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ARTICLE

Enzymatic one-step ring contraction for quinolone
biosynthesis
Shinji Kishimoto1, Kodai Hara1, Hiroshi Hashimoto1, Yuichiro Hirayama1, Pier Alexandre Champagne 2,

Kendall N. Houk2,3, Yi Tang 2,3 & Kenji Watanabe1

The 6,6-quinolone scaffolds on which viridicatin-type fungal alkaloids are built are frequently

found in metabolites that display useful biological activities. Here we report in vitro and

computational analyses leading to the discovery of a hemocyanin-like protein AsqI from the

Aspergillus nidulans aspoquinolone biosynthetic pathway that forms viridicatins via a con-

version of the cyclopenin-type 6,7-bicyclic system into the viridicatin-type 6,6-bicyclic core

through elimination of carbon dioxide and methylamine through methyl isocyanate.
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Quinoline and quinolone alkaloids are found in diverse
types of organisms, and those secondary metabolites
exhibit a variety of useful biological activities, including

antibacterial, antimalarial, antiviral and antitumor activities1.
Thus, the quinolone motif found commonly among such alka-
loids is used as a versatile scaffold for preparing libraries of
bioactive compounds2. 4′-methoxyviridicatin 3 (Fig. 1a), descri-
bed in our previous report3, and related viridicatin 6 (Fig. 1b)
produced by various Penicillium sp.4,5 carry a structurally and
medicinally interesting viridicatin scaffold6 that is also found in
other quinolone and quinolinone alkaloids7–11. Our previous
investigation of the aspoquinolone/penigequinolone biosynthetic
pathways (Fig. 1a, aspoquinolone and penigequinolone) has
revealed a number of unique mechanisms involved in the for-
mation of the family of natural products, including a highly
unconventional dehydrogenation-mediated elongation of a prenyl
chain12 and subsequent cationic epoxide rearrangements of the
hydroxylated prenyl chain13 that generate structurally diverse side
chain groups onto the viridicatin scaffold of 3. We have also
shown3 that the bimodular nonribosomal peptide synthetase
(NRPS) AsqK catalyzes the condensation of anthranilic acid with
different amino acids to form cyclopeptins, the 6, 7-bicyclic
precursor of the viridicatin scaffold. The amino acid can be
L-phenylalanine to form cyclopeptin 4 or O-methyl-L-tyrosine to
form (–)-4′-methoxycyclopeptin 1. Subsequently, the non-heme
α-ketoglutarate-dependent dioxygenase AsqJ singlehandedly
performs a sequential iron-catalyzed desaturation and epoxida-
tion of cyclopeptins to produce cyclopenins14–16, the key inter-
mediate in the formation of the 6,6-quinolone viridicatin scaffold.
In case of (–)-4′-methoxycyclopenin 2, a spontaneous non-
enzymatic rearrangement transforms 2 into 3. However, the
inability of non-4′-methoxylated (–)-cyclopenin 5 to undergo
spontaneous conversion to 6 has suggested the involvement of
another enzyme that catalyzes the 6,7-benzodiazepinedione-to-6,
6-quinolone conversion3. This is in agreement with previous
reports of an enzyme named cyclopenase that was reported to be
present in a fungal cell extract that converted 5 to 617–21.

Here, we report the identification of AsqI as the elusive
cyclopenase that has eluded isolation and detailed characteriza-
tion to date. Biochemical analysis reveals AsqI as a metalloprotein
that requires zinc for its activity. X-ray crystallographic studies
and further in vitro assays of AsqI and its mutants, along with
computational investigations of the reaction pathways for the
conversion of cyclopenins to viridicatins reveals the mechanism
through which the ring-contraction transformation is
accomplished.

Results and Discussion
Hemocyanin-like zinc-binding proteins as the cyclopenase.
Analysis of the Aspergillus nidulans aspoquinolone (asq) bio-
synthetic gene cluster3, the closely related Penicillium thymicola
penigequinolone (pen) biosynthetic gene cluster12 and another
related10 Penicillium sp. FKI-2140 penigequinolone (png) bio-
synthetic gene cluster reported here (Supplementary Fig. 1 and
Supplementary Table 1) identified a gene with unknown function
that was homologous to hemocyanin, a copper-containing oxygen
transporter, in all three clusters (Supplementary Fig. 2). To
examine the activity of AsqI and PngL in detail, their genes were
cloned and expressed as a hexahistidine-tagged protein in
Escherichia coli (Supplementary Figs. 3 and 4 and Supplementary
Methods). When the recombinant AsqI was incubated with 5, a
rapid formation of 6 was observed (Fig. 2a), confirming that AsqI
is indeed the missing cyclopenase. However, the recombinant
PngL failed to convert 5 to 6. Homology to hemocyanin suggested
involvement of metal ions in substrate binding and catalysis by

those enzymes. When AsqI was treated with ethylenediaminete-
traacetic acid, it completely lost its cyclopenase activity (Supple-
mentary Fig. 5). However, re-introduction of different metal ions
(Fe2+, Fe3+, Co2+, Mn2+, Ni2+, Cu2+, and Zn2+) led to a
varying degree of recovery of the activity, with zinc ion achieving
the most outstanding recovery.

The activities of AsqI and PngL were examined further by
steady-state kinetic analyses using 5 and 2 as substrates
(see Supplementary Methods for PngL analysis). The kinetic
parameters for AsqI with 5 were kcat 8.02 ± 0.27 min–1 and Km

0.068 ± 0.0089mM (Supplementary Fig. 6a). Supplementing
the reaction mixture with 30 µM ZnCl2 doubled kcat to 16.0 ±
0.30 min–1 but had a little effect on Km, which was 0.066 ± 0.0052
mM, indicating the important catalytic role the metal ion plays
(Supplementary Fig. 6b). On the other hand, the kinetic
parameters for AsqI with 2 were kcat 13,600 ± 2030 min–1 and
Km 2.86 ± 0.52 mM (Supplementary Fig. 7). Comparison of the
kinetic parameters suggests that AsqI has a substantially higher
affinity toward 5 than the 4′-methoxylated counterpart. Lower
kcat for 5 is likely a reflection of the inherent difficulty of the ring-
contraction transformation on the 4’-unsubstituted substrate,
while the dramatically higher kcat value for 2 is due to the
electron-donating p-methoxy group that facilitates the transfor-
mation. This point will be discussed further below. Difficulty in
purifying the recombinant PngL prevented determination of
accurate kinetic parameters for PngL with 2. However, Vmax was
estimated to be 140 µMmin–1 and Km to be 0.35 ± 0.030 mM
(Supplementary Fig. 8), making PngL similar to AsqI in its
catalytic ability to convert 2 to 3 efficiently. The strict specificity
of PngL for the 4′-methoxylated substrates is consistent with
the findings that Penicillium sp. FKI-2140 produces only
4′-methoxylated viridicatins, such as penigequinolones and
yaequinolones10, whereas A. nidulans produces not only 4′-
methoxylated viridicatins but also non-4′-methoxylated viridica-
tins, such as aflaquinolones and aniduquinolones11. Moderate
differences in the amino acid sequence between AsqI and PngL
(57% identity and 71% similarity based on the amino acid
sequence alignment performed using EMBOSS Matcher22,
Supplementary Fig. 9) could account for the difference in their
substrate specificities. Furthermore, our proposed reaction
scheme also predicts elimination of methyl isocyanate 7 upon
ring contraction (Fig. 1b). Since methyl isocyanate can react with
water and easily decompose into methylamine and carbon
dioxide, thiophenol 8, a stronger nucleophile than water, was
included in the reaction mixture to trap 7 in the form of
carbamothioate 9 for detection (Fig. 1c). The result of in vitro
assay on AsqI clearly indicated the concurrent formation of 6 and 9
(Fig. 2b, Supplementary Figs. 10–15, Supplementary Table 3 and
Supplementary Methods). Similarly, the proposed ring rearrange-
ment places the distal carbon of the exocyclic epoxide C10 of 5 at
the C4 position of the bicyclic system of 6 (Fig. 1b). Chemical
characterization of 6 (Supplementary Figs. 16–21 and Supple-
mentary Table 4) isolated from feeding experiment using 5
labeled with 13C at the C10 position (Supplementary Figs. 22–24
and Supplementary Methods) confirmed the presence of the
labeled carbon at the C4 position of 6 (Supplementary Figs. 25–27
and Supplementary Methods), providing a strong support for the
proposed mechanism of the AsqI-catalyzed ring-contraction
transformation.

Structural and computational analysis of cyclopenases. Next, to
establish the active-site architecture, the crystal structure of AsqI
was determined (Fig. 3a, Table 1 and Supplementary Figs. 28–30).
Based on the structure and the sequence homology of AsqI to
hemocyanin (Supplementary Fig. 2), residues His176, His180,
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and His208 were identified to form the metal-binding site A in
AsqI. However, the second tri-histidine metal-binding site B
found in hemocyanins was formed by His346, Leu350, and Y387
in AsqI and no metal ion was observed there. While His346Ala
mutation did not reduce the activity of AsqI, alanine mutation of
each of the site-A histidine residues resulted in a nearly complete
loss of activity, suggesting that the site-A metal plays a crucial role
in substrate binding and catalysis (Fig. 3b). Mutagenesis of the
residues Arg184, Asp322, and Asn347 near the metal-binding site
also resulted in a substantial activity loss, indicating their invol-
vement in catalysis. Since AsqI failed to crystallize in the presence
of the substrates or the products, details of how AsqI interacts
with the ligands could not be elucidated. Thus, computational
analyses of the reaction were carried out to gain further insight
into this interesting transformation.

Calculation of the proposed reaction pathway for the formation
of 6 in the absence of any acidic or basic catalysts predicts a
barrier of activation of 44.5 kcal mol–1, indicating conclusively
that this reaction practically does not proceed at room
temperature (Supplementary Fig. 31 and Supplementary Data 1).
Calculations with methylammonium as a model for acid catalysis

result in free energy pathways with three transition states for the
formation of both 6 and its 4′-methoxylated counterpart 3
(Supplementary Fig. 32 and Supplementary Data 2 and 3). In this
case, the rate-determining steps of the reaction have a barrier of
30.8 and 24.3 kcal mol–1, for 6 and 3, respectively. The latter
barrier is accessible at room temperature, and explains the
experimental observation that 3 is far more readily formed than 6
and can be obtained from 2 simply in the presence of weak acids.
The reaction is more facile for the 4′-methoxylated compound,
because the electron-donating ability of the methoxy group
stabilizes the transient benzylic carbocation that is formed when
the epoxide is opened prior to the attack of the aromatic
nucleophile. To account for the role of zinc and the enzyme in the
reaction of 5, we also optimized the structure of 5 in complex
with Zn2+ and two imidazole molecules, which model the two
histidine side chain groups identified experimentally as the metal
ligands. The structure (Supplementary Fig. 33 and Supplementary
Data 4) shows that the metal ion is coordinated to the imidazole
molecules and the epoxide and C2 amide oxygen atoms of the
substrate in a tetrahedral arrangement as frequently observed in
zinc-complexed protein structures23. The free energy pathway
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computed for the formation of 6 from this Zn2+-coordinate
complex shows a two-step reaction, where the nucleophilic attack
of the aromatic ring on the epoxide (Fig. 4a TS1) has an
activation barrier of only 13.5 kcal mol–1, much smaller than in
the case of acid catalysis (see above). The second step, elimination
of 7 (Fig. 4a TS2), is almost barrierless (0.7 kcal mol–1). This is
consistent with the experimental observation of the fast rate of
AsqI-catalyzed formation of 6. For the enzyme-catalyzed
reaction, a Zn2+ cation in the active site, which is tetrahedrally
coordinated to the side chains of His176 and His180 and the
epoxide and C2 carbonyl oxygen of the substrate, is proposed to
act as the Lewis acid to initiate the unusual ring-contraction
reaction (Fig. 4b).

Lastly, to understand the substrate specificity of the
cyclopenase-type catalysts, a homology model of PngL was
constructed based on the crystal structures of AsqI and an
arthropod phenoloxidase24 (Supplementary Methods). The most
significant difference between AsqI and PngL/PenL is that the
latter has the metal-binding site B rather than the site A intact
(Supplementary Fig. 34). Detailed kinetic characterization of
PngL could not be performed due to poor expression of PngL

mutants (Supplementary Fig. 4). However, the structural models
and the sequence differences of the active site-lining residues
suggest that the substrate-binding modes of AsqI and PngL differ
substantially. The moderate activity against 2 and no activity
against 5 suggest that PngL may rely on the inherent reactiveness
of the 4′-methoxylated substrate and drive the reaction mostly by
pre-organizing the substrate into a reactive conformation rather
than metal-based catalysis.

Our experimental results clearly indicate that the hemocyanin-
like protein AsqI is the cyclopenase, which is the enzyme in the
viridicatin biosynthetic pathway that has eluded isolation for
nearly four decades. We have also discovered PngL, a homolog of
AsqI from a Penicillium sp. that only accepts 4′-methoxylated
compound as its substrate. A series of biochemical and
computational characterizations conducted in this study support
the proposed catalytic mechanism of the highly unusual ring-
contraction transformation (Fig. 4b). In this reaction, the active-
site zinc ion acts as a Lewis acid catalyst to activate the substrate
epoxide and facilitate essentially an anti-Baldwin-type epoxide-
opening 6-endo-tet cyclization25. Subsequently, the conversion of
a 6,7-bicyclic skeleton into a 6,6-bicyclic quinolone framework
occurs upon elimination of 7 and the following keto–enol
tautomerization results in the formation of the product. The
difference in the substrate specificity between AsqI and PngL may
arise from the difference in the active-site architecture that alters
the effectiveness of how the zinc ion engages the bound substrate.
Through the current and previous studies, it has become clear
that the key to the viridicatin framework formation is the
dioxygenase AsqJ-catalyzed epoxidation of benzodiazepine-
diones3 and the subsequent ring contraction by the
hemocyanin-like AsqI. These findings hint the potential of using
the catalytic sequence powered by the combined
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Table 1 Data collection and refinement statistics

Apo AsqI
(native)

Apo AsqI
(SAD)

AsqI–zinc
complex

Data collection

Space group I222 I222 I222
Cell dimensions
a, b, c (Å) 85.0, 117.4,

159.0
84.4, 113.5,
158.2

84.5, 114.8,
157.7

Resolution (Å) 19.9–2.30
(2.38–2.30)

20.0–3.51
(3.71–3.51)

19.8–2.91
(3.01–2.91)

Rmerge 0.106 (0.831) 0.321 (0.798) 0.145 (0.704)
I/σI 15.22 (2.33) 8.43 (3.24) 12.96 (2.44)
Completeness (%) 98.9 (97.2) 99.3 (99.3) 99.9 (99.2)
Redundancy 6.7 14.2 6.7

Refinement

Resolution (Å) 19.9–2.30 19.8–2.91
No. reflections 35,077 17,156
Rwork/Rfree 19.28 / 21.99 19.70 / 21.53
No. atoms
Protein 4664 4603
Ligand/ion 0 1
Water 279 1
B-factors
Protein 33.90 33.30
Ligand/ion 36.30 38.60
Water 22.10
R.m.s. deviations
Bond lengths (Å) 0.009 0.014
Bond angles (°) 1.145 1.236

One crystal was used for each structure. Values in parentheses are for highest-resolution shell
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dioxygenase–hemocyanin activity as a unique biosynthetic or
chemoenzymatic approach in generating various 6, 6-quinolones
from benzodiazepinediones prepared from anthranilic acid with
various different amino acids.

Methods
In vitro analysis of the activity of AsqI against 5. The assay mixture (40 µL)
containing 2 µM AsqI and 0.4 mM of (–)-cyclopenin 5 in MES Na buffer (100 mM
2-morpholinoethanesulfonic acid sodium salt (MES Na), 100 mM NaCl, pH 5.5)
was incubated at 30 °C for 5 or 30 min. Heat-inactivated samples of AsqI was used
in the indicated reaction as a negative control. After a 30 min incubation, the
reaction was quenched by addition of 80 µL of ethyl acetate (EtOAc) containing
10 μM of anthraquinone as an internal standard (IS). The organic layer was
separated by centrifugation, and the isolated organic fraction was dried in vacuo.
The dried material was dissolved in 60 μL of N,N-dimethylformamide (DMF) and
subjected to LC–MS analysis performed with a Thermo SCIENTIFIC Q-Exactive
liquid chromatography mass spectrometer using both positive and negative elec-
trospray ionization. LC was performed using an ACQUITY UPLC 1.8 μm, 2.1 × 50
mm C18 reversed-phase column (Waters) and separated on a linear gradient of
10–50% (v v–1) acetonitrile (CH3CN) in H2O supplemented with 0.05% (v v–1)
formic acid at a flow rate of 500 μL min–1. Peak heights of different samples were
standardized by scaling the heights of the IS peaks in all samples.

Kinetic analysis of AsqI. Different concentrations of 5 (0.05, 0.1, 0.2, 0.4 and
0.8 mM) was mixed with 2.0 μM of AsqI in MES Na buffer and with or without 30
µM of ZnCl2 in a total reaction volume of 40 µL. After 1 or 2 min of incubation at
30 °C, the reaction was quenched with 80 µL of EtOAc containing 10 μM of
anthraquinone as an IS. The organic layer was separated by centrifugation, and the
isolated organic fraction was dried in vacuo. The dried material was subjected to
LC–MS analysis as described earlier. Initial reaction rates were determined on the
basis of the amount of 6 present in the sample, and the data points were plotted as
shown in Supplementary Fig. 6. For the reaction with (–)-4′-methoxycyclopenin 2
as a substrate, different concentrations of 2 (0.05, 0.1, 0.2, 0.4 and 0.8 mM) was
mixed with 0.05 μM of AsqI in MES Na buffer in a total reaction volume of 40 µL.
After 1 min of incubation at 30 °C, the reaction was quenched with 80 µL of EtOAc
containing IS (10 μM anthraquinone). The organic layer was separated by cen-
trifugation, and the isolated organic fraction was dried in vacuo. The dried material
was subjected to LC–MS analysis as described earlier. Initial reaction rates were
determined on the basis of the amount of 3 present in the sample, and the data
points were plotted as shown in Supplementary Fig. 7. Kinetic parameters were
calculated by nonlinear regression of the data using GraphPad Prism software
(GraphPad Software, Inc.). Each data point is a mean of triplicate measurements.
The standard deviation is given in the plot as an error bar at each data point.

Preparation of the selenomethionine derivative of AsqI. BL21(DE3) harboring
plasmid pKW18244 (Supplementary Fig. 3) was grown overnight in 50 mL of LB
medium with 50 μg mL–1 kanamycin at 37 °C. Five liters of fresh M9 medium with
50 μg mL–1 kanamycin was inoculated with 50 mL of the overnight culture and
incubated at 37 °C. Amino acid mixture (100 µg mL–1 L-lysine monohydrochloride,
100 µg mL–1 L-threonine, 100 µg mL–1 L-phenylalanine, 50 µg mL–1 L-isoleucine,
50 µg mL–1 L-leucine, 50 µg mL–1 L-valine, and 50 µg mL–1 seleno-L-methionine
(Se-Met)) were added to the culture when the optical density at 600 nm (OD600)
was 0.3 and incubation was continued until OD600 reached 0.6. Then expression of
the gene was induced with 200 μM isopropylthio-β-D-galactoside (IPTG) at 18 °C.
Incubation was continued for another 24 h, after which cells were harvested by
centrifugation at 10,000×g for 5 min. Cell disruption and purification of the protein
were performed in the same manner as described for non-labeled AsqI.

Structure refinement, model completion and analysis. X-ray diffraction data
from the crystals of the apo and zinc-complexed AsqI as well as apo Se-Met
derivative were collected as described in Supplementary Methods. The initial
structure of the Se-Met derivative of AsqI was determined by the single-wavelength
anomalous dispersion (SAD) method using the PHENIX AutoSol wizard26. The
structure model was built with the program COOT27 and refined with phenix.
refine28. Using the SAD-derived structure as a search model, native structures, were
determined by molecular replacement using the program Phaser29. The models
were built with COOT27 and refined with phenix.refine28. Data collection and
refinement statistics are shown in Table 1. The Ramachandran statistics for the
native apo AsqI model indicated that 97.9% and 2.1% of the residues were in the
favored and the allowed regions, respectively, with none in the disallowed region.
Similarly for the zinc-bound AsqI model, 95.5% and 4.5% of the residues were in
the favored and the allowed regions, respectively, with none in the disallowed
region. The least-squares superimposition of the apo structure model with the zinc-
complex structure model was performed (root-mean-square deviation of 0.378 Å
for all the matching Cα atoms) for structural analysis of AsqI.

Computational analysis. Quantum mechanical calculations by density functional
theory (DFT) were performed using Gaussian 09 (Revision D.01)30. For the

uncatalyzed and methylammonium-catalyzed pathways, geometries were opti-
mized using M06-2×31 with the 6-31G(d) basis set. For the Zn2+ pathway, geo-
metries were optimized at the B3LYP/6-31G(d)/LANL2DZ(Zn) level with the SMD
solvation model32 (Et2O, ε= 4). Verification of whether the geometries are minima
(zero imaginary frequencies) or transition structures (TS, one imaginary frequency)
is accomplished by normal mode vibrational analysis on the stationary points. All
TS were further analyzed by IRC calculations to confirm that they connect the
expected minima. A standard state of 1 atmosphere of pressure and 298 K were
used to obtain ZPE, enthalpy and free energy corrections. Truhlar’s quasiharmonic
oscillator approximation was used to compute free energies, where all frequencies
below 100 cm–1 were set to 100 cm–133,34. In all cases, single point energies were
obtained at the M06-2× /6-311+G(d,p)SMD(ε= 4) level of theory31. The
resulting energies were used to correct those obtained from the optimizations35.
Computed structures are illustrated with CYLView36. All of the coordinates of the
computed structures are given in Supplementary Data 1–4.

Data availability. The coordinates, proven to have good stereochemistry from the
Ramachandran plots, were deposited at the RCSB Protein Data Bank under the
accession codes 5YY3 (apo AsqI) and 5YY2 (AsqI–zinc complex). All other data
are available from the authors upon reasonable request.
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