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Reproducibility is a cornerstone of scientific communication without which one cannot
build upon each other’s work. Because modern human brain imaging relies on many
integrated steps with a variety of possible algorithms, it has, however, become
impossible to report every detail of a data processing workflow. In response to this
analytical complexity, community recommendations are to share data analysis pipelines
(scripts that implement workflows). Here we show that this can easily be done using
EEGLAB and tools built around it. BIDS tools allow importing all the necessary
information and create a study from electroencephalography (EEG)-Brain Imaging Data
Structure compliant data. From there preprocessing can be carried out in only a few
steps using EEGLAB and statistical analyses performed using the LIMO EEG plug-in.
Using Wakeman and Henson (2015) face dataset, we illustrate how to prepare data and
build different statistical models, a standard factorial design (faces ∗ repetition), and a
more modern trial-based regression approach for the stimulus repetition effect, all in a
few reproducible command lines.

Keywords: brain imaging data structure, preprocessing algorithm, linear models, reproducibility and tools,
EEGLAB toolbox, LIMO EEG

INTRODUCTION

As data analyses become more and more complex, it has been advocated that clear workflows
and all of the parameters used in their implementation should be reported in order to increase
reproducibility (Pernet et al., 2020). It is, however, difficult to concisely report a workflow and
maybe even impossible given hidden parameters built into the algorithms we use. One solution
is to report in detail the workflow and share the corresponding pipelines—thus only having to
communicate key algorithm details. Such pipelines and/or tools to build pipelines have been
developed in recent years (see, e.g., Bigdely-Shamlo et al., 2015; Andersen, 2018; Jas et al., 2018; Niso
et al., 2019; Meunier et al., 2020) and here we describe tools developed around EEGLAB (Delorme
and Makeig, 2004) which also allow creating a fully reproducible pipeline from raw data to group
results, with an example to sensor space analysis.

New data formatting conventions and public repositories for electroencephalography (EEG)
data have recently been developed and made available to the science community. In particular,
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the Brain Imaging Data Structure (Gorgolewski et al., 2016)
and its EEG extension (Pernet et al., 2019) allow defining
important EEG metadata information, such as additional event
information, electrode positions, and experimental conditions.
This makes data aggregation from different experiments and
analysis automation using standardized pipelines easier. Here
we present a fully reproducible workflow (Figure 1) from raw
data to group results using open data and we document and
share the pipeline.

EEGLAB (Delorme and Makeig, 2004) is the most commonly
used platform for EEG data analysis (Hanke and Halchenko,
2011; Martínez-Cancino et al., 2020) and all steps proposed can
also be reproduced from the user interface. We refer to the
extensive EEGLAB online user manual for GUI operations, and
simply point that functions called by interface operations in
EEGLAB are saved into the EEG.history field, thus allowing to
copy/paste the underlying code to build a different pipeline than
the one proposed here. EEGLAB is used here in conjunction with
newly developed EEG-BIDS1 tools which allow automatically
importing and create a STUDY (see Figure 1) for data that follow
the EEG-Brain Imaging Data Structure and with the LIMO-EEG
toolbox which allows statistical analyses using robust hierarchical
linear models (Pernet et al., 2011). The overarching goal of this
analysis is to show that it is possible to use a simple pipeline to
process “raw” data and perform complex statistical analyses using
EEGLAB and LIMO.

METHODS

Open Data
The pipeline was executed using the EEG data from the
multimodal face dataset (Wakeman and Henson, 2015). EEG
(70 channel Easycap2) and ECG data were extracted from the
binary MEG.fif files that combined MEG, EEG, ECG channels,
event markers were time corrected (−34 ms) and electrode
positions re-oriented to fit the head coordinate system. Out
of the 19 participants, participant 1 was removed because of
channels digitization errors leading to 18 participants. Data were
then organized using EEG-BIDS and archived for download
at https://openneuro.org/datasets/ds002718. This dataset is thus
a modified and simplified version of the original dataset,
with a subset of this original dataset itself made available
by authors at https://openneuro.org/datasets/ds000117. In the
original data, there were multiple runs for each subject, so
we have merged them to make it simpler for users. We
have also formatted scanned electrode positions so they are
available within the BIDS dataset. We have corrected event
latencies, renamed some events, and added information on
events and stimulus repetition. We also resampled the data
to 250 Hz so it is not as large and can be used for
tutorials. All modifications to the original data documented in
the readme file of BIDS ds002718 and conversion script are
also made available.

1https://github.com/sccn/bids-matlab-tools
2https://www.easycap.de/

The experiment consisted of the presentation of 300 grayscale
photographs of familiar and unfamiliar faces, along with their
scrambled versions, all repeated twice. Trials started by a fixation
cross lasting 400–600 ms, followed by stimuli lasting from 800
to 1000 ms and the repetition of the images occurred either
immediately or after 5 or 15 stimuli, leading to a range of
time intervals between repeats. Participants had to perform
an orthogonal symmetry judgment task ensuring attention
to each stimulus.

Software
Analyses are performed using Matlab 2020a (The Mathworks,
Inc.3) on Windows or Mac OSx with the Statistical and Machine
Learning Toolbox installed, along with EEGLAB4 (v2020.0) and
its BIDS tool5 (v3.5) and LIMO EEG6 (v3) plugins—both of them
available through the EEGLAB plugin manager.

BIDS-Import
The EEGLAB BIDS plugin allows importing BIDS datasets as
EEGLAB studies. The plugin allows overwriting events and
channel information contained in the raw EEG data—we are
using both of these options here. This allows, for example, to
define more precise events and channel information—such as
channel locations derived from scanned Polhemus positions. The
plugin also allows selecting specific fields in the BIDS event file (in
this case we used “trial_type” to be mapped to the EEGLAB “type”
field). This is reflected in the call to pop_importbids.m function in
Figure 2.

Fully Automated Preprocessing
We present here a workflow with minimal preprocessing
(Figure 2), which is a set of steps that removes common artifacts
without trying to optimize any particular data features, using
fully automated methods. Note that, as mentioned earlier, the
goal is to present a fully reproducible workflow of ERP analyses
with EEGLAB, and not to reproduce or replicate Wakeman
and Henson (2015). As such, our preprocessing differs from
Wakeman and Hensons’ workflow which, in any case, was
primarily designed for the associated MEG data, starting with
Signal Space Separation for noise removal (Taulu and Simola,
2006), then bad channel removal, and notch filtering.

As explained above, the code underlying the different steps
can be obtained from EEG.history when using the GUI to
process subjects. First, bad channels are removed and data filtered
at 0.5 Hz using clean_rawdata plugin of EEGLAB (v2.2) and
the pop_clean_rawdata.m function (transition band [0.25 0.75],
bad channels defined as a channel exhibiting a flat line of at
least 5 s and/or correlation to their robust estimate based on
other channels below 0.8). Second, data are re-referenced to
the average (pop_reref.m) and submitted to an independent
component analysis (pop_runica.m using the runica algorithm
and a reduction in rank to the number of channels −1 to account

3https://uk.mathworks.com/products/matlab.html
4https://sccn.ucsd.edu/eeglab
5https://github.com/sccn/bids-matlab-tools
6https://github.com/LIMO-EEG-Toolbox/limo_tools
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FIGURE 1 | Workflow overview for data processing with EEGLAB.

FIGURE 2 | Code used for importing and preprocessing. The region highlighted in red must be changed by the user to point to the location of the data on his/her
hard drive. A version of this code that can be copied and pasted is available in the LIMO MEEG repository: https://github.com/LIMO-EEG-Toolbox/limo_
meeg/tree/master/resources/from_bids2stats.m. Note that this part of code was automatically generated from EEGLAB and EEGLAB plugins menus by using the
command history function eegh- and then edited for clarity.
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for average reference). Third, each component is automatically
labeled using ICLabel (Pion-Tonachini et al., 2019), rejecting
components labeled as eye movements and muscle activity above
80% probability. Finally, continuous data are further cleaned if
their power deviated too much from the rest of the data using
Artifact Subspace Reconstruction (ASR) algorithm and a 20 burst
detection criteria threshold (Kothe and Jung, 2016; Chang et al.,
2018) thus taking care of remaining (e.g., line noise, trends)
artifacts (pop_clean_rawdata.m, burst criterion 20). Note that the
data are not corrected by ASR as we only use here the portion
of the algorithm detecting bad portions of data and remove
them. Also, there is no low-pass filtering since power-line noise
is removed via ASR, leaving possible higher frequencies in the
otherwise low frequency of visual the ERPs. All parameters are
indicated in Figure 3.

Statistical Modeling
From the clean continuous data, epochs are created by extracting
data snippets time-locked (from −500 ms to 1 s) to the face
presentation events (pop_epoch.m) and designs created within
the EEGLAB STUDY. A STUDY in EEGLAB is a structure

that contains all the information about the data and metadata
allowing to create any experimental designs. Here, we made
two designs (std_makedesigns.m): one that recreates the faces
vs. scrambled effect described by Wakeman and Henson (2015)
and one that tests if the time between repetitions of the same
stimuli influences the event-related potentials (ERPs—see section
“Results” for more details on the statistical models). From first
level estimates, repeated measures ANOVA were computed at the
group level (limo_random_select.m). The goal is to illustrate the
flexibility of linear models as implemented in LIMO EEG and
ease to create such models using EEGLAB STUDY (Figure 3).

RESULTS

Model 1: Coding Conditions Across Trials
At the first level, data from each participant were modeled
with nine experimental conditions: famous faces, famous faces
repeated immediately, famous faces repeated late, scrambled
faces, scrambled faces repeated immediately, scrambled faces
repeated late, unfamiliar faces, unfamiliar faces repeated

FIGURE 3 | Code snippet for the two statistical models proposed. In both cases, only three steps are necessary: (1) create a statistical design (std_makedesign.m),
(2) compute model parameters for each subject (pop_limo.m), and (3) perform the group level analysis (limo_random_select.m). Additional contrasts and
figures/plots shown in the results section are also available in command lines, see https://github.com/LIMO-EEG-Toolbox/limo_meeg/tree/master/resources/
from_bids2stats.m for details.
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FIGURE 4 | Results from the 2*2 ANOVA analysis. At the top are the main effects for faces and repetition, computed over the whole sensor space. In the middle is
the topographical representation of F-values for each significant cluster. At the bottom are displayed the ERP (the mean of the participants weighted means) at
channel 50 for faces illustrating the negative face component peaking here at 180 ms and at channel 45 for the repetition effect.

immediately, unfamiliar faces repeated late, and a weighted least
squares solution was used to obtain parameter estimates of each
condition. At the second level, a repeated measure ANOVA
(generalized Hotelling T2) was conducted on beta estimates
with “faces” and “repetition” as factors. Statistical significance
was assessed using spatial–temporal clustering (Maris and
Oostenveld, 2007; C.R. Pernet et al., 2015).

Results (Figure 4) revealed a significant effect of face type
with two clusters (cluster 1 starts at 140 ms and ends at 424 ms,
maximum F values 64.1281 at 280 ms on channel EEG017,
corrected p-value 0.002; cluster 2 starts at 440 ms and ends at
648 ms, maximum F value 17.6071 at 616 ms on channel EEG057,
corrected p-value 0.032) and a significant repetition effect with
one cluster (cluster starts at 232 ms and ends at 648 ms, maximum

F value 51.3596 at 612 ms channel EEG045, corrected p-value
0.001). No significant interaction was observed. As such, the main
effect of faces replicates Wakeman and Henson (2015) results
who observed “a negative deflection peaking around 170 ms
(“N170” component) larger for faces than scrambled faces, which
does not differ for familiar and unfamiliar faces. Around 250 ms,
a slower potential shift distinguishes familiar and unfamiliar
faces until the end of the epoch.” Here we observed higher
response at 140 ms (P1 component) for familiar and unfamiliar
faces than scrambled faces not previously reported, followed by
the same N170 effect—although weaker than reported (from
their Figure 1, the face effect is around ∼4 µV while we
observed a difference of ∼1.5 µV), likely due to differences in
preprocessing (see section “Fully Automated Preprocessing”) and
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processing (i.e., LIMO EEG used a hierarchical linear model
with weighted least squares parameter estimate per subjects
while Wakeman and Henson averaged trials per subjects). From
250 ms, we also observed a slow potential separating familiar
from unfamiliar faces.

Model 2: Regressing the Time Between
Stimulus Presentation From Trial to Trial
At the first level, data from each participant were modeled
with three experimental conditions (famous faces, scrambled
faces, and unfamiliar faces) along with the time between the
repetition of each stimulus (Figure 5) and a weighted least
squares solution used to obtain parameter estimates of each
condition. At the second level, a repeated measure ANOVA
(generalized Hotelling T2) was conducted on beta estimates of
the time regressors with “faces” as factors, and a post hoc contrast
computed, testing if the effect of time for famous faces differed
from other stimuli. Statistical significance was again assessed
using spatial–temporal clustering.

The post hoc contrast revealed a significantly stronger
modulation of ERP as time passed between famous faces than for
other stimuli (Figure 5—cluster 1 starts at 536 ms and ends at
576 ms, maximum 15.1112 at 556 ms channel EEG039, corrected
p-value 0.031; cluster 2 starts at 548 ms and ends at 584 ms,
maximum 9.58689 at 572 ms channel EEG055, corrected p-value
0.033). This suggests that there is an interaction face type by
repetition such as late ERPs vary as a function of time between
the first/second and third repetition for famous faces but not
unfamiliar or scrambled faces.

DISCUSSION

Following community guidelines (Pernet et al., 2020), we have
implemented necessary changes and new tools allowing to create
fully reproducible workflows with EEGLAB. The pipeline for the
presented analysis is available at https://github.com/LIMO-EEG-
Toolbox/limo_meeg/tree/master/resources/from_bids2stats.m

and further designs presented on the LIMO MEEG GitHub
website (via the user interface and command-line alike
https://github.com/LIMO-EEG-Toolbox/limo_tools/wiki).

A key development for EEG reproducibility is the recent
development of EEG-BIDS (Pernet et al., 2019) which not only
structures how data are organized and shared but also populates
many of the metadata necessary for data analysis. The newly
developed BIDS tools7 used here allow to import such data
and create automatically an EEGLAB STUDY with the different
experimental conditions. Note that from raw data imported into
EEGLAB, those tools allow just as easy to export in the BIDS
compliant format. While raw EEG data files often define channel
labels, EEG-BIDS defines channel properties and associated
labels (channels.tsv) corresponding to the electrodes for which
locations are defined (electrodes.tsv) given a reference coordinate
system (coordsystem.json). BIDS-Matlab-tools will always check
for consistency between the data and BIDS meta-data and users
have the choice on which information to use (in Figure 2,
pop_import_bids parameter “bidschanlocs”). Similarly, raw EEG
data files typically contain behavioral and experimental events;
these are also defined in BIDS with separate text files (events.tsv).
Sometimes the BIDS event files contain different information
than the raw EEG data file and users have options to choose
which one of the two types of event information to import (in
Figure 2, pop_import_bids parameter “bidsevent”). Here, when
preparing the BIDS dataset with EEG data only, events.tsv file was
prepared as to include the nine experimental conditions but also
the repetition order, distance, and time between repetitions which
allowed to create the proposed design automatically.

Data preprocessing is performed here by first cleaning the
raw data using the clean_rawdata EEGLAB plugin (v2.2), then
by running the Infomax Independent Component Analysis
algorithm (runica function of EEGLAB 2020.0) and performing
automated ICA component labeling (ICLabel v1.2.6). EEGLAB
includes a variety of algorithms and other approaches can
be implemented to preprocess data automatically. One key

7https://github.com/sccn/bids-matlab-tools

FIGURE 5 | Illustration of 1st level modeling and results from the group level analysis. The design matrix (left) is set up automatically for each participant from
EEGLAB study coding here the face types and for each face type, the time delay between repeats of the same stimulus. Results (middle and right) show a late
modulation mostly over central electrodes.

Frontiers in Neuroscience | www.frontiersin.org 6 January 2021 | Volume 14 | Article 610388

https://github.com/LIMO-EEG-Toolbox/limo_meeg/tree/master/resources/from_bids2stats.m
https://github.com/LIMO-EEG-Toolbox/limo_meeg/tree/master/resources/from_bids2stats.m
https://github.com/LIMO-EEG-Toolbox/limo_tools/wiki
https://github.com/sccn/bids-matlab-tools
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-610388 December 28, 2020 Time: 17:19 # 7

Pernet et al. Reproducible EEG Using EEGLAB-LIMO

development for reproducible EEG artifact reduction is the use of
the ICLabel EEGLAB plugin which labels independent brain and
non-brain components automatically thus allowing to remove
artifactual components in a consistent manner (Pion-Tonachini
et al., 2019). After preprocessing, various designs can be created
from a STUDY (depending upon the type and quantity of events)
and LIMO tools are called to run first level analyses automatically
from which group-level analyses can be performed.

The current analysis focused on ERPs for sensor space,
but EEGLAB-LIMO tools can be used similarly for spectral
and time-frequency analyses. Analyses may also be applied
to source resolved EEG data. LIMO tools already allow
using ICA components as input, since ICA components have
been shown to represent activity within localized patches
of cortex (Delorme et al., 2012) and future versions will
also allow automatic source space analyses. Source resolved
activity calculated using eLoreta, and summarized using
principal component analysis within regions of interest (ROI)
is also possible with the ROIconnect plugin8 which allows
exporting activity in ROI defined in standard atlases to
EEGLAB native EEG linear decomposition matrix activity
8 https://github.com/arnodelorme/roiconnect

(usually used for ICA activity), therefore, enabling their
use in LIMO EEG.
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