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Abstract

Towards More Predictive Models of Galactic Center Accretion

by

Sean Michael Ressler

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Eliot Quataert, Chair

Sagittarius A* (Sgr A*), the roughly 4 million M� black hole at the center of our galaxy, is ar-
guably the best natural test-bed for supermassive black hole accretion models. Its close proxim-
ity allows for detailed observations to be made across the electromagnetic spectrum that provide
strong, multi-scale constraints on analytic and numerical calculations. These include exciting new
event horizon scale results that directly probe the strong field regime for the first time. Spanning
roughly 7 orders of magnitude in radius, the accretion system begins at ∼ parsec scales where a
large population of Wolf-Rayet (WR) stars interact via powerful stellar winds. A fraction of the
wind material accretes to the event horizon scales, heating up and radiating on the way down to
provide the observed multi-wavelength emission. Detailed modeling of this process requires 3D
numerical simulations spanning as large of a dynamical range as possible. The goal of this the-
sis has been to improve the predictive power of such simulations applied to Sgr A* by limiting
the number of free parameters that they contain. This is done by incorporating more theoretical
and observational knowledge into the calculations, for example, what collisionless physics tells us
about how electrons/ions are heated in a turbulent medium and the properties of the winds of the
WR stars. The resulting simulations have shown excellent agreement with a wide range of obser-
vational constraints and could have major implications for how the accretion flow around Sgr A*
is modeled in the future. The techniques presented here are also applicable to other low luminosity
AGN and X-ray binaries.
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Chapter 1

Introduction

1.1 Background
When my graduate studies began in 2013, the observational and theoretical communities were

together hard at work preparing for the first light of two groundbreaking telescopes: The Event
Horizon Telescope (EHT, Doeleman et al. 2009) and GRAVITY (Gillessen et al. 2010). These
instruments promised for the first time to be able to directly probe the event horizon scale of Sagit-
tarius A* (Sgr A*), the supermassive black hole in the centre of The Milky Way, testing the theory
of general relativity (GR) and accretion models in the strong field regime. For the EHT, this meant
spatially resolving the 230 GHz emission to capture the “shadow” of the black hole, that is, the
distinct lack of emission caused by the presence of the event horizon. For GRAVITY, on the other
hand, it meant performing high resolution astrometry on localized near infrared (NIR) emission,
the ideal scenario being an orbitting “hot spot” that would test GR and provide information about
the orientation of the accretion flow.

As my graduate studies now conclude in 2019, both collaborations have published their first
results to much fanfare. In the middle of last year, Gravity Collaboration et al. (2018) reported
that the ideal “hot spot” scenario had been found with the detection of several infrared flares in
Sgr A* that displayed centroid motion at ∼ 10 rg consistent with a relatively face-on orbit. The
polarization of the flares was also measured, with a periodicity that suggests predominantly vertical
(parallel to the angular momentum vector) magnetic fields. This year, Event Horizon Telescope
Collaboration et al. (2019a,b,c,d,e,f) unveiled the first 230 GHz image of the emission surrounding
the supermassive black hole at the centre of M87, using the size of the black hole’s “shadow” to
precisely determine its mass and the asymmetry of the image to determine the orientation of its
jet. Resolved polarization maps of this emission are currently being analysed and will provide a
stronger constraint on the emitting plasma itself, particularly on the magnetic field as it determines
the direction of polarization for synchrotron radiation. EHT results for Sgr A* are still forthcoming
but are are expected relatively soon.

These exciting new constraints on the event-horizon scale accretion flow add to the wealth of
multi-wavelength, time-variable observations of Sgr A*, arguably nature’s best “laboratory” for
supermassive black hole accretion. Numerous telescopes have taken data between ∼ 109–1012 Hz,
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finding the emission of Sgr A* in this frequency range to be relatively stable with time but not
without a small amount of variability (e.g., Falcke et al. 1998; An et al. 2005; Marrone et al. 2006;
Bower et al. 2015a; Liu et al. 2016b,a). At low radio frequencies, the spectrum is nearly flat with
frequency (in flux) and then turns over at the “sub-mm bump” just below ∼ 230 GHz where (in
the most common interpretation) the emission transitions from being optically thick to optically
thin. Above 1012 Hz, Sgr A* is not a steady source of radiation. Instead, it displays frequent
flaring behavior with large amplitude X-ray flares occurring roughly once per day (e.g., Neilsen
et al. 2013) and Near-Infrared (NIR) flares occurring about four times as often (e.g., Genzel et al.
2003a; Schödel et al. 2011). All X-ray flares have been linked to a NIR counterpart but not all NIR
flares have been linked to an X-ray counterpart. It is not known for certain whether these flares are
synchroton emission, synchroton self-Compton emission, or a combination of both. Furthermore,
the millimeter and sub-millimeter emission is observed to be ∼ a few percent polarized, with the
fraction varying in time between ∼ 1–10% (Aitken et al. 2000; Marrone et al. 2006). The rotation
measure (RM) for this polarized emission was first measured to be ≈ −5.6 × 105 rad/m2 (Marrone
et al. 2007) and later found to vary by as much as a factor of 2 on . month time scales1(Bower
et al. 2018).

Larger scale observations of Sgr A* can also provide key information regarding the properties
of the gas that ultimately feeds the event horizon scale. Diffuse, spatially resolved X-ray emission
is observed at 0.1–1 pc from the black hole (Baganoff et al. 2003) and is believed to be caused by
shocks between winds of the ∼ 30 Wolf-Rayet (WR) stars in the Galactic Centre. These obser-
vations can be used to infer a density and temperature that imply a spherical accretion rate orders
of magnitude too large to account for the observed rotation measure, meaning that only a small
fraction of this gas ultimately reaches the horizon. The rest either goes into outflow (e.g., Bland-
ford & Begelman 1999) or is prevented from accreting, e.g., because it gets trapped in convective
eddies (e.g., Quataert & Gruzinov 2000b) or it becomes magnetically frustrated (e.g., Pen et al.
2003; Pang et al. 2011). Determining which, if any, of these models is correct is important for
constraining the accretion rate onto Sgr A* and horizon-scale models. Another potential probe of
the gas at large radii is the rotation measure of the recently discovered magnetar, located ∼ 0.1 pc
in projected distance from the black hole (Eatough et al. 2013). The rotation measure is second in
magnitude only to Sgr A* for our galaxy, and implies the presence of a relatively strong magnetic
field, if indeed the RM is produced locally to the inner ∼ 1 pc.

A comprehensive theoretical/numerical model of accretion onto Sgr A* must be able to account
for all of these observational features. Ideally, starting from the ∼ pc scale where the winds of the
WR stars provide the original accretion budget, it would describe how some fraction of this gas
falls inward and ultimately reaches the event horizon. Though semi-analytic models more easily
capture this large range in spatial scales (& 7 orders of magnitude), they are not able to account for
the turbulent nature of the flow, time-variability, the precise nature of how the winds feed the supply
of gas, or other asymmetric features. Because of this, simulations are the most promising route
forward, particularly those that include general relativity (GR) and magnetic fields. GR is needed

1The shorter term variability is uncertain because the variability of the RM is more difficult to disentangle from the
variability of the intrinsic polarization angle. The time scale for the RM to vary by a factor of ∼ 2 could be as short as
hours.
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in order to account for the effects of strong gravity near the black hole, while magnetic fields are
required not only to accurately model synchrotron emission (the primary emission mechanism for
the horizon-scale gas), but also because of their likely important role in the dynamics. Putting this
all together results in General Relativistic Magnetohydrodynamic (GRMHD) simulations, which
solve the equations of MHD in the Kerr metric appropriate for a rotating black hole. There are
now a number of GRMHD codes in use and a recent code comparison paper concluded that they
all essentially agree with one another when the resolution is sufficiently large (Porth et al. 2019).
Thus we can have reasonable confidence that the conclusions drawn from these simulations are not
dependent on numerical algorithms but on physical parameters.

Even the most ambitious 3D GRMHD simulations, however, can run for only a little more than
100,000 M2, or ∼ a month for Sgr A* (e.g., Sądowski et al. 2013), while the free-fall time scale for
the winds of the WR stars is on the order of 1000 yr. By current computational standards it is there-
fore impossible to run a GRMHD calculation long enough to accurately model the full dynamic
range of accretion in a single simulation. Instead, assumptions must be made about how the gas
at large radii (i.e., the Bondi radius) ultimately feeds small radii (i.e. 1–1000 M); these assump-
tions essentially correspond to initial and boundary conditions for GRMHD. The most common
approach is to assume that by the time the gas reaches a few hundred M, it has been able to circu-
larize into a disc of relatively high angular momentum gas and that some weak magnetic field is
present. In practice, this means that the simulation starts with a torus in hydrodynamic equilibrium
(e.g., Fishbone & Moncrief 1976; Penna et al. 2013) seeded with a magnetic field such that plasma
β, the ratio between magnetic and thermal pressure, is & 100. This configuration is unstable to the
Magneto-Rotational Instability (MRI, Balbus & Hawley 1991a), a powerful instability that acts
on differentially rotating gas that has an arbitrarily small magnetic field and an angular velocity
that is decreasing with increasing radius. The MRI amplifies the initial magnetic field until it is
strong enough to carry away a significant amount of angular momentum from the torus, driving
accretion. As time progresses in the simulation, a roughly steady state is reached in which the mid-
plane is highly turbulent while the polar regions are strongly magnetized, near vacuum jets. In the
intervening regions there is a corona, generally outflowing, with a lower density than the midplane
but large enough to potentially be a significant source of emission. This general picture describes
simulations that fall under the Standard And Normal Evolution (SANE) description found in the
literature. If the initial supply of coherent magnetic flux is large enough, however, after some time a
new phase of accretion is reached, called a Magnetically Arrested disc (MAD, Narayan et al. 2003;
Tchekhovskoy et al. 2011), where the magnetic flux threading the horizon of the black hole is large
enough to forcefully “arrest” the inflowing gas. During this phase accretion occurs only along thin
streams, the system is highly time variable, and the jets are much stronger than those found in
SANE simulations. It is still an open debate whether the accretion flow in the Galactic Centre can
be classified as a SANE disc, a MAD disc, or neither (e.g., accretion via low angular momentum
gas). The question can only be answered by a combination of two things: 1) by more precisely
modelling how the gas/magnetic fields at large radii accrete to the event horizon scale and 2) by
comparing a wide range of simulations to observations. 1) is more predictive, basically amounting

2M is the mass of the black hole, which has dimensions of time in units such that G = c = 1.
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to determining the “correct” initial/boundary conditions that are appropriate for simulating Sgr A*
and involves accurately representing the accretion via the stellar winds of the WR stars. 2) is more
phenomenological and often works by surveying a wide variety of initial/boundary conditions and
then performing radiative transfer on each to see which class of simulation produces results most
representative of the data.

Because of the strong gravitational effects of the black hole near the horizon (e.g., light bending
and gravitational redshift) where much of the emission from Sgr A* originates, comparison of sim-
ulations to observations requires radiative transfer schemes that are fully general relativistic. Two
commonly used methods exist, both of which have proven useful. Ray tracing methods integrate
along geodesics as they pass through the plasma to the observer and are best suited for producing
high resolution, monochromatic images (e.g.,Dexter 2016; Mościbrodzka & Gammie 2018; Zhu
et al. 2015; Narayan et al. 2016). Monte-carlo based methods track the motion of photon pack-
ets as they are probabilistically absorbed, emitted, and scattered (e.g.,Dolence et al. 2009), and
are best suited for computing multi-wavelength spectra. In addition to computing the total inten-
sity/flux of the emission, some methods are also able to compute the other three Stokes parameters
(e.g.,Dexter 2016; Mościbrodzka & Gammie 2018), quantities that will be measured and spatially
resolved by the EHT. This is important because the polarization measurements may prove to be
stronger constraints on accretion models than the total intensity (Jiménez-Rosales & Dexter 2018).

GRMHD and GR radiation transport alone, however, are not sufficient for emission modelling
in the Galactic Genter. This is because the accretion rate onto Sgr A* is sufficiently low that the
plasma is radiatively inefficient and unable to cool (Narayan et al. 1998), leading to a hot, low den-
sity environment where Coulomb collisions are exceedingly rare. On the surface, this would seem
to indicate that a fluid model (e.g., GRMHD) would be completely inappropriate for describing
the system and that our efforts should be focused on fully collisionless calculations (e.g.,particle-
in-cell methods). A particle-in-cell (PIC) simulation of the accretion flow, however, would require
resolving such a large range of spatial scales (roughly from a particle’s gyroradius to the gravita-
tional radius) that global PIC calculations are impossible in the foreseeable future. On the positive
side, recent results have found that many of the properties of MRI in local hybrid-PIC simulations
are strikingly similar to those in MHD (Kunz et al. 2016). The same conclusion was reached in
weakly collisional calculations that extended fluid models to account for non-ideal effects such as
anisotropic conduction or viscosity (Foucart et al. 2017; Kempski et al. 2019). The reason for this
counter-intuitive result is that plasma microinstabilities, such as the firehose and mirror instabil-
ities, regulate the degree to which the plasma departs from ideality. Physically, the instabilities
create tangled magnetic fields that frequently scatter the charged particles in a way that mimics
collisions. Each species of particles (i.e. electrons and ions) then behaves almost like an ideal
fluid with its own temperature, though since the electron and ion fluid do not interact themselves
these temperatures are not necessarily the same, resulting in a two-temperature fluid. A single-fluid
GRMHD calculation can thus give a reasonable solution for the dynamics and the total temperature
(electron plus ion), but it leaves the relationship between the electron and ion temperature undeter-
mined. This is problematic because the electron temperature is of vital importance in determining
the predicted emission from theoretical models.

To subvert this complication, the most common approach in the literature is to artificially assign
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an electron temperature to the simulation in post-processing using a phenomenological prescrip-
tion. Sometimes this is as simple as setting a constant electron-to-ion temperature ratio everywhere
(Mościbrodzka et al. 2009), but more often the models try to distinguish between the outflow and
the disc proper by having different prescriptions for the electron temperature in each region (Moś-
cibrodzka et al. 2014; Chan et al. 2015a). Generally, the models that have been the most successful
in describing the observations of Sgr A* below 1013 Hz and in satisfying the NIR and X-ray quies-
cent upper limits have featured electrons that are relatively cold in the midplane but relatively hot
in the outflow/corona. All of these models, however, generally fail to reproduce sufficiently large
NIR and X-ray flares. This is likely because a purely thermal electron population is insufficient
and that that a small population of nonthermal, accelerated electrons are necessary to account for
the flares. In fact, such a population is expected to be provided by either magnetic reconnection
(e.g., Sironi & Spitkovsky 2014), shocks (e.g.,Guo et al. 2014), or both in the accretion flow and
outflow. While the field of modelling flares with nonthermal particles in GRMHD simulations is
still young, a few pioneering works such as Mao et al. (2017) and Ball et al. (2016) have stud-
ied the observational consequences of adding a power law of electrons to the distribution function
in the post-processing stage. Although Mao et al. (2017) did not study time variability, they did
show that the high energy electrons can produce a diffuse halo in the 230 GHz images, altering
its shape and size. Ball et al. (2016), on the other had, did apply their model to NIR/X-ray flares
and found qualitative agreement with observations as well as good quantitative agreement with the
observed power law index of the X-ray flux distribution. Still, however, their simulations did not
show flares with large enough amplitude to account for the higher end of this distribution. Finally,
Chael et al. (2017) presented a method for evolving the distribution of non-thermal electrons in
GRMHD given some prescription for how the electrons are accelerated depending on local plasma
properties. Applying this model to Sgr A* will likely provide valuable insight into the study of
flares.

Though a large fraction of the work on modelling the emission from Sgr A* has focused on the
horizon scale, several authors have performed much larger scale calculations to model, e.g., the .
parsec scale X-ray emission caused by the interactions of the WR stellar winds. Both the hydro-
dynamic properties of the winds (i.e. mass-loss rates and wind speeds, Martins et al. 2007) and
the orbits of the stars themselves are reasonably well constrained (Paumard et al. 2006; Lu et al.
2009), so all that is needed is a mathematical prescription for how the winds source the accretion
flow. 1D simulations can only do this in a simplified way, such as Quataert (2004), who treated the
winds as a uniform annular source of mass and energy, or Shcherbakov & Baganoff (2010), who
averaged individual wind sources over their orbits and over all angles. These calculations success-
fully reproduced the X-ray surface brightness profile while finding that only a small fraction of the
total mass injection rate from the winds is accreted, chiefly because most of the gas at the Bondi
scale is unbound outflow. This is qualitatively consistent with the polarization limits on horizon
scale accretion. 3D simulations (e.g., Cuadra et al. 2005, 2006, 2008, 2015; Russell et al. 2017)
can treat the winds more accurately by allowing the source terms to proceed along their individual
orbits during the course of the simulation and are (in principle) able to model, e.g., disc formation
(or lack thereof). Generally, the 3D simulations find that, similarly to the 1D calculations, the to-
tal X-ray luminosity of Sgr A* is easily reproduced in simulations with observationally motivated
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wind properties and that only a fraction of the total wind material accretes. Most of the 3D Galactic
Centre wind accretion simulation literature, however, has not focused on studying how gas from
large scales feeds the inner radii nor fully explored the implications of their calculations on horizon
scale models.

1.2 Thesis Summary and Guide To Chapters
The majority of my thesis work can be broken down into two categories: 1) modelling the

event horizon-scale accretion flow using two-temperature GMRHD simulations and 2) modelling
the larger scale, wind-fed accretion onto Sgr A* and studying how it how it sources the innermost
radii. Chapters 2 and 3 fall into Category 1, while Chapters 4, 5, and 6 fall into Category 2.

The plasma immediately surrounding the event horizon of Sgr A* is known to be an essentially
collisionless plasma due to its high temperature and low density. However, because of the impossi-
ble (for today’s computing standards) computational challenge of performing a fully collisionless
simulation able to resolve global dynamics down to the scale of a particle’s gyroradius, all early
GRMHD models of Sgr A* were done under the assumption of an ideal fluid. Knowledge of the
collisionless nature of the gas was only used as motivation for post processing radiative transfer
methods that prescribed the electron temperature (a key parameter for determining the radiation) to
be some function of the other variables. Though these models were fairly successful in modelling
observations, they had many free parameters and lacked sufficient physical motivation. Seeking
to improve the predictive power of simulations, my work described in Chapter 2 presented a new
method for two-temperature GRMHD that self consistently evolves the electron temperature along-
side the total gas dynamics. I applied this method to 2D simulations of Sgr A* and showed that
using a subgrid model for electron heating appropriate for the conditions in the solar wind results in
an electron temperature distribution near the black hole similar to that of best-fit phenomenological
models of Sgr A*.

In the work described in Chapter 3, I applied this two-temperature GRMHD method to 3D
simulations of Sgr A*, computing predictive spectra and images. The results from 3D confirmed
my previous 2D results that a “disc-jet” structure (one in which the electrons in the corona/jet
are relatively hot while the disc are relatively cold) can naturally arise from our particular choice
of subgrid electron heating function. With essentially only one free parameter (the mass of the
accretion disc) I found that the model successfully reproduced the higher frequency radio and mm
emission of Sgr A* as well as the qualitative features of the temporal variability. This model,
however, was not able to achieve a low frequency radio slope flat enough to explain observations,
nor did it display any evidence for the significant X-ray flares that occur in the Galactic Centre
roughly once per day. Most likely, this suggests that nonthermal particles are necessary to explain
these observational features of Sgr A*, as often speculated in past work.

In Chapter 4, I describe hydrodynamic simulations performed on a much larger scale that
studied how the winds of the ∼ 30 WR stars in the Galactic Centre source the innermost accretion
flow. Each wind was treated as a source term in mass, momentum, and energy as determined by the
observationally constrained mass-loss rates and wind speeds. These source terms move on fixed
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Keplerian orbits based on the observed proper motions of the WR stars. The simulations spanned
the radial range of ∼ 150 Schwarzschild radii (∼ 2×10−5 pc) to ∼ 1 pc, encompassing a majority of
the WR stars and allowing me to study self-consistently how the inner accretion flow is connected
to the properties of the WR stars. I found that the accretion rate predicted by these simulations,
when extrapolated to the event horizon, was entirely consistent with observational constraints and
most previous model-dependent estimates despite the lack of magnetic fields to provide angular
momentum transport. This is possible because the stellar winds provide a sufficiently large supply
of low angular momentum gas that can accrete without the need for torques. Another key result
was that, most of the time, the innermost accretion flow was generally aligned with the clockwise
stellar disc containing roughly half of the WR stars.

Chapter 5 describes my implementation of magnetized stellar winds in my 3D simulations of
wind accretion onto Sgr A*. I showed that a single simulation could explain the magnitude and
variability of the rotation measures of both Sgr A* and the Galactic Centre magnetar in addition
the variable component of the magnetar’s dispersion measure. The simulations also predict that
the magnetic flux ultimately threading the event horizon of the black hole would be significant but
below the MAD limit, the point at which the field is strong enough to halt the inward flow of gas.

Finally, Chapter 6 presents a more detailed analysis of the inner accretion flow of the MHD
wind accretion simulations of Sgr A*. I found that despite the magnetic field reaching near equi-
partition with the thermal energy, the time and angle averaged fluid quantities are not much dif-
ferent than those in purely hydrodynamic simulations, including the mass accretion rate. This is
because the flow never circularizes but has large radial velocities at all radii, so that the radial
ram pressure dominates over both the thermal and magnetic pressure in determining the dynamics.
Such a flow structure differs from most GRMHD models applied to Sgr A*, which typically have
gas slowly falling in as the magnetic field, amplified by the MRI, removes angular momentum
from a circularized disc of gas. In contrast, in my simulations the MRI is not important and low
angular momentum gas supplies the accretion. As in the hydrodynamic simulations, the angular
momentum of the gas is roughly aligned with the clockwise stellar disc most of the time.

1.3 Applications To Other Systems
Though the techniques and models presented in this thesis were developed primarily with Sgr

A* in mind, they are also relevant for other black hole accretion systems. The two-temperature
GRMHD framework of Chapters 2 and 3 is appropriate for many other low-luminosity active
galactic nuclei (AGN) and has already been applied to the one in the center of the galaxy M87 (e.g.,
Ryan et al. 2018; Chael et al. 2019), the first target of EHT. The methods for treating hydrodynamic
and MHD stellar wind accretion presented in Chapters 4–6 could also be used to model other AGN
where stellar winds contribute to the mass supply (e.g., NGC 3115, whose Bondi radius can be
resolved, Wong et al. 2014) and high-mass, wind-fed X-ray binaries (e.g., Cygnus X-1).
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1.4 Other Work
I published an additional first-author paper during graduate school with Tanmoy Laskar that

calculated the spectra of gamma ray burst afterglows from a simple semi-analytic model that in-
cluded emission from both thermal and nonthermal electrons (Ressler & Laskar 2017). This work
was sufficiently different from the focus of my thesis that I do not include it here.

During my studies I was also involved in two published papers on which I was the second author
and a third is in press. In Ryan et al. (2017, 2018), we presented simulations that used my two-
temperature GRMHD model in a Monte Carlo radiation GR(adiation)RMHD code. This allowed
us to study systems with higher accretion rates than Sgr A* where radiation becomes dynamically
important. The first paper examined how the radiative efficiency of the accretion flow varies with
accretion rate while the second modelled the emission from M87. In Anantua, Ressler, & Quataert
2019, we presented a suite of post-processing models of the electron temperature and studied
how the images and spectra vary across these models for Sgr A*. The goal was to better better
understand the effect that the large uncertainty electron heating physics could have on forthcoming
EHT results.
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Chapter 2

Electron Thermodynamics in GRMHD
Simulations of Low-Luminosity Black Hole
Accretion

An earlier version of this article was previously published as Ressler S. M., Tchekhovskoy A.,
Quataert E., Chandra M., and Gammie C. F., 2015, MNRAS, 454, 1848

2.1 Abstract
Simple assumptions made regarding electron thermodynamics often limit the extent to which

general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations
of low-luminosity accreting black holes. We present, implement, and test a model that self-
consistently evolves an entropy equation for the electrons and takes into account the effects of
spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic
field lines. We neglect the back-reaction of electron pressure on the dynamics of the accretion
flow. Our model is appropriate for systems accreting at � 10−5 of the Eddington accretion rate,
so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates
in the future by including electron cooling and proton-electron Coulomb collisions. We present
a suite of tests showing that our method recovers the correct solution for electron heating under
a range of circumstances, including strong shocks and driven turbulence. Our initial applications
to axisymmetric simulations of accreting black holes show that (1) physically-motivated electron
heating rates that depend on the local magnetic field strength yield electron temperature distri-
butions significantly different from the constant electron to proton temperature ratios assumed in
previous work, with higher electron temperatures concentrated in the coronal region between the
disc and the jet; (2) electron thermal conduction significantly modifies the electron temperature
in the inner regions of black hole accretion flows if the effective electron mean free path is larger
than the local scale-height of the disc (at least for the initial conditions and magnetic field con-
figurations we study). The methods developed in this chapter are important for producing more

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1509.04717
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realistic predictions for the emission from accreting black holes such as Sagittarius A* and M87;
these applications will be explored in future work.

2.2 Introduction
A wide variety of low luminosity accreting black holes are currently interpreted in the context

of a Radiatively Inefficient Accretion Flow (RIAF) model that describes a geometrically thick,
optically thin disc with a low accretion rate and luminosity. In particular, this is true of the black
hole at the center of our galaxy, Sagittarius A* (Narayan et al. 1998), the black hole at the center
of Messier 87 (Reynolds et al. 1996), and other low luminosity Active Galactic Nuclei (AGN),
as well as a number of X-ray binary systems (see Remillard & McClintock 2006 for a review).
The gas densities in these systems are low enough that the time scale for electron-ion collisions is
much longer than the time scale for accretion to occur, so a one-temperature model of the gas is no
longer valid (as originally recognised by Shapiro et al. 1976, Ichimaru 1977, and Rees, Begelman,
Blandford, & Phinney 1982). Instead, a better approximation is to treat the electrons and ions as
two different fluids, each with its own temperature.

Calculating the emission from accreting plasma requires predicting the electron distribution
function close to the black hole. To date, time dependent numerical models of RIAFs that attempt
to directly connect to observations often assume a Maxwellian distribution with a constant electron
to proton temperature ratio, Te/Tp, and take the results of GRMHD simulations as the solution for
the total gas temperature, Tg = Tp + Te (Dibi et al. 2012; Drappeau et al. 2013; Mościbrodzka et al.
2009). This neglects, however, several physical processes that have different effects on the electron
and proton thermodynamics and that are currently only included in one-dimensional semi-analytic
models. Such effects include electron thermal conduction (e.g., Johnson & Quataert 2007), electron
cooling (e.g., Narayan & Yi 1995), and non-thermal particle acceleration and emission (e.g., Yuan
et al. 2003). To date, extensions of the simple Tp/Te = const. prescription have been limited to
post-processing models that do not self-consistently evolve the electron thermodynamics over time.
Examples include the prescription of Mościbrodzka et al. (2014) which takes Tp/Te = const. in the
disc proper but sets Te = const. in the jet outflow region, as well as the model of Shcherbakov et al.
(2012), who solve a 1-D radial equation for Tp − Te at a single time-slice in the midplane to obtain
a functional relationship Tp/Te = f (Tg) that is then applied to the rest of the simulation. To enable
a more robust connection between observations of accreting black holes and numerical models of
black hole accretion, it is critical to extend the detailed thermodynamic treatment of electrons used
in 1D calculations to multi-dimensional models. This is the goal of this chapter. In particular,
we describe numerical methods for separately evolving an electron energy equation in GRMHD
simulations. We focus on including heating and anisotropic thermal conduction in these models.
Future work will include electron radiative cooling and Coulomb collisions between electrons and
protons.

In a turbulent, magnetised plasma, electrons and ions are heated at different rates depending
on the local plasma conditions (e.g., Quataert & Gruzinov 1999; Cranmer et al. 2009; Howes
2010; Sironi 2015). Furthermore, since the electron-to-proton mass ratio is small, electrons will
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both conduct and radiate their heat much more efficiently than the ions. The combination of these
effects leads to the expectation that, in general, Te < Tp. In the present paper, we thus neglect the
effect of the electron thermodynamics on the overall dynamics of the accretion flow. This allows
us to treat the simulation results as a fixed background solution on top of which we independently
evolve the electrons. Even if we find that Te ∼ Tp in some regions of the disc, this treatment may
still be a reasonable first approximation given the uncertainties in the electron physics.

The neglect of electron cooling in the present chapter is reasonable for systems accreting at
. 10−5 of the Eddington rate, ṀEdd, so that the synchrotron cooling time is much longer than the
accretion time (Mahadevan & Quataert 1997). In particular, this likely includes Sagittarius A* in
the galactic center. The application of our methodology to Sgr A* is particularly important given
the wealth of multi-wavelength data (e.g., Serabyn et al. 1997, Zhao et al. 2003, Genzel et al.
2003a, Baganoff et al. 2003, Barrière et al. 2014) and current and forthcoming spatially resolved
observations with the Event Horizon Telescope (Doeleman et al. 2008) and GRAVITY (Gillessen
et al. 2010).1

The goal of this chapter is to present our formalism and methodology for evolving the elec-
tron thermodynamics and to apply the results to 2D (axisymmetric) GRMHD simulations of an
accreting black hole. We show the range of possible electron temperature distributions in the inner
region of the disc, which directly impacts the predicted emission. Future work will explore the
impact that these results have on the emission, spectra, and images of Sagittarius A*.

The remainder of this chapter is organised as follows. §2.3 describes our theoretical model
of electron heating and anisotropic electron conduction while §2.4 describes the numerical imple-
mentation of this model. §2.5 contains tests of the numerical implementation, §2.6 applies the
model to a 2D simulation of an accretion disc around a rotating black hole, and §2.7 discusses the
implications of this application and concludes. Boltzmann’s constant, kb, and proton mass, mp, are
taken to be 1 throughout. We use cgs units, with Lorentz-Heaviside units for the magnetic field
(e.g., magnetic pressure is b2/2), and a metric signature of (−+++). We also assume that the gas is
mostly hydrogen and ideal. Since we also assume ne ≈ np ≡ n, then ρ = mene + mpnp ≈ mpn = n
(setting mp = 1), so we use ρ and n interchangeably.

2.3 Electron Thermodynamics
The accreting plasmas of interest are sufficiently low density that the electron-proton Coulomb

collision time is much longer than the dynamical time and so a two-temperature structure can
develop, with the protons and electrons having different temperatures (and, indeed, different distri-
bution functions). Moreover, at the low accretion rates where radiative cooling can be neglected,
the electron-electron and proton-proton Coulomb collision times are also much longer than the
dynamical time (Mahadevan & Quataert 1997). However, the plasma densities are high enough

1This chapter was published in 2015, years before GRAVITY and EHT released their first results in 2018 (Gravity
Collaboration et al.) and 2019 (Event Horizon Telescope Collaboration et al.), respectively. Note, however, that the
first target of EHT was the black hole at the center of M87 and (as of the writing of this thesis) the EHT results for Sgr
A* are still forthcoming.
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that the plasma is nearly charge-neutral and so we assume that ne ≈ np. We further assume that
the electron flow velocity is the same as that of the protons.2 This need not strictly be true (e.g.,
in the solar wind the relative velocities of particle species can be of order the Alfven speed; e.g.
Bourouaine et al. 2013 ), but is a reasonable first approximation. A similar approach is often used
in modeling the global dynamics of the low-collisionality solar wind (e.g., Chandran et al. 2011).

Under these assumptions, the key difference in the electron and proton physics lies in their dif-
ferent thermodynamics: the protons and electrons have very different heating and cooling processes
that need to be separately accounted for. Formally, because of the low collisionality conditions we
should separately solve the electron and proton Vlasov equations. This is computationally ex-
tremely challenging, however, particularly in the global geometry required to predict the emission
from accreting plasmas (even local shearing box calculations using the particle-in-cell technique
to solve the Vlasov equation require an unphysical electron-proton mass ratio, thus making it dif-
ficult to reliably model the electron thermodynamics; e.g., Riquelme et al. 2012). As a result, we
assume a fluid model in this paper. Our fluid approximation corresponds to taking moments of
the Vlasov equation and applying closures on higher moments of the distribution function. As we
shall describe, our closure corresponds to specific models for the conductive heat flux, the viscous
momentum flux, and the turbulent heating rate of each particle species.

Our basic model is thus to take a single-fluid GRMHD solution (e.g., Komissarov 1999; Gam-
mie et al. 2003; De Villiers & Hawley 2003) as an accurate description of the total fluid (composed
of both the electron and proton gas) dynamics and thus the accretion flow density, magnetic field
strength, and velocity field. We evolve the electrons as a second fluid on top of this background
solution. The GRMHD solution may itself include viscosity and conduction as in Chandra et al.
(2015b). Our assumption that the electrons do not back react on the flow dynamics is formally
valid in the limit that Te � Tp, but should be a reasonable approximation so long as Te . Tp in
regions of large plasma β & 1, i.e., where gas pressure forces are dynamically important. One ad-
vantage of not coupling the electron pressure to the GRMHD solution is that we can run multiple
electron models in one simulation, allowing us to explore systematic uncertainties with a minimum
of computational time.

In this paper, we focus on implementing electron heating and anisotropic conduction. Coulomb
collisions are straightforward to include but are negligible for the low accretion rates at which elec-
tron cooling can be neglected. In future work, electron cooling will be self-consistently incorpo-
rated building on the BHlight code developed by Ryan et al. (2015).

2.3.1 Basic Model
The stress-energy tensors for the electron and proton fluids in our model take the form:

T µν
e = (ρe + ue + Pe) uµeuνe + Pegµν + τµνe + qµeuνe + uµeqνe

T µν
p =

(
ρp + up + Pp

)
uµpuνp + Ppgµν + τµνp ,

(2.1)

2More precisely, as in standard MHD, the relative velocity between electrons and protons required to produce
currents that can maintain magnetic fields near β ∼ 1 is orders of magnitude less than the mean sound speed.
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where ρk, uk, and Pk are the fluid frame density, internal energy, and pressure, respectively, uµk is the
fluid four-velocity in the coordinate frame, τµνk is a general stress tensor that accounts for viscous
effects, and qµe is the heat flux carried by the electrons. The subscript k denotes p or e (and will also
denote the total gas quantities labeled by g below). We leave τµνk as a general tensor that will be
model-specific. For each species, ignoring electron-electron, electron-ion, and ion-ion collisions,
one can take the zeroth and first moment of the Vlasov equation to show that

∇µ

(
ρku

µ
k

)
= 0 (2.2)

and
∇µT µν

e = −enuµe F ν
µ

∇µT µν
p = enuµpF ν

µ ,
(2.3)

where Fµν is the electromagnetic field tensor. In ideal, single-fluid GRMHD in the absence of
shocks, the conservation of entropy equation, ρTguµ∂µsg = 0, where sg is the entropy per particle,
follows directly from the conservation of particle number and the stress-energy (see page 563 in
Misner et al. 1973). To derive entropy equations for the electron and proton fluid used in our model,
we perform the same series of manipulations; namely, contracting both equations (2.3) with uν (the
total fluid velocity, which we take to be ≈ uµp ≈ uµe ) and invoking equation (2.2), which give us:

ρTeuµ∂µsp = Qp, (2.4)

and
ρTeuµ∂µse = Qe − ∇µqµe − aµqµe , (2.5)

where we have defined the heating rate per unit volume for each species as a sum of viscous and
Ohmic resistance terms, Qe ≡ uν∇µτ

µν
e + enuµeuνF ν

µ and Qp ≡ uν∇µτ
µν
p − enuµpuνF ν

µ , and where aµ ≡
uν∇νuµ is the four-acceleration, which accounts for gravitational redshifting of the temperature by
the metric. We can write the heating rates in terms of the electric field four-vector, eµ ≡ uνFνµ, and
the four-currents, Jµe ≡ −neuµe , Jµp ≡ neuµp as3:

Qe = uν∇µτµνe + Jµe eµ
Qp = uν∇µτµνp + Jµpeµ.

(2.6)

The intuitive understanding of the Ohmic heating terms on the right-hand side of equation (2.6) is
that they are ∼ ~Jk · E evaluated in the rest frame of the total fluid. To derive the entropy equation
for the total fluid, we first define several total fluid variables as a sum of electron and proton terms:
ρ = ρp +ρe ≈ n, ug = up +ue, Pg = Pp +Pe, Tg = Tp +Te, Jµ = Jµp + Jµe = en(uµp−uµe ) and τµνg = τ

µν
e +

3 We have kept the subscripts e and p for the four-currents (and thus four-velocities) in equation (2.6) because the
details of the Ohmic heating depend on the small but non-zero velocity difference between the proton and electron
fluids (or equivalently the velocity difference between the electron/proton fluid and the total fluid). An explicit ex-
pression for these terms would require a detailed kinetic theory calculation beyond the scope of the present work (i.e.,
some form of “generalized Ohm’s Law,” as in, e.g., Koide 2010). In our model, as described in the text, numerical
resistivity provides the Ohmic heating that is then distributed to electrons and protons according to a closure model
obtained from previous work in kinetic theory.
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τ
µν
e , denoting total gas mass density, internal energy, pressure, temperature, current, and viscous

stress. Then, using the thermodynamic identity, ρTkuµ∂µsk = uµ∂µuk − (uk + Pk) uµ∂µ log(ρ), we
find that the entropy per particle of the total gas, sg, satisfies the relation ρTguµ∂µsg = ρTpuµ∂µsp +

ρTeuµ∂µse, resulting in
ρTguµ∂µsg = Q − ∇µqµe − aµqµe , (2.7)

with the total heating rate per unit volume:

Q = Qp + Qe = uν∇µτµνg + Jµeµ. (2.8)

In practice, we use the electron entropy equation (2.5) to evolve the electron thermodynamics.
To determine the overall dynamics of the electron + proton gas, we use Maxwell’s equations in
addition to a standard, single-fluid GRMHD evolution representing the total gas. The equations
for the latter are obtained by separately summing the electron and proton parts of equation (2.2)
and equation (2.3), resulting in a mass conservation equation,

∇µ (ρuµ) = 0, (2.9)

and an energy-momentum equation,

∇µ

(
T µν

g + T µν
EM

)
= −∇µτ

µν
g , (2.10)

with the total gas stress-energy tensor,

T µν
g =

(
ρ + ug + Pg

)
uµuν + Pggµν, (2.11)

and the electromagnetic stress energy tensor4, T µν
EM = FµαF ν

α − gµνFαβFαβ/4. We have used the
identity ∇µT

µν
EM = −JµF ν

µ in equation (2.10), the assumption that uµe ≈ uµp ≈ uµ in equation (2.11),
and the charge-neutrality assumption ne = np = n throughout. Furthermore, we have dropped the
electron thermal conduction terms in the evolution of the total gas properties, though we keep them
in the evolution of the electron entropy (equation 2.5). This is consistent if Te . Tp since electron
conduction will then affect the electron thermodynamics but not the overall stress-energy of the
fluid. Finally, we take T µν

EM to be given by the ideal MHD limit (i.e., eµ → 0):

T µν
EM = b2uµuν +

b2

2
gµν − bµbν, (2.12)

where bµ ≡ εµνκλuνFλκ/2 is the magnetic field four-vector defined in terms of the Levi-Civita tensor,
εµνκλ, and b2 ≡ bµbµ is twice the magnetic pressure. With these assumptions, equations (2.9),
(2.10), and Maxwell’s equations are simply the standard single-fluid equations of ideal GRMHD
except with an explicit viscosity tensor. In standard conservative GRMHD codes (including the
one used in this work), this viscosity tensor is not included explicitly but implicitly generated
numerically by the Riemann solver. Furthermore, the Riemann solver also introduces a finite

4Here we have chosen to absorb a factor of (4π)−1/2 into the definition of Fµν.
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numerical resistivity into Maxwell’s equations, allowing for a nonzero eµ (and thus nonzero Ohmic
heating). For further discussion of these points, see § 2.4.1.

To summarise, we take a standard single fluid GRMHD evolution of uµ, ρ, ug, and Pg as a rea-
sonable estimate of the total gas properties. This corresponds to assuming that electron conduction
has a negligible contribution to the dynamics of the total gas and that the adiabatic index is inde-
pendent of the electron thermodynamic quantities (e.g.; Pg/ug ≡ [Pp +Pe]/[ue +up] ≡ γ−1 ≈ some
function of total gas quantities only). Formally, this assumption requires that the electron internal
energy is small compared to the proton internal energy. From this, we can calculate the heating
directly from equation (2.7) (dropping the conduction terms) without requiring an analytic expres-
sion for Q. Finally, we use knowledge of the nature of heating in a collisionless plasma obtained
from kinetic theory (described in §2.6.1) to relate the heating rate per unit volume of the electrons,
Qe, to that of the total fluid, Q, and directly add it to the electron entropy equation (equation 2.5),
as described in §2.3.2. This completes our model.

For simplicity, we assume that the adiabatic indices of the electron, γe, proton, γp, and total
gas, γ, are constants, where Pk = (γk − 1)uk for k = e, p, or g. This simplifies the numerical
implementation of the model, as it allows us to write the entropy per particle in a simple form,
sk = (γk−1)−1 log(Pkρ

−γk), and avoids the complication of having to evaluate Tp/Te when updating
the total fluid variables. This can be seen by noting that

Pg

ug
≡

Pe + Pp

ue + up
= (γe − 1)(γp − 1)

1 + Tp/Te

(γp − 1) + (γe − 1)Tp/Te
, (2.13)

which is only constant in the limits that Te � Tp or Tp � Te. From this, we see that this simplifi-
cation of γ = const. is formally inconsistent if γe , γp, which is generally the case in the accreting
systems of interest, where the electrons are typically relativistically hot (γe ≈ 4/3) but the protons
are nonrelativistic (γp ≈ 5/3). However, since equation (2.13) is bounded between 1/3 and 2/3
and we expect Te . Tp ⇒ γ ≈ γp, we do not anticipate that this approximation will affect our
results significantly.

2.3.2 Electron Heating
We parameterise the heating term, Qe in equation (2.6) by writing Qe = feQ, where fe(β,Te,Tp, ....) ≡

Qe/Q is the fraction of the total dissipation, Q, received by the electrons. This function, in general,
depends on the local plasma environment and our model is not limited to any particular choice of
fe. As knowledge in the field develops we can readily incorporate different assumptions about elec-
tron heating. A more detailed discussion of one physically-motivated prescription for fe is given
in §2.6.1. Given a GRMHD solution, the total heating rate of a fluid element moving with four-
velocity uµ in the coordinate frame can be computed (from equation 2.7, dropping the conduction
terms):

Q = ρTguµ∂µsg, (2.14)

where sg is the entropy per particle. We can rewrite equation (2.14) in terms of κg ≡ Pgρ
−γ, where

sg = (γ − 1)−1 log(κg), as Q = ργ(γ − 1)−1uµ∂µκg. We use κg to avoid the undesirable numerical
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properties of logarithms as the argument goes to 0. Likewise, we will often use κe in place of se in
equation (2.5).

2.3.3 Anisotropic Electron Conduction
Some care must be taken when generalising the theory of anisotropic conduction along mag-

netic field lines to a relativistic and covariant formulation. In particular, the theory must be consis-
tent with causality in that the heat flux should not respond instantly to temperature gradients. Our
formulation of anisotropic electron conduction draws heavily on the treatment of Chandra et al.
(2015b), who consider a single fluid model in which the heat flux is coupled to the dynamics via
the stress-energy tensor. We give a brief summary of our approach here, highlighting those aspects
of our electron-only treatment that differ from the formulation in Chandra et al. (2015b).

One can derive a perturbation solution for the heat flux, qµe , by expanding the entropy current
in powers of qµe and imposing the second law of thermodynamics. The most straightforward rela-
tivistic generalisation of the classical, isotropic heat flux first written down by Eckart (1940) is first
order in this expansion and was later shown by Hiscock & Lindblom (1985) to be uncondition-
ally unstable, precisely because it violated causality (Chandra et al. 2015b showed the same for
anisotropic conduction). Israel & Stewart (1979) derived a second order solution for qµe which was
later shown to be conditionally stable (Hiscock & Lindblom 1985; Chandra et al. 2015b). Here
we use a first order reduction of that second order model that has been shown to be both stable
and self-consistent (Andersson & Lopez-Monsalvo 2011). We refer the reader to Chandra et al.
(2015b) for more details.

We parameterise the heat flux as
qµe = φb̂µ, (2.15)

where b̂µ is a unit vector (b̂µb̂µ = 1) along the magnetic field four-vector, bµ, and the scalar φ is
given by the following evolution equation:

∇µ (φρuµ) =
1
√
−g

∂µ
(√
−gφρuµ

)
= −ρ

[
φ − φeq

τ

]
, (2.16)

where g is the determinant of the metric, and we used an identity, ∇µAµ = ∂µ(
√
−gAµ)/

√
−g, to

convert covariant derivatives into partial ones (eq. 86.9 in Landau & Lifshitz 1975). Here φeq is the
equilibrium value of the heat flux given by

φeq = −ρχe

(
b̂µ∂µTe + b̂µaµTe

)
. (2.17)

where χe is the thermal diffusion coefficient of the electrons and τ is the relaxation time scale
for the heat flux over which it responds to temperature gradients. Note that equation (2.16) is a
relaxation equation in which the heat flux relaxes on a timescale τ to the equilibrium value.

The equilibrium heat flux in equation (2.17) is the natural relativistic extension of anisotropic
conduction along the magnetic field (analogous to the isotropic heat flux of Eckart 1940). The heat
flux, qµe , then contributes to the electron energy equation as in equation (2.5). Physically motivated
prescriptions for the parameters χe and τ are all that are required to complete the model. We discuss
one choice of these in §2.6.1.
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Stability of Anisotropic Electron Conduction Theory

In our formalism, we assume that the fluid velocity, uµ, and the electron number density,
ne = ρ/mp, are independent of the electron thermodynamics. Thus, in order to do a perturbative
analysis we need only perturb the electron temperature, Te, and the heat flux, φ, in equations (2.5)
and (2.16). Doing this in the fluid rest frame in Minkowski space, where uµ = (1, 0, 0, 0), and
writing the perturbations in Fourier space as ∝ exp(λt + i~k · ~x), we find the dispersion relation:

λ2 +
λ

τ
+ (γe − 1)

χe

τ
(b̂ · ~k)2 = 0 (2.18)

with the solutions:

λ =
1
2τ

(
−1 ±

√
1 − 4(γe − 1)χeτ(b̂ · ~k)2

)
. (2.19)

The theory is unstable if Re(λ) > 0, which can only occur if the term under the square root is both
real and greater than unity. However, this is impossible for any value of k when γe ≥ 1, so we
conclude that equations (2.5) and (2.16) are unconditionally stable. This is in contrast to the case
where equations (2.5) and (2.16) are coupled to the ideal MHD equations, which is unstable to
small perturbations unless the relaxation time is larger than a critical value (Hiscock & Lindblom
1985; Chandra et al. 2015b).

2.4 Numerical Implementation of Electron Heating and Con-
duction

The method outlined above can, in general, be applied to any GRMHD “background” simula-
tion. For the rest of this work, however, we will consider only conservative codes, as the equations
of ideal MHD can be naturally written in that form. Because of this, in what follows we will seek
to put all of our evolution equations in a conservative form, namely:

∂U
∂t

+
∂F i

∂xi = S , (2.20)

where U is a “conserved” variable, F i is the corresponding flux in the ith direction, and S is
the source, which in general includes the contribution from the connection coefficients. Equa-
tion (2.20) can then be approximated in one spatial dimension by the following discretisation:

Un+1 = Un

− ∆t

Fn+1/2
j+1/2 − Fn+1/2

j−1/2

∆x
− S n+1/2

 , (2.21)

where the fluxes are evaluated at face centres using the chosen Riemann solver. The generalisation
to higher dimensions is straightforward.
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With that in mind, we can rewrite equation (2.5):

∂µ
(√
−gρuµκe

)
=

√
−g(γe − 1)
ργe−1

[
feQ − ∇µqµe − aµqµe

]
, (2.22)

where we have used the definition κe ≡ exp[(γe − 1)se]. Note that equation (2.22) is a quasi-
conservative equation with Uκe =

√
−gρutκe and F i

κe
=
√
−gρuiκe (‘quasi’ conservative because

the standard definition of conservative equations excludes source terms with derivatives). To solve
equation (2.22), we use operator splitting in the following sequence of steps:

1. Solve the conservative equation with S κe = 0.

2. Explicitly update κe with the heating term (the first term in the brackets in eq. 2.22).

3. Implicitly solve a matrix equation to include the conduction source terms (the rest of the
terms in square brackets in eq. 2.22).

Steps 2 and 3 are described in detail in §2.4.3 and §2.4.4, respectively, while step 1 will be specific
to the choice of the background numerical scheme.

2.4.1 Heating in Conservative Codes
Formally, the equations of ideal MHD used by conservative GRMHD simulations imply that

the heating rate per unit volume, Q, in equation (2.8) is identically zero. However, conserva-
tive codes implicitly add numerical viscosity and resistivity terms to the stress-energy tensor and
Maxwell’s equations, respectively. The former implies that the numerically evolved stress tensor
is in fact T µν

g,num = T µν
g + τ

µν
g = T µν

MHD +O (truncation error) for some numerical viscosity tensor τµνg ,
while the latter implies Jµeµ = 0 + O (truncation error). The numerical resistivity can be thought of
as implicitly introducing a form of Ohm’s law that allows for a nonzero electric field four-vector,
eµ. Thus, even though the energy implied by T µν

MHD,num = T µν
g,num + T µν

EM,num is conserved to machine
precision (see below for details), T µν

MHD experiences truncation-level heating. This manifests itself
as entropy generation: truncation errors lead to dissipation of magnetic and kinetic energy close to
the grid scale that is captured as internal energy. We use this change in entropy to directly calculate
the heating rate per unit volume of the gas, Q.

Although T µν
MHD,num is conserved to machine precision, the second law of thermodynamics is

satisfied only to truncation error. Thus there can be locally regions with Q < 0. In particular, the
truncation error can be positive or negative, so in places with small actual change in entropy or
large truncation error the change in entropy can be negative. This is the case even in test problems
in which our methods of calculating the heating give the correct, converged, answer for the fluid
variables (see § 2.5). Thus, while Q may be instantaneously or locally negative, when integrated
over a sufficient length of time and/or space in the fluid frame it will satisfy the second law of
thermodynamics.

We choose this method of calculating the heating rate as opposed to introducing an explicit
functional form for Q because it seems reasonable to assume that for several applications, the grid-
scale dissipation in conservative codes is a well-defined quantity determined by the converged
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large-scale physics of the problem. Turbulence, for example, takes kinetic and/or magnetic energy
at the largest scales and cascades it down to a small dissipative scale where it is converted into
internal energy. For a numerical scheme with no explicit viscosity, the scale at which dissipation
occurs depends entirely on the resolution of the simulation, but we expect the heating rate itself
will be fixed (in an averaged sense; see, e.g., Davis et al. 2010). We expect the same for forced
reconnection at high β values, as in the disc midplane, where the large-scale dynamics sets the rate
at which the field lines of opposite sign are brought together.

The above argument relies on the conservation of energy. In an arbitrary space-time, how-
ever, conservation of energy is only well-defined if the metric is stationary (time-independent) and
therefore possesses a time-like Killing vector, Kµ. If such a vector exists (as it does for the Kerr
metric of interest in this work), we can construct a conserved current from the stress-energy tensor
via Jµ ≡ −KµT ν

µ, where this current satisfies ∇µJµ = 0. This allows us to define a conserved energy
in a coordinate basis:

E =

∫
Jt √−gdx1dx2dx3, (2.23)

where the integral is over all space (i.e. the space orthogonal to the time coordinate). Often, the
Killing vector takes the form K = ∂t, which simplifies equation (2.23) to

E =

∫
−T t

t
√
−gdx1dx2dx3. (2.24)

Thus, −T t
t can be thought of as the conserved energy per unit volume for a particular choice of

coordinates. The total energy, E, is conserved to machine precision, modulo fluxes of energy
through the boundaries, so entropy can only be generated by conversion of one form of energy to
another.

2.4.2 Calculating the Total Heating Rate
To calculate the heating generated at each time step, we introduce an entropy-conserving equa-

tion as a reference to compare with the energy conservation equation. The entropy-conserving
equation is simply a conservation equation like equation (2.20) with Uκg =

√
−gρutκg, F i

κg
=

√
−gρuiκg, and S κg = 0. If we call the solution to this equation κ̂g (the ˆ denotes the solution cor-

responding to entropy conservation), then we show in Appendix 2.B.1 that the total heating rate of
the fluid (measured in the fluid rest frame) incurred over an interval ∆t (measured in the coordinate
frame),

Q =

(
ργ−1

γ − 1

)n+1/2 [
ρut(κg − κ̂g)

∆t

]n+1

, (2.25)

where ut accounts for the transformation of ∆t from the coordinate frame to the fluid rest frame,
n and n + 1 denote the values at the beginning and the end of the time step, respectively, so that
tn+1 = tn+∆t, and n+1/2 denotes the values when calculating the fluxes. To compute the dissipation
rate via eq. (2.25), we set κ̂n

g = κn
g at the beginning of each time step and use κ̂n+1/2

g = κn+1/2
g when

calculating the fluxes. Physically, equation (2.25) means that the Lagrangian heating rate is set
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by the difference between the entropy implied by the total energy conserving solution (κg) and the
entropy implied by the entropy conserving solution (κ̂g).

2.4.3 Electron Heating Update
Let us call κ̂e the solution to equation (2.22) without any source terms. On top of this adiabatic

evolution, electrons receive a fraction, fe, of the heating of the gas, Qe = feQ. In discrete form,
this can be written as follows,

(ργe)n+1/2

γe − 1
(κe − κ̂e)n+1 = f n+1/2

e
(ργ)n+1/2

γ − 1
(κg − κ̂g)n+1. (2.26)

Therefore, the heating update to the electrons, κ̂n+1
e → κn+1

e , takes the following form:

κn+1
e = κ̂n+1

e +
γe − 1
γ − 1

(
ργ−γe fe

)n+1/2 (κg − κ̂g)n+1. (2.27)

2.4.4 Electron Conduction Update
We note that the evolution equation for the heat flux φ (equation 2.16) is already in a quasi-

conservative form if we define Uφ =
√
−gρuµφ and F i

φ =
√
−gρuiφ. We treat the evolution of φ in

an operator split way similar to the evolution of κe with the following series of steps:

1 Solve the conservative equation with S φ = 0.

2 Implicitly solve a matrix equation to include the source terms.

The source terms in the electron entropy and φ equation due to conduction are given by:

S κe,cond =
√
−g(γe − 1)ρ1−γe

(
−∇µqµe − aµqµe

)
S φ = −ρ

√
−g

φ + ρχe

(
b̂µ∂µTe + Teb̂µaµ

)
τ

 , (2.28)

which are discretised in space by using slope-limited derivatives across three grid cells and discre-
tised in time by centring the time derivatives at tn+1/2. The latter discretisation gives us an implicit
equation for the variables κe and φ at time tn+1. If we call φ̂n+1 the heat flux after being updated by
step 1, and κe,H the electron entropy after being updated by heating, then this matrix equation takes
the form: (

a11 a12

a21 a22

) (
κn+1

e
φn+1

)
=

(
b1

b2

)
, (2.29)
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with components

a11 =

( √
−gρut

∆t

)n+1

a12 =
[√
−g(γe − 1)ρ1−γe

]n+1/2
[

b̂t

∆t

]n+1

a21 =

 √−gρ2b̂tχe

τ

n+1/2 [
ργe−1

∆t

]n+1

a22 =

( √
−gρut

∆t

)n+1

(2.30)

and

b1 =

( √
−gκe,Hρut

∆t

)n+1

+
[
(γe − 1)ρ1−γe

]n+1/2

×

[
√
−g

(
qt

e

∆t

)n

−
(
∂i

(√
−gqi

e

)
−
√
−gqµeaµ

)n+1/2
]

b2 =

( √
−gφ̂ρut

∆t

)n+1

−
√
−g

(
ρφ

τ

)n+1/2

+
√
−g

(
ρ2χe

τ

)n+1/2

×

[(
b̂t
)n+1/2

(Te

∆t

)n

−
(
b̂µ∂µTe + b̂µaµTe

)n+1/2
]
.

(2.31)

The system of equations has a straightforward solution,(
κn+1

e
φn+1

)
=

1
a11a22 − a21a12

(
b2a11 − b1a21

b1a22 − b2a12

)
. (2.32)

To ensure that the heat flux, φ, does not reach unphysically large values, we apply a limiting
scheme to keep |φ| .

(
ue + ρec2

)
vt,e ≡ φmax, where ρe = ρme/mp and vt,e is the electron thermal

speed. Since we are considering physical systems in which the electrons are always at least mildly
relativistic, this limit effectively reduces to |φ| . uec/

√
3, which corresponds to a ‘saturated’ heat

flux in which the heat is redistributed at the electron thermal speed. The numerical implementation
of this limit is to replace the values of the thermal diffusivity, χe, and the relaxation time-scale, τ,
with ‘effective’ values (Chandra et al. 2015b):

χeff = χe f
(
|φ|

φmax

)
, (2.33)

and

τeff = τ f
(
|φ|

φmax

)
, (2.34)
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where
f (x) = 1 −

1

1 + exp
(
−

x − 1
0.1

) + ε, (2.35)

which sharply transitions from 1 → ε for some small ε as |φ| → φmax. Thus, according to equa-
tion (2.16), when |φ| > φmax, |φ| decays exponentially on a timescale ∼ ετ until it drops below φmax.
The parameter ε is chosen such that the criterion for numerical stability is always satisfied (see
§2.4.4 and Appendix 2.B.3).

Numerical Stability of Electron Conduction

A detailed derivation of the criteria for numerical stability is in Appendix 2.B.3. The basic
result is that for a Courant-Friedrichs-Lewy (CFL) number, C, reasonably chosen between 0 and
1, the relaxation time, τ, must satisfy

τ > f (C)
(

∆t
∆x

)2

χe, (2.36)

where f (C) is a function of the CFL number. This can be understood as a requirement that the
relaxation time τ (which we are free to choose as arbitrarily large, though which should correspond
to a physical time scale), must be larger than the time step ∆t (which is limited by computational
expense) by the ratio between ∆t and the standard Courant limit for a diffusive process ∆tdiff =

∆x2/χe.

2.4.5 Treatment of the Floors
Conservative codes deal poorly with vacua of internal energy and density. Because of this,

many schemes employ floors on internal energy and density to ensure that the errors in solving
for the primitive variables from the conservative variables do not produce unphysically small or
negative values. The nature of the model outlined above requires special care to be taken when
these floors are activated, as they introduce artificial changes in internal energy, which act as a
source of heat, and density, which change the conversion between entropy and internal energy.

Electron Energy Floors

Though the second law of thermodynamics states that the heating term uµ∂µκg should be posi-
tive definite, numerically we find that uµ∂µκg can be locally negative because of truncation errors.
This introduces the possibility of the electron internal energy going to zero (or even becoming neg-
ative) due to truncation error fluctuations in our heating term. To correct for this, we implement a
floor on the electron internal energy that is 1% of the floor on the total gas internal energy. That is,
if ue drops below 0.01ug, we reset ue to 0.01ug.
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Total Gas Internal Energy Floors

When the floor on internal energy of the total gas is activated, there is an artificial increase
in ug which then shows up in our heating term. We treat this addition of energy as if it were a
physical, isochoric addition to the energy of the gas and add it to the electrons as described above.
We emphasise that the internal energy floor does not affect the system dynamics in any significant
way because it is only activated in magnetically-dominated regions where the value of the internal
energy is dynamically irrelevant.

Density Floors

When the floor on density is activated, the total gas internal energy remains unchanged. How-
ever, the value of ûg ≡ κ̂gρ

γ/(γ − 1) increases by a factor of (ρfloor/ρinit)γ, where ρinit is the pre-floor
density. To correct for this, we require conservation of the evolved gas entropy when the density
floor is activated by decreasing κ̂g by a factor of (ρfloor/ρinit)γ. Furthermore, we enforce that the
evolved electron entropy remains unchanged by the density floor in the same manner by decreas-
ing κe by a factor of (ρfloor/ρinit)γe . Similar to the internal energy floors, the density floors do not
affect the dynamics of the system.

2.5 Tests of Numerical implementation
In this section we describe a series of tests that demonstrate the robustness and accuracy of our

method of evolving the electron internal energy. We implemented the model described in §2.3 and
§2.4 into the conservative GRMHD code, HARM2D (High-Accuracy Relativistic Magnetohydro-
dynamics; Gammie et al. 2003; Noble et al. 2006). To speed up the computations, we parallelised
the code using OpenMP and MPI via domain decomposition.

2.5.1 Tests of Electron Heating
In what follows we demonstrate the validity and convergence of our implementation of electron

heating using a number of tests. The 2nd order convergence of HARM in smooth flows and 1st
order convergence in discontinuous flows is well documented in Gammie et al. (2003) and we will
not reproduce it here.

Explicit Heating in a Hubble-Type Flow

To test whether our discretizations of the heating is correctly time centred, i.e., converges at the
expected 2nd order in time, we focus here on solving the electron equation when we introduce an
explicit heating term to the total energy equation. We do this in an unmagnetised, 1D Hubble-type
flow with v ∝ x (restricting ourselves to non-relativistic velocities). In the local rest frame of a fluid
element, this velocity field gives an outflow in both directions that is homogenous and isotropic,
causing the density to uniformly decrease with time as matter leaves the computational domain.
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The velocity profile also scales with time to satisfy the momentum equation (∂v/∂t + v∂v/∂x = 0).
In the absence of heating, the internal energy and pressure evolve according to entropy conservation
(P ∝ ργ), so that the solution at later times is given by (Tchekhovskoy et al. 2007):

v =
v0x

1 + v0t

ug =
ug,0

(1 + v0t)γ

ρ =
ρ0

1 + v0t
.

(2.37)

If we now add a cooling term to the energy equation, of the form:

Q = −
ug,0v0 (γ − 2)

(1 + v0t)3 , (2.38)

the internal energy should evolve as

ug =
ug,0

(1 + v0t)2 . (2.39)

Plugging these solutions in the electron entropy equation (2.22) for fe = 1 and ue(t = 0) = u0, we
obtain:

κe =
(γ − 2) (γe − 1)

γe − 2
u0

ρ
γe
0

1
(1 + v0t)2−γe

. (2.40)

For the numerical test, we set these analytic solutions as the boundary and initial conditions in a
one-dimensional grid and check if we maintain this solution after a dynamical time of L/max[v(t =

0)]. We set γ = 5/3, γe = 4/3, max(v0x) = 10−3c, and max(ρv0x/ug) = 1, on a computational
domain of 0 ≤ x ≤ 1. Formally, since Θe ≡ kTe/mec2 � 1, the choice of γe = 4/3 is unphysical.
However the motivation for this choice stems from the fact that our primary application is to the
inner regions of an accretion disc around a black hole, where we expect γe ≈ 4/3 , γ ≈ 5/3. We
find that our calculation converges at second order (see Figure 2.1), up until the point at which the
errors in the analytic solution due to relativistic effects become important (which, for max(v0x) =

10−3 is δκe/κe ∼ v2/c2 ∼ 10−6).

1D (Noh) Shock Test

In Appendix 2.B.4, we show that for a high Mach number shock in which the electrons are
assumed to receive a constant fraction fe of the ‘viscous’ heating in the shock, the post shock
electron internal energy ue is given by:

u f
e

u f
g

=
fe

2

[(
γ + 1
γ − 1

)γe
(
1 −

γ

γe

)
+ 1 +

γ

γe

]
γ2 − 1
γ2

e − 1
, (2.41)

where u f
g and γ are the post-shock internal energy and the adiabatic index of the fluid. Equa-

tion (2.41) assumes that the electrons do not back react on the shock structure, consistent with the
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Figure 2.1: L1 norm of the error in the electron entropy for heating in a 1D Hubble-type flow (see §2.5.1).
Above a resolution of ∼ 1000 the relativistic errors in the analytic result are comparable to the numerical
truncation errors, so convergence is no longer seen.

model developed in this paper. When γ = γe, equation (2.41) is equal to fe, while for γ = 5/3 and
γe = 4/3 it is ∼ 0.76 fe. Here we check whether our numerical implementation of electron heating
is consistent with this result.

The initial conditions for this test are an unmagnetised, non-relativistic (γ = 5/3), uniform
density and internal energy fluid. The velocity profile is discontinuous at the center of the grid,
with a left and a right state given by vl = −vr = constant > 0. The resulting solution is two shocks
propagating outwards with a static region in between. We focus on a non-relativistic (|v| = 10−3c)
flow of initially cold gas so that the Mach number of the flow satisfies M � 1. For this test we fix
fe = 0.5 and show the results for both γe = 4/3 and γe = 5/3.

Figure 2.2 shows the density and electron internal energy as a function of position for a shock
with M ∼ 49 at t = 0.6L/|vl|, where L is the size of the computational domain. Figure 2.3 shows
that our simulation converges at 1st order to the analytic result for the post-shock electron internal
energy when γ = γe but to a value differing from the expected result by ∼ 3% when γe , γ
(Figure 2.2). This difference is smaller at lower Mach number, as shown explicitly in Figure 2.4.
The modest discrepancy between the analytic post-shock electron temperature and the HARM
solution is because an accurate, converged calculation of the heating term requires a well-resolved
shock structure that gets better resolved at higher resolution. This is not the case for modern shock
capturing techniques, for which the numerical width of the shock is always a few grid points and
our heating calculation is never able to resolve the shock. This is not an issue when γ = γe because
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the factors of density in equation (2.27) cancel, removing the dependence on the shock structure.
We show in Appendix 2.C that introducing an explicit bulk viscosity leads to convergence to the
analytical result at 2nd order for γ , γe. However, the . 3% error as seen in Figures 2.2 and 2.4 is
sufficient for our purposes so we do not include a bulk viscosity in our calculations.

2D Forced MHD Turbulence Test

Another test problem with a known, converged heating rate is driven turbulence in a periodic
box. If we inject the fluid with a constant energy input rate of Ėin at large-scales, we should find
that

∫
QdV = Ėin after saturation of kinetic and magnetic energies has been reached. Thus, for

the electron heating model outlined above, after this saturation point the electrons should receive a
fraction fe of Ėin. Furthermore, if we have a periodic box in which the particle number is fixed, then
the total internal energy change from adiabatic expansion/compression will sum to zero. Thus the
analytic result we expect for our model of electron heating is that

∫
ρTe ṡedV = fe

∫
QdV = feĖin.

This test checks whether our model satisfies this result numerically.
We start with a static, uniform density fluid with β = 6 and sound speed cs,0 = 8.6 × 10−4c in

a 2D periodic box. The initial magnetic field is uniform: the magnetic field lines are straight and
lie in the plane of the simulation. Then, at each time step, we give Gaussian random kicks to the
velocity such that the wave number satisfies ~k · δ~v = 0 (i.e. the driving is incompressible), and
σ2

v ∝ k6 exp(−8k/kpeak) (compare to Lemaster & Stone 2009). The normalisation is fixed such that
the rate of energy injection is equal to Ėin = 0.5ρ̄c3

s,0. This leads to a rms turbulent velocity that is
∼ 0.8cs,0 ∼ 1.8vA, so that the turbulence is subsonic and roughly Alfvénic. The peak driving wave
number is set to half the box size: kpeak = 4π/L. Furthermore, we ensure that no net momentum
is added to the box by subtracting off (from the kicks) any average velocity that would have been
generated by the kicks. For this test we fix fe = 0.5, γ = 5/3 and γe = 4/3.

Figure 2.5 shows our results for the electron and total internal energies as a function of time in
the box at 5122. We see that once approximate saturation of the turbulence is reached at t ∼ L/cs,0

(or t̃ ∼ 0 in the figure), the internal energies are in very good agreement with a linear fit, as
expected given the constant rate of energy injection. For a parameterization of

∫
uedV = get + be

and
∫

ugdV = ggt + bg, ge and gg represent the electron and total heating rates, respectively. These
can be compared to the energy injection rate, Ėin, which is a fixed constant of 0.5ρ̄c3

s,0. At a
resolution of 5122, we find the total heating rate differs from Ėin by ∼ 4%, while the electron
heating rate differs from feĖin by ∼ 2%. Unfortunately, a rigorous convergence study of these
quantities is not possible because of the nature of turbulence in 2D. Due to the inverse energy
cascade, the kinetic and magnetic energies never truly saturate and convergence of any of the fluid
variables is never achieved. This can be seen from Table 2.1, where the values of ge and gg are
quoted at various resolutions, neither of which display significant convergence to the expected
0.5Ėin and Ėin, respectively. Nevertheless, we find the percent level error found at all resolutions
to be sufficiently small to satisfy our error tolerance in the full accretion disc simulation.
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Figure 2.2: High Mach number shock results for an electron heating fraction fe = 0.5 at a resolution of 2000
cells. Top: solid blue line shows the fluid density in a numerical simulation. Density undergoes a jump of
ρ2/ρ1 = (γ + 1)/(γ − 1) = 4 at the two shocks, located at x ≈ 0.35 and x = 0.65. Left: electron internal
energy relative to total fluid internal energy for γe = 4/3. The analytic solution is shown with the solid
red line and the numerical solution with the dotted black line. Right: the same for γe = 5/3. The analytic
solution uses the functional form for ue/ug(ρ) (see Appendices 2.B.4 and 2.C for details) and applies it to
the density returned by the simulation. At this resolution all the fluid variables are essentially converged.
The γe = 5/3 electrons show convergence to the expected result of ue = feug (the numerical and analytical
lines are essentially on top of each other) while the γe = 4/3 electrons converge to a value that is greater
than the analytic result (ue = 0.379ug for fe = 0.5; equation 2.41) by ∼ 3%. This is because the internal
shock structure is never well resolved without an explicit bulk viscosity (see §2.5.1 and Appendix 2.C for
details).
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Figure 2.3: Convergence of the post-shock electron internal energy in the 1D shock test to the analytic so-
lution (equation 2.41). The shock’s Mach number is ∼ 49 (see Sec. 2.5.1). The γe = γ = 5/3 electrons
converge at 1st order, as expected, but the γe = 4/3 electrons do not converge to the correct solution to
better than ∼ 3% (see Figure 2.2). This is because our calculation of the heating requires a well-resolved
shock structure, which is not the case for modern shock-capturing conservative codes (see §2.5.1 for details).
Introducing an explicit bulk viscosity to resolve the shock structure leads to convergence for γe , γ (see Ap-
pendix 2.C). For γe = γ, a convenient cancellation makes the evolution of the electron entropy independent
of the shock structure.

Table 2.1: Turbulence Test Linear Fits
(§2.5.1)

Resolution: 128 256 512

ge/Ėin − 0.5a 0.0027 0.0042 0.0024
gg/Ėin − 1b −0.00017 0.0012 −0.0016

aFractional error in the electron heating rate
relative to the analytic solution.
bFractional error in the total heating rate
relative to the analytic solution.
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Figure 2.4: Percent error in the post-shock electron internal energy for γe = 4/3 and γ = 5/3 as a function of
Mach number in the 1D shock test as computed by HARM at a resolution of 2000 for a fractional heat given
to the electrons of fe = 1/2 and an initial ue/ug = 0.1. The analytic solution is given by equation (2.84). The
final time was fixed such that the two shocks were located at x = 0.25 and x = 0.75 in a 0 ≤ x ≤ 1 domain.
Note that the fractional errors are always . 3.3%. The change in the percent error as Mach number goes to
1 is because the flow becomes increasingly smooth and the electron internal energy is no longer converged
at a resolution of 2000.
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Figure 2.5: Electron and total gas internal energies summed over the grid as a function of time at a resolution
of 5122 for the forced subsonic MHD turbulence simulation with an assumed electron heating fraction of
fe = 0.5 and initial β = 10. We define t̃ = (t − ti)cs,0/L and ũg,(e) = ug,(e) − ug,(e)(t = ti), where ti ∼ 4L/cs,0 is
the time at which kinetic and magnetic energy roughly saturate. We normalised the integrated internal energy
by the energy injection rate, Ėin = 0.5ρc3

s,0,, so that the y-axis has dimensions of time which we measure
in units of L/cs,0. In these variables, the analytic solutions for the total gas and electron internal energies
are lines with slopes of 1 and fe = 0.5, which are plotted as solid lines, to be compared to the simulation
results which are represented by points. We find that the electron heating rate is 0.5 of the total heating
rate, consistent with the analytic solution given the input value of fe = 0.5. For a numerical comparison at
different resolutions, see Table 2.1, which shows the results of applying a linear regression fit to the internal
energies.
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Shadow Solution

For our two-temperature model, we can seek a solution in which the electron fluid simply
‘shadows’ the total gas, in that ue ∝ ug. Such a solution is found by setting ue(t = 0) = feug(t = 0)
at some initial time, since we can solve the first law of thermodynamics for the electrons with
ue = feug for all time, assuming that γe = γ and fe is a constant. This can be seen from the first
law:

uµ∂µue = feρTguµ∂µsg −
ue + Pe

ρ
uµ∂µρ, (2.42)

because the electrons will always get a fraction, fe of the entropy-generated heat (the first term on
the RHS of equation 2.42), while the compression term is directly proportional to ue ∝ feug. This
solution is valid regardless of the details of the overall fluid evolution, so we can apply it to an
arbitrarily complicated system.

For this test, we evolve the electron internal energy in the full accretion disc simulation around
a rotating black hole as outlined in §2.6. We initially apply small (δue/ue ∼ 0.04) perturbations
to the electron internal energy about the average value of ug,e,0 = 0.5ug,0, and set fe = 0.5 and
γe = γ = 5/3. For this test alone, we set the floor on electron internal energy to be a fraction
fe of the floor on the total fluid (as opposed to our usual choice of 1%). If this latter step were
neglected, the floors would cause the polar regions to differ significantly from the expected result,
though leaving the disc and corona unaffected (i.e. they still satisfy the analytic result). The test is
whether or not our simulation can maintain this result over the run time of 2000M.

Running this test at a resolution of 5122 gives an average fractional error of

1
N2

N−1∑
j=0

N−1∑
i=0

∣∣∣∣∣∣∣∣∣∣
([

ue/ug

]
i j
− fe

)
fe

∣∣∣∣∣∣∣∣∣∣ ∼ 0.8%, (2.43)

which is smaller than our initial perturbations and shows that our numerical solution correctly
evolves equation (2.42) even in a complex problem with MHD turbulence, weak shocks, and other
heating processes in the presence of a curved metric.

2.5.2 Tests of Electron Conduction
Our model and testing suite for conduction closely resembles that of Chandra et al. (2015a),

so we leave the details to Appendix 2.A. In summary, we have found second order convergence
for linear modes, for a static, 1D atmosphere in the Schwarzschild metric, and for a relativistic,
spherically symmetric Bondi accretion flow. We also show that the electrons properly conduct
along field lines in a 2D test.
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2.6 Application to an Accreting Black Hole in 2D GRMHD
Simulations

We apply the new methods discussed in §2.3 and the numerical implementation described
in §2.4 to the astrophysical environment of an accretion disc surrounding a spinning black hole
as described by the Kerr Metric with a spin parameter of a = 0.9375. For this spin the last
stable circular orbit is ≈ 2.04rg and the thin disc radiative efficiency is ≈ 0.18 (Novikov & Thorne
1973). We use the conservative code HARM (Gammie et al. 2003) as our background GRMHD
solution. Our initial conditions for the total fluid are the Fishbone & Moncrief (1976) equilibrium
torus solution (see Appendix 2.D) with inner radius rin = 6rg and with the maximum density
of the disc occurring at rmax = 12rg. Note that here and throughout r and θ refer to the Boyer-
Lindquist coordinates. This equilibrium solution has a temperature maximum of ≈ 7.5 × 1010K
and a thickness5 of h/r ∼ 0.18 at rmax. We normalise the torus density distribution such that the
maximum value of density in the torus is ρmaxc2 = 1 and perturb the internal energy of the gas with
random kicks on the order of δug/ug ∼ 0.04 to provide the perturbations for the magnetorotational
instability (MRI, Balbus & Hawley 1991a) to develop.6 We overlay this equilibrium solution with
an initial magnetic field with 2Pmax/b2

max = 100 (where max refers to the maximum value inside
the torus), defined by the scalar vector potential:

Aϕ ∝ (ρ/ρmax − 0.2) cos θ, (2.44)

if ρ > 0.2ρmax and 0 otherwise. This vector potential defines two meridional loops contained in
the torus that are antisymmetric about the equator. This choice ensures that the field lines are
not along constant density. Since constant density implies constant temperature when entropy is
constant, field lines along constant density would be isothermal in the initial condition (as would
happen if we dropped the factor of cos θ in eq. 2.44). 2D MHD torus simulations are unable to
reach a statistical steady state in which the initial conditions are forgotten, so initially isothermal
field lines could artificially suppress electron conduction even at later times. We choose the 2-loop
initial condition to avoid this.

For the electrons, we start with ue/ug = 0.1, and run two different models for fe, described
below. For conduction runs, we set the initial heat flux to zero.

Our conduction runs are all in 2562 grids with a physical size of the domain in spherical polar
coordinates of (Rin,Rout) × (θin, θout) = (0.8rH, 1000rg) × (0, π), where rH = rg(1 +

√
1 − a2) is the

black hole event horizon radius. For a = 0.9375, rH ≈ 1.35rg. In the regions with r < 50rg,
the code uses modified Kerr-Schild coordinates (t, x1, x2, and ϕ) of Gammie et al. (2003), so that
the regions with the highest resolution are near the mid-plane close to the horizon. For r > 50rg,
we use hyper-exponential coordinates to move out the outer radial boundary r = Rout and limit

5Here we define h/r ≡
!
ρut |θ − π/2|

√
−gdθdφ

/!
ρut √−gdθdφ .

6In addition to the electron specific floor described in §2.4.5, there are also floors on the density and internal
energy of the HARM single fluid GRMHD solution. These are ρfloorc2 = max

[
b2/50, 10−4(r/rg)−3/2ρmaxc2

]
and

ufloor = max
[
b2/250, 10−6(r/rg)−5/2ρmaxc2

]
. Note that the unit choice for the background "atmosphere" is such that

the initial torus maximum density is ρmaxc2 = 1 and the initial torus internal energy is umax ≈ 0.01.
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unphysical reflection effects by defining the internal code coordinate x1 implicitly by the equation
(Tchekhovskoy et al. 2011):

r/rg =

{
exp(x1) : r ≤ 50rg

exp
{
x1 + [x1 − x1(r = 50rg)]4

}
: r > 50rg.

The electron heating-only (i.e. without conduction) runs have the same parameters but a higher
resolution of 5122. At the inner and outer radial boundaries we apply the standard outflow (copy)
boundary conditions, at the polar boundaries we apply the standard antisymmetric boundary con-
ditions (with all quantities symmetric across the polar axis except uθ and Bθ, whose signs are
reversed).

Figure 2.6 shows the background HARM solution for the density, magnetic field, temperature,
plasma β ≡ 2Pg/b2, and the heating rate per unit volume in the coordinate frame, −Qut, averaged
over the time interval 900−1100 rg/c, as well as the initial field configuration. After ∼ 1200rg/c the
turbulence starts to decay, an artefact of 2D simulations in which MRI turbulence is not sustainable.

As noted in §2.4.1, we find locally that Q < 0 (violating the second law of thermodynamics) in
many regions due to truncation errors. This is because HARM satisfies the total energy equation to
machine precision but only satisfies the second law of thermodynamics to truncation error. How-
ever, while Q may be instantaneously or locally negative, when integrated over a sufficient length
of time and/or space in the fluid frame it will satisfy the second law of thermodynamics. In our
torus simulation, for instance, Figure 2.7 shows that when averaged over θ and time (900 − 1100
rg/c), the heating rate is entirely positive definite within the region of interest. Furthermore, when
integrated over the volume enclosed between the event horizon, rH, and r = 6rg (roughly the radius
at which the accretion time ∼ 1000 rg/c), we find

2π∫
0

π∫
0

6rg∫
rH

−utQ(r2 + a2 cos2 θ) sin θ dr dθ dϕ ≈ 0.17Ṁc2, (2.45)

where the factor of −ut converts Q to the coordinate frame. In equation (2.45), Ṁ is the accretion
rate of the black hole in terms of coordinate time (corresponding to time measured by a distant
observer) at the event horizon radius, r = rH,

Ṁ =

∫
r=rin

ρur(r2 + a2 cos2 θ) sin θ dθ dϕ. (2.46)

The heating rate in equation (2.45) is in excellent agreement with that expected for a rapidly spin-
ning black hole (e.g., the Novikov & Thorne 1973 model predicts a radiative efficiency of ≈ 0.18
for a = 0.9375).

In this work, all mass-weighted averages are computed using the weighting function: ρut √−g,
which represents the conserved mass per unit coordinate volume. For example, a radial average of
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a function f (x1, x2, x3, t) is computed as:

x1
max∫

x1
min

f (x1, x2, x3, t)ρut √−gdx1

x1
max∫

x1
min

ρut √−gdx1

. (2.47)

2.6.1 Electron Parameter Choices
Here we describe physically motivated estimates of the electron heating fraction, fe, and the

electron thermal diffusivity, χe, appropriate for low-collisionality accretion flows such as that of
Sagittarius A*. A more comprehensive exploration of physical models will be explored in future
work.

We consider two simple models for the electron heating fraction fe. The first sets fe = 1/8,
a constant. Because the electron adiabatic index is not the same as the proton (total) adiabatic
index, and the heating is not spatially uniform, a constant fe model does not necessarily lead
to a constant Tp/Te. The second, more physical model, sets fe based on theoretical models of
the dissipation of MHD turbulence in low-collisionality plasmas. These generically predict that
electrons receive most of the turbulent heating at low β while protons receive most of the turbulent
heating at high β. This is true both for reconnection (Numata & Loureiro 2015) and collisionless
damping of turbulent fluctuations (Quataert & Gruzinov 1999). This dependence on β is the key
qualitative feature of our chosen model of fe. For concreteness, we use the specific calculations of
Howes (2010) who provided a simple fitting function for the electron to proton heating rate as a
function of plasma parameters in calculations of the collisionless damping of turbulent fluctuations
in weakly compressible MHD turbulence like that expected in accretion discs. These models do a
reasonable job of explaining the measured proton and electron heating rates in the near-Earth solar
wind (Howes 2011). The functional form of fe is derived from the relations:

Qp

Qe
= c1

c2
2 + β

2−0.2 log10(Tp/Te)
p

c2
3 + β

2−0.2 log10(Tp/Te)
p

√
mpTp

meTe
e−1/βp , (2.48)

with c1 = 0.92, c2 = 1.6/(Tp/Te), and c3 = 18 + 5 log10(Tp/Te) for Tp/Te > 1, while c2 =

1.2/(Tp/Te) and c3 = 18 for Tp/Te < 1. The corresponding result for fe is simply

fe ≡
Qe

Qp + Qe
=

1
1 + Qp/Qe

. (2.49)

The critical assumption used in deriving equation (2.48) is that the turbulent fluctuations on the
scale of the proton Larmor radius have frequencies much lower than the proton cyclotron fre-
quency. This is believed to be well-satisfied for weakly compressible MHD turbulence in accretion
disks (e.g., Quataert 1998). For concreteness, we note that for Tp/Te = 1 and βp = (0.1, 0.3, 1, 10),
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Figure 2.6: Properties of our 2D black hole accretion simulations. The top panel shows the density over-
plotted with magnetic field lines in the initial conditions (left) and averaged over 900 − 1100 rg/c (right).
The remaining panels are the total gas temperature in units of mpc2 (middle left), the plasma parameter,
β ≡ 2Pg/b2 (middle right), and the absolute value of the heating rate per unit volume in the coordinate frame,
|Qut|, in units of Ṁc2/(

√
−g) (bottom), all averaged over time in the interval 900 − 1100 rg/c. Note that for

calculating the average β, we use 2〈Pg〉/〈b2〉, where 〈〉 denotes an average over time. These plots represent
the background GRMHD solution on top of which we separately solve the electron entropy equation.
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we have Qp/Qe = (0, 0.01, 0.16, 8.6), while for Tp/Te = 10 and βp = (0.1, 0.3, 1, 10), Qp/Qe =

(0, 0.001, 0.09, 12), respectively. This demonstrates the strong transition from predominantly elec-
tron to predominantly proton heating with increasing βp, with the transition happening at a value
of βp that depends weakly on the proton to electron temperature ratio. This implies that we expect
strong electron heating in the corona and jet regions but suppressed electron heating in the bulk of
the disc.

We reiterate that the key feature of equation (2.48) is not the precise value of the predicted
Qp/Qe, but rather the transition from Qp & Qe for βp � 1 to Qp � Qe for βe � 1. This qualitative
transition is much more robust than the specific functional form in equation (2.48) (e.g., Quataert
& Gruzinov 1999; Numata & Loureiro 2015).

For the electron thermal diffusion parameters, since χe is a diffusion coefficient, we assume that
it has the form

χe = αecr, (2.50)

where αe is a dimensionless thermal diffusivity, and r is the radial distance from the center of the
black hole, which is comparable to the density scale height of the disc, H. Since we are interested
in fairly relativistic electrons, we choose the relevant velocity to be c in our diffusivity estimate. In
what follows, we consider a range of dimensionless diffusivities, αe ∼ 0.1 − 10. A typical value of
αe ∼ 1 is motivated by the idea that particles scatter roughly after moving a distance comparable to
the length-scale over which the magnetic field strength, density, etc. change. In fact, for high beta
plasmas, the mean free path due to wave-particle scattering can be significantly lower, reducing the
thermal diffusivity significantly. In Appendix 2.B.2 we discuss the specific limits imposed by elec-
tron temperature anisotropy instabilities present in a turbulent plasma. In particular, the whistler
and firehose instabilities lead to limits on ∆Te/Te (eq. 2.66) and thus the electron viscosity and
thermal diffusivity, where the temperature anisotropy is defined with respect to the local magnetic
field. In terms of the electron thermal diffusivity, this becomes χe = min (αerc, χmax), where χmax

is set by velocity space instabilities and is estimated in Appendix 2.B.2. Finally, we choose the
relaxation time scale, τ to be given by the thermal time scale:

τ ∼
χe

v2
th

∼
χe

c2 . (2.51)

Comparing this to the stability condition given by equation (2.36), we see that stability is ensured
if

vth .
∆x
∆t
. (2.52)

Since we have a non-uniform grid, the time step ∆t is essentially set by the light crossing time of
the smallest grid cell (i.e. that nearest the horizon), meaning that ∆t . c∆x near the horizon and
∆t � c∆x further from the horizon. For a reasonable choice of a CFL number of 0.5, we find that
equation (2.52) is satisfied everywhere and is not a limiting factor in our simulation. Moreover, we
find that the exact value of τ is not critical as long as it satisfies numerical stability and is not too
long (e.g. is less than a local dynamical time).
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Figure 2.7: Mass-weighted average (see eq. 2.47) of the heating rate per unit volume in the coordinate
frame, averaged over time in the interval 900 − 1100 rg/c and over θ from 0 to π. Note that for our metric
sign convention, ut ≤ 0. The total volume integrating heating out to ∼ 6rg is ∼ 0.17Ṁc2 (equation 2.45),
comparable to the Novikov & Thorne (1973) heating rate for this black hole spin.
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Figure 2.8: Ratio of 〈Te〉 /〈Tg〉 in our black hole accretion simulation, where 〈〉 denotes an average over time
in the interval 900 − 1100 rg/c (where Tg is the temperature of the single fluid GRMHD simulations and
Te is the electron temperature). These results assume a constant fraction of dissipated heat is given to the
electrons ( fe = 1/8). Compare with the more physical β-dependent heating results in Figure 2.9.

2.6.2 Electron Heating Only
In this section we focus solely on the effects of separately evolving the electron internal energy

equation without conduction in our black hole torus simulation and compare the results for different
electron heating models.

Constant Electron Heating Fraction

Figure 2.8 shows the temperature ratio, Te/Tg, averaged over the interval 900 − 1100rg/c for
fe = 1/8. We reiterate that Tg here is the temperature inferred from the underlying single fluid
GRMHD solution (approximately the proton temperature in our model) while Te is the electron
temperature determined from our separate electron entropy equation. We include this constant fe

result primarily because it is conceptually similar (although quantitatively different) to the constant
Tp/Te assumption often used in the literature. Notice that the resulting Te/Tg ratio, seen in Fig. 2.8,
is non-uniform despite the constant fe. Also note that due to the fact that MHD turbulence is
unsustainable in 2D simulations, the heating dies off after ∼ 1200rg/c of evolution and prevents
the outer r & 10rg region of the disc from ever being heated substantially. However, as we will see
later, conduction can occur at a much faster (electron thermal) speed along the magnetic field lines
and can affect the solution at somewhat larger radii.
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β-Dependent Electron Heating

Figure 2.9 shows the temperature ratio, Te/Tg, the electron temperature itself, Θe, and the
electron heating fraction, fe, averaged over the interval 900−1100 rg/c for the β-dependent heating
model of equation (2.48), which we regard as a more physical electron heating model than fe =

const. We note that this leads to hot electrons being strongly concentrated in the corona of the torus
in between the disc and the jet, where β is the smallest (and fe ∼ 1 from equation 2.48). This is
also clear from the 1D profiles of electron temperature as a function of polar angle in Figure 2.10.

Figure 2.10 shows the mass-weighted average over radius (r = 5−7rg) of the electron and gas
temperatures, plotted versus the polar angle, θ. The fe = 1/8 electrons and total gas temperatures
have mild variation in T with θ, while the fe = fe(β) electrons have significantly higher tempera-
tures in the polar regions. This demonstrates that the non-uniformity of the electron temperature
in the fe(β) model is primarily caused by the strong β-dependence of our model of fe as opposed
to any non-uniformity of the heating rate itself (Figure 2.6).

2.6.3 Conduction and Electron Heating
We now consider the effects of electron conduction on the electron temperature structure of

black hole accretion discs. We focus on the more physical model of β−dependent heating described
in §2.6.1. In all of our calculations, we include the velocity space instability limit on the electron
thermal conductivity (Appendix 2.B.2), although runs without this limit produce similar results
because β is modest (. 1 − 10) in the inner regions of these simulations (Figure 2.6). Figure 2.11
shows the electron temperature as a function of radius at the mid-plane in the simulations with
and without conduction. Figure 2.12 shows the effects of conduction more quantitatively via the
fractional change in temperature between the electron temperature solution with conduction and
that without.

To summarise Figures 2.11 and 2.12, conduction has little effect on the electron temperature
for αe . 1. However, for αe & 1, conduction leads to a significant radial redistribution of heat such
that the electron temperature is factors of a few larger at large radii. Even for αe > 1, however,
the angular redistribution of heat is much less efficient, as seen in the radially and time-averaged
electron temperatures in Figure 2.10 for αe = 10. This is primarily because of the structure of the
magnetic field, as can be seen by noting that the regions where conduction modifies the temperature
in Figure 2.12 largely follow magnetic field contours which do not efficiently connect the polar
and equatorial regions. To aid the interpretation of these results, Figure 2.13 shows the heat flux
φ normalised to the maximum value φmax = (ue + ρec2)vt,e; even for αe = 10 the heat flux is still
well below the saturated value in significant parts of the domain. We now summarise and interpret
these results in more detail.

For αe . 1 we find conduction to have only a small effect on the electron thermodynamics in
the accretion disc, despite the relatively high conductivity. We can understand this result as being
due to the suppression of the isotropic heat flux by being projected along field lines, quantified by
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Figure 2.9: Ratio of 〈Te〉 /〈Tg〉 (top), electron temperature, 〈Te〉, in units of mec2 (middle), and electron
heating fraction, 〈 fe〉 (bottom), where 〈〉 denotes an average over time in the interval 900−1100 rg/c. These
results are for β-dependent heating (see §2.6.2). Compare to Figure 2.8 for a constant electron to proton
heating ratio. The highly non-uniform distribution of β (see Figure 2.6) and the strong β dependence of the
electron-to-total heating ratio (equation 2.48) lead to a strong angular dependence of Te/Tg.
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Figure 2.10: Mass-weighted average of total gas and electron temperature (in units of mec2) as a function of
the polar angle, θ. We show the electron temperature with and without conduction for a β-dependent electron
heating fraction, fe, as well as without conduction for a constant electron heating fraction fe = 1/8. The
results are averaged over time from 900−1100 rg/c and averaged over r from 5−7 rg. Note that the total gas
temperature has been multiplied by a constant fraction to more clearly compare to the electron temperatures.
The electron temperature with β-dependent heating displays much stronger θ variation because the electron
heating fraction itself varies with θ (see Figure 2.9). Conduction has only a modest effect on redistributing
heat in θ due to the geometry of the field.
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the ratio,

ε2 ≡

(
qµqµ

)
aniso(

qµqµ
)

iso

, (2.53)

where qµiso and qµaniso are evaluated using the electron temperature as evolved without conduction
and which we now define. For this diagnostic, we use

qνiso = −ρχehµν
(
∂µTe + Teaµ

)
, (2.54)

where hµν = uµuν + gµν is the projection tensor that projects along a space-like direction per-
pendicular to the fluid velocity uµ. This projection ensures that the heat flux in the fluid frame
has a zero time-component. Likewise, for qνaniso, we use the first order anisotropic heat flux:
qνaniso =

(
b̂µqiso

µ

)
b̂ν. Note that in equation (2.53), ε is always ≤ 1 because both heat fluxes are

mutually orthogonal to uµ. Figure 2.14 shows |qaniso| / |qiso| in our torus simulation, where we find
the suppression of the isotropic heat flux to be around ε ∼ 0.2. The simplest explanation for this
small number is that the field is predominantly in the ϕ direction, where the temperature gradient is
identically 0 in 2D simulations. For instance, in local shearing box calculations, Guan et al. (2009)
found that the typical angle between ~B and ϕ̂ was ∼ 10 − 15◦, corresponding to a suppression of
the heat flux with ε ∼ 0.25.

Contrary to the αe < 1 cases, setting αe ≥ 1 causes conduction to have a significant effect by
redistributing the electron heat from the coronal regions to the bulk of the torus at larger radii. This
redistribution of heat causes the electron temperature to actually exceed the total gas temperature
in certain regions, which formally violates our assumption that Te � Tp.

While the calculation with αe = 10, or with χe = 10rc, might seem to use an unphysically
large conductivity, roughly corresponding to a length scale for conduction of ∼ 10H, where H
is the disc density scale height, the heat flux in these calculations is limited to be smaller than
the value set by the physically motivated whistler criterion in equation (2.67) and to be less than
the saturated heat flux ∼ uec. As Figure 2.13 shows, the heat flux is saturated in only part of the
domain. Furthermore, the appropriate length scale for conduction should be the scale height along
field lines, which could be significantly greater than the overall density scale height if the field has
a large toroidal component. For these reasons, we believe that the larger αe solutions may in fact
be physical because they correspond to a heat flux closer to the saturated value ∼ uec expected in
low-collisionality plasmas.

2.7 Conclusions
We have presented a method for evolving a separate electron entropy equation in parallel to

the standard equations of ideal General Relativistic MHD. Our motivation is the study of two-
temperature radiatively inefficient accretion flows (RIAFs) onto black holes, in which the electron-
proton Coulomb collision time is sufficiently long that the proton and electron thermodynamics
decouple (e.g., Rees et al. 1982). Understanding the electron temperature distribution close to
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Figure 2.11: Electron temperature in the mid-plane (θ = π/2) in units of mec2 for black hole accretion
simulations with β-dependent heating and for electron conduction with dimensionless conductivity αe =

0, 0.1, 1, 10 (where the electron thermal diffusivity is χe = αerc; see §2.6.1). The results are time averaged
over the interval 900 − 1100rg/c. For αe & 1, conduction redistributes energy from small to large radii,
increasing the electron temperature at larger radii. Compare to Figure 2.10, which shows that redistribution
of heat in the polar direction is less efficient.
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Figure 2.12: Fractional difference in electron temperature between solutions with and without electron
conduction shown in colour (see colour bar for details) over-plotted with magnetic field lines shown as solid
black lines. The fractional difference is calculated as

〈
Te,c

〉
/
〈
Te,0

〉
− 1, where 〈〉 denotes an average over

time from 900 − 1100 rg/c. The results include β-dependent electron heating for αe = 0.1 (top), αe = 1
(middle), and αe = 10 (bottom panel), where the electron thermal diffusivity is χe = αerc (§2.6.1). Higher
αe allows more heat to flow from the inner regions to larger radii. For αe = 0.1 conduction has a negligible
effect on the electron temperature, while for αe & 1 conduction leads to order unity changes in Te.
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Figure 2.13: 〈|φ|〉/〈φmax〉, the ratio of the electron heat flux to the maximum value φmax = (ue + ρec2)vt,e,
where 〈〉 denotes an average over time from 900 − 1100 rg/c. This is calculated based on the results of
a black hole accretion simulation with β-dependent electron heating and a dimensionless electron thermal
conductivity of αe = 10 (where the electron thermal diffusivity is χe = αerc; see §2.6.1). Comparison with
Figure 2.12 shows that conduction has a significant effect on redistributing heat only in the regions where
the heat flux is saturated or nearly saturated. However, even for a high electron thermal conductivity of
αe = 10, the heat flux is still well below the saturated value over much of the domain.



2.7. CONCLUSIONS 46

Figure 2.14: 〈|qaniso|〉/〈|qiso|〉, the ratio of the anisotropic (field-aligned) heat flux to the isotropic heat flux
, where 〈〉 denotes an average over time from 900 − 1100 rg/c. This is calculated based on the results of
a black hole accretion simulation with β-dependent electron heating but without conduction. The factor
of ∼ 5 − 10 suppression of the field aligned heat flux is roughly consistent with that expected from local
shearing box calculations of MRI turbulence, where ~B is aligned with the ϕ̂ direction (e.g. Guan et al. 2009).

the black hole is necessary for robustly predicting the radiation from the numerical simulations of
black hole accretion (and outflows) in the sub-Eddington regime.

The long-term goal of the present work is to incorporate the key processes that influence the
electron thermodynamics in RIAFs into GRMHD simulations: heating, thermal conduction, ra-
diative cooling, and electron-proton Coulomb collisions. In the present chapter we have focused
on the first two of these processes. Specifically, we have developed, implemented, and tested a
model that quantifies the rate of heating in a conservative GRMHD simulation (§2.3). We then
assign a fraction fe of this heating to the electrons based on a microphysical model of the key
heating processes (e.g., turbulence, reconnection, shocks; see, e.g., §2.6.1). In addition, we have
implemented and tested a model of relativistic anisotropic conduction of heat (by electrons) along
magnetic field lines, based on the Chandra et al. (2015b) formulation of anisotropic relativistic
conduction (§2.3.3). The electron thermal diffusivity is a free parameter in this calculation. For the
black hole accretion disc applications of interest, we advocate a ‘saturated’ heat flux in which the
thermal diffusivity is ∼ rc, subject to additional constraints imposed by velocity space instabilities
and scattering by wave-particle interactions (Appendix 2.B.2).

We implemented our electron energy model in a conservative GRMHD code HARM2D (Gam-
mie et al. 2003), though the model we have developed can be applied to any underlying GRMHD
scheme. For simplicity, the implementation in this chapter neglects the back reaction of the elec-
tron pressure on the dynamics of the accretion flow. We believe that this is a reasonable first
approximation given some of the uncertainties in the electron physics. Formally, this approxima-
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tion is is valid only when Te � Tp though we expect it to be a reasonable first approximation when
Te . Tp in regions with plasma β & 1, i.e., in the regions where gas thermal pressure forces are
dynamically important.

We have demonstrated that our implementations of electron heating and conduction are accu-
rate and second order convergent in several smooth test problems (§2.5 and Appendix 2.A). For
shocks, the heating converges at first order but to a post shock temperature that differs from the
analytic solution by . 3% when the electron adiabatic index differs from the adiabatic index of the
fluid in the GRMHD solution (e.g., Figure 2.2). This discrepancy arises because standard Riemann
solvers ‘resolve’ the shock structure with only a few grid points. Including an explicit bulk vis-
cosity to broaden and resolve the shock leads to a converged numerical solution for the post-shock
electron energy that agrees with the analytic solution (Appendix 2.C). In practice, the . 3% dis-
crepancy between the numerical and analytic solutions for standard Riemann solvers is sufficiently
accurate given other uncertainties in the electron physics. For this reason, we do not use bulk vis-
cosity in our calculations. Moreover, strong shocks are rare and account for a negligible fraction
of the dissipation in accretion disc simulations with aligned black hole and accretion disc angular
momentum.

In addition to formulating and testing our electron energy equation model, we have also pre-
sented a preliminary application of these new methods to simulations of black hole accretion.
Specifically, we have studied the impact of realistic electron heating and electron thermal conduc-
tion on the spatial distribution of the electron temperature in 2D (axisymmetric) simulations of
black hole accretion onto a rotating black hole. We find that the resulting electron temperatures
differ significantly from the assumption of a constant electron to proton temperature ratio used
in previous work to predict the emission from GRMHD simulations (Mościbrodzka et al. 2009;
Dibi et al. 2012; Drappeau et al. 2013); see, e.g. Figures 2.9-2.11. This is due to the strong β-
dependence of the electron heating fraction, fe, described in §2.6.1: electrons are preferentially
heated in regions of lower β, causing Te/Tp to be larger in the coronal regions compared to the
midplane. In addition, we find that the effect of thermal conduction on the electron temperatures
is suppressed by the fact that the heat flux must travel along field lines, which are predominantly
toroidal and thus not aligned with the temperature gradient. Specifically, we find that electron con-
duction modifies the temperature distribution only if the effective electron mean free path along
the magnetic field is & the local radius in the flow (see Figure 2.12). In this case, there is a net
transfer of heat from the corona to the bulk of the disc. This increases the electron temperature at
larger radii by a factor of ∼ 2.

It is important to stress that the unsustainability of MHD turbulence in 2D simulations (e.g.,
Guan & Gammie 2008) limits how thoroughly we can interpret the accretion disc results presented
in this paper. Since a steady state is never truly reached, the bulk of the disc retains memory of the
initial conditions and only the innermost regions (r . 10rg) develop significant turbulence. This
could artificially limit the effects of electron conduction because the thermal time for relativistic
electrons is ∼ r/c and is thus substantially shorter than the local dynamical time only at large radii.
Future work will use the methods developed here in 3D simulations.

It is also important to stress that, as in previous work, our results for both the gas and electron
temperature are not reliable when b2 � ρc2. In these regions the ratios of b2/ρc2 and b2/ug are so
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large that the evolution of the density and internal energy are dominated by truncation errors in the
magnetic field, to which they are nonlinearly coupled by the total energy equation. This requires
the use of density and internal energy floors. Because our calculation of the electron heating
rate relies on quantifying the entropy changes in the underlying GRMHD solution, our predicted
electron temperatures also become unreliable when b2 � ρc2. In the accretion disc simulations,
this only affects the regions close to the pole where there is very little matter, not the evolution
of the electrons in the bulk of the accretion disc or corona. We have specifically tested several
treatments of the internal energy and density floors which produce dramatically different results
in the poles but are all consistent in the higher density regions for both the fluid variables and the
electron temperature.

Future applications of the methods developed in this chapter will center on using our electron
temperature calculations to predict the emission from accreting black holes. In particular, we hope
to produce more accurate images of the radio and IR emission of Sagittarius A* (and M87) that
can be used to interpret the forthcoming spatially resolved observations by the Event Horizon
Telescope (Doeleman et al. 2009) and Gravity (Gillessen et al. 2010).
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Appendix

2.A Tests of Electron Conduction
This Appendix outlines tests of our numerical implementation of electron conduction that

demonstrate that our calculations are robust and second-order accurate. The tests are taken di-
rectly from Chandra et al. (2015a), to which we refer the reader for more details.

2.A.1 Conduction Along Field Lines
This test is simply to check whether the electrons conduct heat along field lines properly. The

initial conditions are a 2D, periodic box of physical size 1 × 1 with uniform pressure and a small,
density variation (and hence temperature variation) of the form:

ρ = ρ0

(
1 − e−

(x−0.5)2+(y−0.5)2
0.005

)
. (2.55)

The field lines are sinusoidal and given by

Bx = B0

By = B0 sin(8πx),
(2.56)

derived from a scalar potential of

Az = B0

(
y +

1
8π

cos(8πx)
)
. (2.57)

For the conduction parameters, we choose χe = 0.5/ρ and τ = 1 and run the simulation for 10τ.
Figure 2.A.1 shows that the final state of the fluid is that of isothermal field lines, exactly as

expected, with heat flux equilibrating the temperature along the magnetic field lines. This shows
that our implementation of conduction properly limits the heat flux to be parallel to the magnetic
field.

2.A.2 Linear Modes Test
This test checks whether our implementation of conduction gives the correct eigenmodes cor-

responding to Equation (2.19). Writing λ = −α ± iω, we initialise perturbations in an otherwise
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Figure 2.A.1: Temperature profiles over-plotted with magnetic field lines in the 2D anisotropic conduction
test from Chandra et al. (2015a), adapted for electron conduction (see §2.A.1). The top panel is at the initial
time while the bottom panel is at the end of the run (t = 10τ). The field lines become isothermal, consistent
with heat conduction only along the magnetic field.
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Figure 2.A.2: L1 Norm of errors in the 2D linear modes test after one period as computed from the eigen-
frequencies given in equation (2.19). See §2.A.2.

uniform box about the equilibrium solution with wave number k = 2
√

2π and run the simula-
tion for one period: t = 2π/ω. The analytic solution is that the perturbations, δ, should obey
δ(t = 2π/ω) = δ(t = 0)e−2πα/ω. We choose b̂ = 1/

√
3x̂ +

√
2/
√

3ŷ and ~k = 2πx̂ + 2πŷ. We find that
both φ and ue converge at second order to the analytical solution as shown in Figure 2.A.2.

2.A.3 1D Atmosphere in a Schwarzschild Metric
This test checks whether our implementation of the electron conduction gives the correct an-

alytic result in a non-trivial space-time. In the Schwarzschild metric, the solution for a fluid in
hydro-static equilibrium reduces to a system of two ordinary differential equations, which can be
solved for any given temperature profile (see Chandra et al. 2015a for details). For this test, we
initialise the temperature and heat flux of the electrons to be this equilibrium solution for a purely
radial field and see if the code can maintain it over a time of 100 rg/c in a computational domain of
1.4rg ≤ r ≤ 90rg. To compute the error, we again use the L1 norm and find 2nd order convergence
for both φ and ue, as shown in Figure 2.A.3.

2.A.4 Relativistic Bondi Accretion
This test checks whether our implementation of the electron conduction gives the correct ana-

lytic result in a fluid with ui , 0, which activates terms that were not present in the 1D atmosphere
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Figure 2.A.3: L1 norms of the error in both the heat flux and electron internal energy for the 1D atmosphere
test in the Schwarzschild metric (§2.A.3).

test. For the standard, spherically symmetric, steady-state Bondi solution for an accreting black
hole (Hawley et al. 1984), we can solve equation (2.16) by numerical integration if we assume
that the heat flux does not back-react on the electron temperature. For this test, we set the initial
condition of the fluid variables to be the Bondi solution and the initial conditions of φ to be given
by the solution to equation (2.16) with Dirichlet boundary conditions. We choose the sonic point
to occur at rc = 20M and fix the outer boundary at a spherical radius of Rout = 40M to have
φ(r = 40M) = 0. The inner radius of the grid is inside the event horizon at r = 1.6M. The test is
whether or not the code can maintain this state over a period of t = 200M. We find second order
convergence of the heat flux to the analytical solution, as shown in Figure 2.A.4.

2.B Derivations

2.B.1 Total Heating Rate
This section derives the result quoted in equation (2.25).
First, we introduce the variable κ̂g, which is equivalent to κg ≡ Pgρ

−γ at the beginning of the
time step and at the n + 1/2 “predictor” step, but which is evolved over a time step according to:

∂µ(
√
−gρκ̂guµ) = 0. (2.58)
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Figure 2.A.4: L1 norms of the error in the magnitude of the heat flux for the relativistic Bondi accretion test
(§2.A.4).

We discretise equation (2.58) in a standard way (i.e. equation 2.21):(√
−gρκ̂gut

)n+1
−

(√
−gρκgut

)n

∆t

+
[
√
−gρκgux]n+1/2

i+1 − [
√
−gρκgux]n+1/2

i

∆x
= 0,

(2.59)

where the square brackets indicate fluxes computed via the Riemann solver at cell interfaces and
the generalisations to higher dimensions is straightforward. Note that we have dropped the ˆ in the
n + 1/2 and n terms because κ̂g = κg at the beginning of the time step and at the n + 1/2 step. We
obtain the new value of entropy, κ̂n+1

g , at tn+1 ≡ tn + ∆t via solving equation (2.59). We emphasise
that κ̂g is not the true entropy at tn+1 but the entropy evolved according to equation (2.58) [or its
discretised equivalent equation 2.59] and thus does not include any heating.

At the end of the time step (i.e. at t = tn+1), we compute the “true” value of the entropy due to
the full GRMHD evolution, according to the definition of κg:

κn+1
g =

(
Pg

ργ

)n+1

. (2.60)

Unlike κ̂n+1
g , which does not include any heating, κn+1

g accounts for the heating as implied by the
conservative evolution of the underlying GRMHD scheme. The difference (κg − κ̂g)n+1 is related to
the heating incurred during time step n, and we will use it below.
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To compute the heating rate we evaluate the quantity:

Q ≡ ρTuµ∂µsg =
ργ

γ − 1
uµ∂µκg

≡
ργ−1

γ − 1
(ρκguµ);µ

≡
1

γ − 1
ργ−1

√
−g

∂µ
(√
−gρκguµ

)
,

(2.61)

where the third equality holds because

(ρκguµ);µ = ∂µ(
√
−gρκguµ)/

√
−g

≡ κg∂µ(
√
−gρuµ)/

√
−g + ρuµ∂µκg

and the first term vanishes due to conservation of mass. We evaluate eq. (2.61) at the n + 1/2 time
step in a discretised form by centring the time derivatives at n + 1/2 but evaluating the prefactor at
the n + 1 time step:

Qn+1/2 =

(
1

γ − 1
ργ−1

√
−g

)n+1/2

×

{
(
√
−gρκgut)n+1 − (

√
−gρκgut)n

∆t

+
[
√
−gρκgux]n+1/2

i+1 − [
√
−gρκgux]n+1/2

i

∆x

 .
(2.62)

Now, multiplying eq. (2.59) by
(

1
γ−1ρ

γ−1/
√
−g

)n+1/2
and adding the result to eq. (2.62), we obtain

equation (2.25) of the main text:

Qn+1/2 =

(
ργ−1

γ − 1

)n+1/2
{ρut(κg − κ̂g)}

∆t

n+1

. (2.63)

2.B.2 Whistler Instability Limit on Conduction
We assume that the electrons are relativistic with Θe = kTe/mec2 & 1. If the electrons relax

to thermal equilibrium with a scattering rate νe, relativistic kinetic theory implies that the electron
viscosity ηe and thermal diffusivity χe satisfy (Anderson & Witting 1974)

ηe ' Θe
c2

νe
χe ' 1.6

c2

νe
(2.64)

Velocity space instabilities set an upper limit on the electron thermal conductivity in a turbulent
plasma. Physically, as the magnetic field in the accretion disc fluctuates in time, this generates
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pressure anisotropy, which is resisted by velocity space instabilities that isotropise the distribution
function and thus limit the magnitude of the thermal diffusivity. Chandra et al. (2015b) show that
the theory of relativistic anisotropic viscosity implies that the pressure anisotropy and scattering
rate are related by

νe
∆Pe

Pe
' uµ∂µ ln

[
B3

ρ2

]
. (2.65)

where ∆Pe = P⊥ − P‖ and we have neglected some general relativistic terms for simplicity.
Electrons satisfy limits on pressure anisotropy of

∆Pe

Pe
& −

1.3
βe

∆Pe

Pe
.

0.25
β0.8

e
(2.66)

The second term on the right hand side of equation (2.66) is a fit to the whistler instability threshold
for relativistically hot electrons (based on numerical solutions of the dispersion relation derived in
Gladd 1983). The coefficient in the numerator technically depends weakly on Θe, varying from
' 0.125 for non-relativistic electrons to ' 0.25 for Θe ' 10 (Lynn 2014). Note that the slope of the
βe term for the whistler instability in equation (2.66) is a fit for βe ' 0.1−30. Gary & Wang (1996)
and Sharma et al. (2007) found a somewhat shallower slope ∝ β−1/2

e in non-relativistic calculations
but this is not a good fit over the large dynamic range of βe considered here. The first limit in
equation (2.66) is the electron firehose instability which is an electron-scale resonant analogue
of the fluid firehose instability (Gary & Nishimura 2003). This limit is based on non-relativistic
calculations and should to be extended to the relativistic limit in future work. However, based on
our whistler calculations this is unlikely to be a significant effect.

Sharma et al. (2007) found that the typical pressure anisotropy satisfied ∆P/P ≥ 0 in sim-
ulations that explicitly evolved a pressure tensor. Physically, this sign of the pressure anisotropy
corresponds to outward angular momentum transport. Assuming that the RHS of equation (2.65) is
∼ Ω, the whistler instability limit in equation (2.66) thus implies χe ∼ crg(r/rg)3/2(4βe)−0.8. This is
not a significant constraint on the conductivity relative to the saturated value (χe ∼ crg), for βe . 1,
which can occur either in the corona/outflow or because Te � Tp. However, this estimate does
suggest that the electron conductivity may be modest in the bulk of the disc at ∼ 10rg if βe � 1.

Equation (2.66) can be implemented by calculating ∆Pe/Pe using equation (2.65) given an
assumed χe (and using equation (2.64) to relate νe and χe). If equation (2.66) is violated, νe should
be increased and χe decreased such that equation (2.66) is satisfied. Alternatively, an even simpler
first approximation would be to simply limit

χe . crg(r/rg)3/2(4βe)−0.8 ≡ χmax (2.67)

motivated by the estimate in the preceding paragraph for the whistler instability. This is the limit
we have used in the accretion disc simulations in §2.6 of the main text.

2.B.3 Electron Conduction Numerical Stability
Non-relativistically, an explicit implementation of thermal conduction is stable only if the time

step, ∆t, satisfies the condition ∆t . ∆x2/χ, where ∆x is the grid spacing in 1-dimension and χ is
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the thermal diffusivity. The relativistic theory outlined in §2.3.3, however, where the heat flux φ
is evolved according to equation (2.16), differs from the non-relativistic case in that it is no longer
diffusive. This alters the criterion for stability to be a condition on the relaxation time, τ, given by
equation (2.36), which we derive here.

To check the numerical stability of our conduction theory we assume that we are in Minkowski
space in the rest frame of the fluid, and further simplify our analysis to one dimension in which
b̂ = î.

Under these assumptions, a Von Neumann stability analysis on equations (2.16) and (2.5) leads
to a quadratic equation for the amplification factor, G, with the following solutions:

G = 1 − C [1 − cos(k)]

−
1
2

∆t
τ

(
1 ±

√
1 − 4(γe − 1)

χeτ

∆x2 sin (k)2
)
,

(2.68)

with the condition for stability being that |G| ≤ 1. Here, as before, C denotes the Courant factor.
To analyse equation (2.68), we consider two cases: 1) when the square root term is real, and 2)
when the square root term is imaginary.

When the square root term is real, the condition for stability becomes:

τ ≥ ∆t

2 − C [1 − cos(k)] − (γe − 1)χe∆t
∆x2 sin (k)2

(2 − C[1 − cos(k)])2

 (2.69)

The right hand side is a maximum for k = π modes, which gives, simply:

τ ≥
∆t

2(1 − C)
. (2.70)

The more interesting case is when the square root term in Equation (2.68) is imaginary, where
the criterion for stability becomes:

τ ≥ ∆t

 (γe − 1)χe∆t
∆x2 sin (k)2 + C [1 − cos(k)] − 1

C (2 − C[1 − cos(k)]) [1 − cos(k)]

 , (2.71)

which, defining K ≡ (γe − 1)∆tχe/∆x2, has a maximum at

cos(k) = 1 −
C −

√
4K(1 − C) − C2

a2 − 2K(1 − C)
(2.72)

if

∆t >
∆x2

(γe − 1)χe

1 − 4C(1 − C) +
√

1 − 4C(2C − 1)
8(1 − C)

≡ ∆tcrit,

(2.73)

and a maximum at k = π otherwise. So if ∆t < ∆tcrit, our criterion becomes:

τ ≥ ∆t
[

2C − 1
4C (1 − C)

]
≡ τmax,1. (2.74)
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Finally, if ∆t > ∆tcrit, then we have

τ ≥

∆t ×

 2K
(
C2 − 4C(1 − C)

)
4KC(1 − C)

( √
4K(1 − C) − C2 − 2C

)
+ 2C4

+

(
4K2(1 − C) + 4KC(1 − C) − C3

) √
4K(1 − C) − C2

4KC(1 − C)
( √

4K(1 − C) − C2 − 2C
)

+ 2C4


≡ τmax,2.

(2.75)

The general behaviour of Equation (2.75) is complicated, but the result is roughly consistent with

τ & (γe − 1)
(

∆t
∆x

)2

χe. (2.76)

for most reasonable choices of the Courant factor. This is the result quoted in equation (2.36) of
the main text.

To summarise, our scheme is stable when:

τ ≥


max

[
∆t

2(1 − C)
, τmax,1

]
: ∆t < ∆tcrit

max
[

∆t
2(1 − C)

, τmax,2

]
: ∆t ≥ ∆tcrit,

for ∆tcrit, τmax,1, and τmax,2 as defined in equations (2.73), (2.74), and (2.75), respectively.

2.B.4 Electron Heating in a 1D Shock
Formally, for an ideal shock in a zero-viscosity fluid there is no unique path in (P, ρ) space that

connects the pre and post-shock values given by the Rankine-Hugoniot conditions, meaning that
the dissipation per unit volume,

∫
ρTds, is not a well-defined quantity. However, by introducing

any non-zero viscosity, the degeneracy is broken and there exists a unique path in (P, ρ) space
and hence a well-defined dissipation. To see this, we take the 1D Rankine-Hugoniot relations for
a static shock, given some prescription for the viscous stress, τ ≡ 4/3µ~∇ · v (µ is the dynamic
viscosity coefficient, and can be an arbitrary function of plasma parameters),

ṁ = ρv

ṗ = ρv2 + P + τ

Ė =
1
2
ρv3 +

γ

γ − 1
Pv + τv,

(2.77)

where ṁ, ṗ, and Ė are constants representing the mass, momentum, and energy flux across the
shock. Absent τ, we could combine these three equations in several different ways to get a rela-
tionship of the form P = P(ρ). With non-zero viscosity, however, there is only one unique way to
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do this, namely, by taking ṗv − Ė and solving for ṁ, which gives:

P(ρ) = (γ − 1)
(
1
2

ṁ2

ρ
− ṗ +

Ė
ṁ
ρ

)
, (2.78)

or, in terms of κ ≡ Pρ−γ,

κg(ρ) = (γ − 1)
(
1
2

ṁ2

ργ+1 −
ṗ
ργ

+
Ė

ṁργ−1

)
. (2.79)

We assume that the electrons receive a constant fraction of the total heat:

ρTeuµ∂µse = feρTguµ∂µsg

⇒
ργe

γe − 1
uµ∂µκe = fe

ργ

γ − 1
uµ∂µκg,

(2.80)

or in quasi-conservative form (using the mass continuity equation and assuming a flat space met-
ric):

∂

∂xµ
(ρuµκe) = fe

γe − 1
γ − 1

ργ−γe
∂

∂xµ
(
ρuµκg

)
. (2.81)

The final electron entropy is given by integrating this equation from the initial to the final density,
which, for a 1D shock reduces to

∞∫
−∞

∂

∂x
(ṁκe) = fe

γe − 1
γ − 1

ρ f∫
ρi

ργ−γeṁ
∂κ

∂ρ
dρ, (2.82)

giving:

u f
e = ui

e

(
ρ f

ρi

)γe

+
fe

γ − 1

(
ṁ

2ρ f

γ + 1
γe + 1

− ṗ
γ

γe
+

Ėρ f

ṁ
γ − 1
γe − 1

)
−

fe

γ − 1

(
ρ f

ρi

)γe
(

ṁ
2ρi

γ + 1
γe + 1

− ṗ
γ

γe
+

Ėρi

ṁ
γ − 1
γe − 1

)
,

(2.83)

where ρ f is determined from the Rankine-Hugoniot conditions. For a strong shock with Mach
number� 1, this simplifies to

u f
e = ṁvi

fe

γ2
e − 1

[(
γ + 1
γ − 1

)γe
(
1 −

γ

γe

)
+ 1 +

γ

γe

]
, (2.84)

where vi is the pre-shock fluid velocity in the shock’s rest frame. Dividing by u f
g = 2ṁvi

(
γ2 − 1

)−1

yields equation 2.41.



2.C. ELECTRON HEATING IN A VISCOUS SHOCK 59

2.C Electron Heating in a Viscous Shock
In this appendix we show that by introducing an explicit bulk viscosity to the non-relativistic

hydrodynamic equations, our electron heating calculation outlined in §2.4.3 give an electron inter-
nal energy that converges to the analytic result derived in Appendix 2.B.4 for electron heating at a
shock.

We treat viscosity by explicitly adding the 1D viscous energy and momentum fluxes to the
ideal MHD fluxes for a constant kinematic viscosity, ν:

FE,visc = −
4ν
3
ρv

dv
dx

Fp,visc = −
4ν
3
ρ

dv
dx
.

(2.85)

Note that these are non-relativistic fluxes which are formally inconsistent with the relativistic code
in which they are used. However, our goal here is simply to show that with a resolved shock
structure the electron heating calculation converges to the correct answer. The non-relativistic limit
is fine for this purpose. The fluxes in equation (2.85) smooth out discontinuities to a continuous
profile of finite width, determined by ν and the velocity scale. The solution for the profile of a
viscous shock, now defined as a smooth transition from an initial to final state as opposed to a
discontinuity, can be computed analytically for a constant kinematic viscosity, ν. In the shock
frame, taking x→ −∞ as the initial state, this solution takes the form:

v(x) =

(
γ +

2
M
− 1

)
+ exp

[
−

3(x − x0)vi

4ν

(
1 −

1
M

)]
exp

[
−

3(x − x0)vi

4ν

(
1 −

1
M

)]
+ (γ + 1)

, (2.86)

where M is the pre-shock Mach number, vi is the pre-shock speed at x→ −∞, and x0 is a constant
determining the location of the shock. For a pre-shock density ρi, the density profile is obtained
from the mass conservation equation: ρivi/v(x), which determines the pressure profile from equa-
tion (2.78). Similarly, the profile for the internal energy of the electrons in terms of ρ(x) is given
by equation (2.83) with the substitution ρ f → ρ(x).

For our numerical test, we do not use the standard Noh test as outlined in §2.5.1 due to the
problems noted by the original paper (Noh 1987). For any numerical scheme that gives the shock
a finite width, the formation of the shock from the converging flow undershoots the density at
the center of the grid by a finite amount that does not disappear at higher resolution. Given this
difficulty, our numerical test is instead to set the initial and boundary conditions of both the fluid
and electron variables equal to the analytic solution for a stationary shock (e.g., equation 2.86) and
evolve for a dynamical time of L/vi, where L is the grid size. We choose γ = 5/3, vi = 10−2c,
M ∼ 49, and ν = 0.01viL. Figure 2.C.1 shows both the density profile and the ratio of the electron
internal energy to the total internal energy for both γe = 4/3 and γe = 5/3 electrons at the end
of the run as compared to the analytic solution (equation 2.83). We find good agreement with
the analytic solution and second order convergence (Figure 2.C.2) up to the resolution at which
relativistic errors in the analytic solution become important (δug/ug ∼ (v/c)2 ∼ 10−4).
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Figure 2.C.1: High Mach number (∼ 49), stationary, viscous shock results for an electron heating fraction
fe = 0.5 at a resolution of 2000 cells. Top: fluid density. Bottom: electron internal energy relative to
total fluid internal energy. Both the γe = 4/3 and γe = 5/3 electrons display good agreement with the
analytic solution, converging at 2nd order (see Figure 2.C.2). This is in contrast to the formulation without
explicit viscosity used in §2.5.1, in which the shock structure is always just a few grid points. An accurate
calculation of the shock heating requires a well-resolved shock structure (i.e., a shock with a finite width),
which is provided by adding explicit bulk viscosity to the fluid equations. Given that the error incurred
by our numerical scheme without explicit viscosity (∼ 3%) is acceptable for our purposes, we do not use
explicit viscosity in our calculations.



2.C. ELECTRON HEATING IN A VISCOUS SHOCK 61

101 102 103 104

Resolution, N

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

L1
N

or
m

of
E

rr
or

γe = 4/3

γe = 5/3

N−2

N−2

Figure 2.C.2: Convergence results for the electron internal energy in a steady-state, 1D, high Mach number,
viscous shock as compared to the analytic solution (see Appendix 2.C). Both the γe = 5/3 and γe = 4/3
electrons converge at 2nd order, as opposed to the non-viscous shock of §2.5.1 where only the γe = 5/3
electrons converged to the analytic solution. Second order convergence is achieved in this test problem
because the shock profile is well-resolved and continuous. This shows that our method correctly captures
the dissipation in strong shocks when the shock profile can be resolved. At the highest resolution, relativistic
corrections to the (non-relativistic) analytic solution become important so the error no longer converges at
second order.
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2.D Torus Initial Conditions
In this appendix we describe in more detail the initial configuration of the torus in our simu-

lations of an accreting black hole. In all expressions that follow we measure radii in units of the
gravitational radius rg ≡ GM/c2 (or equivalently set G = M = c = 1).

Fishbone & Moncrief (1976) derived an equilibrium solution (their equation 3.6) of the general
relativistic hydrodynamic equations in the Kerr metric in terms of the relativistic enthalpy, h ≡
(ρ+ Pg + ug)/ρ, and the constant angular momentum per unit mass, l ≡ uϕut. We use their equation
3.6 exactly as presented when r > rin and when the right-hand side is positive, otherwise we set
ρ = P = 0. Additionally, we assume an adiabatic equation of state, P = κ0ρ

γ, for some choice of
κ0, and fix l such that the density maximum occurs at rmax:

l =


[
a2 − 2a

√
rmax + r2

max

] [
−2armax
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√
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√
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,

(2.87)

where a is the dimensionless spin parameter of the black hole. This expression for l is equivalent
to the Keplerian value at r = rmax.
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Chapter 3

The Disc-Jet Symbiosis Emerges: Modeling
the Emission of Sagittarius A* with
Electron Thermodynamics

An earlier version of this article was previously published as Ressler S. M., Tchekhovskoy A.,
Quataert E., and Gammie C. F., 2017, MNRAS, 467, 3604

3.1 Abstract
We calculate the radiative properties of Sagittarius A* – spectral energy distribution, variability,

and radio-infrared images – using the first 3D, physically motivated black hole accretion models
that directly evolve the electron thermodynamics in general relativistic MHD simulations. These
models reproduce the coupled disc-jet structure for the emission favored by previous phenomeno-
logical analytic and numerical works. More specifically, we find that the low frequency radio
emission is dominated by emission from a polar outflow while the emission above 100 GHz is
dominated by the inner region of the accretion disc. The latter produces time variable near infrared
(NIR) and X-ray emission, with frequent flaring events (including IR flares without corresponding
X-ray flares and IR flares with weak X-ray flares). The photon ring is clearly visible at 230 GHz
and 2 microns, which is encouraging for future horizon-scale observations. We also show that
anisotropic electron thermal conduction along magnetic field lines has a negligible effect on the
radiative properties of our model. We conclude by noting limitations of our current generation of
first-principles models, particularly that the outflow is closer to adiabatic than isothermal and thus
underpredicts the low frequency radio emission.

3.2 Introduction
Sagittarius A* (Sgr A*), the supermassive black hole at the center of our galaxy, is a prime

candidate for directly comparing general relativistic magnetohydrodynamic (GRMHD) simula-

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1611.09365
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tions of accretion discs to observations. Not only is there a wealth of observational data in the
radio-millimetre (Falcke et al. 1998; An et al. 2005; Doeleman et al. 2008; Bower et al. 2015a),
near-infrared (Genzel et al. 2003a; Do et al. 2009; Schödel et al. 2011), and X-ray (Baganoff et al.
2003; Neilsen et al. 2013) bands, but the Event Horizon Telescope (Doeleman et al. 2008) and
GRAVITY (Gillessen et al. 2010) will soon be able to spatially resolve the structure of the inner-
most region of the disc near the event horizon. 1

The accretion rate in Sgr A* is orders of magnitude less than the Eddington limit, putting it in
the Radiatively Inefficient Accretion Flow (RIAF) regime, characterised by a geometrically thick,
optically thin disc (Ichimaru 1977; Rees et al. 1982; Narayan & Yi 1994; Quataert 2001; Yuan &
Narayan 2014). This particular class of accretion discs in some ways lends itself well to numerical
simulation, given the dynamical unimportance of radiation and the large scale height of the disc
that can be more easily resolved. Over the past few decades, several numerical methods to simulate
single-fluid RIAFs around rotating black holes in full general relativity have been developed (e.g.
Komissarov 1999; De Villiers & Hawley 2003; Gammie et al. 2003; Tchekhovskoy et al. 2007;
White et al. 2016).

On the other hand, the low densities typical of RIAFs imply that the electron-ion Coulomb col-
lision time is much longer than an accretion time, so a single fluid model of the thermodynamics
is not applicable. However, in the limit that the electrons are colder than the protons, Te . Tp,
which is generally expected for RIAFs, these single-fluid simulations should provide a reason-
able description for the total gas properties. Thus, to first approximation, the accretion dynamics,
magnetic field evolution, and ion thermodynamics are known but the electron temperature is un-
determined. Previous approaches to modelling the emission from single-fluid RIAF simulations
have attempted to overcome this limitation by adopting simplified prescriptions for the electron
thermodynamics, such as taking Te/Tp = const. (e.g. Mościbrodzka et al. 2009), splitting the sim-
ulation into jet and disc regions with different electron temperatures in each (e.g. Mościbrodzka
et al. 2014; Chan et al. 2015b), or by solving a 1D, time-independent electron entropy equation
in the midplane and interpolating to the rest of the grid (e.g. Shcherbakov et al. 2012). Recently,
however, we have developed a model which allows for the self-consistent evolution of the elec-
tron entropy alongside the rest of the GRMHD evolution, including the effects of electron heating
and electron thermal conduction along magnetic field lines (Ressler et al. 2015, Chapter 2). This
model has been further extended by Sadowski et al. (2016) to include the dynamical effects of
radiation and Coulomb Collisions on the fluid (while neglecting electron conduction), where they
demonstrate that these effects are negligible for the accretion rate of Sgr A*; thus we neglect them
here.

Here we present the observational application of that electron model to Sgr A* using 3D
GRMHD simulations. Throughout we focus on emission by thermal electrons. The aim of this
chapter is to elucidate the basic properties of a fiducial model that is representative of simulations
that include our electron entropy evolution. We do not provide an exhaustive study of parameter

1This chapter was published in 2017, before GRAVITY and EHT released their first results in 2018 (Gravity
Collaboration et al.) and 2019 (Event Horizon Telescope Collaboration et al.), respectively. Note, however, that the
first target of EHT was the black hole at the center of M87 and (as of the writing of this thesis) the EHT results for Sgr
A* are still forthcoming.
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space in order to find a “best-fit” model. This is in part because we believe that the theoretical
problem in its present state is too degenerate and uncertain to warrant such inferences. We do,
however, compare and contrast our results to observations of Sgr A* and previous models.

The literature has used various terms to distinguish between types of outflow in black hole
accretion disc systems. Most notable are the labels“jet,” “disc-jet,” and ”wind,” (see section 3.3
in Yuan & Narayan 2014 for a review). “Jet” typically refers to the Blandford & Znajek (1977a)
model, which describes an electromagnetically dominated, relativisitic outflow powered by the
spin of the black hole. In GRMHD simulations, the thermodynamics are unreliable in this region
due to its high magnetization. Thus we do not attempt to model the emission from the jet but
exclude it from the domain when calculating the spectra (see §3.4 for details). The “disc-jet” is the
label typically given to the more mildly relativistic outflow sourced by the accretion disc (e.g., the
Blandford & Payne 1982 or Lynden-Bell 2003 models, see Yuan et al. 2015 for the distinction),
while the term “wind” generally refers to non-relativistic outflow that occupies a larger solid angle.
The thermodynamics of these regions are more reliably captured by GRMHD simulations since
they are not as extremely magnetized. In the present chapter we do not make a precise distinction
between the labels“disc-jet” and the “wind,” but will generally use the term “outflow” and “disc-
jet” to refer to the disc-jet and wind regions.

The chapter is organized as follows. §3.3 describes our GRMHD method for electron entropy
evolution, §3.4 describes how we construct spectra and images of Sgr A*, §3.5 describes the basic
parameters and initial conditions of our fiducial model, §3.6 presents the results, §3.7 discusses the
thermodynamics of the outflowing polar regions, §3.8 compares our model to the phenomenologi-
cal disc-jet models in the literature, and §3.9 concludes.

For convenience, we absorb a factor of
√

4π into the definition of the magnetic field 4-vector,
bµ, so that the magnetic pressure is Pm = b2/2. Furthermore, we set GM = c = 1 throughout,
where G is the gravitational constant, M is the black hole mass, and c is the speed of light.

3.3 Fluid Model and Electron Thermodynamics
Using the assumption that Te . Tp we take the solution of the single-fluid, ideal GRMHD

equations to be a good approximation for the total fluid number density, n, pressure, Pg, magnetic
field four-vector, bµ, and four-velocity, uµ. We solve these equations using a version of the numer-
ical code HARM (Gammie et al. 2003) that we parallelized using message passing interface (MPI),
extended to 3D, and made freely available online as the HARMPI code.2 For the electron variables,
we use the charge neutrality assumption to constrain the electron number density and four-velocity
to be the same as that of the ions (i.e.; ne = ni = n, uµe = uµi = uµ) but evolve a separate entropy
equation to solve for the electron temperature:

ρTeuµ∂µse = feQ − ∇µqµe − aµqµe (3.1)

where fe is a function of the local plasma parameters determining the fraction of the total heating
rate per unit volume (Q) given to the electrons, qµe = φb̂µ is the anisotropic thermal heat flux

2https://github.com/atchekho/harmpi

https://github.com/atchekho/harmpi
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space

Figure 3.1: Properties of our 3D black hole accretion simulations. The top left panel shows the density
over-plotted with white magnetic field lines, the top middle panel shows the time- and ϕ-average electron
temperature in units of mec2, and the top right panel shows the ratio of the anisotropic (field-aligned) heat
flux to the isotropic heat flux (both computed from a simulation without electron conduction). All quantities
in the top panel have been folded across the equator, and black lines denote the b2/ρ = 1 contour. The
bottom left panel shows the angular variation of the plasma parameter, β ≡ 2Pg/b2, the magnetization
parameter, σ ≡ b2/ρ, and the electron heating fraction, fe, averaged over r from the event horizon to 25rg,
while the bottom right panel shows the angular variation of the electron temperature at 5, 15, and 30 rg. All
quantities have been averaged over ϕ and time from 15, 000−19, 000 rg/c. Note how the relativistic electron
temperatures important for synchrotron emission are strongly concentrated in the coronal and outflowing
regions where β . 1. This is a consequence of the strong β-dependence of our electron heating fraction, fe
(see §3.3).
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along field lines, b̂µ is a unit vector along bµ, and aµ = uν∇νuµ is the four acceleration. The latter
properly accounts for gravitional redshift of the heat flux (Chandra et al. 2015b). To calculate Q,
we directly compare the internal energy obtained from solving an entropy conserving equation to
the total internal energy of the gas as described in Ressler et al. (2015). As in all conservative
GRMHD codes, the heating is provided by grid-scale dissipation that is a proxy for of magnetic
reconnection, shock heating, Ohmic heating, and turbulent damping. In this work, we determine
fe via equations (48) and (49) in Ressler et al. (2015), which were obtained from a fit to plasma
heating calculations (Howes 2010) and are reasonably accurate at modelling particle heating in the
solar wind (Howes 2011). The key qualitative feature of this prescription for fe is that it depends on
the plasma β-parameter, β ≡ Pg/Pm, the ratio between the fluid and magnetic pressures: electrons
(ions) are predominantly heated for β . 1 (β & 1), which is a general result predicted by linearizing
the Vlasov equation and calculating the fractional heating rates of the two species due to MHD
turbulence (Quataert & Gruzinov 1999).

Thus, for a magnetized accretion disc, we expect to have hot electrons primarily concentrated
in the coronal and outflowing regions characterized by β . 1. Note that although the quantitative
formula we use is only strictly valid for heating due to dissipation at the smallest scales of the
MHD turbulent cascade and not magnetic reconnection, heating due to the latter has a qualitatively
similar dependence on β (Numata & Loureiro 2015). To calculate the total heating rate per unit
volume, Q ≡ ρTguµ∂µsg, we use the model detailed and tested in Ressler et al. (2015), which
self-consistently captures the numerical heating provided by the ideal conservative GRMHD evo-
lution. Ressler et al. (2015) show that this method accurately calculates the heating rate in several
test problems, including strong shocks and forced MHD turbulence. Finally, we evolve the con-
ductive flux identically to Ressler et al. (2015) using the model of Chandra et al. (2015b), where
we parametrize the electron thermal conductivity with a dimensionless number αe, related to the
conductivity, χe via

χe = αecr. (3.2)

For the present work, we focus on αe = 10 and αe = 0. The former essentially saturates the heat
flux at its maximum value of uevt,e, where ue is the electron internal energy per unit volume and vt,e

is the electron thermal speed, while αe = 0 corresponds to zero heat flux.
The only free parameter in our electron model is the dimensionless electron conductivity, αe,

since we have fixed the electron heating model as described above. Note that there are, how-
ever, significant uncertainties introduced by the uncertainty in the poorly constrained macroscopic
parameters of the system (e.g., magnetic flux and black hole spin).

3.4 Radiation Transport
To calculate model spectral energy distributions (SEDs), we use the Monte Carlo radiation code

GRMONTY (Dolence et al. 2009) adapted to use our evolved electron temperature to calculate the
emissivity and scattering/absorption cross-sections. We include synchrotron emission/absorption
and inverse Compton scattering. The emission is calculated in post-processing and does not affect
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the flow dynamics. Furthermore, we also generate radio and infrared images using the ray-tracing
code iBOTHROS (Noble et al. 2007) which includes synchrotron emission/absorption.

When calculating the spectrum, we average the emission over azimuthal observing angle in
order to reduce noise. This does not qualitatively affect the time-averaged spectrum and only very
modestly reduces temporal variability (as we have determined using a subset of the simulation
outputs). Furthermore, we also make the “fast light” approximation, meaning that we compute a
single spectrum by propagating photons on a fixed time slice of fluid quantities. This amounts to
assuming that the light propagation time across the domain is small compared to the dynamical
time and should not be a dominant source of error.

While the GRMHD simulation is scale free, the radiation transport depends on the physical
mass scale of the accretion disc. This dependence can be represented by a single free parameter,
namely, the mass unit, Munit, which is a number in grams that converts the simulation density to
a physical density (and thereby fixes the physical accretion rate). We set this free parameter by
normalizing the time-averaged flux at 230 GHz to the observational value of 2.4 Jy (Doeleman
et al. 2008).

Finally, in order to limit the emission to regions of the simulation in which we can reasonably
trust the fluid thermodynamics, we impose a limit on the flow magnetization σ = b2/ρc2. That is,
we only consider emission that originates or scatters from regions of σ < 1. The thermodynamics
in regions with larger σ become uncertain in conservative codes because small errors in the total
energy (which is dominated by magnetic energy) lead to large errors in the internal energy. Note
that this is true for both the underlying GRMHD entropy and temperature and not just the electron
temperature. The motivation for our particular maximum value of σ and the effects of varying this
parameter are described in Appendix 3.C.

3.5 Accretion Disc Model
We initialise the simulation with the now “standard” Fishbone & Moncrief (1976) equilibrium

torus solution with a dimensionless spin, a = 0.5 (note the change from a = 0.9375 used in Chapter
2), inner radius, rin = 6rg, and with the maximum density of the disc occurring at rmax = 13rg

(see Appendix 3.B for more details). Here rg = GM/c2 is the black hole gravitational radius.
The adiabatic index of the gas is taken to be γ = 5/3, appropriate for ions with sub-relativistic
temperatures. We initialize the torus with a single magnetic field loop in the (r, θ) plane, as we
discuss in Appendix 3.B.

We take the adiabatic index of the electron fluid to be γe = 4/3, appropriate for relativistically
hot electrons, and initially set ue = 0.1ug and the electron heat flux to zero. We apply the floors on
internal energy (both for the total gas and electrons) and density in the drift frame of the plasma as
described in Appendix 3.B. Here we use the same floor prescription for the electrons as in Ressler
et al. (2015). We run the simulation for a time of 19, 000 M, which is long enough for the inner
r . 25rg portion of the disc to be in inflow equilibrium. The outflow, however, travels at higher
velocities so that it takes . 1000 M for the flow to reach 100rg.

Note that we have assumed a constant value for both the electron and total gas adiabatic indices.
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Sadowski et al. (2016) implemented temperature-dependent adiabatic indexes and showed that
while γe was always ≈ 4/3 in the domain of interest, the total adiabatic index varied from 5/3 in the
midplane to 4/3 in the polar regions, meaning that assuming γ = 5/3 (as we do here) overestimates
the gas temperature by about a factor of 2. However, their resulting electron temperatures were
qualitatively very similar to those in the constant adiabatic index model (see their Figure 5), so we
do not expect this approximation to have a significant effect on our results.

Figure 3.B.1 shows our computational grid, which is uniformly discretized in “cylindrified”
and “hyper-exponential” modified Kerr-Schild (MKS) coordinates as described in Appendix 3.B.
The grid extends from an inner radius of rin = 0.8(1 +

√
1 − a2) rg (≈ 1.62rg for a = 0.5) to an

outer radius of rout = 105rg. In contrast to the cylindrified and hyper-exponentiated coordinates
we use in HARMPI, we use standard MKS coordinates in iBOTHROS and GRMONTY. As photons
propagate between grid points, the radiation transport algorithms require frequent evaluation of
the connection coefficients which are analytic in MKS but require multiple numerical derivatives in
the cylindrified coordinates. The latter greatly increases the computational cost of these methods,
which is not an issue for HARMPI because after it evaluates the connection values once at the
beginning of the simulation at each grid point, it stores them for future use. To read in data from
HARMPI, we first use the Jacobian of the coordinate transformation to convert all 4-vectors and then
interpolate onto the grids of iBOTHROS and GRMONTY.

3.6 Results

3.6.1 Basic Flow Properties
Figure 3.1 shows the time and azimuthally averaged electron temperature, density, and heat

flux relative to the field-free value, as well as 1D angular profiles of the plasma beta parameter,
β, magnetization, σ = b2/ρ, electron heating fraction, fe, and dimensionless electron temperature,
Θe ≡ kBTe/mec2. The 1D profiles are additionally averaged over radius from the horizon to 25rg.
Our 3D simulations reproduce the general qualitative result of Ressler et al. (2015)’s 2D simula-
tion: the hottest electrons are concentrated in the lower density coronal and funnel wall regions,
while the midplane of the disc remains relatively cold. Furthermore, we find that the anisotropic
heat flux is suppressed by a factor of ∼ 5− 10 relative to the isotropic heat flux, roughly equivalent
to the 2D result. This is because the magnetic field is, on average, primarily toroidal, while the
temperature gradients are primarily poloidal. We note that the total heating rate integrated over
the volume with σ < 1 between the event horizon and the inflow equilibrium radius3 (∼ 25rg)
is ∼ 0.39% of |Ṁc2|, well below the efficiency predicted by the Novikov & Thorne (1973) (NT)
model for a disc extending out to 25rg with a spin of a = 0.5 (6.3%). This result is not necessarily
surprising; the thin disc efficiency assumes that all of the gravitational binding energy of the disc
must be dissipated and radiated away and that outflow is negligible. RIAF discs, on the other hand,
are typically characterized by significant outflow in the form of Poynting and turbulent energy flux

3The integrated heating rate is calculated as
25rg∫
rH

−Qut
√
−gdx1dx2dx3, where rH is the radius of the event horizon.
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Figure 3.2: Spectral Energy Distribution (SED) for our fiducial model averaged over 15, 000 − 19, 000 rg/c
(about 1 day for Sgr A*), as observed at an inclination angle of 45◦ with respect to the spin axis of the black
hole. We show results with and without anisotropic electron conduction (with the dashed blue and solid red
lines, respectively). The shaded grey region represents the 1σ time-variability of the SED over this time
interval without conduction (the time variability with conduction is indistinguishable, so it is not plotted
here). Data points represent various observations and upper limits (see Appendix 3.A). The solid vertical
line in the X-rays roughly represents the range of observed flares in Sgr A* (Neilsen et al. 2013), while
the dashed vertical line represents “quiescent” emission (i.e. between 10 -100% of the total total quiescent
emission observed from Sgr A*; Baganoff et al. 2003 ). The SED is normalized to match the observed 230
GHz flux.
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so that the energy going into dissipation can be much less (though the latter is typically only a small
fraction of Ṁc2, e.g. Yuan et al. 2012, the former can be significant, e.g. McKinney & Gammie
2004). However, we find that our calculation of the total heating rate has significant contribution
from the negative heating in the polar regions (discussed in §3.7) which is a consequence of nu-
merical diffusion. If we focus exclusively on the disc, excluding negative heating rates in the polar
regions, the heating rate in the same volume totals ∼ 4.6% of |Ṁc2|, much higher, of order the NT
efficiency.

The simulation has a significant amount of magnetic flux threading the black hole, with a time
averaged value of ΦBH ≈ 40 (Ṁc)1/2rg, which can be compared to the typical saturation value of
a Magnetically Arrested Disc, ≈ 50 (Ṁc)1/2rg (MAD, Narayan et al. 2003; Tchekhovskoy et al.
2011), at which the excess flux impedes the inflowing matter. Interestingly, in a few test runs
varying the magnetic flux, we have found that as long as the magnetic flux is below this saturation
value, the qualitative features of the spectrum are not strongly dependent on the flux threading the
black hole. Note that this is true only when normalising the spectrum to the 230 GHz flux by
varying the accretion rate. Higher (lower) magnetic flux values tend to require smaller (higher)
accretion rates. If instead we increased Φ at a fixed accretion rate we would expect significant
differences in the spectrum (e.g., higher flux, higher peak frequency, etc).

3.6.2 Spectra and Images
Figure 3.2 shows the SED of our model averaged from 15, 000−19, 000 rg/c (a time of about 1

day for Sgr A*), at an inclination angle of 45◦ with and without thermal conduction and with time-
variability shown by the shaded region. To normalize the 230 GHz flux, the simulation required
a time-averaged accretion rate of 1.1 × 10−8M� yr−1, or ∼ 1.2 × 10−7 ṀEdd for Sgr A*. This is in
reasonable agreement with the estimate of 6 × 10−8M� yr−1 provided by the inflow-outflow model
of Shcherbakov & Baganoff (2010) and falls within the constraints set by radio polarization mea-
surements (Marrone et al. 2007). Interestingly, this accretion rate is about two orders of magnitude
less than the accretion rate at the Bondi radius inferred from X-ray observations (Baganoff et al.
2003), suggesting the existence of a strong, large scale outflow.

It is convenient to interpret the spectrum using the luminosity-weighted fluid quantities at the
last scattering surface (this is simply the location of the emitting regions for photons optically thin
to scattering). These are shown as a function of frequency in Figure 3.3. The spectrum can be
decomposed into three distinct regions:

1. Below about ∼ 230 GHz the emission is optically thick synchrotron and originates at larger
radii (∼ 10 − 200rg) in the outflow (vr ∼ 0.01 − 0.1c) of the corona/funnel (|θ − π/2| ∼
20◦ − 60◦).

2. Between ∼ 230 GHz and ∼ 1017 Hz ' 0.5 keV the emission is optically thin synchrotron
from radii close to the horizon (. 10rg) and closer to the midplane (|θ − π/2| ∼ 10◦ − 30◦).
On average, the emitting regions are inflowing.
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3. Above ∼ 1017 Hz ' 0.5 keV the luminosity-weighted number of scatterings sharply transi-
tions from ∼ 0 to ∼ 1, indicating that the X-ray emission is dominated by inverse Comp-
ton scattering. More precisely, by computing the luminosity-weighted photon energy gain
per scattering and the luminosity-weighted pre-scattering frequency, we find that the X-ray
emission is dominated by infrared photons (∼ 1013 − 1015 Hz) scattered by electrons emit-
ting synchrotron radiation in the IR. The latter point can also be seen in the correspondence
between the luminosity-weighted fluid quantities at the point of origin for the IR and X-ray
photons in Figure 3.3.

Figure 3.2 shows that the spectra of models with and without anisotropic electron thermal
conduction are nearly indistinguishable from each other. We have found this to be a robust result
for the Standard and Normal Evolution (SANE) accretion flows (Narayan et al. 2012) without
dynamically-important magnetic flux over a wide variety of initial conditions, black hole spin, and
magnetic flux (that is, for fluxes less than the MAD saturation limit).

We find that our model produces significant X-ray and NIR variability, which qualitatively
agrees with the observed flaring behaviour of Sgr A* (see §3.6.3), though for this particular model
we do not see strong X-ray flaring events (& 10 times quiescence) and the quiescent X-ray flux
may be moderately overpredicted. We also find that our fiducial model has a spectral slope near
230 GHz that agrees well with observations, but at . 1011 Hz the slope becomes steeper than that
observed, d log(Fν)/d log ν ≈ 0, resulting in an underprediction of the low frequency emission (see
§ 3.7.1 for more details).

Figure 3.4 shows time-averaged 30 GHz, 230 GHz, and 2 µm images without electron thermal
conduction at 12◦, 45◦ and 90◦ (images with electron conduction look nearly identical). In gener-
ating these images we used iBOTHROS and neglected Inverse Compton scattering, as appropriate
for such low frequencies. The photon ring is clearly visible at both 230 GHz and 2 µm. This bright
circle of emission surrounding the shadow of the black hole is the observational signature of the
effects of the circular photon orbit and strong lensing on the small emitting region in the simula-
tions. A primary goal of the Event Horizon Telescope is to measure the size of this ring in order
to probe the strong field limit of general relativity. The lower frequency images are dominated
by disc-jet emission from larger radii while the higher frequency emission is dominated by disc
emission close to the black hole.

An important property of our results is that they self-consistently produce the “disc-jet” struc-
ture appealed to in previous phenomenological models (e.g.; Falcke & Biermann 1995; Yuan et al.
2002; Mościbrodzka & Falcke 2013; Mościbrodzka et al. 2014; Chan et al. 2015b). This is clear
in the luminosity-weighted fluid quantities in Figure 3.3 which show a transition from emission
dominated by inflowing equatorial material above 1011 Hz to emission dominated by outflowing
polar material at lower frequency. The disc-jet structure is particularly clear in the images in Figure
3.4, which show that the outflow dominates at lower frequency while the very compact emitting
disc dominates at higher frequencies. This type of structure naturally occurs in our model because
of the strong β dependence of the electron heating fraction, fe, which suppresses electron heating
in the midplane in favour of the polar regions.
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space

space

Figure 3.3: Fluid quantities at the point of origin averaged over individual photons as a function of observed
photon frequency for the spectrum shown in Figure 3.2. Plotted are the magnetization, 〈σ〉 = 〈b2〉/〈ρ〉, the
plasma 〈β〉 = 〈Pg〉/〈Pm〉, the electron heating fraction, 〈 fe〉, the Boyer-Lindquist (BL) radial coordinate, 〈r〉,
the deviation of the BL polar angle from the midplane, 〈|θ−π/2|〉, the magnitude of the fluid-frame magnetic
field, 〈B〉 = 〈

√
bµbµ〉, the electron number density, 〈ne〉, and the dimensionless electron temperature in units

of the electron rest mass, 〈Θe〉 = 〈kBTe/mec2〉, as well as the radial velocity, vr =
√

g11〈ux1/ut〉. The
optically thick low frequency synchrotron emission (below ∼ 230 GHz) comes from larger radii in the
outflow away from the midplane where β is smallest and hence the electron heating fraction, fe, is largest.
It is interesting to note that despite the larger fe in these regions that the electron temperatures are quite
modest (Θe . 10) (see Section 3.7.1 for more details). The higher frequency emission (above ∼ 230 GHz)
is emitted and/or scattered from smaller radii close to both the horizon and the midplane. In these regions,
the temperatures are much larger (reaching Θe ∼ 100 and above), due to the increased turbulent heating in
the disc fuelled by the deeper gravitational potential. Between 230 GHz and about 1017 Hz the emission
is predominantly optically thin synchrotron, while above 1017 Hz the emission is predominantly inverse
Compton scattering of IR photons by IR-emitting electrons. This explains the transitions in the average
fluid quantities at about 1017 Hz.
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Figure 3.4: Linear intensity maps for our fiducial model of Sgr A* without electron thermal conduction (the
effect of conduction on the images is negligible) at 30 GHz (left column), 230 GHz (middle column), and
2 µm (right column) for inclination angles of 12◦ (top row), 45◦ (middle row) and 90◦ (bottom row). The
inclination of 90◦ is edge-on while 12◦ is nearly face-on. Images are averaged over time from 15, 000 −
19, 000 rg/c and normalized such that the 230 GHz flux is 2.4 Jy (Doeleman et al. 2009). The physical size
of the 30 GHz images is 100 rg × 100 rg while the physical size of the 230 GHz and 2 µm images is 25 rg

× 25 rg. For all inclination angles, the photon ring is clearly visible at 230 GHz, the frequency at which the
Event Horizon Telescope will be able to spatially resolve Sgr A* (Doeleman et al. 2008), and is also clearly
visible at 2 µm, the wavelength of interest to GRAVITY (Gillessen et al. 2010). The low frequency radio
emission is dominated by the outflow at large radii, consistent with previous phenomenological models of
Sgr A* (e.g. Falcke & Biermann 1995; Yuan et al. 2002; Mościbrodzka & Falcke 2013; Mościbrodzka et al.
2014; Chan et al. 2015b).
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3.6.3 Time Variability
Figure 3.5 shows the light curves of our fiducial model in the mm, NIR, and X-ray frequencies

compared to the accretion rate of the disc over the same time interval. Our simulations show
significant and correlated time variability in the NIR and X-ray bands while the mm emission is
significantly less variable.

The general correspondence between the NIR and X-ray light curves is due to the fact that the
flares are caused by localized hot spots of low β that emit high levels of NIR synchrotron emission,
a fraction of which is then additionally upscattered to the X-rays. Each large spike in X-rays is
accompanied by a comparably large spike in the NIR emission (e.g. the X-ray peak labeled “A”),
in agreement with observations of Sgr A* that find that all X-ray flares have NIR counterparts
(see, e.g., Table 3 in Eckart et al. 2012 for a recent summary). On the other hand, there are a
few large spikes in the NIR emission that are accompanied by only relatively small increase in
the X-ray flux (e.g. the NIR peak labeled “B”). Since we have not tuned our model to precisely
match the time-averaged quiescent X-ray flux, the key feature here is the significant increase in
IR luminosity without a corresponding increase in X-ray luminosity (and not necessarily whether
the X-ray luminosity is above the quiescent threshold). Therefore, these particular NIR flares are
consistent with lacking a strong X-ray counterpart, which are are also observed in Sgr A* (e.g.,
Hornstein et al. 2007, Trap et al. 2011). Furthermore, we find that the X-ray emission in our
model in fact has no well defined “quiescent state” but is rather constantly flaring. This has been
suggested for Sgr A*, where the observed “quiescent state” could be a collection of undetectable
flares (Neilsen et al. 2013).

The X-ray “flares” in our model shown in Figure 3.5 are relatively weak in magnitude, with
luminosities peaking at factors of only a few times the quiescent level. During this time interval,
we find no evidence for the strong X-ray flares observed in Sgr A* which range from ∼ 10 to & 100
times the quiescent level (e.g.; Trap et al. 2011 and references therein; Neilsen et al. 2013). While
this could point to the need for nonthermal particles (see, e.g. Ball et al. 2016), it could also be a
consequence of the limited time interval considered here (∼ one day, while Sgr A* has major flares
only ∼ once per day) or the particular parameters used in our model (e.g., spin and magnetic flux).
This will be investigated in future work.

3.6.4 Dependence of Observables on Disc Parameters
Here we briefly describe the qualitative effects of varying several parameters of our fiducial

model. These effects are not unique to our electron model but are more general properties of
radiative GRMHD models of low Ṁ discs as seen in previous parameter studies (e.g. Mościbrodzka
et al. 2009; Chan et al. 2015b)

Spin: Larger black hole spin tends to increase both NIR and X-ray emission. This is because
high spin black holes have inner-most stable circular orbits (ISCOs) that are closer to the event
horizon, which means that the accretion disc will extend to smaller radii where the temperatures
are generally higher due to the deeper gravitational potential. These higher temperature regions
emit at higher frequencies.



3.6. RESULTS 76

Figure 3.5: Top Panel: νLν as a function of time at an inclination angle of 45◦ for NIR (2.18 microns)
and X-ray (2-8 keV) bands during the time interval 15, 000 − 19, 000 rg/c or ∼ 1 day for Sgr A*. Each
light-curve is normalized to the mean value of νLν over the entire interval. Also plotted is the total quiescent
X-ray flux as observed by Chandra (Neilsen et al. 2013), with the same normalization as our model’s X-ray
light curve. Though only ∼ 10% of this quiescent emission is believed to originate from the inner accretion
flow, the total quiescent flux is the relevant threshold for X-ray flares. Both the X-ray and NIR emission
show order of magnitude variability on time-scales of ∼ 0.5 hours and are strongly correlated. Note that,
as observed in Sgr A*, each X-ray flare is associated with a NIR flare (e.g. the peak labeled “A”), but there
are also a few candidates for NIR flares without X-ray counterparts (e.g. the peak labeled “B”), which are
also observed in Sgr A*. Middle Panel: 230 GHz flux in Jy as a function of time at an inclination angle
of 45◦. Compared to the NIR and X-ray flux, the mm flux varies only weakly over this time interval (note
the linear scale), consistent with observations. Bottom Panel: Accretion rate in units of 10−8 solar masses
per year. The variability in Ṁ has roughly the same time scale as the variability in NIR and X-ray emission
because the latter originate close to the horizon. However, in detail the emission is not well-correlated with
fluctuations in Ṁ.
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Inclination Angle: Inclination angles closer to 90◦ (edge-on), tend to have larger NIR and X-
ray emission (relative to the mm emission) than inclination angles closer to 0◦ (face-on). This is
primarily due to Doppler boosting caused by rotation of the disc. When looking edge-on, Doppler
beaming leads to the observed emission being dominated from the side of the disc that is moving
towards us, which will also be Doppler blue-shifted from the fluid frame frequency. This increases
the relative NIR and X-ray emission compared to the mm emission. On the other hand, when
looking face-on, the motion of the disc is perpendicular to the line of sight and Doppler effects are
minimized (though there can still be Doppler effects from the outflow).

3.6.5 Convergence of Spectra
In order to test whether our results are converged, we restarted the fiducial model described in

Section 3.5 at double the resolution in each direction (namely, 640 × 512 × 128). We did this by
copying the fluid quantities at a particular time in each cell on the lower resolution grid into 8 cells
on the higher resolution grid and using this as an initial condition. To prevent magnetic monopoles
from being generated by the numerical interpolation, we operated on the magnetic vector potential
instead of the magnetic field directly. We then ran for 2000 M, computed the time-averaged spec-
tra, and compared to the lower resolution spectra that had also run for an additional 2000 M. Since
2000 M is roughly enough time for the inner ∼ 15rg of the disc to accrete and for the outflow to
reach beyond 100rg, we are reasonably confident that the simulation has had enough time to evolve
dynamically from the initial restart. Figure 3.6 shows that the time averaged spectra are qualita-
tively the same. Quantitatively, the differences are minor, though interestingly the low frequency
slope in the higher resolution simulation is slightly closer to observations. Unfortunately, doubling
the resolution even further to see if this trend continues is too computationally expensive with our
current resources; in fact, even running the 640× 512× 128 simulation for much longer is pushing
the limit of what we can afford for the present work. With that said, the fact that the differences
between the spectra at these two different resolutions are almost negligible is encouraging and pro-
vides some assurance that the observational features of our model are not strongly dependent on
resolution.

3.7 Thermodynamics in the Polar Outflow
The low frequency radio emission in our simulation generally originates within or near to what

has in past work been described as the jet “sheath” (e.g. Mościbrodzka & Falcke 2013), which is
the portion of the outflow that contains enough mass to produce emission, typically with σ . 1.
This region is characterized by a strong gradient in mass density and entropy, corresponding to a
nearly stationary contact discontinuity. The local Lax-Friedrichs (LLF) Riemann solver employed
in HARM is known to have poor performance in such flows. When the gradient is not well resolved,
artificial numerical diffusion affects the solution. In our calculations, the e-folding length of the
entropy is only ∼ 0.15 cells, i.e., very poorly resolved. This leads to a largely negative time and
ϕ-averaged heating rate close to the contact discontinuity, seen in Figure 3.7 as the white regions.
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Since the entropy equation is only being solved to truncation error while the conservation of energy
equation is satisfied to machine precision, it is fine for the instantaneous heating rate to be locally
negative. However, it is a concern that the time and spatially integrated heating rate is negative.
This still would not be a concern if the negative heating was negligible in magnitude. However,
when integrated over the volume between the black hole event horizon and the inflow equilibrium
radius (and limiting the integration domain to σ < 1), the heating totals ∼ −4.2% of |Ṁc2|, roughly
the same magnitude as the positive heating (∼ 4.6% of |Ṁc2|). In Appendix 3.D we discuss this
issue in detail using a simple 1D test of advection of a contact discontinuity. This test shows
explicitly that large, unresolved gradients in entropy lead to negative heating rates such as those
seen in Figure 3.7. This is a manifestation of the diffusion of contact discontinuities inherent in
finite-volume codes made more extreme by the use of the LLF Riemann solver. These errors do
converge to 0 if the contact “discontinuity” is actually a smooth but steep transition, but the jet-
sheath interface layer is not well-resolved at the current resolution. It is important to stress that in
addition to affecting the heating rate inference, related concerns apply to the thermodynamics of
the HARM solution as well, which are significantly less accurate in regions of steep (poorly resolved)
gradients.

More sophisticated Riemann solvers are known to be significantly less diffusive near contact
discontinuities and are particularly well-suited for those with small perpendicular velocity com-
ponents (as we have here). It is possible that including one of these solvers (e.g., the Harten-
Lax-van-Leer-Discontinuities solver) might reduce or remove this negative heating and affect the
thermodynamics of the polar outflow. This in turn might affect the low frequency emission from
the simulations. However, it is not straightforward to implement these more advanced Riemann
solvers in a general relativistic framework and thus it has only been done by a handful of groups
(e.g., Komissarov 2004; Antón et al. 2006; White et al. 2016). We will explore the impact of these
more sophisticated Riemann solvers in future work.

3.7.1 Low Frequency Radio Slope
A simple analytic argument can predict the low frequency radio slope for emission from an

outflowing plasma (Blandford & Königl 1979; Falcke & Biermann 1995; Mościbrodzka & Falcke
2013). Assuming that the magnetic field, mass density, and electron temperature follow power
laws in radius of the form:

B ∝ rmB

ρ ∝ rmρ

Θe ∝ rmΘ ,

it follows that
Fν ∝ ν

2 [ΘeA] (rpeak) ∝
[
Θ5

e B2A
]

(rpeak), (3.3)

where A(r) is the cross-sectional area of the outflow at radius r and rpeak is the radius at the location
of peak emissivity, given by the solution to ν ∝ [Θ2

e B](rpeak). Equation (3.3) is simply the black
body emission at rpeak(ν) where the optical depth drops to ∼ 1. If magnetic flux is conserved,
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Figure 3.6: Spectral Energy Distribution (SED) for our fiducial model averaged over 11, 800 − 12, 300 rg/c
at an inclination angle of 45◦ at two different resolutions (please see the legend). The higher resolution
simulation was initialized with the results of the low resolution simulation at 10, 000 rg/c and run for an
additional 2, 300 rg/c. The spectra only display minor differences below ∼ 1011 Hz and above ∼ 1014 Hz.

then BrA = const. and Bϕ

√
A = const., meaning that if A(r) is an increasing function of radius

(as it is in conical or parabolic outflows) then B ≈ Bϕ ∝ 1/
√

A at large distances. Thus we have
Fν ∝ Θ5

e(rpeak).
Clearly, if the outflow is isothermal, Fν ∝ ν

0 and the spectrum is flat, matching observations of
Sgr A* and other jet sources. On the other hand, if the outflow is adiabatic, i.e. Θe ∝ ρ

γe−1, then

Fν ∝ ν
10(γe−1)

4γe−3 , (3.4)

where we have assumed mass conservation: ρA = const. For γe = 4/3, this gives Fν ∝ ν
10/7. Note

that this is independent of the jet shape as long as A(r) increases with radius.
We find that our simulation generally has an adiabatic outflow (at least in the regions that

primarily contribute to the low frequency radio emission) and the low frequency radio slope agrees
roughly with ν10/7, under-predicting the observations. This suggests that our simulations are either
missing some important heating mechanism in the outflow or that nonthermal particles (which we
do not include) may play a crucial role.

3.8 Comparison to Previous Models of Sgr A*
We have shown that our model naturally and self-consistently produces the “coupled disc-jet”

phenomenological model adopted in previous work to explain observations of Sgr A* (Falcke &
Biermann 1995; Yuan et al. 2002; Mościbrodzka & Falcke 2013; Mościbrodzka et al. 2014; Chan
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et al. 2015b). The polar outflow dominates the low frequency radio emission while the accretion
disc dominates the higher frequency emission. Our work thus provides strong theoretical support
for some of the assumptions used by previous phenomenological models. However, we also find
some important differences which we now highlight for a few representative cases.

Yuan et al. (2002) used a self-consistent analytical model that coupled an ADAF disc to a
shocked outflow. In order to fit the spectrum of Sgr A* they required an electron heating fraction
in the disc of fe = 10−3, corresponding to a maximum disc temperature of Θe ≈ 1 and resulting
in Θe ≈ 35 at the base of the jet. As a result, the jet dominates the emission at all frequencies
except for a narrow region around 230 GHz and a narrow region around 1015 Hz. In our model we
find that outflow accounts only for the emission below about 1011 Hz while the disc dominates the
emission above 1011 Hz (see Figure 3.3). The reason for this difference is that although our disc
has, on average, Te � Tg, there are localized hot-spots of low β that contribute significantly to the
emission. These hot spots are natural in a turbulent 3D simulation but cannot be captured easily in
1D temperature profiles.

Disc-jet models in 3D GRMHD simulations have typically assigned a constant relativistic elec-
tron temperature, Te, to the “jet” and a relatively large constant proton-to-electron temperature ra-
tio, Tp/Te, to the “disc”. Two notable examples are Mościbrodzka et al. (2014), who defined the
“jet” as regions with −ρhut > 1.02, where h is the specific relativistic enthalpy, and Chan et al.
(2015b), who defined the “jet” as regions with β < 0.2. Here “jet” and “disc” are in quotation
marks because both the criterion β < 0.2 and the criterion −ρhut > 1.02 occasionally include lo-
calized regions close to the horizon in the disc proper (i.e. inflowing material near the midplane).
These small regions in the disc are then assigned relativistic electron temperatures and become a
dominant source of higher frequency emission (& 230 GHz). Thus, in contrast to the 1D analytic
models, only the low frequency emission (. 230 GHz) is provided by the outflow while the rest of
the emission is provided by the turbulent inflow.

Despite having similar emitting regions, Mościbrodzka et al. (2014) and Chan et al. (2015b)
differ substantially in the amount of NIR emission they predict. This difference is due to the
different choices of electron temperatures for the “jet” regions. Mościbrodzka et al. (2014) used
relatively small electron temperatures (Θe ∼ 10 − 20), while Chan et al. (2015b) used relatively
large electron temperatures (Θe ∼ 30 − 60 in their SANE models). The former choice leads to a
low level of NIR emission and a dearth of flaring events, contrary to what we find (see Figures 3.2
and 3.5). The latter choice, on the other hand, is closer to the temperatures of the hot-spots in our
model (Θe ∼ 100; see Figure 3.3) and leads to significant NIR emission via frequent flares (Chan
et al. 2015a), similar to what we find.

We note, however, that our X-ray emission and X-ray time variability differ substantially from
Chan et al. (2015b) and Chan et al. (2015a) due to the different emission processes considered.
Their work neglects Compton scattering and the X-rays in their model are entirely produced by
bremsstrahlung at large radii. On the other hand, our calculations include Compton scattering and
focus on the inner portion of the disc where bremsstrahlung is negligible. We have shown that this
Compton component is not only large enough to account for the “quiescent” emission but is also
a source of weak X-ray flaring. Thus it is crucial to include it for any comparison to X-ray data of
Sgr A*.
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Figure 3.7: Time and ϕ-averaged heating rate per unit volume, with the black lines denoting the b2/(ρc2) = 1
contour. The white regions represent negative heating rates, which are unphysical and are a consequence of
the LLF Riemann solver’s poor treatment of contact discontinuities (the strong density gradient in the polar
region; see Figure 3.1; see §3.7 and Appendix 3.D). Better Riemann solvers should reduce this diffusion
and could modify the thermodynamics in the polar region that dominates the low frequency radio emission
in our models of Sgr A*.

Our model under-predicts the radio emission of Sgr A* below ∼ 1011 Hz. This is, by contrast,
well fit by the phenomenological models. This is because we find the outflow to be roughly adi-
abatic and not isothermal, leading to a much steeper spectral slope (see Section 3.7.1). Electron
thermal conduction would seem a natural way for the outflow to be closer to isothermal, but we
have shown that it has a negligible effect even with a large thermal conductivity. This implies that
our simulations are either failing to capture enough heating in the outflow or are missing additional
physics (e.g., nonthermal particles, heating due to pressure anisotropy, etc.). Our calculation of the
heating in the outflow may also be limited by numerical diffusion (see §3.7 and Appendix 3.D).
Future work with improved numerical methods and physical models will help to distinguish among
these possibilities.
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3.9 Conclusions
We have presented the first results of applying a self-consistent treatment of electron thermo-

dynamics in GRMHD simulations to observations of Sgr A*. Our goal is not to fit the observations
in detail but to qualitatively determine the basic predictions of our model in which the electron
entropy is self-consistently evolved including electron heating and anisotropic electron thermal
conduction. In our calculation, the electron heating fraction, fe, is not a free parameter adjusted to
match observations but is fixed by a first principles calculation (§3.3). We have only modeled the
emission by thermal electrons, deferring models of non-thermal particle acceleration and emission
to future work

Despite the lack of any free parameters tuned to match observations, we find encouraging
agreement between some properties of our predicted spectra and variability and observations of
Sgr A*. This agreement includes the spectral slope near 230 GHz and the approximate magnitude
of the time-averaged NIR and X-ray emission (Figure 3.2), as well as many of the qualitative
features of the time variability (Figure 3.5). The images produced by our model at 230 GHz
and 2 µm (Figure 3.4) display the characteristic “Einstein ring” at all inclination angles. This is
encouraging for upcoming horizon-scale observations at these frequencies.

Our model reproduces the disc-jet structure of the accretion flow appealed to in the literature
to explain the emission from Sgr A* (Yuan et al. 2002; Mościbrodzka et al. 2014; Chan et al.
2015b). The polar outflow dominates the low frequency radio emission and the turbulent inflow
dominates the emission at frequencies above ∼ 230 GHz. This can be seen directly using the
properties of the emitting regions as a function of frequency in Figure 3.3, and the 30 GHz, 230
GHz, and 2 µm images in Figure 3.4. Our results thus provide physical justification for many of
the phenomenological prescriptions used in the past to model Sgr A* and can help motivate more
sophisticated variants of these models in the future.

We find that anisotropic electron thermal conduction along magnetic field lines has little effect
on our model spectra and images (see Figure 3.2 for the SEDs; images including conduction are
not shown here because they are nearly identical to those without conduction in Figure 3.4). This
is because the field lines in our simulation are primarily toroidal while the temperature gradients
are primarily poloidal. Foucart et al. (2016) came to a similar conclusion for the effect of ion con-
duction on the fluid dynamics when including it in the total fluid stress-energy tensor. The small
effect of electron conduction in our model suggests that future modelling of electron thermody-
namics can probably neglect electron conduction, greatly simplifying the numerics and reducing
the computational expense by a factor of ∼ 4. This needs, however, to be confirmed for Magnet-
ically Arrested Discs (MADs, Narayan et al. 2003) or any other disc which differs significantly
from the structure in our model.

The variability in our simulations is qualitatively similar to that seen in Sgr A* (Figure 3.5):
1) we find frequent X-ray and NIR flaring events 2) those flares are correlated 3) mm emission
displays less variability 4) all X-ray flares have NIR counterparts, but we also find evidence for
NIR flares without X-ray counterparts. The X-ray flares, however, are much weaker in magnitude
than the strong flaring events observed in Sgr A*. This could be a result of our relatively small
sample size in time (∼ 1 day) or it could imply the need for nonthermal particles (e.g. Özel et al.
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2000; Yuan et al. 2003; Ball et al. 2016). Given the wealth of time-dependent observational data on
Sgr A* and the uncertainties that remain in its underlying physics, it is of great interest to study the
statistical properties of the model’s time variability in more detail. This will be a focus of future
work.

Finally, like all numerical calculations, our model is not without its potential failure modes.
In our disc models, numerical diffusion of poorly resolved entropy gradients affects the thermo-
dynamics of both the electrons and the total fluid in the polar regions. This may affect the low
frequency (. 1011 Hz) emission in our model. On the other hand, all emission above ∼ 1011 Hz
is unaffected by this issue. Moreover, we find that doubling the resolution of our simulation does
not affect our predicted spectra (see Figure 3.6), but somewhat improves the agreement of the
low-frequency slope with the observations.
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Appendix

3.A Observational Data
The radio and millimetre data we use are taken from the mean spectra of Sagittarius A* as

calculated by Falcke et al. (1998), combining the Very Large Array (VLA), the Institut de Ra-
dioastronomie Millimetrique (IRAM), the Nobeyama 45 m, and the Berkeley-Illinois-Maryland
Array (BIMA) observational results over the frequency interval 1.46 - 235.6 GHz, An et al. (2005)
combining VLA and Giant Metrewave Radio Telescope (GMRT) observational results over the fre-
quency interval 0.33 - 42.9 GHz, Doeleman et al. (2008) using the Event Horizon Telescope (EHT)
at 230 GHz, Bower et al. (2015a), combining VLA, the Atacama Large Millimetre/submillimetre
Array (ALMA), and the Submillimetre Array (SMA) observational results over the frequency in-
terval 1.6 - 352.6 GHz, and finally, Liu et al. (2016a) and Liu et al. (2016b) using ALMA over the
frequency interval 92.996 - 708.860 GHz and at 492 GHz, respectively. Infrared upper limits are
taken from Telesco et al. (1996) at 30 µm, Cotera et al. (1999) at 24.5 µm and 8.81 µm, Genzel
& Eckart (1999) at 2.2 µm, and Schödel et al. (2007) at 8.6 µm, while infrared data points for
both the quiescent and flare states are taken from Genzel et al. (2003a) and Schödel et al. (2011).
Finally, we use the range of 2-10 keV X-ray flare luminosities seen in Sgr A* during the year 2012
(Neilsen et al. 2013) and the quiescent level of 2.4 ×1033 erg s−1 (Baganoff et al. 2003). Note that
the inner accretion flow is believed to contribute only ∼ 10% of this quiescent flux (Neilsen et al.
2013), but we use the total quiescent emission to define the luminosity that “flares” must exceed in
our model.

3.B Initial conditions, Coordinate System and Floors
In this appendix we describe our specific choice of initial conditions, coordinates, and numeri-

cal floors.

3.B.1 Initial Conditions
One approach for initial conditions is to overlay the torus with a weak magnetic field with field

lines along contours of density, Aϕ ∝ ρ−ρ0 (Gammie et al. 2003). This results in a single magnetic
field loop in the (r, θ) plane. The centre of the loop is at the density maximum, and the loop is
fully contained within the torus. However, we found that by about t ∼ 104rg/c such a loop gets
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Figure 3.B.1: Our simulations use a grid adapted for the disc-jet problem. The grid lines, shown with black
lines (every 4th cell interface is shown for our fiducial model at the resolution of 320×256×64), concentrate
resolution both toward the equatorial plane to resolve the disc turbulence and toward the polar regions to
resolve the twin polar jets. Colours show the initial density distribution on a logarithmic scale (red shows
high, blue low values, please see the colour bar). White lines show initial poloidal magnetic field lines.
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nearly fully consumed by the black hole. To avoid this, we opt for a larger loop that survives for
a longer time. We choose magnetic vector potential Aϕ ∝ r4ρ2. Figure 3.B.1 shows that the radial
pre-factor shifts the loop to larger radii and increases its size: the centre of the loop shifts from
r = 13rg to ∼ 22rg. This leads to a stronger initial magnetic field at larger radii and makes it
easier to resolve the magnetorotational instability (MRI, Balbus & Hawley 1991b) throughout the
torus. We normalize the magnetic field strength such that the ratio of maximum gas to maximum
magnetic pressure equals 100.

3.B.2 Coordinate System
We use a variant of 3D modified Kerr-Schild (MKS) coordinates (Gammie et al. 2003). HARM

discretizes the equations of motion on a uniform grid in the internal code coordinates, t, x(1), x(2), x(3).
Figure 3.B.1 displays this grid in Boyer-Lindquist coordinates with the initial conditions overplot-
ted on top of it.

Radial grid. The original MKS coordinates used an exponential mapping of the internal radial
coordinate x(1) into radius r: r = exp[x(1)]. In this work, we instead use a “hyper-exponential”
mapping (Tchekhovskoy et al. 2011), as described in previous work (Tchekhovskoy et al. 2009,
2011; Ressler et al. 2015). Outside a break radius, rbr ≡ exp(xbr), the radial grid becomes highly
unresolved and spans very a large distance in just a few cells: r = exp[x(1) + 4(x(1) − xbr)4]. Inside
rbr, this radial mapping is equivalent to the MKS coordinates. The advantage of this grid is that it
prevents unphysical reflections off the outer radial grid boundary by moving the boundary out of
causal contact with the disc, outflows, and the jets. Here we take rbr = 400M, which guarantees
that the regions of interest r . rbr are well-resolved.

Angular grid. The original MKS coordinates used non-collimating grid lines that followed
lines of θ = const. Since we are interested in the physics of the jet sheath, which collimates into
small opening angles, we adopt a grid that focuses substantial resolution into the polar regions of
interest. The grid consists of disc and jet angular patches that are smoothly stitched together using
a transition function,

Θs(x, xa, xb, ya, yb) = ya + (yb − ya) Θ̃s[2(x − xa)/(xb − xa) − 1], (3.5)

where Θ̃s(x) is a dimensionless smooth step-function:

Θ̃s(x) =


0, for x < −1,[
70 sin (πx/2) + 5 sin (3πx/2) − sin (5πx/2) + 64

]
/128,

for − 1 ≤ x < 1,
1, for x ≥ 1.

(3.6)
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We also introduce its integral, Ψ̃s(x) ≡
∫ x

−1
Θ̃s(x′)dx′,

Ψ̃s(x) =


0, x < −1
[−35 cos (πx/2) − 5 cos (3πx/2)/6 + cos (5πx/2)/10] /32π

+(x + 1)/2, −1 ≤ x < 1,
x, x ≥ 1.

(3.7)

We use eqs (3.6) and (3.7) to define smooth versions of the min and max functions,

mins( f1, f2, d f ) = f2 − Ψ̃s

(
f2 − f1

d f

)
d f (3.8)

maxs( f1, f2, d f ) = −mins(− f1,− f2, d f ). (3.9)

These functions are useful for introducing smooth radial breaks.
We now use the machinery developed above to construct the mapping from the internal coor-

dinates, x(1), x(2) ∈ [−1, 1], x(3) ∈ [0, 2π], to the physical coordinates, r ∈ [rin, rout], θ ∈ [0, π], ϕ ∈
[0, 2π]. Quantitatively, we describe the grid as follows, and we give a qualitative explanation be-
low:

r1,# = mins
[
r, rdecoll,#, 0.5rdecoll,#

]
/runiform, (3.10)

r2,# = mins
[
r/(r1,#runiform), g#, 0.5g#

]
, (3.11)

θ# = π/2 + tan−1
[
rα1,#

1,# rα2,#
2,# tan(x(2)π/2)

]
, (3.12)

where “#” stands for either “disk” or “jet” and g# = rcoll,#/rdecoll,#. We now define a “jet weight”,
wjet = Θs

(
|x(2)|, fdisk, fjet, 0, 1

)
, that controls the contribution of the jet grid patch for a given value

of x(2). The values of fdisk and fjet control the fractions of the grid devoted to resolving the disk and
jet regions. We obtain the net polar angle as a function of x(i) via

θ = wjetθjet + (1 − wjet)θdisk. (3.13)

We direct about 25% of the resolution into the disk regions, fdisk = 0.25, and about 40% of resolu-
tion into the jet regions, fjet = 0.4; the rest 35% resolves the disk outflow sandwiched between the
disk and the jet. At r = runiform, the angular grid is uniform. We take this radius to be equal to the
inner radius of the grid, Rin: uniform angular grid at the inner boundary maximizes the simulation
time step and reduces time to solution.

The value of α controls the collimation of the grid: in the polar regions, sin θ ∝ r−α, and in
the equatorial regions, cos θ ∝ rα. Therefore, α > 0 leads to collimation (toward the poles) of
the radial grid lines. Very close to the black hole, we choose a negative α value for both disk
and jet regions, α1,disk = α1,jet = −1, which leads to a mildly decollimating grid that follows
r cos θ = z = constant in the equatorial region and focuses the resolution on the turbulent accretion
disk. (Another possible approach to focus the resolution on the equatorial plane could be to reduce
the value of runiform, but this would make the grid non-uniform at Rin, reduce the time step, and
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increase the simulation cost.) At larger radii, at r & rdecoll,disk = rdecoll,jet = 2Rin, we choose
α = α2,disk = α2,jet = 3/8. This leads to a collimating grid near the poles, as seen in Fig. 3.B.1.
At r & rcoll,disk = 5Rin the grid becomes radial in the disk region, as seen in Fig. 3.B.1. The
grid becomes radial in the polar regions at much larger radii, r & rcoll,jet = 103rg, well outside of
Fig. 3.B.1.

Cylindrification. In standard 3D MKS coordinates, hyper-exponential MKS coordinates, and
in general for all spherical-type 3D coordinate systems, the small physical extent of the cells clos-
est to the poles introduces a severe constraint on the time-step via the Courant-Friedrichs-Lewy
condition (roughly ∆t . min[∆x]/c, where the minimum is taken over the entire grid and in each
spatial direction). To avoid this, we use the technique of “cylindrification” (Tchekhovskoy et al.
2011), which takes the polar cell closest to the poles and expands it laterally below a certain ra-
dius. This effectively makes the polar regions more closely resemble cylindrical coordinates than
spherical. This causes the row of cells closest to the pole to be wider than the rest at r . 10rg,
as seen in Figure 3.B.1. Because this grid deformation is concentrated at small r and θ values,
where the jets carry very little energy flux (enclosed jet energy flux scales as sin4 θ) and the radial
velocity is directed into the black hole, this does not noticeably affect the simulations. However, it
substantially – by an order of magnitude – speeds up the simulations.

3.B.3 Density Floors
Black hole magnetospheres naturally develop highly magnetized polar regions: gas drains off

the magnetic field lines into the black hole due to gravity or is flung out to infinity due to magnetic
forces. Eventually, vacuum regions would develop, which would pose numerical difficulties with
grid-based MHD codes. Because of this, all such codes employ numerical floors that prevent den-
sity and internal energy from becoming too low. When the fluid density or total internal energy dip
below the floor limits, ρfloor = max[b2/50, 10−6(r/rg)−2] or ufloor = max[b2/2500, 10−8(r/rg)−2γ],
we add mass or energy in the drift frame, respectively. This contrasts with the more standard ap-
proaches of adding gas in the fluid frame (Gammie et al. 2003) or in the zero angular momentum
observer (ZAMO) frame (McKinney et al. 2012). By preserving the component of the fluid mo-
mentum along the magnetic field, our drift frame floor approach (i) prevents the parallel (to the
magnetic field) velocity from running away, which happens in the fluid frame floor approach (this
problem becomes especially severe in 3D), (ii) avoids artificial drag on the magnetic field lines,
which happens in the ZAMO frame floor approach.

Although both the ZAMO and drift frame floors result in stable numerical evolution, there
are several practical advantages of the drift floor. The ZAMO floor approach is not analytic and
requires an additional inversion of conserved to primitive quantities per cell per Runge-Kutta sub-
step. We found that this adversely affects the speed and parallel scaling of the code: most of
the floor activations occur near the black hole and thus disproportionately affect only a few MPI
processes; this slows down the entire code, especially at late times in the evolution when the region
affected by the floors grows in size. Second, the drift frame floors add just the right amount of mass,
energy and momentum to get ρ = ρfloor and ug = ufloor. This is not guaranteed by the ZAMO floors
because of their iterative nature.
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We define the normal observer frame by ηµ = (−α, 0, 0, 0) where α = (−gtt)−1/2 is the lapse.
The conserved fluid momentum in the normal observer frame is Qµ ≡ −(Tg)νµην/α = wgutuµ+δt

µPg,
where wg = ρ + ug + Pg is the gas enthalpy (see also Noble et al. 2006). We define the normal
observer frame magnetic field 4-vector, Bµ = −∗Fµνην/α and its covariant component Bµ = gµνBν

and magnitude B = (BµBµ)1/2. Note that by definition, Bt = 0. We demand that the projection of
the momentum along the magnetic field remains constant as we apply the floors:

constant = BµQµ ≡ BiQi = (Bµvµ)wg(ut)2 = Bv||wg(ut)2, (3.14)

where i runs through the spatial components only (i = 1, 2, 3), vµ ≡ uµ/ut is the 3-velocity four-
vector, and v|| = Bµvµ/B is the parallel velocity component. From eq. (3.14) we see that because the
floors increase the enthalpy, wg, in order to preserve the parallel momentum, we need to decrease
the parallel velocity, v||. For convenience, we decompose vµ into the sum of the drift and parallel
velocity components,

vµ = vµdr + v||Bµ/B, (3.15)

where the drift velocity is perpendicular to the magnetic field,

Bµv
µ

dr = 0. (3.16)

Equations (3.15) and (3.16) define the drift velocity and the parallel velocity. By requiring that the
gas velocity is physical, uµuµ = −1, and making use of eq. (3.16), we can express ut in terms of the
parallel velocity:

(ut)2 =
1

(ut
dr)
−2 − v2

||

. (3.17)

Plugging this into eq. (3.14) and solving a quadratic equation for v|| gives:

v|| =
x

1 + (1 − x2)1/2 ×
1

ut
dr

, (3.18)

where x = 2BµQµ/(Bwgut
dr). After applying the floors on ρ and ug, we update wg and recompute x.

Then, using eq. (3.18), we recompute the value of v|| and, using eq. (3.15), the fluid velocity. As
discussed above, this reduces v||, and leads to enhanced stability of the method.

Floor test. In order to verify the performance of the floor, we have simulated a monopole
magnetosphere of a spinning black hole. We chose the same spin a = 0.5 as in our fiducial
simulation and adopted a resolution of 768 × 512 × 1. We used a uniform angular grid and a
logarithmic radial grid with Rin = 0.7rH and Rout = 103rg. We set density and internal energy floors
as ρfloor = b2/50 and ufloor = b2/2500. Based on simulations of force-free (infinitely magnetized,
ρ, ug → 0 limit) magnetospheres we expect our solution to approach ΩF = 0.5ΩH if the floors were
absent (Tchekhovskoy et al. 2010). For finite floors, however, we expect the gas inertia effects to
have an effect of order ρfloor/b2 = 0.02.

To verify this, we ran our simulation until t = 1.7 × 103rg/c, which is sufficiently long for the
near black hole solution to reach a steady state and yet be unaffected by potential reflection from
the outer radial grid boundary. Figure 3.B.2 shows the ratio of the angular rotational frequency
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Figure 3.B.2: Angular rotational frequency ΩF of magnetic field lines in units of the force-free expectation,
Ω = 0.5ΩH = ac/4rH, versus the polar angle for the monopolar magnetosphere test. The measurements are
performed at the black hole event horizon. We expect that gas inertia makes a difference on the order of
ρc2/b2 = 2%. The simulations with the fluid frame floor (thin solid black line) and drift frame floor (thick
red short-dashed line) are within 2% of the analytic expectation, in line with what we expect for the small
but finite gas inertia effects. For the simulation with the ZAMO frame floor (blue long-dashed line), the
deviation from the analytic expectation is a bit higher, about 5%, with the difference especially pronounced
near the poles. A larger deviation might be expected because, unlike fluid and drift frame floors, the ZAMO
floors add transverse (to the magnetic field lines) momentum and therefore apply a drag to magnetic field
lines.
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of the magnetic field to that expected in an infinitely magnetized magnetosphere (Tchekhovskoy
et al. 2010), evaluated at the event horizon. The results of the drift frame floor simulation, shown
with the short dashed red line, and the fluid frame floor simulation, shown with the thin black solid
line, are in line with the expectation, within 2% of the force-free result. The angular frequency in
the ZAMO frame floor simulation shows a larger deviation, ' 5%, relative to the force-free value.
A larger deviation might be expected because, unlike fluid and drift frame floors, the ZAMO floors
add transverse (to the magnetic field lines) momentum and therefore apply a drag to magnetic field
lines. This effect might contribute to the lower values of ΩF < 0.5ΩH in the polar regions reported
by McKinney et al. (2012).

3.C Motivation For the Choice of Magnetization Cut-off

In all of the radiative calculations shown in this work, we have limited the emitting domain of
the simulation to include only the regions of the flow with σ = b2/(ρc2) < 1. The motivation for
this restriction is to exclude regions which are known to have larger errors in the thermodynamics
in conservative codes. This is because as σ approaches ∼ 1 and above, the total energy of the
fluid (which is conserved to machine precision) becomes dominated by magnetic energy, so that
small errors in the magnetic field evolution lead to large errors in the internal energy of the gas.
Thus, we limit the radiative domain to regions with σ < σmax with σmax = 1, which is a somewhat
arbitrary but conservative value chosen to minimize the effect of errors at high σ on our results.
Figure 3.C.1 demonstrates how the particular choice of σmax affects our results. Over a factor of 10
in σmax, there is only a factor of few change in the higher frequency flux, which is encouraging for
the qualitative results in this paper. Ultimately more accurate methods will be required to model
the polar region thermodynamics (where σ & 1) more accurately.

3.D Steep Entropy Wave Test
In the main text we argued that numerical diffusion of entropy at steep entropy gradients is the

cause of the unphysically negative heating rate near the funnel wall shown in Figure 3.7. Here
we present a simple 1D test that shows that contact discontinuities and unresolved gradients do
indeed produce negative heating, as computed with our prescription for Q using the local Lax-
Friedrichs Riemann (LLF) solver in HARM. We stress that this is simply another manifestation of
the unavoidable diffusion of contact discontinuities in finite-volume codes. This diffusion may be
amplified by the LLF Riemann solver, which is known to be significantly more diffusive than other
Riemann solvers (see, e.g., Chapters 5 and 6 in Toro 2009).

We initialize the unmagnetized fluid with a constant velocity, v, and pressure, p, as well as
either a discontinuous, square density profile, ρdis(x), or a continuous profile, ρcont(x), defined as:

ρdis(x) =


ρmin x ≤ 0.4L
ρmax 0.4L < x < 0.6L
ρmin 0.6L ≤ x
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Figure 3.C.1: Time-averaged SED for different limits on the magnetization parameter, σ ≡ b2/(ρc2), where
regions with σ < σmax have been excluded from the spectral calculation. The choice of σmax has no effect
on the radio and millimetre emission but directly affects the NIR and X-ray emission. More restrictive cuts
have reduced high frequency emission, while less restrictive cuts have increased high frequency emission.
The change in the predicted luminosity is only a factor of few for this range of σmax, which demonstrates
that our results do not strongly depend on the choice of σmax. All of the results presented in the main text
use σmax = 1, which excludes the regions with the most uncertain thermodynamics.
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and

ρcont(x) =

(
exp [(x − 0.4L)/w]

exp [(x − 0.4L)/w] + 1
−

exp [(x − 0.6L)/w]
exp [(x − 0.6L)/w] + 1

)
×(ρmax − ρmin) + ρmin,

where ρmax = 103ρmin, w = 0.01L, and L is the size of the 1D computational domain. ρcont is
simply a smooth approximation to a square wave that transitions from ρmin to ρmax and vice-versa
over a region of length ∼ w. The velocity is chosen to be 10−3c, which is ≈ 0.2 of the minimum
sound speed. The pressure is chosen to be 0.012ρminc2, making the sound speed� c. The electron
entropy is initialized such that the electron internal energy is equal to the gas internal energy and
the electron heating fraction, fe, is set to either 0 or 1 to isolate the effect of the heating rate on
the electron evolution. Furthermore, the adiabatic index of the gas is 5/3 while the adiabatic index
of the electrons is 4/3. No floors are used on the electron variables to allow the electron entropy
variable to become negative. The simulation is performed in a periodic box and run for a single
advection time, L/v. The analytic solution is that the final state should be identical to the initial
state and the heating rate should be 0. We define a resolution parameter, RP, as the approximate
number of cells per order unity change in κg = p/ργ: RP ≡ κ/∆κg, where ∆κg is the change in
κg across one cell. RP � 1 indicates a well resolved gradient, while RP . 1 represents a poorly
resolved gradient.

This set-up is chosen to mirror the typical angular entropy profiles seen in our global accretion
disc simulations. These generally have a near discontinuity in entropy (and density) close to the
disc-jet boundary (Figure 3.1). The sharp gradient is nearly, though not perfectly, perpendicular
to the grid, and the flow does have a small velocity component misaligned with the gradient.
The fact that these velocities are small (compared to the local fast magnetosonic speed used in
determining the CFL condition) means that diffusion errors can be significant. We performed a
more complicated test of a contact discontinuity slightly misaligned with the grid in 2D with a
thermal pressure gradient balancing a magnetic pressure gradient but found similar results to the
simpler 1D hydrodynamic test; thus we focus on the latter here.

Figure 3.D.1 shows the initial entropy for this test compared with a typical angular profile of the
entropy in our accretion disc simulations, along with the resulting time averaged heating rates and
total gas/electron entropy after one advection time. Note that the 1D coordinate x corresponds to
θ/π in the global disc simulation. Large gradients in entropy clearly lead to negative heating rates
(caused by excessive numerical diffusion), which appear on the low entropy side of the gradient.
In the disc simulation this is the side closest to the disc where synchroton emissivities might be
significant. Figure 3.D.1 (bottom panel) shows that the negative heating rates cause the electron
entropy to become largely negative in regions surrounding the entropy gradient, while the total
gas entropy diffuses but is reasonably well behaved. This shows that the diffusion errors more
strongly affect the electrons than the total gas. This is because small diffusive errors in the total
gas entropy can lead to large errors in the calculation of Q which then acts as a source term in the
electron entropy evolution. It is also clear that the smooth profile has less artificial heating at this
resolution; this discrepancy only increases with resolution.

Figure 3.D.2 shows the integrated error in the electron entropy at the end of the simulation
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normalized to the total entropy in the box as a function of resolution for the two different profiles.
The artificial heating converges to 0 at second order for the smooth profile but the artificial heating
does not converge to 0 for the discontinuous profile. The reason for this is the nature of numerical
diffusion. The square wave will always be diffused over a small number of cells that is roughly
independent of resolution, so the derivatives needed in the heating calculation will never be able to
better resolve the gradient. This is exactly analogous to the non-converging errors in the heating
rate seen in the strong shock test of Ressler et al. (2015). We note that though the magnitude of
the errors in Figure 3.D.2 are relatively small at the highest resolution (with a maximum of ∼ 10%
for the discontinuous wave with fe = 1), this depends on the chosen magnitude of the advection
velocity relative to the sound speed and the duration of the 1D simulation. The errors are larger if
advection velocities perpendicular to the gradient are� the fast magnetosonic speed.

For the smooth entropy wave test used here, the minimum resolution parameter is RP ≈
0.42(N/128), which represents the number of grid cells per order unity change in κg at the steepest
part of the gradient. From Figure 3.D.2, we see that this means that when RP ≈ 1, the artificial
heating rate will start converging and quickly become insignificant for a smooth flow. Two ques-
tions then arise pertaining to the accretion disc simulation: 1) How well is the gradient resolved
at the fiducial resolution? and 2) Is the gradient a true discontinuity or a smooth profile that is
under-resolved? If it is in fact a true discontinuity then we have no hope of better resolving it and
the negative heating will be present at all resolutions with the LLF Riemann solver. On the other
hand, if the gradient is, in fact, smooth, then higher resolution simulations will reduce the negative
heating.

To attempt to answer these questions, we can directly compute the minimum resolution pa-
rameter for the entropy profile in the accretion disc simulation. At a resolution of 320 × 256 × 64
we find that the minimum resolution parameter is a mere ∼0.15, though at the same radius in the
640 × 512 × 128 simulation the minimum resolution parameter approximately doubles to ∼ 0.32.
This suggests that the gradient is smooth and that we are better resolving it with finer grids. On
the other hand, we are still under-resolving the gradient even at the very expensive resolution of
640 × 512 × 128, meaning that it would take an unreasonably high resolution by today’s compu-
tational standards to suppress the negative heating. Better Riemann solvers are known to reduce
the artificial numerical diffusion that we have shown leads to these negative heating rates. Future
work will explore their impact in detail.

Finally, it is important to stress that spectrum generated by our global accretion disc simulation
is reasonably well converged (Figure 3.6), so it is unclear whether the excess numerical diffusion
and associated negative heating strongly affect the observable quantities of interest in this paper.



3.D. STEEP ENTROPY WAVE TEST 95

Figure 3.D.1: Top Panel: Gas entropy in our global accretion disc simulation as a function of polar angle
at r ≈ 15rg at a snapshot in time and slice in ϕ compared to the gas entropy initial conditions for both the
discontinuous and continuous steep entropy wave test. The entropies have been scaled for ease of compari-
son. Second panel: Time averaged Lagrangian heating rates per unit volume for both the discontinuous and
continuous steep entropy wave test at a resolution of N = 128 as well as the time and ϕ averaged heating
rate per unit volume in our global accretion disc simulation at r ≈ 15rg (for the global simulation, x = θ/π).
The test problem heating rates are plotted in units of 5 × 10−6ρmaxc3/L, while the global disc simulation
heating rate has been arbitrarily scaled for ease of qualitative comparison. From these plots, it is clear that
diffusion of large gradients in entropy leads to negative “heating” rates on the side of the gradient with
lower entropy (corresponding to the disc side of the boundary in the accretion disc simulation). Note that
since the accretion disc simulation has been averaged over time and ϕ in an Eulerian and not Lagrangian
sense, motion of the disc-jet boundary increases the angular extent of the negative heating. Third and Fourth
Panels: Total gas and electron entropy at the end of the 1D entropy wave test. All entropies have been
scaled such that κi(x = 0) = 1. For the electrons, the magnitude of the entropy is plotted, with solid lines
representing regions with positive entropy and dashed lines representing regions with negative entropy. The
electron entropy becomes significantly negative in the cells surrounding the sharp gradient while the total
gas entropy is comparatively well behaved. This shows that the effects of numerical diffusion are amplified
for the electrons via the dependence on the heating rate, Q.
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Figure 3.D.2: Error in the electron entropy after a single advection time for the steep entropy wave test,
defined as

∑
|κe(t = L/v) − κe(t = 0)|/

∑
κe(t = 0). We plot both the error in electron entropies evolved

with a heating fraction of fe = 1 (i.e. the electrons receive all of the heat) and those evolved with a heating
fraction of fe = 0 (i.e. the electrons are simply adiabatically advected with the flow). As expected, when
fe = 0, the electron entropy converges at roughly the expected order (1st and 2nd, respectively) for the
the discontinuous and continuous profiles. On the other hand, when fe = 1 only the continuous profile
converges to the correct result. This is because discontinuities in the flow lead to non-converging errors in
the calculation of the heating rate. Better Riemann solvers will reduce the magnitude of this error but will
not improve convergence.
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Chapter 4

Hydrodynamic Simulations of the Inner
Accretion Flow of Sagittarius A* Fueled By
Stellar Winds

An earlier version of this article was previously published as Ressler S. M., Quataert E., and
Stone J. M., 2018, MNRAS, 478, 3544

4.1 Abstract
We present Athena++ grid-based, hydrodynamic simulations of accretion onto Sagittarius A*

via the stellar winds of the ∼ 30 Wolf-Rayet stars within the central parsec of the galactic cen-
ter. These simulations span ∼ 4 orders of magnitude in radius, reaching all the way down to 300
gravitational radii of the black hole, ∼ 32 times further in than in previous work. We reproduce
reasonably well the diffuse thermal X-ray emission observed by Chandra in the central parsec.
The resulting accretion flow at small radii is a superposition of two components: 1) a moderately
unbound, sub-Keplerian, thick, pressure-supported disc that is at most (but not all) times aligned
with the clockwise stellar disc, and 2) a bound, low-angular momentum inflow that proceeds pri-
marily along the southern pole of the disc. We interpret this structure as a natural consequence
of a few of the innermost stellar winds dominating accretion, which produces a flow with a broad
distribution of angular momentum. Including the star S2 in the simulation has a negligible effect
on the flow structure. Extrapolating our results from simulations with different inner radii, we find
an accretion rate of ∼ a few ×10−8M�/yr at the horizon scale, consistent with constraints based on
modeling the observed emission of Sgr A*. The flow structure found here can be used as more
realistic initial conditions for horizon scale simulations of Sgr A*.

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1805.00474
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4.2 Introduction
Both the Event Horizon Telescope (EHT, Doeleman et al. 2008) and GRAVITY (Gillessen

et al. 2010) will soon reach resolution comparable to the event horizon scale of the supermassive
black hole at the center of our own galaxy, Sagittarius A* (Sgr A*), at 230 GHz and in the infrared,
respectively.1 The primary source of emission in Sgr A* is believed to be a combination of thermal
and nonthermal particles in either an accretion disc or the strongly magnetized outflow fed by a
disc. The properties of the plasma immediately surrounding the black hole are then coupled with
the properties of the black hole itself in determining what we will actually observe. In order to
properly interpret current and forthcoming observations and to be able to infer physical parameters
from the data, it is of paramount importance to have theoretical and computational models of the
inner accretion flow.

Because the luminosity of Sgr A* is well below the Eddington limit, it is classified as a Radia-
tively Inefficient Accretion Flow (RIAF). RIAFs are well suited for numerical simulation because
they are geometrically thick, meaning that they can more easily be resolved than their thin-disc
counterparts. To date, a number of groups have simulated RIAFs around rotating black holes in the
Kerr metric using general relativistic magneto-hydrodynamic simulations (GRMHD,Komissarov
1999; De Villiers & Hawley 2003; Gammie et al. 2003; White et al. 2016). However, due to the
large temperatures and low densities inherent in RIAFs, a variety of collisionless effects not cap-
tured in the standard ideal MHD framework may be dynamically important. Recent work has made
great strides in this respect by incorporating increasingly sophisticated physics into simulations.
This includes considering the plasma as a two-temperature fluid (Ressler et al. 2015; Sa̧dowski
et al. 2017; Ressler et al. 2017; Chael et al. 2018), fully coupling radiation to the MHD equa-
tions (Sa̧dowski et al. 2013; Ryan et al. 2015; Sa̧dowski et al. 2017; Ryan et al. 2017; Chael et al.
2018), injecting nonthermal particles into the fluid (Ball et al. 2016; Chael et al. 2017), as well as
adding the effects of anisotropic electron conduction (Ressler et al. 2015, 2017), anisotropic ion
conduction, and anisotropic viscosity (Foucart et al. 2016, 2017).

These simulations, however, predominantly use a fairly standard set of initial conditions. An
equilibrium, constant angular momentum torus (e.g., Fishbone & Moncrief 1976, though see also
Penna et al. 2013, Witzany & Jefremov 2017), surrounded by empty space is seeded with a mag-
netic field, a configuration which is unstable to the magneto-rotational instability (MRI). As the
instability grows, enough angular momentum is transported outward so that the torus is able to
accrete and eventually reach an approximate steady state in which the magnetic energy is compa-
rable to the thermal energy of the disc. The flow structure can, however, depend strongly on the
initial conditions. For instance, if there is a net vertical magnetic flux in the equilibrium torus,
an entirely different evolution is seen in which the flux threading the black hole eventually be-
comes large enough to halt accretion, leading to a violently time-variable, magnetically arrested
disc (MAD, Narayan et al. 2003; Tchekhovskoy et al. 2011). In contrast to the growing body of

1This chapter was published in August 2018, before GRAVITY and EHT released their first results in October
2018 (Gravity Collaboration et al.) and April 2019 (Event Horizon Telescope Collaboration et al.), respectively. Note,
however, that the first target of EHT was the black hole at the center of M87 and (as of the writing of this thesis) the
EHT results for Sgr A* are still forthcoming.
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work on plasma microphysics, there has been much less work done studying the effect of varying
the initial conditions on GRMHD simulation results; much of what has been done has focused in
the possibility that the angular momentum vector of the disc is misaligned with the spin of the
black hole (Fragile & Anninos 2005; Liska et al. 2017).

In general, not much is known about the feeding of black holes in galactic nuclei. For the case
of the galactic center in particular, however, we have a unique opportunity to actually determine a
proper set of initial conditions, as the source of accretion is believed to be known. This source is the
stellar winds of the ≈ 30 Wolf-Rayet (WR) stars orbiting within ∼ 1 pc of the black hole. Though
there are over a million other stars in the central nuclear star cluster (Feldmeier-Krause et al. 2017),
including the well known “S-stars” whose orbits have been used to significantly improve estimates
of the mass of Sgr A* (Ghez et al. 2008; Gillessen et al. 2009), these stars are generally fainter and
less massive, with mass loss rates orders of magnitude smaller than the WR stars (see e.g. Vink
et al. 2001; Habibi et al. 2017). Since the mass loss rates and wind velocities (Martins et al. 2007;
Yusef-Zadeh et al. 2015a), as well as the positions and orbital velocities (Paumard et al. 2006; Lu
et al. 2009) of the WR stars have been well constrained by both infrared and radio observations,
this problem is well posed. Moreover, both simple 1D calculations (Quataert 2004; Shcherbakov
& Baganoff 2010) and 3D smoothed particle hydrodynamic (SPH) simulations (Rockefeller et al.
2004; Cuadra et al. 2008) have shown that the observed stars provide more than enough mass to
explain the observed accretion rate onto Sgr A* and the diffuse X-ray emission in the galactic
center observed by Chandra (Baganoff et al. 2003).

In this work we seek to better inform initial conditions of GRMHD simulations of Sgr A* by
directly simulating the accretion flow produced by the winds of the WR stars in the galactic center.
Though this calculation is similar to the work of Cuadra et al. (2008) (see also, Rockefeller et al.
2004; Cuadra et al. 2015; Russell et al. 2017), we use completely different numerical methods,
probe even smaller radii, and focus especially on the properties of the innermost accretion flow,
which has not been a primary focus of previous work.

To do this, we employ three dimensional hydrodynamic simulations with ∼30 independent
orbiting stars as sources of mass, momentum, and energy. While it is almost certainly true that
on scales comparable to the event horizon of Sgr A* magnetic fields play an important role in the
transport of angular momentum, and thus, in determining the structure of the accreting plasma,
here we focus on a purely hydrodynamic calculation. This is primarily because, even if magnetic
fields are important for the gas near the horizon, the properties of the flow at larger radii may be set
by strictly hydrodynamic considerations. Furthermore, in order to properly evaluate the effects of
magnetic fields in the future, we must first understand the detailed properties of the hydrodynamic
simulation, meaning that this work will serve as a basis for comparison to subsequent calculations.
In addition, both the direction and the magnitude of the magnetic fields in the WR stellar winds are
unconstrained observationally, so that a full treatment will require a larger exploration of parameter
space than is needed in the purely hydrodynamic case.

The chapter is organized as follows. §4.3 describes the physical model and numerical methods,
§4.4 describes two tests of our implementation of the subgrid stellar wind model, §4.5 details the
properties of the full 3D simulation of stellar wind accretion onto Sgr A*, §4.6 compares the X-
ray luminosity of our simulation to Chandra observations, §4.7 discusses the implication of these
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results for GRMHD simulations, §4.8 compares our results to previous work, and §4.9 concludes.

4.3 Model and Computational Methods

4.3.1 Equations Solved
We perform our simulations with Athena++, a 3 dimensional grid-based scheme that solves

the equations of conservative hydrodynamics. Athena++ is a complete rewrite of the widely used
Athena code (Stone et al. 2008) optimized for the c++ coding language. We use a point source
gravitational potential for the central black hole. The code is 2nd order in space and time and
adopts piece-wise linear reconstruction with the Harten-Lax-van Leer-Contact (HLLC) Riemann
solver.

In addition to the basic equations of hydrodynamics, we include the effect of the stellar winds
emitted by stars orbiting the black hole by adding source terms in mass, energy, and momentum.
Each star is assumed to orbit in a Keplerian orbit as described in §4.5.1. The wind of each star is
given an effective radius of rwind ≈ 2 cells centered on the position of the star’s orbit (more pre-
cisely, twice the length of the diagonal of a cell determined by the local level of mesh refinement).
Inside this radius the wind is assumed to supply a constant source of mass that is determined by the
observed mass loss rate, Ṁwind: ρ̇wind = Ṁwind/Vwind, where Vwind = 4π/3 r3

wind. Furthermore, the
wind is assumed to have a constant radial velocity in the frame of the star, vwind, and a negligible
pressure. To calculate the net source terms for the finite volume, conservative equations solved by
Athena++ we break each cell that intersects a stellar wind into a 5 × 5 × 5 subgrid and integrate
over the whole cell. For a wind which occupies a fractional volume f of a cell, this amounts to
source terms in mass, momentum, and energy of f ρ̇wind, f ρ̇wind〈vwind,net〉, and 1/2 f ρ̇wind〈|vwind,net|

2〉,
respectively, where vwind,net is the wind velocity in the fixed frame of the grid and 〈〉 denotes an
average over the volume of the star contained in the cell. Though similar in purpose, we note that
this model differs from Lemaster et al. (2007) in that the stellar winds are treated as source terms
as opposed to “masked regions,” within which the fluid quantities are over-written by an analytic
solution. The benefit of treating the winds as source terms is that we can accommodate scenarios
where multiple stellar winds overlap.

As the stellar winds interact and shock-heat, radiative losses due to optically thin bremsstrahlung
and line cooling are expected to become significant. To account for this, we use the optically thin
cooling routine described in Townsend (2009), which analytically integrates the energy equation
over a single time step using a piece-wise power law approximation to the cooling curve. This
avoids any limitation on the accuracy or time step when the cooling time is short compared to
the dynamical time of the fluid. The piece-wise power law approximation to the cooling curve is
obtained from a tabulated version of the exact collisional ionization equilibrium cooling function
(as is appropriate for the hot ∼ 107 K gas in the Galactic Center; see the next section for details).

To summarize, the equations we solve are the equations of conservation of mass, momentum,
and energy, with source terms to account for the gravity of the supermassive black hole, optically
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thin radiative cooling, and the stellar winds of the orbiting stars:

∂ρ

∂t
+ ∇ · (ρv) = f ρ̇wind

∂ (ρv)
∂t

+ ∇ · (PI + ρvv) = −
ρGMBH

r2 r̂

+ f ρ̇wind〈vwind,net〉

∂ (E)
∂t

+ ∇ · [(E + P)v] = −
ρGMBH

r
v · r̂

+
1
2

f ρ̇wind〈|vwind,net|
2〉 − Q−,

(4.1)

where ρ is the mass density, P is the pressure, v is the fluid velocity, E = 1/2ρv2+P/(γ−1), γ = 5/3
is the adiabatic index of the gas, and Q− is the cooling rate per unit volume. The calculation of
Q− is described in the next section. Note that in equation (4.1), we have neglected the effect of the
central nuclear star cluster on the gravitational potential. For the galactic center, the gravitational
contribution from these stars is negligible for r . 5′′ ≈ 0.2 pc but is non-negligible (∼ 25%) for
r & 10′′ ≈ 0.4 pc (Genzel et al. 2003b). In the innermost regions of the domain that are the primary
focus of this work, neglecting the stellar contribution to gravity is a good approximation.

4.3.2 Calculating The Cooling Function
We define the cooling function, Λ, such that the cooling rate per unit volume is Q− = ne

ρ

mp
Λ,

where ne = ρ/µe, mp is the mass of a proton, and µe is the mean molecular weight per electron.
For the conditions in the galactic center, the dominant cooling mechanisms are line emission in
collisional ionization equilibrium and thermal bremsstrahlung. The cooling function is thus a
function not only of temperature but also of the relative abundances of the elements. To calculate
Λ for a given set of hydrogen, helium, and metal mass fractions (X,Y and Z, respectively), we first
calculate the cooling curve for the photospheric solar abundances presented in Lodders (2003),
that is, X� = 0.7491, Y� = 0.2377,and Z� = 0.0133. We do this using the spectral analysis code
SPEX (Kaastra et al. 1996) in the manner of Schure et al. (2009), and calculate separately the
contributions from H, ΛH,�, He, ΛHe,�, and metals, ΛZ,�. Then we can write the cooling curve for
arbitrary abundances as a linear combination of these solar quantities as

Λ =
X
X�

ΛH,� +
Y
Y�

ΛHe,� +
Z
Z�

ΛZ,�. (4.2)

The mean molecular weight per electron, µe, and the mean molecular weight per particle, µ, are
directly related to X and Z by (Townsend 2009)

µe =
2mp

1 + X

µ =
mp

2X + 3(1 − X − Z)/4 + Z/2
,

(4.3)
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where we have made the approximation that the majority of the mass in metals is provided by
oxygen, and that the mean molecular weights are constant. The former is a good approximation
assuming that the relative abundance of metals are roughly solar, while the latter is a good ap-
proximation for T & a few ×104 K for a gas composed of mostly hydrogen or T & 105 K for
a gas composed of mostly helium. At lower temperatures, where hydrogen/helium become less
ionized, the approximation breaks down. This introduces an error in the cooling curve at lower
temperatures, but this error only increases the sharpness at which Λ → 0 and is thus limited to a
small range in temperatures. Furthermore, most of the gas in our simulation is above 105 K, so this
approximation does not significantly affect our results.

Once we have calculated the cooling curve, we then approximate it as a piece-wise power law
composed of 12 carefully chosen segments over the range 104 and 109 K. Above 109 K we use
a single power law, which is reasonable because at such high temperatures Λ is dominated by
thermal bremsstrahlung of electrons with either H or He.

The values of X and Z in the stellar winds is somewhat uncertain. However, WR stars are
typically bereft of Hydrogen, having ejected their outer hydrogen envelopes in earlier stages of
stellar evolution. We would thus expect their stellar winds to be composed of very little hydrogen
and a higher fraction of metals. Indeed, by fitting the spectra, Martins et al. (2007) find that the
H/He ratio is small in most of the stars and suggest that higher values of Z might be appropriate.
Therefore, for this work we adopt X = 0 and Z = 3Z�. Note that this is also the metallicity assumed
in several previous works (e.g., Cuadra et al. 2008, Calderón et al. 2016). The resulting cooling
curve is plotted in Figure 4.1 along with the piece-wise power law approximation that we employ
in our simulation. The agreement is excellent. Also plotted in Figure 4.1 is the ratio between the
number of free electrons and ρ/mp, which shows that the approximation of µe ≈ const. is good for
T & 105 K. For lower temperatures, Helium becomes mostly neutral and that approximation breaks
down. However, the cooling curve also rapidly decreases below 105 K so this is not a significant
source of error.

4.3.3 Computational Grid and Boundary/Initial Conditions
Our simulations are performed on a Cartesian grid to avoid the severe time step restriction

inherent in 3D spherical-polar coordinates caused by the limited azimuthal extent of the cells near
the pole. In addition, there is not necessarily an a priori symmetry axis in our problem, limiting the
utility of spherical-polar coordinates. To effectively resolve the smaller spatial scales of interest,
we utilize nested levels of static mesh refinement (SMR) to resemble logarithmic spacing in radius.
Furthermore, to avoid an unphysical build-up of material in the cells near the origin, we remove
a sphere of radius rin equal to twice the width of the smallest grid cell, replacing it with a region
of negligible pressure, negligible density, and zero velocity. This allows material to flow into the
“black hole” while limiting unphysical boundary effects to only a few cells outside of rin. Tests
demonstrate that this effective inner boundary condition correctly reproduces the Bondi accretion
solution. The outer boundary condition is outflow in all directions.
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Figure 4.1: Piece-wise power law approximation used in this work (solid) compared to the full cooling
curve calculated by SPEX (dashed, see §4.3.2) and the cooling curve used by Cuadra et al. (2008) (C08,
dot-dashed). Our cooling curve is for hydrogen free, Z = 3Z� gas appropriate for the Wolf-Rayet star winds
near Sgr A*. Also plotted is the number of free electrons relative to ρ/mp. This shows that 1) the piece-wise
power law does an excellent job capturing the shape of the full cooling curve, and 2) the simplification that
µe ≈ const. is well motivated for all temperatures in which the cooling curve is non-negligible. The main
difference between our cooling function and that of C08 is our choice to use X = 0, which reduces the high
temperature bremsstrahlung tail and moves the cut-off at low temperatures to slightly higher temperatures.
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4.3.4 Floors and Ceilings
Since Athena++ evolves the conservative variables of mass density, momentum density, and

total energy density, occasionally the primitive variables of ρ and P can reach unphysical (i.e.,
negative) values. When this occurs, to prevent code failure, we utilize floors on the density and
pressure such that if ρ < ρfloor, we set ρ = ρfloor, and if P < Pfloor we set P = Pfloor. In particular, we
adopt the values of ρfloor = 10−7M�pc−3 and Pfloor = 10−10M�pc−1kyr−2 . In runs with radiative cool-
ing, we impose a minimum temperature of 104 K which acts as an additional, density-dependent
floor on pressure. The aforementioned floors are activated sufficiently rarely that they do not affect
our results.

Additionally, unphysically large temperatures or velocities that occur in a handful of problem-
atic cells can severely limit the time step of the simulation, which is set by the Courant–Friedrichs–
Lewy number multiplied by the maximum wave speed over all cells in the domain. To limit the
effect of these isolated cells, we impose a ceiling on both the sound speed and the velocity that is
equal to 10 times the free-fall velocity at the inner boundary. If the sound speed of a cell exceeds
this value, we reduce the pressure in that cell such that the new sound speed is equal to the ceil-
ing. When the magnitude of one of the components of the velocity exceeds the ceiling, we reduce
the magnitude to the ceiling while keeping the sign fixed. In practice, we find that these ceilings
are only necessary during the first time step of our simulations for cells located within the stellar
wind source term. This is because the initial time step, which is set by the initial conditions of a
cold, low density gas, is large compared to the wind crossing time in these cells. The time step is
appropriately reduced after the first time step and the ceilings are no longer needed.

4.4 Tests of Implementation
In this section we describe two hydrodynamic simulations to both test and demonstrate the

implementation of the model described above.

4.4.1 Stationary Stellar Wind
In order to test that our subgrid model for the stellar winds produces the desired effect, we

place a single, stationary star with vwind = 1 pc/kyr ≈ 1000 km/s and Ṁwind = 10−5 M�/yr at the
center of a uniform, low density, low pressure medium. The grid is a cube of 1283 cells with three
levels of mesh refinement, so that the box size is ≈ 300rwind. We run the test for ≈ 2 times the wind
crossing time of the box. Absent gravity, as time evolves a steady state should be reached where
the star drives a global wind with v = vwind r̂ and ρ = Ṁwind/(4πvwindr2).

Our simulation shows excellent agreement with the analytic solution, as shown in the left panel
of Figure 4.2, where the angle averaged density, outflow rate, and radial velocity are all essentially
equal to the expected values for r > rwind. In principle, the temperature of the wind should be ≈ 0,
but in practice there is a finite amount of thermal pressure added by the model described in §4.3
due to the difference between |〈vwind,net〉|

2 and 〈|vwind,net|
2〉 caused by the averaging of a purely radial

velocity over a Cartesian grid cell. This effect, however, is sufficiently small for our purposes, as
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Figure 4.2: Left: Angle averaged outflow rate, radial velocity, and mass density profiles for a single, station-
ary stellar wind at the center of a uniform, low pressure medium (§4.4.1). The wind is sourced in a sphere
of radius rwind ≈ 2 cells. Right: Temperature profile and mach number, M ≡ vr/cs, in the same test. For
r > rwind, the angle-averaged Ṁ, vr, and ρ match nearly perfectly with the desired solution. As desired, the
wind is also cold, with the Mach number at the base of the wind of ≈ 30 and rising with increasing distance
from the base. Note that the bumps in the temperature profile for r/rwind & 20 (directly corresponding to the
bumps in Mach number) are caused by truncation error as the internal energy of the gas drops to the level of
the numerical precision of the total energy.

shown in the right panel of Figure 4.2. At the base of the wind, the radial Mach number of the flow
is ≈ 30 and increases due to adiabatic cooling as ∼ (r/rwind)2/3, showing that the thermal pressure
is a negligible contribution to the wind dynamics. For this particular choice of vwind and Ṁwind,
which are typical of the values of the stars contributing to accretion onto Sgr A*, this corresponds
to a base wind temperature of ≈ 2 × 104 K that decreases as ∼ (r/rwind)−4/3. Furthermore, despite
the Cartesian nature of the grid, the generated wind is still approximately spherically symmetric,
as seen by the relatively small deviations (< 10%) from spherical symmetry shown in Figure 4.3.

4.4.2 Isotropic Stars on Circular Orbits
In order to test our implementation of the stellar winds in a more complicated and dynamic

problem, we seek to reproduce the results of Quataert (2004), in which the winds of the stars
orbiting Sgr A* were modeled in spherical symmetry using a smooth source term in mass and
energy. To do this, we place 720 stars in circular orbits in a point source gravitational potential,
roughly uniformly distributed in solid angle and uniformly spaced in radius between 2′′ (0.08 pc)
and 10′′ (0.4 pc). Each star has the same stellar wind velocity, namely, 1000 km/s, and mass
loss rate determined by requiring the total mass loss rate to be 10−3 M�/yr. Furthermore, we
neglect radiative cooling. In the limit of an infinite number of stars, this should be equivalent
to a smooth source term between 2′′ (0.08 pc) and 10′′ (0.4 pc) that depends only on radius and
supplies a net addition of mass and energy without adding momentum (corresponding to η = 2 in
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Figure 4.3: Deviation of the ϕ-averaged density from spherical symmetry for the stationary stellar wind test
(see §4.4.1, Figure 4.2), over-plotted with velocity streamlines. These deviations caused by the Cartesian
grid are acceptably small, < 10% everywhere.

the notation of Quataert 2004). Since we consider orbiting and not stationary stars, in order to make
a proper comparison we add an additional source term to Quataert (2004)’s spherically symmetric
calculation to account for the extra kinetic energy in the injected gas due to orbital motion: 1/2
q(r) GMBH/r where q(r) is the stellar mass loss rate per unit volume and MBH ≈ 4 × 106M�. The
3D simulation is run for 7 kyr, and performed with a base resolution of 1283 with 6 levels of nested
mesh refinement on a 53 pc3 Cartesian grid, resulting in an inner boundary of rin ≈ 2.4 × 10−3 pc.

The angle-averaged results for the density, temperature, and radial velocity in this test are
shown in Figure 4.4, over-plotted with the results of a high resolution 1D calculation using the
smooth source term described in the preceding paragraph. We find excellent agreement between
the two calculations. The small differences are (i) small variations in the region where mass is
injected due to the finite number of stars and (ii) small differences in the few cells closest to the
absorbing inner boundary. We have verified that by moving the inner boundary to smaller radii, the
agreement improves. These results verify that 1) our subgrid model for the stars effectively drives
stellar winds with the desired accretion rate and wind speed and 2) the effects of the inner boundary
condition are limited to only a few cells and do not affect the rate at which mass is captured by the
black hole or the flow structure in the majority of the computational domain.

4.5 3D Simulation of Accreting Stellar Winds Onto Sgr A*
In this section we focus on the problem of accretion onto Sgr A* as fed by the stellar winds of

the 30 Wolf-Rayet stars and describe in detail the resulting flow properties.
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Figure 4.4: Electron number density, ne, temperature, T , (left) and radial velocity normalized to the stellar
wind velocity, vr/vwind, (right), all averaged over solid angle for the isotropic circular orbits test described
in §4.4.2. Dashed lines represent the high resolution spherically symmetric solution with a smooth radial
source of mass and energy, while solid lines represent a full 3D simulation of 720 stars in circular orbits
uniformly spaced in solid angle and radius between 0.08-0.4 pc (2 − 10′′). The black vertical line is the
location of the inner boundary, rin, for the 3D simulation. We find excellent agreement between the two
calculations, which verifies that our model for injecting stellar winds (§4.3) produces the desired results.
The small differences we find are due to both the finite number of stars and minor effects of the absorbing
inner boundary condition.
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4.5.1 Stellar Winds and Orbits
Before describing the simulation itself, we first briefly summarize the stellar wind parameters

and orbits of the stars that we include as sources of mass, momentum, and energy.
Of the hundreds of stars orbiting Sgr A* at distances less than about a parsec, we include in

our simulation only the ≈ 30 Wolf-Rayet stars identified in Martins et al. (2007) as strong wind
emitters. The wind speeds and mass loss rates that we set for each star are taken directly from
Table 1 of Cuadra et al. (2008), which summarizes Martins et al. (2007). The locations of the
stars are determined by solving Kepler’s equation at each time step for the set of orbital elements
corresponding to the present day location and velocities with respect to Sgr A*. Unfortunately,
while the proper motions, radial velocities, and positions in the plane of the sky for the stars
are precisely measured (Paumard et al. 2006; Lu et al. 2009), their location in the plane of the
sky (i.e. the z direction) is undetermined because the acceleration measurements for nearly all
of stars are consistent with 0 (Lu et al. 2009). It was noted by Levin & Beloborodov (2003)
(and later confirmed by Beloborodov et al. 2006; Lu et al. 2009; Bartko et al. 2009), however,
that the velocities of some of the stars lie within a thin planar structure, which allowed them to
perform a likelihood analysis to precisely determine the z-coordinates of the disc-stars. Some have
proposed the existence of a second stellar disc (e.g. Paumard et al. 2006), but this disc remains
uncertain (Beloborodov et al. 2006; Lu et al. 2009). Thus, in order to determine the orbits of
the remaining, non-disc-stars, we require a prescription for their z-coordinates. For simplicity
and ease of comparison to previous calculations, we adopt the “1-disc” model of Cuadra et al.
(2008)2, where the z-coordinate of the stars outside the stellar disc are determined by minimizing
the eccentricity of the implied stellar orbit.

In summation, for each disc-star as identified by Beloborodov et al. (2006), we use the veloci-
ties and three dimensional positions as listed in Table 2 of Paumard et al. (2006) to determine the
stellar orbits, while for the remaining stars we use the velocities and two dimensional positions
from Table 2 of Paumard et al. (2006) with z-coordinate determined by minimizing the eccentric-
ity. The single exception to this is the star S97 (aka E23), whose orbit has a short enough period to
have been precisely determined (e.g., Gillessen et al. 2009, 2017). For this star we use the orbital
elements listed in Table 3 of Gillessen et al. (2017).

In addition to the winds of the WR stars, we also perform one simulation that includes the
stellar wind of the star S2. For this star we use the orbit given by Gillessen et al. (2017) and
theoretical estimates of its mass-loss rate and stellar wind speed. This is described in more detail
in §4.5.3.

The radii of the resulting stellar orbits (not including S2) as a function of time as well as their
height and cylindrical radius defined with respect to the stellar disc at the present day are shown
in Figure 4.5 for the inner few arc seconds (inner few ∼ 0.1 pc). Here and throughout we define
t = 0 as December 2017. We expect the handful of stars in the inner few arc-seconds region to
be the dominant source of accretion, as their stellar winds are more gravitationally bound to the
black hole than the winds of the stars orbiting at larger radii. From Figure 4.5, note first that,

2Note, however, that in this work we assume a black hole mass of 4.3 ×106 M�, resulting in orbits that are not quite
identical to those in Cuadra et al. (2008), who assumed a black hole mass of 3.6 ×106 M�.
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Figure 4.5: Left: Radial distance from the black hole for the innermost stars in our simulation. Right:
Present day height and cylindrical radius of the innermost stars defined with respect to the anuglar mo-
mentum axis of the clockwise stellar disc described by Beloborodov et al. (2006), where the sizes of the
circles/triangles are linearly proportional to the mass-loss rate of the stars. Each star is labeled using the ‘E’
notation of Paumard et al. (2006). Solid lines (blue circles) denote stars identified with the stellar disc, while
dashed lines (red triangles) denote stars outside the disc that fall into a more isotropic distribution of angular
momentum. The line-of-sight position for the latter stars are chosen by minimizing the eccentricity of the
orbit, as in Cuadra et al. (2008). At the present day, five out of the six stars in the inner 4′′ are disc-stars,
which suggests that the angular momentum of the inner accretion flow might preferentially be aligned with
the angular momentum of the stellar disc. Moreover, within the central 6′′, at the present day, five of the six
non-disc stars are located below the midplane of the stellar disc, which further suggests that the accretion
flow structure might be asymmetric in polar angle (defined with respect to the angular momentum vector of
the stellar disc). Indeed, we find both of these to be true in our simulations, as discussed in §4.5.3.

at the present day, a majority of the innermost stars are disc-stars, which is encouraging for the
robustness of our calculation of the inner accretion flow as these orbits are better constrained than
the orbits of non-disc stars. Furthermore, this predominance of disc stars in the inner region will
provide the accretion flow with a preferred angular momentum direction and thus encourage a
coherent formation of a disc, as we will show in §4.5.3. Secondly, note that a majority of the
innermost non-disc stars are located below the plane of the stellar disc. This introduces an inherent
asymmetry about the midplane of the disc. This asymmetry shows up in the accretion flow structure
outlined in §4.5.3.

4.5.2 Parameters and Initialization
We perform our simulation on a base grid with physical size of 1 pc3 that is covered with

1283 cells. Additionally, to further resolve the innermost region, we use 9 levels of nested SMR,
resulting in an inner boundary of rin ≈ 6.0× 10−5pc ≈ 1.6× 10−3 ′′ ≈ 300rG, where rG ≡ GMBH/c2

is the gravitational radius of the black hole. To study the dependence of our results on rin, we also
carry out simulations for rin ≈ 3.0 × 10−5pc, 1.2 × 10−4pc, and ≈ 2.4 × 10−4pc (see §4.5.3).
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Since we are interested in the accretion flow at the present day, we start the simulation at an
initial time of t0 = −1.1 kyr, that is, 1100 years in the past, starting with zero velocity and the floor
values of pressure and density. 1100 years corresponds to an orbital period at r ≈ 0.3 pc ≈ 7′′.
Since we are interested in the flow properties at radii much smaller than this, such a run time is
sufficient for our purposes (as we have also checked by running larger rin simulations for longer
times).

Finally, we adopt the recent estimates of MBH = 4.3 × 106M� and dBH = 8.3 kpc (Gillessen
et al. 2017), where dBH is the distance to Sgr A*. For these parameters, 1′′ ≈ 0.04 pc ≈ 2 × 105 rg,
where rg ≡GMBH/c2, G is the gravitational constant, and c is the speed of light.

4.5.3 Results
Figure 4.6 shows a volume rendering of our simulation for the outer ∼ 0.5 pc (∼ 13′′) of the

galactic center at the present day, while Figure 4.7 shows two-dimensional plane-of-the-sky slices
of electron number density and temperature at the same time and spatial scale. The stellar winds of
the “stars” in our simulation (which appear in the figure as dense, cool circular point-like objects)
strongly interact and produce a myriad of bow shocks, heating the gas to temperatures as high
as ∼ 2 × 108 K. These point-like sources and shocks also light up in X-rays, as shown in the X-
ray surface brightness profile of Figure 4.8 (see caption and §4.6 for details of this calculation),
which is overall in good agreement with the observed brightness profile seen by Chandra (also
shown in Figure 4.8). The largest differences (not including the pulsar wind nebula at ∆RA, ∆Dec
≈ −4′′, 8.5′′ that appears in the observations) occur a few arcseconds to the left of Sgr A* in the
plane of the sky (∆RA offset from Sgr A* of ∼ 3′′), where our simulations show a point-like source
of emission not seen in the observational data, and around the star IRS 13E at (∆RA, ∆Dec) ≈ (
−4′′,−2′′), which is significantly brighter than the observations. Since both of these differences
were also seen by Russell et al. (2017), who simulated the same problem3 with a similar orbital
configuration, mass-loss rates, and stellar wind speeds (see §4.8), they can likely be interpreted as
additional constraints on the properties of the stellar winds. For a more detailed discussion, we
refer the reader to Russell et al. (2017).

As we will show, much of the material at the scale pictured in Figures 4.6-4.8 is unbound
outflow; only a small fraction actually reaches the inner domain. Furthermore, by the present day,
the total amount of mass in the simulation contained within r . 0.5 pc has saturated at a constant
value of ∼ 0.2M�. This implies that the mass-feeding rate of the stellar winds is approximately
balanced by the rate at which mass leaves the computational domain. Figure 4.9 focuses closer
in to the black hole, again showing plane-of-the-sky slices of mass-density and temperature but
only in the inner 0.04 pc (∼ 1′′). By the time the gas has reached this scale, the shocks formed by
the colliding winds have mostly dissipated, resulting in a hot, smooth flow combined with a few
cooler (T . 2 × 107 K), dense clumps. The gas at this scale consists of roughly equal proportions
of inflow and outflow (see below).

3Russell et al. (2017) also included various subgrid models of feedback from Sgr A*, but the two features discussed
here are seen in all of their mock X-ray images, including the “control run” with no feedback.
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Figure 4.10 shows the mass accretion rate through the inner boundary and the angular momen-
tum direction vector of the inner 0.03 pc (∼ 0.8′′) of the simulation as a function of time. The
accretion rate varies between ∼ 2.0 × 10−7Ṁ�/yr to ∼ 1.75 × 10−6Ṁ�/yr on time scales as short as
10s of years. The angular momentum vector of the flow, on average, oscillates around the normal
vector of the stellar disc in which most of the innermost stars lie. The largest deviation occurred
during a period of ∼ 300 yrs that began ∼ 500 yrs ago when there was a rapid change from clock-
wise to counter-clockwise rotation with respect to the line of sight. This event was associated with
the largest spike in accretion rate that we see at ∼ 200 yrs ago. This was likely caused by one or
two of the non-disc stars briefly providing a large source of accretion as they approached pericenter
(see Figure 4.5) which then temporarily disrupted whatever coherent disc may have formed. By
the present day, however, the gas has settled back down to once again be aligned with the stellar
disc and the flow enters a brief “quiescent” phase with a relatively low accretion rate that lasts for
the next ∼200 years. One should not read too much into the latter result beyond the fact that the
accretion rate could have been higher by factors of .7 within the recent hundreds of years. This
is because we find that our simulations are highly stochastic, and thus the exact behavior of the
accretion rate as function of time can vary even with the smallest perturbation.

With that said, to study the flow properties in more detail it is useful to study averaged fluid
quantities to account for this stochastic time variability. We define the time and angle average of a
fluid quantity A as

〈A〉 ≡
1

4π(tmax − tmin)

tmax∫
tmin

2π∫
0

π∫
0

A sin(θ)dθdϕdt, (4.4)

and the w-weighted time and angle average as

〈A〉w =
〈Aw〉
〈w〉

, (4.5)

where we use tmin = −100 yr and tmax = 0 yr. Note that 100 yr is the free-fall time at a radius
of ≈ 0.07 pc ≈ 1.8′′. We have chosen this particular time interval rather than one centered on
t = 0 because it represents a period in which the angular momentum vector of the inner regions is
relatively steady (see Figure 4.10). Such an interval more clearly elucidates many of the general
properties of the simulation while minimizing the complications inherent in describing a flow that
is not in a true steady-state.

Figure 4.11 shows the resulting radial profiles of the average electron number density, temper-
ature, and radial velocity, while Figure 4.12 shows a radial profile of the average accretion rate,
broken down into both inflow and outflow. We define the latter two quantities as

Ṁin ≡ −〈4πρmin(vr, 0)r2〉

Ṁout ≡ 〈4πρmax(vr, 0)r2〉.
(4.6)

Figures 4.11 and 4.12 show that the flow contains four distinct regions:

1. The outflow dominated region, r & 0.4 pc, which falls outside the locations of the majority
of the stars and where the flow is approaching the standard Parker wind solution with ρ ∝ r−2

and Ṁ ≈ const. > 0.
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2. The “feeding region” where the orbits of the stars mostly lie, 0.07 pc . r . 0.4 pc, where
Ṁ is both positive and increasing with radius due to the source term provided by the stellar
winds.

3. The “stagnation region”, 0.01 pc . r . 0.07 pc, where the mass inflow and outflow rates
approximately cancel and Ṁ ≈ 0.

4. The inflow dominated region, r . 0.01 pc, where Ṁ ≈ const. < 0.

The transition from region 3 to region 4 is marked by an increase of inflow relative to outflow,
caused by the loss of pressure support at the inner boundary leading to an accelerated radial velocity
that approaches Mach 1. The net effect of this is that, of the ∼ 7× 10−4M�/yr of material provided
by the 30 stellar winds, only a small fraction of this, ∼ 7 × 10−7M�/yr, is accreting into the inner
boundary; the rest fuels the outflow. However, the radius at which the flow transitions from regions
3 to 4, and hence, the constant accretion rate in the innermost radii, depends on the location of the
inner boundary. Larger (smaller) rin causes the transition to happen at larger (smaller) radii and
thus results in larger (smaller) accretion across the inner boundary. This clear dependence of our
simulation results on the location of the inner boundary is not necessarily a concern; in fact, we
can use it to extrapolate down to the Schwarzchild radius of the black hole where a pressure-less
boundary would be appropriate. We do this later in §4.5.3.

In Figure 4.12, the inflow rate at ∼ 0.1 pc is ∼ 2-3 10−5 M�/yr, which is of order the canonical
Bondi estimate for the rate at which gas should be gravitationally captured by the central black
hole. However, only a small fraction of this mass actually accretes to smaller radii� 0.1 pc (and
the accretion rate at small radii decreases as we decrease the innermost radius of our simulation;
see Figure 4.17). Thus the Bondi accretion rate estimate is not a good estimate of the accretion
rate at small radii in our simulations. This is because, as we will show in more detail below,
only the low angular momentum tail of the stellar wind material can accrete to small radii in our
simulations.

For a flow in which radiative cooling is inefficient, the T ∝ r−1 scaling shown in Figure 4.11 is
expected from conservation of energy, where T ∝ GMBH/r. If the flow were adiabatic this would
imply a density power law of r−3/2 for γ = 5/3, but instead we find ρ ∝ r−1. This is because the
shocks generated by the accreting stellar wind material lead to an effective energy dissipation term
that results in p/ργ ∝ r−1/3, that is, an entropy profile that increases with decreasing radius. In
Appendix 4.A we explain the precise shape of the density profile in terms of a model in which the
stellar winds from only a small number of stars dominate the flow. An r−1 density profile in the
inner region of the flow implies that the total amount of mass enclosed in a spherical shell of radius
r, Menc, scales as r2 in this region. More precisely, we find that the enclosed mass at t = 0 is well
approximated by

Menc ≈ 4 × 10−5M�

(
r

0.008pc

)2

, (4.7)

which agrees with our simulations up to a factor of ∼ few for r > 2 × 10−4 pc.
Figure 4.13 shows the mass-weighted average Bernoulli parameter and the relative contribu-

tions to the Bernoulli parameter from pressure and velocity. We find that the flow is, on average,
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unbound at all radii. For r & 0.04 pc, the material is strongly unbound, that is, 〈E〉 � GMBH/r,
and the Bernoulli parameter approaches a constant. This is expected from the fact that the majority
of the stars are located between 0.05 − 0.4 pc and fuel a Parker wind-type solution for r > 0.4
pc. By contrast, the gas in the inner r < 0.05 pc is only very slightly unbound, with the Bernoulli
parameter closely mirroring the gravitational potential.

Radiative cooling can be important in localized regions for cooling of the shocked stellar winds
at large radii (r & 0.07 pc), but has a negligible effect on the inner regions of the flow (r . 0.07
pc). To quantify this, we note that there is only ≈ 10−3M� of gas with T < 105 K for r . 0.07
pc and no gas with T . 106 K by r . 0.03 pc. This can be understood using a simple time-scale
analysis. At r = 0.07 pc, the ratio between the cooling time, 〈tcool〉 ≡ 〈P/(γ − 1)〉/〈Q−〉, and the
local sound crossing time, 〈tcs〉 ≡ r/

√
γ〈P〉/〈ρ〉 is ∼ 300, and increases rapidly with decreasing

radius. For r & 0.07 pc, however, this ratio is typically of order ∼ 50 and can be as small as ∼ 10.
Note that this is an angle and time averaged quantity; localized regions at r & 0.07 pc can have the
ratio between tcool and tcs reach ∼ 1.4

Figure 4.14 shows the average specific angular momentum of the accretion flow, weighted both
by mass and mass flux, as well as the average direction vector of the mass weighted specific angular
momentum. The bulk of the material falls into a sub-Keplerian rotation profile with l ≈ 0.5lkep =

0.5
√

GMBHr, while the angular momentum of the material that is accreting all the way through the
inner boundary is constant with radius and equal to half the Keplerian value at the inner boundary,
l ≈ 0.5lkep(rin). This indicates that only material with circularization radii . rin is able to truly
accrete; the rest fuels outflow, as we shall show. The reason that both the mass-weighted specific
angular momentum profile and the value of the specific angular momentum at the boundary are
sub-Keplerian is that the flow is predominately pressure supported, as shown in Figure 4.13, where
the rotational term comprises only ∼ 20% of the Bernoulli parameter.

Furthermore, Figure 4.14 also shows that the direction of the angular momentum vector is ≈
const. for the inner r . 0.4′′ and is essentially aligned with the normal vector of the clockwise disc
of stars. We have shown previously in Figure 4.5 that five of the innermost six stars at the present
day are classified as disc-stars, so it is not surprising that the resulting flow is also aligned with the
disc if we consider that most of the material is provided by these nearby stars. The fact that this
direction is ≈ constant with radius makes it convenient to define a new coordinate system in which
the z-direction is aligned with the angular momentum. In this new coordinate system we can make
2D, ϕ-averaged contour maps to better study the disc structure.

In these new coordinates, Figure 4.15 shows contour maps of ϕ-averaged mass accretion rate
overplotted with velocity streamlines, Bernoulli parameter, and density, in addition to ϕ-averaged θ
profiles of density, angular velocity, temperature, and accretion rate at 0.04 pc ≈ 66rin. Though we
do find a disc-like structure with the density peaked in the midplane, the scale height of this disc
is large, with only a factor of ∼ 2-3 contrast between the midplane density and the polar density.
This is because the disc is hot and mostly pressure supported (see Figure 4.13), which causes the
disc to puff up and reach a scale height, H, of H ≈ r. Additionally, we find that accretion primarily
occurs by bound material along the southern polar region, while the midplane and northern pole

4Since we include optically thin radiative cooling in the calculation, tcool/tcs is always & 1; otherwise it would
quickly evolve to tcool/tcs ∼ 1.
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are moderately unbound and generally outflowing. The asymmetry in θ is a direct result of the
asymmetry in the distribution of non-disc stars at the present day (Figure 4.5), where a majority
of the inner-most non-disc stars are located below the midplane of the stellar disc. The somewhat
counter-intuitive result that the midplane is predominantly outflowing and not inflowing is caused
by the stellar wind material having a wide range of angular momentum. The significant population
of low angular momentum material would naturally accrete spherically, but the material with larger
angular momentum can only reach a radius ∼ l2/(GMBH), at which point it scatters off of the
effective potential, preferentially towards the midplane. The presence of both of these components
results in the accretion structure shown in Figure 4.15, where a combination of both high and low
angular momentum material inflow along the southern pole until the circularization radii of the
high angular momentum material is reached. At this point the unbound, high angular momentum
material “turns aside” to the midplane and feeds outflow while the bound,low angular momentum
material continues on until it either reaches the inner boundary or feeds the outflow along the
northern pole.

These two very different components to the accretion flow are additionally seen in the fact that
the midplane and the southern polar regions have very different dynamics. This is highlighted
in Figure 4.16, where we show ϕ-averaged radial profiles of accretion rate, radial velocity, and
angular velocity for θ = 90◦ and θ = 170◦. At θ = 170◦ (southern pole), the material is essentially
in free-fall with an accretion rate that nicely matches the ∝

√
r predicted from feeding by a few

isolated stars (Appendix 4.A). At θ = 90◦ (midplane), on the other hand, vr � v f f and the material
is nearly Keplerian with velocity predominantly in the ϕ-direction.5 This means that the flow can
be roughly described as a superposition of a low angular momentum, spherical-Bondi type solution
with a high angular momentum, Keplerian thick disc type solution. In our simulations, the former
dominates the accretion rate while the latter dominates the mass.

Extrapolating Down To The Event Horizon

As discussed in the previous section, the amount of matter that accretes through the inner
boundary depends on the value of rin. This is for two reasons. First, the “absorbing” boundary
condition that we use removes radial pressure support, leading to an increased inflow rate in the
innermost region. Second, in order for material to accrete, it must have l . 0.5lin, where lin ≡√

GMBHrin is the Keplerian angular momentum at the inner boundary. Both of these effects would
be physically reasonable if rin represented the event horizon of the black hole, but unfortunately
such a small rin is too expensive for our current computational resources, which use rin ≈ 300rG.
On the other hand, we have found that our simulation quantities roughly obey power laws over
much of the inner domain, so we can reasonably extrapolate down to smaller radii.

The effect of the inner boundary is to force vr(rin) to be ≈ −cin ∼ −v f f (rin) ∝ r−1/2
in , while we

have shown that ρ ∝ r−1 (Figure 4.11). Thus, we expect Ṁ ∝
√

r, which is the natural result of only
handful of stars that have wind speeds comparable to their orbital speeds dominating the accretion
supply (see Appendix 4.A). We have already shown that the accretion rate measured along the

5Note, however, that by comparing Figure 4.13 to Figure 4.16, 〈vr〉
2 � 〈v2

r 〉, meaning that there can exists large
instantaneous radial flows that cancel out when averaged over time.
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Figure 4.6: Three-dimensional rendering of our simulation on a 0.5 pc × 0.5 pc scale. This rendering was
created with the yt code (Turk et al. 2011) using 8 ‘layers’ evenly spaced logarithmically in mass density
between 10−2 and 100.5 M�/pc3. As the stellar wind sources (which appear as circular, outlined rings) plow
through the material, the winds themselves form bow shocks in the direction of motion. The interaction
between these shocks causes a variety of fine scale structure to form in the flow. An animation of this figure
is available online.



4.5. 3D SIMULATION OF ACCRETING STELLAR WINDS ONTO SGR A* 116

Figure 4.7: Plane-parallel slices in the plane of the sky (z = 0) of the electron number density, ne, and
Temperature, T , of our 3D hydrodynamic simulation, shown at the present day after running for 1.1 kyr
from an initial vacuum state. The “stars” in our model are effectively point sources in mass, momentum,
and energy (see §4.3) that travel on fixed Keplerian orbits constrained by observations. Here they appear as
dense, cool, spherical regions. The winds emitted from the stars form bow shocks as they collide with the
ambient material and heat to high temperatures (∼ 2 × 108 K). On the scale of the image, most of the stellar
wind material is unbound and outflowing due to high temperature and angular momentum (see Figures 4.12
and 4.13). An animation of this figure is available online.

southern pole that dominates the inflow nicely matches this scaling relation (Figure 4.16). For
further confirmation of this result, in the top panel of Figure 4.17, we plot the accretion rate as
function of radius for four different values of rin compared to an r−1/2 power law. The agreement
is fairly good. By setting the constant of proportionality using the accretion rate in the rin ≈ 300rG

simulation, we find that

Ṁ ≈ 2.4 × 10−8M�/yr
√

rin

rG
, (4.8)

which is shown in the bottom panel of Figure 4.17 to be an excellent representation of our simula-
tions. For a non-rotating black hole, the horizon is located at 2rG and thus Equation 4.8 predicts an
accretion rate of ≈ 3.4 × 10−8M�/yr. The Bondi rate that would be inferred from the density and
temperature at 2′′ in our simulation is 2.4 × 10−5M�/y. Our estimated Ṁ at the horizon is a factor
of ∼ 700 lower due to the presence of rotationally-driven outflow. Remarkably, the prediction of
Equation (4.8) is entirely consistent with the observational limits inferred from polarization mea-
surements (Marrone et al. 2007) as well as previous estimates of the accretion rate based on models
of the horizon-scale accretion flow (e.g., Shcherbakov & Baganoff 2010; Ressler et al. 2017). It is
unclear if this result will hold in MHD simulations, however, since angular momentum transport
in rotationally supported material may modify Ṁ from the value set by the low angular momentum
tail in our hydrodynamic simulations.
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Figure 4.8: 2-8 keV surface brightness of the central 20′′ × 20′′ at the present day as calculated from our
simulation (left) and as observed by Chandra (right) (Li et al. 2013). The surface brightness from the
simulation has been coarsened to match the Chandra spatial resolution of ≈ 0.492′′ per pixel, while the
surface brightness from the observations is calculated assuming a mean photon energy of 5 keV and has not
been corrected for absorption. Both images show several point sources corresponding to the stellar wind
sources in addition to an increase in surface brightness at the position of the black hole. Note that, in our
simulations, we do not the include the point source at (∆RA, ∆Dec) ≈ (-4.5′′,8′′) associated with the pulsar
wind nebulae seen in the Chandra image. Integrated over the inner 1.5′′ − 10′′, the X-ray surface brightness
from our simulation agrees well with the point-source-extracted luminosity calculated from observations
(see Figure 4.19, Baganoff et al. 2003).

Figure 4.9: Same as Figure 4.7, except zoomed in to the inner 1”. At this scale, much of the kinetic energy
provided by the stellar winds has been converted into thermal energy via the shocks seen in Figure 4.7,
resulting in a relatively smooth, hot accretion flow. Note, however, the presence of a few relatively cold,
high density clumps.
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Figure 4.10: Top: Accretion rate as a function of time in our simulation, measured at 2.5rin ≈ 1.5 × 10−4

pc ≈ 740rg. Bottom: Angular momentum direction vector averaged over the inner 10rin ≈ 6 × 10−4 pc
< r < 0.03 pc. Dashed lines represent the angular momentum vector of the stellar disc in which a majority
of the innermost stars orbit. The largest spike in the accretion rate is associated with a rapid change in the
angular momentum vector of the flow.
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Figure 4.11: Time and angle averaged electron number density in units of 104 cm−3, 〈ne,4〉, temperature in
units of 1010 K, 〈T10〉ρ, and radial velocity normalized to the average sound speed at the inner boundary,
〈vr〉ρ/cin, where cin ≡ 〈cs〉ρ(rin). Vertical lines demarcate regions (i)-(iv) as defined in §4.5.3. In the inner
accretion flow, r . 0.07 pc (regions iii and iv), all three variables follow power-laws in radius of ∝ r−1, while
for r & 0.4 pc (region i) the density follows an r−2 profile, as expected for a Parker wind-type solution.
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Figure 4.12: Time and angle averaged accretion rates as a function of radius, including the net accretion
rate (solid) and inflow and outflow rates computed separately (dashed, Equation 4.6). Here Kelly green lines
denote outflow while silver lines denote inflow. Vertical lines demarcate regions (i)-(iv) as defined in §4.5.3.
Outflow dominates for r & 0.07 pc (region i), where most of the stellar winds are located, while inflow
dominates for r . 0.01 pc (region iv). In between, the rates are nearly equal in magnitude. Of the total ≈ 7
×10−4 M�/yr added to the simulation from the stellar winds, only a small fraction, ≈ 6 ×10−7 M�/yr, flows
into the inner boundary. In addition, the accretion rate at the inner boundary, rin, decreases with smaller rin

(§4.5.3, Figure 4.17).
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Figure 4.13: Left: Time and angle-averaged total specific energy (solid red), (E + P)/ρ, where E ≡ 1/2ρv2 +

P/(γ − 1), gravitational potential (solid black), Φ ≡ GMBH/r, and the Bernoulli parameter (dashed red),
(E + P)/ρ − Φ. The latter quantity is normalized to the gravitational potential, while the former two are
normalized to the gravitational potential at r0 = 0.04 pc [i.e. Φ0 = Φ(r0)]. Right: Time and angle-averaged
components of the Bernoulli parameter, including the pressure term (top line), the orbital kinetic energy
term (middle line), and radial kinetic energy term (bottom line), all plotted as fractions of the gravitational
potential, GMBH/r. Here the azimuthal, ϕ direction is defined with respect to a coordinate system which has
ẑ aligned with the average density weighted angular momentum axis. The inner accretion flow is slightly
unbound, with Bernoulli parameter & 0, and predominantly pressure supported. Note that, comparing to
Figure 4.11, 〈v2

r 〉ρ ∝ r−1, while 〈vr〉ρ ∝ r−1, which is due to the cancellation of both inflow and outflow
reducing the average of vr.
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Figure 4.14: Left: Comparison between the density-weighted and the mass flux-weighted averages of the
angular momentum, both normalized to the Keplerian value at the inner boundary, lin. Right: Time and
angle averaged angular momentum direction vector of the inner region of our simulation. Dashed lines
represent the normal vector of the clockwise stellar disc taken from Paumard et al. (2006). Here we define
〈L〉2 ≡ 〈Lx〉

2 + 〈Ly〉
2 + 〈Lz〉

2, where Li = ρli is the angular momentum per unit volume in the ith direction.
Most of the mass lies in a slightly sub Keplerian distribution with l ≈ 0.5lkep with a well-defined direction
that is constant in the inner r . 0.1 pc and aligned with the clockwise disc of stars. The material flowing
into the inner boundary, on the other hand, has a nearly constant angular momentum of l ≈ 0.5lin (left panel;
dashed blue line), which shows that only material that has circularization radii . rin is able to accrete.

The Effect of Including S2

The star S2, which has an orbit that reaches ∼ 3000 rg (or ≈ 0.01′′ ≈ 4 mpc, Gillessen
et al. 2017), is of particular interest for many studying the galactic center. Its exceptionally well-
constrained orbit has been used to constrain the mass and distance to Sgr A*, and high-precision
measurements of its next pericenter passage will be used to test the theory of General Relativity
(Grould et al. 2017; Hees et al. 2017; Chu et al. 2018). Though S2 is much fainter and thus expected
to have a much weaker stellar wind than the typical WR star surrounding Sgr A*, its proximity to
the black hole could increase its potential effect on feeding and/or disrupting the accretion flow
in the innermost radii (Loeb 2004; Nayakshin 2005; Giannios & Sironi 2013; Schartmann et al.
2018). This would be especially true at pericenter, which is expected to occur in the year 2018. To
test this hypothesis, in this section we briefly consider the effect that the wind from this star could
have on accretion onto Sgr A*. Note that S2 is among the most massive of the S stars (Habibi et al.
2017) and thus the most likely to have a strong wind.

For the observed properties of S2 (e.g. Habibi et al. 2017), the theoretical model of Vink et al.
(2001) predicts a mass-loss rate of ≈ 2 × 10−8 M�/yr for a fiducial wind speed of 2000 km/s. Note
that this mass-loss rate is ∼ 3 orders of magnitude less than the typical WR star in our simulation.
Using said mass-loss rate and wind speed in addition to the precisely known orbit as given by
Gillessen et al. (2017), we performed a second simulation that is identical to the the first except
that it included S2 as an additional wind source term.
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Figure 4.15: Top Left: Time and ϕ averaged mass accretion rate, Ṁ = 4πρvrr2, where green denotes
outflow and silver denotes inflow, overplotted with streamlines of velocity. Top Right: Time and ϕ averaged
Bernoulli parameter relative to the gravitational potential, Be/Φ. Middle: Time and ϕ averaged mass density,
multiplied by the spherical radius r to account for the ρ ∝ r−1 scaling we show in Figure 4.11. Bottom Left:
Angular profiles at 0.04 pc ≈ 0.1′′ of the time and ϕ averaged mass density (normalized so that the peak
density is 1), ρ̃, angular velocity in units of the Keplerian rate, Ω/Ωkep, and the ratio between the thermal
component of the Bernoulli parameter and the gravitational potential, c2

s/[Φ(γ − 1)]. Here Ω ≡ vϕ/[r sin(θ)]
and Ωkep ≡

√
GMBH/[r sin(θ)]3 Bottom Right: Time and ϕ-averaged accretion rate as a function of polar

angle at 0.04 pc. Here ϕ is defined as the azimuthal angle with respect to the angular momentum axis
shown in the right panel of Figure 4.14. The disc that forms is very thick and pressure supported, with only
a small contrast between the density in the midplane compared to the density at the poles (note the linear
scale on the density contour and angular profile). Furthermore, accretion occurs primarily by bound material
(Be<0) in the southern polar regions, while the midplane and northern pole are predominately composed of
unbound(Be>0) outflow. This is caused by the asymmetry of the location of the non-disc stars (see Figure
4.5) and the fact that material can only inflow for r > rcirc, where rcirc is the circularizaiton radius, at which
point it is preferentially “scattered” towards the midplane (defined with respect to the angular momentum
axis).
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Figure 4.16: Time and ϕ-averaged radial profiles of accretion rate (top), radial velocity in units of the
free fall speed (middle), and angular velocity in units of the Keplerian rate (bottom) along θ slices, where
Ω ≡ vϕ/[r sin(θ)], Ωkep ≡

√
GMBH/[r sin(θ)]3, and θ is defined with respect to the angular momentum

axis shown in the right panel of Figure 4.14. Solid lines are profiles along the southern pole, dashed lines
are profiles along the midplane (see Figure 4.15), while green denotes outflow and silver denotes inflow.
The bound material in the southern pole is essentially in free-fall, with an accretion rate that nicely follows
the
√

r power-law predicted from isolated star accretion (Appendix 4.A). The material in the mid-plane,
on the other hand, is dominated by pressure and rotational support with a much smaller radial velocity and
inflow/outflow rates.
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Figure 4.17: Dependence of the accretion rate on the inner boundary. Left: Time-averaged accretion rate
as a function of radius for four different values of the inner boundary. Right: The fit presented in Equation
4.8 plotted vs. the time averaged accretion rate at r = 2.5rin for the same four values of the inner boundary
radius. Using the

√
r dependence of the accretion rate that holds well over this range of rin, we estimate

Ṁ ≈ 3 × 10−8 M�/yr at the horizon of the black hole.

Figure 4.18 shows that including S2 has essentially no effect on the time and angle averaged
flow properties. This is because, even at ∼0.01”, the inflow and outflow rates shown in Figure 4.12
are still almost 2 orders of magnitude larger than the mass loss rate of S2. This is consistent with
the results of Lützgendorf et al. (2016), who found that a simulation that included the winds of the
S-stars alone could only provide significant accretion if their mass-loss rates were ∼ 10-100 times
larger than those inferred from observations (e.g., the values quoted above for S2).

4.6 Constraining Stellar Wind Mass-loss Rates and Wind Speeds
with X-ray Observations

The simulations presented in this paper used the mass-loss rates presented in Martins et al.
(2007) that were obtained by fitting stellar wind models to infrared spectra. Their models included
the effects of clumping, which reduce the inferred mass-loss rates for some of the stars (but not
all) by a factor of ∼ 3. Estimates of the mass loss rates of the same stars derived from radio
observations, however, are, on average, smaller by a factor of ∼ 2 (Yusef-Zadeh et al. 2015a).
This is even without including the effects of clumping, which would reduce the radio-inferred
mass-loss rates of some stars by another factor of ∼ 3. The infrared and radio data probe different
spatial scales of the winds and use different modeling techniques so it is not clear which is a better
representation of the true mass-loss rates.

To obtain an additional constraint, we turn to Baganoff et al. (2003), who presented spatially
resolved X-ray observations of Sgr A* that measured the total 2-10 keV luminosity at two dif-
ferent scales, namely, between 1.5′′-10′′ and also < 1.5′′. As in previous work (Baganoff et al.
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Figure 4.18: Comparison between the time and angle averaged radial profiles of mass density, sound speed,
radial velocity, and accretion rate for simulations including the stellar wind provided by the star S2 (solid)
and without S2 (dashed). The units of ρ, cs (vr), and Ṁ are M�/pc3, pc/kyr, and M�/kyr, respectively. Due
to its low mass loss rate compared to the WR stars, including S2 has a negligible effect on the average radial
profiles of the flow around Sgr A*.

2003; Quataert 2004; Rockefeller et al. 2004), we propose that the hot gas responsible for both of
these emission components is provided by the stellar winds of the WR stars. In that case, these
measurements of the X-ray luminosity help determine the stellar wind mass-loss rates, since the
luminosity scales as ∝ n2 ∝ Ṁ2

wind,tot where Ṁwind,tot is the total mass-loss rate of all the stars. The
constraint is even stronger when we consider that the two measurements probe regions in the flow
with very different dynamics. 10′′ (0.4 pc) lies outside most of the stellar winds where the solu-
tion approaches a large scale Parker wind whose properties are primarily determined by the total
mass-loss rate of the WR stars and the stellar wind velocities. 1.5′′ (0.06 pc), on the other hand, is
inside most of the stellar winds and falls within the “stagnation region” described in §4.5.3. Here
the hydrodynamic solution depends more strongly on the distribution of the stellar wind mass-loss
rates with radius. For a fixed total mass-loss rate, a uniform distribution of mass-loss with radius
results in a higher density at 1.5′′ than if most of the mass-loss is provided by stars at larger radii
(Quataert 2004).

In order to compare our results to the Chandra observations, we again use SPEX (Kaastra et al.
1996) exactly as described in §4.3.2, except we consider only the contributions to Λ from photon
frequencies corresponding to the 2-10 keV range, denoting this as ΛX. The total X-ray luminosity
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of our simulation within a cylindrical radius s, LX(s), is then computed by integrating:

LX(s) =

2π∫
0

zmax∫
−zmax

s∫
rin

ρ2

µeµH,�
ΛX sdsdzdϕ, (4.9)

where zmax is half of the box length of our simulation and rin is the radius of the inner boundary.
Doing this, we find that at the present day, LX(10′′) − LX(1.5′′) ≈ 2.5 × 1034erg/s and LX(1.5′′) ≈
7.3 × 1033 erg/s. These are to be compared with the Chandra measurements of 2.4 (1.8-3.2) ×1034

erg/s and 2.4 (1.8-5.4) ×1033 erg/s, respectively. The agreement between our models and the
Chandra data is overall quite good, particularly accounting for uncertainties in massive star mass-
loss rates (e.g. Smith 2014). In more detail, the X-ray luminosity between 1.5′′ and 10′′ is in
excellent agreement with the Chandra data, but the X-ray luminosity of the inner 1.5′′ of our
simulation is overproduced by a factor of ∼ few. As discussed above, this suggests that the overall
mass-loss rate is roughly the right value but that the distribution of the mass-loss rates with radius
(i.e. the location of the stars) is perhaps too spread out in radius such that there is an over-density
at 1.5′′ (see Quataert 2004). This is consistent with the fact the orbits of several of the 30 stars in
our simulation are uncertain due to the lack of information about the line-of-sight position. Since
the orbits directly determine the mass-loss distribution, we hypothesize that a better knowledge of
the line of sight positions of the WR stars would bring our simulations into better agreement with
observations.

The X-ray light curves shown in Figure 4.19 support this argument, which show that the X-ray
luminosity between 1.5′′ and 10′′ has been relatively steady over the past ∼ 400 years despite the
fact that the stellar wind distribution has changed significantly (Figure 4.5). LX(1.5′′) on the other
hand, does display slightly more pronounced variation with time over the same interval, suggesting
that is is more dependent on the instantaneous orbital configuration of the stars.

Even with the configurations of stellar winds adopted in our simulation, however, the discrep-
ancy with the X-ray measurements is small enough that these results argue in favor of the Martins
et al. (2007) mass-loss estimates as opposed to those of Yusef-Zadeh et al. (2015a), which would
decrease LX by a factor of & 4.

Additionally, Baganoff et al. (2003) also provide a best fit temperature for the gas at ∼ 10′′,
namely, 1.3 keV, which agrees very well with the value we find in our simulation (≈ 1.5keV , Figure
4.11). The temperature at this scale is predominately set by the stellar wind speeds (also taken from
Martins et al. 2007), scaling roughly as v2

wind. This agreement then implies a confirmation of the
wind speeds to the ∼ 10% level.

These two results together give us confidence that our simulation is capturing all of the hot gas
observed by Chandra and that the resulting flow is a reasonable representation of observations.

4.7 Implications for Horizon-Scale Accretion Modeling
One of the goals of this work is to use the observationally constrained simulation of the ac-

cretion provided by WR stars to assess the “right” initial conditions for GRMHD simulations that
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Figure 4.19: Total X-ray (2-10 keV) luminosity produced by our simulations as a function of time within
a cylindrical radius of 1.5′′, LX(1.5′′), and within cylindrical radii 1.5′′ and 10′′, LX(10′′) − LX(1.5′′). The
shaded regions represent the 90% confidence level intervals of Chandra observations of Sgr A*. At the
present day, our simulation accurately reproduces the emission between 1.5′′ and 10′′ but has a luminosity
within 1.5′′ that is a factor of 2-3 too large. This discrepancy is likely caused by the uncertainty in the stellar
orbits or wind properties of the WR stars in our simulation leading to a moderate (∼ 50%) over-density of
gas at ∼ 1.5′′.
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model Sgr A*. In this section we summarize the properties of the accretion flow presented in
§4.5.3 by comparing and contrasting them to the standard initial torus structure used in past work.

Like the results of our simulation presented in §4.5.3, the typical initial torus used by many
GRMHD simulations is thick and pressure supported. Unlike our results, however, this torus is
usually well contained within some polar opening angle, beyond which there is a sharp cut-off

in density. Here we have shown that the ‘disc’ is much less sharply defined, with a contrast of
only a factor of ∼ a few between the midplane and the polar regions (Figure 4.15). Even more
striking is the presence of a significant amount of low angular momentum inflow along the pole,
which we estimate being as high as 3.4×10−8M�/yr when extrapolated to small radii (Figure 4.17),
comparable to the accretion rate estimated at the horizon in Sgr A*. The presence of such an inflow
could potentially inhibit the formation of jets, suppress outflow, and increase the net accretion rate
onto the black hole in horizon-scale simulations.

This polar inflow also has the effect of driving a pressure supported outflow (Figure 4.15), so
that the matter in the midplane of the disc is continually being recycled. In GRMHD simulations
this could suppress the MRI if the growth rate is smaller than the inflow/outflow rate. That is,
though the configuration is indeed unstable to the MRI with angular velocity decreasing with ra-
dius, it is possible that before the instability can grow significantly the fluid will be swept away
and either accreted or propelled to large radii. Since our simulations produce a disc with root-
mean-squared radial flow timescale that is comparable to (i.e., ∼ 1 − 2 times longer than) the
rotational period, a simple timescale analysis is inconclusive; a full treatment of MHD is required
to determine the importance of the MRI on angular momentum transport in the disc.

Finally, we find that the angular momentum distribution follows a (sub) Keplerian profile of
≈ 0.5lkep as opposed to the constant angular momentum tori used by GRMHD simulations. This
difference, however, is likely less important because the horizon-scale simulations quickly evolve
to a similarly sub-Keplerian distribution after the onset of accretion.

Future work will seek to directly take the results of our simulations and implement them as
initial and boundary conditions for a GRMHD simulation in order to determine the significance of
these differences on the properties of the resulting flow.

4.8 Comparison to Previous Work
Several groups have studied the fueling of Sgr A* with 3D simulation using several different

models for the stellar-wind emitting source terms (Rockefeller et al. 2004; Cuadra et al. 2005,
2006, 2008; Lützgendorf et al. 2016). Here we focus on the work of Cuadra et al. (2008) (C08),
which is the most similar to ours in that they included the most up-to-date stellar mass-loss rates,
stellar wind speeds, and current day star locations while also evolving the position the stellar
wind sources with time. In particular, C08 focused on three different orientations of the accreting
stars. The orientation of our stars at the present day is equivalent to their “1-disc” model with
the exception of the star S97, whose orbit has been more precisely determined by Gillessen et al.
(2017). The major differences between the two simulation are

• Computational methods: We use a conservative grid based hydrodynamic code while C08
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used a smoothed-particle hydrodynamic (SPH) code. Conservative, finite-volume schemes
excel in capturing shocks, an area in which SPH schemes can have trouble, particularly when
the gas is diffuse and low temperature.

• The inner boundary radius.: The inner boundary of the C08 simulation was set at 0.05′′ ≈ 2
mpc, while our inner boundary is ≈ 32 times smaller, at ≈ 1.6 × 10−3 ′′ ≈ 0.06 mpc.

• The cooling function: C08 used a three-part piece wise cooling curve that approximates
Sutherland & Dopita (1993) for a solar hydrogen abundance with Z = 3Z�. We use a larger
number of power law segments to approximate the cooling curve appropriate for stellar wind
material of WR stars that are largely bereft of hydrogen (also with Z = 3Z�). Furthermore,
the SPEX code that we use to calculate the cooling function includes more lines than the
Sutherland & Dopita (1993) calculation (see Schure et al. 2009), which enhances the peak
of the curve at ∼ 105 K. These differences, however, have a relatively small effect on the
cooling curves, which are plotted in Figure 4.1. Except at the very highest (T & 109 K) and
lowest (T . 3 × 104 K) temperatures, the cooling curves are within a factor of 2 of each
other.

C08 focused on the effect of the different stellar orbital distributions on the accretion history and
X-ray luminosity, while this work is primarily focused on modeling the structure of the innermost
accretion flow at the present day. Thus much of the information presented here is not in C08 for
comparison and vice-versa. We can, however, compare the mass accretion rate history and the
radial profile of the angular momentum to C08, while noting that the radial profiles of density,
temperature, and radial velocity of the C08 simulation are presented in a later work by the same
group (Cuadra et al. 2015, C15) where it is labeled as the “control run.”

The level of variability seen in the accretion rate history is comparable in both simulations,
with the average accretion rate in C08 being a factor of ∼3-4 times higher as expected from the
larger inner boundary radius used in their simulation. Also similar is the level of variability seen
in the angular momentum vector as a function of time, which is primarily determined by the time-
evolving configuration of the stellar winds. At the present day, however, our angular momentum
vectors are in two different directions, forming an angle of ∼ 50◦ with each other. This is not
necessarily surprising due to the high level of temporal variability in this vector (Figure 4.10) and
the stochastic nature of the inner accretion flow. C08 also found that the stellar winds of only 3
stars contributed significantly to the accretion near the inner boundary which is consistent with the
model we propose in Appendix 4.A to explain the Ṁ ∝

√
rin dependence we find in our simulation.

While the accretion and angular momentum histories are broadly similar in the two simulations,
there are striking differences seen in the radial profiles of fluid quantities, particularly in the inner
region of the flow. These include:

• Temperature: we find T ∝≈ r−1 with T ≈ 2 × 108 K at 0.1′′ (4 mpc) while C08 found
T ∝≈ r−0.4 with T ≈ 4×107 K at 0.1′′ (4 mpc), almost an order of magnitude lower. Note that
part of the difference in magnitude is caused by our assumption that X = 0, corresponding
to a larger mean molecular weight than that used by C08..
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• Radial velocity: the radial Mach number of our simulation is ≈ 7 × 10−2 (vr ≈ 2 × 108 cm/s)
at 0.1′′ (4 mpc), while in C08 at the same radius the radial flow is supersonic at (vr & 108

cm/s).

• Density: our density profile is much steeper, ρ ∝≈ r−1, compared to C08, ρ ∝≈ r−0.5.

• Angular momentum: we find l ≈ 0.5lkep ∝
√

r, while C08 found l ≈ lkep(0.05′′ ≈ 2 mpc) =

const.

What causes such large differences between the two simulations? We can only speculate. By
varying the cooling function, we have found that our results are not strongly dependent on the
particular choice of Λ, so it is not likely that this is the source of disagreement. On the other hand,
we have found that the inner boundary condition can cause artificial effects out to ∼ a few rin,
namely, reducing pressure support and increasing radial velocity, so at 0.1′′ (4 mpc) C08’s results
may still be affected by their boundary at 0.05′′ (2 mpc). Also, as evidenced by their Figure 8,
around 0.1′′ (4 mpc) they have only a handful of particles in their simulation meaning that the
inner region of their simulation may be under-resolved.

We note that Cuadra et al. (2015) followed up on the work of C08 by including subgrid models
to account for feedback from the black hole. Their models are motivated by the fact that, in
reality,most of the material accreting at the radius corresponding to the inner boundary of their
simulations may ultimately be ejected in an outflow. Indeed, our simulations that probe smaller
radii generally support this expectation, though we find that the outflow proceeds in a direction
perpendicular to the angular momentum axis (that is, in the orbital plane) of the gas, as opposed
to their “instantaneous” feedback models that eject material either isotropically, in some fixed
opening angle, or parallel to the angular momentum axis. With feedback, none of their models
significantly improve the agreement between the flow properties in our simulations. Though the
radial velocity and accretion rate are lower with feedback, their density and temperature profiles
still have different scalings with radius than those seen in our simulations. In the same work,
Cuadra et al. (2015) also present an “outburst” model where a large amount of mass is injected
through the inner boundary over a 300 yr period some time in the past. Again, this model does not
bring our simulations into any closer agreement, and, in fact, the density profile post-outburst is
even flatter than their “control” run with no feedback.

4.9 Conclusions
We have presented the results of 3D hydrodynamic simulations that track the accretion of

stellar winds in the galactic center from the stars at distances of ∼ 0.1 pc all the way down to
∼300 gravitational radii of Sgr A*, roughly 32 times further in than in previous work. These
are also the first grid-based finite volume simulations of the fueling of Sgr A*. Our simulations
include radiative cooling in collisional ionization equilibrium, and adopted the observationally
constrained stellar orbits, mass loss rates, and wind speeds of the 30 WR stars that dominate the
accretion budget. We find reasonable agreement between our predicted diffuse X-ray luminosity
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and Chandra X-ray observations (Figure 4.19). This demonstrates that the mass-loss rates and
wind speeds from Martins et al. (2007) must be of order the true values (probably within a factor
of 2). Our goal in this work is to detail the flow properties at the innermost radii in order to better
motivate initial and boundary conditions for GRMHD simulations of Sgr A*. These will be used
to interpret not only EHT and GRAVITY observations, but also the wealth of observational data
that exists across the electromagnetic spectrum.

We find that the gas at small radii (well inside the orbits of the mass-losing stars, i.e., r . 0.01
pc) develops a 2-component structure. Most of the mass is moderately unbound in an equatorial
rotation supported disc while most of the accretion proceeds by bound material along the poles via
the low angular momentum tail of the stellar winds. Only a small fraction (. 0.1%) of the stellar
wind material is captured by the black hole, leading to a hot, pressure-supported, sub-Keplerian
‘disc’ of gas at small radii that is at most times (though not always) aligned with the clockwise
stellar disc (Figure 4.10). The accretion rate at small radii is much less than the Bondi rate due to
the finite angular momentum of the stellar wind material (Figure 4.12). While radiative cooling
can be significant in the vicinity of the stellar winds, it has a negligible effect at smaller radii and
thus cannot remove pressure support. Due to the pressure support and broad angular momentum
distribution, there is only a mild contrast in density between the polar regions and the midplane (a
factor of ∼ a few), much more akin to spherical accretion than even very geometrically thick RIAF
models (see Figure 4.15 and 4.17).

Accretion in our simulations is dominated by bound, low angular momentum material that
flows in from the southern pole, feeding both accretion and outflow that is primarily directed along
the midplane and northern pole (Figure 4.15). This structure is due to both the asymmetry of the
distribution of non-disc stars about the midplane of the stellar disc at t = 0 (Figure 4.5) and also to
the gas possessing a wide range of angular momentum, as expected when the stellar winds of only
a few stars contribute to accretion and their wind speeds are comparable to their orbital velocities.
Further evidence for this picture is that the accretion rate through the inner boundary scales as
∝
√

rin, which is identical to the distribution of mass-loss rate vs. circularization radius produced
by the wind of a single star (Appendix 4.A). Using this scaling relation to extrapolate down to the
horizon of Sgr A* we find an accretion rate of ≈ 3.4 × 10−8M�/yr for a non-spinning black hole
(Figure 4.17), consistent with observational limits on the horizon-scale accretion rate (Marrone
et al. 2007; Shcherbakov & Baganoff 2010; Ressler et al. 2017).

We find that our results are not altered by including the star S2 as an additional wind source,
despite its proximity to Sgr A* (Figure 4.18). This is because its mass-loss rate is ∼ 3 orders of
magnitude lower than most of the other stars in our simulation, so its effect on the time-averaged
flow is negligible. Since S2 is the brightest of the ‘S-stars’ (Gillessen et al. 2017) and thus likely
has the strongest wind of the S-stars, this result confirms that the . 100 other S-stars can safely be
neglected in calculations of accretion in the galactic center.

The flow structure at the innermost radii that we have outlined here could have a significant
impact on GRMHD simulations of accretion onto Sgr A* and their predicted observational proper-
ties. Polar inflow might directly oppose jet formation, while the outflow/inflow structure might be
less susceptible to the build up of MRI turbulence if the inflow/outflow times are short compared
to the MRI growth time. On the other hand, it is possible that the opposite will occur if an outflow
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from small radii disrupts the polar inflow we find in our simulations. Directly incorporating the
flow properties found here as initial and boundary conditions in future horizon scale simulations
will be a primary focus of future work.

A key possible limitation of our simulation is the neglect of magnetic fields, which can be a
significant source of angular momentum transport in accretion discs and might alter the picture
presented here. Magnetic fields might be important both by generating magnetic braking of the
inflow and/or via the MRI. Furthermore, anisotropic conduction and viscosity along field lines
may significantly alter the dynamics of the flow and suppress the accretion rate (e.g., Johnson &
Quataert 2007; Shcherbakov & Baganoff 2010). MHD simulations of the problem studied here
with and without conduction/viscosity will be carried out in the near future.

This is a particularly exciting time to be studying the galactic center, in which both observations
and theory are rapidly pushing the boundary of what is feasible. In the not too distant future, as
computational resources continue to improve, we may be able to simulate the entire dynamical
range of accretion from the parsec scale of the WR stars all the way down to the event horizon
of Sgr A*, even while including some of the non-ideal, collisionless physics important in this
hot, low density plasma. Moreover, as the EHT and GRAVITY continue to take data, we will
be able to compare directly to spatially resolved observations of the event horizon while self-
consistently making predictions about the X-ray, infrared, and radio data at larger radii. Such a
wealth of information combined with the computational and theoretical horsepower already being
put in place will bring us that much closer to solving many of the outstanding questions related
to the emission from the galactic center and inform our knowledge of low-luminosity AGN more
generally.
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Appendix

4.A Angular Momentum Distribution of a Single Accreting Star
In this Appendix we briefly describe a toy model of a single accreting star that can be used to

qualitatively explain the scalings of Ṁin and ρ observed in our simulation.
Consider the case of a single wind-emitting star in a circular orbit around the black hole at a dis-

tance of rorbit. Let the coordinate system be aligned such that the z-direction is aligned with the an-
gular momentum of the orbit and consider the time at which the star is located at (x, y) = (rorbit, 0).
By construction, the y-component of the specific angular momentum of the emitted gas is thus 0.
We define a spherical polar coordinate system (r, θ, φ) centered on the star so that θ = 0 corre-
sponds to the y-direction, or equivalently the direction of the orbital velocity vector. For a given θ,
assuming that pressure effects are negligible, stellar wind material that is emitted at some φ0, with
x-component of the angular momentum lx = sin(φ0) sin(θ)vorbitrorbit, will travel around the black
hole and eventually collide with the material emitted at −φ0, with lx = − sin(φ0) sin(θ)vorbitrorbit.
This collision results in a shock that converts the angular momentum in the x direction to internal
energy. On the other hand, the z-component of the specific angular momentum of the stellar wind
material can be written as

lz = (vorbit + cos(θ)vwind) rorbit, (4.10)

which is bounded by lmin = (vorbit − vwind)rorbit and lmax = (vorbit + vwind)rorbit.
If we define the “distribution function,” fx(x), of the mass ejected from the star per unit time

with respect to some variable x as

Ṁwind =

xmax∫
xmin

fx(x)dx, (4.11)

then, using the relation dlz = −vwindrorbit sin(θ)dθ, we have:

flz(lz) =
1
2

Ṁwind

vwindrorbit
= const., (4.12)

with the limits lmin < lz < lmax. This implies that the rate at which material with specific angular
momentum lz is emitted from the star is proportional to lz. For the case of vwind > vorbit, some
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material will have lz < 0 and will ultimately collide with an equal amount of material containing
−lz. Therefore, we define a “net” distribution function as

flz,net(lz,net) =

 1
2

Ṁwind
vwindrorbit

|lmin| ≤ lz,net ≤ lmax

δ(lz,net)1
2

Ṁwind
vwindrorbit

(|lmin| − lmin) else,
(4.13)

where δ(lz,net) is the Dirac-delta function. Equation (4.13) has three interesting extremes. First,
when vwind � vorbit, the stellar wind material has angular momentum predominately equal to the
orbital angular momentum of the star with very little scatter. This would result in the formation of
a ring of material co-rotating with the star and almost no accretion. Second, when vwind � vorbit,
the net z-component of the angular momentum is essentially 0, and Bondi-Hoyle-Lyttleton (Hoyle
& Lyttleton 1939; Bondi & Hoyle 1944) type accretion is expected, with an accretion rate onto the
black hole ∝ (vorbit/vwind)2Ṁwind. Finally, the case of interest for this work is when vwind ∼ vorbit,
which results in an extended distribution of angular momentum with 0 < lz < 2lorbit (where we have
dropped the “net” subscript because lz is everywhere > 0). This wide range of angular momenta
directly corresponds to a wide range in circularization radii, rcirc = l2

z/(GMBH), with distribution
function

fr(rcirc) =
1
4

vorbit

vwind

Ṁwind

rorbit

√
rorbit

rcirc
, (4.14)

over the range 0 < r < 4rorbit. If we assume that material can only accrete until it reaches r = rcirc,
at which point it either settles into a disc or is converted into outflow, then we expect Ṁin ∝

√
r.

Finally, if the radial velocity of the in-falling matter is essentially free-fall, vr ∝ r−1/2, we obtain a
power law scaling for the mass density: ρ ∝ r−1.

Even when the stellar winds of multiple stars are contributing to the accretion flow, this picture
should give a reasonable qualitative understanding as long as the stars are sufficiently isolated from
one another. That is, for a given pair of stars, as long as the time for the two winds to collide is
longer than the shortest free fall time, then the winds will not have a chance to shock and alter the
angular momentum profile before plunging to smaller radii.

The true problem is, of course, more complicated, as, for example, the majority of the orbits
are eccentric and pressure effects are non-negligible. However, this simple picture provides an
intuitive understanding of our simulation results with a physical justification for the mass density
and accretion rate scalings, directly relating them to the angular momentum distribution of a single
star and the small number of accreting stars.
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Chapter 5

Accretion of Magnetized Stellar Winds in
the Galactic Centre: Implications for Sgr
A* and PSR J1745-2900

An earlier version of this article was previously published as Ressler S. M., Quataert E., and
Stone J. M., 2019, MNRAS, 482, L123

5.1 Abstract
The observed rotation measures (RMs) towards the galactic centre magnetar and towards Sagit-

tarius A* provide a strong constraint on MHD models of the galactic centre accretion flow, probing
distances from the black hole separated by many orders of magnitude. We show, using 3D simula-
tions of accretion via magnetized stellar winds of the Wolf-Rayet stars orbiting the black hole, that
the large, time-variable RM observed for the pulsar PSR J1745-2900 can be explained by magne-
tized wind-wind shocks of nearby stars in the clockwise stellar disc. In the same simulation, both
the total X-ray luminosity integrated over 2-10′′, the time variability of the magnetar’s dispersion
measure, and the RM towards Sagittarius A* are consistent with observations. We argue that (in
order for the large RM of the pulsar to not be a priori unlikely) the pulsar should be on an orbit
that keeps it near the clockwise disc of stars. We present a 2D RM map of the central 1/2 parsec
of the galactic centre that can be used to test our models. Our simulations predict that Sgr A* is
typically accreting a significantly ordered magnetic field that ultimately could result in a strongly
magnetized flow with flux threading the horizon at ∼ 10% of the magnetically arrested limit.

5.2 Introduction
The two largest rotation measures (RMs) observed in the galaxy are located within the central ∼

0.1 pc of Sagittarius A* (Sgr A*). The largest is towards the radio source Sagittarius A* associated
with the ∼ 4.3 × 106 M� black hole, which was measured in 2005 over a two-month time frame to

http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1810.08617
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be ≈ −5.6 × 105 rad/m2 (Marrone et al. 2007). This value was roughly constant in time over that
short interval and has had the same sign for at least ∼ 5 years before then (Bower et al. 2002). The
second largest RM is that observed towards the magnetar PSR J1745-2900 (Eatough et al. 2013)
with a value of ≈ −6.6 × 104 rad/m2. If, as is generally supposed, these large RMs are produced
locally to the galactic centre, they offer the most direct probes of the magnetization of the accretion
flow, a critical parameter for determining the state of the accreting plasma at Schwarzschild radii
scales.

Both analytic modeling (Quataert 2004; Shcherbakov & Baganoff 2010) and three dimensional
hydrodynamic simulations (Cuadra et al. 2008; Russell et al. 2017; Ressler et al. 2018), have shown
that the winds of the ∼ 30 Wolf-Rayet (WR) stars orbiting Sgr A* can account for the amount of
hot gas observed by Chandra in X-rays at distances . 10′′ from the central black hole (Baganoff

et al. 2003). This hot gas has been invoked to explain the large RM observed in PSR J1745-2900
and even used as evidence that the galactic centre accretes strongly magnetized plasma (Eatough
et al. 2013). If that is indeed the case, the winds of the stars themselves are the most likely source
of magnetic field; any ambient field that may have been present would have been blown away by
the winds. Unfortunately, though the mass-loss rates and wind speeds of the stars are reasonably
well constrained observationally (Martins et al. 2007; Yusef-Zadeh et al. 2015a), nothing is known
about the structure or the magnitude of the magnetic field in the winds. However, given that the
orbital velocities and 2D positions of the stars are also known (Paumard et al. 2006; Lu et al. 2009;
Gillessen et al. 2017), the problem of explaining the RM of Sgr A* and the magnetar is still fairly
well posed.

In this chapter, we present the first three dimensional, magneto-hydrodynamic (MHD) simula-
tions of the accretion flow around Sgr A* that include the winds of the WR stars. Our model ex-
tends that of Ressler et al. (2018) (Chapter 4 , hereafter R18) to include magnetized stellar winds,
allowing for self-consistent modeling of the X-ray emission, the RMs towards PSR J1745-2900
and Sgr A*, and the inner accretion flow onto Sgr A*; we defer a detailed study of the latter to a
future paper. §5.3 describes the physical model for the stellar winds employed in our simulation,
§5.4 describes a simple toy model of isolated stellar winds useful for interpreting the RM towards
the pulsar, §5.5 presents the results of the full 3D simulation of magnetized stellar wind accretion
onto Sgr A*, focusing on the two RMs, and §5.6 concludes.

5.3 Magnetized Wind Model
The hydrodynamic stellar wind model described in R18 treats stellar winds as source terms in

mass, momentum, and energy that move on fixed Keplerian orbits through the simulation domain.
The sources are rw ≈ 2

√
3∆x in radius, where ∆x is the local grid spacing evaluated at the centre of

the “star.” This model was shown to accurately drive a wind possessing the desired mass loss rate,
Ṁw, and constant radial velocity, vw, with negligible temperature. In order to make these winds
magnetized, in this work we add two additional source terms to our Athena++ simulations: one in
the induction equation and one in the total energy equation.

We expect the magnetic fields of stellar winds at distances r′ � the Alfvén radius, rA, the
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point at which the magnetic energy density of the wind equals its kinetic energy density, to be
predominately in the ϕ′ direction, where primes denote the frame of the star with the z′-axis aligned
with its rotation axis. This is because flux conservation requires that the radial component of the
field, Br′ , scales as (r′)−2, while the azimuthal component, Bϕ′ , scales as (r′)−1, so that at large radii
Bϕ′ will ultimately be the dominant component of the field (Weber & Davis 1967).

Here we parameterize the field by the ratio between the wind’s ram pressure and magnetic
pressure evaluated in the equatorial plane at r′ = rA, βw ≡ 8πρv2

w/B2
ϕ′

∣∣∣
θ′=π/2

= 2Ṁvw/(B2
Ar2

A) =

const., where BA is the magnitude of the magnetic field at r′ = rA and θ′ = π/2. For rA = R�,
Mw = 10−5 M�/yr, and vw = 1000 km/s, a given βw corresponds to BA ≈ 5.1 kG/β1/2

w . Though
observational estimates of the magnetic fields in the winds of WR stars are sparse, ∼ 10% of O-
stars have been observed to have surface fields as high as ∼ 100G-20kG (e.g. Donati & Landstreet
2009; Wade et al. 2016), so we expect this value of BA to be reasonable for at least some of the
galactic centre stars.

Adding a source term to the induction equation while maintaining ∇ · B = 0 requires precise
consistency with the constrained transport algorithm used by Athena++ to avoid numerical insta-
bility. Therefore, instead of adding a source term directly to the magnetic field, for each star we
instead add a source term, Ew, to the electric field with a curl only in the ϕ′-direction:

Ew = −
πBArAvw

r2
w

cos(θ) sin
(

r′

rw
π

)
r′ (5.1)

for r′ < rw and 0 otherwise. This electric field corresponds to a source of magnetic field for r′ < rw

∇ × Ew =
πBArAvw

r2
w

sin(θ) sin
(

r′

rw
π

)
ϕ̂′, (5.2)

and 0 otherwise. The radial dependence of the electric field in Equation (5.1) was chosen to ensure
that the field is continuous at the boundary of the source at r′ = rw, while the angular dependence
was chosen to ensure that hoop stress doesn’t diverge at the poles. This source of magnetic field
also sources the total energy equation

ĖB =
1

4π
Bϕ′ (∇ × Ew) · ϕ̂′, (5.3)

again for r′ < rw and 0 otherwise. In each cell, ĖB is volume-averaged while Ew is averaged
over the appropriate cell edge (see Equations 22-24 of Stone et al. 2008). These source terms, in
addition to the point source gravity of the black hole, optically thin radiative cooling due to line
and bremsstrahlung emission, and the hydrodynamic wind source terms described in more detail
in R18 are added to the conservative MHD equations.

For βw & 5, this model successfully drives a wind with the desired Ṁw, vw, and βw while
retaining the sin(θ) dependence of the magnetic field. For βw . 5, however, magnetic pressure
serves to accelerate the wind in the radial direction. Thus, decreasing the parameter βw beyond
∼ 5 does not ultimately end up increasing B2

ϕ/(8πρv2)
∣∣∣
θ′=π/2

, which saturates at ∼ 0.2. This is not
just a limitation of our simple model but a physical limitation on the magnetization of winds at
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large radii (e.g. Lamers & Cassinelli 1999). Though a more sophisticated treatment of the angular
dependence of Bϕ′ might result in a slightly different saturation value, in general we expect βw & 1.
Therefore, in what follows we consider only βw ≥ 1 in our analytic calculations and βw ≥ 10 in our
simulations.

5.4 Analytic Model For The RM of PSR J1745-2900
Assuming a standard spherically symmetric wind with a toroidal magnetic field parameterized

by βw as in §2, the RM for a single stellar wind is given by

RM∗ ≈
15000 rad m−2

β1/2
w

(
Ṁw

10−5M�/yr

)3/2 (
s

10−2 pc

)−2 (
vw

103 km/s

)−1/2

×

zp∫
−∞

s2 sin(θ′)ϕ̂′ · ẑ
(s2 + z2)3/2 dz,

(5.4)

where the positive z-direction points away from Earth, while zp and s are, respectively, the z-
coordinate of and the projected distance to the pulsar. Since the dimensionless integral in Equation
(5.4) can take on any value between ± π/2„ we have

|RM∗| .
23000 rad m−2

β1/2
w

(
Ṁw

10−5M�/yr

)3/2 (
s

10−2 pc

)−2 (
vw

103 km/s

)−1/2

. (5.5)

Equation (5.4) shows that the RM for a given star is a rapidly decreasing function of projected
distance, RM∗ ∝̃ s−2, so that only the stars closest to the line of sight (LOS) will significantly
contribute. Furthermore, it shows that in order for RM∗ to be on the order of the observed -6.6 ×104

rad/m2, there needs to be a star located . 10−2 pc in projected distance from the pulsar assuming
values typical of WR stars for Ṁw and vw. The closest WR star (E32 aka 16SE1), however, has
s ∼ 2.5 × 10−2 pc and even with optimistic assumptions for other parameters would require a very
large mass loss rate, Ṁw ≈ 7 × 10−5M�/yr to reach |RM|∗ ∼ 6.6 × 104 rad/m2.

Therefore, we conclude that it is unlikely that isolated stellar winds can produce a RM as large
as that observed for the galactic centre magnetar. However, the RM near a star can be enhanced by
a factor as much as ∼ 16 or more by the presence of shocks with other winds or with the ambient
medium. In fact, there are two other stars in the near vicinity of E32, namely, E23 (aka 16SW), and
E40 (aka 16SE2), both located within ∼ 0.01 pc in projected distance from E32. Since all three are
disc stars, they are also clustered in 3D positions. As we now show, shocks between these stars are
then expected and will affect the RM of the pulsar.
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5.5 3D MHD Simulations

5.5.1 Parameter Choices and Computational Grid
The “stars” in our simulation are on fixed Keplerian orbits using the same prescription de-

scribed in R18, where the z-coordinate of a star in the year ∼ 2005, z∗, is taken from Paumard
et al. (2006) for stars within the stellar disc, while z∗ for a non-disc star is set so as to minimize
the eccentricity of its orbit. We use the mass loss rates and wind speeds of Cuadra et al. (2008) for
all of the stars except for E23, E32, and E40, which we allow to vary within a range of uncertainty
while fixing βw = 10.

We ran a suite of simulations with different random choices for the spin axis directions of the
stars and the mass loss rates and wind speeds of E23, E32, and E40. Here we present only one
of these simulations, hereafter referred to as “the fiducial model;” out of the 7 random variations
in wind properties we tried, this was the simulation that best reproduced the observed RM of the
pulsar. We emphasize that this model is not unique and that our purpose is not to do a full parameter
survey but to show that a reasonable choice of wind parameters can indeed reproduce the observed
pulsar RM. Furthermore, some of our results depend on the choice of βw, with the RM of the pulsar
roughly scaling as ∼ β−1/2

w , while RM of Sgr A* and the net flux threading the inner boundary are
only weakly dependent on βw, perhaps because of magnetic field amplification at small radii. In a
future paper we will explore other models.

The parameters of the three stellar winds closest to the magnetar (which sets its RM in our
calculations) for this fiducial model are shown in Table 5.1, where we have denoted the spin axes
of the stars (which determine the direction of the magnetic fields in the winds) as n = (nx, ny, nz),
defined in the same coordinate system as Paumard et al. (2006). Though the spin axes for the
remaining stars are just as important for determining the RM of Sgr A*, there is not as direct a
relationship between their values and the resulting RM compared to the case of the pulsar. The
values of Ṁw and vw shown in Table 5.1 are all within reasonable systematic observational uncer-
tainties and do not significantly alter the total X-ray luminosity found in R18 that agrees well with
Chandra observations, nor do they add any local X-ray excess that would have previously been
observed near the pulsar.

Our computational grid is a 1 pc3 box in Cartesian coordinates, with a base resolution of 1283 in
addition to 8 levels of nested static mesh refinement, emulating a grid with logarithmically spacing
in radius. A region with radius of ≈ twice the smallest grid spacing at the centre of the grid, rin ≈ 1.2
×10−4 pc is set to floors in density and pressure with zero velocity. The magnetic field is allowed
to freely evolve in this region. In addition to the the floors and ceilings on density, temperature,
pressure, and velocity described in R18, we add a density floor such that B2/(4πρ) ≤

√
2GMBH/rin,

where MBH ≈ 4.3× 106M� is the mass of Sgr A*. This condition is only activated at the innermost
radii in magnetically dominated polar regions. As in R18, we run the simulation for 1.1 kyr up to
what we refer to as the present day, t = 0, defined as January 1, 2017.
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Table 5.1: Mass Loss Rates, Winds Speeds, and Spin Axes of the Three Stars Closest to PSR J1745-2900
Name Alt. Name Ṁw vw nx ny nz

E23 16SW 0.8×10−5 440 0.06 -0.70 0.71
E32 16SE1 2.7×10−5 435 -0.08 -0.88 0.47
E40 16SE2 6.3×10−5 1220 -0.22 0.95 -0.23

Notes– Ṁw is measured in

M�/yr and vw is measured in km/s. Names are from Paumard et al. (2006).

5.5.2 Rotation Measure of PSR J1745-2900
The top panel of Figure 5.1 shows the RM as a function of time at the t = 0 location of the

pulsar calculated from our fiducial simulation as zp, the LOS position of the pulsar, → ∞. Since
neither the location nor velocity of the pulsar along the LOS is known, we fix its position to show
how the RM varies at its current location. The bottom panel of Figure 5.1 shows how zp affects
the RM and its gradient in time. In this fiducial model, we find that we can roughly match the
observed value of the pulsar RM and its gradient, if it is located within or behind the stellar disc.
Although our predicted dispersion measure (DM) for the pulsar is of order ∼ 50 pc/cm3, � the
observed value of ∼ 1700 pc/cm3 (as expected for a DM dominated by a screen far from the pulsar),
its gradient in time can be large enough (∼ 2.5 pc/cm3/yr) to plausibly account for the ∼ 0.06%
change observed over a four year period (Desvignes et al. 2018).

Also shown in the top panel of Figure 5.1 is the RM for the pulsar calculated from the analytic
isolated wind model as zp → ∞ (Equation 5.4 summed over all the stars), which neglects the
effects of wind-wind interaction. Certain peaks in the RM (e.g., those at ∼ -0.5 kyr and ∼ -0.2 kyr)
are well reproduced by the analytic model while others are seen only in the simulation (e.g., those
at ∼ -0.7 kyr and the present day). The latter are caused by strong shocks between nearby winds,
while the former are caused by winds located far from other stars. At the present day the RM is
dominated by a radiative, magnetic pressure dominated shock between the winds of E32 and E40,
with a post-shock region characterized by |Bz| ≈ 10 mG, ne ≈ 3000 cm−3, T ≈ 104 K, and a LOS
width of 0.01 pc. This shock is clearly seen in the 2D map of RM (Figure 5.2). We note that
radiative cooling is not required for a large RM, which we have confirmed with a simulation that
neglects cooling yet still has a comparable RM at the pulsar’s LOS and across the domain.

Both Figure 5.1 and 5.2 show that the large RM at the t = 0 LOS of the pulsar is somewhat
rare in both space and time. The typical value is closer to ∼ 1 × 104 rad/m2. This is true for all
of the variants we simulated (fixing βw ∼ 10 − 100; for βw � 100 we found no simulation with a
large enough RM) and suggests that the current high value of the observed RM is the result of a
chance alignment of the pulsar with the region associated with three disc stars in close proximity.
This result is not strongly affected by the ∼ 30-60% uncertainties on the t = 0 z-coordinates
of these stars since the separations between them are predominantly perpendicular to the LOS.
Bower et al. (2015b) found that the proper motion of the magnetar is consistent with an orbit in
the clockwise stellar disc. Such an orbit might put the pulsar into more frequent alignment with
closely interacting stellar winds and enhance the likelihood of observing a RM with the observed
magnitude.
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Figure 5.1: Top: Absolute value of the RM as a function of time at the pulsar’s present day LOS calculated
from our fiducial simulation (§5.5) compared to our analytic, isolated stellar wind model (§5.4). Also plotted
is the present day magnitude of the pulsar’s RM, ≈ 6.6×104 rad/m2. Bottom: RM (solid green) and the time
rate of change of the RM (solid blue) at t = 0 as a function of the z-coordinate of the pulsar, zp, compared
the observed RM (dashed green) and time variability (dashed blue, Desvignes et al. 2018). The shaded gray
area represents the region in between the two disc stars, E32 and E40, where the two winds are shocking
and enhancing the RM.
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Figure 5.2: Absolute value of the RM calculated from infinity as a function of location in the plane of the sky
for the galactic centre. The white circle represents the present day location of the magnetar, while the black
line on the colorbar indicates the observed value of its RM. The origin is Sgr A*. Due to a shock between
the winds of the stars E32 and E40 (aka 16SE1 and 16SE2), our fiducial model produces a RM large enough
to explain the observed value at the pulsar’s location. Such a large RM, however, is not ubiquitous to the
central ∼ 0.1 pc but occurs in only in a small portion of the domain, requiring a fortuitous alignment of the
pulsar with either a wind or a shock. The probability of this occurring could be enhanced if the pulsar is on
an orbit within or nearly within the clockwise stellar disc. Other pulsars detected in the future would likely
have lower RMs.
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5.5.3 Rotation Measure of Sgr A*
The top panel of Figure 5.3 shows the RM of Sgr A* as a function of time over a 700 year

period. In contrast to the pulsar’s RM, which at the present day can be directly traced to the
parameters of only ∼ 3 of the winds, the precise behavior of the RM of Sgr A* near t = 0 is
a complicated function of the spin axes, mass loss rates, and wind speeds of all 30 of the stellar
winds. This is due to the fact that the RM of Sgr A* is set by the accreting material at the innermost
region of our simulations at rin ≈ 1.2 × 10−4 pc, potentially a combination of gas from multiple
winds. Because of this, we focus our analysis on the general statistical behavior of the RM of Sgr
A* instead of its specific behavior at t = 0.

The RM in Figure 5.3 is a reasonable estimate even though our inner boundary does not extend
all the way to the horizon. We expect the largest contribution to the RM to be set by the radius
at which the electrons become relativistically hot, which is only slightly inside the inner boundary
of our simulation. For the non-relativistic RM, d(RM)/d log(r) ∝ rneB‖ ∝ r−1, where we have
used the radial dependencies of ne ∝ r−1 and |B| ∝ r−1 observed in our simulation. We have
confirmed that this radial dependence of the RM is valid by running simulations with larger inner
boundary radius. Once kbTe ∼ mec2, however, the RM becomes suppressed by factors of Θ−2

e ,
where Θe ≡ kbTe/(mec2). At the innermost boundary of our simulation, 〈Θe〉 ≈ 0.9, and thus
we would expect the RM to be set by the plasma properties at r ∼ 10−4 pc (i.e. ≈1.2 rin). The
magnitude of this RM is comparable for simulations with βw = 10 and those with βw = 1000, and
is thus only weakly dependent on the magnetization of the stars.

A striking feature of the RM towards Sgr A* shown in Figure 5.3 is the timescale for sign
changes, ranging from ∼ 3-100 years, much longer than the timescale of a few days for small
amplitude fluctuations. Since the RM is dominated by scales ∼ rin ≈ 1.2× 10−4 pc, this means that
the magnetic field is coherent in sign over ∼ 500− 10, 000 Keplerian orbits and thus this sign is set
by the dynamics at larger radii. We have confirmed this hypothesis by running simulations with
different values of rin, finding that although the magnitude of the RM scales as r−1

in , the timescale
for it to flip sign is roughly independent of rin. Furthermore, this ∼ 3-100 year time scale is a robust
result in simulations with a range of different wind parameters. We conclude that this is a generic
prediction of our model due to the fact that the magnetic field is sourced by stellar winds at large
radii. We expect that continual monitoring of the RM of Sgr A* over ∼ 10s of years would reveal
a similar level of variability as seen in Figure 5.3 and, eventually, a sign change. Our simulations
can plausibly explain the factor of ∼ 2 variability seen by ALMA over ∼ months between epochs
in Bower et al. (2018) though not the much more rapid variability seen over ∼ hours within epochs.
No sign reversal was yet seen.

Finally, we note that our simulations display a highly ordered magnetic field in the inner accre-
tion flow with |〈B〉|/

√
〈B2〉 ≈ 0.3 − 0.4, where 〈〉 denotes an average over all angles and radius for

r . 0.03 pc. As shown in the bottom panel of Figure 5.3, this ordered field corresponds to a net
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Figure 5.3: Top: RM as a function of time for Sgr A* in our fiducial 3D MHD simulation. Solid red lines
are positive RMs, while blue dashed lines are negative RMs. Also plotted is the observed t = 0 magnitude
of the RM, ≈ 5.6 × 105 rad/m2. The RM of our simulation is typically of order the observed value and can
remain the same sign for intervals as short as a few years or as long as ∼ 100 years. Though the RM and
its smaller amplitude variability are set by the innermost region of the simulation (r ∼ 10−4 pc where the
dynamical time is ∼ 3.5 days), the timescale for the RM to change sign is set by the dynamical time at much
larger radii. Bottom: Dimensionless flux threading the inner boundary, φin, as a function of time (Equation
5.6). This ordered field leads to a strongly magnetized accretion flow, φin ∼ 2 − 6, where φin ∼ 50 roughly
corresponds to the MAD limit.

magnetic flux threading one hemisphere of the inner boundary of

φin ≡
1/2

∫
|Br|r2dΩ

r
√
|Ṁ|vkep

∣∣∣∣∣∣∣∣∣
r=rin

≈ 2 − 6, (5.6)

where vkep is the Keplerian velocity. We have found that this value is roughly independent of βw,
the orientation of the spin axes of the stars, and even rin, so by extrapolating our simulations we
robustly estimate φin ∼ 2 − 6 at the horizon. Considering that a magnetically arrested state (MAD)
of accretion begins when φin ≈ 50 (Tchekhovskoy et al. 2011), this is a fairly significant amount of
magnetic flux that could result in the formation of strong jets. As defined, φin is positive definite.
The field responsible for this flux in the innermost regions of our simulation, however, reverses
direction on roughly the same timescale as the RM in the top panel of Figure 5.3.
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5.6 Discussion And Conclusions
We have shown that for a reasonable set of parameters, magnetized, 3D simulations of wind

accretion onto Sgr A* reproduce the large RM observed towards the galactic centre magnetar, PSR
J1745-2900, and can even account for its relatively large temporal gradient. Additionally, we find
that for the same parameters the RM towards Sgr A* in our simulation is provided by an ordered
magnetic field at r ∼ 10−4 pc (∼ 250 Schwarzschild radii) and is roughly consistent with the ob-
served value. Sgr A*’s RM retains its sign for ∼ 3 − 100 year periods (depending on the exact
simulation parameters), also consistent with polarization measurements. What’s more, our pre-
dicted X-ray luminosity at scales of 2− 10′′ from Sgr A* is consistent with Chandra observations,
suggesting that the properties of the hot gas are being modeled faithfully.

In our models it is likely that the pulsar itself is within the clockwise stellar disc and that the
RM is probing a shocked region between two WR stars in that disc. On the surface, such an
explanation for the exceptionally large observed RM would seem like a fortuitous coincidence;
regions with such large RMs are fairly rare in space and time at distances from the black hole
comparable to that of the pulsar’s LOS (Figures 5.1 and 5.2). On the other hand, if, as proposed
by Bower et al. (2015b), the pulsar itself is on a bound, clockwise orbit in or near the disc, then
proximity to regions of enhanced density and magnetic field would be more common.

Alternative models for the RM of the pulsar cannot be ruled out. Sicheneder & Dexter (2017)
show that a chance alignment of the pulsar’s LOS with an HII region much closer to Earth can
reasonably explain both the observed DM and RM if the region is magnetized. Yusef-Zadeh et al.
(2015b) argue that the RM could easily be provided by warm, ionized gas in Sgr A* west. Another
possibility is that while the pulsar’s RM is local to the galactic centre, it is not local to the inner
parsec. This is suggested by the fact that two other pulsars in the galactic centre, J1746âĹŠ2849
and J1746âĹŠ2856, located 10-100 pc away from Sgr A* in projected distance, have RMs that are
also fairly large, ∼ 104 rad/m2 (Schnitzeler et al. 2016).

In summation, we have presented a single numerical model that simultaneously explains the
observed diffuse X-ray luminosity towards the galactic centre, the value and variability of the RM
of the galactic centre magnetar, and the magnitude and constancy in sign of the RM of Sgr A*.
Continual monitoring of the pulsar’s motion and acceleration, follow-up observations of the RM
of Sgr A*, improved constraints on the mass-loss rates and wind speeds of the stellar winds, and
magnetic field strength estimates based on observations of Zeeman splitting of the absorption lines
for the three winds closest to the pulsar (i.e. the winds of E23, E32, and E40) will be important
for testing the validity of this picture. Our simulations predict a 2D RM map of the inner 0.5 pc
of the Galaxy that can be used to test whether the RM is indeed produced local to Sgr A* using
future pulsar detections. We also predict that Sgr A* is typically accreting significant magnetic
flux (though below the MAD limit), enough to potentially power strong magnetic outflows.
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Chapter 6

The Surprisingly Small Impact of Magnetic
Fields On The Inner Accretion Flow of
Sagittarius A* Fueled By Stellar Winds

An similar version of this article has been submitted to MNRAS as Ressler S. M., Quataert E.,
and Stone J. M.

6.1 Abstract
We study the flow structure found in 3D magnetohydrodynamic simulations of accretion onto

Sagittarius A* via the magnetized winds of the orbiting Wolf-Rayet stars. These simulations cover
over 4 orders of magnitude in radius to reach ≈ 300 gravitational radii, with only one poorly con-
strained parameter (the magnetic field in the stellar winds). Even for winds with relatively weak
magnetic fields (e.g., plasma β ∼ 106), flux freezing/compression in the inflowing gas amplifies
the field to β ∼ few well before it reaches the event horizon. Overall, the dynamics, accretion rate,
and spherically averaged flow profiles (e.g., density, velocity) in our magnetohydrodynamic sim-
ulations are remarkably similar to analogous hydrodynamic simulations. We attribute this to the
broad distribution of angular momentum provided by the stellar winds, which sources accretion
even absent much angular momentum transport. We find that the magneto-rotational instability is
not important because i) of strong magnetic fields that are amplified by flux freezing/compression,
and ii) the rapid inflow/outflow times of the gas and inefficient radiative cooling preclude circu-
larization. The primary effect of magnetic fields is that they drive a polar outflow that is absent
in hydrodynamics. Even in MHD, the angular momentum of the flow at small radii is typically
aligned with the stellar disc of Wolf-Rayet stars. The dynamical state of the accretion flow found
in our simulations is unlike the rotationally supported tori used as initial conditions in horizon
scale simulations, which could have implications for models being used to interpret Event Horizon
Telescope and GRAVITY observations of Sgr A*.
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6.2 Introduction
The accretion system immediately surrounding Sagittarius A* (Sgr A*), the supermassive

black hole in the center of The Milky Way, offers an unparalleled view of the diverse physical
processes at play in galactic nuclei. Compared to other active galactic nuclei, the luminosity of the
black hole is strikingly small, only ∼ 10−9 times the Eddington limit, this places it firmly into the
regime of the well-studied Radiatively Inefficient Accretion Flow (RIAF) models. The proximity
of the galactic centre allows for the environment immediately surrounding the black hole to be
spatially resolved, including & 100s of stars in the central nuclear cluster (Paumard et al. 2006; Lu
et al. 2009), the hot, X-ray emitting gas at the Bondi radius (Baganoff et al. 2003), and the ionized
mini-spirals streaming inwards surrounded by the cold, molecular circumnuclear disc. Direct con-
straints on the near horizon environment are now possible with the detection of several localized
infrared flares orbiting the black hole within ∼ 10 gravitational radii (rg ≡ GM/c2, where M is the
mass of the black hole, G is the gravitational constant, and c is the speed of light) by GRAVITY
(Gravity Collaboration et al. 2018) and the first resolved mm images by the Event Horizon Tele-
scope (Doeleman et al. 2009; Event Horizon Telescope Collaboration et al. 2019a,b) soon to come.
With such a wealth of observational data, Sgr A* can be used as a test-bed of accretion models in
a way that no other system can.

It is generally believed that the black hole’s gas supply is primarily set by the stellar winds
of the ∼ 30 Wolf-Rayet (WR) stars orbiting at distances of ∼ 0.1–1 pc from Sgr A* (Paumard
et al. 2006; Martins et al. 2007; Yusef-Zadeh et al. 2015a). The winds shock with each other to ∼
keV temperatures, producing X-rays around the Bondi radius that are well resolved by Chandra
(Baganoff et al. 2003). However, a spherical Bondi estimate vastly over-predicts the observed
Faraday rotation of the linearly polarized radio emission(Quataert & Gruzinov 2000a; Bower et al.
2003; Marrone et al. 2007). Instead, only a small fraction . 10−3 of this gas reaches the horizon. It
is this material that produces the X-ray and infrared flares as well as the 230 GHz emission targeted
by EHT.

What exactly prevents most of the material at the Bondi radius from accreting is still an open
debate. Several viable models have been proposed, including those that appeal to strong outflows
(Blandford & Begelman 1999) and those that appeal to convective instabilities that trap gas in
circulating eddies (Stone et al. 1999; Quataert & Gruzinov 2000b; Igumenshchev & Narayan 2002;
Pen et al. 2003). The range of models corresponds to a dependence of density on radius between
the two extremes of r−3/2 and r−1/2, with the combination of multiple observational estimates at
∼ 7 different radii supporting r−1 in the inner regions of the flow (Gillessen et al. 2018) with a
potential break near the Bondi radius (Wang et al. 2013). Another key consideration is the angular
momentum of the gas being fed at large radii. In the absence of magnetic fields or other processes,
gas in axisymmetric flows can only accrete if it has a specific angular momentum (roughly) less
than the Keplerian value at the event horizon. On the other hand the magnetorotational instability
(MRI; Balbus & Hawley 1991a) can amplify an initially weak field causing gas to accrete while
also driving strong magnetically dominated outflows in the polar regions.

Most simulations of accretion onto low luminosity AGN operate either explicitly or implicitly
on the assumption that the MRI is the primary driver of accretion. For instance, GRMHD simula-
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tions used to model the horizon-scale accretion flow in the galactic center almost uniformly start
from equilibrium tori seeded with weak magnetic fields that are unstable to the MRI. No low an-
gular momentum gas is initially present. In this picture, understanding the physics of the MRI and
how it depends on physical parameters like the net vertical flux in the disc or numerical parameters
like resolution is essential for understanding accretion physics.

Sgr A* is unique among AGN in that we can plausibly expect to directly model the accretion of
gas from large radii where it is originally sourced by the winds of the Wolf-Rayet stars. Since the
hydrodynamic properties of these winds (Martins et al. 2007; Yusef-Zadeh et al. 2015a) as well as
the orbits of the star themselves (Paumard et al. 2006; Lu et al. 2009) can be reasonably estimated
from observations, the freedom in our modeling is limited mainly to the magnetic properties of the
winds, which are less well known. In principle, a simulation covering a large enough dynamical
range in radius could self consistently track the gas from the stellar winds as it falls into the black
hole, determining the dominant physical processes responsible for accretion and directly connect-
ing the accretion rate, density profile, and outflow properties of the system to the observations at
parsec scales.

With this motivation, Cuadra et al. (2005, 2006, 2008) studied wind-fed accretion in the galac-
tic centre with a realistic treatment of stellar winds and Cuadra et al. (2015); Russell et al. (2017)
added a “subgrid” model to study how feedback from the black hole affects the X-ray emission. In
Ressler et al. (2018) (Chapter 4, RQS18) we built on this key earlier work by treating the winds
of the WR stars as source terms of mass, momentum, and energy in hydrodynamic simulations
encompassing the radial range spanning from ∼ 1 pc to ∼ 5× 10−5 pc (∼ 300 rg). One key result of
RQS18 was that even in hydrodynamic simulations the accretion rate onto the black hole is signif-
icant and comparable to previous observational estimates (e.g., Marrone et al. 2007; Shcherbakov
& Baganoff 2010; Ressler et al. 2017) due to the presence of low angular momentum gas. This is
in part a consequence of a coincidence that the WR stars in the galactic centre have winds speeds
comparable to their orbital speeds, so that there is a wide range of angular momentum in the frame
of Sgr A*. Another key result was that the higher angular momentum gas that could not accrete did
not build up into a steady torus but was continuously being recycled through the inner ∼ 0.1 pc via
inflows and outflows. Because of this complicated flow structure, it is not clear what effect mag-
netic fields would have. Would the rotating gas be unstable to the MRI? Would the MRI growth
time be short enough compared to the inflow/outflow time in order to significantly effect the flow
structure? If so, how is the net accretion rate altered? How significant are large scale magnetic
torques in transporting angular momentum? These and more are the questions we address in this
chapter.

Ressler et al. (2019) (Chapter 5, RQS19) presented a methodology for modeling the accretion
of magnetized stellar winds by introducing additional source terms to account for the azimuthal
field in each wind. In that work, we showed that a single simulation of fueling Sgr A* with mag-
netized winds can satisfy a number of observational constraints, providing a convincing argument
that our model is a reasonable representation of the accretion flow in the galactic centre. First,
our simulations reproduce the total X-ray luminosity observed by Chandra (Baganoff et al. 2003),
meaning that we capture at least a majority of the hot, diffuse gas at large radii. Second, our sim-
ulations reproduce the r−1 density scaling inferred from observations that were taken over a large
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radial range (Gillessen et al. 2018), implying that we are capturing a majority of the gas at all
radii and that our inflow/outflow rates have the right radial dependence. Third, our simulations
can reproduce the magnitude of the RM of both the magnetar (produced at r & 0.1 pc, Eatough
et al. 2013) and Sgr A* (produced at r . 10−4 pc, Marrone et al. 2007), demonstrating that our
calculated magnetic field strengths are reasonable at both small and large scales. Fourth, our sim-
ulations can plausibly explain the time variability of the RM of Sgr A* (Bower et al. 2018), the
time variability of the magnetar’s RM, as well as the time variable part of its dispersion measure
(Desvignes et al. 2018). In this chapter, we study the dynamics of this model in more detail, with
the primary focus of determining the degree to which magnetic fields alter the flow structure seen
in purely hydrodynamic simulations (e.g., Cuadra et al. 2008, RQS18).

This chapter is organized as follows. §6.3 reviews and summarizes the governing equations of
the system including the magnetized wind source terms, §6.4 demonstrates in an isolated stellar
wind test that our method produces the desired results, §6.5 presents the results of 3D MHD sim-
ulations of accretion onto Sgr A*, §6.6.1 compares and contrasts our results with previous work,
§6.7 discusses the implications of our work for horizon scale modeling of the galactic centre, and
§6.8 concludes.

6.3 Computational Methods
Our simulations use the conservative, grid-based code Athena++1 coupled with the model for

magnetized winds outlined in RQS19. This model is an extension of the purely hydrodynamic wind
model presented in RQS18 and treats the winds of the WR stars as sources of mass, momentum,
energy, and magnetic field that move on fixed Keplerian orbits. The hydrodynamic properties of
the winds are parameterised by their mass loss rates, Ṁw and their wind speeds, vw. The magnetic
fields of the winds are purely toroidal as defined with respect to the spin axes of the stars and have
magnitudes set by the parameter βw, defined by the ratio between the ram pressure of the wind and
its magnetic pressure at the equator (a ratio that is independent of radius in an ideal stellar wind).

1Athena++ is rewrite of the widely used Athena code (Stone et al. 2008) in the c++ language. For the latest
version of Athena++, see https://princetonuniversity.github.io/athena/.
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Figure 6.1: Left: Angle averaged azimuthal magnetic field, 〈Bϕ〉, normalized to the r & rw analytic expecta-
tion for βw = 102 (solid red) and to its peak value (dashed blue). The agreement with the analytic solution is
excellent. Right: θ dependence of Bϕ at 10 wind radii (solid green) compared to sin(θ) (dashed purple). The
magnetic field is slightly more spread out in θ than sin(θ) because the imbalanced magnetic pressure tends
to push the gas towards the poles. This effect is more extreme for βw = 10 (Figure 6.2).
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Figure 6.2: Left: θ dependence of the azimuthal magnetic field, Bϕ (solid green), and the logarithm of the
mass density divided by the purely hydrodynamic solution, log10(ρ/ρhydro) (dotted orange), both evaluated
at 10 wind radii for βw = 10 and compared with sin(θ) (dashed purple). Right: angle averaged 〈Bϕ〉 (solid
red), accretion rate normalized to the expected value, 〈Ṁ〉/Ṁw (dashed blue), and radial velocity normalized
to the expected value, 〈vr〉/vw (dotted black). Compared to the βw = 100 case in Figure 6.1, the magnetic
field is now strong enough to collimate the wind, enhancing the density by almost a factor of 100 at the
poles. Despite this, the net accretion rate and wind speed are still consistent with the input parameters.
Nonetheless, we focus on βw ≥ 100 for our simulations to avoid the collimating effect of magnetic fields on
the stellar winds.
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In brief, the equations solved in our simulations are
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(6.1)

where ρ is the mass density, v is the velocity vector, B is the magnetic field vector, E = 1/2ρv2 +

P/(γ − 1) + B2/(8π) is the total energy, γ = 5/3 is the non-relativistic adiabatic index of the gas,
Ptot = P + B2/(8π) is the total pressure including both thermal and magnetic contributions, Q− is
the cooling rate per unit volume due to radiative losses caused by optically thin bremsstrahlung
and line cooling (using Z = 3Z� and X = 0), f is the fraction of the cell by volume contained in
the wind, ρ̇w = Ṁw/Vw, Vw = 4π/3 r3

w, vw,net is the wind speed in the fixed frame of the grid, 〈〉
denotes a volume average over the cell, ĖB is the magnetic energy source term provided by the
winds, and Ẽw is the average of the wind source electric field, Ew, over the appropriate cell edge
(see Equations 22-24 of Stone et al. 2008). Each ‘wind’ has a radius of rw ≈ 2

√
3 ∆x, where ∆x is

the edge length of the cell containing the center of the star.

6.4 Isolated, Magnetized Stellar Wind Test
To test that our implementation of the source terms drives a magnetized wind with the desired

properties, we place a stationary wind in the center of a 3D, 1 pc3 grid and run for 4 wind crossing
times. The mass-loss rate of the wind is Ṁw = 10−5 M�/yr, the wind speed is vw = 1000 km/s,
and radiative cooling is disabled. We choose βw = 100 to ensure that the magnetic field is non-
negligible but relatively weak.

The left panel of Figure 6.1 shows that the angle-averaged ϕ component of the magnetic field
matches the analytic expectation, scaling as r−1 as determined by flux conservation. The other
components of the field are negligible. The right panel of Figure 6.1 shows the dependence of
Bϕ on polar angle θ at a distance of 10 times the wind radius. Since the ϕ source term in the
induction equation is ∝ sin(θ), a dynamically unimportant magnetic field would also be ∝ sin(θ).
For βw = 100, however, corresponding to a magnetic pressure that is 1% of the ram pressure, the
unbalanced Pm ∝ sin(θ)2 pushes the gas away from the midplane and towards the poles. This
leads to the field being slightly lower than prescribed in the midplane and slightly higher near the
poles, by a factor of . 10%. We emphasize that this result is not an error in our model but a self-
consistent consequence of magnetic stresses in the wind, which tend to collimate the flow (Sakurai
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Figure 6.3: 2D slice in the plane of the sky of electron number density overplotted with projected magnetic
field lines for the inner ∼ 0.5 pc of our βw = 100 (top left), βw = 104 (top right), βw = 106 (bottom left), and
hydrodynamic (bottom right) simulations. Each ‘star’ in our simulation provides a purely toroidal magnetic
field with direction determined by the random, independently chosen spin axes of the stars. No significant
difference is seen in the simulations at this scale because the magnetic fields are relatively weak compared
to the ram and thermal pressures of the gas.
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Figure 6.4: 2D slice in the plane of the sky of electron number density overplotted with projected magnetic
field lines (top four panels) and temperature (bottom four panels) for the inner ∼ 0.05 pc of our simulation.
Compared to the 0.5 pc scale in Figure 6.3, the magnetic fields in the βw = 102 and βw = 104 simulations are
more dynamically important and thus clear differences are seen in the density distribution compared to the
hydrodynamic case. In addition, the larger the field strength in the winds, the larger the spatial scale over
which the field lines are coherent.
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1985). However, it is also important to note that the sin(θ) dependence of the source term in the
induction equation was chosen simply because it vanishes at 0 and π and not based on detailed
modeling of the angular structure of MHD winds.

The angular structure of the wind seen in Figure 6.2 becomes even more pronounced for βw =

10, where the magnetic pressure is now 10% of the ram pressure. Here the wind becomes highly
collimated, as shown by the left panel of Figure 6.2, where the density is now concentrated at the
poles and the magnetic field is roughly independent of polar angle. At the same time, the total
mass outflow rate and angle averaged wind speeds are still in good agreement with the intended vw

and Ṁw as shown in the right panel of Figure 6.2.
As noted in RQS19, when βw is further decreased to . 5 the magnetic pressure becomes large

enough to accelerate the wind and make the solution inconsistent with the input parameters. Be-
cause of this we limit our studies to βw & 10 and focus primarily on βw ≥ 102. We show later that
our results are insensitive to βw for βw ∼ 102 − 106.

6.5 3D Simulation of MHD Wind Accretion Onto Sgr A*

6.5.1 Computational Grid and Boundary/Initial Conditions
We use a base grid in Cartesian coordinates of 1283 covering a box size of 1 pc3 with an

additional 9 levels of nested static mesh refinement. This doubles the effective resolution every
factor of ∼ 2 decrease in radius and corresponds to an inner boundary radius of rin ≈ 6 × 10−5

pc≈ 1.6 × 10−3′′ ≈ 300 rg.
For the WR stars, we use the orbits, mass loss rates, and wind speeds exactly as described in

RQS18, drawing primarily from Martins et al. (2007), Cuadra et al. (2008), Paumard et al. (2006),
and Gillessen et al. (2017). These values differ slightly from those used in RQS19, where we mod-
ified the mass loss rates and wind speeds of four stars (within reasonable systematic observational
uncertainties) to show that our simulations could reproduce the observed RM of the galactic centre
magnetar. Each wind is given a randomly chosen direction for its spin axis that determines the
azimuthal direction for the magnetic field; this random selection is made only once for each star
so that each simulation we run has the same set of spin axes. Note that RQS19 used a different set
of spin axes, but we have found our results insensitive to this choice. Here we also use a value of
rin that is a factor of 2 smaller than RQS19. We ran a total of 5 simulations; four in MHD with
βw = 10, 102, 104 and 106, and one in hydrodynamics (i.e., βw → ∞).

In §6.4 we showed that stellar winds with βw = 10 in our model become highly collimated.
We have found that this collimation has nontrivial effects on the resulting dynamics of the inner
accretion flow (in particular, altering the angular momentum direction at small radii) in a way that
makes separating the effects of large magnetic fields from this extra hydrodynamic consideration
difficult. Furthermore, the precise nature of this collimation depends on our choice of angular
dependence of Ẽw in Equation (6.1), which was arbitrary. Thus we do not find it instructive to
include βw = 10 in our analysis. We do however, describe some of the main features of the
βw = 10 simulation that differ from those of higher βw simulation in Appendix 6.A, though the
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main conclusions that we derive from our βw = 100 − 106 simulations are consistent with the
βw = 10 simulation.

We initialize each simulation with floored density and pressure, zero velocity, and no magnetic
field, starting at 1.1 kyr in the past. Here, for consistency with RQS18 January 1, 2017 is defined
as the present day, i.e., t = 0.

Finally, we use floors on the density and pressure (see RQS18), and a ceiling on the Alfven
speed (which is effectively an additional floor on density; see RQS19).

To ensure that our results are well converged, we ran an additional simulation that used a factor
of 4 finer resolution within ∼ 0.06 pc, though with a shorter total run time. As shown in Appendix
6.B, we find that our simulations show no significant dependence on resolution.

6.5.2 Overview
Figure 6.3 shows a 1 pc2 2D slice in the plane of the sky (centered on the black hole) of the

electron number density overplotted with magnetic field lines for βw = 100, 104, and 106 compared
to the hydrodynamic case. Magnetic fields do not significantly alter the dynamics at this scale
because even for βw = 100 the magnetic pressure in the winds is insignificant compared to their
ram pressure. Thus, all panels are nearly identical. Slices of the temperatures show similarly small
differences from the right panel of Figure 7 in RQS18 and are thus not included here. Figure 6.3
shows that, as desired, the magnetic fields lines wrap around the “stars,” which show up as dense
circles typically surrounded by bow shocks. Again, since the field is not dynamically important at
this scale the field lines for different βw’s all have essentially the same geometry.

The top four panels of Figure 6.4 again show 2D slices of the electron number density over-
plotted with field lines but on a scale of ∼ 0.08 pc, ten times smaller than Figure 6.3. The bottom
four panels of the same figure show 2D slices of temperatures. While the βw = 106 run still looks
similar to the hydrodynamic simulation, the βw = 104 and (particularly) βw = 100 runs show sig-
nificant differences. This is because, as we shall show, the field in the latter cases starts to become
dynamically important at this scale. The field lines become increasingly ordered with decreasing
βw, going from mostly tangled for βw = 106 (where the field is easily dragged along with the
flow) to mostly coherent for βw = 100 (where the field can resist the gas motion). This will have
important implications for the field geometry at small radii in §6.5.6.

In the βw = 102 simulation alone, a prominent large scale, hot, collimated outflow can be seen
at particular times (at t = 0 in Figure 6.4 it is relatively weak, though can be seen reaching to ∼
0.01 pc below the black hole in the top left temperature panel). Figure 6.5 presents a time series of
the gas temperature, highlighting T ≥ 6 × 107 K and spanning t = −600 yr to t = −450 yr in 50
yr increments. In the initial frame, no clear outflow structure is seen, only strong shocks between
winds. As time progresses, however, a thin ≥ 108 K outflow appears coming out from the right
side of the black hole, ∼ parallel to the angular momentum direction at this time. This outflow is
magnetically driven and originates at small radii, as we shall show in the next section.

Figure 6.6 shows the angle-averaged root-mean-squared (rms) magnetic field strength and
plasma β ≡ P/Pm, where Pm is the magnetic pressure, as a function of radius for different val-
ues of βw. As expected, at large radii (& 0.1 pc), the rms field and β scale simply as

√
1/βw and βw,
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Figure 6.5: Time series of jet formation over the course of 150 years in the βw = 102 simulation. Plotted are
2D gas temperature slices in the plane of the sky for the inner ∼ 0.04 pc; note that we only show the upper
right quadrant of the simulation to highlight the jet. Here δt is the time elapsed since the first snapshot. Time
proceeds clockwise starting from the upper left panel. The color scale differs from that used in Figure 6.4
and was chosen to particularly highlight the highest temperatures. As time progresses, a collimated, high
temperature outflow emerges asymmetrically from small radii until it reaches r ∼ 0.3 pc. This ‘jet’ is present
only sporadically during the course of the βw = 102 simulation and not at all in the higher βw simulations.
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Figure 6.6: Comparison between the root-mean-squared magnetic field strength (red),
√
〈B2〉, and plasma

β (blue), 〈P〉/〈Pm〉, for different values of βw, which quantifies the magnetization of the WR stellar winds.
Even though the field strength varies by 2 orders of magnitude at large radii (corresponding to a 4 orders of
magnitude difference in β), the field strengths at small radii are all within a factor of . 2 (βs within a factor
of . 3). This is because the field tends to be compressed and amplified by being dragged along with the gas
motion until β reaches ∼ a few.

respectively. At small radii (. 10−2 pc), however, there is a much weaker dependence of the rms
field and β on βw. In fact, both βw = 104 and βw = 102 reach β ∼ 2 and ∼ 1 G field strengths by
10−4 pc. Even in the βw = 106 case, the field strength (β) at small radii is only a factor of ∼ 2 less
(3-4 larger) than in the βw = 10 simulation. This is why RQS19 found that the rotation measure
of Sgr A* and the net vertical flux threading the inner boundary of the simulation were roughly
independent of βw, since both quantities are set by the field at the innermost radii. Though this
result might seem like a clear signature of a field regulated by the magnetorotational instability
(MRI), we argue in §6.5.5 that this is not the case, and that instead the amplification is due to flux
freezing in the inflow.

Despite the clear morphological differences at the ∼ 0.08 pc scale in the density/temperature
(Figure 6.4) and the fact that the flow can reach β of ∼ a few over orders of magnitude in radius
(Figure 6.6), the radially averaged gas properties in the MHD simulations remain strikingly similar
to the hydrodynamic results at all radii even for βw = 100. This is shown in Figure 6.7, which
shows the angle and time averaged density, sound speed, radial velocity, angular momentum, and
accretion rate in addition to the accretion rate through the inner boundary as a function of time
for both the βw = 100 and the hydrodynamic run. Though there can be as large as a factor of
three difference in accretion rate (corresponding to a difference in density at small radii) at specific
times, on average, the accretion rate through the inner boundary is unchanged by the presence of
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the magnetic fields, falling between ∼ 0.25 and 1.5 M�/yr.2 The differences in the average sound
speed and radial velocity are negligible. We have tested that this result also holds for different
values of the inner boundary radius.

6.5.3 Dynamics of The Inner Accretion Flow
To facilitate analysis of the accretion flow at small radii it is useful to define time intervals over

which the angular momentum vector of the gas is relatively constant in time. Due to the stochastic
nature of the simulations, this occurs at different times for each run, often not centered at t = 0.
The purpose of this analysis, however, is to understand the general properties of the accretion disc,
outflow, and magnetic field structure, not to make overly specific predictions for the present day.
We expect that the intervals we choose are representative of the general accretion flow dynamics
and structure.

Figure 6.8 shows the three components of the angle and radius-averaged (over the interval
r = 5 × 10−4 pc and r = 3 × 10−2 pc) angular momentum direction vector as a function of time
for our four simulations. We use this information to choose our particular choice of time intervals
for averaging the flow structure: [100, 200] yrs, [0, 100] yrs, [0, 100] yrs, and [−100, 0] yrs for
βw = 102, 104, 106 and the hydrodynamic simulation, respectively. All of these intervals have
angular momentum directions that are approximately constant in time and nearly aligned with the
stellar disc containing about half of the WR stars. The angular momentum of the accretion flow
is aligned with that of the stellar disc most of the time, though for the βw = 102 simulation it
has more frequent and larger deviations from the stellar disc than in the hydrodynamic simulation.
The most significant of these is seen near t = 0, where the angular momentum of the gas in the
βw = 102 simulation is nearly anti-aligned with the stellar disk for a brief ∼ 50 yr period. As shown
in Appendix 6.A, the angular momentum of the gas in the βw = 10 simulation is almost never
aligned with the stellar disc due to the collimation of winds. Note that the magnitude of the angle
and time-averaged angular momentum is similar for all simulations, being ∼ 0.5 lkep for r . 0.1 pc
(see the left panel of Figure 14 in RQS18; the angle and time-averaged l in MHD differs at most
by 20% from that in hydrodynamics as shown in Figure 6.7).

Defining a new ‘z′ direction as the direction of the time averaged angular momentum vector,
Figure 6.9 and Figure 6.10 show time series of the midplane (θ = π/2) mass density on ∼ 0.1
pc scales, weighted by radius (see Figure 6.7) in the hydrodynamic and βw = 102 simulations,
respectively. A time series for the βw = 104 (βw = 106) simulation is not shown but it looks
qualitatively very similar to the βw = 102 (hydrodynamic) case. Figure 6.11 shows the Bernoulli
parameter, a measure of how bound the gas is to the black hole, in the same frame for all four
simulations at a representative time. These figures show that the majority of the unbound, high
angular momentum gas in the midplane at large radii is provided by the closest one or two stellar
winds (namely, those of E23/IRS 16SW and E20/IRS 16C) as they orbit the black hole in all
simulations. As this material streams inwards, however a clear difference is seen in the behavior at
smaller radii in the different runs. In the hydrodynamic case, each fluid element largely conserves

2Due to the chaotic nature of our simulations, the instantaneous value of the accretion rate at t = 0 is not as robust
as the time-averaged value.
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Figure 6.7: Comparison between the βw = 102 MHD simulation (solid) and a purely hydrodynamic simu-
lation (dashed). Top: present day angle-averaged mass density, ρ (M�/pc3), sound speed, cs (pc/kyr), radial
velocity, |vr | (pc/kyr), specific angular momentum, l (pc2/kyr), and mass accretion rate, |Ṁ| (M�/kyr), as a
function of distance from the black hole. Bottom: Mass accretion rate as a function of time measured at ≈
2 mpc ≈ 9700 rg. Despite the relatively large magnetization of the stellar winds, the magnetic field has an
almost negligible effect on the radial profiles. The small difference in density (and hence, accretion rate) is
caused by the slightly different time dependence of the accretion rate leading to a different realization of the
flow at t = 0 even though the statistics in time are similar. These conclusions are independent of βw.
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Figure 6.8: Angular momentum direction as a function of time for the gas in our βw = 102, 104, 106 and
hydrodynamic simulations, averaged in radius and angle over 5 × 10−4 pc to 3 × 10−2 pc. The blue shaded
regions represent the time intervals that we choose to analyze the inner accretion flow, over which the
angular momentum vector is relatively stable. Dashed lines represent the three components of the angular
momentum direction vector of the clockwise stellar disc (Paumard et al. 2006; Lu et al. 2009).
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its angular momentum and energy, thus remaining unbound. Gravity is only strong enough to
bend the inflowing streams of gas around the black hole until they emerge on the other side as a
spray of outflow that sends the gas out to larger radii without much accretion. The high angular
momentum gas does not spend enough time at small radii to circularize or form a disc; instead
the supply of matter at small radii is continually being lost and replenished. The same is true of
weakly magnetized simulations (i.e., βw = 106 and higher).

In MHD with strong magnetic fields (i.e., βw = 102 and βw = 104), however, this picture
is different. Now the strong fields (β ∼ a few at small radii, Figure 6.6) are able to efficiently
remove some angular momentum and energy from the gas via large-scale torques. This results in
the originally unbound material becoming bound as it falls in so that its trajectory alters to form an
inward spiral that ultimately accretes instead of spraying out the other side to large radii. The main
difference, however, as we shall argue in §6.5.7, is that the outflow present in the midplane of the
hydrodynamic simulation is now redirected to the polar regions. As in the hydrodynamic case, the
gas with high angular momentum does not spend enough time at small radii to circularize or form
a true disc. This is because it generally accretes (after being subjected to magnetic torques) or is
dumped into an outflow before completing even a few orbits. Thus in both cases, the gas supply at
small radii is continually being recycled and is set mostly by the hydrodynamic properties of the
winds, in particular the wide range of angular momentum produced by the stellar winds.

Focusing now on the poloidal structure of the flow, Figure 6.12 shows the ϕ and time-averaged
accretion rates for our four simulations while Figure 6.13 shows the same for the Bernoulli param-
eter. The hydrodynamic midplane structure described above results in a net outflow of high angular
momentum, modestly unbound material in the midplane, while low angular momentum material
freely falls in along the poles. The polar inflow also contains some higher angular momentum, un-
bound (Be/|Φ| . 10−2 but ≥ 0) material that eventually hits a centrifugal barrier and turns aside and
adds to the midplane outflow. For βw = 106, where the field is relatively weak, the same structure is
seen. However, for βw = 104 and 102, the hydrodynamic accretion structure is completely reversed.
For these more magnetized flows, not only is there net inflow of bound, Be/|Φ| < 0, material in
the midplane, but the energy released from the gas as it loses angular momentum due to magnetic
torques is deposited into an unbound, Be/|Φ| ∼ 10 polar outflow. As evidenced by the fact that the
net accretion rates are comparable in both cases, this outflow is similar to the one present in the
hydrodynamic simulation but redirected from the midplane to the poles.

An additional consequence of the different poloidal dynamics is that the βw = 104 and 102

simulations display a stronger density contrast between the midplane and polar regions compared
to the βw = 106 and hydrodynamic simulations. This is seen in Figure 6.14, which plots the time
and ϕ-averaged density folded over the midplane at r = 5 mpc for the different simulations. Though
the “disc” of gas is still quite thick, the equatorial to polar density contrast in the most magnetized
case is now a factor of ∼ 5 vs. only ∼ 2 in the hydrodynamic and more weakly magnetized cases.
This is, however, still a much lower density contrast than typical MHD and GRMHD simulations
of MRI driven accretion in tori, which show outflows that are significantly more magnetically
dominated, and in which the density at the poles is orders of magnitude less than the midplane.
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Figure 6.9: Sequence of midplane slices of the mass density weighted by radius separated by 25 year
intervals for the hydrodynamic simulation. Here δt is the time elapsed since the first snapshot and time
proceeds clockwise starting from the upper left. Material provided by the nearest two stellar winds (E20/IRS
16C in the upper left quadrant and E23/IRS 16SW in the upper right quadrant) streams inward but mostly
has too much angular momentum to accrete without any redistribution of angular momentum. Instead, the
streams of material ultimately hit a centrifugal boundary and then “spray” outwards on the opposite side of
the black hole from which they approached. The bulk of the gas does not circularise nor form a steady disc.
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Figure 6.10: Sequence of midplane slices of the mass density weighted by radius separated by 25 year
intervals for the βw = 102 simulation. Time proceeds clockwise starting from the upper left panel. Note that
δt = 0 is at a different absolute time relative to Figure 6.9. Instead of simply streaming in and “spraying”
outwards as seen in the hydrodynamic case (Figure 6.9), strong magnetic fields are able to redirect the
outflowing, high angular momentum gas towards the polar regions so that the midplane slice pictured here
is mostly comprised of spiraling inflow. As in the hydrodynamic simulation, gas does not truly circularise
into a disc but either accretes or outflows after only . a few orbits around the black hole. While magnetic
fields do provide a non-negligible torque that can remove angular momentum from the gas, this torque has
limited time to operate and does not significantly modify the accretion rate, which is very similar in the
hydrodynamic and MHD simulations (see Figure 6.7). The two stellar winds providing most of the material
in this plot are E20/IRS 16C in bottom left quadrant and E23/IRS 16SW in the upper left quadrant.
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Figure 6.11: Midplane contours of the Bernoulli parameter, Be≡ |v|2/2+γ/(γ−1)P/ρ−GM/r, divided by the
gravitational potential, |Φ| = GM/r, in the four different simulations at representative times. Orange denotes
bound material while purple denotes unbound material. Absent magnetic fields, the relatively high angular
momentum gas provided by the nearby stellar winds is mostly unbound with too much angular momentum
to accrete (see also Figure 6.9). Strong magnetic fields (as present in the βw = 102 and 104 simulations),
however, can torque the gas enough that it loses some angular momentum and becomes moderately bound
to the black hole. The energy released by this process drives polar outflow.
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Figure 6.12: Time and ϕ-averaged accretion rate on mpc scales for each simulation, where the z direction is
defined as the net angular momentum of the gas (Figure 6.8). Red represents inflow, blue represents outflow,
and the accretion rate has been folded over the midplane and normalized such that the absolute value at 5
mpc is unity. For sufficiently large magnetic fields, the inflow/outflow structure seen in the hydrodynamic
case is reversed, because the field is strong enough to redirect the outflow and confine it to the polar regions.
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Figure 6.13: Time and ϕ-averaged Bernoulli parameter, Be, normalized to the gravitational potential, |Φ| =
GM/r on mpc scales for each simulation, where the z direction is defined as the net angular momentum
of the gas (Figure 6.8). Orange represents bound, purple represents unbound, and the Bernoulli parameter
has been folded over the equator. Without magnetic fields, the material is slightly unbound throughout
the domain except for some slightly bound material near the polar axis. Magnetic fields provide torque,
releasing energy from the high angular momentum gas in the midplane and depositing it in the polar outflow
(Figure 6.12).
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Figure 6.14: Time and ϕ averaged mass density at r = 5 mpc, normalized at θ = π/2 and folded over the
midplane. Strong magnetic fields lead to a larger contrast in density between the midplane and polar regions
as compared to the hydrodynamic and more weakly magnetized flows.

6.5.4 Stresses
In order to quantify the relative contribution of the magnetic field to angular momentum trans-

port, we calculate the Shakura & Sunyaev (1973) α-viscosity from our simulations. We do this in
the same frames defined by the angular momentum direction during the time intervals shown in
Figure 6.8 as described in the preceding subsection.

We follow Jiang et al. (2017) by defining the time and angle averaged Reynold’s stress

S h ≡ 〈ρvrvϕ sin(θ)〉 − 〈ρvr〉〈vϕ sin(θ)〉 (6.2)

and Maxwell stress
S m ≡ 〈BrBϕ sin(θ)〉. (6.3)

Then the Shakura & Sunyaev (1973) α viscosities are simply αh = S h/P and αm = S m/P, where
we have chosen to use the thermal pressure instead of the total (thermal plus magnetic) pressure in
the denominator for fair comparison between hydrodynamic and MHD simulations.

The resulting α’s for each simulation are plotted in Figure 6.15. In both the hydrodynamic
and β = 106 simulations, the stress is dominated by the Reynolds stress. This nonzero stress
even without strong magnetic fields or other sources of viscosity can be understood by considering
the inflow/outflow structure seen in Figure 6.12. Accretion occurs via low angular momentum
(i.e., low vϕ) material in the polar regions where the ϕ-averaged vr is large (i.e., close to free-fall)
and negative while the midplane consists of high angular momentum (i.e., large vϕ) material with
smaller in magnitude and positive ϕ-averaged vr. Thus, 〈ρvrvϕ sin(θ)〉 is significantly different than
〈ρvr〉〈vϕ sin(θ)〉 ∝ Ṁl, leading to a large αh. Thus, αh is not predominantly a turbulent viscosity but
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Figure 6.15: Comparison between the time averaged Maxwell (blue solid), Reynolds (dashed yellow), and
total (dotted black) α viscosities as defined in §6.5.4 for each of our simulations. In the hydrodynamic
case, non-axisymmetric structure and the presence of low angular momentum gas leads to a relatively large
“stress”, and hence, accretion rate. For MHD simulations, while the total stress remains basically unchanged
from the hydrodynamic case (see §6.5.4), the Maxwell stress can become larger than the total stress with
αm ≈ 0.2, with the Reynolds stress becoming negative to compensate.
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a measure of the fact that you have a superposition of two types of flows: low angular momentum
accretion and high angular momentum outflow. This picture is altered for βw = 104, where the total
stress is dominated by the Maxwell stress while the Reynolds stress is ∼ 0, and for βw = 102, where
the total stress is a competition between a large Maxwell stress and a non-negligible, negative
Reynolds stress (where a negative stress implies transport of angular momentum inwards). For
these more magnetized flows, the magnetic field is strong enough to resist being wound up in the
ϕ direction, providing non-negligible torque to rotating gas as it falls in.

In all cases, the total stress, αtot = αh + αm, is similar for r . 10−2 pc, varying between
∼ 0.04 − 0.2. This simply reflects the overall dynamical similarity of the flows independent of βw.
In a steady state accretion flow, the total stress can be written as (from equations 6.2 and 6.3)

αtot =
FJ − 〈Ṁ〉〈l〉

4πr3〈P〉
, (6.4)

where FJ = 〈ρvrvϕ sin(θ)〉 − 〈4πr3BrBϕ sin(θ)〉 = is the constant flux of angular momentum and l is
the specific angular momentum. The constant FJ is set by the accretion rate and angular momen-
tum at the inner boundary and is generally small. Thus, since Ṁ and l are relatively unchanged in
an angle averaged sense going from hydrodynamics to MHD, the total stress is unchanged.

6.5.5 MRI
We have shown (Figure 6.6) that the magnitude of the magnetic field at small radii is only

weakly dependent on βw, the parameter governing the strength of the magnetic field in the stellar
winds. A natural mechanism to explain this is the magnetorotational instability, which can amplify
an arbitrarily small magnetic field to reach β . 10 in differentially rotating flows, such as we have
here. However, we have also shown that the gas in our simulations never circularizes and therefore
does not spend many orbits at small radii. Consequently, there is not sufficient time in a Lagrangian
sense for the MRI to grow.

We can further evaluate the role of the MRI by using an estimate of the fastest growing wave-
length for perturbations given by

λMRI,θ ≈
2π|Bθ|√

4πρΩ
, (6.5)

where Ω ≡ vϕ/(r sin(θ)) is the rotational frequency. At least two criteria need to be met in order
for the MRI to operate in numerical simulations: 1) λMRI,θ needs to be resolved, that is, the cell
length ∆x needs to be� λMRI,θ, and 2) λMRI,θ needs to be smaller than the scale height of the disc,
otherwise the perturbations have no room to grow.

Figure 6.16 shows λMRI,θ in the midplane of the disc compared to the scale height of the disc,
defined as H ≡ r〈ρ|θ − π/2|〉/〈ρ〉, and the resolution of our grid. We find that λMRI,θ is sufficiently
resolved at all radii but that it is larger than the scale height for all of our MHD simulations. This
implies that even if the gas in our simulations were to circularize, which we reiterate does not
in fact occur, the MRI would have no room to operate. Therefore, we conclude that the MRI is
not an important source of magnetic field amplification or angular momentum transport in our



6.5. 3D SIMULATION OF MHD WIND ACCRETION ONTO SGR A* 171

10 4 10 3 10 2 10 1 100

r (pc)
10 5
10 4

10 3
10 2
10 1

100
101

102
MRI, , w = 100
MRI, , w = 104

MRI, , w = 106

x
H

Figure 6.16: Wavelength of the most unstable mode for the MRI computed in the midplane for our three
MHD simulations as compared to the scale height of the disc, H, and the resolution of our grid, ∆x. λMRI,θ

is well resolved but is larger than the scale height of the disc. The MRI is suppressed by the strong β ∼ few
magnetic field (Figure 6.6) produced by compression as the gas flows in.

simulations. Instead, we explain the results of Figure 6.6 with simple compression/flux freezing.
An initially weak field at large radii will be compressed as it is pulled inwards by the bulk motion
of the gas. It will continue to do so until β ∼ a few, when the field becomes dynamically important
and starts to resist the fluid motion. At this point, the field maintains β ∼ a few as it continues to
accrete. For small βw, this happens at large radii, while as βw increases the field reaches β ∼ a few
at progressively smaller radii. If we were able to reach even smaller radii with our simulations, we
predict that even the βw = 106 run will ultimately reach β of ∼ a few and the field would become
dynamically important (see also §6.5.8).

6.5.6 Magnetic Field Structure
We now turn our attention to the structure of the magnetic field at small radii. RQS19 predicted

that the amount of magnetic flux ultimately threading the inner radii of the domain, φin, is roughly
insensitive to βw and roughly constant in time, falling between ≈ 1 − 6 in units such that the
Magnetically Arrested Disc (MAD) limit is ≈ 50 (Tchekhovskoy et al. 2011). To demonstrate this
result more clearly, Figure 6.17 plots φin, defined as

φin ≡
1/2

∫
|Br|r2dΩ

r
√
|Ṁ|vkep

∣∣∣∣∣∣∣∣∣
r=rin

, (6.6)
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Figure 6.17: Magnetic flux threading the inner boundary as a function of time for our three MHD simula-
tions, φin, in units such that the MAD value is ∼ 50 (see Equation 6.6). Orders of magnitude difference βw

corresponds to only a factor of ∼ few difference in φin because the field strength at small radii is only weakly
sensitive to βw (Figure 6.6). In all cases φin is . 10% of the MAD limit. Magnetic reconnection regulates
the value of φin so that it remains constant in time despite matter (and thus magnetic field) being continually
accreted (bottom panel of Figure 6.7).

for our three MHD simulations. Across four orders of magnitude in βw, φin varies by only a few,
and for each run it is roughly constant in time. Averaged over the interval (-100 yr, 100 yr), the
values are 4.4,3.5, and 1.1 for βw of 102, 104, and 106, respectively, again in units where ∼ 50
represents the MAD limit. These differences in φin are even smaller when extrapolated to smaller
radii, which we do in §6.5.8. Briefly, we expect that for all reasonable βw, φin at the horizon will be
around the βw = 102 value shown in Figure 6.17, independent of βw. The result that φin becomes
quasi-steady despite the fact that matter is continually being accreted (bottom panel of Figure 6.7)
is noteworthy. This is likely a consequence of the magnetic field being accreted changing direction
with time so that the incoming field reconnects with the field in the boundary in a way that regulates
the value of φin. If instead the incoming field had the same orientation at all times, φin would show
a continual rise until the field threading the boundary became strong enough to arrest accretion.
Alternatively, it is possible that outflow preferentially removes magnetic fields, regulating the value
of φin.

We quantify the relative strength of the vertical magnetic field by computing the ratio between
the magnitude of the average magnetic field vector, |B|, to the root-mean-squared field strength,√
〈B2〉. For a completely vertical field this quantity would be 1, while for a completely toroidal

or random field it would be 0. Figure 6.18 plots 〈|B|〉/
√
〈B2〉 averaged over angle and the inner

5 × 10−4 pc to 3 × 10−2 pc in radius for βw = 102, 104, and 106, where we find that the relative
strength of the ordered field increases with decreasing βw. This same trend is seen in the poloidal
field lines (Figure 6.19 where they are plotted on top of mass density), where the direction of the
field goes from mostly random at βw = 106, to nearly vertical at βw = 102. The weaker the magnetic



6.5. 3D SIMULATION OF MHD WIND ACCRETION ONTO SGR A* 173

1000 800 600 400 200 0
t (yr)

0.0

0.1

0.2

0.3

0.4

0.5

|B
|/

B
2

w = 102

w = 104
w = 106

Figure 6.18: Magnitude of the time and angle-averaged magnetic field vector divided by the rms magnitude
of the field for βw = 102 (solid blue), βw = 104 (dashed orange), and βw = 106 (dotted green). This measures
the degree to which the magnetic field is ordered, and increases with decreasing βw because stronger fields
are able to resist fluid motion and more effectively retain a coherent structure.

field, the more it is able to be twisted by the motion of the gas and lose its original structure.
The quantities plotted in Figures 6.18 and 6.19 do not effectively probe the ϕ component of the

field, which in principle could be significant. To quantify this, we compare the relative strength of
the mean Bϕ to the mean Br and Bθ field components. We define an ‘antisymmetric’ average of Br

as

〈B̃r〉 =

t2∫
t1

2π∫
0

π/2∫
0

Brdθdϕdt −

t2∫
t1

2π∫
0

π∫
π/2

Brdθdϕdt, (6.7)

where t1 and t2 are the endpoints of the time interval for averaging. The minus sign in Equation
(6.7) prevents the radial field from averaging to zero over all angles. For βw = 106, the toroidal
field dominates with 〈Bϕ〉

2/
(
〈B̃r〉

2 + 〈Bθ〉
2 + 〈Bϕ〉

2
)
≈ 0.8 − 1 for r . 2 × 10−2 pc because the field

is weak enough to be completely stretched out by the orbital motion of gas. For βw = 104, on the
other hand, the field is able to resist the orbital motion (seen also in the torque that it exerts; Figure
6.15) and retain a predominantly poloidal structure, with 〈Bϕ〉/

(
〈B̃r〉

2 + 〈Bθ〉
2 + 〈Bϕ〉

2
)
. 0.2 for

r . 3×10−3 pc. This is even more true for βw = 102, which has 〈Bϕ〉/
(
〈B̃r〉

2 + 〈Bθ〉
2 + 〈Bϕ〉

2
)
. 0.1

for r . 4 × 10−3 pc.
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Figure 6.19: Time and ϕ-averaged mass density weighted by radius in a coordinate system such that the
z-direction is aligned with the angular momentum of the gas (Figure 6.8), normalized, and overplotted with
magnetic field lines for βw = 102 (top), 104 (middle), and 106 (bottom). The stronger the field, the more it
is able to resist being dragged along by the random motions of the flow and retain a coherent structure
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Figure 6.20: Top: Comparison between the time and ϕ-averaged accretion rate in the midplane for the
βw = 102 simulation (solid blue) vs. the pole for the hydrodynamic simulation (dashed orange). Both of
these regions are dominated by inflow and show Ṁ ∝

√
r as expected for the dṀ/dl ≈ const. distribution

provided by the stellar winds. Bottom: Comparison between the time and ϕ-averaged accretion rate in the
pole for the βw = 102 simulation (solid blue) vs. the midplane for the hydrodynamic simulation (dashed
orange). Both of these regions have a net outflow and show Ṁ ∝ r, implying a roughly constant velocity
outflow since ρ ∝ r−1 (Figure 6.7).
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6.5.7 Physical Interpretation of The Role of Magnetic Fields
Thus far we have presented seemingly paradoxical results. On one hand, for sufficiently magne-

tized stellar winds (e.g., βw = 102, 104), the magnetic field at small radii reaches near equi-partition
with the plasma, achieving β ∼ a few, reversing the polar inflow seen in hydrodynamic simula-
tions, and driving accretion in the midplane. On the other hand, the net accretion rate through the
inner boundary and the radially averaged fluid quantities are largely unaffected by the presence
of magnetic fields. How can this be? In the conventional picture of MRI driven accretion from
a rotationally supported torus, it would require an improbable cooincidence, where the midplane
accretion driven by the MRI exactly equals the original hydrodynamic polar accretion despite the
fact that they are governed by different physical considerations. As we have shown, however,
our simulations do not fit this conventional picture. The gas with significant angular momentum
clearly does not circularize into a configuration where the velocity is primarily in the azimuthal
direction (e.g., Figures 6.9 and 6.10), but instead retains significant radial velocity of order free fall
throughout the domain. Simply put, gas accreting from large radii is quick to either flow through
the inner boundary or flow right back out. Magnetic fields are not strong enough to modify these
flows by more than order unity even at β ∼ 1. Moreover, even in the hydrodynamic simulation,
inflow is not occurring only in the poles as Figure 6.12 would imply but at all polar angles. It is
only in an azimuthally-averaged sense that vr is positive and small in the midplane because there
is also significant outflow present (at different ϕ). The primary role of magnetic fields, then, is
not to drive accretion but to redirect the outflow from the midplane to the pole. This means that
1) the same physical processes govern accretion in the hydrodynamic and MHD simulations and
2) the net accretion rate is essentially determined by hydrodynamic considerations, namely, the
distribution of angular momentum at large radii, a quantity set by the winds of the WR stars.

The lack of circularization in our simulations, the crucial factor in determining this accretion
structure, is at least in part due to radiative cooling being inefficient at removing dissipated energy
in the gas streamers seen in Figures 6.9 and 6.10. As the gas comes in along nearly parabolic
orbits it heats up and (because it can’t cool) expands outward, making it more difficult for it to
circularize. This is analogous to the difficulty that simulations of tidal disruption events have in
forming a circular accretion disc (for recent discussion, see, e.g., Stone et al. 2019; Lu & Bonnerot
2019).

6.5.8 Dependence On The Inner Boundary Radius
The simulations we have performed, while modeling a radial range of just over 4 orders of

magnitude, are not able to penetrate all the way to the event horizon of Sgr A* but have inner
boundary radii still a few hundred times farther out. Thus, it is important for us to understand how
the artificially large inner boundary of our simulation (which acts as the black hole) affects the
results. By varying the inner boundary, RQS18 showed that the predicted accretion rate through
the inner boundary in our hydrodynamic simulations is Ṁ ≈ 2.4 × 10−8 (rin/rG)1/2 M�/yr, where
the dependence on rin is set by the distribution of accretion rate with angular momentum at large
radii; for a smaller inner boundary radius, less material has angular momentum low enough to
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ultimately accrete. This predicted accretion rate is consistent with both observational constraints
and emission models (see RQS18).

In MHD, we have shown that even for strong magnetic fields the radially averaged fluid vari-
ables are mostly unchanged going from hydrodynamics to MHD (Figure 6.7), including the accre-
tion rate. Thus the above relation between Ṁ and rin still holds. As we have argued in the preceding
section, this counter-intuitive result is a consequence of the fact that the supply of infalling gas at
small radii is still mostly set by the distribution of accretion rate with angular momentum at large
radii. The gas provided by nearby stellar winds has a typical distribution of dṀ/dl ≈ const. which
results in Ṁin ∝

√
r (see Appendix A in RQS18). Note that since the winds emit at all angles, this

is the distribution of infalling gas for both the poles and the midplane. Figure 6.20 confirms this
expectation, showing that Ṁ ∝

√
r for the inflow in both hydrodynamics (in the polar region) and

βw = 102 MHD (in the midplane).
Figure 6.6 shows that β tends to decrease with decreasing radius until it reaches ∼ a few,

at which point it becomes independent of radius. For βw = 102 β is ≈ 1-2 and roughly constant
throughout the domain, for βw = 104 it decreases from β ≈ 200 at large radii to β ≈ 2 at r ≈ 6×10−4

pc and remains constant for r . 6 × 10−4 pc, while for βw = 106 it decreases from β ≈ 2 × 104

to β ≈ 4 near the inner boundary. It is natural to suppose that if the inner boundary radius of the
simulation was reduced then the βw = 106 run would ultimately also reach β ≈ 2. Regrettably this
is not something we can test with our current computational resources; however, we can increase
the size of the inner boundary and infer how β depends on rin in the same way that we used to
extrapolate Ṁ in RQS18. Doing so we estimate that all models with βw ≤ 107 will reach β of ∼
a few by 2 rg (the event horizon radius of a non-rotating black hole). Thus βw ∼ 107 is a critical
value that determines whether or not the horizon scale accretion flow will more closely resemble
the hydrodynamic simulations (βw & 107) or the more magnetized wind simulations (βw . 107).

Similar behavior is seen with the magnetic flux threading the inner boundary. Figure 6.21
shows the time-averaged φin for βw = 102 and βw = 106 and four values of the inner boundary
radius. As was the case for β, φin is independent of rin for βw = 102. This is again because the
βw = 102 simulation has already reached β ∼ few at r � rin. Since Ṁ ∝ r1/2

in vkep(rin) ∝ r−1/2
in ,

Equation (6.6) gives φin ≈ const. For βw = 106 on the other hand, φin increases with decreasing rin.
Empirically, we find in Figure 6.21 that for βw = 106, φin ∝ r0.6

in , predicting that it will reach ≈ 5 by
rin = 3× 10−6 pc ≈ 20 rg. At that point, we expect φin to stop increasing in the same way that φin is
independent of rin for βw = 102.

6.6 Comparison to Previous Work
In analyzing our simulations, we have found it instructive to compare and contrast our results

with previous simulations in the literature that considered the problem of accretion onto Sgr A*
and related systems via large scale feeding. In this section we do so for two key works.
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Figure 6.21: Magnetic flux threading the inner boundary of our simulation, φin (Equation 6.6), averaged
over the time interval (-100 yr,100 yr) and plotted as a function of inner boundary radius for βw = 102 (blue
solid) and βw = 106 (orange dashed). φin is independent of rin for βw = 102 where β has reached ∼ few
(Figure 6.6), while it increases with decreasing rin for βw = 106 because β is decreasing with decreasing rin.
For βw = 106 we find φin ∝̃ r0.6 and thus expect it to reach ∼ 5 (the βw = 102 value) for an inner boundary at
the event horizon.
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6.6.1 Proga & Begelman 2003
Proga & Begelman (2003a,b) (hereafter PB03A and PB03B) presented the results of 2D invis-

cid hydrodynamic (PB03A) and MHD (PB03B) simulations of accretion onto supermassive black
holes as fed by gas with a θ-dependent distribution of angular momentum at large radii. This ap-
proach differs from the standard method of initializing simulations with equilibrium tori without
any feeding at large radii and is perhaps a better approximation of the feeding of gas via stellar
winds in the Galactic Centre. In fact, in many ways the results of PB03A and PB03B are strik-
ingly similar to the results of RQS18 and those presented here. We both find that accretion in
hydrodynamic simulations occurs via low angular momentum gas falling in mostly along the polar
regions while the higher angular momentum midplane is (on average) outflowing. We both also
find that this structure is reversed in MHD for sufficiently large magnetic fields, with the low an-
gular momentum polar inflow getting quenched by magnetically driven polar outflow while gas
in the midplane accretes. PB03B, however, found that the accretion rate in the MHD case was
significantly reduced compared to the hydrodynamic case because the induced midplane accretion
was not enough to compensate for the loss of polar inflow. In this work, on the other hand, the
midplane accretion in MHD seems to roughly equal the original hydrodynamic polar inflow so that
the net accretion rate is relatively the same in MHD and hydrodynamics.

The key difference lies in the structure of the high angular momentum gas in the midplane.
PB03A found that this gas was able to circularise and build up into a nearly constant angular mo-
mentum torus that blocked the inward flow of gas for polar angles close to the equator. We find
that the high angular momentum gas in our hydrodynamic simulation never circularises but mostly
flows right back out after falling in to small radii. This is more easily accomplished in 3D where
flow streams can avoid intersecting; in 2D axisymmetry (used in PB03A and PB03B), collisions
between the infalling and outflowing high angular momentum gas are unavoidable and can dissi-
pate radial kinetic energy and efficiently circularise the material. Because of this circularisation
in PB03A, by adding even a weak magnetic field, the MRI is able to grow as the gas in the torus
orbits and becomes the dominant driver of accretion. Thus, the accretion rate in PB03B is mostly
set by completely different physical considerations (the properties of the MRI) than in PB03A (the
availability of low/zero angular momentum gas). In our simulations, however, even in MHD the
dominant source of accretion is still the supply of low angular momentum gas with an order unity
correction for global torques provided by strong magnetic fields that have been compressed to β
∼ few at small radii. This means that the local supply of mass available to accrete is set mostly
by hydrodynamic considerations (i.e., the distribution of angular momentum vs. accretion rate
provided by the nearest stellar winds).

One of the main conclusions of PB03B was that the MRI driven accretion seen in their sim-
ulations was roughly independent of the angular momentum distribution of material sourced at
large radii, ultimately resembling simulations that are initialized with an equilibrium torus seeded
by a weak magnetic field. This served as partial motivation and justification for future work to
mostly ignore large radii and instead focus on horizon scale (. 100 − 1000rg) simulations starting
from equilibrium tori. Our results, however, suggest that when a more complicated treatment of
accretion sourced by stellar winds in full 3D is considered, the properties of the accretion flow at
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small radii are very strongly influenced. We suspect that the major source of this difference is the
non-axisymmetric nature of how the gas is fed by the winds, which inhibits circularization.

6.6.2 Pang et al. 2011
Pang et al. (2011) (P11) presented 3D MHD simulations in which gas is fed through the outer

boundary with uniform magnetic field, spherically symmetric density and pressure, and purely
rotational velocity such that the specific angular momentum l, varies as sin(θ). This set up is
quite similar to PB03B except for the field geometry (uniform vs. radial in PB03B), the field
strength, and the addition of a third dimension. Unlike PB03B, however, P11 found that global
magnetic torques and not the MRI were the governing physical mechanisms driving accretion
in their simulations. This difference relative to PB03B is probably a consequence of the initial
magnetic field in P11 being much stronger, with the initial β being ∼ 102 in P11 compared to β ∼
105 − 107 in PB03B. This causes the magnetic field to become dynamically important before the
gas can circularize (if it ever would have) and also suppresses the MRI. Dissipation of the field
also leads to an unstable entropy profile, driving convection. A steady state is reached in which the
gas is in near hydrostatic equilibrium, slowly falling inwards with magnetic pressure resisting the
upward buoyancy force. Several aspects of the P11 simulations are similar to what we have found
in ours. Both show a lack of circularization, both have the MRI suppressed by strong magnetic
fields, and both find a density profile of ∼ r−1 with a corresponding Ṁ ∝

√
rin relationship. At the

same time, the accretion flow structures are very different in the two sets of calculations. Unlike
P11, the gas in our simulations is not hydrostatic, because the ram pressure, ρv2 is comparable to
or larger than the magnetic and thermal pressures throughout the domain. We also find significant
and coherent outflow, something absent in P11.

The root cause of these differences are related to the more complicated, asymmetric way that
the winds of the WR stars supply gas (and magnetic field) to the black hole. While both sets of
simulations can contain relatively large and coherent magnetic fields at large radii, the steady state
of P11 is one in which the gas is being sourced in an approximately spherically symmetric way
with rotation playing only a minor role. This is because after the initial transient in which the
sourced gas first free falls and then transitions to a PB03A-like configuration, the build up of gas
at small radii provides radial pressure support for the gas at large radii, significantly increasing the
time it takes to accrete. At this point the magnetic torques have enough time to remove a large
amount of the angular momentum at large radii, ultimately resulting in a quasi-spherical steady-
state. In contrast, because the feeding in our simulations occurs in more of a stream-like manner
(Figures 6.9 and 6.10), we have no build-up of gas to provide radial pressure support. Instead,
radial velocities remain large and thus the effect of even significant (β ∼ few) magnetic torques are
limited by the short inflow/outflow times. This means that rotation of gas is important throughout
our simulations, with the distribution of angular momentum being the primary determinant of the
accretion rate.
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6.7 Implications for Horizon-Scale Modeling
The main properties of nearly all GRMHD simulations used to model the galactic center are

governed by the evolution of the MRI. The supply of gas is determined by an initial rotating
torus while low angular momentum material is absent. Our results suggest that for the galactic
centre it may be critical to consider a more detailed model for how the gas is fed into the domain,
particularly with respect to the distribution of angular momentum coming in from larger radii.

One large remaining uncertainty is how strong the outflows are from near the horizon and
whether they significantly modify the dynamics at ∼ 1000 rg found here. Figure 6.5 shows that, at
times, we do see strong outflows that can modify the gas out to ∼ 0.3 pc scales. Since we find that
Ṁ ∝

√
rin, the energy released in outflows should scale with the inner boundary as ∝ Ṁv2

kep ∝ r−1/2
in ,

meaning that the strength of this outflow would be a factor of &
√

150 ≈ 10 times higher if
our simulation reached the event horizon. Additionally, if the black hole is rapidly rotating the
magnetic field can extract a significant amount of energy from the black hole and further increase
the energy in the outflow (Blandford & Znajek 1977b).

The time variability of the polarization vector observed in the GRAVITY flares (Gravity Col-
laboration et al. 2018) at ∼ 10 rg has been interpreted as the results of an orbitting “hot spot”
embedded in a face-on rotating flow threaded by a magnetic field primarily in the vertical direc-
tion. Qualitatively, the geometry of the magnetic field at small radii in our βw = 102 simulation
agrees with this picture (Figures 6.19), with the poloidal field being larger than Bϕ. On the other
hand, the angular momentum direction of the inner accretion flow in Figure 6.8 is rarely as face-on
as that of the best-fit orbit of the three flares (Lz/L ≈ 0.94 ± 0.06).

Psaltis et al. (2015) showed that preliminary EHT measurements of the size of the emitting
region for Sgr A* 230 GHz are smaller than the expected “shadow” of the black hole: the distinct
lack of emission caused by the presence of an innermost photon orbit. The authors use this mea-
surement to constrain the angular momentum direction of the disc/black hole (which they assume
to be aligned), and find that an inclination angle roughly aligned with the clockwise stellar disc
is preferred. This is consistent with measurements of the position angle of the 86 GHz and X-ray
emission performed by the VLBA on a scale of ∼ 10s of rg (Bower et al. 2014) and by Chandra
on a much larger scale of ∼ 1” (Wang et al. 2013), respectively. Our results are in good agreement
with these observations, as the angular momentum of our innermost accretion flow is typically
aligned with the stellar disc (Figure 6.8). Forthcoming higher sensitivity EHT measurements will
be important for resolving the discrepancy with the leading interpretation of the GRAVITY data.

6.8 Conclusions
We have presented the results of 3D simulations of accretion onto the supermassive black hole

in the galactic centre fueled by magnetized stellar winds. Our simulations span a large radial
range, having an outer boundary of 1 pc and an inner boundary of ∼ 6 × 10−6 pc (∼ 300rg),
with approximately logarithmic resolution in between. The mass loss rates, wind speeds, and
orbits of the stellar wind source terms that represent the ∼ 30 WR stars are largely constrained by
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observations while the relative strength of the magnetic field in each wind is parameterized by a
single parameter βw, defined as the ratio between the ram pressure and midplane magnetic pressure
of the wind. In previous work, we have shown that our simulations naturally reproduce many of
the observational properties of Sgr A* such as an accretion rate that is much less than the Bondi
estimate, a density profile ∝̃ r−1, a total X-ray luminosity consistent with Chandra measurements,
and the rotation measure of Sgr A*. In the present chapter we have focussed on the dynamics of
accretion onto Sgr A* from magnetized stellar winds.

Our most significant and a priori surprising result is that the accretion rate onto the black
hole, as well as the radial profiles of mass density, temperature, and velocity are set mostly by
hydrodynamic considerations (Figure 6.7). This is true even when plasma β is as low as ≈ 2
over a large radial range (Figure 6.6). Without magnetic fields, the accretion rate and density
profiles are set by the distribution of angular momentum with accretion rate provided by the stellar
winds, a distribution which extends down to l ≈ 0. This broad range of angular momentum is a
consequence of the fact that the WR stellar wind speeds (∼ 1000 km/s) are comparable to their
orbital speeds. As a result, the stellar winds provide enough low angular momentum material
to result in an extrapolated accretion rate that is in good agreement with previous estimates for
Sgr A*. With magnetic fields, global torques provide only order unity corrections to this picture,
with the accretion rate still mostly being determined by the supply of low angular momentum gas.
This is a consequence of the fact that the high angular momentum material in our simulations does
not circularize but mostly flows in and out with large enough radial velocity that the inflow/outflow
times are short compared to the time scale for magnetic stresses to redistribute angular momentum.

Simulations with strong magnetic fields at small radii do however differ from hydrodynamic
simulations in one important way. Hydrodynamic simulations are dominated by inflow along the
poles, while the midplane is on average outflowing but composed of both inflow and outflow
components at different θ and ϕ. By contrast, MHD simulations are dominated by inflow in the
midplane, while the polar regions are on average outflowing but composed of both inflow and
outflow components at different θ and ϕ. This is a consequence of the β ∼ few magnetic fields
redirecting the high angular momentum outflow away from the midplane.

We find that the magnetic field increases rapidly with radius so that β tends to eventually sat-
urate at small radii to a value of order unity independent of βw (Figure 6.6). This growth of the
field is caused by advection/compression as gas falls inwards and not by the MRI. There is neither
sufficient time for the MRI to grow before gas is accreted or advected to larger radii, nor is there
sufficient space for the instability to grow because flux freezing builds up a field for which the most
unstable MRI wavelength is comparable to or larger than the disc scale height (Figure 6.16). Thus
the conventional MRI-driven torus simulations that dominate the literature do not appear to have
reasonable initial conditions for studying accretion in the galactic centre, at least on the scales that
we can simulate here.

Elaborating on the result first presented RQS19, we have shown that our model predicts that
the magnetic flux ultimately threading the event horizon, φin, will be ∼ 10% of the MAD limit, in-
dependent of βw for βw . 107 (Figure 6.21). Furthermore, we find that φin is relatively independent
of time (Figure 6.17). An important caveat is that this prediction relies on extrapolation to smaller
radii and assumes that the scaling between φin and the inner boundary radius that we found (Figure
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6.21) holds at smaller radii than our simulations probe.
For sufficiently magnetized winds (i.e., βw = 102 here), the magnetically driven, polar outflow

can, at times, reach scales as large as ∼ 0.3 pc (Figure 6.5). Since we expect the energy associated
with this outflow to increase with decreasing inner boundary radius, it could potentially be a factor
of > 10 times stronger in a simulation that reached the event horizon. This is even without con-
sidering the rotation of the black hole itself, which can also be an efficient mechanism for driving
magnetized jets. Though there is no clear signature of a jet in the galactic centre, strong outflows
from Sgr A* have been invoked as one possible explanation for the recent ALMA observations
that show highly blue-shifted emission from unbound gas in a narrow cone (Royster et al. 2019).

The magnetic field structure at small radii depends on the parameter βw (Figure 6.19). For
smaller βw (102 and to a lesser extent, 104) the field is strong enough to resist being wound up
in the ϕ direction and remains mostly poloidal at small radii. For larger βw (& 106), the field is
easily dragged along with the motion of the gas so that it becomes predominantly toroidal by the
time β reaches order unity. The leading interpretation of the GRAVITY observations of astrometric
motion of the IR emission during Sgr A* flares (Gravity Collaboration et al. 2018) requires that the
horizon scale magnetic field be mostly perpendicular to the angular momentum of the gas. We find
qualitative agreement with this result in our simulations that have more magnetized winds. A more
quantitative comparison to the observations using full radiative transfer in GRMHD simulations
using such a field as initial conditions will require additional work.

Cuadra et al. (2008) found that the winds of only 3 WR stars (E20/IRS 16C, E23/IRS 16SW,
and E39/IRS 16NE) dominated the t = 0 accretion budget in their simulations that used the ‘1DISC’
orbital configuration. This is both because of the proximity and relatively slow wind speeds (∼ 600
km/s) of these winds. Since we adopted the ‘1DISC’ configuration from Cuadra et al. (2008)
with only slight changes, it is not surprising that the same three stellar winds seem to be the most
important for determining the properties of the innermost accretion flow in our simulations3 (e.g.,
Figures 6.9 and 6.10). Future observations that place stronger constraints on the mass-loss rates,
wind speeds, and especially the magnetic field strengths of these stars would thus go a long way
towards reducing the uncertainty in our calculation.

Several observations suggest that gas surrounding Sgr A* is aligned with the clockwise stellar
disc both near the horizon and just inside the Bondi radius (Wang et al. 2013; Bower et al. 2014;
Psaltis et al. 2015; though see also Gravity Collaboration et al. 2018). Our simulations are consis-
tent with this result for βw ≥ 102 (Figure 6.8) but not for βw = 10 due to wind collimation altering
the distribution of angular momentum in the winds (Figure 6.A.2). If a large fraction of the accret-
ing gas (and associated magnetic field) were sourced from material outside the region where the
majority of the WR stars reside, then it would also be unlikely for its angular momentum to coin-
cide with the stellar disc. In all of our simulations, the direction of the angular momentum of the
inner accretion flow is not strictly constant in time over the ∼ 1000 yr duration of our simulation
(Figure 6.8). Therefore, the angular momentum of the gas sourcing the horizon scale accretion
flow must be tilted with respect to the spin of the black hole at least moderately often since the

3Unlike the particle based calculation of Cuadra et al. (2008), we do not have a rigorous way to track the gas from
each individual wind in our current implementation. We can only infer which stellar winds dominate the accretion
budget from, e.g., the poloidal and toroidal animations.
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time scale for the spin of the black hole to change is much longer than 1000 yr. Simulations of
tilted accretion discs are thus likely necessary for horizon scale modeling of Sgr A*.

Our results could have a significant impact on current state of the art models of horizon scale
accretion onto Sgr A*. GRMHD simulations to date almost universally rely on the MRI as the
mechanism to drive accretion. It is not clear how much the results of these simulations and their
observational consequences might change using the dynamically different flow structure found
here. For instance, if the disc is less turbulent without the MRI, how does this effect the time-
variability properties of the emission? Would nearly empty, magnetically dominated jets still be
robustly present in GRMHD and does this depend on black hole spin and horizon-scale flux in the
same way as in current simulations (e.g. Tchekhovskoy et al. 2011)? Such questions and more
will be important to answer in order to further our understanding of the emission from Sgr A* and
other low luminosity AGN.
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Appendix

6.A βw = 10

In the main text we limited our analysis to βw ≥ 102 because smaller βw leads to collimation
of the stellar winds (Figure 6.2). This collimation, however, does not effect most of the main
conclusions of this work, as we will now show.

The top panel of Figure 6.A.1 compares the time and angle-averaged hydrodynamic variables
in the βw = 10 simulation to those of the βw = 102 simulation at times when the angular momentum
direction at small radii is ∼ constant in time. The two simulations produce nearly identical mass
density, sound speed, radial velocity, magnitude of angular momentum, and accretion rate when
averaged over all angles. Thus our conclusion in the main text that magnetic fields do not play a
leading role in determining the accretion rate still holds even with wind collimation. The bottom
panel of Figure 6.A.1 shows the RMS magnetic field strength and β averaged over time and angle
for the same two simulations. At large radii, the RMS field is only a factor of . 2 larger for βw = 10
vs. βw = 102, corresponding to a factor of ∼ 2-3 in β. This factor is smaller than 10 because the
field is already β ∼ few in the βw = 102 simulation, so even thought the magnetic pressure in the
βw = 10 winds are 10 times stronger, the gas saturates at β ∼ 1. Conversely, at small radii, the field
in the βw = 10 simulation is actually weaker than the field in the βw = 102 simulation by a factor
of ∼ 3.

Wind collimation has the most significant effect on the angular momentum direction of the
inner accretion flow, as shown in Figure 6.A.2 which plots θdisc, the angle between the accretion
flow angular momentum and that of the stellar disc. For βw ≥ 102 (including the hydrodynamic
run), the angular momentum of the gas is, for the most part, typically aligned with the stellar disc,
with θdisc ∼ 10◦−40◦. For βw = 10 on the other hand, θdisc is much larger and even approaches 180◦,
where the gas rotates in the opposite direction of the stellar disc. This is because the collimation
of the stellar winds has a non-trivial effect on the net angular momentum of the winds so that the
angular momentum of the accretion flow depends more strongly on the spin axis of the stars (which
determines where the winds collimate) than their orbital angular momentum.

6.B Resolution Study
We have argued in the main text in §6.5.5 that the MRI is not the governing mechanism for

accretion in our simulations even though the most unstable wavelength is well resolved (Figure
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Figure 6.A.1: Comparison between time and angle-averaged quantities in the βw = 10 (solid) and βw = 102

(dashed) MHD simulations. Time intervals for averaging were chosen such that the angular momentum
direction of the gas at small radii are relatively stable (0 ± 30 yr for βw = 10 and 150 ± 30 yr for βw = 102;
see Figure 6.8 and top panel of Figure 6.A.2). Top: Mass density, ρ (M�/pc3), sound speed, cs (pc/kyr),
radial velocity, |vr | (pc/kyr), specific angular momentum, l, and mass accretion rate, |Ṁ| (M�/kyr), as a
function of distance from the black hole. Bottom: RMS magnetic field strength,

√
〈B2〉, and plasma β,

〈P〉/〈PB〉. The radial profiles of the hydrodynamic variables are essentially the same in two simulations,
both of which are similar to the hydrodynamic simulation (Figure 6.7). Counter-intuitively, however, the
βw = 10 simulation has a weaker magnetic field at small radii (by a factor of ∼ 3 for r . 3 × 10−3 pc) than
the βw = 102 simulation, despite having a stronger magnetic field at large radii (by a factor of . 2).
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Figure 6.A.2: Top: Angular momentum direction as a function of time for the gas in our βw = 10 simulation,
averaged in radius and angle over 5 × 104 pc to 3 × 10−2 pc. Bottom: Angle that the net angular momentum
of the inner accretion flow makes with the stellar disc for βw = 10 (solid blue) compared with the rest of
our simulations. The collimation of the stellar winds that is present in the βw = 10 simulation (see §6.4)
has a marked effect on the angular momentum of the resulting accretion flow which now shows much more
significant and frequent deviations from the stellar disc and the time variability is of larger amplitude and
higher frequency (cf. Figure 6.8).
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Figure 6.B.1: Demonstration of convergence for βw = 10 simulations. Dashed lines are from a simulation
at the fiducial resolution while solid lines are from a simulation with a factor of 4 higher resolution for r .
0.06 pc. The angle averaged mass density, ρ (black), sound speed, cs (blue), radial velocity, vr (red), and
accretion rate, Ṁ (green), are essentially identical after being run for 25 yr (one orbital time at ≈ 0.02 pc)
and thus converged at the fiducial resolution used throughout this work.

6.16). However, to be assured that resolution is not affecting our results, we performed two ad-
ditional simulation with βw = 10 and an inner boundary radius of rin ≈ 1.2 × 10−4 pc. The first
simulation was run for 1.025 kyr until t = −0.075 kyr with our usual base resolution of 1283 cells
with 8 levels of mesh refinement that increase the resolution by a factor of 2 each time the radius
decreases by a factor of 2. The second simulation increased the resolution by a factor of four within
∼ 0.06 pc and ran for 25 yr after being restarted from the lower resolution simulation at -0.1 kyr. 25
yr is approximately an orbital time at 0.02 pc and thus spans many orbital times for the small radii
of interest. Figure 6.B.1 shows that the resulting radial profiles of angle-averaged fluid quantities
in the two simulations are nearly identical. Thus we are confident that the general properties of our
simulations are well converged and not limited by resolution.
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