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Abstract:  

1. LiDAR data are being increasingly used to provide a detailed characterization of the vertical profile 

of forests. This characterization enables the generation of new insights on the influence of 

environmental drivers and anthropogenic disturbances on forest structure as well as on how 

forest structure influences important ecosystem functions and services. Unfortunately, extracting 

information from LiDAR data in a way that enables the spatial visualization of forest structure, as 

well as its temporal changes, is challenging due to the high-dimensionality of these data.  

2. We show how the Latent Dirichlet Allocation model applied to LiDAR data (LidarLDA) can be used 

to identify forest structural types and how the relative abundance of these forest types changes 

throughout the landscape. The code to fit this model is made available through the open-source 

R package LidarLDA in github. We illustrate the use of LidarLDA both with simulated data and data 

from a large-scale fire experiment in the Brazilian Amazon region.  
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3. Using simulated data, we demonstrate that LidarLDA accurately identifies the number of forest 

types as well as their spatial distribution and absorptance probabilities. For the empirical data, we 

found that LidarLDA detects both landscape-level patterns in forest structure as well as the strong 

interacting effect of fire and forest fragmentation on forest structure based on the experimental 

fire plots. More specifically, LidarLDA reveals that proximity to forest edge exacerbates the impact 

of fires, and that burned forests remain structurally different from unburned areas for at least 

seven years, even when burned only once. Importantly, LidarLDA generates insights on the 3D 

structure of forest that cannot be obtained using more standard approaches that just focus on 

top-of-the-canopy information (e.g., canopy height models based on LiDAR data).  

4. By enabling the mapping of forest structure and its temporal changes, we believe that LidarLDA 

will be of broad utility to the ecological research community. 

 

Resumo:  

1. Dados de LiDAR sao cada vez mais usados para caracterizar a estrutura vertical da floresta. Essa 

caracterização permite a geração de novos insights em relação a influência de fatores ambientais 

e distúrbios antropogênicos na estrutura da floresta e insights em relação a como a estrutura da 

floresta influencia importantes funções e serviços ecossistêmicos. Infelizmente, a extração de 

informações de dados de LiDAR de uma maneira que permita a visualização espacial da estrutura 

da floresta, assim como as mudanças temporais, tem sido desafiador por conta da alta 

dimensionalidade destes dados. 

2. Nós mostramos que o modelo Latent Dirichlet Allocation aplicado a dados de LiDAR (LidarLDA) 

pode ser usado para identificar tipologias estruturais e para revelar como que a abundancia 

relativa destas tipologias mudam ao longo da paisagem. O código usado para ajustar o modelo se 

encontra disponível no pacote do R chamado LidarLDA no github. Nós ilustramos o uso do 



 
 

LidarLDA tanto com dados simulados quanto com dados empíricos de um experimento de fogo 

de grande escala na Amazônia Brasileira. 

3. Usando dados simulados, nós demonstramos que o LidaLDA identifica bem o número de 

tipologias florestais assim como sua distribuição espacial e as probabilidades de absorbância. Em 

relação aos dados empíricos, nós mostramos que o LidarLDA detecta padrões no nível da 

paisagem em relação a estrutura da floresta assim como um forte efeito da interação entre fogo 

e fragmentação florestal na estrutura florestal nas parcelas queimadas experimentalmente. Mais 

especificamente, LidarLDA revela que a proximidade com a borda da floresta aumenta o impacto 

do fogo e que áreas queimadas permanecem estruturalmente diferentes das áreas não 

queimadas por pelo menos sete anos, mesmo se estas áreas foram queimadas apenas uma vez. 

É importante enfatizar que o LidarLDA gera insights na estrutura 3D da floresta que não são 

obtidos usando abordagens mais comuns que focam apenas em informação oriunda do topo da 

copa (e.g., modelos de altura de copa baseados em dados de LiDAR).  

4. Nós acreditamos que a habilidade de mapear a estrutura da floresta e suas mudanças temporais 

fará com que o modelo LidarLDA seja de grande utilidade para a comunidade de pesquisas 

ecológicas.  
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1. Introduction 

Forests provide a wide range of ecosystem services, such as nutrient cycling, flood control, wildlife 

habitat, timber and non-timber forest products, and carbon sequestration (Jenkins &  Schaap, 2018, 

Mori et al., 2017). Forest structure is a key determinant of several of these ecosystem services (Felipe-

Lucia et al., 2018) and, as a result, there has been a long-standing interest in characterizing forest 

structure, understanding how forest structure is influenced by environmental drivers and anthropogenic 

activities, and how it in turn influences key ecosystem functions and services (Jucker et al., 2018, Longo 

et al., 2020). Importantly, changes in forest structure associated with natural or anthropogenic 

disturbances such as wind, fire, timber or wood fuel harvest, are widespread. For example, forest 

degradation can account for a substantial fraction of the carbon emissions, sometimes even exceeding 

the amount of emissions associated with deforestation (Pearson et al., 2017, Vancutsem et al., 2021). 

Given that forest degradation is likely to increase even more in the future as climate change interacts to 

exacerbate the effect of human activities (Alencar et al., 2015, Brando et al., 2020), accurate 

characterization of forest structure and its temporal changes associated with different types of 

disturbances will become increasingly important to improve the understanding and modeling of these 

disturbances and their impacts.  

A prominent source of high-resolution data of the three-dimensional structure of forests has been 

airborne light detection and ranging (LiDAR). Unfortunately, efficiently summarizing and extracting all 

the information on forest structure from LiDAR 3D point cloud data can be challenging. One approach is 

to calculate summary statistics for grid cells at a given spatial resolution, such as mean and maximum 

return height, standard deviation of the return heights, and height percentiles (Almeida et al., 2019a, 

Andersen et al., 2013, Costa et al., 2021, Jucker et al., 2018, Rex et al., 2020, Silva et al., 2017). Another 

approach consists of first characterizing the vertical structure of forests by calculating leaf area density 

(LAD) to then describe the vertical and horizontal heterogeneity in LAD with summary statistics (e.g., 



 
 

Shannon and Simpson structural complexity indices and LAD for different height intervals) (Almeida et 

al., 2019a, Almeida et al., 2019b, Carrasco et al., 2019). These LiDAR-derived metrics are then used for 

multiple purposes. For example, one of the most common uses of these metrics in tropical forests is to 

predict above-ground biomass (AGB) (Almeida et al., 2019a, Andersen et al., 2013, Costa et al., 2021, 

d'Oliveira et al., 2012, Rex et al., 2020, Silva et al., 2017). These AGB predictions can be used, for 

example, to identify areas subject to selective logging and quantify its impacts (Andersen et al., 2013, 

d'Oliveira et al., 2012, Rex et al., 2020, Silva et al., 2017). Aside from predicting AGB, LiDAR-derived 

metrics have also been used for predicting wildlife diversity (Carrasco et al., 2019), generating forest 

parameters for fire behavior models (Riano et al., 2003), and understanding the synergistic effect of 

proximity to forest edge, fire, and windstorms on tree mortality (Silverio et al., 2019). Unfortunately, the 

visualization of spatial and temporal changes in forest structure with this plethora of LiDAR-derived 

metrics is challenging. 

One approach to more concisely characterize forest structure is to create forest types (e.g., 

floodplain and terra-firme forests) from the LiDAR-derived 3D point cloud. Indeed, given the importance 

of forest structure for multiple ecosystem services and functions, several studies have attempted to 

classify forest types to enable the development of tailored forest inventory and management strategies. 

For example, Moran et al. (2018) described an approach where dissimilarity was calculated using a 

random forest algorithm and, based on this dissimilarity metric, hierarchical clustering was used to 

create groups. Ultimately, this data-driven classification approach led to the creation of 14 meta-classes 

across approximately 170 thousand ha, enabling an intuitive comparison and assessment of forest 

structure. Similarly, Adnan et al. (2019) developed a methodology that combined hierarchical clustering 

and classification trees (CART) to create forest structural types and showed how this methodology can 

be useful to compare forest structure across bioregions. These forest types can also be used to optimize 

field data collection. For example, Papa et al. (2020) used a clustering approach to stratify the forest, 



 
 

demonstrating how this stratification can result in substantial reduction of the sampling effort required 

for forest inventory.  

Current approaches to creating forest types rely on hard clustering methods for dimension 

reduction, resulting in a small set of relatively homogeneous clusters, hence simplifying the visualization 

and interpretation of results. However, hard clustering methods assume that any given site can only 

belong to a single forest type, thus neglecting that some forest areas can have characteristics that are 

intermediary between two (or more) forest types. For example, areas along the slope between 

floodplain and terra-firme forests in the Amazon region are likely to have intermediate forest structure, 

species composition, and diversity, which may be quite different from the stereotypical floodplain or 

terra-firme forest (Salm et al., 2015, Wittmann et al., 2006). However, hard classification schemes might 

impose one of these classes. Indeed, although these hard-clustering approaches have been extensively 

used by researchers across multiple environmental science fields, few ecological theories predict the 

sharp delineations implied by these hard clustering methods (Legendre &  Legendre, 2012). Importantly, 

because each site can only belong to a single cluster, hard clustering approaches often have to create 

many more groups to accommodate transition areas, limiting its ability to effectively reduce data 

dimensionality, with important consequences for the visualization and interpretation of results (Valle et 

al., 2018). 

The Latent Dirichlet Allocation (LDA) model is a type of unsupervised mixed-membership model 

(often called grade of membership model) that enables the characterization of sampling units as 

comprised of a single forest structural type or as a combination of multiple forest types (hereafter just 

forest type or cluster). This method was originally developed for text-mining applications (Blei et al., 

2003) but has since been used in a wide range of fields, such as fraud detection (Xing &  Girolami, 2007), 

extraction of semantic information from satellite imagery (Vaduva et al., 2013), bioinformatics (Liu et al., 

2010), microbiology (Hosoda et al., 2020), and ecology (Christensen et al., 2018, Dietzel et al., 2019, 



 
 

Knott et al., 2019, Muhlfeld et al., 2020, Sommeria-Klein et al., 2019, Valle et al., 2018, Valle et al., 

2014). LDA has also been used to model LiDAR data in the past (e.g., Yang &  Kang, 2018, Zhiqing et al., 

2020). However, differently from the model described here, this past work relied on a version of LDA 

that does not account for occlusion (i.e., the partial or complete blockage of LiDAR light pulses by 

different objects such as leaves and branches), a key characteristic for our task of identifying forest 

types. Furthermore, in this past work, LDA was used only to extract features to help a subsequent 

classification algorithm instead of using LDA results as the primary outcomes.  

In this article, we present a modified version of LDA, called LidarLDA, and show how it can be used 

to gain novel insights from LiDAR data regarding the vertical structure of forests while accounting for 

occlusion. We start this article by providing an overview of the proposed methodology. We then 

illustrate with simulated data how this model can estimate the true number of clusters and can recover 

the spatial distribution of these clusters. Finally, we showcase the insights this model can generate by 

applying it to LiDAR data from an area of approximately 1,000 ha in the Brazilian Amazon, part of which 

was subject to a large-scale (i.e., 150 ha) fire experiment. We finalize this article by discussing potential 

applications of this approach, current limitations, and priorities for future development of this approach. 

 

2. Material and Methods 

2.1. Structure of the Latent Dirichlet Allocation model applied to LiDAR data 

(LidarLDA) 

The proposed model is based on the LDA model adapted for presence/absence biodiversity data 

described in Valle et al. (2018) and Albuquerque et al. (2019). To use this model for LiDAR data, data 

need to be discretized horizontally and vertically. More specifically, a systematic grid with a particular 



 
 

spatial resolution is created within the area of interest (e.g., 50 x 50 m grid cells) and the height of the 

returns is discretized by creating multiple vertical layers of constant depth (e.g., 1-m layers).  

The data that LidarLDA relies on consist of the number of LiDAR returns within a vertical layer h (i.e., 

𝑁𝑁𝑖𝑖ℎ) and the total number of pulses that reach this vertical layer (i.e., 𝑁𝑁�𝑖𝑖ℎ) for each grid cell i. Because 

airborne LiDAR light pulses originate from above the canopy, if we assume that light pulses are vertically 

oriented, we can calculate 𝑁𝑁�𝑖𝑖ℎ as all returns in grid cell i between the ground and the top of layer h (i.e., 

𝑁𝑁�𝑖𝑖ℎ = ∑ 𝑁𝑁𝑖𝑖ℎ′
ℎ
ℎ′=1 ). These data are stored into two matrices of same size, where rows correspond to 

different grid cells and columns correspond to different vertical layers. 

This model assumes that each light pulse j (j=1,…,𝑁𝑁�𝑖𝑖ℎ) in grid cell i that reaches vertical layer h can 

either be returned (𝑥𝑥𝑖𝑖𝑖𝑖ℎ = 1) or not (𝑥𝑥𝑖𝑖𝑖𝑖ℎ = 0). Because 𝑥𝑥𝑖𝑖𝑖𝑖ℎ is a binary variable, we relied on a Bernoulli 

distribution and we assume that 

𝑥𝑥𝑖𝑖𝑖𝑖ℎ|𝜔𝜔𝑖𝑖𝑖𝑖ℎ = 𝑘𝑘~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜙𝜙𝑘𝑘ℎ) 

where 𝜔𝜔𝑖𝑖𝑖𝑖ℎ is the corresponding latent cluster assignment variable and 𝜙𝜙𝑘𝑘ℎ is a probability parameter. 

Notice that 𝜔𝜔𝑖𝑖𝑖𝑖ℎ = 𝑘𝑘 indicates that this particular light pulse was assigned to cluster k. Therefore, this 

variable determines the subscript of the probability parameter 𝜙𝜙𝑘𝑘ℎ. The vector of parameters 𝝓𝝓𝒌𝒌 =

[𝜙𝜙𝑘𝑘1,𝜙𝜙𝑘𝑘2, … ] characterizes the vertical profile of cluster k and, together with the vectors for the other 

clusters, form the rows of the 𝚽𝚽 matrix.  

Because the latent cluster assignment variable 𝜔𝜔𝑖𝑖𝑖𝑖ℎ has to be an integer between 1 and K (the 

maximum number of clusters specified by the modeler), we assume a categorical distribution. This 

distribution is a generalization of the Bernoulli distribution and is similar to a multinomial distribution 

with just a single trial. The main difference is that the categorical distribution models numerical labels 

(i.e., the latent cluster assignment) whereas a multinomial distribution models a vector full of zeroes 

except for a single element which is equal to one. Our categorical distribution is given by 

𝜔𝜔𝑖𝑖𝑖𝑖ℎ~𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝜽𝜽𝒊𝒊) 



 
 

where 𝜽𝜽𝒊𝒊 is a vector of probabilities that sum to one. The vector 𝜽𝜽𝒊𝒊 characterizes grid cell i with the 

relative abundances of the different clusters.  

Because this model is estimated in a Bayesian framework, we complete the specification of this 

model by adopting the following semi-conjugate priors: 

𝜙𝜙𝑘𝑘ℎ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝛼𝛼,𝛽𝛽) 

and 

𝜽𝜽𝒊𝒊~𝑇𝑇𝑇𝑇𝑇𝑇(𝛾𝛾) 

where TSB stands for the Truncated Stick-Breaking prior. This prior is defined indirectly. First, we define  

𝑉𝑉𝑖𝑖𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(1, 𝛾𝛾) 

for k=1,…,K-1 whereas 𝑉𝑉𝑖𝑖𝑖𝑖 is set to one. The parameters 𝑉𝑉𝑖𝑖1, … ,𝑉𝑉𝑖𝑖𝑖𝑖 are then used to calculate 𝜃𝜃𝑖𝑖𝑖𝑖 with 

the following equations: 

𝜃𝜃𝑖𝑖1 = 𝑉𝑉𝑖𝑖1 

𝜃𝜃𝑖𝑖𝑖𝑖 = 𝑉𝑉𝑖𝑖𝑖𝑖 ∏ �1 − 𝑉𝑉𝑖𝑖𝑖𝑖�𝑘𝑘−1
𝑝𝑝=1  for k>1 

As described in detail in Valle et al. (2021a), the TSB prior enables the automatic selection of the 

optimal number of clusters if this number is smaller than K. As a result, the use of the TSB prior avoids 

the standard approach of having to run the model multiple times with different number of clusters to 

then select the best number using an information criterion (e.g., AIC or BIC). The approach of using 

information criterion to select the optimal number of clusters can be computationally expensive and has 

been shown to often lead to an over-estimation of the number of clusters (Casella et al., 2014, Pohle et 

al., 2017).  

Finally, the parameters 𝛼𝛼 > 0 and 𝛽𝛽 > 0 are specified by the modeler and describe the prior beliefs 

regarding the absorptance probabilities. For example, 𝛼𝛼 = 𝛽𝛽 = 1 is a common choice because it 

describes a uniform prior distribution for 𝜙𝜙𝑘𝑘ℎ. Similarly, the parameter 0 < 𝛾𝛾 < 1 is also specified by 



 
 

the modeler and controls the amount of sparseness that is a priori expected (i.e., smaller 𝛾𝛾 values 

encourage the model to find fewer clusters) (Valle et al., 2021a).  

 

2.2. Data decomposition implied by LidarLDA 

One way to better understand this model is to realize that these assumptions are equivalent to: 

𝑁𝑁𝑖𝑖ℎ~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑁𝑁�𝑖𝑖ℎ ,𝑝𝑝𝑖𝑖ℎ� 

Notice that 𝑝𝑝𝑖𝑖ℎ is the conditional probability of a return within vertical layer h given that the light pulse 

has reached this layer. As a result, 𝑝𝑝𝑖𝑖ℎ accounts for the occlusion of the LiDAR light pulses as they pass 

through the canopy. It is important to also note that we exclude the vertical layer that is closest to the 

ground because, by definition, 𝑁𝑁𝑖𝑖1 = 𝑁𝑁�𝑖𝑖1 for this layer and therefore 𝑝𝑝𝑖𝑖1 is always equal to one. 

The probability 𝑝𝑝𝑖𝑖ℎ is sometimes referred to as the absorptance probability (not to be confused 

with absorbance) and is similar to the Leaf Area Density (LAD) definition used in Hosoi and  Omasa 

(2006), the vegetation density index used by d'Oliveira et al. (2012) to detect logging infrastructure, and 

the canopy density metric described in Moran et al. (2018). We also note that 𝑝𝑝𝑖𝑖ℎ = 1 − 𝐺𝐺𝐹𝐹𝑖𝑖(ℎ), where  

𝐺𝐺𝐹𝐹𝑖𝑖(ℎ) is the gap fraction from the top of the canopy to the top of vertical layer h. Therefore, one can 

calculate the leaf area density at height h as 𝐿𝐿𝐿𝐿𝐷𝐷𝑖𝑖(ℎ) = − ln(1−𝑝𝑝𝑖𝑖ℎ)
𝑘𝑘×𝛥𝛥𝛥𝛥

, where 𝛥𝛥𝛥𝛥 is the height of each 

vertical layer, assumed to be constant, and k is the extinction coefficient (Bouvier et al., 2015).  

As explained in Albuquerque et al. (2019), LidarLDA decomposes 𝑝𝑝𝑖𝑖ℎ with the following 

expression: 

𝑝𝑝𝑖𝑖ℎ = 𝜽𝜽𝒊𝒊𝑻𝑻𝛟𝛟�ℎ 

Recall that 𝜽𝜽𝒊𝒊𝑻𝑻 is a size K vector that characterizes grid cell i by containing probabilities that sum to one, 

representing the relative abundances of each of the K clusters. The vector 𝛟𝛟�ℎ = [𝜙𝜙1ℎ , … ,𝜙𝜙𝐾𝐾ℎ], 

corresponding to a column of the 𝚽𝚽 matrix, is also a size K vector that contains the absorptance 

probabilities associated with each of the K clusters for vertical layer h.  



 
 

To illustrate this decomposition, consider the following results for two hypothetical grid cells. 

The first grid cell has a higher absorptance probability in the shorter vertical layers, suggesting a forest 

with relatively open canopy and considerable amount of short vegetation (Fig. 1, “Data” panel). The 

second grid cell has relatively high absorptance probabilities across several vertical layers, suggesting a 

forest with vegetation of various heights. Based on these data, LidarLDA might identify clusters with 

relatively distinct vertical profiles. This is captured by the vector 𝛟𝛟𝐤𝐤 for each cluster (Fig. 1, “𝛟𝛟𝐤𝐤” panel). 

For example, cluster 1 could be characterized by low absorptance probabilities across all vertical layers, 

indicating areas with bare soil. On the other hand, clusters 2 through 4 might be characterized by 

probabilities that are increasingly concentrated on taller vertical layers, indicating increasingly taller 

vegetation types.  

Because of the characteristics of each cluster, LidarLDA might determine that cluster 1 is much 

more common in grid cell 1 whereas clusters 3 and 4 are more common in grid cell 2. This is captured by 

the vector 𝜽𝜽𝒊𝒊 for each grid cell (Fig. 1, “𝛉𝛉𝐢𝐢” panel). Finally, the inner product of 𝜽𝜽𝒊𝒊 and 𝛟𝛟�ℎ can be 

calculated to recover the original LiDAR data, clarifying why LidarLDA can be viewed as a decomposition 

approach for these data (Fig. 1, “Decomposition” panel).  

 

Fig. 1. Schematic representation of how LidarLDA decomposes LiDAR data into cluster with distinct 

vertical profiles. Panel A shows the original data together with the corresponding empirical absorptance 

probabilities, calculated as 𝑁𝑁𝑖𝑖ℎ
𝑁𝑁�𝑖𝑖ℎ

. Panels in B shows the 𝛉𝛉𝐢𝐢 and 𝛟𝛟𝐤𝐤 parameter vectors estimated by 

LidarLDA. Finally, panel C shows how multiplying 𝛉𝛉𝐢𝐢 and 𝛟𝛟�𝒉𝒉 can recover the original vertical profiles. 

 

2.3. LidarLDA algorithm implementation 

We fit this LidarLDA using the Gibbs sampler algorithm originally described in Valle et al. (2018) 

and Albuquerque et al. (2019). This algorithm iteratively samples each parameter from its full 



 
 

conditional distribution (FCD). These FCDs are all available in closed form and are described below. 

 We start by defining two key quantities that will be used throughout this section. The quantity 

𝑛𝑛𝑖𝑖ℎ𝑘𝑘1 is the number of returns in grid cell i and vertical layer h that were assigned to cluster k. This 

quantity is calculated as 𝑛𝑛𝑖𝑖ℎ𝑘𝑘1 = ∑ 𝐼𝐼�𝜔𝜔𝑖𝑖𝑖𝑖ℎ = 𝑘𝑘, 𝑥𝑥𝑖𝑖𝑖𝑖ℎ = 1�𝑗𝑗 . Similarly, let 𝑛𝑛𝑖𝑖ℎ𝑘𝑘0 be the number of light 

pulses that are not returned, which can be calculated as 𝑛𝑛𝑖𝑖ℎ𝑘𝑘0 = ∑ 𝐼𝐼�𝜔𝜔𝑖𝑖𝑖𝑖ℎ = 𝑘𝑘, 𝑥𝑥𝑖𝑖𝑖𝑖ℎ = 0�𝑗𝑗 . 

The FCD for Vik (the parameter that implicitly defines the probability of each cluster in grid cell i 

𝜽𝜽𝒊𝒊), is given by 

𝑝𝑝(Vik| … ) ∝ ���𝐶𝐶𝐶𝐶𝐶𝐶�𝜔𝜔𝑖𝑖𝑖𝑖ℎ�𝜽𝜽𝒊𝒊�
ℎ𝑗𝑗

� × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑉𝑉𝑖𝑖𝑖𝑖|1, 𝛾𝛾) 

= 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑛𝑛𝑖𝑖.𝑘𝑘. + 1,𝑛𝑛𝑖𝑖.(>𝑘𝑘). + 𝛾𝛾�, 

where 𝑛𝑛𝑖𝑖.𝑘𝑘. = ∑ 𝑛𝑛𝑖𝑖ℎ𝑘𝑘0 + 𝑛𝑛𝑖𝑖ℎ𝑘𝑘1ℎ  and 𝑛𝑛𝑖𝑖.(>𝑘𝑘). = ∑ ∑ 𝑛𝑛𝑖𝑖ℎ𝑘𝑘′0 + 𝑛𝑛𝑖𝑖ℎ𝑘𝑘′1ℎ
𝐾𝐾
𝑘𝑘′=𝑘𝑘+1 . 

 Recall that the absorptance probability of cluster k in vertical layer h is given by ϕkh. The FCD for 

this parameter is given by: 

𝑝𝑝(ϕkh| … ) ∝ ���𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝑥𝑥𝑖𝑖𝑖𝑖ℎ�𝜙𝜙𝑘𝑘ℎ�
𝐼𝐼�𝜔𝜔𝑖𝑖𝑖𝑖ℎ=𝑘𝑘�

𝑖𝑖𝑗𝑗

� × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜙𝜙𝑘𝑘ℎ|𝛼𝛼,𝛽𝛽) 

= 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛.ℎ𝑘𝑘1 + 𝛼𝛼,𝑛𝑛.ℎ𝑘𝑘0 + 𝛽𝛽), 

where 𝑛𝑛.ℎ𝑘𝑘0 = ∑ 𝑛𝑛𝑖𝑖ℎ𝑘𝑘0𝑖𝑖  and 𝑛𝑛.ℎ𝑘𝑘1 = ∑ 𝑛𝑛𝑖𝑖ℎ𝑘𝑘1𝑖𝑖 . 

 Finally, the FCD for the vector containing 𝑛𝑛𝑖𝑖ℎ11, … ,𝑛𝑛𝑖𝑖ℎ𝐾𝐾1 is given by 

[𝑛𝑛𝑖𝑖ℎ11, … ,𝑛𝑛𝑖𝑖ℎ𝐾𝐾1]~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑁𝑁𝑖𝑖ℎ ,𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊) 

where 𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊 = 1
∑ 𝜃𝜃𝑖𝑖𝑖𝑖𝜙𝜙𝑞𝑞ℎ𝑞𝑞

[𝜃𝜃𝑖𝑖1𝜙𝜙1ℎ , … ,𝜃𝜃𝑖𝑖𝑖𝑖𝜙𝜙𝐾𝐾ℎ] and 𝑁𝑁𝑖𝑖ℎ is the number of returns in grid cell i at vertical 

layer h. Similarly, the FCD for the vector containing 𝑛𝑛𝑖𝑖ℎ10, … ,𝑛𝑛𝑖𝑖ℎ𝐾𝐾0 is given by 

[𝑛𝑛𝑖𝑖ℎ10, … ,𝑛𝑛𝑖𝑖ℎ𝐾𝐾0]~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀�𝑁𝑁�𝑖𝑖ℎ − 𝑁𝑁𝑖𝑖ℎ ,𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊�. 



 
 

where 𝒑𝒑𝒊𝒊𝒊𝒊𝒊𝒊 = 1
∑ 𝜃𝜃𝑖𝑖𝑖𝑖�1−𝜙𝜙𝑞𝑞ℎ�𝑞𝑞

[𝜃𝜃𝑖𝑖1(1 − 𝜙𝜙1ℎ), … ,𝜃𝜃𝑖𝑖𝑖𝑖(1 − 𝜙𝜙𝐾𝐾ℎ)] and 𝑁𝑁�𝑖𝑖ℎ is the total number of light pulses 

that reach grid cell i at vertical layer h. The detailed derivation of these FCDs is provided in Appendix 1.  

The Gibbs sampler algorithm was implemented in R (R Core Team, 2020) and C++ (invoked from 

R using the "Rcpp" package; Eddelbuettel, 2013, Eddelbuettel &  Francois, 2011). To run this model, the 

user has to specify the maximum number of groups K and the model, through a stick-breaking prior that 

imposes sparsity (Valle et al., 2021a), will often find that only a subset of the specified groups are 

needed to adequately represent most of the observations. We provided the code as an R package called 

LidarLDA, freely available in github (https://github.com/drvalle1/LidarLDA) and archived in Zenodo (DOI 

10.5281/zenodo.5781482, https://zenodo.org/badge/latestdoi/390455503). This package comes with a 

detailed tutorial explaining how to format LiDAR data for LidarLDA as well as how to fit the model, 

interpret, and visualize its results based both on simulated and empirical data. 

 

2.4. Assessing algorithm convergence 

In relation to assessing the convergence of our Markov Chain Monte Carlo (MCMC) algorithm, it is 

important to note that this is a very large model given the large number of parameters that are being 

estimated. To be precise, focusing only on the top-most parameters, there are I x (K-1) parameters in 

the 𝚯𝚯I×K matrix (I is the number of grid cells, K is the number of clusters) and K x H parameters in the 

𝚽𝚽K×H matrix (H is the number of vertical layers). For example, if there are 100,000 grid cells, 10 clusters, 

and 35 vertical layers, on total there will be 100,000 x 9 =900,000 parameters and 10 x 35 = 350 

parameters in the 𝛉𝛉 and 𝚽𝚽 matrices, respectively. For this reason, just storing posterior samples for 

each parameter in these matrices can be a substantial challenge, particularly if many iterations are used 

and no thinning is done, and it is not feasible to evaluate convergence by examining each parameter 

individually. Therefore, we assess convergence solely based on trace-plots of the log-likelihood and 



 
 

running the Heidelberger and Welch's diagnostic test and Geweke's statistic on the MCMC samples of 

the log-likelihood. 

 

2.5. Simulated forest structure data 

To evaluate the proposed methodology, we relied on simulated data of forest structure in a 

landscape with an elevational gradient. We assumed that forest structure was strongly influenced by 

slope and altitude such that forest types gradually changed with elevation, with increasingly shorter 

trees as elevation increased. This landscape was divided into 2,601 grid cells and we assumed 30 1-m 

vertical layers, resulting in 78,030 voxels. Furthermore, we assumed that 100 light pulses reached each 

grid cell and vertical layer. Finally, two simulated datasets were created, one with three and the other 

with five forest structural types. The parameters used for the 𝚽𝚽 matrix are given in Appendix 2 while the 

parameters for the 𝚯𝚯 matrix are depicted in Fig. 3. 

We fitted LidarLDA to these simulated datasets to determine if it was able to correctly determine 

the true number of forest types, the spatial distribution of these forest types, and their vertical profiles. 

We assumed a maximum of 10 clusters and we relied on the following prior parameters 𝛼𝛼 = 𝛽𝛽 = 1 (i.e., 

a uniform prior for 𝜙𝜙𝑘𝑘ℎ) and 𝛾𝛾 = 0.1. We also compared the results from LidarLDA with those from 

hierarchical clustering (HC), a commonly used approach to identify forest structural types (Adnan et al., 

2019, Moran et al., 2018, Papa et al., 2020). To this end, we relied on the function "agnes" from the R 

package "cluster" (Maechler et al., 2021) to perform agglomerative hierarchical clustering and we used 

the Kelley-Gardner-Sutcliffe penalty function (implemented using the function "kgs", also from the 

"cluster" package) to determine the optimal number of groups.  

 

2.6. Empirical data 

2.5.1 Fire experiment 



 
 

We were interested in understanding the joint effect of fire and forest fragmentation on the vertical 

structure of forests. For this reason, we focus on an area subjected to experimental fire, located in a 

transitional forest in Mato Grosso, Brazil, in the southern part of the Amazon Basin (13o04’S,52o23’W). In 

this experiment, four 50 ha (50 x 1000 m) plots bordering a crop field were established in 2004 (red 

plots in Fig. 2A). As shown in the timeline in Fig. 2B, one of these plots was left unburned (i.e., control 

plot “C”), one plot was burned once in 2007 (i.e., “1x”), one plot was burned thrice (2004, 2007, and 

2010; hereafter “3x”) and the remaining plot was burned yearly from 2004 to 2010, except in 2008 

(hereafter “6x”). In the “C”, “3x”, and “6x” plots, transects of 500 m in length and 20 m in width were 

created at 0, 10, 30, 100, 250, 500, and 750 m from the forest edge and all trees with diameter at breast 

height (i.e., 1.3 m from the ground; dbh) greater than 20 cm were measured in 2014 within these 

transects. Additional details regarding this experiment are available in Balch et al. (2011).  

 

Fig. 2. Study area. In this figure, panel A shows a false-color Landsat 5 image of the study region from 

June 27, 2011. Panel B shows the timeline of the experimental fires and LiDAR data collection for each 

plot. The control plot is denoted by “C”, the plot burned once in 2007 is denoted by “1x”, the plot 

burned 3 times between 2004-2010 (fire interval of 3 years) is denoted by “3x”, and the plot burned 6 

times between 2004-2010 (i.e., fire interval of 1 year, except for 2008) is denoted by “6x”. 

 

2.5.2 LiDAR data and pre-processing 

Data were obtained from the Sustainable Landscapes Brazil project and are freely available online at 

dos-Santos et al. (2019). We relied on LiDAR data for 2014 and 2018 from the Tanguro ranch in Mato 

Grosso, Brazil, covering a landscape of approximately 1,000 hectares. LiDAR data were pre-processed by 

subtracting the terrain elevation from the return height to account for topography. Returns with 

negative height were relatively infrequent (i.e., the median percentage of negative heights per grid cell 



 
 

was equal to 4.7%) and were assigned to a height of 0. The return data were then grouped spatially into 

50m x 50m grid cells and 1-m vertical layers. More than 99.9% of the returns were below 35 m, thus our 

last vertical layer included all returns with height equal or greater than 35 m. Because the calculation of 

absorptance probabilities 𝑝𝑝𝑖𝑖ℎ assume approximately vertical light pulses, we eliminated all returns with 

an absolute angle greater than 5 degrees off-nadir. Finally, to reduce data density while also ensuring an 

adequate amount of data for each vertical layer, we subsampled the data so that there were at most 

100 light pulses reaching each voxel (i.e., max�𝑁𝑁�𝑖𝑖ℎ� = 100). Ultimately, all these pre-processing steps 

resulted in approximately 800,000 returns spread throughout ~110,000 - 135,000 voxels for each year. 

 

2.5.3 Fitting the model and post-processing the results 

We fit LidarLDA to data from 2014 to estimate the vectors 𝜽𝜽𝒊𝒊,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 and 𝛟𝛟𝐤𝐤. Similar to the settings for 

the simulated data, to fit this model, we assumed a maximum of 10 clusters and we relied on the 

following prior parameters 𝛼𝛼 = 𝛽𝛽 = 1 (i.e., a uniform prior for 𝜙𝜙𝑘𝑘ℎ) and 𝛾𝛾 = 0.1. We ran the algorithm 

for 200,000 iterations and assessed convergence by examining trace-plots of the log-likelihood. To 

determine how the relative abundance of each cluster has changed with time, we relied on the folding-

in operation. In this operation, the characteristics of each cluster are kept fixed (i.e., 𝛟𝛟𝐤𝐤 is not re-

estimated) and only the relative abundance of each cluster in each location is re-estimated (i.e., 𝜽𝜽𝒊𝒊,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

is estimated). A comparison between 𝜽𝜽𝒊𝒊,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 and 𝜽𝜽𝒊𝒊,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 enables the determination of how the spatial 

distribution of these clusters have changed through time. 

Because of changes in data acquisition strategies to reduce costs, the LiDAR data for 2018 had 

considerably fewer returns with absolute off-nadir angle less than 5 degrees, and approximately 18% of 

the grid cells did not have any return with these characteristics. Because it is hard to visualize the spatial 

patterns of the clusters identified by LidarLDA if there are gaps in the resulting maps, we interpolated 

the LidarLDA results for 2018 for each group using inverse distance weighting (idw function within the R 



 
 

package "gstat") (Pebesma, 2004). Finally, all maps were created using the R package "ggplot2" 

(Wickham, 2009). All scripts and files required to reproduce our results were archived in Zenodo (DOI 

10.5281/zenodo.5781488, https://zenodo.org/badge/latestdoi/433446658). 

 

3. Results 

3.1. Simulated forest structure data 

We simulated data with 3 and 5 clusters in which the abundance of each cluster was a function of 

elevation (Figs. 3A and 3B). Trace-plots and convergence tests suggest that our algorithm applied to 

these simulated data sets has successfully converged (see details in Appendix 3). We found that 

LidarLDA estimated well the number of groups given that the first 3 clusters (for the simulated data with 

3 clusters) and the first 5 clusters (for the simulated data with 5 clusters) identified by the algorithm 

accounted for >99% of all the returns on average (Appendix 2). Furthermore, we found that the 

estimated spatial distribution of each cluster along the elevation gradient (captured by the matrix 𝚯𝚯; 

Figs. 3C and 3D) closely followed the true distribution of these clusters. Finally, a comparison between 

the estimated and true absorptance probabilities of each cluster reveals that LidarLDA estimated well 

the 𝚽𝚽 matrix, with a Pearson correlation coefficient greater than 0.99 (Appendix 2). Taken together, 

these results reveal that LidarLDA did an excellent job grouping areas with similar 3D profiles and 

characterizing transition areas comprised of more than one cluster.  

Differently from LidarLDA, the agglomerative hierarchical clustering (HC) approach yields hard 

clustering results (i.e., HC can only assign a single cluster to each grid cell). This is an important 

limitation. For example, as illustrated in Fig. 3F, HC captures well the overall spatial pattern of the 

simulated dataset with 5 clusters but fails to capture the transition areas between clusters that are 

present in Fig. 3B. Importantly, HC found the optimal number of clusters to be 5 even for the data that 



 
 

was simulated with only 3 clusters (Fig. 3E). As discussed in Valle et al. (2018), the reason for this is that 

hard clustering methods will often yield more clusters than are necessary, often representing transition 

areas as additional clusters (e.g., yellow and grey clusters in Fig. 3E). 

 

Fig. 3. The true spatial distribution of clusters based on the simulated data (panels A and B) is compared 

with the spatial distribution estimated based on LidarLDA (panels E and F) and agglomerative 

hierarchical clustering (HC; panels G and H) based on the simulated data with 3 and 5 clusters (left and 

right panels, respectively). In these panels, each color represents a different cluster and opacity levels 

depict the relative abundance of each cluster (transparent = 0 and completely opaque = 1). Elevation is 

depicted with blue contour lines. 

 

3.2. Empirical data 

3.2.1 Number of clusters and their characteristics 

Both visual assessment of the trace plot of the log-likelihood and diagnostic test results suggest that 

our Gibbs sampler algorithm has converged (see details in Appendix 3). By examining the results in the 

vectors 𝛉𝛉𝐢𝐢, we find that the first 4 clusters together represent, on average, over 99% of all points (Fig. 

4A). As a result, from here onwards, we focus on these 4 main clusters. When examining the height 

distribution of each of these cluster, we find relatively distinct vertical profiles despite significant overlap 

between clusters (Fig. 4B). For example, cluster 1 has very low absorptance probabilities across almost 

all vertical layers, suggesting that this cluster represents bare soil, grass or areas with very short 

vegetation. On the other hand, clusters 2 to 4 represent a gradient from shorter to increasingly taller 

vertical profiles, respectively. To simplify the reference to these clusters, we label clusters 1 to 4 as 

"near surface", "short", "intermediate", and "tall", respectively. A schematic representation of these 

clusters is provided in Fig. 4C. 



 
 

 

Fig. 4. Characteristics of the identified clusters. In this figure, panel A displays the distribution of relative 

abundances of each cluster, as captured by the vector 𝜽𝜽𝒊𝒊. Panel B shows the vertical profile of each of 

the four most important clusters, as captured by the vector 𝝓𝝓𝒌𝒌. Panel C provides a schematic 

representation of these clusters. Figures within panels B and C are ordered from shortest (top) to tallest 

(bottom) clusters.  

 

Corroborating the schematic representation in Fig. 4C, we found a strong relationship between 

the different clusters identified by LidarLDA based on the 2014 LiDAR data and the tree diameter 

distribution for the same year. For example, as shown in Appendix 4, for the plot that was burned 3 

times (3x), there is a clear pattern of relatively few and small trees for the transects that are closest to 

the forest edge and greater abundance and bigger trees as one moves towards the interior of the forest. 

The LidarLDA-based clusters capture well this pattern since the relative abundance of the near surface 

cluster (i.e., cluster 1) decreases sharply from the forest edge to the forest interior whereas the relative 

abundance of clusters 2-4 steadily increases along this gradient (Appendix 4). Similar patterns can be 

seen for the other areas (i.e., the control area and the 6x plot; see Appendix 4). Furthermore, a 

comparison of the spatial distribution of the near surface cluster with a map of grass invasion, created 

based on field observations, supports cluster 4 representing bare soil, grasses and short vegetation (see 

Appendix 5). 

 

3.2.2 Spatial distribution of LidarLDA clusters in 2014 

We found that the spatial distribution of clusters in 2014 was strongly linked to both landscape 

features and disturbance history. For example, the near surface, short and intermediate clusters 

(clusters 1 to 3, respectively) were much more common close to the river, whereas the tall cluster 1 was 



 
 

rare in this area (Fig. 5). In relation to the fire experiments, we can also see in Fig. 5 that the areas 

burned multiple times had a high proportion of the near surface and short clusters (clusters 1 and 2) 

whereas the intermediate and tall clusters (clusters 3 and 4) were relatively rare in these areas in 2014. 

Importantly, the tall cluster was more common in the 6x area when compared to the 3x area, probably a 

consequence of higher fire intensity in the 3x area due to the fuel buildup enabled by the lower fire 

frequency (Balch et al., 2015). Furthermore, the area burned once (1x) was more similar to the control 

area than the areas burned multiple times.  

 

Fig. 5. Heatmaps showing the spatial distribution of each cluster in 2014. Relative abundance of each 

cluster varies from 0 (cyan) to 1 (purple). Results are only shown for forested areas covered by LiDAR 

but there is an agricultural field adjacent to the plots. Location of the river is highlighted with blue line 

while experimental fire plots are outlined in black. The control plot is denoted by “C”, the plot burned 

once in 2007 is denoted by “1x”, the plot burned 3 times between 2004-2010 (fire interval of 3 years) is 

denoted by “3x”, and the plot burned 6 times between 2004-2010 (i.e., fire interval of 1 year, except for 

2008) is denoted by “6x”. Top to bottom panels show the results for individual clusters (numbers in the 

top left of each panel) and are ordered from low to high stature clusters.  

 

3.2.4 Temporal changes 

Assuming 4 main clusters, we use the folding-in operation to compare how the relative abundance 

of each cluster changed through time by estimating 𝛉𝛉𝒊𝒊,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 and calculating 𝛉𝛉𝒊𝒊,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 − 𝛉𝛉𝒊𝒊,𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐. This 

analysis reveals that there is substantial change between 2014 and 2018 at the landscape level, even in 

areas that were not subject to experimental fire (Fig. 6A). The results for the experimental fire plots, 

however, are substantially different from those at the landscape level. For instance, at the edge of the 

forest in the areas burned multiple times, the relative abundance of the near surface cluster (cluster 1) 



 
 

decreased dramatically with a concurrent increase of the short cluster (cluster 2). In contrast, in the 

interior of the forest for the areas that were burned multiple times, the short cluster (cluster 2) declined 

but there was a strong increase in the intermediate cluster (cluster 3).  

Another way of visualizing the recovery of the forest after fire at the forest edge and forest interior 

is using barycentric coordinates, in which we simultaneously display the relative abundance of clusters 

1, 2, 3+4 (Fig. 6B). In this figure, points closer to a particular vertex have higher relative abundance of 

the corresponding cluster and arrows start in 2014 results and point to 2018 results. This figure reveals 

that the areas burned multiple times (i.e., 3x and 6x) have a much larger fraction of the near surface 

cluster (cluster 1) at the edge of the forest (i.e., grid cells within 500 m of the forest edge) when 

compared to the control and 1x plots in 2014. On the other hand, these burned areas tended to have a 

larger fraction of the short cluster (cluster 2) at the interior of the forest (i.e., grid cells >500 m away 

from the forest edge). Importantly, only at the interior of the forest have these differences decreased 

substantially in 2018, revealing a convergence to approximately the same forest structure, whereas 

there is much less convergence at the forest edge even 8 years after the last fire. Interestingly, the 

length of these arrows reveals that all the burned areas, including the area burned only once in 2007 

(i.e., 1x), are still undergoing large changes in forest structure while the control area has had 

comparatively smaller changes during the same time period. Taken together, these results illustrate the 

partial recovery of forest structure after fires stopped (2007 for the 1x plot; 2010 for the 3x and 6x plots) 

and how distance to forest edge influences this recovery process. 

 

Fig. 6. Recovery process of forest structure between 2014 and 2018 displayed with difference maps 

(panel A) and barycentric coordinates (panel B). The difference maps were calculated as the relative 

abundance in 2018 minus the relative abundance in 2014 for each cluster. Increases and decreases are 

depicted in blue and red, respectively. For the barycentric coordinate figures, each arrow starts at the 



 
 

coordinates for 2014 and ends at the coordinates for 2018. Each color represents a different 

experimental plot. Top and bottom panels display the results for the forest edge (defined as all grid cells 

within 500 m of forest edge) and forest interior (defined as all grid cells more than 500 m away from the 

forest edge), respectively.  

 

Importantly, as described in detail in Appendix 6, differently from the LidarLDA results, Canopy 

Height Model (CHM) results fail to identify differences in the forest interior between the burned plots 

(1x, 3x, and 6x) and the control plot. Furthermore, in contrast to the results shown in Fig. 6, a temporal 

comparison of CHM results suggest minimal change in canopy height in the interior of burned plots and 

the control plot from 2014 to 2018. Taken together, these results suggest that LidarLDA can reveal much 

more information regarding forest structure than CHMs. 

 

4. Discussion 

In this article, we have shown how a modified LDA model, called LidarLDA, can be used to 

generate novel insights on forest structure based on LiDAR data. A key feature of this dimension 

reduction approach is that it enables the spatial and temporal visualization of changes in forest structure 

while at the same time appropriately accounting for occlusion of LiDAR light pulses. Using simulated 

data, we illustrate how this model can recover the true number of clusters and the spatial distribution of 

these clusters as a function of elevation. Furthermore, through our case study in the Amazon region, we 

reveal landscape-level differences in forest structure associated with proximity to the river as well as the 

long-term effects of fire and forest fragmentation on forest structure. Importantly, a comparison with 

other types of LiDAR products that just focus on top-of-canopy information, such as a Canopy Height 

Model, reveals how much more information can be extracted using LidarLDA regarding the impact of 

fires and forest fragmentation on forest structure. 



 
 

Due to its unsupervised nature, our LidarLDA model is well suited for exploratory analysis, 

potentially revealing novel spatial and temporal patterns of forest structure. Importantly, differently 

from standard hard clustering approaches used to create forest structural types, the LidarLDA model is 

able to capture gradual spatial and/or temporal changes in forest structure. For example, the analysis of 

our simulated data reveals that LidarLDA can accurately capture the gradual spatial changes in forest 

structure associated with elevation (Fig. 3). On the other hand, hard clustering approaches commonly 

used to determine forest structural types (Adnan et al., 2019, Moran et al., 2018, Papa et al., 2020) 

cannot capture these gradual changes because each grid cell can only be assigned to a single cluster. 

Similarly, characterizing the gradual temporal changes (e.g., as depicted in Fig. 6) would be very 

challenging with hard clustering approaches. Another important limitation associated with hard 

clustering approaches is that they often have to create more clusters than warranted to be able to fit 

the data well and represent these transition zones. This is illustrated with our simulations with 3 clusters 

and is corroborated by past studies on the ability of hard clustering approaches in describing transition 

zones (Valle et al., 2018).  

In our case study, we characterized approximately 1,000 ha of this landscape and identified the 

strong influence of distance to the river on forest structure. Furthermore, a comparison of field data and 

LidarLDA results revealed that LidarLDA could capture well the gradual changes in the diameter 

distribution of trees resulting from the synergistic effects of fire and distance to forest edge, providing 

confidence that LidarLDA can be used over large areas to detect spatial and temporal changes in forest 

structure. The comparison of LidarLDA results for the burned and control plots largely corroborated the 

results from previous studies based on field measurements at the same site, an important result given 

the unsupervised nature of LidarLDA. For example, the effect of fire on forest structure is strongest near 

the forest edge and more pronounced in the 3x plot than on the 6x plot, probably due to the fuel build 

up between years in the 3x plot (Balch et al., 2015). More fuel in drier conditions favors high-intensity 



 
 

fires, which can lead to increased postfire tree mortality, greater loss of aboveground live biomass 

(Brando et al., 2014) and increased grass invasion (Silverio et al., 2013), with substantial change in 

species composition (Valle et al., 2021b). Interestingly, the temporal comparison revealed substantial 

changes in forest structure even after almost a decade after fires have ceased, capturing the ongoing 

process of post-fire forest recovery. In contrast, the results from the canopy height model do not reveal 

major differences between the forest interior of the control plots and the burned plots and fail to 

capture the large temporal changes in forest structure (Appendix 6). Ultimately, by relying only on 

information from the highest trees, CHMs miss other changes in the 3D structure of the forest. Finally, 

we note that past studies focused on the Tanguro ranch have ignored the area that was burned just 

once (1x) because no field data were collected for this site. LidarLDA results reveal that the short cluster 

(cluster 2) is decreasing in this plot while the tall cluster (cluster 4) is increasing (Fig. 6), indicating 

substantial change in forest structure between 2014 and 2018, even though this plot was burned just 

once in 2007.  

An important limitation of our methodology is the speed of our algorithm. Although our 

algorithm leverages C++ within R to perform the most computationally intensive tasks, our model can 

still be computationally intensive to fit because we rely on an iterative Markov Chain Monte Carlo 

(MCMC) approach. This was not a problem when data were spatially discretized into 50 x 50 m grid cells 

for a single region; it took approximately 1.6 hours to run LidarLDA for 20,000 iterations on the 2014 

dataset containing approximately 3,900 grid cells and 35 height classes on an Intel Core i7 desktop with 

3.4 GHz processor and 16 GB of RAM. This was done assuming a maximum of 10 clusters. On the other 

hand, when the number of grid cells was increased by 10-fold while keeping all of the other 

characteristics constant, our algorithm took 13.7 hours. Monitoring larger landscapes and/or using 

smaller grid cells would likely require high performance computing. Exploring approaches to speeding 



 
 

up the fitting of LidarLDA (e.g., using variational Bayes methods; Blei et al., 2017) is likely to be a very 

important topic for future research if larger datasets are to be analyzed.  

To prepare the data for LidarLDA, we adopted 50 x 50 m grid cells and discretized height into 

vertical layers of 1-m in width. These settings are relatively standard in LiDAR studies focused on forest 

structure in this region (e.g., Andersen et al., 2013, Carrasco et al., 2019, Papa et al., 2020, Silva et al., 

2017) but it is important to acknowledge the tradeoffs associated with these choices. For example, while 

choosing smaller grid cells can potentially represent spatial variation at a finer scale, two important 

drawbacks of relying on smaller grid cells are that the number of light pulses per grid cell within the pre-

specified angle range can be relatively small, hampering inference, and the model is likely to take longer 

to fit. Furthermore, a finer spatial scale may or may not be ecologically relevant depending on the size of 

individual trees and their canopies. As a result, the decision regarding which grid cell size to adopt 

requires one to consider the trade-off between algorithm speed and data availability versus the 

ecological importance of fine scale spatial variation. A related concern is that of over-fitting the data 

given that LidarLDA already contains a large number of parameters and the number of parameters 

increases with the number of grid cells. The standard approach to determining if the data are being 

over-fitted is to evaluate if out-of-sample predictions deteriorate as the number of parameters 

increases. Unfortunately, this straight-forward approach does not work for LidarLDA because, like many 

other LDA-type models, it does not include predictor variables and therefore predictions cannot be 

made. While the use of the truncated stick-breaking prior helps in ensuring parsimony by limiting the 

number of clusters, additional research is still needed to determine when overfitting is likely to be an 

issue for models like LidarLDA. Finally, it is not clear what the minimum number of light pulses per grid 

cell and vertical layer should be for LidarLDA to estimate well the absorptance probability of the 

different clusters. We believe this is an important topic for future research.  



 
 

 We have shown that LidarLDA enables the visualization of spatial and temporal patterns of 

forest structure in a way that provides much more information than standard canopy height models. As 

a result, we believe that LidarLDA will become an indispensable tool for scientists interested on how 

large-scale phenomena (e.g., selective logging, climate change, and fire) and biophysical characteristics 

(e.g., topography, soil fertility, and rainfall) influence forest structure and/or how forest structure 

influences ecosystem services (e.g., erosion control, recreation, wildlife habitat, water supply and/or 

regulation). For example, it is possible that LidarLDA could be used in the future to monitor forest 

concessions, assessing the short-term structural damage associated with logging as well as how long it 

takes for the forest to recover most of its structure after logging. Similarly, it is possible that LidarLDA 

could be used to better determine emissions associated with understory fire by assessing changes in 

structural biomass and the required time for forests to regain their original structure. Despite our focus 

on forests, it is important to emphasize that LidarLDA is likely to also be useful to characterize the 

structural complexity and answer similar questions for other types of vegetation. Given the increasing 

availability of LiDAR data, collected from unmanned aerial vehicles (UAVs), planes (e.g., data from the 

National Ecological Observatory Network [NEON]), or satellites (e.g., data collected by the NASA's Global 

Ecosystem Dynamics Investigation [GEDI] mission), the time is ripe for ecological applications to use the 

full potential of these high-dimensional datasets. We hope that LidarLDA can contribute to this effort. 
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