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Abstract

Our goal was to examine the plasticity of the human visual
system at mid to high levels of visual processing. It is well
understood that early stages of visual processing contain
cells tuned for spatial frequency and orientation. However
images of real-world objects contain a wide range of spa-
tial frequencies and orientations. We were interested in
how different spatial frequencies and orientations are com-
bined. We used a pattern discrimination task - observers
were asked to discriminate small changes in a “wicker-
like” stimulus consisting of six superimposed sinusoidal
gratings. Observers were asked to discriminate a 15% spa-
tial frequency shift in two of these sinusoidal components,
which were masked by four noise components. We found
large amounts of perceptual learning for this task — over
eight sessions of training observers’ average percent cor-
rect increased by 31%, corresponding to their thresholds
dropping to a third of their initial values. Further experi-
ments suggest that learning was based on changes within a
mid level stage of processing intermediate between low-
level analyzers tuned for orientation and spatial frequency
and high-level pattern matching or object tuned cells. This
mid level stage seems to be “very roughly Fourier” and
combines information from individual gratings using prob-
ability summation. This stage of processing is also re-
markably plastic compared to earlier stages of processing.

Introduction

A great deal is known about low level visual pattern
analyzers and their role in visual perception. At early
stages of processing retinal input is represented by low
level analyzers tuned for spatial frequency and orientation
with receptive fields of limited spatial extent - properties
very similar to simple cells in V1 (see Graham, 1989 for a
review). However images of real-world objects contain a
wide range of Fourier components, and therefore the
combination of information across these low level ana-

lyzers is necessary to reliably recognize objects. Evidence
suggests that there may be mid level mechanisms selec-

tively pooling information across low level analyzers
tuned for a wide range of spatial frequencies or orienta-
tions (e.g. Georgeson, 1992; Derrington & Henning,
1989; Burr & Morrone, 1994; Graham & Sutter, 1998;
Olzak & Thomas, 1999).

It has been argued that relatively early stages of the
visual system (V1) change with training (e.g. Ball &
Sekuler, 1987; Fahle & Edelman, 1992; Sagi & Tanne,

1994; Ahissar & Hochstein, 1995,1996; Saarinen & Levi,

1995; Fahle & Morgan, 1996; Schoups & Orban, 1995).
In addition, some learning effects have been noted (OI-
zak, personal communication, 1995; Fiorentini & Berardi,

1981) for tasks involving compound grating discrimina-

tions thought to involve mid level mechanisms.

The following experiments provide support for the ex-
istence of mid-level mechanisms pooling over analyzers
tuned for spatial frequency and orientation. These mid
level mechanisms are shown to be far more adaptable as a
function of experience than low level analyzers.

Experiment 1

The purpose of Experiment 1 was to measure learning
for a complex “wicker” stimulus that required observers
to combine information over a wide range of spatial fre-
guencies and orientations.

Methods

mask
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Figure 1: Diagram of the task used in the experiment.
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Five observers were asked to perform a four alternative
forced choice discrimination task (Figure 1). Four stimuli
were presented sequentially in time. A two-dimensional
white noise pattern was presented after each stimulus to
reduce afterimage interference. Observers were asked to
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indicate which of the four stimuli was different from the
others using a key press. There are two important advan-
tages of this four alternative forced choice procedure.
First, the chance success rate was 25%, thereby providing
more information per trial than a two alternative forced
choice task. Second, such a task allows a same-different
judgment without potential criterion effects (observers
showing a bias towards responding same or different).
The task was carried out using free-fixation. Observers
were given auditory feedback and were self paced. Ob-
servers completed eight sessions, and completed 250 tri-
als per session. Observers never carried out more than a
single session in a day, and carried out three to five ses-
sions a week.

Panel A

Panel B

" ' 90°
139 62 433 B 4362 P U3
cycles/degree

-90

Figure 2: Panel A. lllustration of a typical stimulus. Panel
B. Fourier representation of stimuli. The radius represents
spatial frequency and the angle represents orientation.
One signal component had a spatial frequency of 2.55 or
3.45 cycles/degree, an orientation of -45° and contrasts
varying between 1.6-12.8%. The other signal component
had a spatial frequency of 7.65 or 10.35 cycles/degree, an
orientation of 45° and contrasts varying between 5.5-
44%. There were four sinusoidal noise components, rep-
resented by empty circles: 1) spatial frequency of 9 cy-
cles/degree, -45° orientation, 11% contrast 2) spatial fre-
guency of 3 cycles/degree, 45° orientation, 3.2% contrast
3) spatial frequency of 4.3 cycles/degree, 0° orientation,
7.1% contrast 4) spatial frequency of 6.2 cycles/degree,
0° orientation, 7.1% contrast.

Figure 2 Panel A shows what a typical stimulus
looked like. Each stimulus contained two signal compo-

nents and four sinusoidal noise components. Figure 2,
Panel B represents the stimuli in Fourier space using polar
coordinates. The radius represents spatial frequency and
the angle represents orientation. The black filled circles
represent the two possible signal components. These sig-
nal components were widely separated in orientation (at
least 90 to each other) and widely separated in spatial
frequency (approximately two octaves apart). One signal
component was centered on 3 cycles/degree and had an
orientation of —45 degrees and the other signal component
was centered on 9 cycles/degree and had an orientation of
45 degree. Observers were asked to detect a 15% shift in
the spatial frequency of the signal components, repre-
sented by the black arrows. The contrasts of the signal
components were manipulated (based on pilot data) so
each observer was presented with a range of difficulty
levels. The empty circles in Figure 2 represent the four
sinusoidal noise components that were added to the
stimulus.

Stimuli were modulated spatially by a two dimen-
sional Gaussian envelope with a sigma of 0.5693 degrees
and temporally by a Gaussian envelope of sigma 0.237
seconds centered within a 0.67 second temporal window.
The phases of the sinusoidal noise components were var-
ied randomly across each interval of each trial. The
phases of the signal components were varied randomly
between each trial, and remained constant across the four
intervals within each trial. Stimuli were presented using
the VideoToolbox and Psychophysics Toolbox extensions
(Brainard, 1997; Pelli, 1997).

Observers were undergraduate or graduate students
from the University of Rochester, varying in age between
19-28 years of age. Observers had normal or corrected to
normal vision. Further details of this experimental proce-
dure are described in Fine & Jacobs (2000).

Results and Conclusions

The black squares in Figure 3 show the percent correct
as a function of session averaged across observers in Ex-
periment 1 (black squares). All five observers showed a
significant improvement in their performance over eight
sessions. Observers’ average percent correct increased by
31%, corresponding to a two-third decrease in their
thresholds.

Most perceptual learning studies have been carried out
using simple stimuli (grating discrimination or Vernier
tasks). Learning effects for these low level tasks tend to
be small or non-existent in the fovea (e.g. Fiorentini and
Berardy, 1981, Beard, Levi and Reich, 1995). In contrast,
we found large learning effects in the fovea, suggesting
strongly that our task is mediated by a higher stage of
processing than more simple tasks, and that this stage of
processing is far more plastic than earlier stages.

These improvements in performance with practice were
relatively long lasting, none of the observers showed any
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decline in performance when retested more than a month
after training.

It is worth noting that observers showed faster im-
provement for easier stimuli than for more difficult stim-
uli, suggesting possible bootstrapping from easy to diffi-
cult stimuli (Ahissar & Hochstein, 1997).

LEARNING AVERAGED ACROSS OBSERVERS
100%

90%

80% T

70% T

60% T

50% T

PERCENT CORRECT

40% T

30% T

0 1 2 3 4 5 6 7
SESSION
B with noise components (Exp. 1)

O Without noise components (Exp. 2)

Figure 3: Percent correct as a function of session aver-
aged across observers with the sinusoidal noise compo-
nents (Experiment 1 - black squares) and without the

noise components (Experiment 2 - empty circles). The x-

axis shows the session and the y-axis shows the percent
correct. Standard error bars are shown.

Experiment 2

The extent of learning found in Experiment 1 suggests
that performance in our task might be mediated by a mid
level stage of processing rather than earlier stages. Ex-
periment 2 was designed to exclude the possibilities that
the learning found in Experiment 1 was due either to
learning in low level mechanisms, or to improved non-
visual cognitive strategies (such as learning the key press
procedure, learning to fixate, learning the temporal
structure of the task, etc.).

If the learning demonstrated in Experiment 1 was due
to tuning changes within low level analyzers tuned for
both spatial frequency and orientation then removing the
sinusoidal noise components would not affect the amount
of learning shown. The sinusoidal noise components in
Experiment 1 were positioned so as to be invisible to

analyzers tuned for the spatial frequency and orientation
of the signal components (see Figure 2, Panel B) - every
noise component differed from the signal components by
at least 45 degrees of orientation or almost two octaves of
spatial frequency. Estimates of the tuning of low level
analyzers by other authors predict little low level masking
between sinusoidal components separated by either two
octaves of spatial frequency or 45 degrees orientation
(Graham, 1989).

If the learning in Experiment 1 was due to non-visual
cognitive strategies then we would expect an equal
amount of learning in Experiments land 2 — the only dif-
ference between the two experiments was in the visual
stimulus.

Methods

Display and task were identical to those used in Ex-
periment 1. Only the stimulus differed in Experiment 2, in
that the sinusoidal noise components (the empty circles of
Figure 2) were no longer present - i.e. observers were
asked to discriminate changes in spatial frequency within
a simple plaid pattern.

Without the noise components the task would be trivi-
ally easy for the contrast levels and spatial frequency
shifts used in Experiment 1. The difficulty of the task was
adjusted by reducing the spatial frequency shift to be-
tween +2.5% and +12.5% (as opposed to 15% in Experi-
ment 1) to avoid ceiling effects.

Three observers were given six sessions of training on
the task.

Results and Conclusions

As shown by the empty circles in Figure 3, observers
showed much less learning without the sinusoidal noise
components. Observers showed some learning between
sessions 1 and 2, but little learning after the second day.
There was no significant drop in threshold across the
three observers.

Differences in the amount of learning between Experi-
ment 1 and 2 cannot be explained by ceiling effects. Ini-
tial performance was closely matched for the majority of
subjects. In Experiment 1 three of the five observers in
performed between 50-60% correct in the first session. In
Experiment 2 two of the three observers performed be-
tween 50-60% correct in the first session. In addition,
none of the observers’ performance reached 90% correct
by the end of training in either experiment.

There was some learning (~ 7%) between the first and
second day in both Experiment 1 and Experiment 2.
Given that we used naive observers we think it likely that
these learning effects are mainly due to non-visual factors
- learning the key press procedure etc. However an alter-
native possibility is that this learning between the first and
second day was due to learning in low level analyzers.

In any case, most of the learning shown in Experiment
1 wasafter the second session and cannot be due either to
learning in low level analyzers or to learning better non-
visual cognitive strategies.
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Experiment 3

We were interested in how observers might be com-
bining information from the two signal components. We
have found that observers' performance in Experiment 1
can be well described using an independent probability
summation model where observers correctly discriminate
the "odd man out" if they detect a shift in either compo-
nent (Fine & Jacobs, 2000). Experiment 3 was designed
to further test whether observers' ability to combine in-
formation could be reasonably approximated using an
independent probability summation model.

Other possible combination models include non-
independent combination of information from the two
signal components (as suggested by Olzak and Thomas,
1999) or some type of “pattern” or “template” matching.

The task carried out in Experiment 1 can be subdivided
into two tasks, as shown in Figure 4. In Hzene sigriask
the “odd man out” was distinguished from the distracting
stimuli by both signal components being shifted in the
same direction in Fourier space. In half the trials both
signal components were shifted higher in spatial fre-
guency, as shown in Figure 4 Panel A. In the other half of
the trials both signal components were shifted lower in
spatial frequency.

In the opposite sigrtask the “odd man out” was distin-
guished from the distracting stimuli by both signal com-
ponents being shifted in opposite directions in Fourier
space. In half the trials the high spatial frequency compo-
nent was shifted higher in spatial frequency, and the low
spatial frequency component was shifted lower. In the
other half of the trials, as shown in Figure 4 Panel B, the
high spatial frequency component was shifted lower in
spatial frequency, and the low spatial frequency compo-
nent was shifted higher.

Independent probability summation implies that de-
tecting a shift in the low spatial frequency signal compo-
nent is unaffected by the direction of the shift in the high
spatial frequency signal component, and vice versa. Any
relationship between the directions of the spatial fre-
guency shifts within the two signal components would be
invisible to such a mechanism. Consequently, according
to an independent probability summation model we
would expect perfect transfer of learning from same sign
to opposite sign tasks.

According to most non-independent models, including
pattern matching, one would expect incomplete transfer
between the two stimuli.

Methods

Display and task were identical to those used in Ex-
periment 1, however observers were either exclusively
trained with same sign stimuli, then tested with opposite
sign stimuli, or were trained with opposite sign stimuli,
then tested with same sign stimuli. Four observers were
tested in all, two were trained with same sign stimuli and
two were trained with opposite sign stimuli. Observers
were given six sessions of training before being tested
with the novel stimuli.
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Figure 4: Polar plot of the stimuli used for the transfer of
task experiment. Panel A shows the same sign shift
stimulus and Panel B shows the opposite sign shift
stimulus.

Results and Conclusions

None of the four observers showed any drop in per-
formance when tested with the novel stimulus. Interest-
ingly only one of the four observers even noticed that the
stimulus had changed. This perfect transfer of learning
between same and opposite sign tasks is consistent with
observers combining information independently, and is
incompatible with most non-independent models (Olzak
& Thomas, 1999), including pattern matching.

Interestingly, the shift in the signal components in the
same sign task is compatible with a change of scale (as if
both signal components moved closer or further away
from the observer), while the shift in the signal compo-
nents in the opposite sign task is compatible with a
change in shape. The total transfer of learning between
the two tasks suggests that “scale-invariance” may not yet
be differentially encoded at this stage of processing.

General Conclusions

Our data support the existence of a mid level stage of
processing intermediate between low and high levels of
visual processing. This level of processing seems to be
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“very roughly Fourier” in that it still represents stimuli in
terms of their spatial frequency and orientation. Informa-
tion from low level analyzers tuned for spatial frequency
and orientation seems to be combined using probability
summation. This stage may be responsible for beginning
to selectively process information, extracting the combi-
nations of spatial frequency and orientation that define
meaningful objects. As our knowledge of the mechanisms
underlying mid level visual tasks increases it should be
possible to ask increasingly refined questions about the
role of these mid level mechanisms, and in particular, the
role adaptability plays in allowing such mechanisms to
represent an unpredictable world. Interestingly, our stud-
ies show that this mid level stage of processing seems to
be far more plastic than earlier stages.

As cells become more specific in what they represent,
an increasing number of cells become necessary if all
possible stimuli are to be represented. This is the paradox
of the "grandmother cell* — not every possible object can
have its own feature detectors in the brain without a pro-
hibitive number of cells. Despite this apparent paradox,
cells in the brain have been shown to be remarkably spe-
cific (e.g. Desimone, Albright, Gross, & Bruce, 1984,
Logothetis, Pauls, Poggio, 1995). Neural plasticity may
be a way of alleviating the trade-off between cell speci-
ficity and limited cell numbers. By dynamically changing
neural representations as a function of experience cells
can be preferentially allocated to represent behaviorally
important stimuli. If this is the case, then we should find
an intimate relationship between plasticity and specificity
- as representations become more selective, they should
also become more plastic.
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