flat and 
the participants’ ratings fluctuated among the items. 
However, the ratings of the mismatch items, in terms of 
both the slope measures and the consistency of the 
participant drops showed recognition of the FR structure. 

As predicted, there was a strong effect of the inference 
task, but little effect of the category structure, during the 
learning. The lower learning performance of the exception-
inference conditions occurred because the participants 
consistently predicted the prototypical value for the missing 
feature. On 25% of the learning trials, the participants were 
getting feedback that the prototypical value was the 
incorrect value for the missing feature. As noted prior, this 
works directly against the underlying principle of the 
inference task – identifying the most likely, i.e. prototypical, 
feature value given the category of interest. This disruption 
in the learning was extensive; half of the participants in the 
exception-inference condition correctly predicted four or 
fewer of the missing features in the final block of learning.  

The effect of the inference task on the transfer measures 
is more complicated, and it interacts with the effect of the 
category structure. Within the cross-category conditions, the 
learning task had a strong effect. Participants in the C-E 
condition did not realize the category structure, but the C-C 
condition showed evidence across all of the transfer tasks 
that they understood the FR structure. The independent-
structure conditions were more similar, although more 
variable, in terms of what the typicality ratings suggested 
about their knowledge of the categories. The typicality 
ratings for the items with exception-feature values that 
matched those seen during learning indicated that 
participants in both the I-E and I-C conditions did not 
appreciate the FR structure. The ratings for the items with 
the mismatch values indicated that they did understand the 
FR structure, the I-C condition somewhat better than the I-E 
condition. The difference between the ratings for the items 
with the matched and mismatched exception-feature values 
can be attributed to two factors. First, within this category 
structure all feature values in the matched items had been 
associated with a single category during learning, and this 
may have attenuated the drop in the ratings for the less 
typical items. Second, the items with the matched and 
mismatched exception-feature values were interleaved, so 
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the ratings may have been treated as relative – regardless of 
the number of prototypical features, the matched items were 
still more typical than the mismatched items. Importantly, 
both independent-category conditions showed evidence of 
recognizing the FR structure to some degree following the 
learning. The predicted overall advantage for the 
independent category structure was not seen as the C-C 
condition learned the categories as well as either of the 
independent-structure conditions. The preservation of some 
learning in the I-E condition, especially compared to the C-
E condition, is the sole indication that the independent 
category structure affected learning as predicted. 

As noted, these results can be used to address recent 
proposals about inference learning. First, Johansen and 
Kruschke (2005) proposed that inference learning leads to a 
set of rules representation that specifies the associations 
between the category label and feature values inferred 
during learning. The simplest form of the model can be 
ruled out as the I-C condition showed sensitivity to the 
value of the exception features during the typicality rating 
task. This indicates that some information about the non-
inferred feature values was captured in the category 
representation. Johansen and Kruschke acknowledged that a 
more complex rule model might be necessary to capture the 
knowledge acquired from the inference learning. Indeed, the 
set of rules would have to somehow capture more than just 
the inferred and non-inferred feature values; it would also 
have to be flexible enough to represent relationships 
between feature values (Chin-Parker & Ross, 2002) and 
abstract relations between features (Erickson, Chin-Parker, 
& Ross, 2005). 

This study found very little to support the claim that the 
exception-inference task results successful storage of 
exemplar information during learning. As in prior studies 
using the exception-inference task and cross-category 
structure (Nilsson & Olsson, 2005; Sweller & Hayes, 2010), 
participants performed poorly during the learning task. 
Here, details about the progression of the inference accuracy 
during the learning trials are provided so that we can better 
appreciate the difficulty of the exception-inference task. If 
participants had based their predictions on individual 
exemplars instead of predicting the most likely value given 
the category, performance would improve. However, only 
five of the forty-eight participants in the current exception-
inference conditions were above 75% accuracy in the final 
learning block. So, although it is possible that participants 
could use exemplar knowledge to guide their inferences, it 
was not a strategy that was readily employed in this 
experiment. Also, a review of the transfer measures from 
this study and the others shows that exception-inference 
participants perform poorly on tasks designed to illustrate 
their category knowledge, especially when feature values 
are distributed across categories, complicating attempts to 
ascertain the representation that underlies that knowledge. 

The evidence suggests that the exception-inference task 
undermines a fundamental constraint of inference learning –
a stable relationship between the category label and feature 

values so that the learner can develop a coherent sense of 
the internal structure of the category. Sweller & Hayes 
(2010) are correct that exceptions to prototypical features 
exist, but they may be learned through a process other than 
direct inference. Importantly, the current study provides 
evidence that these constraints may be moderated by other 
factors like the category structure being learned. 

The pattern of results reported here fits with the notion 
that inference learning relies on the development of 
knowledge of the internal structure of the categories. When 
the focus of the inference task matched the FR structure, as 
with the consistent-inference conditions, participants easily 
learned the categories. When there was a mismatch, e.g. the 
C-E condition, learning was meaningfully hindered. Current 
research, e.g. Yamauchi (2009), is exploring possible 
processes that underlie the abstraction process that occurs 
during feature inference and how coherent representations 
of the category structure develop. 
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