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ABSTRACT 

Salinity and nitrate leaching in California's Central Valley significantly impair 

agricultural productivity and groundwater sustainability. Through extensive biophysical and 

agrohydrological modeling and empirical field data, the research quantifies the impacts of these 

environmental stressors and offers evidence-based strategies for mitigating their effects. A 

biophysical model that incorporates soil, weather, crop data, water cost, and production costs 

predicted that salinity levels exceeding 5 dS/m can reduce crop yields by up to 45% for highly 

sensitive crops like almonds and table grapes. On the other hand, these crops could profit 

growers more because of their market values. The economic analysis shows that the profitability 

of agricultural production under different salinity scenarios varies significantly, with potential 

annual economic losses amounting to hundreds of millions of dollars, underscoring the critical 

need for tailored salinity management strategies. A salinity decision-support web tool was 

developed. This tool enables users to input data and predict crop yields and economic outcomes. 

The tool's application in real-world scenarios has shown that it can effectively assist farmers and 

policymakers in making informed decisions that optimize economic returns and environmental 

sustainability. 

Concurrently, the dissertation evaluates the effectiveness of various conservation 

practices, such as cover crops, irrigation nitrogen credits, and high-frequency low fertigation, in 

reducing nitrate leaching. Utilizing the APEX model, the results demonstrate that these practices 

can reduce nitrate leaching of the root zone by up to 90%, thereby substantially decreasing the 

risk of groundwater contamination. This study also evaluated an integrated AMRS model to 

assess and manage nitrate nitrogen (NO3-N) leaching into groundwater at a field scale. The 

model was evaluated at the deep vadose zone and shallow groundwater and showed that 

conservation practices such as HFLC can mitigate groundwater NO3-N contamination. This part 



 

xiii 

 

of the research highlights the practical benefits of integrating agronomic and environmental 

conservation practices into farming operations to enhance the sustainability of water resources. 

Overall, this dissertation provides a comprehensive framework for understanding and 

addressing the dual challenges of salinity and nitrate leaching in irrigated agriculture. By offering 

detailed insights into the mechanisms underlying these challenges and developing practical tools 

for stakeholders, the research contributes to the sustainable management of natural resources in 

agricultural regions facing similar environmental pressures. 
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CHAPTER 1 

 INTRODUCTION 

Problem Statement 

California's flourishing agricultural economy has not occurred without environmental 

consequences that continue exacerbating undesirable effects across the state. Intensive irrigated 

agricultural and industrial activities coupled with population growth have resulted in significant 

increases of salts in soils, surface waters, and groundwater and dramatic nitrate accumulation in 

groundwater (Harter et al., 2017; Kondash et al., 2020; Rosenstock et al., 2014; Schoups et al., 

2005). Over 4.5 million acres of irrigated cropland in Central Valley (CV) have been adversely 

affected by either saline irrigation water or saline soils, thereby putting tens of thousands of 

productive agricultural acres at risk (Central Valley Salinity Alternatives for Long-Term 

Sustainability [CV-SALTS], 2023). Salt accumulation caused about 250,000 acres to be removed 

from agricultural production, and another 1.5 million acres were considered damaged by salinity 

(Hanak et al., 2019). The annual salinity-related losses in the Central Valley are expected to 

surpass $3 billion (CV-SALTS, 2023). Over the last several decades, nitrate nitrogen (NO3-N) 

levels in public supply wells have increased at an average rate of 2.5 mg/L per decade in several 

regions of the Central Valley, and numerous wells exceed the required maximum contaminant 

level (10 mg/L NO3-N) fixed by the California Department of Public Health (Boyle et al., 2012; 

Ransom et al., 2016). Nonpoint source NO3-N loading in the Central Valley groundwater has led 

to over 163 Gg N/year (Rosenstock et al., 2014). The California State Water Resources Control 

Board, charged with the responsibility of safeguarding, improving, and rehabilitating the 

condition of California's water resources, has implemented the Central Valley-wide Salt and 

Nitrate Management Plan (SNMP) in response to mitigate the accumulation of salt and nitrate in 

groundwater throughout the Central Valley. The goal of this research was to develop modeling 
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frameworks, groundwater protection formulas, and decision-support tools to improve sustainable 

management of salinity and nitrate in the Central Valley of California. 

Background and Motivation 

The Central Valley of California is a prime example of agricultural efficiency and 

productivity, playing a pivotal role in feeding the United States and contributing significantly to 

global food supplies. This region, covering about 52,000 km2 through the heart of California, is 

known for its diverse and abundant agricultural output (Bittman, 2012; California Department of 

Food and Agriculture, 2023; Faunt et al., 2016). The Central Valley is unmatched in producing a 

wide range of crops, which include fruits, vegetables, and nuts. The diversity of crops grown in 

the Valley is a testament to the ability of the region to meet various market demands (California 

Department of Food and Agriculture, 2023). 

The climatic conditions of the Central Valley play a significant role in its agricultural 

success. Characterized by a Mediterranean climate, the region experiences hot, dry summers and 

mild, wet winters. However, this climate varies between the northern and southern parts of the 

Valley, influencing the types of crops grown and the agricultural practices employed (Pathak et 

al., 2018). The southern part of the Valley, being warmer and drier, faces more significant 

challenges and relies more heavily on irrigation. Irrigation is the backbone of agriculture in the 

Central Valley. The region's sophisticated network of reservoirs, canals, and aqueducts, 

including the Central Valley Project and the California State Water Project, is essential for 

transporting water from various sources to the agricultural fields (Johnson and Cody, 2015). 

Groundwater also plays a vital role in irrigation, especially during drought when surface water 

supplies are limited (Levy et al., 2019). 

However, the reliance on irrigation has led to significant environmental challenges. 

Inadequate management practices have triggered soil salinization and nitrate leaching to water 
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resources (Scanlon et al., 2012). Soil salinity, in particular, threatens the sustainability of 

agriculture in the region by degrading soil quality, reducing crop yields, and eventually rendering 

the land unsuitable for agriculture (Nicolas et al., 2023; Singh, 2015). Additionally, the 

widespread use of nitrogen fertilizers to boost crop productivity has contributed to nitrate 

leaching, affecting groundwater quality and posing public health risks (Ward et al., 2018). For 

decades, obstacles to sustainable agricultural production have included increasing salinity caused 

by soluble salt deposition in the crop root zone and water resources contamination from nutrient 

leaching due to inefficient conservation practices.  

Salinity in environmental contexts is broadly categorized into primary and secondary. 

Primary salinity is attributed to natural processes that gradually accumulate salts in soils and 

groundwater over long periods, often spanning centuries. Secondary salinity, however, is a 

consequence of human activities that disrupt the natural hydrologic balance of soils (Parihar et 

al., 2015). The soil of the west side of the Central Valley was originally sedimentary and alluvial, 

formed in the uplifted seabed. Water distribution and transportation through a network of 

channels from the Delta to the Valley has led to a gradual accumulation of salts that mineralize 

and leach over time, resulting in rising saline water tables and soil salinization in the Central 

Valley (Quinn, 2020; Quinn and Oster, 2021). The salinity problem in the Central Valley has 

been exacerbated mainly because of agricultural practices, which have greatly affected crop 

productivity and agricultural sustainability (Hansen et al., 2018; Nicolas et al., 2023). Current 

circumstances necessitate well-informed decision-making in order to maximize agronomic 

measures that mitigate economic loss due to salinity and enhance the sustainability of irrigated 

agriculture in the Central Valley. 
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In addition to the rising salt levels that threaten drinking water and affect crop production 

in some areas of the Valley, NO3-N has accumulated in groundwater to the point that drinking 

water for rural households and small water systems does not meet safe standards (CV-SALTS, 

2023). Agricultural activities are the primary sources of groundwater NO3-N pollution due to 

excess nitrogen-based fertilizer application and unbalanced management practices (Boyle et al., 

2012; Dubrovsky et al., 2010; Harter et al., 2017). Significant increases in nitrogen fertilizer 

application rates were observed in Sacramento Valley, San Joaquin Basin, and Tulare Basin of 

the CV for the period 2002-2012 compared to 1991- 2001 (Harter et al., 2017). More than 

740,000 tons of nitrogen fertilizer were applied to roughly 6.7 million acres of irrigated farmland 

in California. The excess nitrogen fertilizer that leaches into the aquifer has contaminated the 

groundwater and disturbed the ecological balance (Harter, 2009).  

The path to sustainable agriculture in the Central Valley involves a holistic approach that 

encompasses efficient resource use, environmental stewardship, and economic viability. 

Achieving sustainability goals requires a concerted effort from farmers, researchers, 

policymakers, and other stakeholders (Brodt et al., 2006; Marchetti et al., 2020). Factors such as 

innovations in agricultural technology, policy reforms, and community engagement are essential 

components of this journey. The future of agriculture in the Central Valley hinges on the balance 

between meeting current food production needs and preserving the region's natural resources for 

future generations (Jackson et al., 2011). The challenges of agricultural productivity and water 

management, such as salinity and nutrient leaching, must be addressed through innovative, 

integrated, and sustainable approaches to ensure the long-term productivity and environmental 

sustainability of the Valley. 
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Statement of research objectives 

The main goal of this dissertation is to develop new knowledge, data, modeling 

frameworks, and decision-support tools to enhance sustainable management of salinity and 

nitrate-nitrogen in the Central Valley of California. The overarching hypothesis is that 

conservation practices and decision support tools are capable of reducing the impacts of nitrate 

leaching and salinity on groundwater quality and crop productivity. Database and Geographic 

information technologies, web-based programming, process-based agrohydrology models, and 

data visualization will be used. The primary objectives of this research include: 

1. Assess salinity impacts on crop yield and economic returns of selected crops in the 

California Central Valley and predict yield and revenues considering irrigation water 

quality and production cost at small and regional scales. 

2. Develop a user-friendly web-based decision-making support tool that predicts crop yield 

and profitability across the Central Valley. 

3. Evaluate the effectiveness of conservation practices in reducing nitrate-nitrogen leaching 

out of the root zone. 

4. Develop a field-scale agrohydrologic modeling-based groundwater protection formula for 

assessing groundwater contamination from nitrate-nitrogen loading. 
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CHAPTER 2 

ASSESSING SALINITY IMPACTS ON CROP YIELD AND ECONOMIC RETURNS IN THE 

CENTRAL VALLEY IN THE CENTRAL VALLEY 

Abstract  

Salt accumulation in the root zone can impair crop yields and profitability. The study 

integrated soil variables, climate conditions, irrigation inputs, and economic information to 

predict crop yield and profits for the Central Valley. For model simulation, four crops (alfalfa, 

almonds, table grapes, and processing tomatoes), five different irrigation water salinity levels 

(from 0.5 to 5.5 dS/m), and daily irrigation water (from 0 to 12 mm) were used. In yield 

prediction, R2 were 0.82, 0.77, 0.78, and 0.64, and the RMSE was 9, 8, 23, and 11% for alfalfa, 

almonds, grapes, and tomatoes, respectively. In profits prediction, R2 was 0.99 for alfalfa, 

almonds, and processing tomatoes, and 0.74 for grapes, while the RMSE was 48, 211, 2461, and 

68 $/ha for alfalfa, almonds, grapes, and processing tomatoes, respectively. The spatial 

component developed for the model indicated that yield and profits would vary based on soil 

type and water salinity across the Valley. At a daily irrigation rate of 3 mm, no profits were 

predicted for all crops, while 6 mm/day triggered profits of up to $1000/ha for alfalfa and 

processing tomatoes, while more than 8 mm/day was required to predict profits for almonds and 

grapes. This modeling framework can help policymakers identify areas unsuitable for sustainable 

and profitable irrigated agriculture and prioritize them for multi-benefit land repurposing to 

reduce agricultural water demand and achieve groundwater sustainability. The model can also 

serve as a decision-aid tool to help growers in arid regions anticipate losses from crop yield 

reduction due to salinity. 

Keywords. Yield, Irrigation, Salinity, Modeling, Central Valley  
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Introduction 

High concentrations of soluble salts such as sodium chloride, sulfates, calcium, 

magnesium, and bicarbonates in soil and water threaten irrigated and rainfed agriculture 

worldwide (Hopmans et al., 2021). More than 954 million hectares (ha) of land worldwide are 

salt-affected, and between 25% and 30% of irrigated lands are rendered unproductive due to 

salinity (Shahid et al., 2018). The increase in the world population is expected to expand 

salinization further through an array of processes, including an increase in treated wastewater 

reuse for irrigation (Farid et al., 2020; Ogunmokun and Wallach, 2021; Pedrero et al., 2020; 

Tanji, 1997), groundwater contamination due to percolated salts from irrigated lands (Foster et 

al., 2018; Merchán et al., 2020; Quinn, 2020), and an increase in the use of brackish or saline 

water for irrigation (Baath et al., 2020; L. Wang et al., 2020; Yuan et al., 2019). The 

consolidative nature of these processes suggests that salinity issues are inherent to crop 

production and agricultural water management strategies in many water-constrained regions. 

Methods to quantify and reduce economic losses due to salinity should be incorporated into 

policies at regional and local scales. 

In semi-arid and arid regions like California, where rainfall is insufficient to meet crop 

water needs, irrigation is necessary. About 40% of global irrigated land is located in arid/semi-

arid zones, and irrigation is often associated with salinization (Hopmans et al., 2021; Smedema 

and Shiati, 2002). Intensive irrigation has allowed the Central Valley of California to become 

one of the world’s most productive farming regions (Olmstead and Rhode, 2017). The long-term 

sustainability of irrigated agriculture is threatened due to decreased irrigation water quality and 

increased salt build-up in the soil and groundwater, particularly in the southern part of the Valley 

(Schoups et al., 2005; Welle and Mauter, 2017). Various factors, such as drought, climate 



 

8 

 

change, water shortages, and land-use changes, exacerbate salinity problems and severely affect 

the Central Valley’s agricultural productivity and sustainability. 

In the San Joaquin Valley (Southern part of the Central Valley), more than 2 million ha 

of irrigated cropland are salt-affected through saline irrigation water or saline soils, and tens of 

thousands of ha of arable land were reported to be at high-risk (Letey, 2000). Over 30% of the 

agricultural salt-affected land is highly saline (Scudiero et al., 2017). Salt build-up caused about 

100,000 ha to be taken out of agricultural production, and another 600,000 ha were considered 

damaged by salinity. In contrast, only 15% of the annual salt load is being addressed by current 

management activities (CV-SALTS, 2019). The high levels of salt concentrations in the Central 

Valley can be directly correlated with irrigation using a combination of agricultural, industrial, 

and municipal water. The amount of salt brought into the Valley has been increased through 

dams and imported water supplies. More than six million tons of salt are imported and 

accumulated yearly in the San Joaquin Valley (CV-SALTS, 2019; Quinn, 2020). Using remote 

sensing methods, (Welle and Mauter, 2017) reported that salinity reduced California’s 

agricultural revenues by $3.7 billion. Long-term management strategies are needed to address the 

remaining 85% salt load. Under current conditions, informed predictions about future salt build-

up are required to optimize agronomic practices to reduce economic loss due to salinity and 

improve irrigation sustainability. 

California’s Central Valley agricultural production relies on surface water imports from a 

massive network of reservoirs, waterways, and groundwater over-drafted due to irrigation 

(Quinn, 2020). In recent decades, the Valley has turned to perennial (tree and vine) crops, which 

has triggered increased water demand amidst a cycle of multiple-year droughts and new 

regulations on groundwater pumping (Mall and Herman, 2019). Moreover, the Central Valley 
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faces the challenge of protecting water quality due to inadequate dilution from rainfall. Such 

conditions, inherent to semi-arid agricultural regions, have led to alternative solutions, including 

using marginal-quality water such as recycled wastewater and brackish groundwater for 

irrigation (Gile et al., 2020; Kisekka et al., 2024; Qin and Horvath, 2020). However, such non-

conventional irrigation water sources are likely to contain dissolved salts that can accumulate in 

the root zone, affecting crop productivity and leaching to groundwater and surface water, 

resulting in severe environmental degradation (Chittick and Srebotnjak, 2017; Foster et al., 

2018). The use of water high in salts requires best management practices that entail screening 

biological-physical system concerns and the production’s economics (Kaner et al., 2019). Under 

constrained soil and water systems protection measures, water management strategies are 

challenged to maximize productivity. In addition to the evaluation of adverse effects of water 

containing excess salts on crop yield (relative to crop salt tolerance) and the ecosystems, 

decisions related to the use of marginal quality irrigation water for crop production can further 

consider the assessment of economic parameters such as production inputs and potential benefits. 

Numerical and analytical modeling approaches to estimate crop yield for a specific soil as 

a function of saline water and irrigation amounts have been widely described and compared in 

previous research (Oster et al., 2012; Shani et al., 2009; Skaggs et al., 2014). Integrated models 

coupling agronomic, hydrological, and environmental aspects of irrigation-salinity water systems 

to economic models have also been developed and assessed in literature (Booker et al., 2012; 

Slater et al., 2020). However, coupling robust economic information with biophysical models 

and their spatial correlation has been limited. (Shani et al., 2007, 2009) evaluated the impact of 

water stress and irrigation water salinity on crop yield and discussed the potential use of the 

model as an economic decision decision-support tool. Kaner et al. (2019) later integrated the 
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model with economic information and implemented it as an agronomic-economic coupled 

decision support system for irrigation water salinity. However, these model applications were 

implemented considering one or two soil types without considering the spatial distribution of 

crop yield and profitability in terms of irrigation water salinity and quantity. 

This study aimed to develop a framework that integrates the analytical biophysical model 

with economic and geospatial data and to assess the impact of irrigation water quality and 

quantity on crop productivity and economic outcomes for selected crops in the Central Valley of 

California. 

Materials and methods 

Biophysical model description  

The ANalytical Salt-WatER (ANSWER) model contains crop parameters, hydraulic 

properties, and a meteorological variable (Shani et al., 2007, 2009). Four assumptions underlie 

the model. First, ambient conditions in the root zone affecting crop root water uptake and growth 

are represented by parameters, including electrical conductivity (EC), defined by water content 

(θ) and soil solution salinity (Schoups and Hopmans, 2002). Second, steady-state conditions of 

water and salt status (Ben-Gal and Shani, 2003) are assumed. Third, the environmental 

conditions, including weather, are considered static, so the average seasonal transpiration (Tp) 

value is considered as potential transpiration for the growth period. Fourth, there is a 

proportional relationship between the ratio of actual yield to the potential yield and the ratio of 

transpiration to potential transpiration (Ben-Gal et al., 2008; Shani et al., 1987). The relative 

yield is expressed in Equation 2-1:  

 𝑌𝑟 =
𝑌

𝑌𝑝
=
𝑇

𝑇𝑝
= 𝑇𝑟           (2-1) 
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where Y is yield or biomass production and T is transpiration. Yr and Yp are the relative 

yield and potential yield, respectively. Tr and Tp represent the relative transpiration and potential 

transpiration, respectively.  

The model combines salt and water balance by calculating the soil moisture of the root-

zone and soil hydraulic conductivity according to the soil hydraulic model of Brooks-Corey 

(Brooks and Corey, 1966) as expressed in Equation 2-2: 

𝐾(𝜓) = 𝑚𝑖𝑛{𝐾𝑠,𝐾𝑠,(𝜓𝑤 ∗ 𝜓
−1)𝜂}, 𝜃(𝜓) = min{𝜃𝑠, (𝜃𝑠 − 𝜃𝑟)(𝜓𝑤 ∗ 𝜓

−1)𝛽 + 𝜃𝑟} (2-1) 

where K is the soil hydraulic conductivity, KS is the saturated hydraulic conductivity, θS 

is the saturated volumetric soil moisture content, and θr represents residual volumetric soil 

moisture content; ψ is the soil matric head, ψw is the air-entry head, and 𝜂 and 𝛽 are empirical 

soil characteristic parameters.  

Maas and Hoffman (1977) modeled a piece-wise linear model (Mass-Hoffman model) in 

which crop salt tolerance is described by a salinity threshold and a slope describing yield loss 

beyond that threshold. The 𝐸𝐶𝑒50 designates the ECe (dS/m) for which the relative yield 

decreases by 50%, and p is a crop parameter describing the function’s steepness. The 𝐸𝐶𝑒50 

values were estimated through the rearranged Equation 2-3 from Maas and Hoffman (1977). 

ECe50 =
(1 − Y)

S + ECeT
       (2-2) 

where EC𝑒𝑇 is the salinity threshold (dS/m), 𝑌 is the yield (set to 50%), and 𝑆 is the slope 

(% yield decline per dS/m). 

The logistic curve characterizes the plant-specific reduction function with an initial 

plateau followed by a decreasing section (Equation 2-4) 
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fEC =
1

1 + (
ECe
ECe50

)
p 

        (2-3) 

where 𝑓𝐸𝐶  is the relative yield reduction function due to increasing salt concentration 

levels and 𝐸𝐶𝑒 is the average saturated soil extract of the root zone. The parameter 𝑝 is 

responsible for the steepness of the S-shape function. Recent experiments in alfalfa ((Benes et 

al., 2018) have allowed the update of the threshold and slope for a more accurate ECe50. Table 2-

1 provides the salinity threshold, slope, and ECe50 for each crop. 

Table 2-1: Threshold (dS/m) and slope (%) for almonds, alfalfa, processing tomatoes, and table 

grape  

Crop Threshold (dS/m) Slope (%) ECe50 (dS/m) p References 

Alfalfa 2 5 12 3 Benes et al. (2018) 

Almond 1.5 19 4.13 3 
Maas and Grattan (1999);  

Maas and Hoffman (1977) 
Grape 1.5 9.6 6.7 3 

Tomato 2.5 9.9 7.55 3 

 

(Shani et al., 2007, 2009) developed the transpiration function expressed as Equation 2-5: 

𝑇 =  

𝑚𝑖𝑛

{
 
 

 
 

𝑇𝑝,

[
 
 
 
 

(

 
 
𝜓
𝑟𝑜𝑜𝑡 − 

𝜓𝑤

(
(𝐼−𝑇)
𝐾𝑠

)

1
𝜂⁄
 

)

 
 
 (𝐼 − 𝑇) ∗ 𝑏

]
 
 
 
 

 

}
 
 

 
 

1 + 

(

  
 
𝐸𝐶𝑖𝑤 ∗ 𝐼 ∗ (𝜃𝑟  + (𝜃𝑠 − 𝜃𝑟) (

(𝐼 − 𝑇)
𝐾𝑠

)

1
𝛿⁄

)

𝐸𝐶𝑒50 ∗ (𝐼 − 𝑇)𝜃𝑠

)

  
 

𝑝

 

       (2-5) 

where I represent the different irrigation water amounts and 𝐸𝐶𝑖𝑤 the water salinity levels. The 

model simulated crop performance under different irrigation management and water quality 

(salinity levels). Equation 2-5 includes management factors (I and ECI), physical properties (Tp, 

Ks, δ, θr and θs) or biophysical processes (ECe50 and ψroot). The physical and biological 
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parameters are site and plant-specific and are determined independently. The parameter p that 

governs the steepness of the curve was set to 3 (unitless) (Shani et al., 2007; van Genuchten and 

Gupta, 1993), and the parameter b, used to characterize the flow length from the soil to the crop 

roots was set to 10 mm under all likely conditions (Nimah and Hanks, 1973; Shani et al., 2007). 

Relative yield with the initial soil water content (Yr0) was assumed to be zero for all four crops. 

Tables 2-1 and 2-2 provide the soil and crop parameters, respectively, for the model. 

Model input data  

Input parameters included the amount and salinity of the applied water, 50%-yield soil 

salinity (ECe50) and water stress, and potential evapotranspiration (Tp). Irrigation water amounts 

ranged from 0.4 to 12 mm/day, and six salinity levels (0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 dS/m) were 

considered. Historical crop yield and market prices, costs to establish an orchard/farm, and water 

prices were also used as input for the model. In the spatial component of the model, salinity in 

irrigation water and diverse soil hydraulic properties were input to simulate spatial crop yield and 

profits as a function of irrigation water salinity across the Central Valley. Tables 2-2 and 2-3 

provide inputs for sandy loam soil and crop biophysical conditions.  

Table 2-2. Parameters of a sandy loam soil used to compute the site-specific transpiration. KS is 

the saturated hydraulic conductivity; 𝜃𝑠 is the saturated soil water content; 𝜃𝑟 is 

residual soil water content; 𝜓𝑤 is air entry head; 𝜂, 𝛽 and δ are soil physical 

parameters of the Brooks-Correy soil hydraulic model. 

 

Parameters Valuesa 

KS (mm/day) 3600 

δ 4.91 

𝛽 0.55 

𝜂 2.7 

𝜃𝑠 (cm3/cm3) 0.41 

𝜃𝑟 (cm3/cm3) 0.06 

𝜓𝑤 (mm) -200 
a (http://app.agri.gov.il/answerapp/ 
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Table 2-3. Crop parameters considered in the study. 

 

Crop Tp (mm/day)b ψroot (mm)c 

Alfalfa 5.5 -6000 

Almond 8 -8000 

Grape 6.5 -6000 

Tomato 5.5 -6000 
c(Šimůnek and van Genuchten, 2002) 
bhttps://openetdata.org/ 

Assessing biophysical model performance  

A systematic review was conducted to collect experimental yield data from previous 

research to assess the model’s performance. The criteria for selecting the studies were irrigation 

water salinity, crop yield, soil type, and weather data. The framework Protocol, Search, 

Appraisal, Synthesis, Analysis, and Reporting (PSALSAR) was applied to select the articles that 

fit the criteria related to the model. Details related to the PSALSAR framework are provided by 

(Mengist et al., 2020). The searching string was “((Salinity OR saline water) AND (crop yield 

OR yield)) AND (almonds OR alfalfa OR tomatoes OR grapes).” The search was done for each 

crop separately. Databases Web of Science and CAB-Abstracts were the primary search engines 

considered in this study. 

The R package “metagear”(Lajeunesse, 2016) was used to screen the abstracts, retrieve 

the articles, and delegate tasks. The package, coupled with a GUI, was also used to extract data 

from the figures of the selected papers. A total of 996 articles were downloaded from the 

databases, and 15 were selected after screening and full-text assessment (Figure 2-1). R2
 and 

RMSE (Equations 2-6 and 2-7) were calculated to assess the model performance in predicting 

crop yield in different biophysical environments, such as soil type, irrigation regime, and other 

management practices. 
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R2 = 1 −
∑(Oi − Si )

2

∑(Oi − Oi̅ )
2  
           (2-4) 

RMSE = [
1

n
∑(Si –Oi)

2

n

i=1

]

1
2

         (2-5) 

where Si  and Oi are the predicted and observed variables, respectively; 𝑂𝑖̅ is the observed 

mean value, and i is each observation. 

 

Figure 2-1.Systematic literature review framework used for identification, screening, eligibility, 

and selection of final papers fitting the established criteria of salinity impacts on crop 

yield. 
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Table 2-4. Final selected papers from literature review after PSALSAR method application. 

 

ECiw (dS/m)  Crop References 

0.1 – 16.5 

 

Alfalfa 

(Al-Farsi et al., 2020; Ayars et al., 2009; Díaz et al., 2018; 

Hussain et al., 1995; Lunin et al., 1964; Qiu et al., 2021; 

Shani and Dudley, 2001) 

  
1 – 4  Almond (Sanden et al., 2014) 

1.5 – 4.8 

 

Grappe 

 

(Ben-Asher et al., 2006; Hepaksoy et al., 2006; Stevens and 

Partington, 2013)  

1 – 10.2 

 

Tomato 

 

(Kamaluldeen et al., 2014; Prazeres et al., 2016; Wang et al., 

2020)   
 

Economic considerations 

Five economic variables, including revenue per ton ($/ton), return per ha ($/ha), yield-

dependent costs ($/ha), fixed cost ($/ha), and maximum yield (ton/ha) were used to compute the 

potential profits (Equation 2-8). All investments, including overhead and establishment costs 

(including the cost of old orchard removal and machinery), were incorporated into fixed costs. 

The fixed costs were assumed to encompass all costs of owning a field or establishing a farm 

(alfalfa, almond, grape, and tomato), including production, harvesting, and packaging costs. The 

fixed costs include operating, cash, and non-cash overhead. The irrigation water cost (water 

price) was considered an independent variable of interest to simulate different profits. The 

maximum yield was averaged over five years of historical market prices for each crop/tree 

considered in this study.  

The profits represent the net revenue from crop yield (influenced by soil salinity and 

irrigation water quality) and crop prices ($/ton) (Equation 2-8). The actual revenue ($/ha) is 

based on the relative yield, the maximum yield, the amounts of land in production, and the 

revenue per ton per ha (Equation 2-9). The total costs ($/ha) encompassing fixed costs and 

irrigation water costs are computed using Equation 2-10. 
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𝑃𝑟𝑜𝑓𝑖𝑡𝑠 (
$

ℎ𝑎
) =  𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 (

$

ℎ𝑎
) − 𝐶𝑜𝑠𝑡𝑠 (

$

ℎ𝑎
) (2-6) 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 ($/ℎ𝑎)

= (Adj Yr ∗ 1 (ℎ𝑎) ∗ 𝑀𝑌(𝑡𝑜𝑛/ℎ𝑎) ∗ 𝑅𝑝𝑇 ($/𝑡𝑜𝑛))/𝐻𝐴(ℎ𝑎) 
(2-7) 

where AdjYr is the adjusted relative yield (unitless), HA is the hectare amounts (ha), MY 

is the maximum yield (ton/ha), and RpT is the revenue per ton($/ton).    

𝐶𝑜𝑠𝑡𝑠 (
$

ℎ𝑎
) =  𝑊𝑎𝑡𝑒𝑟 𝑐𝑜𝑠𝑡 (

$

ℎ𝑎
− 𝑚𝑚) ∗ (1ha −

mm

ha
)

+ 𝐹𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡𝑠 (
$

ℎ𝑎
) 

        (2-8) 

Costs of establishing an orchard/farm (producing, harvesting, and orchard removal) are 

all incorporated into fixed costs. Expenses of non-cash overhead for an alfalfa farm include costs 

for establishing the field, amortized over the three-year stand life (Clark et al., 2016; Duncan et 

al., 2019). The non-cash overhead includes the establishment cost of the almond orchard for the 

first three years, distributed evenly across the remaining 20 years of the orchard’s productive 

lifespan. An almond orchard’s yield usually varies every year before reaching 8 years (Duncan et 

al., 2019). For grapes, establishment costs reflect three years of investment in planting and 

maintaining the crop before the start of production. The total cost from the 3 years is divided into 

an equal cost over the remaining 22 years of the grapes’ production lifespan (Fidelibus et al., 

2018). The total fixed costs for producing processing tomatoes amounted to $9,454/ha (Turini et 

al., 2018). The average maximum seasonal yield was 143 tons/ha. Economic data for alfalfa, 

almonds, grapes, and processing tomatoes are summarized in Table 2-5. 
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Table 2-5. Economics variables such as Revenue per ton ($/ton), Fixed cost ($/ha), and 

Maximum yield (ton/ha).  

 

Crops 
Revenue per 

ton ($/ton) 

Fixed cost 

($/ha) 

Maximum yield 

(ton/ha) 
References 

Alfalfa 250 1,716 24.7 Clark et al. (2016) 

Almonds 4,500 5,096 3.7 Duncan et al. (2019) 

Grapes 1789.5 21,335 30.6 Fidelibus et al. (2018) 

Processing tomatoes 70.5 3,826 143.3 Turini et al. (2018) 

Water prices and economic returns 

The cost of water is a major factor in the Central Valley’s ability to produce crops. Most 

regions’ water districts’ prices are still less than $200 per acre-foot ($1.62 per ha-mm), while in 

certain places, it has risen to above $500 per acre-foot ($4.1 per ha-mm). Water rates in the 

northern half of the state are below $50 per acre-foot ($0.4 per ha-mm) and, in some districts, are 

around $1.00 per acre-foot (0.008 ha-mm). Rates in the southern end of the Central Valley are 

the highest, ranging from $1.62 to more than $4.1 ha-mm in drought years as groundwater 

pumping is restricted through regulations such as SGMA (https://aquaoso.com/blog/california-

agricultural-water-prices/). This study considered four different water prices ($0.41 per ha-mm, 

$0.61 per ha-mm, $0.81 per ha-mm, and $1.22 per ha-mm) for the model simulations. Historical 

profits ($/ha) and crop market prices ($/tons) reported for 2013 to 2017 were used in the model. 

Considering a potential increase in the crop market price, the market price in 2017 increased by 

150% (Table 2-6).  

 

 

 

 

 

https://aquaoso.com/blog/california-agricultural-water-prices/
https://aquaoso.com/blog/california-agricultural-water-prices/


 

19 

 

Table 2-6. Historical prices ($/tons) for alfalfa, almonds, grapes, and processing tomatoes. 

 

Crop 2013 2014 2015 2016 2017 1.5*(2017) References 

Alfalfa 208 225 160 155 130 195 

USDA Agricultural 

Marketing Service 

(2023)  

Almond 6420 8000 6260 4780 5060 7590 

 

USDA National 

Agricultural Statistics 

Service (2023) 

  

Grapes 1617.5 1660 1810 1520 1480 2220 

USDA National 

Agricultural Statistics 

Service (2023b)  

Tomatoes 70.5 83 80 72.5 70.5 105.5 

 

California Tomato 

Growers Association 

(2023); USDA 

Economic Research 

Service (2023) 

 

Spatial component  

Spatial soil hydraulic parameters were collected from the POLARIS soil series 

(https://gee-community-catalog.org/projects/polaris/) (Chaney et al., 2019) and cropland land use 

from the California Department of Water Resources (https://data.cnra.ca.gov/dataset/statewide-

crop-mapping). Total dissolved solutes (mg/l) in monitoring and irrigation wells 

(https://www.waterboards.ca.gov/water_issues/programs/sgma/water-quality-visualization-

tool.html) were used as irrigation water salinity (Figure 2-2).  Four levels of daily irrigation 

water, such as 3, 6, 9, and 12 mm, were simulated to evaluate crop response to salinity across the 

entire Valley. All geospatial processing was performed using the R terra package, google earth 

engine, and ArcGIS Pro. 

https://gee-community-catalog.org/projects/polaris/
https://data.cnra.ca.gov/dataset/statewide-crop-mapping
https://data.cnra.ca.gov/dataset/statewide-crop-mapping
https://www.waterboards.ca.gov/water_issues/programs/sgma/water-quality-visualization-tool.html
https://www.waterboards.ca.gov/water_issues/programs/sgma/water-quality-visualization-tool.html
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Figure 2-2. Raster inputs for spatial simulation of the model. At the top left, the groundwater 

salinity map is the spatial distribution of electrical conductivity in water in the 

groundwater wells. The land use of the four crops used in this study is shown at the 

top-right. At the bottom left, the raster layers of the soil physical parameters used to 

predict the spatial yield and profits are represented. 

Results  

Piece-wise and s-shape salinity function 

The ECe50 for the four crops was computed using the threshold EC (dS/m) and the slope 

(% per dS/m) parameters (Table 2-1). Almonds had the lowest ECe50, followed by grapes, 

processing tomatoes, and alfalfa. Figure 2-3 shows piece-wise and s-shape plots describing the 

degree of salt tolerance for alfalfa, almonds, grapes, and processing tomatoes, respectively.  
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Figure 2-3. S-Shape and piece-wise linear crop salinity response models for a) almonds, b) 

alfalfa, c) processing tomatoes, and d) table grapes. 

Crop yield response to salinity 

All four crops were affected by increasing salinity levels in the root zone in a sandy loam 

soil. The model predicted that an ECiw level of 5.5 dS/m could decrease relative yield by up to 

10%, 45%, 18%, and 12% for alfalfa, almonds, grapes, and processing tomatoes, respectively, 

considering irrigation water application up to 12 mm/day. The model predicted 99% of the 

relative yield for alfalfa, almond, grape, and processing tomato using 6.5, 8.5, 7, and 5.5 

mm/day, respectively, using irrigation water with low salinity level (0.5 dS/m). However, the 

same daily irrigation amount with an ECiw = 5.5 dS/m showed just 76%, 50%, 70%, and 72% of 

the relative yield is attainable for alfalfa, almond, grape, and processing tomato, respectively 

(Figure 2-4). 
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Figure 2-4. Relative yield as a function of daily irrigation amount (mm/day) at different levels of 

irrigation water salinity ECwi (dS/m) for a) alfalfa, b) almonds, c) grapes, and d) 

processing tomatoes. Different colors represent different salinity (EC) levels from 0.5 

to 5.5 dS/m.  

Model performance in predicting yield.  

Considering the model's simplicity and the associated estimated parameters (soil 

properties and ECiw), the model predictions for yield were excellent and within acceptable limits 

(Figure 2-5). Comparison of experimental data from different studies conducted under different 

conditions against the model’s prediction resulted in an R2 of 0.82, 0.77, 0.78, and 0.64, and an 

RMSE of the relative yield of 9, 8, 23, and 11% for alfalfa, almonds, grapes, and tomatoes, 
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respectively. (Shani et al., 2007) found R2 of 0.94 and 0.96 for tomatoes and grapevines but did 

not use RMSE as a performance indicator of the model.  

 

 
Figure 2-5. Relative yield response to irrigation water salinity (ECiw ) for a) alfalfa, b) almonds, 

c) grapes, and d)tomatoes. The data points are measured yield data collected from 

selected papers of the systematic literature review. 

Salinity impacts on expected profits from crop production 

Decreasing yield due to salinity affects expected economic returns. Water cost is critical 

to profitable crop production in arid and semi-arid climates, where agricultural production relies 
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heavily on irrigation. At the current water price of $0.57 per ha-mm, daily irrigation with 7 mm 

of water ensured profit with Alfalfa, irrespective of the irrigation water salinity (Figure 2-6a). 

For almond production, profit is only obtained with at least 9 mm/day of irrigation with water 

with salinity less than 2.5 dS/m (Figure 2-6b). Similarly, grape production was profitable, with at 

least 8.6 mm/day and ECiw not greater than 2.5 dS/m. As the ECiw increased from 0.5 dS/m for 

both almonds and grapes, more irrigation is required to maintain profitability. However, above 

the salinity level of 2.5 dS/m, irrigation with additional water did not generate profit even though 

it increased yield (Figure 2-6c). Processing tomatoes produced $186 per ha using 6.4 mm/day of 

water with ECiw not greater than 0.5 dS/m, and losses occurred beyond ECiw of 1.5 dS/m (Figure 

2-6d). 

 

Figure 2-6. Potential profits regarding irrigation water applied and irrigation water salinity 

(ECiw). The colors represent salinity levels from 0.5 to 5.5 dS/m. An assumed average 

water cost in California ($70 per ac-ft $0.57 per ha-mm) was considered for 

computing the profits in the graphic. 
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Crop output depends on water quality and cost. Figure 2-7 shows that alfalfa, almonds, 

grapes, and processing tomatoes lose profit margins as water prices increase. At $1.22 per ha-

mm, alfalfa and tomatoes become unprofitable. Alfalfa production generated profits ($1,297-

$356 per ha) irrespective of ECiw values, with the price of water at $0.41 per ha-mm. However, 

profits were possible only with ECiw of 0.5 dS/m, at $1.22 per ha-mm of water (Figure 2-7a). 

Processing tomato production was only profitable when the ECiw was not above 1.5 dS/m and the 

water price of $0.41 per ha-mm. Above $0.41 per ha-mm, tomato production was barely 

profitable only when irrigated with ECiw of 0.5 dS/m. At a water price of $1.22 per ha-mm, 

tomatoes become unprofitable regardless of the water quality (Figure 2-7d). On the other hand, 

high-market-value crops like grapes and almonds were still profitable at higher water prices. 

Provided that the ECiw was not greater than 2.5 dS/m, almond production was still profitable 

even at $0.81 per ha-mm water. However, at $1.22 per ha-mm water, profits were possible only 

with ECiw not greater than 1.5 dS/m (Figure 2-7b). Similarly, Grape’s production was profitable 

when ECiw levels were not greater than 2.5 dS/m and water prices were less than $0.41 per ha-

mm. At higher water prices, profit was only possible with irrigation water ECiw of 0.5 dS/m 

(Figure 2-7c).  
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Figure 2-7. Profits ($/ha) as a function of water amount at different water prices for alfalfa, 

almonds, grapes, and processing tomatoes. The water prices were $0.41/ha-mm, 

0.61/ha-mm, $0.81/ha-mm, and 1.22/ha-mm. The colors represent the irrigation 

water's different electrical conductivity (ECiw) levels from 0.5 to 5.5 dS/m. 

Assessing the model performance in predicting profits  

According to the R2 and RMSE obtained from the model predicted crop profit using five 

years of observed profits versus the reported profits, the model has a very strong goodness-of-fit. 

The R2 for alfalfa, almonds, grapes, and processing tomatoes were 0.99, 0.99, 0.74, and 0.99, 

respectively, while the RMSE for the simulated profits were 48, 211.39, 2461, and 68 $/ha for 

alfalfa, almonds, grapes, and processing tomatoes, respectively (Figure 2-8). 
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Figure 2-8. Assessing model performance against observed data for a) alfalfa, b) almonds, c) 

grapes, and d) processing tomatoes. 

Influence of crop market price and salinity on profitability 

Crop market price determines the revenue generated from crop production and is critical 

to the amount of profit that can be generated. Figure 2-9 shows the historical market price and 

profit for alfalfa, almonds, grapes, and processing tomatoes from 2013 to 2017 and 1.5 times the 

2017 market price at various ECiw. Alfalfa’s market value showed a declining trend, with losses 

recorded from 2015, regardless of the water ECiw. As water prices increased, losses were 

recorded even with high-quality irrigation water. For almonds, production was profitable 

irrespective of water price, except in 2016 and 2017, when the market value of almonds was low. 

Even then, almond cultivation was still profitable, provided that ECiw was not higher than 3.5 
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dS/m. Profits were possible for grapes with the market price reported in 2015 when the ECiw was 

not greater than 2.5 dS/m.  Regardless of water quality and cost, all other years resulted in net 

loss, except for the projected market value of 1.5 times the 2017 price. Lastly, the model 

indicated profit for processing tomatoes when the market value was above $80/tons (2014, 2015, 

and 1.5*2017) for salinity levels between 0.5 – 5.5 dS/m, regardless of the water price per ha-

mm. The years with poor crop market values (2013, 2016, and 2017) resulted in losses, 

especially if irrigated with ECiw greater than 1.5 dS/m. Market prices reported in 2013 and 2017 

triggered profitability losses with high saline water and water prices. 
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Figure 2-9. Expected profits ($/ha) as a function of ECiw for alfalfa, almonds, c) grapes, and 

processing tomatoes under different water prices ($50 per acre-ft or $0.41 per ha-mm, 

$75 per acre-ft or 0.61 per ha-mm, $100 per acre-ft or $0.81 per ha-mm, and $150 per 

acre-ft or $1.22 per ha-mm). The colors represent the different crop prices. 

Spatial distribution of predicted yields and profits  

Considering groundwater salinity, the model estimated adequate yields in the Central 

Valley. The relative yields were less impacted in the northern and eastern portions of the Valley 

compared to the western and southern parts.  The relative yield for alfalfa, almonds, grapes, and 

processing tomatoes with 3 mm of daily irrigation range from 0.20 to 0.54, 0.00 to 0.42, 0.18 to 
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0.54, and 0.17 to 0.65, respectively. However, with 6 mm/day of irrigation water, the relative 

yield ranged from 0.24 to 0.99, 0.00 to 0.82, 0.23 to 0.99, and 0.22 to 0.99 for alfalfa, almonds, 

grapes, and processing tomatoes, respectively. Simulations with daily irrigation amounts of 6 

mm allowed alfalfa and processing tomatoes to reach up to 99% of their relative yield, while 

almonds and grapes required at least 9 mm/day to reach that same yield level (Figure 2-10). 
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Figure 2-10. Spatial distribution of relative yield across the Central Valley for alfalfa, almond, 

grape, and processing tomatoes considering groundwater salinity status. a-d represent 

irrigation amount of 3, 6, 9, and 12 mm/day, respectively. 
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The model prediction indicated that no profit was possible from all four crops with 3 

mm/day irrigation. At 6 mm/day of irrigation, maximum profits were obtained for alfalfa and 

processing tomatoes. However, at higher irrigation amounts, such as 9 and 12 mm/day, the 

profits decreased due to the cost of the extra water and the relative yield obtained per mm of 

water used. Maximum profits with almonds and grapes cultivation were obtained with 9 mm/day 

irrigation. Similarly, the application of higher amounts of water resulted in a decline in the profit 

margin (Figure 2-11).  
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Figure 2-2. Spatial distribution of profits across the Central Valley for alfalfa, almond, grape, 

and processing tomatoes, considering groundwater salinity status. a-d represent 

irrigation amount of 3, 6, 9, and 12 mm/day, respectively. 
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The model forecasted a decrease in relative yield and a reduction in the areas that can 

generate profits. However, 9 mm/day irrigation is projected to result in sufficient profits across 

the Valley, although some areas may still experience losses. Figures 1-12 and 1-13 present the 

stacked data on relative yield and profits for the four crops to better visualize the distribution of 

salinity impacts on crop production. This allows for a more comprehensive understanding of the 

impact of salinity on crop production across the Valley. It is important to note that while some 

areas may still suffer losses, the overall profitability is expected to be satisfactory with 9 mm/day 

irrigation. This information can be highly valuable for farmers and decision-makers in making 

informed choices regarding irrigation practices and crop selection. By considering the potential 

salinity impacts on crop production and the corresponding profit margins, farmers can optimize 

their yields and minimize losses. 
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Figure 2-12. Spatial distribution of the relative yield for alfalfa, almond, grape, and processing 

tomatoes across the Central Valley considering 3, 6, 9, and 12 mm/day irrigation. 

Water application amounts (from 3 to 12 mm/day) are from top to bottom and 

increasing ECiw from 0.5 to 5.5 dS/m are from left to right. Crop relative yields are 

grouped to show the impacts of salinity and irrigation amount on crop yield across the 

Valley. The color bars, from green to red, illustrate decreasing relative yield as ECiw 

increases. 
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Figure 2-13. Spatial distribution of the relative profits for alfalfa, almond, grape, and processing 

tomatoes throughout the Central Valley considering 3, 6, 9, and 12 mm/day irrigation. 

Water application amounts (from 3 to 12 mm/day) are from top to bottom and 

increasing ECiw from 0.5 to 5.5 dS/m are from left to right. Predicted profits for all 

four crops are grouped to show the impacts of salinity and irrigation amount on crop 

production across the Valley. The color bars, from green to red, illustrate decreasing 

relative yield as ECiw increases. 
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Discussion 

Crop yield response to irrigation water salinity 

Crops are tolerant to different salinity levels, and simplistic models have been developed 

to characterize crop salt response and predict their relative yield as a function of the root zone’s 

average saturated soil extract (ECe). Woody and vine crops such as almonds and grapes are less 

tolerant and demonstrate stronger response to salinity than agronomic crops such as alfalfa and 

tomatoes (Grieve et al., 2012). Crop response to salt can be effectively measured using a 

threshold value, denoting the maximum tolerable root zone ECe above which yields decline and 

with a slope describing the rate of yield decline due to increased soil salinity beyond the 

threshold (Maas and Hoffman, 1977). The list of crop-specific parameters for the threshold and 

slopes was updated by (Grieve et al., 2012). Steppuhn et al. (2005) assessed six non-empirical 

models, including both piece-wise and the discount (S-shape) models, and concluded with 

similar ECe50 values found in the studies. However, some alfalfa varieties are more salt tolerant, 

and recent experiments showed that a relative yield reduction of 50% can be reached at ECe  

from 11 – 14 dS/m (Benes et al., 2018). With this model, we predicted the ECe50 to be 12 dS/m 

by modifying the slope and the threshold. Low salinity tolerance of almonds and grapes has been 

reported to adversely affect their productivity (Sandhu and Acharya, 2019; Suarez et al., 2019; 

Zhou-Tsang et al., 2021; Zrig et al., 2011), which is in agreement with the modeling results of 

this study. Tree crop salinity response can be complicated because of the influence of specific 

salt constituents (Christie, 1987), and woody perennials can accumulate specific ions in their 

tissues, leading to specific ion toxicity, e.g., sodium and boron. Semiz and Suarez (2019) found 

tomato yield loss of up to 50% at 5.7 dS/m, which is very similar to the one calculated by the 

model in this study (ECe50 = 5.5 dS/m). 
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The standard errors pertained to the threshold (ECe50) range from 50 to over 100%, 

denoting the enormous uncertainty of these values primarily due to a lack of physiological 

justification (Grieve et al., 2012). The debate about a real threshold value has led to the 

development of s-shape models (van Genuchten and Gupta, 1993; van Genuchten and Hoffman, 

1984) that are more agronomically plausible, although they have found less extensive application 

as the threshold model due to less intuitive appeal of the s-shape model parameters (van Straten 

et al., 2019). A more robust and agronomically sound threshold crop salt-tolerance parameter 

(ECe90: soil salinity that decreases the relative yield up to 90%) was suggested as an alternative 

to the threshold ECe (van Straten et al., 2019, 2021). 

Alfalfa is classified as moderately sensitive to salinity beyond an ECe of 2.0 dS/m. A unit 

increase in salinity beyond this threshold would reduce alfalfa yield by 9.6% (Grieve et al., 2012; 

Maas and Grattan, 1999; Maas and Hoffman, 1977a). Recent studies such as (Cornacchione and 

Suarez, 2017) found that alfalfa could produce high biomass (up to 77%) in high saline 

conditions (ECe = 5.8 dS/m). However, this salinity tolerance might be due to a specific gene, as 

salinity response varies greatly among alfalfa genotypes (Sandhu et al., 2017). Alfalfa yields 

using irrigation water with high salinity levels (ECiw of 8-11 dS/m) were found to be 

economically viable in the Southern part of the Central Valley (21.5 tons/ha) (Putnam et al., 

2019). Such findings refute literature values estimating alfalfa yield decline at low root zone 

salinity (ECe = 2 dS/m).  

Almonds are sensitive to salinity, which is reflected by their low threshold EC of the soil 

saturation extract (ECe) of 1.5 dS/m and a growth reduction rate of 19% per unit increase in 

salinity beyond the threshold (Maas and Hoffman, 1977). Several almond orchards are damaged 

under conditions caused by salinity, even under the published threshold value (Sanden et al., 
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2014). Irrigation with high saline water (4.6 dS/m) was reported to decrease almond kernel yield 

by 46% compared to low saline water (0.8) dS/m) (Franco et al., 2000). Although almonds are 

drought-resistant, their peak performance is extremely sensitive to irrigation water quality 

(Prgomet et al., 2020).  

Grape is considered moderately sensitive to salinity beyond an EC threshold of 1.5 dS/m 

and 9.9% of the yield decline rate with a one dS/m EC increase (Grieve et al., 2012; Maas and 

Grattan, 1999; Maas and Hoffman, 1977). Paranychianakis et al. (2004) reported 50% grape 

yield loss when irrigated with salty water (ECiw 1.9/m) as compared to freshwater (ECiw 0.6 

dS/m). However, long-term studies of grape yield-salinity relationships have shown the pre-

eminence of particular rootstocks that allow salinity tolerance (X. Zhang et al., 2002). A 

confounding issue arises because grapevines can have a catastrophic response to long-term salt 

exposure as salts build up to threshold levels in woody tissues of the plants, resulting in 

physiological damages, including vine mortality (Dag et al., 2015; Shani and Ben-Gal, 2005; 

Simhayov et al., 2023). 

Processing tomatoes are considered moderately sensitive to salinity, with a 9.6 % yield 

decline with one unit of increased salinity beyond the threshold EC of 2.5 dS/m (Grieve et al., 

2012; Maas and Grattan, 1999; Maas and Hoffman, 1977). Salinity can significantly affect 

tomato yield by reducing vegetative growth (Tzortzakis et al., 2022). Tomato yield is reduced at 

ECe of 2.5 dS/m or higher, and an increase of 1 dS/m would trigger a yield reduction of up to 

10% (Cuartero and Fernández-Muñoz, 1998), similar to our results. However, a salinity level 

(ECe) of 4.8 dS/m was found to have no significant impact on tomatoes’ fruit yield and 

improved the quality of the nutrients contained in the fruit (Stamatakis et al., 2003).  
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Combined impacts of salinity, crop market prices, and water prices on economic returns  

Water scarcity in California has led to the adoption of high-value crops such as fruits and 

nuts (Ayars et al., 2015). Under irrigation water with higher salinity values, the model predicted 

higher profits from crops with high market value, such as almonds and grapes. In contrast, both 

alfalfa and tomatoes were likely more affected by increased water prices than salinity due to their 

relatively low market value. The slope of the profits from alfalfa and processing tomatoes 

decreased slowly with the salinity increase. However, processing tomatoes profits were much 

more affected than alfalfa at higher salinity levels, such as 5.5 dS/m. The profits from almonds 

and grapes decreased substantially with the salinity levels. However, water prices and salinity 

levels affected almond profits less than grapes (Figures 1-9 and 1-10). This might be due to the 

almond sale prices. Almond’s revenue overtook processing tomatoes by providing much more 

profits in many Counties of the State of California (Smith, 2018). Gebremichael et al. (2021) 

investigated cropping patterns in California’s Central Valley in response to droughts. They 

concluded that the shift in cropping patterns was probably due to increasing crop prices and 

changes in pumping costs. These findings agree with our study results predicting higher profits 

from crops with high market value while predicting lower economic returns from crops with low 

market values, although with a relatively mild response to salinity. 

Similar findings were generated by the same model for a case study evaluating the 

feasibility of brackish groundwater desalination for irrigation in southern Israel (Kaner et al., 

2017). In that study, high-value, salinity-sensitive crops (date palms and table grapes) were 

found to justify the costs of desalination as an alternative to irrigation with local water high in 

salts.  

The model predicted a decrease in revenues, similar to other studies assessing salinity 

impacts on economic outcomes in the Central Valley (Medellín-Azuara et al., 2014; Montazar et 
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al., 2017; Wichelns and Oster, 2006). Integrated biophysical models with soil and irrigation 

water salinity and economic data can be used as decision-support tools for salinity management. 

Kaner et al. (2019) implemented a web-based decision support system that returns yield and 

economic gains from crops considering irrigation water salinity and market price scenarios with 

environmental considerations. Increases in water prices or salinity were predicted to significantly 

negatively affect farmers’ incomes. Welle and Mauter (2017) estimated that salinity reduced 

agricultural revenues by $3.7 billion (in 2014) using a generalizable approach to estimate the 

agricultural yield losses due to soil salinization. When the Delta water is more saline during dry 

years, dual export conveyance gives the highest revenue losses, roughly $4.5 billion annually. 

Under the future groundwater pumping regulations in the Central Valley, water supplies may not 

be sufficient to meet water demands and trigger losses by up to 30% of total annual revenues in 

the Valley (Mall and Herman, 2019). Major crops such as almonds, alfalfa, and grapevine have a 

significant water footprint in the Central Valley (Fulton et al., 2019), and their economic returns 

can be severely affected by high water prices in drought periods. The paradox projected declines 

in water supplies for irrigation in the Central Valley of California would exacerbate salinity 

problems because there will be less water leaching salts out of the root zone. 

Significance and limitations of the model 

The success of the model is remarkable, considering its simplicity and dependence on 

major assumptions. The assumption of steady-state conditions may limit its validity to 

environments where much of the irrigation season is without significant precipitation and where 

advanced irrigation scheduling and water are supplied regularly as a constant function of 

potential evapotranspiration. Pseudo-steady state conditions were found to be the case for date 

palms grown in lysimeters in Israel (Tripler et al., 2012).  The assumption that economic return 

can be predicted by simulation of vegetative growth (transpiration) is also questionable, 
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obviously crop-specific, and not always validated in cases where vegetative and reproductive 

growth are not linearly related. While these may necessitate caution in using the model, its 

success under advanced irrigated agriculture conditions in Israel and California boosts 

confidence in its potential as a planning and analysis tool.   

Conclusion  

The findings of this study shed light on the significant impact of irrigation water salinity 

on the sustainability of irrigated agriculture, in the form of reduced crop yields and profitability. 

Salinity is a global problem, with approximately 30% of irrigated lands being salt-affected due to 

human-induced salinization. In the Central Valley, more than 2 million hectares of irrigated 

cropland are affected by salinity arising from saline irrigation water or saline soil. The depletion 

of groundwater resources further exacerbates salinization in certain areas of the Central Valley. 

Given the influence of profitability on grower management decisions, it is crucial to 

establish a comprehensive integrated framework for sustainable management of irrigation water 

salinity. To address this challenge, the study developed a unique framework that integrates 

biophysical modeling, economic analysis, and geospatial modeling. This framework enables a 

comprehensive assessment of the impact of irrigation water salinity on crop yield and 

profitability. 

The framework was applied to evaluate the effects of salinity on major crops cultivated in 

the Central Valley, including alfalfa, almonds, grapes, and processing tomatoes. A notable 

feature of the modeling framework was its ability to incorporate site-specific soil and 

groundwater quality information to assess the impacts on crop yield and profitability. This 

detailed assessment provided valuable insights into the sustainability of irrigated agriculture in 

the Central Valley, which is one of the world's most vital agricultural regions. 
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The study revealed that economic revenue decreases as irrigation water salinity and the 

cost of water increase. However, even under elevated salinity levels and increased water costs, 

agricultural activities can remain profitable, particularly when cultivating high-value crops such 

as almonds and grapes. Moreover, the framework's capability to account for spatial variations in 

soil properties and groundwater quality enables predictions of regional differences in salinity 

impacts on crop yield and profitability. Negative impacts were more pronounced on the Westside 

of the Central Valley. 

The spatial predictions derived from the modeling framework can assist in prioritizing 

lands for potential retirement from irrigated agriculture, especially in regions where groundwater 

supplies face constraints, as observed under public policies such as the Sustainable Groundwater 

Management Act (SGMA) in the case of California. While this study focused on the Central 

Valley, the integrated modeling framework can be applied to any region worldwide grappling 

with salinity issues and their impact on irrigated agriculture productivity and economic 

outcomes. 

Furthermore, the developed modeling framework, implemented in R, is publicly available 

and can be utilized by various stakeholders, including policymakers, agricultural consultants, 

extension professionals, economists, agronomists, engineers, and water managers. Its availability 

facilitates informed decision-making and the development of sustainable strategies to address 

salinity-related challenges in irrigated agriculture. 
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CHAPTER 3 

CENTRAL VALLEY IRRIGATION WATER SALINITY DECISION-SUPPORT WEB TOOL 

Abstract 

The study introduces a novel decision-support web tool designed to assist farmers and 

policymakers in salinity management in the Central Valley (https://yieldprofit.ucdavis.edu/). 

This tool integrates agronomic, economic, and spatial data to predict crop yield and profitability 

under varying irrigation water salinity. The resource is intended to assist policymakers and 

Groundwater Sustainability Agency managers in identifying regions that are unsuitable for 

profitable crop cultivation and prioritizing these regions for multi-benefit land repurposing, 

triggering a decrease in agricultural water demand. The tool can also help farmers to predict crop 

yield and profitability in relation to irrigation water salinity. The decision-aid tool capabilities 

were evaluated with four major crops (alfalfa, almonds, table grapes, and processing tomatoes) in 

predicting yield and profits for a range of irrigation water salinity levels across the Central 

Valley, highlighting the significance of crop-specific responses to salinity. The tool’s 

development, application, and performance underscore the potential of decision-making aid 

technologies in managing salinity and enhancing the sustainability of irrigated agriculture in arid 

and semi-arid regions.  

Introduction 

In California’s Central Valley, the increasing reliance on groundwater due to intensive 

agricultural practices and recent severe droughts has underscored the critical need for sustainable 

water and salinity management strategies (Faunt et al., 2016; Quinn and Oster, 2021). Innovative 

solutions, such as the use of recycled wastewater and brackish groundwater for irrigation, have 

been explored to address these challenges (Kisekka et al., 2024). While offering a potential 

solution to water scarcity, these alternative water sources contain dissolved salts that can 

https://yieldprofit.ucdavis.edu/
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accumulate in the root zone, potentially impacting crop productivity and leading to 

environmental degradation through leaching to groundwater and surface water systems (Nicolas 

et al., 2023). Best management practices are essential to address the biological-physical system 

concerns and the economics of production under these conditions, highlighting the need for 

comprehensive strategies to protect soil and water systems while maximizing productivity 

(Kaner et al., 2019; Shani et al., 2007, 2009). Managing soil salinity and optimizing water use in 

salt-affected arid regions requires adopting innovative and sustainable agriculture practices 

(Wichelns and Qadir, 2015). Moreover, integrating soil-water-plant management practices offers 

a promising approach to using saline waters for crop production, thereby mitigating the adverse 

impacts on soil and water resources. The development of accurate decision-aid tools and proper 

irrigation scheduling can significantly support sustainable agriculture in salt-affected arid 

regions. 

Models and decision support systems have been developed to predict relative crop yield 

for various crops, soil types, and irrigation water salinity (Skaggs et al., 2014). However, 

maximizing total profit regardless of yield is a critical goal of agricultural production. Shani et 

al. (2007) developed an analytical model integrating biophysical parameters with economic data 

to predict crop yield and profitability under various irrigation water salinity levels. Kaner et al. 

(2019) implemented this biophysical model into a user-friendly decision support web tool, 

allowing users to predict crop yield and profitability by considering irrigation water salinity and 

production costs. Both the model and decision support tool did not include a spatial component 

and, therefore, were limited in site-specific yield and profit prediction. Nicolas et al. (2023) 

adapted this model for major crops grown in the Central Valley and developed a spatial 

component to predict crop yield and profitability across the Central Valley. 
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The objective of this study was to implement the adapted model as a user-friendly 

decision-making aid web tool that (1) assists growers in predicting yield and profitability as a 

function of irrigation water salinity and quantity and (2) helps policymakers and Groundwater 

Sustainability Agency (GSA) managers identify areas unsuitable for sustainable and profitable 

agriculture and prioritize them for multi-benefit land repurposing to reduce agricultural water 

demand. 

Methods 

Agronomic-economic model 

The Analytical Salt-WatER model integrates critical aspects of the soil-plant-atmospheric 

continuum through a one-dimensional, mechanistically-based approach that operates under four 

foundational assumptions: (a) the root zone’s environmental conditions can be abstracted into 

effective values of key parameters like soil water content and soil salinity; (b) these conditions 

are considered to be in a steady state, removing the dimension of time; (c) the climate conditions 

are assumed to be constant and (e) a proportional relationship between relative transpiration and 

relative yield exists as shown in Equation 3-1: 

𝑌𝑟 =
𝑌

𝑌𝑝
=
𝑇

𝑇𝑝
= 𝑇𝑟 (3-9) 

The parameters in Equation 3-1 are Y: yield or biomass production (tons/acre), T: 

transpiration (mm/day), Yr: relative yield, Yp: potential yield (tons/acre), Tr: relative 

transpiration, Tp: potential transpiration (mm/day).  

 

The behavior of crop transpiration (mm/day) is given in Equation 3-2. 
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 (3-2) 

The parameters of Equation 3-2 are I: irrigation (mm/day),  𝐸𝐶𝑖𝑤: water salinity levels 

(dS/m), KS: saturated hydraulic conductivity (mm/day), θS: saturated soil moisture content, θr: 

residual soil moisture content,  𝜓𝑟𝑜𝑜𝑡: crop sensitivity to available soil moisture (mm), ψw: air-

entry head (mm), 𝛿 and 𝜂: empirical soil characteristic parameters, 𝐸𝐶𝑒50: soil saturated paste 

solution EC, reducing yield by 50% (dS/m), p governs the steepness of the curve, and b 

characterizes the flow length from the soil to the crop roots. The model includes management 

factors (I and ECiw), physical properties (Tp, Ks, δ, θr and θs) and biophysical processes (ECe50 

and ψroot). Shani et al. (2007, 2009) and Nicolas et al. (2023) provide a more detailed 

description of the model. 

Economic considerations and spatial component  

The profits are calculated using five economic variables: return per hectare ($/ha), 

revenue per ton ($/ton), yield-dependent costs ($/ha), fixed cost ($/ha), and maximal yield 

(ton/ha). All investments are classified as fixed costs, including farm establishment, production, 

harvesting, and packaging expenses. The cost of irrigation water (water price) and market price 

are an independent variable. The spatial component is built using the POLARIS soil gridded data 

(Chaney et al., 2019), California land use, and groundwater electrical conductivity. Crop yield 

and profits are predicted across the Central Valley with a 30 m resolution. Validation and 



 

48 

 

sensitivity of the model, as well as a detailed description of the spatial component development 

of the model, are provided by Nicolas et al. (2023).  

Central Valley Crop Yield and Profitability Response to Salinity Web Tool  

The Central Valley Crop Yield and Profitability Response to Salinity Model web tool 

(https://yieldprofit.ucdavis.edu/) was built upon the Analytical Salt-WatER model developed by 

Shani et al. (2007, 2009). The web tool’s home page has three sections. The first section (Figure 

3-1(1)) is the model that computes the relative yield and profitability response to irrigation water 

salinity in either English or Metric units. The second section (Figure 3-1(2)) allows users to 

explore spatial forecasts of a specific crop’s relative yield and profitability for the entire Central 

Valley. The third section (Figure 3-1(3)) provides data sources and references about the tool.  

In the Model (Figure 3-2 and Figure 3-3), users can select a specific crop (Figure 3-2(1)), 

soil type (Figure 3-2(2)), irrigation water amount (Figure 3-2(3a)), irrigation water electrical 

conductivity (Figure 2-2(3b)), and water costs (Figure 3-2(1)) to calculate (Figure 3-2(4)) the 

relative yield and profitability across a range of scenarios. Four crops, including alfalfa, almonds, 

table grapes, and processed tomatoes (Figure 3-4(1)), and five soil types, including sand, clay, 

loamy sand, sandy loam, and silt loam (Figure 3-4(2)), are available in the drop-down menu. 

Any range of irrigation water salinity (EC) (Figure 3-4(3a)) and water quantity (Figure 3-4(3b)) 

can be specified by the user to calculate yield and profits. The “Calculate” button (Figure 3-2(4)) 

computes and plots the relative yield. For calculating the profit, users can specify water price 

($/ha-mm or $/ac-ft) (Figure 3-3(1)), crop area (hectares or acres) (Figure 3-3(2)), irrigation 

season length (Figure 3-3(3)), and economic parameters (Figure 3-3(4)) such as maximum yield 

(Figure 3-3(4a)), revenue per ton (Figure 3-3(4b)), and fixed costs (Figure 3-3(4c)). The 

“Calculate” button (Figure 3-3(5)) computes and plots projected profits. Both relative yield and 

projected profits can be exported in a table format as a Microsoft Excel .xls download.  

https://yieldprofit.ucdavis.edu/
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Figure 3-3. Interface of the Crop Yield and Profitability Response to Salinity Decision Support 

Tool 

 
Figure 3-4. Window of the Decision Support Web Tool for users to choose crop, soil type, 

irrigation water EC (dS/m), and quantity. 
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Figure 3-3. Window of the web tool for users to calculate profits by entering water price, acre 

amount in production, length of the season, maximum yield, price per ton, and costs 

of production per acre.  

To access the spatial component, users can switch from Model/Graph View to Interactive 

Map View (Figure 3-5). This feature includes six irrigation water salinity levels (0.5, 1.5, 2.5, 

3.5, 4.5, and 5.5 dS/m) and four irrigation depths (3, 6, 9, and 12 mm/day) for large-scale yield 

and profitability forecasts. The forecasted relative crop yield and profits for each 30m area, along 

with the associated longitude and latitude, can be viewed by clicking on the associated pixel on 

the interactive map. 
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Figure 3-5.  Four crops, five soil types, and different water quantity and salinity (EC) ranges are 

available in the decision support web tool. 

 
Figure 3-6. Six irrigation water salinity levels (0.5, 1.5, 2.5, 3.5, 4.5, and 5.5 dS/m) and four 

irrigation depths (3, 6, 9, and 12 mm/day) are available for large-scale yield and 

profitability forecasts using the web tool. 



 

52 

 

Application of the Central Valley Crop Yield and Profitability Response to Salinity Web 

Tool  

For the demonstration of the graphing tool, relative yield and profits were computed for 

the four crops currently available, considering eight irrigation water salinity levels (0.5, 2, 3.5, 5, 

6.5, 8, 9.5, and 11 dS/m) and water amount from 0.01 to 0.4 inches/day. We considered 100 

acres for the area of production and used a maximum yield of 1.5, 12, 12.4, and 58 tons/acre for 

almonds, alfalfa, table grapes, and processing tomatoes, respectively. We also used default 

historical revenue ($) per ton and fixed costs ($) of production for each crop, as described in 

Nicolas et al. (2023). The crop yield and profitability prediction for the entire Central Valley was 

demonstrated with a salinity of 3.5 dS/m and irrigation water depth of 0.35 inches/day (9 

mm/day).  

Results 

Yield response to irrigation water salinity 

Distinct trends are observed in predicting the relative yield of alfalfa, almonds, table 

grapes, and processing tomatoes in relation to irrigation water salinity. Alfalfa exhibits 

remarkable salinity tolerance, maintaining a high relative yield across all salinity levels, with 

only a marginal decline at the highest EC 11 dS/m value (Figure 3-6a). Processing tomatoes 

exhibit a moderate decrease in yield starting at an EC of 6.5 dS/m, suggesting a reasonable 

resilience to salinity (Figure 3-6d). Table grapes begin to experience a decline in yield at lower 

EC levels (Figure 3-6c) compared to alfalfa and processing tomatoes, indicating a higher 

sensitivity to salinity. Almonds show the most significant yield reduction as salinity increases, 

suggesting a high sensitivity to irrigation water salinity (Figure 3-6b). 

Comparatively, alfalfa emerges as the least salt-sensitive crop, suggesting that it can be 

cultivated successfully under a range of salinity conditions, making it a robust option for areas 
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with saline irrigation water. Processing tomatoes follows, demonstrating considerable tolerance 

to salinity, albeit less than alfalfa. Table grapes maintain a higher yield up to a moderate salinity 

level (EC 5 dS/m), after which the yield decreases more rapidly. Almonds, however, are the most 

susceptible to salinity among the crops compared, with relative yield decreasing steadily as EC 

levels rise, underscoring the need for more stringent salinity management to maintain 

productivity for this crop. 

 
Figure 3-7. Relative yield for a) alfalfa, b) almonds, c) table grapes, and d) processing tomatoes 

using the web tool. The button “Export to Excel” downloads the graph data. 

Profitability response to irrigation water salinity 

The profit prediction for the four crops resulted in varying degrees of profitability in 

response to various salinity levels (EC) of the irrigation water. Alfalfa shows a relatively stable 

profit across a wide range of EC levels, with a slight peak before profits begin to diminish at the 
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highest salinity levels. Almonds exhibit a sharp peak in profitability at lower EC levels, 

suggesting that almonds are highly profitable with low-salinity water. However, beyond this 

optimal range, profits decline sharply with increased salinity. Table grapes present a more 

gradual rise to a high-profit plateau, maintaining this level across a range of EC levels (>8 dS/m) 

before profits start to fall at high salinity levels. Processing tomatoes showed increased profits 

with more water, with a less pronounced peak, and a decline in profits at higher salinity levels, 

indicating a reasonable degree of tolerance. 

When comparing the economic viability of these crops, almonds present a high but 

narrow window of profitability contingent on low salinity levels, making them a potentially 

lucrative but riskier choice in saline-prone areas. Table grapes display the most considerable 

profit potential across a broader salinity spectrum, making them the most profitable crop under 

moderate saline conditions. Processing tomatoes also showed significant profit potential, though 

not as high as table grapes and almonds, but with a broader range of salinity tolerance before 

profitability decreases. Despite its lower peak profits, Alfalfa offers the most consistent revenue 

across varying salinity levels, suggesting it is a reliable option for steady income in saline 

conditions. The varying responses to salinity underscore the importance of choosing crops based 

on salinity levels to maximize agricultural profitability. 
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Figure 3-8.  Profits for a) alfalfa, b) almonds, c) table grapes, and d) processing tomatoes using 

the web tool. The “Export to Excel” button downloads the graph data into an Excel 

spreadsheet. 

Spatial yield and profits forecast in the Central Valley 

Relative yield data for alfalfa, almonds, table grapes, and processing tomatoes is 

predicted across the Central Valley considering water electrical conductivity (EC) of 3.5 dS/m 

and an irrigation depth of 0.35 inch/day. Alfalfa fields exhibit a uniformly high yield, indicated 

by the predominantly dark green color across the map (Figure 3-8). Almond fields are more 

heterogeneous, with varying yields, as shown by the interspersed green and yellow areas, 

suggesting sensitivity to the specified salinity and soil conditions. The table grape areas are dark 

green with slight variations in some regions in light green, indicating high yield, which implies a 

moderate tolerance to the salinity level set. Processing tomato fields also show a high yield, 

though with slight variations in some areas, as indicated by the mix of dark and light green, 
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denoting overall good but slightly inconsistent yield performance under the given conditions 

(Figure 3-8). 

 
Figure 3-9. Spatial relative yield for a) alfalfa, b) almonds, c) table grapes, and d) processing 

tomatoes with 9 mm (0.35 inch) water depth and EC of 3.5 dS/m using the web tool.  

The tool generated profit maps for alfalfa, almonds, table grapes, and processing 

tomatoes under the irrigation water salinity of 3.5 dS/m and 0.35 inch/d of irrigation water depth. 

In the alfalfa map, profits are shown in varying shades, with some regions indicating potential 

losses (yellow regions) but many areas showing moderate profits (light green). The almond profit 

map displays more pronounced variability, with significant losses (yellow regions) scattered 

extensively across the map, suggesting almonds may not be as profitable under these conditions 

in some locations. The grape profit map shows a mix of high-profit areas (dark green) with some 

patches indicating losses or lower profits, implying that grapes have the potential to be highly 

profitable but may also be susceptible to losses under less-than-ideal conditions. The tomato 

profit map exhibits a combination of profitable (green) and less profitable areas (yellow), with an 
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overall indication of moderate profitability and fewer areas of loss compared to almonds, yet not 

as high profits as seen in the optimal alfalfa and grape regions (Figure 3-9). 

 
Figure 3-10: Spatial profits for a) alfalfa, b) almonds, c) table grapes, and d) processing 

tomatoes with 9 mm (0.35 inch) water depth and EC of 3.5 dS/m using the web tool. 

Discussion 

The resilience of alfalfa to salinity (Grieve et al., 2012), with a marginal yield decline at 

the highest electrical conductivity (EC) values, positions it as a strategic crop for areas prone to 

high salinity levels. Alfalfa’s consistent profitability across a wide range of EC levels further 

cements its viability as a reliable agricultural option in saline environments. Conversely, 

almonds, with significant yield reduction in high salinity conditions (Prgomet et al., 2020) and a 

narrow window of profitability contingent on low salinity levels, present a higher risk yet 

potentially high-reward crop choice (Nicolas et al., 2023).  

The salinity tolerance exhibited by table grapes and processing tomatoes further 

exemplifies the diverse adaptive capacities of crops to salinity stress (Grieve et al., 2012). Table 

grapes showed resilience to increased salinity levels, maintaining profitability even at higher EC 
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values. This resilience underscores the potential of table grapes as a viable crop in areas with 

moderately saline irrigation water. On the other hand, processing tomatoes demonstrated 

significant sensitivity to elevated salinity levels, with yields and profitability sharply decreasing 

as salinity increased (Nicolas et al., 2023). It is essential to consider the critical balance between 

biophysical responses and economic considerations in agricultural production under salinity 

stress (Kaner et al., 2019; Nicolas et al., 2023; Shani et al., 2007).  

Shahrokhnia and Wu (2021) developed a web-based soil salinity leaching management 

model (SALEACH) as an online tool to assist farmers in soil salinity management to sustain 

agricultural production in irrigated croplands. The tool integrates multiple factors such as water 

uptake patterns, soil types, and irrigation systems to estimate leaching requirements, predict soil 

salinity, and determine drainage water salinity, ultimately improving agricultural water 

management. However, the model is based on a steady-state approach for leaching requirement 

calculations, which may not capture dynamic changes in soil salinity as water applications 

increase through the course of the growing season. Also, the model was assessed with other 

model predictions, which may introduce bias compared to the tool presented in this study that 

was validated by Nicolas et al. (2023) with observed data. 

The decision support tool, developed by adapting and extending the Analytical Salt-

WatER model to include a spatial component (Nicolas et al., 2023), offers an innovative solution 

to the complex challenge of irrigation water salinity management. This tool enables growers and 

policymakers to make informed decisions regarding crop selection and irrigation practices by 

predicting yield and profitability as functions of irrigation water salinity and quantity. The spatial 

yield and profitability forecasts provided by the tool, especially with the introduction of a 30 m 

resolution mapping across the Central Valley, is a significant advancement in precision water 
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management, allowing for more targeted salinity management and land repurposing strategies. 

This approach aligns with the work of Quinn and Oster (2021), who stressed the necessity of 

utilizing localized measures to address the complex interplay between soil salinity, water use, 

and agricultural economics. 

Conclusion 

This study presents the development and implementation of a novel decision support web 

tool and offers valuable insights into the strategic management of saline irrigation water to 

optimize agricultural productivity and economic returns. The findings demonstrate that crop-

specific responses to salinity levels are critical in guiding irrigation and crop selection decisions. 

Alfalfa and processing tomatoes, with their higher tolerance to salinity, emerge as viable options 

for cultivation in areas with saline water resources, offering sustained productivity and 

profitability. On the other hand, despite the higher profit potential, the sensitivity of almonds and 

table grapes underscores the necessity for precise salinity management and advanced irrigation 

strategies to mitigate the adverse effects of salinity.  

The decision support tool introduced in this study represents a significant advancement in 

agricultural technology, providing growers, policymakers, and agricultural stakeholders with a 

user-friendly platform to make informed decisions based on real-time data and predictive 

models. By incorporating spatial analysis and yield profitability forecasting, the tool facilitates a 

more nuanced understanding of salinity’s impact across the Central Valley, enabling targeted 

interventions and the optimization of water resources. 

Future research for the refinement and expansion of this decision-support tool is 

essential. Incorporating additional crops, expanding the database of soil types, and integrating 

climate change projections can enhance the tool’s applicability and accuracy. Moreover, 

fostering collaboration among researchers, growers, and technology developers will be vital in 
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ensuring that the tool evolves to meet the changing needs of the agricultural community, 

particularly in the face of increasing water scarcity and salinity challenges in California. The 

Central Valley Irrigation Water Salinity Decision Support Application Web Tool offers a 

promising approach to addressing the complex challenges of salinity management in agriculture. 

By enabling data-driven decision-making, this tool aids in the sustainable optimization of 

irrigation practices, contributing to the resilience and profitability of agriculture in salinity-

affected regions.  
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CHAPTER 4 

EVALUATING THE EFFECTIVENESS OF CONSERVATION PRACTICES ON REDUCING 

NITRATE LEACHING IN PROCESSING TOMATO USING THE APEX MODEL 

Abstract 

Nitrate contamination from non-point sources significantly threatens groundwater 

resources in agriculturally intensive regions globally. In response, the State Water Resources 

Control Board of California implemented the Central Valley-wide Salt and Nitrate Management 

Plan (CV-SNMP) with the aim of mitigating nitrate leaching into the groundwater. This study 

employs the Agricultural Policy/Environmental eXtender (APEX) model to evaluate the 

effectiveness of various conservation practices in a processing tomato field in reducing nitrate 

leaching below the root zone and to generate a spatial variability map for nitrogen leaching. The 

conservation practices assessed include the utilization of micro-irrigation technologies, nitrogen 

credits (NC), winter cover crops, and high-frequency-low concentration (HLFC) fertigation. 

Calibration results showed R2 of 0.97, 0.75, 0.84, and 0.62 for yield, evapotranspiration (ET), N 

uptake, and N leaching, respectively. The RMSE was 1600 kg/ha, 14.8 mm, 38.0 kg/ha, and 35.5 

kg/ha for yield, ET, N uptake, and N leaching, respectively. Validation was performed using 

yield for adjacent counties, and R2 was 0.85 and 0.60 for Yolo and Solano counties, respectively. 

The RMSE was 2500 kg/ha and 7070 kg/ha for the two counties, respectively counties. Polaris 

grided soil data was successfully integrated into the model to develop variable field N leaching 

and maps. HLFC was predicted to be the most efficient conservation practice by reducing N 

leaching by 98%. Drip irrigation reduced N leaching by 90% and more than 95% when 

combined with cover crops and irrigation NC. Furrow irrigation was predicted as the less 

effective conservation practice with the highest averaged N leaching but showed improvement 

with the application of N credits and winter cover crops. APEX model is a potent tool for 

developing field-scale nitrogen leaching variability maps in row-crop agriculture and identifying 



 

62 

conservation practices that effectively decrease nitrate leaching below the root zone without 

adversely affecting yield. 

 

Introduction 

Nitrogen (N) fertilizer is indispensable in modern agriculture for crop growth, 

development, and food security. The application of N fertilizer can significantly improve both 

the yield and quality of agricultural products (E. Liu et al., 2010; Sete et al., 2019). However, 

overuse and improper management of N fertilizer in agricultural production have triggered the 

occurrence of excessive levels of nitrates in surface and groundwater (Adelana et al., 2020; Ha et 

al., 2019; Rosov et al., 2020), which threatens natural resources and human health (Chaudhuri 

and Ale, 2014; Shaji et al., 2018) and disturb the environmental balance (Gallardo et al., 2020; 

Harter, 2009). Countries and worldwide institutions have taken measures to reduce nitrate 

pollution of groundwater. The World Health Organization (WHO) set drinking water’s nitrate-

nitrogen content at 50 mg/L. The Environmental Protection Agency (EPA) has set the limit of 

nitrate-nitrogen concentration in groundwater at 10 mg/L (U.S. EPA, 1995). The increasing rate 

of nitrate levels leaching groundwater in parts of the United States, including the Central Valley 

of California, poses a significant environmental and health challenge to meet the standards set by 

the EPA (Boyle et al., 2012; Burow et al., 2012). 

 Agricultural practices primarily contribute to groundwater contamination, where excess 

nitrogen-based fertilizers leach out of the root zone and end up in the groundwater (Dubrovsky et 

al., 2010). Over the past years, the volume of nitrogen fertilizer used in the State has expanded 

dramatically. Between 1980 and 2001, the annual sales exceeded 600,000 tons of nitrogen in 

some years (Reid et al., 2005). More than 740,000 tons of nitrogen fertilizer were applied to 

roughly 6.7 million acres of irrigated farmland in California, and significant increases in nitrogen 
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fertilizer application rates have been observed in Sacramento Valley, San Joaquin Basin, and 

Tulare Basin of the CV for the recent decades (Harter et al., 2017). Such over-application has 

been associated with N leaching out of the root zone, triggering groundwater pollution and 

various human health concerns (Galloway et al., 2003). More than 50 years of trade-offs of 

nitrogen fertilizer use and the negative impacts on the environment have been documented in 

California (Harding et al., 1963; Rosenstock et al., 2014), and regulations have been 

implemented to mitigate the N leaching and improve groundwater quality while maintaining a 

prosperous agricultural production (CV-SALTS, 2023). The application of such regulations 

requires the development of efficient tools, such as models to predict N leaching at field and 

regional scales and evaluate conservation practices that reduce N leaching in agricultural fields. 

Many studies have investigated the impacts of nitrogen leaching in agricultural 

production systems (Cui et al., 2020; Shrestha and Luo, 2018). Dzurella et al. (2015) mapped the 

risk of N leaching in irrigated fields in the Central Valley and found that 31% of the analyzed 

area is at high risk of N leaching loss if not managed carefully. Delgado et al. (2000) highlighted 

the importance of adapting best management practices (BMPs) to specific crop characteristics for 

effective nitrogen management on residual soil N for the root zones of crops with varying 

rooting depths. Management practices such as irrigation systems, crop rotations, and cover crops 

are pivotal in reducing N leaching depending on the soil conditions, climate, and cropping 

systems (De Notaris et al., 2018; Dzurella et al., 2015). This suggests the importance of applying 

conservation practices and the critical need to evaluate their effectiveness in mitigating N 

leaching. Also, very few studies highlight other conservation practices, such as N credits, and the 

need to generate field maps of N leaching that can further guide site-specific fertilizer and 

irrigation water applications. 
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Various models such as Decision Support System for Agrotechnology Transfer 

(DSSAT)(Jones et al., 1998), Soil and Water Assessment Tool (SWAT)(Aloui et al., 2023), 

AqYield-N (Tribouillois et al., 2020) and Agricultural Policy/Environmental eXtender (APEX) 

(Gassman et al., 2010) been utilized to evaluate the effectiveness of conservation practices in 

reducing nitrogen leaching in agricultural systems. The models range from field-scale to more 

extensive watershed-level assessment simulations. SWAT has been widely used to simulate the 

impacts of different irrigation, cropping, and fertilization practices on total nitrogen loss and 

assess the ecological and economic impacts of various management practices at large scales 

(Aloui et al., 2023; Sheikhzeinoddin and Esmaeili, 2017). AqYield-N is a simple model designed 

to predict nitrate leaching from crop fields over large areas and considers major nitrogen flows in 

the soil-plant system, including mineralization, plant uptake, and leaching (Tribouillois et al., 

2020). DSSAT has been used to simulate the nitrogen cycle in different crop rotations under 

various conditions, including water supply and fertilization practices, to assess the impact of 

cover crop rotations on nitrogen leaching and to study the effect of best management practices on 

irrigation and nitrogen losses (Salmerón et al., 2014). APEX is a multi-field version of EPIC 

developed for assessing environmental problems associated with various agricultural systems, 

and it has been used for a variety of environmental assessments, particularly at the farm and 

small watershed scales (Gassman et al., 2004).  

DSSAT focuses more on crop-specific simulations in the field (Liu et al., 2011), while 

AqYield-N, with its simplicity, is particularly useful for quick estimations of nitrogen leaching 

under different management practices (Tribouillois et al., 2020). SWAT and APEX are better 

suited for watershed analyses (Santhi et al., 2014). However, APEX is particularly effective for 

field-scale simulations, making it ideal for simulating the impacts of different conservation 
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practices, including those related to sustainability, erosion, economics, water supply and quality, 

soil health, plant competition, weather, and pests (Gassman et al., 2010; Kim et al., 2020). APEX 

considers the fields or smaller watersheds as subareas and selects the dominant soil type or crop 

as unique for the subarea, which limits the model in generating maps showing spatial variability 

in nitrate leaching or yield.  

The objectives of this study were to: (1) integrate the APEX model high-resolution 

gridded soil data to generate a field-scale N leaching map, and (2) use APEX to simulate the 

effectiveness of different conservation practices, including Irrigation N credits and high-

frequency low-concentration fertigation in reducing N leaching out of the rootzone and ( 

Method 

Site description 

The study site is a 34-hectare field crop located in Yolo County, California (Figure 4-1). 

The soil at the site is classified as Capay silty clay according to the soil series of the National 

Resources Conservation Service - United States Department of Agriculture (NRCS-USDA). The 

study site has warm summers with temperatures ranging from 29°C to 38°C and mild winters 

with temperatures often between 2°C and 7°C. The region receives about 430 to 530 millimeters 

of rainfall annually, predominantly during winter. Relative humidity in the region varies, usually 

staying between 30% to 60%. Esparto also benefits from abundant sunlight year-round and 

experiences mild to moderate wind speeds. Processing tomatoes has been growing since 2016 

with rotation with other crops such as triticale and squash. Processing tomatoes are usually 

irrigated and fertilized below the surface using drip lines. These drip lines are installed 20 cm 

beneath the soil surface, positioned in the center of the planting beds, with emitters every 30 cm 

dispensing water at a rate of 0.6 liters per hour.  
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Figure 4-11: Field site in Esparto, California.  

APEX model  

The Agricultural Policy/Environmental eXtender (APEX) is a distributed, continuous, and daily 

time-step model that simulates hydrological and water quality dynamics at field and watershed 
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scales. The model has several components: weather, hydrology, crop growth, pesticides, nutrient 

cycles, and management practices (Gassman et al., 2010).  

Crop growth  

In the APEX model, the dry matter accumulation (DDM) is quantified to simulate how various 

environmental factors, management practices, and plant characteristics influence crop biomass 

over the growing season (Equation 4-1). Dry matter accumulation (DDM) in crops is a central 

aspect of agricultural modeling as it directly relates to the growth and yield of a crop. 

𝐷𝐷𝑀 = 001 ∗ 𝑃𝐴𝑅 ∗ (𝑅𝑈𝐸 −𝑊𝐴𝑉𝑃 ∗ 𝑋1) 
 

(4-1) 

where 𝐷𝐷𝑀 is the daily dry matter accumulation (tons/ha), 𝑃𝐴𝑅 is the photosynthetically 

active radiation (𝑀𝐽.𝑚−2. 𝑑𝑎𝑦−1) that represents the portion of sunlight (𝑀𝐽.𝑚−2. 𝑑𝑎𝑦−1) that 

plants use for photosynthesis, 𝑅𝑈𝐸 is the radiation use efficiency, which reflects the crop's 

ability to convert absorbed light into biomass, 𝑊𝐴𝑉𝑃 is a crop parameter that adjusts RUE based 

on water availability or vapor pressure deficit, reflecting the impact of water stress on the plant's 

ability to use radiation efficiently, and 𝑋1 that adjusts RUE further based on environmental 

stresses, such as temperature extremes or additional water-related stresses. The 

photosynthetically active radiation (𝑃𝐴𝑅) is described in Equation 4-2. 

𝑃𝐴𝑅 = 0.5 ∗ 𝑅𝐴 ∗ (1 − 𝑒(0.65−𝑳𝑨𝑰)) 
 

(4-2) 

where 𝑅𝐴 is solar radiation (𝑀𝐽 . 𝑚−2. 𝑑𝑎𝑦−1) and 𝐿𝐴𝐼 is leaf area index that represents 

the total area of leaves per unit area of ground (Equation 4-3).  

𝐿𝐴𝐼 (𝑖) = 𝐿𝐴𝐼0(𝑖) + 𝑑𝐻𝑈𝐹(𝑖) ∗ 𝑋𝐿𝐴𝐼(𝑖) ∗ √𝑅𝐸𝐺(𝑖) ∗
𝐿𝐴𝐼0(𝑖)

𝑇𝐿𝐴𝐼
 (4-3) 

where 𝐿𝐴𝐼0 and 𝐿𝐴𝐼 are the leaf area index values at the beginning and end of the day, 

𝑋𝐿𝐴𝐼 is the maximum leaf area index, 𝑇𝐿𝐴𝐼 is the total leaf area of all crops growing at the 
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beginning of the day, 𝑑𝐻𝑈𝐹 is the daily change in the heat unit factor, and 𝑅𝐸𝐺 is the value 

minimum crop stress factor. 

Water movement 

The model simulates water movement using storage routing, where water flows from a 

soil layer when the soil water content exceeds field capacity. The flow from one layer to another 

is described in Equations 4-4 and 4-5: 

𝑄 =
𝐾𝑠 ∗ 𝐴 ∗ (ℎ0 − ℎ𝑛+1)

𝑑
  

(4-4) 

where 𝑄 is the flow rate (mm.day-1), is the hydraulic conductivity (mm/hr),  A is the 

cross-sectional area of flow (m²), 𝑑 is the distance between layers (m), hn and hn + 1 are the 

hydraulic heads at layers n and n + 1, respectively (m). Equation 4-5 describes the change in soil 

water content (SWC) over time, considering soil field capacity (FC) and the travel time (TT) for 

water through a soil layer. 

𝑆𝑊𝐶1 = (𝑆𝑊𝐶0 − 𝐹𝐶) 𝑒𝑥𝑝
(−
𝑑𝑡
𝑇𝑇
)+𝐹𝐶  

 

(4-5) 

where 𝑆𝑊𝐶1 is the soil water contents at the end of the time interval, 𝑆𝑊𝐶0 is soil water 

contents at the start of the time interval, 𝐹𝐶 is field capacity, 𝑇𝑇 is travel time through the soil 

layer (hours), and 𝑑𝑡 is the time steps (e.g., daily). 

Nitrate leaching  

The leaching of nitrates is modeled considering the nitrate concentration in the soil water and the 

amount of water percolating past the root zone (Equation 4-6). 

𝑄𝑁𝑂3 = 𝑄𝑝𝑒𝑟𝑐 ∗  𝐶𝑁𝑂3  
 

(4-7) 

where 𝑄𝑝𝑒𝑟𝑐 is the percolation water (mm/day) and 𝐶𝑁𝑂3 is the nitrate-nitrogen 

concentration in the soil water (kg/mm). The amount of nitrate available in the soil influences 

both leaching and denitrification. 
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Denitrification 

Denitrification is a crucial microbial process in the nitrogen cycle, converting nitrate (NO3) to 

gaseous forms of nitrogen, such as nitrogen gas (N2) and nitrous oxide (N2O). This process is 

influenced by various soil factors, including oxygen levels, organic carbon availability, and soil 

moisture. The APEX model incorporates a process-based method for denitrification, which 

allows for a detailed representation of how these factors interact to affect nitrogen gas emissions. 

This method relies on soil temperature, moisture content, and organic matter to simulate the 

conditions under which denitrification occurs, providing a dynamic and responsive model to 

predict nitrogen losses in agricultural systems. The denitrification rate (DN) in the APEX model 

is calculated using the following equation (Equation 4-8): 

DN = WNO3 ∗ (1 − exp(−1.4 ∗ TFN ∗ WOC) ; SWF > 0.95 

 
 

(4-8) 

𝐷𝑁 = 0; SWF < 0.95 
 

 

where 𝐷𝑁 is the denitrification rate (kg/ha),  𝑊𝑁𝑂3is the NO3-N content in a soil layer 

(kg/ha), 𝑊𝑂𝐶 is the organic carbon content (%), SWF is the soil water factor, and 𝑇𝐹𝑁 is the 

nutrient cycling temperature factor, expressed in Equation 4-9: 

TFN = 
STMP

(STMP + exp (5.059 − 0.2504 ∗ STMP)
 

(4-9) 

where STMP represents the soil temperature in °C at the center of a soil layer. The soil 

water factor (SWF) is expressed in Equations 4-10 and 4-11. 

𝑆𝑊𝐹 = 0.1 ∗ (
𝑆𝑇

𝑊𝑃
)
2

; 𝑆𝑇 < 𝑊𝑃 
(4-10) 

 

𝑆𝑊𝐹 = 0.1 + 0.9 ∗ √
𝑆𝑇 −𝑊𝑃

𝐹𝐶 −𝑊𝑃
, 𝑖𝑓 𝑆𝑇 > 𝑊𝑃 

(4-11) 
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where 𝑆𝑇 is the soil water content (m/m), 𝑊𝑃 is the wilting point (m/m), and 𝐹𝐶 is the 

field capacity (m/m) 

Carbon and nitrogen cycling and transformations. 

Litter Allocation and Potential C and N Transformations 

Carbon and nitrogen cycling in soil involves complex interactions and transformations 

that are essential for maintaining soil fertility and ecosystem health. APEX uses the soil organic 

matter model developed in the Environmental Policy Integrated Climate (EPIC) model to 

simulate the coupled cycling of carbon (C) and nitrogen (N) in soil (Williams et al., 2015). The 

EPIC soil organic matter model adopts the methodology of the Century model by dividing the 

carbon and nitrogen components of organic matter into three distinct categories: microbial (or 

active), slow, and inert (Izaurralde et al., 2006). These compartments differ in size, function, and 

turnover times, ranging from days to centuries. Organic residues that are introduced to the soil 

can be divided into two categories, metabolic and structural, based on their nitrogen and lignin 

levels. 

In the APEX model, litter allocation and potential carbon (C) and nitrogen (N) 

transformations are essential for simulating nutrient cycling in soils. Organic residues added to 

the soil are divided into metabolic (LM) and structural (LS) components, with the fractions of 

metabolic (LMF) and structural litter (LSF) determined based on the nitrogen and lignin content. 

All lignin present in the standing dead (STDL) is transferred to the structural litter. The potential 

transformations of carbon and nitrogen are calculated using substrate-specific rate constants, 

temperature, and water content, with additional consideration of lignin content and soil texture 

influencing some transformations. For instance, the calculation of standing dead nitrogen 

equivalent (STDNE) incorporates the standing dead nitrogen (STDN) and a fraction (Sf) of the 
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available nitrate (WNO3) and ammonium (WNH4), with consideration of the C/N ratio of 

standing dead crop residue (CNR). 

STDNE = {
STDN + Sf ∗ (WNO3 +WNH4)      if CNR ≥ 10

 
STDN                                                    if CNR < 10

 

 

(4-12) 

 

The calculation of the potential transformation of carbon (C) in structural litter (LSCTP) on the 

surface and subsurface is determined by several factors. These factors include the carbon content 

in the structural litter (LSC) (Equation 4-13), the rate of potential transformation of structural 

litter under optimal conditions (LSR), the lignin fraction of the structural litter (XLSLF), and a 

combined factor (CS) that accounts for the effects of temperature (TFN), soil water content 

(SWF), oxygen (OX), and tillage (TBP) on biological processes (Izaurralde et al., 2006; 

Williams et al., 2015). The combined carbon saturation (CS) factor in the Century model differs 

from the temperature and water controls on decomposition. 

LSCTP =  LSC ∗  LSR ∗  XLSLF ∗  CS (4-13) 

XLSLF =  exp(−3 ∗  LSLF) (4-14) 

Actual C and N transformations 

The calculations of actual C and N transformations are determined by the nitrogen supply 

provided by each potential transformation. The demand for nitrogen is determined by the carbon 

transformation potential of the source compartment and the C/N ratio of the receiving 

compartment. The nitrogen-to-carbon (N/C) ratios of receiving compartments exhibit variation 

depending on the substrate and soil conditions. The N/C ratio of biomass generated from surface 

litter (NCBM) is determined by a linear equation that relates the nitrogen content (Nf = 100 x 

STDNE/STD) of the degraded material (Williams et al., 2015). 
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NCBM =  
1.0

(−5.0251 ∗  𝑁𝑓 + 20.05)
;  2.0 ≥ 𝑁𝑓 ≥ 0.01 

(4-13) 

 

Model construction 

The model was set up to represent the management and the characteristics of the land. The 

ArcAPEX tool (Tuppad et al., 2009) was used through ArcMap software (Esri, V10.7) to 

delineate a subbasin where the field is located. California land use (California Department of 

Water Resources, 2022) and soil from the United States Department of Agriculture (USDA) 

State Soil Geographic (STATSGO) database were used to characterize the most dominant land 

use and soil type within a subarea. Weather data, including maximum and minimum temperature, 

precipitation, solar radiation, relative humidity, and wind speed, were obtained from the 

California Irrigation Management Information System(CIMIS). Following the model setup with 

ArcAPEX for the subarea, the APEXeditor (Leyton, 2019a) was used to downscale the model 

and run it for the field (Figure 4-2). The APEXeditor, created with Visual Basic for Applications 

(VBA) within Excel, provides a user-friendly graphical interface for the APEX model, serving as 

an alternative to programs like WinAPEX or ArcAPEX that require additional setup or licenses. 

The APEXeditor allows straightforward editing, composing, and running of the APEX model 

inputs. 
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Figure 4-12. Model setup using ArcAPEX and APEXeditor. a) Subarea with land use and stream 

in the ArcAPEX tool; b) Field study with processing tomatoes; and c) Interface of the 

APEXeditor used to run the model. 

 

Sensitivity analysis and model performance evaluation 

The Sobol method global was used for sensitivity analysis using the auto-calibration and 

uncertainty estimator (APEX-CUTE) software (Wang et al., 2014; Wang and Jeong, 2016). 

Sobol’s method is a variance-based sensitivity analysis technique that provides two main types 

of sensitivity indices: the first-order sensitivity index (S1) and the total sensitivity index (ST). 

These indices help quantify the contribution of each input variable to the output variability in a 

model. The first-order index, S1, measures the direct contribution of each individual input 
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parameter to the output variance, ignoring interactions with other inputs. This is useful for 

identifying which parameters are most influential when they act alone. 

In contrast, the total sensitivity index, ST, accounts for the contribution to the output 

variance by an input parameter both individually and through its interactions with all other input 

parameters. This makes ST a more comprehensive measure, particularly important in models 

where interactions between parameters significantly affect the output. The difference between S1 

and ST for any given parameter indicates the extent of its interactions with other parameters. 

Large differences suggest that interactions are significant and should be considered in the model 

analysis. Implementing Sobol’s method involves computational effort, as it requires a number of 

model simulations based on the formula N=2*n (P+1)), where 𝑁 is the total number of model 

executions, 𝑛 is the sample size per input, and P is the number of input factors. For reliable 

results, Saltelli et al. (2005) recommend using a sample size n between 500 and 1000. In thus 

study, n=550  was used. 

APEX-CUTE, which is part of the APEX model, is designed to simplify the processes of 

uncertainty estimation and calibration through the use of an intuitive interface. APEX-CUTE 

compares the model outputs on daily, monthly, or annual scales with field data. However, this 

study's calibration data consisted of irregular, event-based measurements incompatible with the 

regular intervals for which APEX-CUTE is designed. Therefore, manual calibration was used 

instead. The model was calibrated for Yield, N leaching, N uptake, and evapotranspiration using 

observed data for seasons 2016, 2019, and 2021. N leaching and N uptake came from a mass 

balance approach. The model was validated using ten years of reported processing tomato yield 

in Yolo and Solano counties.  
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Field Scale N leaching variability 

Assuming soil type influences N leaching, the Probabilistic Remapping of SSURGO 

(POLARIS) soil properties with 30*30-meter resolution was used to provide soil input for the 

models to develop the N leaching maps. Chaney et al. (2019) provide detailed information about 

the POLARIS soil series. Soil POLARIS was obtained using Google Earth Engine (GEE) and 

then processed using Python programming script. Soil variables, including hydraulic 

conductivity, soil texture (clay, sand, and silt), organic carbon, and pH, were extracted from 

individual raster pixels at each depth during the execution of the script. The extracted data was 

then stored in a.SOL file, which the model subsequently reads. At the end of each run, the script 

selects the value of the targeted model output and assigns it to a pixel (respective to the input 

pixel). Then, all pixels were stitched together based on the gridded soil input to provide the raster 

pam for the targeted model output value (Figure 4-3). 

 
Figure 4-13. Diagram showing the workflow of integrating the gridded soil data in the APEX 

model to generate field scale N leaching variability. 

Conservation practices simulation 

In California, the fertilization strategy for processing tomatoes varies between furrow-

irrigated and drip-irrigated fields, particularly in applying nitrogen fertilizer. In furrow-irrigated 
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fields, nitrogen is typically applied once in a side-dressing (Krusekopf et al., 2002). For drip-

irrigated fields, multiple fertigation applications allow for a higher nitrogen rate, catering to the 

greater yield potential (Hartz and Bottoms, 2009; Miyao et al., 2020). The seasonal nitrogen (N) 

application rate by growers typically ranges between 140 to 280 kg of N per hectare. The 

University of California Extension researcher suggests that maximum tomato yields can be 

achieved with approximately 110 to 170 kg of N per hectare (Hartz et al., 2008). A seasonal 

application rate of 170 kg of N per hectare was considered for model simulations with the 

validated APEX model to evaluate the long-term effects of management practices on nitrate 

leaching. Conservation practices, such as micro-irrigation technologies, irrigation nitrogen (N) 

credits, High-Frequency Low Concentration Fertigation (HFLC), and winter cover crops, were 

simulated over a period of 30 years to identify best conservation practices that reduce nitrate 

leaching below the root zone.  

Micro-irrigation technologies 

The APEX model was configured to replicate the agricultural setting of the field, 

incorporating parameters specific to irrigation systems. Furrow and drip are the main irrigation 

systems that have been used in California for growing processing tomatoes (Miyao et al., 2020). 

In the scope of this study, we simulated the influence of the irrigation systems on N leaching out 

of the root zone with and without N credits consideration. We simulated subsurface drip 

irrigation considering the drip lines at 25 cm depth. 

Irrigation nitrogen credits (NC) 

Irrigation Nitrogen Credits is a critical sustainable agricultural practice, particularly in 

regions like California, where irrigation is the backbone of crop production. This practice 

involves considering the nitrogen sources already present in the environment, which includes soil 

residual nitrate, nitrogen mineralized from organic materials (soil organic matter, plant residues, 
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manure, and compost), and nitrate in irrigation water. Irrigation water, particularly well water, 

often contains nitrogen in the form of nitrate (Fertilizer Research and Education Program-

FREP). The N concentrations in irrigation water were removed from the total application rate. 

For the simulation of irrigation nitrogen (N) credits, we parameterized the model to account for 

the nitrogen present in the irrigation water, thus allowing us to monitor the use efficiency of 

nitrogen and its potential leaching into groundwater. In the Central Valley, the NO3-N 

concentrations in the irrigation water can exceed 15 ppm. In the study location, the measured 

NO3-N concentration was 12 ppm. The irrigation water was set to 500 mm.  

Winter cover crops 

The use of winter cover crops is an essential conservation practice in sustainable 

agriculture (Kladivko et al., 2014; Koudahe et al., 2022). Winter cover crops, such as legumes, 

grasses, or brassicas, during the non-growing season can be beneficial by absorbing residual 

nitrogen in the soil, preventing it from leaching into groundwater (Dabney et al., 2001). Winter 

cover crops contribute significantly to soil health, aid in managing water resources, and support 

biodiversity, making them vital components in the pursuit of sustainable and resilient agricultural 

systems. In the study site, the grower used to grow triticale after harvesting and processing 

tomatoes. For model simulations, triticale was used to evaluate the effect of cover crops in 

reducing N leaching out of the root zone.  

High-Frequency Low-Concentration 

High-Frequency Low-Concentration (HFLC) Fertigation is an advanced agricultural 

technique where water and nutrients, particularly nitrogen, are applied more frequently and in 

lower concentrations compared to traditional fertilization methods (Cui et al., 2020; Lebese et 

al., 2014). The fertilizers are administered often – daily or several times a week – which aligns 

closely with the nutrient uptake patterns of the crop. The ‘low concentration’ aspect involves 
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maintaining reduced nutrient levels, especially nitrogen, in each application, providing a steady, 

manageable supply to the plants. The frequent application of nutrients in small amounts aligns 

better with the plant’s natural nutrient uptake rhythm, reducing the chances of excess nitrogen 

being left in the soil to leach into groundwater, a significant concern in California’s agricultural 

regions. The HFLC practices were replicated by adjusting the irrigation scheduling parameters 

within APEX to model more frequent but smaller irrigation events, aiming to reduce water 

runoff and deep percolation.  

Results 

Sensitivity analysis and model performance 

In the Sobol analysis conducted with APEX-CUTE, several key parameters were 

identified as pivotal influencers in predicted yield, nitrogen, and water balance. For yield, 

parameters such as the harvest index (HI) and daily leaf area index (DLAI) were identified as the 

most influential on yield due to their highest total sensitivity indices (SI_Total). The high 

SI_Total for HI suggests that it is a crucial driver of yield, with its impact being both direct, as 

evidenced by its significant first-order sensitivity index (SI_First), and through interactions with 

other factors. DLAI follows in importance, indicating its substantial role, though to a lesser 

extent than HI, with its influence extending beyond direct effects to include interactions within 

the system. Other parameters like PARM97, DMLA, and WA also show notable influences on 

yield, mainly through interactions within the system, suggesting that their impacts are nuanced 

and involve complex interdependencies with other system variables (Figure 4-4a). In the analysis 

of N balance, PARM52 was the most critical parameter influencing N balance due to a 

considerable direct influence of PARM52, as indicated by its high SI_First, alongside its 

potential interaction effects with other factors. Other parameters like PARM80, PARM104, and 
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PARM107, though having lower SI_Total values, are still notable, implying their contributions 

to N balance (Figure 4-4b). 

Regarding the water balance, soil evaporation (PARM17) was the most influential 

parameter, indicating its significant role in the model water balance. The Hargreaves PET 

equation exponent (PARM34) also shows considerable influence and interactions. They were 

followed by PARM23 and PARM12, with relatively lower SI_Totals, suggesting a present but 

more modest impact on water balance, further emphasizing the complex interplay of multiple 

factors in the model  (Figure 4-4c). 

 

 
 

Figure 4-14: Sobol sensitivity analyses for Yield, N balance, and Water Balance. The SA was 

implemented through APEX-CUTE. 
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The model, calibrated for yield, evapotranspiration (Eta), nitrogen (N) leaching, and N 

uptake, demonstrated acceptable performance. This was evidenced by R2 with values of 0.97 for 

yield, 0.98 for Eta, 0.99 for N leaching, and 0.88 for N uptake, indicating accurate predictions. 

Furthermore, the RMSE values were low for all parameters: 1.6 ons/ha for yield, 3.7 mm for Eta, 

4.8 kg/ha for N leaching, and 14.1 kg/ha for N uptake, showcasing the model’s precision in 

estimating these variables. For Yolo County, the model validation showed R² and NSE at 0.99, 

indicating high accuracy, with an RMSE of 0.62 tons/ha, demonstrating precise predictions. For 

Solano County, R² and NSE were 0.93, showing strong accuracy but with a higher RMSE of 

2.97 tons/ha, indicating greater prediction errors (Table 4-1). 

Model calibration and validation resulted in acceptable performance in predicting yield, 

evapotranspiration (ET), N leaching, and N uptake. During calibration, the model demonstrated 

acceptable predictive accuracy, evidenced by R² values: 0.97 for yield, 0.75 for Eta, 0.84 for N 

leaching, and 0.62 for N uptake. The RMSE was 1.6 tons/ha for yield, 14.8 mm for Eta, 38 kg/ha 

for N leaching, and 35.5 kg/ha for N uptake. The model performed well in Yolo and Solano 

Counties in the validation phase in predicting yield. For Yolo County, R² and NSE were both 

0.84 with a low RMSE of 2.55 tons/ha for yield. Conversely, Solano County’s results showed 

lesser accuracy with R² and NSE at 0.60 and a higher RMSE of 7.07 tons/ha (Figure 4-5). 

Table 4-4. Model calibration results in the average yield, evapotranspiration, N leaching, and N 

uptake for three years. 

 

Variables  Observed Modeled R2 RMSE nRMSE 

Yield (ton/ha) 116.1 115.2 0.97 1.6 1.3% 

Eta (mm) 546.3 556.6 0.75 14.8 2.7% 

N leaching (kg/ha) 173.9 195.3 0.84 38.0 2.8% 

N uptake (kg/ha) 168.3 193.5 0.62 35.5 21.1% 
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Figure 4-15. Model validation with Yield for Yolo and Solano County. Average county yields 

for Yolo and Solano Counties from 2011 to 2021 were used to validate the model. 

Field-scale N leaching mapping 

A field-scale N leaching map was generated with the APEX model, and Figure 4-6 shows 

the nitrogen leaching variability across the agricultural field. A gradient color scale from green to 

red indicates the leaching levels of nitrogen, measured in kilograms per hectare (kg/ha). The 

green areas represent regions with the lowest nitrogen leaching, starting at 80 kg/ha, suggesting 

potentially better nitrogen retention or uptake by crops. In contrast, the red zones denote areas 

with the highest nitrogen leaching, peaking at 140 kg/ha, which could be attributed to factors 

such as over-fertilization, reduced plant uptake, or possibly poorer soil structures.  
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Figure 4-16. Spatial variability N leaching (kg/ha) at field scale. Colors go from green to red. 

Green colors indicate low N leaching rates, while red indicates high leaching rates. 

Conservation practices 

The model results in evaluating the efficacy of different conservation practices for 

reducing nitrogen (N) leaching, which encompasses traditional and modern irrigation methods, 

alongside N management strategies such as Nitrogen Credits (NC) and winter cover crops 

(Figure 4-7). The mean N leaching associated with Furrow irrigation was 153.23 kg/ha. 

Integrating Nitrogen Credits with Furrow irrigation (Furrow + NC) demonstrated improvement, 

reducing the mean N leaching to 138.96 kg/ha. Conversely, Drip irrigation outperformed Furrow 

irrigation, with a mean N leaching of 7.83 kg/ha. Adding Nitrogen Credits to Drip irrigation 

(Drip + NC) further optimized nitrogen utilization, lowering the mean N leaching to 5.71 kg/ha. 
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Cover crop, a practice widely used due to soil health and nutrient uptake benefits, triggered a 

lower mean N leaching of 3.53 kg/ha. The addition of crop rotation with nitrogen credits (Cover 

crop + NC) slightly enhanced the mitigation of N leaching, achieving a mean of 2.75 kg/ha. The 

most efficient High-Frequency Low-Concentration (HFLC) Irrigation with the lowest mean N 

leaching (2.32 kg/ha). 

 
Figure 4-17. Effectiveness of conservation practices in reducing N leaching (kg/ha). A) All 

simulated conservation practices are plotted together, and b) Drip, Drip + NC, Cover 

crop, Cover crop +NC, and HFLC are plotted without furrow. 

 

Discussions 

Sensitivity analysis 

Recent advancements in sensitivity analysis have significantly contributed to the 

understanding of agricultural systems, highlighting the complex interplay between various 

parameters affecting yield, nitrogen (N) balance, and water balance (Kim et al., 2021; 
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Rathnappriya et al., 2022). The impact of the harvest index (HI) and daily leaf area index (DLAI) 

on yield has been increasingly recognized. An increase in HI is crucial for higher yield (Duan et 

al., 2018) as HI is an essential determinant of crop productivity, underscoring the potential of 

genetic improvements to enhance yield (Asefa, 2019). LAI is vital for assessing a plant’s 

capacity for light interception, photosynthesis, and, consequently, its contribution to crop yield. 

Simulations suggest that maintaining an LAI of  4 m²/m² could lead to a potential yield increase 

of 4% (Heuvelink et al., 2005). PARM52, identified as the exponential coefficient within the 

equation that models the impact of tillage on residue decay rate, plays a critical role in N balance 

simulations by quantitatively expressing how tillage practices influence the rate at which crop 

residues break down in the soil (Maharjan et al., 2018; Sainju, 2017). The relevance of other 

parameters like PARM80, PARM104, and PARM107, despite lower SI_Total values. This 

indicates their subtle yet significant contributions to N balance and the need to understand both 

major and minor factors in N cycling (Sainju, 2017). Soil evaporation (PARM17) and the 

Hargreaves PET equation exponent (PARM34) were identified as significant factors in water 

balance. The significance of soil evaporation and the Hargreaves PET equation exponent in the 

water balance are critical, as Milly (1994) emphasized the role of these factors in the annual 

water balance, while Graf et al. (2014) highlighted their influence on the relations between water 

budget elements and soil water content.  

Model performance 

The APEX model has been shown to have exceptional predictive accuracy for various 

variables, including yield, Eta, N leaching, and N uptake, as evidenced by high R² and NSE 

values and low RMSE (Senaviratne et al., 2013; Talebizadeh et al., 2018; Timlin et al., 2019). 

These studies have demonstrated the model’s stability and applicability across different areas, 

including the Chesapeake Bay Watershed (Timlin et al., 2019), the upper Bawanghe River 
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watershed in Inner Mongolia, China (X. Wang et al., 2014), and the claypan region (Senaviratne 

et al., 2013). The model’s performance has been further enhanced through the development of an 

auto-calibration tool and a simultaneous calibration approach for evapotranspiration and crop 

yield (Talebizadeh et al., 2018; X. Wang et al., 2014). Other models, such as DSSAT and 

Hydrus, have shown strength in optimizing resource use and minimizing environmental impacts. 

Although showing predicting capabilities, the APEX model performance does exhibit variability, 

particularly in the calibration phase for ETa, N leaching, and N uptake, as well as in different 

counties during the validation phase. This is important to highlight the relevance of continuous 

model refinement and adaptation to specific local conditions to enhance predictive reliability in 

agricultural management practices. 

Field-scale N leaching variability  

Ignoring spatial variability in nutrient status within agricultural fields can lead to both 

economic and environmental consequences, including missed opportunities for optimizing yield 

and unnecessary nutrient losses that can impair soil health as well as groundwater and surface 

water quality (Ersahin, 2001; Stenger et al., 2002). Site-specific prediction could offer a strategic 

approach to address these challenges by tailoring soil and crop management practices to the 

varying conditions found within fields. The APEX model can successfully simulate crop 

production as well as environmental impacts at both field and watershed scales (Kim et al., 2021; 

Mason et al., 2020). However, the model assigns the dominant soil or land use to the conserved 

subarea, which increases uncertainties. The POLARIS soils series (Chaney et al., 2019) provides 

high-resolution grided soil data at different depths, allowing to overcome this limitation in APEX 

by coercing the model to use one cell size (30*30) as subarea and simulate agricultural practices. 

Other studies have investigated spatial variability of nitrate leaching with mechanistic model 

(Ersahin, 2001), simplified water balance (Bruckler et al., 1997) at plot scale and t regional scale 
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using machine learning approaches (Spijker et al., 2021). Nonetheless, both the mechanistic and 

the simplified water balance models were limited in simulating a range of conservation practices 

capable of reducing N leaching. The predictive modeling framework using the Random Forest 

(RF) algorithm generated a large-scale map of N leaching but was limited in sample size due to 

the costly procedure for sampling farms (Spijker et al., 2021). 

Effectiveness of conservation practices 

Micro-irrigation technologies 

The transition from traditional to modern irrigation methods, such as from furrow to drip 

irrigation, offers a significant leap in reducing N leaching by enhancing water and nutrient 

delivery efficiency directly to plant root zones, thus minimizing losses (Lv et al., 2019; Sun et 

al., 2013). Drip irrigation was predicted to decrease N leaching by 95% compared to furrow 

irrigation, similar to the findings of Lv et al. (2019). Drip fertigation can lead to significantly 

higher yields, water productivity (WP), and nitrogen use efficiency (NUE) compared to 

traditional irrigation. The extent of such improvement depends highly on crop types and other 

factors such as climate and management capabilities (Li et al., 2021). 

Irrigation nitrogen credits 

The addition of Nitrogen Credits (NC) to these irrigation systems further refines 

improving nitrogen use efficiency (NUE), demonstrating the synergy between precise water 

application and strategic nitrogen management in substantially lowering N leaching rates 

(Ferguson, 2015). This is important in light of the increasing regulatory pressure on agricultural 

regions, notably California agriculture, to improve nitrogen management to protect groundwater 

quality (Cahn et al., 2017). Agricultural nitrogen pollution requires an integrated society-wide 

solution, and a comprehensive nitrogen credit system can help address this issue by incentivizing 

mitigation efforts from multiple parties along the food chain by acknowledging the 
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responsibilities and limitations of various stakeholders (Gu et al., 2021). Model predictions of 

this study showed that the application of NC would trigger a decrease in N leaching by more 

than 25%. Water quality trading, which involves providing financial rewards to farmers for 

implementing conservation measures on their farms, could be beneficial for treatment plants, 

agricultural producers, and the environment (Lal et al., 2008). 

Winter cover crops 

The implementation of winter cover crops stands out for its soil health and nutrient 

uptake benefits, translating into reduced N leaching (Kladivko et al., 2014). Triticale (as a cover 

crop), in conjunction with irrigation N credit, was predicted to reduce N leaching by more than 

95%. Cover crops have become essential in sustainable agriculture, aiming to protect 

agroecological systems by reducing chemical application and preserving farm natural resources 

while remaining profitable (Abdalla et al., 2019). However, the adoption of cover crops is 

hindered by perceived costs and lack of awareness of their benefit. Research and promotional 

efforts should concentrate on highlighting possible benefits, quantifying and communicating 

potential risks, and improving facilitating infrastructure to support the widespread adoption of 

cover crops  (Arbuckle and Roesch-McNally, 2015). DeVincentis et al. (2020) performed a cost-

benefit analysis to examine the viability of winter cover crops in specialty crop systems in 

California. They found that the long-term profitability of winter cover crops in California is 

contingent upon a multitude of factors, including the cropping system, irrigation conservation, 

accessibility to financial subsidies, and climate change. The evaluation of the economic and 

agronomic impacts of winter cover crops is a complex task because benefits and expenses accrue 

differently over time and with extended planning horizons. Interdisciplinary investigation into 

the trade-offs and synergies between the economic impacts of agricultural services and cover 

crop adoption is necessary to increase the adoption of cover crops. 
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High-Frequency Low-Concentration 

High-frequency Low-concentration (HFLC) fertigation was predicted as the most 

efficient conservation practice, reducing N leaching by 98%. HFLC aligns irrigation and 

fertilization with plant uptake demands to minimize nutrient loss, thus reducing environmental. 

Research focusing on citrus production in central Florida highlighted the importance of careful 

irrigation and fertilizer application management. By using fertigation (15 applications per year) 

and controlled-release fertilizers, NO3-N leaching below the root zone was minimized, 

demonstrating that appropriate management practices can significantly reduce N leaching risks 

(Paramasivam et al., 2001). In an almond orchard in California, fertigation frequency and N-

source (urea ammonium nitrate vs. calcium nitrate + potassium nitrate) significantly influenced 

nitrous oxide (N2O) emissions and nitrate leaching. High-frequency fertigation with nitrogen-

based fertilizers reduced N2O emissions and potentially NO3-N leaching, suggesting the efficacy 

of high-frequency, low-concentration fertigation in improving nitrogen use efficiency and 

reducing environmental impacts. (Wolff et al., 2017). A study on drip-irrigated onions 

demonstrated that fertigation frequency significantly affects NO3-N distribution in the soil 

profile. High-frequency fertigation led to more uniform NO3-N distribution and minimized 

leaching risks, supporting the use of HFLC fertigation as a strategy to enhance nutrient use 

efficiency while mitigating leaching (Rajput and Patel, 2006). 

Barriers to adopting conservation practices 

Despite the clear advantages of these agricultural conservation practices in enhancing 

resource efficiency, protecting the environment, and potentially boosting long-term farm 

profitability, their widespread adoption faces considerable challenges. One of the most daunting 

hurdles is the initial cost, which can be prohibitive for smallholder farmers operating on narrow 

profit margins. The required upfront investments for purchasing new equipment, acquiring seeds 



 

89 

for cover crops, or making necessary modifications to existing irrigation systems necessitate 

external financial incentives or support mechanisms to be feasible. Additionally, the decision of 

farmers to embrace new practices can be influenced by several factors, including their 

knowledge base, perceived risks, prevailing cultural norms, and the extent of adoption among 

their peers. 

As the agricultural sector’s environmental responsibility, especially concerning water 

quality and climate change, gains increasing acknowledgment, various forces are propelling the 

shift towards sustainable practices. These include regulatory pressures, growing consumer 

demand for sustainably produced goods, and the opportunities for market access or premium 

pricing for products certified as sustainably produced. In this evolving landscape, extension 

services, agricultural advisors, and targeted policy instruments are pivotal in narrowing the gap 

between recognizing the benefits of these practices and actualizing their implementation on 

farms. Financial incentives, such as subsidies for equipment purchases or compensation for 

providing ecosystem services, combined with educational initiatives that highlight the long-term 

advantages and practical viability of these practices, are critical for boosting adoption rates. 

Moreover, cultivating a community of practice among farmers to exchange insights, 

achievements, and challenges plays a critical role in alleviating perceived risks and overcoming 

cultural obstacles to change. This comprehensive approach ensures that conservation practices 

not only become more accessible but also more appealing to the farming community, fostering a 

more sustainable and environmentally responsible agricultural landscape. 

Conclusions 

Our study used the APEX model to simulate the effectiveness of conservation practices 

in reducing N leaching and generate a field-scale N leaching variability below the root zone. The 

model was successfully calibrated using collected field experiment data of processing tomatoes 
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and validated with processing tomato yield data from two adjacent California counties. The 

integration of high-resolution gridded soil data within the APEX model facilitated the generation 

of field-scale N leaching maps, providing a better understanding of spatial variability in nitrate 

leaching. This innovation marks a significant advancement in our ability to predict and manage 

the environmental footprint of agricultural fields. Simulation results reveal that HFLC and drip 

irrigation, when combined with nitrogen credits and winter cover crops, can profoundly reduce 

nitrate leaching, thereby enhancing nitrogen use efficiency and reducing N leaching below the 

root zone. This research contributes to the ongoing discourse on sustainable agriculture and 

water resource management, offering evidence-based strategies to balance agricultural 

productivity with environmental conservation. The demonstrated effectiveness of the explored 

conservation practices informs agricultural policies and practices and highlights the critical role 

of precision agriculture in addressing environmental challenges. The study’s insights into the 

APEX model’s applicability across varying agricultural contexts underscore the importance of 

continuous refinement and adaptation of modeling tools. For instance, Bailey et al. (2021) 

integrated the APEX model with the MODFLOW model because APEX application in 

groundwater-driven watersheds is limited due to APEX’s weak groundwater routines. However, 

this integrated modeling framework would require high-resolution soil data to be applicable to 

agricultural fields with no streams. Future research should also focus on encompassing a broader 

range of crops, climatic conditions, and soil types, as well as on the financial cost and social 

barriers, thereby enhancing the generalizability and impact of our findings.  

Furthermore, engaging with stakeholders across the agricultural sector to facilitate the 

adoption of proven conservation practices will be crucial in translating these research outcomes 

into tangible environmental and societal benefits. In essence, our work lays the groundwork for 
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future endeavors aimed at securing the sustainability of water resources through innovative 

agricultural practices. By bridging the gap between scientific research and practical application, 

we can move closer to achieving the vision of a sustainable and resilient agricultural landscape 

that supports both food security and environmental health. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

92 

CHAPTER 5 

EVALUATION OF AN INTEGRATED APEX-RT3D-MODFLOW MODEL AS A FIELD-

SCALE GROUNDWATER PROTECTION FORMULA FOR NITROGEN LEACHING INTO 

GROUNDWATER 

Abstract 

Groundwater contamination due to nitrate leaching from agricultural activities poses 

significant environmental and public health risks. This study evaluates an integrated modeling 

approach that combines the Agricultural Policy/Environmental eXtender (APEX), Reactive 

Transport in 3 Dimensions (RT3D), and the Modular Groundwater Flow Model (MODFLOW) 

to assess and manage nitrate nitrogen (NO3-N) leaching into groundwater at a field scale. 

Applied within a 34-hectare field in California’s Central Valley, the model simulates the effects 

of various conservation practices on nitrate dynamics, incorporating high-resolution spatial data 

for precise modeling. The model accurately predicted nitrate concentrations and 

evapotranspiration, achieving a coefficient of determination (R²) up to 0.95, with Root Mean 

Square Error (RMSE) values as low as 0.43 mm/month for evapotranspiration and varying 

RMSE for nitrate concentration predictions across monitoring sleeves, ranging from 10.40 to 

13.92 mg/L. The study also demonstrated significant reductions in nitrate leaching when 

simulating conservation practices such as winter cover crop and high-frequency low fertigation. 

These results underscore the model’s efficacy in providing actionable insights for regulatory 

compliance and sustainable agricultural practices, aiming to reduce nitrate contamination and 

enhance water quality. This integrated modeling approach offers a significant advancement in 

environmental modeling, equipping stakeholders with a detailed framework for understanding 

and mitigating the impacts of agricultural practices on groundwater quality. 
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Introduction 

Groundwater contamination with nitrate nitrogen (NO3-N) leaching remains a pivotal 

concern for environmental sustainability and public health, especially in agricultural areas where 

the balance between food production and environmental conservation poses complex challenges 

(Hansen et al., 2017; Keeney and Follett, 1991). The Central Valley, characterized by its 

extensive agricultural activities, faces the dual challenge of ensuring water quality while 

supporting the water needs of one of the world’s most productive agricultural regions (Schmid et 

al., 2021). The intensification of agricultural practices, including the application of synthetic 

fertilizers and animal manure, has led to the leaching of nitrate-nitrogen (NO3-N) into the 

groundwater, posing risks to drinking water sources and aquatic ecosystems (Harter et al., 2017) 

and affects human health, including the development of methemoglobinemia in infants and the 

potential association with stomach cancer in adults (Aghapour et al., 2021; Ward et al., 2018). 

Consequently, the U.S. Environmental Protection Agency (EPA) has set a maximum 

contaminant level (MCL) of 10 mg/L of NO3-N in drinking water to safeguard public health 

(U.S. EPA, 1995). NO3-N is highly mobile in soil and groundwater, exhibiting minimal sorption 

capacity in the unsaturated zone and moving through the saturated zone by advection-dispersion 

mechanisms, ultimately reaching streams and rivers through groundwater discharge (Duff and 

Triska, 2000; Wei et al., 2019). This complex challenge calls for innovative approaches to 

assess, manage, and mitigate groundwater contamination with NO3-N while supporting 

agricultural production. 

Watershed models are commonly employed to mimic hydrological processes, water 

yield, and the fate and transport of nutrients, sediments, and other contaminants. (Wei et al., 

2019). These processes are simulated to investigate inquiries concerning the water supply of 

surface water and groundwater resources, the combined use of groundwater and surface water, 
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the management of nutrients, the control of sediment, the control of pesticides, the loading of 

pollutants, and how they are influenced by potential management practices and climate change 

(Bailey et al., 2021). Models such as Soil and Water Assessment Tool (SWAT) and Agricultural 

Policy/Environmental eXtender (APEX ) are prominent for their comprehensive inclusion of 

processes such as crop growth, nutrient cycling in the soil, and the movement of nutrients to 

streams via various pathways like surface runoff, soil lateral flow, and groundwater flow, along 

with in-stream transport (Aloui et al., 2023; Bailey et al., 2016; Gassman et al., 2010; Timlin et 

al., 2019). While SWAT has traditionally been utilized for basin-scale modeling, APEX has been 

applied at the field and small watershed scales, attributed to its detailed crop growth routines and 

nutrient and sediment transport modeling (Kim et al., 2020; Worqlul et al., 2018). However, the 

groundwater modeling features of both SWAT and APEX are somewhat basic and could be 

enhanced by integrating more sophisticated methods. 

The State Water Resources Control Board of California has implemented groundwater 

regulations and Nitrate Control Programs to address nitrate contamination in the Central Valley’s 

groundwater by implementing management practices and policies aimed at restoring and 

protecting groundwater quality and providing safe drinking water (C.A. Water Boards, 2024; 

CV-SALTS, 2023). These challenges have led to the need to develop a groundwater protection 

(GWP) formula for regions of the Central Valley affected by high nitrate concentration in the 

groundwater. Schmid et al. (2021) adapted the SWAT model to develop the Central Valley Soil 

Water Assessment Tool (CV-SWAT) for generating township GWP formulas and values in the 

Central Valley. The CV-SWAT adaptation represents a significant advancement in allowing 

farmers to comply with water board regulations by providing a tool for estimating NO3-N  

leaching at a broader scale. However, more detailed GWP formulas that operate at the field and 
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farm levels are needed. This approach would not only offer additional tools for GWP value 

estimation but would also enhance the accuracy of these estimates, ultimately leading to more 

effective groundwater protection strategies in areas affected by high NO3-N leaching.  

Recent advancements in environmental modeling provide innovative tools to address 

these issues, combining agricultural and hydrological models to assess the impacts of agricultural 

practices on groundwater quality (Jeong and Zhang, 2020). Several models for groundwater 

solute reactive transport, such as Reactive Transport in 3 Dimensions (RT3D) (Clement, 1999) 

and the Modular 3-D Multi-Species Transport model (MT3DMS) (Zheng and Wang, 1999), have 

been adapted to incorporate nitrogen chemical kinetics for regional and watershed scale studies 

(Bailey et al., 2014, 2021; Wei et al., 2019). Furthermore, the Modular Groundwater Flow Model 

(MODFLOW)  and solute transport models were coupled with agricultural systems models such 

as SWAT (Bailey et al., 2016; Wei et al., 2019), HYDRUS (H. Zhang et al., 2020), and APEX 

(Bailey et al., 2021) to simulate nitrate transport and fate in coupled surface-subsurface 

hydrologic systems. However, the APEX model excels in field-level simulation compared to 

SWAT, making it a prime tool for evaluating the effects of various conservation measures to 

mitigate N loading to groundwater at field scale (Gassman et al., 2010; Kim et al., 2020). 

HYDRUS models (1D/2D/3D) have the capability to simulate water and solute fluxes in the deep 

vadose zone at field-scale. However, they generally require complex model parameterizations 

and input variables (H. Zhang et al., 2020) and do not have a crop growth algorithm (Šimůnek et 

al., 2016). Hartmann et al. (2018) implemented a root growth module in HYDRUS to model root 

growth as a function of environmental stresses, but the model was not validated against 

independent data, tested under field conditions, nor considered other environmental stresses that 

may affect root growth. 
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Bailey et al. (2021) have successfully demonstrated the application of the integrated 

APEX-RT3D-MODFLOW model in various watersheds across the United States, showcasing 

the model’s ability to accurately simulate hydrological states and fluxes across diverse climatic 

and hydrological conditions. This integration allows for a comprehensive analysis of how 

different conservation practices, such as nutrient management, cover cropping, and reduced 

tillage, influence NO3-N leaching to groundwater, thus providing invaluable insights for 

developing effective groundwater protection strategies. However, the integrated model is limited 

in applicability in a single field or a subarea because no MODFLOW grid cell can be generated 

without multiple subareas and streams (Nicolas et al., 2024). 

Therefore, this study adapted the APEX-MODFLOW-RT3D in a single field by 

incorporating gridded soil data in the integrated model. The objectives were (1) to demonstrate 

the effectiveness of alternative groundwater protection formulas that quantify the amount of 

NO3-N that loads to the groundwater from an irrigated parcel of land and (2) to identify 

conservation practices that effectively reduce groundwater NO3-N pollution at field scale. 

Methods 

Study site description 

The study site is a 34-ha field located in Yolo County, California. The climate of the area 

is characterized by hot summers, with temperatures typically ranging from 29°C to 38°C, and 

cool winters, where temperatures generally lie between 2°C and 7°C. The average annual rainfall 

in this area is between 430 and 530 mm, primarily occurring in the winter months. The region 

experiences relative humidity levels between 30% and 60%, along with plentiful sunshine 

throughout the year and light to moderate wind conditions. Eleven monitoring wells were 

installed around the field’s eastern, northern, and western edges. Groundwater flow, determined 

from elevation data, is northeastward. Groundwater was previously found at 10 meters deep, and 
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monitoring wells were built at 15 m depth. Crops, such as processing tomatoes, have been grown 

on this site with rotation of other crops, including triticale, sunflower and squash. A deep vadose 

zone monitoring system (VMS) with two flexible sleeves (A & B) was installed at the eastern 

side of the field. Each sleeve was 8.8 meters long and equipped with six time-domain 

reflectometry (FTDR) moisture sensors and six vadose-zone pore water sampling ports (VSP) 

(Figure 5-1). Detailed descriptions and applications of the VMS are provided by Dahan et al. 

(2009) and Turkeltaub et al. (2016). 

 
Figure 5-18. Study site located in Esparto, California. The blue dots are the groundwater 

monitoring wells. 
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Field monitoring for Model validation 

The Vadose Zone Monitoring System (VMS) has a control unit on the ground surface and 

two sleeves buried in the soil. These sleeves, buried at a vertical depth of 6 meters under the 

surface, are designed to measure beneath the area affected by drip irrigation and tillage. Each 

sleeve extends for 8.8 meters and is inclined at a 35° angle, aligning southwest (218°) and 

northwest (320°) for the first and second sleeves, respectively. The sleeves are outfitted with six 

time-domain reflectometry sensors and six sampling ports for vadose zone pore water, arranged 

alternately along their length. NO3-N samples were collected from April to December 2021 with 

the VMS at 6-meter depth and from the monitoring wells at 10-meter depth during the 

processing tomatoes season. The VMS data were used to validate the AMRS model at the deep 

vadose zone at 6 m depth, and wells data were used to validate the model in predicting NO3-N 

concentrations at the shallow groundwater level. An eddy covariance tower was installed to 

collect daily evapotranspiration (mm) during the season and these ET data were also used to 

evaluate the model.  

The coefficient of determination (R2), Root Mean Squared Error (RMSE), and Nash-

Sutcliffe Efficiency (NSE) were used to assess the model performance in predicting 

evapotranspiration (mm), NO3-N concentration (ml/L) at the deep vadose zone and in the 

shallow groundwater. 
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APEX and MODFLOW models overview 

APEX Model 

The APEX model is a distributed, continuous, daily time-step model that can simulate 

hydrologic and water quality processes at various scales, ranging from field to watershed. The 

model has various components such as climate, hydrology, crop growth, nutrient cycling, 

management practices, soil and plant environment control, economic budgeting, and 

subarea/watershed routing. Within the APEX system, the watershed is partitioned into smaller 

subareas. APEX also offers extensive watershed and field management procedures specifically 

designed for agricultural activity (Gassman et al., 2010; Timlin et al., 2019). However, the 

groundwater routines in APEX are rather basic and can be enhanced by including more 

sophisticated methods, such as integration with  MODFLOW (Bailey et al., 2021).  

MODFLOW Model 

MODFLOW is a groundwater model that uses a three-dimensional, physically accurate, 

distributed finite-difference approach to simulate variably saturated subsurface systems. 

MODFLOW-NWT, a solver method introduced recently, addresses the issue of complex non-

linear drying and rewetting of grid cells in unconfined groundwater systems that existed in prior 

versions of the model (Niswonger et al., 2011). The model solves the following conservation of 

mass equations (Equation 5-1) for a representative volume of an unconfined aquifer, considering 

the mass of groundwater. Equation 5-2 represents the initial condition and Equation 5-3 
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represents the upper condition considering the water input (recharge) from the APEX model that 

simulated all the surface processes, including rainfall, irrigation, and management practices. 

Equation 5-4 describes the lateral boundary conditions that depend on the hydraulic head in the 

monitoring wells. The hydraulic head can change over time, reflecting fluctuations due to 

external influences such as neighboring field activities. Equation 5-5 represents the no-flow 

boundary condition at the bottom of the aquifer, assuming no vertical flow crossing the lower 

boundary. 
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 ℎ (𝑥,  𝑦,  𝑡 = 0) = ℎ0(𝑥, 𝑦) (5-2) 

 𝑊(𝑥, 𝑦,  𝑡) = 𝑃𝐴𝑃𝐸𝑋(𝑥, 𝑦,  𝑡) (5-3) 
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𝜕ℎ

𝜕𝑧
    = 0 
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where x, y, and z represent the three spatial dimensions within the aquifer, h denotes the 

groundwater head (L), K is the hydraulic conductivity (L/T), and Ss is for specific storage (1/T). 

The porosity (𝜑) (L3/L3) is considered equivalent to specific yield (Sy) (L3/L3),  Fs is the fraction 

of the saturated cell's thickness, and f(F) is a function of Fs, which is set to 1 according to 

Niswonger et al. (2011). This study concentrates on the interactions between land surface 

hydrologic processes, as simulated by APEX, and the groundwater in underlying unconfined 

aquifers. Equation 5-1 encapsulates a water balance for a specific volume of the aquifer, 

accounting for groundwater movement in and out in the x, y, and z directions, along with sources 
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and sinks such as recharge, represented by W. Storage changes are included on the equation's 

right-hand side.  𝑃𝐴𝑃𝐸𝑋 represent the net recharge provided by the APEX model and ℎ𝑤𝑒𝑙𝑙𝑠 

represents hydraulic heads in the wells. MODFLOW model simulates processes that include 

groundwater recharge, vadose zone percolation, evapotranspiration, pumping, and discharge to 

subsurface drains. However, the application of MODFLOW is restricted in simulating the 

impacts of conservation practices and climate on groundwater and surface water-groundwater 

and interactions because the model does not simulate surface processes such as land-atmosphere 

interactions, nutrient cycling and transport, plant growth, management practices in agricultural 

systems (Bailey et al., 2021).  

Reactive Transport in 3 Dimensions (RT3D) model  

RT3D is a three-dimensional groundwater contaminant and solute transport model that 

simulates advection, dispersion, and chemical interactions of dissolved elements in groundwater 

(Clement et al., 1998). RT3D utilizes groundwater hydraulic head, detailed flow data for each 

cell across the aquifer domain, and groundwater sources and sinks, such as recharge and 

exchanges between groundwater and surface water. These inputs are derived from outputs of a 

linked MODFLOW model to construct the groundwater flow field. The choice of RT3D is 

primarily due to its capability to model the chemical kinetics involving numerous interacting 

species. Under conditions of rigid porous media, linear equilibrium sorption, and saturation, the 

advection-dispersion-reaction (ADR) equations (Equation 5-6) are employed to detail the 

movement and fate of contaminants for each species, referred to as species k. 
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where m is the total number of solutes, Ck is the concentration of the kth species [Mf Lf
−3] 

with f denoting the fluid phase, Dij is the hydrodynamic dispersion coefficient [L2 T−1], v is the 

average seepage velocity [Lb T
−1] with b denoting the bulk phase, ∅ is the soil 

porosity [Lf
3Lb

−3], qs is the volumetric flux of water representing sources and sinks of the species 

[Lf
3 T−1Lb

−3], 𝐶𝑠𝑘is the concentration of the source or sink [Mf Lf
−3], r represents the rate of all 

reactions that occur in the aqueous phase for the kth species [Mf Lf
−3T−1], ρb is the bulk density of 

the porous media [MbLb
−3], and 𝐶𝑘̅ is the concentration of the kth species sorbed on 

solids[Mf Mb
−1]. The concentration C of each solute is calculated at each grid cell of the aquifer 

domain, using the same grid as MODFLOW.  

The system of Advection-Dispersion-Reaction (ADR) equations, with each equation 

corresponding to a different chemical species, is solved for the spatially-variable concentration 

changes using the operator-split (OS) numerical scheme (Yeh and Tripathi, 1989). The identical 

finite difference grid is utilized in this method as in the accompanying MODFLOW model. The 

OS method implicitly simulates the concentration variations caused by advection, dispersion, and 

sources/sinks concurrently by employing linear algebra techniques and an iterative solver. 

Subsequently, the obtained values are transmitted to the chemical reaction subroutine, which 

calculates concentration changes caused by chemical reactions using an ordinary differential 

equation (ODE) solver. The chemical reaction subroutine in the RT3D FORTRAN code can be 

tailored to incorporate several interacting chemical species, with rate laws for reactions given by 

first-order chemical kinetics that include Monod terms. 

 Lee et al. (2006) created a module for RT3D that focused on the conversion of nitrogen, 

specifically nitrification and denitrification. Similarly, Bailey et al. (2015) developed a nitrogen 

module that incorporated the complete nitrogen cycle in the crop-soil-water system in 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-porosity
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/soil-porosity
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agricultural regions. For instance, Equation 5-7 describes the conservation of mass advection–

dispersion-reaction of NO3 and denitrification. These equations integrate various mechanisms 

affecting nitrate transport and transformation in subsurface environments. The advection term 

represents the bulk movement of nitrate with groundwater flow, while the dispersion term 

accounts for the spreading of nitrate due to variations in flow velocities within the porous 

medium (Bear, 1972). The reaction term incorporates denitrification, a process typically 

described by first-order chemical kinetics with Monod terms to account for the dependence on 

substrate concentration and microbial activity (Monod, 1949). This comprehensive modeling 

approach ensures that the equations capture the complex interplay between physical transport 

processes and biochemical reactions, providing a robust framework for predicting nitrate 

behavior in groundwater systems. 
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 𝐶𝑁𝑂3(𝑥, 𝑦,  𝑡 = 0) =  𝐶𝑁𝑂3, 0(𝑥, 𝑦) (5-8) 

 𝐶𝑁𝑂3(𝑥, 𝑦,  𝑧, 𝑡) = 𝐶𝑁𝑂3,  𝐴𝑃𝐸𝑋 𝑟𝑒𝑐ℎ(𝑥,  𝑦,  𝑧, 𝑡) (5-9) 

  𝐶𝑁𝑂3 (𝑥,  𝑦, 𝑧, 𝑡 ) =  𝐶𝑁𝑂3𝑤𝑒𝑙𝑙𝑠 
( 𝑡) (5-10) 

𝜕𝐶𝑁𝑂3
𝜕𝑧

    = 0 (5-11) 

where Equation 5-8 is the initial condition for nitrate concentration, Equation 5-9 

represents the upper boundary condition for nitrate concentration from APEX recharge, and 

Equation 5-10 is the boundary condition for nitrate concentration at monitoring wells located at 

the border of the field and Equation 5-11 represents the no-flux boundary condition for nitrate. 
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Integrated APEX-MODFLOW-RT3D model 

The loose coupling of APEX, MODFLOW, and RT3D (Bailey et al., 2021, 2022) 

facilitates the exchange of data between APEX’s simulation of surface phenomena like runoff, 

evapotranspiration (ET), plant growth, and water and nutrient percolation and MODFLOW’s 

emphasis on underground aspects, such as groundwater storage, water levels, and interactions 

between groundwater and surface water. Specifically, APEX transfers data on soil percolation 

from each subarea to corresponding MODFLOW grid cells within those subareas, aiding in the 

precise modeling of groundwater recharge and movement. 

The integrated APEX-MODFLOW-RT3D-Salt (AMRS) was implemented as a Python 3 

plugin for Quantum Geographic Information System (QGIS)  by Park et al. (2023). The open-

source plugin (APEXMOD) simplifies the preparation of input data, allows for the adjustment of 

simulation settings, and enables the analysis and post-processing of results directly within the 

QGIS interface. The AMRS model requires specific versions of APEX (v1501) and MODFLOW 

(either 2005 or NWT) for input. Although RT3D inputs can be generated using alternative 

software such as GMS, compatibility concerns may develop, especially regarding the absence of 

salinity data. A detailed description, implementation, and use of the APEXMOD plugin is 

provided by Park et al. (2023). 

Model construction 

The ArcAPEX tool (Tuppad et al., 2009) was used with the ArcMap software (Esri, 

V10.7) to define a subbasin that includes the study field. Data such as land use, Polaris grided 

soil, and weather, including maximum and minimum temperatures, precipitation, solar radiation, 

humidity, and wind speeds, were used to set up the APEX model. The APEXeditor (Leyton, 

2019b) was used to run the model for the field study. The APEX outputs were then imported into 

APEXMOD to run the integrated APEX-MODFLOW-RT3D model. The model was linked using 
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the subareas, a DEM, and the monitoring wells. The field was divided into 479 subareas based 

on soil types and a false river network was created to facilitate the linkage of the models (Figure 

5-2). This APEX model was calibrated and validated in Chapter 2. 

 

 
Figure 5-19. Model setup using ArcAPEX, APEXeditor, and APEXMOD. a) Subarea with land 

use and stream in the ArcAPEX tool; b) Field study with processing tomatoes; c) 

Interface of the APEXeditor used to run the model; d) Framework of the integrated 

APEX-MODFLOW-RT3D model. 

Simulation of conservation practices impacts on Groundwater NO3-N concentrations 

Processing tomato farmers in Central Valley use drip and furrow irrigation systems 

(Hartz and Bottoms, 2009; Miyao et al., 2020). Growers normally apply nitrogen (N) to their 

crops at a rate of 140 to 280 kg of N per hectare during the growing season. The APEXMOD 

model was used to assess the long-term impacts of conservation practices on groundwater nitrate 

contamination. Management practices such as drip irrigation and furrow irrigation systems were 

evaluated over a 30-year period.  

Results 

Model performance 

The evapotranspiration (ET) (mm) estimation during the 2021 processing tomato season 

was performed using the APEXMOD model and compared against measurements obtained via 
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the Eddy covariance technique. Figure 5-3 illustrates the monthly ET (mm/month). The 

progression of ET values from April to August displayed an increasing trend, peaking in July 

before a slight reduction in August at the end of the season. Both the APEXMOD model and the 

Eddy covariance measurements show a strong correspondence in the pattern of ET throughout 

the season. The coefficient of determination (R2) was exceptionally high at 0.95, signifying that 

the model could explain 95% of the variance in measured ET. The Root Mean Square Error 

(RMSE) was relatively low at 0.43 mm/month, suggesting minor deviations between the model 

predictions and the observed data. The Nash-Sutcliffe Efficiency (NSE), a hydrologic model 

efficiency coefficient, was also high at 0.95, further affirming the model’s predictive capability. 

Mean Absolute Error (MAE) at 0.38 mm/month and the normalized RMSE (nRMSE) at 0.09 

underscored the model’s consistency and reliability in predicting ET. 
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Figure 5-20. Model ET (mm) and Eddy covariance ET (mm) for the processing tomatoes season 

in 2021. 

The temporal distribution of nitrate-nitrogen levels from April to December, shown in 

Figure 5-3, illustrates the comparison of the APEXMOD model and VMS-measured nitrate 

concentrations at a 6-meter depth in 2021. The model predictions and observed values from both 

sleeves exhibit similar trends in nitrate-nitrogen levels throughout the season. Both APEXMOD 

and VMS sleeves showed an increase in concentrations starting in May, culminating in high 

concentrations towards the end of the year. However, the observed values from Sleeve B and the 

averaged data from both sleeves show a more pronounced rise as the year progresses compared 

to Sleeve A. 

The statistical metrics provided in Table 5-1 further elucidate the model performance. 

The coefficient of determination (R2) for Sleeve A was moderately low at 0.46, indicating a less 
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robust correlation between the model predictions and observed values. In contrast, Sleeve B and 

the combined average of A & B demonstrated higher R2 values of 0.70 and 0.65, respectively, 

suggesting a stronger agreement. In terms of the RMSE, Sleeve A recorded the highest value at 

13.92 mg/L, while Sleeve B displayed a lower value of 10.40 mg/L, and the RMSE for both 

sleeves (averaged A & B) was 11.19 mg/L. The Nash-Sutcliffe Efficiency (NSE) mirrored these 

patterns, with Sleeve A at 0.46, Sleeve B at a higher 0.70, and the average NSE for A & B at 

0.65. The Mean Absolute Error (MAE) and normalized RMSE (nRMSE) further supported these 

results; Sleeve A had an MAE of 11.86 mg/L and an nRMSE of 0.23, whereas Sleeve B and the 

average A & B reported lower MAE values of 8.40 mg/L and 8.80 mg/L, and lower nRMSE 

values of 0.17 and 0.18, respectively. These results indicate that the APEXMOD model aligns 

more closely with the observed values from Sleeve B and the averaged observations than with 

Sleeve A. 
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Figure 5-21. Model NO3-N concentration (mg/L) and VMS measured concentration at 6 meters 

depth. The measurements were taken from April to December 2021 

 

Table 5-5: Performance of the model in predicting the NO3-N concentrations at 6 m depth 

 

Metrics Sleeve A Sleeve B Average A & B 

R² 0.46 0.70 0.65 

RMSE (mg/L) 13.92 10.40 11.19 

NSE 0.46 0.70 0.65 

MAE (mg/L) 11.86 8.40 8.80 

nRMSE 0.23 0.17 0.18 

 

Nitrate concentrations (mg/L) measured in the wells during 2021 indicated substantial 

heterogeneity. Some wells exhibited high concentrations, particularly wells 7, 8, and 4. 

Conversely, wells 5 and 6 consistently showed the lowest nitrate concentrations throughout the 
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year. However, there was little change in the concentration levels throughout the year. In 

addition, the standard deviation suggests a high degree of variability in nitrate concentrations 

among the wells. The model exhibited an acceptable performance in approximating the average 

nitrate concentrations across all wells, as depicted by the congruence between the model’s 

forecast line and the monthly average concentration of the year. 

Nonetheless, there is a discrepancy between the model’s predictions and the observed 

data towards the latter part of the year, wherein the model tended to underpredict the nitrate 

levels. The Root Mean Square Error (RMSE) was 1.97 mg/L, and the Mean Absolute Error 

(MAE) was 1.60 mg/L. suggest the model’s predictions moderately agree with the observed 

average monthly concentrations. Moreover, the normalized RMSE (nRMSE) is 0.22, which, 

when considered alongside the RMSE and MAE, underscores the model’s satisfactory 

performance in capturing the central tendency of the data across the studied temporal span.  

 
Figure 5-22. NO3-N concentrations (mg/L) in the 11 wells and APEXMOD NO3-N predictions 

in 2021. 
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Model simulation 

The comprehensive analysis of hydrological data has been efficiently translated into a 

series of maps, elucidating three critical environmental metrics: groundwater recharge rates, 

nitrate percolation, and nitrogen concentration in groundwater. The first map, delineated by 

varying shades of blue, signifies the groundwater recharge rates measured in cubic meters per 

year. A gradation from lighter to darker hues corresponds to an ascending recharge scale, with 

the most saturated blue pixels indicating regions of maximum aquifer replenishment. Recharge 

up to 35 cm3 per year occurred in a certain part of the field, mainly in the rainfall season. Furrow 

irrigation triggered higher range NO3-N concentration as opposed to drip irrigation, denoting 

better performance in mitigating groundwater contamination. Part of the groundwater is not 

impacted by the leaching coming from the management practices due to the denitrification 

process occurring from the root zone to the deep vadose zone. These visualizations collectively 

serve as a critical tool for assessing groundwater sustainability and formulating water 

management policies, highlighting areas of concern where intervention may be required to 

mitigate contamination and ensure the protection of water resources. 
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Figure 5-23. Model output with groundwater Recharge, NO3-N percolation, and Groundwater 

NO3-N concentration. 

Discussions 

The APEXMOD model accurately estimated evapotranspiration (ET) during the 2021 

processing tomato season, aligning closely with the Eddy covariance measurements. This 

substantial agreement, evidenced by a high coefficient of determination (R² = 0.95) and low 

RMSE (0.49), underscores the model’s capability to simulate ET dynamics in agricultural fields. 
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ET is a critical component in agrohydrological modeling of water management practices, 

particularly in water-scarce regions where agriculture consumes significant water resources 

(Chen et al., 2018; Wanniarachchi and Sarukkalige, 2022). 

The estimation of nitrate-nitrogen levels by APEXMOD demonstrates the integrated 

model’s capacity to effectively address agricultural pollution by simulating nutrient dynamics 

(Wei et al., 2019). The inconsistent performance of the model across different sleeves suggests 

the likely presence of cracks beyond the model simulation capabilities. This underscores the need 

for a deeper understanding of soil characteristics and hydrogeological conditions to optimize 

model predictions (Kim et al., 2021). The seasonal dynamics observed in nitrate levels, with 

concentrations increasing towards the end of the year, reflect typical agricultural nutrient cycling 

and leaching patterns influenced by irrigation and precipitation events. Such patterns align with 

findings from Weber et al. (2020), which discuss the impact of management practices,  

precipitation, and irrigation on nutrient dynamics in agricultural soils.  

The APEXMOD has shown promise in enhancing agricultural water and nutrient 

management practices (Bailey et al., 2014; Wei et al., 2019). The model exhibits a high level of 

accuracy in ET estimation and demonstrates a variable but generally reliable performance in 

nitrate-nitrogen level estimation across different measurement sleeves. This deviation calls 

attention to potential limitations of the model in capturing the full spectrum of nitrate 

concentration variability, particularly in the context of individual well data that exhibited higher 

than average nitrate levels. 

The analysis derived from the maps reveals that several areas of the field could trigger 

higher nitrogen concentrations that surpass the commonly accepted safety threshold of 10 mg/L 

for drinking water. Such elevated nitrogen levels due to agricultural practices pollute 
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groundwater resources and pose health risks. In the San Luis Valley, Colorado, nitrate 

concentrations in the unconfined aquifer have surpassed this threshold (Hudak, 2018). Similar 

findings have been reported in the Central Valley, Costa Rica, where nitrate contamination of 

groundwater has been linked to agricultural and urban activities (Harter et al., 2017; Rosenstock 

et al., 2014)). In the Central Valley, California, excessive loading of fertilizer and manure has 

been identified as a critical factor in groundwater nitrate contamination(Harter, 2009). However, 

the high resolution of groundwater contamination in this study highlights the spatial variability 

of average NO3-N concentration in the field due to factors such as legacy, soil type, management 

practices, and influence of neighboring fields. These high values can significantly influence the 

average NO3-N concentration for the entire field and, ultimately, the groundwater protection 

formula values.  

Conclusions 

This study has demonstrated the robust capabilities of the integrated APEX-RT3D-

MODFLOW model in assessing and managing nitrate leaching into groundwater at a field scale 

in an agriculturally intensive region. By incorporating detailed, field-level simulations of 

hydrological and nutrient cycling processes, the model has provided nuanced insights into the 

dynamics of nitrate nitrogen within the soil and groundwater systems. The empirical validation 

using data from monitoring wells and the Vadose Zone Monitoring System has confirmed the 

model’s efficacy in accurately simulating nitrate concentrations in the deep vadose zone and 

shallow groundwater, aligning closely with observed data. 

The high-resolution modeling approach allows for a more granular understanding of how 

different conservation practices, such as cover cropping, reduced tillage, and efficient irrigation 

and fertilization methods, impact nitrate leaching. This is crucial for devising effective 

groundwater protection strategies tailored to specific field conditions and agricultural practices. 
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Moreover, the model’s predictive power offers valuable support for regulatory bodies and 

agricultural managers in making informed decisions to ensure sustainable water use and 

compliance with environmental standards, thereby safeguarding public health and ecological 

integrity. 

Future work should focus on expanding the model’s application to different crops and 

regions, enhancing its capabilities with more complex hydrological and biochemical parameters, 

and integrating socio-economic factors to fully capture the trade-offs and synergies in 

agricultural water management. Additionally, ongoing refinement of the model based on real-

world applications and feedback will further improve its accuracy and utility in addressing the 

challenges of nitrate pollution in agricultural landscapes. Through continued development and 

application, the integrated APEX-RT3D-MODFLOW model stands as a pivotal tool in balancing 

agricultural productivity with environmental sustainability, offering a pathway towards more 

resilient and responsible farming practices in the face of increasing environmental pressures. 
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CHAPTER 6 

SUMMARY AND FINAL REMARKS 

Chapter 1 

This chapter introduces the critical environmental challenges facing California's Central 

Valley, primarily focusing on the salinity and nitrate pollution due to intensive agriculture and 

industrial activities. The Central Valley is described as a crucial agricultural hub, contributing 

significantly to the US and global food supply, yet grapples with the dual threats of salinization 

and nitrate accumulation. These issues compromise soil health, crop yields, agricultural 

productivity, water quality, and the overall sustainability of agriculture in the region. The Central 

Valley's agricultural success story is overshadowed by the environmental costs of soil 

salinization and nitrate accumulation in groundwater due to extensive irrigated agriculture and 

industrial activity. Salinity and nitrate leaching, exacerbated by intensive irrigation, agricultural 

practices, population growth, and climate change, have led to considerable environmental 

challenges. These include soil degradation, water quality deterioration, and threats to public 

health, underscoring the urgent need for sustainable management strategies.  

This chapter methodically delineates the research objectives to develop comprehensive 

modeling frameworks, decision-support tools, and groundwater protection formulas to mitigate 

the adverse impacts of salinity and nitrate leaching on the Central Valley's agriculture and 

groundwater sustainability. A multi-faceted approach is proposed to assess the salinity impacts 

on crop yield and economic returns, develop a web-based decision-support tool for crop yield 

and profitability prediction across the Central Valley, develop a field-scale groundwater 

protection formula, and evaluate conservation practices for mitigate nitrate leaching out of the 

root zone. This ambitious agenda sets the stage for an in-depth analysis of the challenges and 

potential solutions for managing salinity and nitrate levels, emphasizing the importance of 
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innovative technologies and sustainable agricultural practices in ensuring the long-term viability 

of the Central Valley's agricultural sector and the improvement of groundwater quality. 

Chapter 2  

Chapter 2 delves into the quantitative analysis of salinity impacts on crop yield and 

economic returns within the Central Valley. In this chapter, a robust modeling framework that 

integrates soil variables, climate conditions, irrigation inputs, and economic data was developed 

to offer a comprehensive assessment of how different salinity levels of irrigation water affect 

crop productivity. This model reveals that increasing salinity significantly diminishes crop yield 

and profitability, with spatial analyses indicating that these effects are unevenly distributed 

across the Valley because of many factors such as heterogeneity, water prices, and variability of 

irrigation water quality. The chapter provides pivotal insights into how salinity management can 

be optimized for sustainable agricultural practices. Notably, the research identifies critical 

thresholds of water salinity beyond which crop production becomes economically unviable, 

underscoring the need for strategic irrigation management and the adoption of salinity-resistant 

crop varieties. The findings from this chapter can serve to develop targeted interventions to 

mitigate salinity's adverse effects, thereby contributing to the economic sustainability of 

agriculture in the region. 

The comprehensive modeling framework developed in this chapter analysis extends 

beyond identifying the problems by offering a predictive means that policymakers and farmers 

can use to anticipate and mitigate the impacts of salinity on crop productivity. By providing a 

clear method for evaluating the potential profitability of different crops under varying salinity 

conditions, the model facilitates informed decision-making that could lead to more sustainable 

agricultural practices throughout the Central Valley. This chapter underscores the critical need 

for integrated approaches to water management that consider both the agronomic and economic 
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dimensions of salinity, paving the way for more resilient agricultural systems. As such, this 

chapter contributes valuable insights and tools that could be instrumental in the ongoing efforts 

to address salinity challenges in the Central Valley and similar agricultural contexts globally. 

Chapter 3 

Chapter 3 introduces a groundbreaking decision-support web tool designed to empower 

farmers and policymakers in the Central Valley with the ability to make informed decisions 

regarding salinity management in irrigation practices. The tool integrates agronomic, economic, 

and spatial data to provide user-friendly access to critical data and the predictive model 

developed in Chapter 2 to predict crop yield and profitability under various water salinity. The 

decision-support tool incorporates the complex interactions between soil salinity, crop tolerance, 

and economic returns, offering a nuanced understanding of how salinity impacts agricultural 

profitability across different regions of the Central Valley. By providing a user-friendly interface 

that allows for the customization of variables such as crop type, irrigation water salinity levels, 

and economic parameters, the tool empowers users to explore a wide range of scenarios. This 

adaptability ensures the tool's relevance to a broad spectrum of users, from individual farmers 

making decisions about crop selection and irrigation practices to policymakers developing 

region-wide strategies for salinity management and agricultural sustainability. 

 

 This chapter marks a pivotal contribution to the dissertation's overall aim of enhancing 

the sustainability of irrigated agriculture in the Central Valley in the face of salinity challenges. 

The decision-support web tool stands as a testament to the potential of integrating scientific 

research with technological innovation to create practical solutions for environmental and 

economic challenges in agriculture. By facilitating informed decision-making, the tool not only 

aids in the immediate management of salinity issues but also contributes to the broader goals of 
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sustainable water use and agricultural resilience. By providing a platform for evaluating the 

effectiveness of various salinity management strategies, the tool contributes to developing more 

sustainable and resilient agricultural systems. The chapter concludes with reflections on the 

potential of this technology, such as decision support systems that influence policy decisions, 

guide resource allocation, and ultimately support the long-term sustainability of agriculture in the 

Central Valley amidst evolving environmental challenges. 

Chapter 4 

Chapter 4 explores the effectiveness of various conservation practices in mitigating 

nitrate leaching in processing tomato cultivation, utilizing the Agricultural Policy Environmental 

eXtender (APEX) model. This detailed analysis focuses on the environmental and agronomic 

implications of nitrate leaching, a critical concern in the Central Valley due to its impact on 

groundwater quality and public health. The chapter methodically examines the implementation 

of conservation practices such as micro-irrigation technologies, irrigation nitrogen credits, winter 

cover crops, and high-frequency low-concentration fertigation strategies. Through rigorous 

modeling and field data analysis, the chapter assesses the potential of these practices to reduce 

nitrate leaching effectively while maintaining or enhancing crop yield and profitability. 

The chapter findings suggest that targeted conservation practices can significantly reduce 

nitrate leaching, thereby contributing to the protection of groundwater resources and improving 

the sustainability of agricultural production in the Central Valley. The chapter underscores the 

importance of adopting a holistic approach to nutrient and water management, incorporating 

advanced irrigation technologies and sustainable fertilization practices. The chapter calls for 

increased awareness and adoption of these practices among farmers, supported by policy 

incentives and educational programs. Moreover, the chapter contributes to the ongoing discourse 

on sustainable nutrient management, offering a framework for balancing agricultural 
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productivity with environmental stewardship. Through a meticulous examination of conservation 

practices and their impacts on nitrate leaching, this chapter advances our collective 

understanding of sustainable agricultural practices, marking a significant contribution to the 

quest for more environmentally sustainable farming practices. 

Chapter 5 

Chapter 5 presents an evaluation of an integrated modeling approach, combining the 

APEX model with RT3D (Reactive Transport) and MODFLOW (Modular Finite-Difference 

Ground-Water Flow Model), to assess nitrogen leaching into groundwater at the field scale. This 

integrative model aims to provide a comprehensive understanding of how agricultural practices 

influence nitrogen dynamics and groundwater quality. The chapter methodically details the 

development and calibration of the integrated model, demonstrating its capability to simulate the 

complex interactions between agricultural land management, nitrogen use, and groundwater 

systems. The model's effectiveness in identifying risk areas for nitrogen leaching and proposing 

targeted groundwater protection strategies was applied in a field study located in Esparto. Results 

showed the potential of the model as a valuable tool for sustainable agricultural and 

environmental management. 

The chapter concludes with the endorsement of the integrated APEX-RT3D-MODFLOW 

model as an effective field-scale tool for predicting and managing nitrogen leaching into 

groundwater. It emphasizes the model’s significance in informing sustainable agricultural 

practices, groundwater protection plans, and policy development. By facilitating a detailed 

understanding of nitrogen transport processes and their impacts on groundwater quality, the 

model supports the implementation of precise and effective management strategies to mitigate 

nitrate pollution. The chapter calls for further research and model refinement to enhance its 

applicability across different agricultural systems and regions, underscoring the importance of 
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integrating scientific tools in the pursuit of agricultural sustainability and environmental 

protection. 
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