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ARTICLE

Single nucleus multi-omics regulatory landscape of
the murine pituitary
Frederique Ruf-Zamojski 1✉, Zidong Zhang 2, Michel Zamojski1, Gregory R. Smith1, Natalia Mendelev 1,

Hanqing Liu3, German Nudelman1, Mika Moriwaki 4, Hanna Pincas1, Rosa Gomez Castanon 3,

Venugopalan D. Nair1, Nitish Seenarine1, Mary Anne S. Amper1, Xiang Zhou5, Luisina Ongaro5, Chirine Toufaily5,

Gauthier Schang5, Joseph R. Nery 3, Anna Bartlett3, Andrew Aldridge 3, Nimisha Jain1, Gwen V. Childs 6,

Olga G. Troyanskaya 2,7,8, Joseph R. Ecker 3,9, Judith L. Turgeon10, Corrine K. Welt4, Daniel J. Bernard 5 &

Stuart C. Sealfon 1✉

To provide a multi-omics resource and investigate transcriptional regulatory mechanisms, we

profile the transcriptome, chromatin accessibility, and methylation status of over

70,000 single nuclei (sn) from adult mouse pituitaries. Paired snRNAseq and snATACseq

datasets from individual animals highlight a continuum between developmental epigenetically-

encoded cell types and transcriptionally-determined transient cell states. Co-accessibility

analysis-based identification of a putative Fshb cis-regulatory domain that overlaps the

fertility-linked rs11031006 human polymorphism, followed by experimental validation illustrate

the use of this resource for hypothesis generation. We also identify transcriptional and

chromatin accessibility programs distinguishing each major cell type. Regulons, which are co-

regulated gene sets sharing binding sites for a common transcription factor driver, recapitulate

cell type clustering. We identify both cell type-specific and sex-specific regulons that are

highly correlated with promoter accessibility, but not with methylation state, supporting the

centrality of chromatin accessibility in shaping cell-defining transcriptional programs. The sn

multi-omics atlas is accessible at snpituitaryatlas.princeton.edu.
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The pituitary gland plays critical roles in the modulation of
key physiological functions, as it integrates regulation by
the central nervous system with that of the endocrine

system. It consists of anterior, intermediate, and posterior lobes.
The anterior lobe that comprises ~80% of the gland, contains five
major hormone-producing cell types (somatotropes, gonado-
tropes, lactotropes, thyrotropes, and corticotropes), as well as
non-endocrine cells. Recent single-cell (sc) transcriptome studies
highlighted a heterogeneity in pituitary cells and other molecular
signatures that may reflect different functional cell states1–5 in
populations and sub-populations (also reviewed in6 after the
publication of our preprint7). Sc epigenetic assays, particularly
methylome analysis, provide reliable identification of devel-
opmentally determined cell types, distinguishing them from
potentially transient cell states that can be observed in tran-
scriptome analyses8.

Gene regulatory programs are generally orchestrated by tran-
scription factors (TFs) via interaction with cis-regulatory genomic
DNA sequences located in or around target genes. Epigenetic
mechanisms, including changes in chromatin accessibility and
DNA methylation (for review9), play crucial roles in the regulation
of gene expression. Epigenomic profiling technologies have been
developed to explore various layers of epigenetic regulation at sc
resolution, including single nucleus (sn) ATACseq, which mea-
sures chromatin accessibility, and genome-wide mapping of DNA
methylation10,11. The integration of sc epigenomics with sc tran-
scriptomics provides the opportunity to elucidate the regulatory
programs and epigenetic mechanisms underlying cell type-specific
gene expression, and to resolve intercellular heterogeneity12.

One limitation of sc sequencing technologies is that tissue
dissociation can elicit artifactual gene expression13–16. Unlike sc-
based methods, sn approaches are compatible with snap-frozen
tissue samples and minimize ex vivo expression changes17. The
transcriptome complexity identified by snRNAseq is comparable
to that of scRNAseq methods18. Besides its reliability for profiling
the transcriptome at sc resolution13,15,19–21, sn isolation also
allows mapping of the chromatin-regulatory landscape22–24 and
genome-wide measurement of DNA methylation25.

In the present work, we sought to resolve transcriptional reg-
ulatory mechanisms in murine pituitary cells and characterize
cellular heterogeneity at transcriptomic and epigenomic levels.
We analyzed over 69,000 nuclei from individual snap-frozen male
and female pituitaries for parallel analysis of both their tran-
scriptome and genome-wide chromatin accessibility profiles. For
sn DNA methylation profiling, we assayed over 2,000 nuclei from
pooled snap-frozen male pituitaries. We show how the resulting
sn multi-omics atlas provides new insight into regulatory network
and gene control mechanisms that are relevant to pituitary
physiology and disease.

Results
Sn multi-omics profiling in murine pituitaries. In order to
study the relationship between gene expression and epigenetic
features, we generated a multi-omics sn atlas. Sn transcriptome
and chromatin accessibility were assayed simultaneously in
individual pituitaries using snap-frozen adult male and female
murine tissue. Sn DNA methylation (snMethyl) was determined
using pooled snap-frozen pituitaries from males (Fig. 1). From six
individual pituitaries, a total of 35,707 nuclei were assayed by
snRNAseq and 33,443 by snATACseq (Supplementary Fig. 1,
Supplementary Table 1). 5-methylcytosine sequencing 2 data
(snmC-seq225) were obtained for 2,756 nuclei isolated from 30
male pituitaries (Supplementary Fig. 1, Supplementary Table 1).

Additional datasets were generated using alternate tissue
handling, processing, and assay protocols (Supplementary Fig. 1,

Supplementary Table 1, see “Methods”). These included different
pituitary dissociation methods before cryopreservation, as well as
sc vs. sn RNAseq assays. Snap-frozen pituitaries and gently
dissociated cryopreserved pituitaries generated the highest quality
sn or sc datasets for both RNAseq and ATACseq assays
(Supplementary Fig. 1). To eliminate ex vivo changes, our
analysis focused predominantly on data from the snap-frozen
pituitaries. To reduce any batch effects, all snRNAseq and
snATACseq libraries from same-sex snap-frozen pituitaries were
generated simultaneously and all libraries were pooled for
sequencing.

Transcriptome analysis of the pituitary cell types. We detected
transcripts for an average of about 2,000 genes per nucleus in the
~6,000 nuclei sequenced per snap-frozen pituitary (Supplemen-
tary Table 2a). To improve the resolution of cell-type identifica-
tion, all same-sex datasets were merged, and the cells were
clustered using Seurat’s shared nearest neighbor (SNN) method
and visualized using t-Stochastic Neighbor Embedding repre-
sentation (t-SNE; Fig. 2a, Supplementary Fig. 2a). The distribu-
tion of UMI counts (Supplementary Fig. 3a,d), mitochondrial
gene expression (Supplementary Fig. 3b,e), and ribosomal gene
content (Supplementary Fig. 3c,f) in merged male and in merged
female datasets showed some variation in some clusters, such as
stem cells, yet this did not influence the identification of cell type
clusters. Batch effects were also unlikely to contribute to cell
cluster composition because all libraries were pooled before
sequencing, and the same-sex samples that were merged for
analysis were processed simultaneously.

The cell clusters from snap-frozen pituitaries were annotated
based on differential expression of key pituitary marker genes (see
Fig. 2a for merged males and Supplementary Fig. 2a for merged
females). In addition to the major pituitary cell types, we
identified clusters comprising stem (progenitor) cells, proliferat-
ing cells, pituicytes, and various cell types associated with blood
and vasculature, including immune cells (macrophages, leuko-
cytes), endothelial cells, and pericytes. Interestingly, two clusters
of stem cells were distinguishable (Fig. 2a and Supplementary
Fig. 2a). These two clusters differed in their expression of several
genes, including the neurotransmitter receptor genes Gabrg3 and
Grin2a (Supplementary Fig. 2c). We also identified two gonado-
trope clusters, as well as a small cluster of Pit1-negative cells
located between the corticotrope and the gonadotrope clusters,
which most likely corresponded to undifferentiated corticotrope
or gonadotrope cells (Fig. 2a and Supplementary Fig. 2a). We
distinguished three distinct somatotrope clusters in males (Fig. 2a)
and two in females (Supplementary Fig. 2a). Two clusters of
lactotropes were observed only in females (Supplementary
Fig. 2a).

Chromatin accessibility analysis of the pituitary cell types. We
analyzed chromatin accessibility by snATACseq in the same male
and female pituitaries assayed by snRNAseq (Fig. 1). An average
of 5000 nuclei were analyzed per pituitary sample, yielding
~30,000 fragments per nucleus (Supplementary Table 2b). Same-
sex datasets were merged, clustered, and visualized by t-SNE plots
(Fig. 2b and Supplementary Fig. 2b). Clusters were identified
based on open chromatin (i.e., peaks of accumulated reads) at the
promoters of major cell type marker genes (Fig. 3). Eleven clus-
ters were observed in males (Fig. 2b) and fifteen in females
(Supplementary Fig. 2b). In females, the gonadotrope and lacto-
trope cell populations were distributed among two clusters, along
with a proliferating lactotrope cluster. Analysis of chromatin
accessibility data resolved subclusters of somatotropes both in
males (Fig. 2b) and in females (Supplementary Fig. 2b).
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The somatotrope clusters (Som) in males and females showed
polarity in both snRNAseq and snATACseq, although the
patterns leading to the gradients involved different genes. In the
snRNAseq data, Lhfpl3 and Dpp10 were increased in one
somatotrope cluster pole and Tcerg1l in the other (Supplementary
Fig. 4a-d). However, the genes whose promoter accessibility
differentiated the two poles in the snATACseq included Rem1 for
one pole, and Ascl2 and Oit1 for the other (Supplementary Fig. 5).
The cluster labeled as Som0 in snRNAseq data from males and
females was located between the lactotrope and the somatotrope
clusters on the UMAP projection (Fig. 4, Supplementary Fig. 4).
While the pattern of expression in these cells was distinct from
the rare lactotrope/somatotrope doublets (Supplementary Fig. 4a),
their expression of lactotrope, somatotrope, and lactosomatotrope
genes, such as Sgcz and Nrxn3, suggests that this cluster may be
comprised of lactosomatotropes (Supplementary Fig. 4a,e). These
putative lactosomatotropes were not as distinctly separated in the
snATACseq datasets. In females, we also observed a distinct
cluster of lactotropes and somatotropes that showed chromatin
accessibility for proliferating cell markers (Supplementary Fig. 2b)
not seen in males (Fig. 2b). Accordingly, we labeled these two
clusters as representing proliferating lactotropes and proliferating
somatotropes (Supplementary Table 3). These data suggest that
cell state and cell type form a continuum with gene expression
and chromatin accessibility variances reflecting transient or more
prolonged input from extracellular signaling.

Methylation analysis of the pituitary cell types. While the
snRNAseq and snATACseq assays can be performed on single
mouse pituitaries, the snMethyl method requires pooling pitui-
taries from many animals. Because of this limitation, we per-
formed this assay only in males given the potentially increased
complexity arising from estrous cycle stage differences among
females. We obtained snMethyl data from 2,756 nuclei isolated
from 30 pooled adult male pituitaries. Genome-wide levels of CG
DNA methylation (mCG) were analyzed in 100 kb bins, clustered,

and visualized on t-SNE plots (Fig. 2c). Identified cell clusters were
annotated to cell type based on mCG depletion at the promoters
of known pituitary cell type markers. In contrast with brain26,27,
non-CG DNA methylation (mCH) was rare in the pituitary, and
thus was not used for cell type assignment. The nine identified
clusters comprised the major endocrine cell types, as well as stem/
progenitor cells, endothelial cells, and pericytes (Fig. 2c). As
expected, there was an inverse relationship between gene expres-
sion level (Fig. 2a, Supplementary Fig. 7) and DNA methylation
level of the corresponding promoters (Figs. 2c and 3). Promoters
with low methylation levels were more likely to be accessible and
transcribed (see Fig. 3). In contrast with snRNAseq and snA-
TACseq, the much smaller snMethyl dataset did not resolve any
separate cell type subclusters.

Comparison of sn and sc protocols. Similar to snRNAseq ana-
lysis of snap-frozen pituitary samples, analysis of scRNAseq data
from dissociated cells identified the major classical hormone-
producing cell types (Supplementary Fig. 8). Clusters with low
numbers of transcripts most likely corresponded to non-viable
cells following cell dissociation (Supplementary Figs. 8, 9), as they
were undetected in snap-frozen pituitaries analyzed by snRNAseq
(Supplementary Figs. 10–12). Overall, the best quality RNAseq
data based on sequencing metrics and cell-type identification
were obtained from snap-frozen pituitaries (Supplementary
Tables 1, 2).

Whether the ATACseq data were derived from nuclei from
snap-frozen pituitaries (Supplementary Fig. 13) or cells from
cryopreserved dissociated pituitaries (Supplementary Fig. 14),
they exhibited a high signal-to-noise ratio at transcription start
sites (TSS; see gene promoters in Supplementary Fig. 14). TSS
enrichment scores for individual pituitaries ranged from 9.08 to
11.82, with an average of 10 for all 6 snap-frozen pituitary
samples (Supplementary Table 2b). Data quality was comparable
for all methods studied.

Fig. 1 Overview of pituitary sn multi-omics experimental design. SnRNAseq and snATACseq assays were performed in parallel on each individual snap-
frozen murine pituitary following nuclei isolation from individual animals (top row). For snMethyl assays, pituitaries were pooled from 30 male mice, nuclei
were isolated and sorted (bottom row). Data analysis was performed on each individual sample, as well as on merged same-sex samples to identify cell
types before integrating all assay modalities and animals. Additional studies were performed on cryopreserved dissociated murine pituitary cells, including
scRNAseq, snRNAseq, and snATACseq (see Supplementary Fig. 1 and Supplementary Table 1). Figure 1 was created using graphics from Servier Medical
Art, licensed under a Creative Commons Attribution 3.0 Unported License https://creativecommons.org/licenses/by/3.0/.
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Inter-animal and male–female variation in snRNAseq and
snATACseq cell type clustering. A snRNAseq library and a
snATACseq library were prepared simultaneously from each
individual pituitary. While general conclusions about cell type
variation among these individual animals cannot be reached with
datasets obtained from only three animals of each sex

(Supplementary Table 4), it was nonetheless important to explore
whether the methods employed were able to define the tran-
scriptome and accessibility pituitary landscapes of individual
animals. The pituitary is a dynamic organ, especially in females,
and obtaining detailed multi-omics data from single pituitaries
sets the stage for future studies of transcriptional and epigenetic
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at the bottom of Fig. 2. a t-SNE representation of sn transcript expression in the merged datasets from three individual snap-frozen male pituitaries with
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provided in Supplementary Table 2. Feature plots for UMI counts, mitochondrial gene content, and ribosomal gene content of the individual samples are
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dynamics. We therefore investigated whether there was inter-
individual variation in cell type clustering and whether such
variation could be interpreted physiologically.

When the integrated snRNAseq data were labeled by individual
animal, in males we could distinguish the somatotrope and the

gonadotrope cluster originating from one animal from the
somatotrope and gonadotrope clusters associated with the other
two animals (Fig. 4a, compared with Fig. 2a). In contrast, labeling
the snATACseq data obtained from the same pituitaries by
animal showed no inter-individual differences in cell types
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(Fig. 4c). Although the sensitivity for animal-to-animal variation
in the pooled male snMethyl dataset was limited, as pituitaries
from 30 animals were combined and fewer than three thousand
nuclei were assayed, no subclusters of the major cell types were
observed, which might have indicated inter-animal differences
(Fig. 2c). The additional gonadotrope and somatotrope clusters
derived from the one male animal in the snRNAseq data were
characterized by increased expression of immediate early genes
(IEGs). Several other cell types from this animal that did not
cluster separately, including lactotropes and melanotropes, also
showed an increase in IEG expression (Supplementary Fig. 15).
Previous studies of IEG induction following various perturbations
in vitro and in vivo indicate that differential expression is not
detected until at least 20 min28–30. In our study, the tissues
assayed were snap-frozen within minutes of sacrifice. Therefore,
the differences in IEG expression represent transcriptional
changes that had occurred in vivo.

In females, the dataset from one of the animals contributed to
an additional gonadotrope and lactotrope cluster observed in
both snRNAseq and snATACseq datasets, as well as to an
additional somatotrope cluster that was more clearly distin-
guished in the snATACseq data (Fig. 4b, d compared with
Supplementary Fig. 2a,b). Both Fshb expression and chromatin
accessibility at the Fshb gene body and promoter were increased
in gonadotropes from this animal, as well as Pitx1 expression,
while key reproductive genes including Greb1, Gnaq, and Pgr
were decreased (Fig. 4b, Supplementary Fig. 16). Greb1 and Crhbp
were decreased in lactotropes from this same animal as well
(Supplementary Figs 16, 17). These results suggest that the multi-
omics data have captured a different reproductive state in this
animal, such as a non-cycling female or a female at a different
estrous cycle stage. While some clusters arose only in a single
female, individual animal labeling showed that the proliferative
somatotrope and lactotrope clusters were shared by all three
animals (Fig. 4d), thus representing separate somatotrope and
lactotrope sub-types.

Correspondence of cell type proportions across assay mod-
alities. Determination of cell type proportions in the snRNAseq
data (Fig. 4e, Supplementary Table 2a) revealed that females had
significantly more lactotropes and fewer somatotropes than males
(Supplementary Tables 2-4). Similar cell type proportions were
inferred from the snATACseq data obtained from the same
pituitaries (Fig. 4f, Supplementary Tables 2b, 3b, 4b). The cell
type proportions in males deduced from the snRNAseq and
snATACseq datasets also corresponded to those obtained from
the snMethyl analysis of a sample of pooled male pituitaries
(Fig. 4g, Supplementary Table 2c). Generally, male-female dif-
ferences in cell type proportions identified by either gene
expression or promoter accessibility analysis were in accord,
providing further support for the common identification of cell
types across different omics modalities. When comparing all three
pairs of assay modalities, the proportions of the major pituitary
cell types showed high concordance (R2 > 0.98; Fig. 4h).

Integrated sn multi-omics analysis of the pituitary and
resource. We explored the multi-omics landscape of the main

pituitary cell types by integrating the data obtained by snRNAseq,
snATACseq, and snMethyl. The detailed ATACseq signal and
snMethyl tracks, and the expression levels of eight important
pituitary markers are shown in Fig. 3.

In male gonadotropes, the promoters of Cga (Fig. 3a), Lhb
(Fig. 3h), and Fshb (Fig. 3i) were accessible, hypomethylated, and
all three mRNAs were expressed. Focusing on Cga, we found that
its promoter was accessible both in gonadotropes and in
thyrotropes (Fig. 3a). In addition, while DNA was hypomethy-
lated in gonadotropes around the Cga promoter, it was
hypermethylated in lactotropes, somatotropes, and stem cells
(Fig. 3a). Due to the small number of thyrotropes, no region of
their Cga methylation track was called as a differentially
methylated region (DMR). Notably, DMR calling may be overly
conservative when applied to a specific gene of interest, as it takes
into account the false discovery rate arising from multiple
hypothesis testing across all genes. Despite the limited number of
thyrotrope cells, visual inspection of the Cga methylation track
suggests hypomethylation in the same region of the gene that was
significantly hypomethylated in gonadotropes. Consistent with
the patterns of chromatin accessibility and DNA methylation,
Cga mRNA levels were elevated in gonadotropes and thyrotropes
(Fig. 3a).

In the Lhb gene, we detected a promoter region (red box,
Fig. 3h), whose mCG levels appeared to be lower in gonadotropes
relative to other cell types, although this region also was not
flagged by the DMR algorithm. Interestingly, we discovered an
open chromatin region upstream of the Fshb promoter only in
gonadotropes (red box, Fig. 3i). Other pituitary cell types showed
expected patterns of chromatin accessibility, methylation, and
RNA expression for these key pituitary genes (Fig. 3).

Based on the assumption that higher chromatin accessibility
and lower methylation levels result in higher gene expression, we
overlaid the snRNAseq, snATACseq, and snMethyl data using the
Seurat data integration pipeline, (Fig. 5a–c, Supplementary
Table 6). Genome-wide chromatin accessibility and methylation
data were converted to gene-level data and integrated with the
transcriptomic data using nearest neighbor analysis. Good
correspondence of the major cell type clusters was found for all
assay modalities and datasets within each animal (Fig. 5a, b;
Supplementary Table 6).

To provide an example of the use of the sn atlas to generate
hypotheses for further study, we focused on the gonadotrope Fshb
gene, which is essential for reproductive health. Patterns of co-
accessibility between distal elements and their target promoter
have been utilized to build genome-wide maps of cis-regulatory
sequences from sc data31. We applied the Cicero co-accessibility
framework to our snATACseq data to identify putative regulatory
regions of individual genes. Co-accessible regions of classical
pituitary gene markers were found within specific cell types
(snpituitaryatlas.princeton.edu). In particular, we identified
several co-accessible regions upstream of the Fshb gene promoter
(Fig. 6a, Supplementary Fig. 18). One co-accessible region was
gonadotrope-specific and was located 17 kb upstream of the
promoter. The sequence of this putative regulatory region
corresponded to the human single nucleotide polymorphism
(SNP) rs11031006 (Fig. 6a, boxed region; see also Fig. 3i), which

Fig. 3 Multi-omics state of representative pituitary genes by cell type. a–i Shown by cell type are genome browser tracks for chromatin accessibility
(top), DNA methylation (bottom), and violin plots of transcript expression for the indicated genes (UMI count, right). Blue dotted boxes highlight the area
around the promoter region. Red dotted boxes highlight a differentially methylated region (DMR; e, h) and/or open chromatin region (i) for the indicated
genes. The two somatotrope subtypes of the main somatotrope cluster are presented, Som1 and Som2 representing the two poles (Refer to Supplementary
Fig. 4). DMRs are indicated as either hypermethylated (+++), or hypomethylated (---) above each cell type track. Indicated at the bottom right corner is
the order and color-coding for cell types and the methylation status.
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has been linked to alterations in female fertility32,33. Multispecies
comparative sequence analysis (PhyloP(60), PhastCons34,35)
showed high sequence conservation of this domain across 60
vertebrate species (Fig. 6b, c). Together, co-accessibility analysis,
sequence conservation, and GWAS studies identifying a fertility-
linked human SNP at this location all support the assumption
that this upstream domain contributes to the regulation of Fshb.

To test this hypothesis, we introduced CRISPR deletions in this
region in the murine LβT2 gonadotrope cell line. Fshb expression
and FSH secretion were undetectable in the parent gonadotrope
cell line at baseline and following GnRH/activin A treatment. In
contrast, deletion of the TTATTT sequence in this domain
(Fig. 6c) led to an increase in baseline Fshb expression (Fig. 6d).
Increased Fshb expression and FSH secretion were also observed

Fig. 4 Male–female differences in cell types. a–d t-SNE representation of sn transcript expression (a, males; b, females) and of sn chromatin accessibility
(c, males; d, females) in merged same-sex samples, with labeling by individual animal. Individual animals are color-coded as indicated. Each cluster is
identified by a letter code. The code for each cell type is presented at the bottom of Fig.2. In panel d, magnifications of the proliferative somatotrope and
proliferative lactotrope clusters are shown as inserts. Refer to Fig.2a,b (males) and Supplementary Fig. 2a,b (females) for the merged analyses. e, f Cell
type proportions per animal identified from the snRNAseq (a, b) and snATACseq (c, d) datasets show individual differences that are concordant (see also
Supplementary Table 2). Male–female differences are significant for lactotropes and somatotropes (p < 0.0001) in both assays. N= 6 independent animals
were examined (3 males, 3 females), with the following number of nuclei per assay and per animal: (i) for snRNAseq: male #1, 7,150; male #2, 4,562; male
#3, 6,146; female #1, 6,717; female #2, 5,282; female #3, 4,186; (ii) for snATACseq: male #1, 2,782; male #2, 880; male #3, 1,095; female #1, 4,847;
female #2, 9,976; female #3, 11,832. Data are presented per individual animal, with a single column for each. For the assessment of sex difference in cell
type proportions, we used a two-way analysis of variance (ANOVA) followed by Bonferroni multiple comparisons post-hoc test, with n= 3 biological
replicates per cell type. g Cell type proportions identified in snMethyl data from pooled male pituitaries. A pool of 30 animals was used with 2,756 nuclei
analyzed. h 3D correlation plot between gene expression, chromatin accessibility, and snMethyl for the identification of cell type proportions in male
samples.
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a. b.

c.

Web browser

Choose a sample
Ex: Female #2

Choose a gene
Ex: Oacyl

Fig. 5 Multi-omics pituitary cell type integration. a UMAP overlay of the snATACseq (red), snMethyl (green), and snRNAseq (blue) datasets. b UMAP of
the overlay of all samples with the three omics modalities. SnRNAseq and snATACseq data are color-coded by animal. Male snMethyl data are also
included. c Left panel, UMAP showing the cluster identification per cell type based on the snRNAseq annotations. Right panel, view of the web portal
output. From the integrated datasets, users can access any information on gene expression, chromatin accessibility, and methylation status from our web
portal snpituitaryatlas.princeton.edu.
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in this mutant following GnRH/activin A treatment. Two other
CRISPR modifications at this site (i) a T deletion/TATT insertion;
(ii) a TTT deletion) each led to a significant increase in Fshb
expression following GnRH/activin A treatment, albeit to a lower
extent than that observed in the TTATTT-deleted gonadotrope
cell line (Supplementary Fig. 19). These findings suggest that the

reproductive phenotype associated with human SNP rs11031006
results from altered regulatory control of the FSHB gene via this
co-accessible upstream domain, and support the value of co-
accessibility analysis, available on the atlas web portal, for the
identification of putative cis-regulatory domains for any genes of
interest. After posting a preprint of our study7, another group
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independently validated our hypothesis, providing further sup-
port for the use of our atlas to identify clinically important new
putative regulatory domains36.

To help researchers utilize this sn mouse pituitary multi-omics
atlas and to facilitate access to integrated data, we developed a
web-based portal accessible at snpituitaryatlas.princeton.edu
(Fig. 5c). Through this interface, users can access any gene from
any pituitary cell type from each animal, and obtain the
corresponding gene expression, chromatin accessibility, and
promoter methylation information. The portal also provides easy
access to inferred cis-regulatory regions and other integrative
analyses.

Coordinated sex- and cell-type-specific transcriptional and
epigenetic programs. We characterized coordinated gene
expression and accessibility programs using our previously
described Pathway Level Information ExtractoR framework
(PLIER37). When applied to the snRNA expression or sn chro-
matin accessibility at gene promoters, PLIER identified sets of
genes (Latent Variables, LVs) that varied in concert across dif-
ferent cell types or samples (Fig. 7a). PLIER incorporates infor-
mation on known pathways and other gene set annotations to
improve the identification of these LV sets and to associate them
with biological processes. LVs are analogous to eigengenes38 and
can provide a summary level of overall expression or accessibility
per cell type or sample, which can be displayed as a heatmap of
the genes or promoters comprising the LV (Fig. 7a) or as a bar
graph of the overall levels of each LV in each cell type (Supple-
mentary Fig. 17).

PLIER analysis of the snRNAseq and snATACseq datasets
identified LVs showing differential expression between sexes as
well as LVs with predominant expression in each of the major
pituitary cell types (Fig.7b, Supplementary Fig. 20). For example,
LV1rna and LV1atac (Fig. 7b) showed increased expression/
accessibility in the female samples (Wilcoxon p= 1.1e−5),
specifically in female lactotropes (Wilcoxon p= 0.02). The
pituitary from the same female that showed different gonadotrope
and lactotrope clusters suggestive of a different reproductive state
(see Fig. 4b, d), also showed divergent levels of LV1rna and
LV1atac in lactotropes, with the LV1rna pattern appearing male-
like. Correct sex identification of samples from all animals was
confirmed by Xist and Y chromosome gene expression, as well as
open chromatin accessibility on the Y chromosome for the males.
We also compared LV1rna in scRNAseq data obtained from
dissociated male and female pituitaries and confirmed the
differential expression between females and males in this
independent inquiry (Supplementary Fig. 17a, Wilcoxon p=
1.1e−8).

Coordinated gene and chromatin accessibility programs were
associated with all major pituitary cell types (Fig. 7b).
Gonadotrope-predominant LVs are shown in Fig. 7b. Notably,

transcriptome-based LV2rna was elevated in gonadotropes (p=
1.4e−5, Kruskal–Wallis test) and showed a similar expression
level in all animals (Fig. 7b, left panel, Supplementary Fig. 21b,
left panel). Gene accessibility-based LV2atac showed a similar
pattern of increased gonadotrope accessibility (p= 1.5e−6)
among all animals (Fig. 7b, right panel, Supplementary Fig. 21b,
middle panel).

We next examined the gene overlap between RNA and ATAC
LVs that showed similar cell type patterns of enrichment (Fig. 7c).
For example, the first 200 genes of LV1rna and the promoter
accessibility sites comprising LV1atac significantly overlapped
(hypergeometric test, p= 3.6e−5). The significant overlap
between the gonadotrope-enriched LV2rna and LV2atac genes
(hypergeometric test; p= 6.1e−15) also supports the formulation
that they represent related transcriptional and epigenetic
regulatory programs. In addition, when we applied the
gonadotrope-enriched LV2rna directly to the snATACseq data,
we also found a pattern of increased gonadotrope accessibility
(Supplementary Fig. 21b, right panel; p= 2.8e−5). Overall, PLIER
analysis identified inter-sexual and inter-individual differences in
related gene expression and promoter accessibility programs, as
well as coordinated cell type-specific programs.

Epigenetic control of cell type- and sex-specific regulons. The
physiology and biosynthetic responses of different cell types result
from the activity of interacting gene regulatory networks (GRNs)
or regulons, which are each targeted by a limited number of
transcription factors (TFs). Single-cell datasets are valuable for
the identification of the set of coregulated genes comprising each
regulon and sharing binding sites for a TF driver39. As originally
defined, regulons for each driver are identified across all cell types
in a single-cell dataset. However, the composition of regulon
genes expressed within each cell type, so-called cell-type-specific
regulons, may differ (see Fig. 8a)40. We leveraged our multi-omics
datasets both to characterize the pituitary regulons and to explore
the role of epigenetic mechanisms in shaping the composition of
cell type-specific regulons.

Analysis of our snRNAseq datasets using SCENIC39 identified
344 pituitary regulons. The number of genes comprising each of
these pituitary-wide regulons varied between 3 and 4,761, with a
median size of 50. Determination of regulon activity in each cell
type showed clusters of regulons with higher activity in different
cell types (Supplementary Fig. 22a, Supplementary Table 7,
snpituitaryatlas.princeton.edu). Many regulons were associated
with TF drivers that were characteristic of pituitary cell types. For
example, regulons showing high activity in the gonadotropes
included TFs that are involved in gonadotrope development and/
or regulation of gonadotropin subunit gene expression (Gata2,
Foxl2, Nr5a1, Pitx1, Smad3), or are gonadotrope-enriched (Foxp2;
for review1,41–43, Supplementary Fig. 22a). Because expression of
a regulon in a cell depends on the expression of its driver, we

Fig. 6 Genome-wide inference of pituitary cis-regulatory domains: Fshb gene case study. a Cis-regulatory domains of the Fshb gene inferred from
snATACseq data correlation in a single male pituitary (analysis of all six individual pituitaries is presented in Supplementary Fig. 18). Boxed in red is the 17
kb upstream region corresponding to the human SNP rs11031006. b Conservation analysis of the boxed region indicated in (a). c Multi-species sequence
alignment of the FSHB SNP rs11031006 (arrow). The boxed sequence was deleted by CRISPR. d Shown are Fshb (Left panel) and Cga (Center panel) gene
expression, and FSH secretion levels (Right panel) in the unedited gonadotrope cell line (grey) and in the CRISPR deletion mutant line (black), either at
baseline (-) or following GnRH and activin A treatment (+). All data points are shown. Biological replicates were n= 4 (Fshb), n= 2 (Cga), each measured
in technical triplicates, and n= 3 (FSH). Among the 12 measurements for Fshb, 2 points were below sensitivity in the No treatment group and 1 in the
treatment group. For Cga, one point was below sensitivity in the No treatment group. Shown are data from one representative experiment, out of 3
independent experiments with Treatment for both the edited and non-edited clone, 7 independent experiments for basal for the non-edited clones, and 5
independent experiments for basal of the edited clone. Data from additional CRISPR clones (unedited and edited) are illustrated in Supplementary Fig. 19.
Error bars represent s.e.m. Significance was determined by two-way ANOVA with Bonferroni corrections. N.S not significant, p > 0.05; *p < 0.1; **p < 0.01;
****p < 0.0001.
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Fig. 7 Cell type characterization based on specific coordinated gene expression and chromatin accessibility programs. a Left panel, Schematic of PLIER
functionality. SnRNAseq and snATACseq data matrices are generated for all six individual animals. In these data matrices, PLIER identifies sets of genes
(latent variables, LVs) that show coordinated gene changes across different cell types or samples. These LVs are matched with publicly available
information such as gene pathway sets. Middle panel, Example of the top 29 genes in LV7rna. Genes specific to LV7rna are in blue, while genes that are
common between LV7rna and LV7atac are in gold. Right panel, Example of LV activity shows the expression levels of the top 29 genes in LV7rna for each
pituitary cell type and individual animal. b Heatmaps of the levels of expression (Left) and chromatin accessibility (Right) of each LV for a specific animal/
cell type, including LV7rna and LV7atac that are exemplified above. Each of the six individual samples is indicated. In the scale bar, red represents the
highest level of gene expression or chromatin accessibility. c Graph showing the gene overlap (gold) between the RNAseq (blue) and ATACseq (grey) LVs
for each cell type. The scale bar indicates the p values.
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examined the differential expression of the driver genes in the
different pituitary cell types. We found that some drivers are cell
type-specific (Foxl2 in gonadotropes), whereas others are
expressed in several cell types (Foxp2 in gonadotropes, stem
cells, melanotropes, pituicytes, and thyrotropes; Fig. 8b).

We next studied whether the overall expression of the genes
comprising each pituitary regulon was sufficient for cell-type
classification. The overall level of activity of all the genes in each
regulon within each individual cell was determined using the
SCENIC pipeline and projected on UMAP axes (Fig. 8c,
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Supplementary Fig. 22a). This projection, which is based solely on
regulon gene set activity levels clustered all the major cell types
identified by Seurat analysis of the snRNAseq data (compare with
Fig. 5c). Regulon-based clustering separated lactotropes into three
clusters. Annotation of these clusters by individual animals
showed that the clustering was based on differences in lactotrope
regulon activity between males and females as well as between
individual females (Supplementary Fig. 22b). The male–female
and inter-individual regulon-based cell cluster differences corre-
sponded with similar differences observed after individual sample
analysis of RNA expression levels (Fig. 4).

We examined whether epigenetic mechanisms could contribute
to the gene composition of cell type-specific regulon expression.
We first considered the FOXP2 regulon, which was expressed in
several pituitary cell types (Fig. 8b). The gene composition of the
FOXP2 regulon was dramatically different in gonadotropes,
melanotropes, and stem cells (Fig. 8d). To study the role of
epigenetic mechanisms in shaping cell type-specific regulon
expression, we analyzed the correlation between promoter
methylation or promoter chromatin accessibility and RNA
expression of each of the 1676 genes comprising the pituitary
FOXP2 regulon. Promoter methylation was poorly correlated
with cell type-specific gene expression (Supplementary Fig. 23 c-
e). In contrast, promoter accessibility of all the FOXP2 regulon
genes in each of the three cell types was highly correlated with
RNA expression (Fig. 8e and Supplementary Fig. 23a, 24). We
next explored the biological processes regulated by the FOXP2
cell type-specific regulons using functional network module
analysis (44HumanBase https://hb.flatironinstitute.org). Notably,
the genes comprising each of the three cell-type-specific FOXP2
regulons showed modules with different functional annotations
(Fig. 8f, Supplementary Fig. 23b). Thus, the three cell-type-
specific FOXP2 regulons were shaped by differences in the
chromatin accessibility landscape and modulated distinct biolo-
gical processes in each cell type.

To our knowledge, sex differences in regulons within the same
cell type have not been previously reported. We identified such
sex-specific regulons and studied their epigenetic characteristics.
The FOXL2 regulon, expressed only in gonadotropes (Fig. 8b),
differed between males and females. As was the case for cell-type-
specific regulons, we found that the relative levels of gene
expression and promoter chromatin accessibility in the gonado-
tropes for all 331 FOXL2 regulon target genes were highly
correlated in males (Supplementary Fig. 22c) and in females
(Supplementary Fig. 25a). Generally, genes without open
promoters were not transcribed, whereas genes with open
promoters were transcribed, with varying levels of gene expres-
sion (Supplementary Fig. 22c). To determine whether this
differential chromatin accessibility correlated with DNA methy-
lation changes, we examined the promoter methylation levels of
the regulon genes in males. While relative methylation levels of
the regulon genes showing high vs. low relative expression in
gonadotropes did not vary significantly (p= 0.6), comparison of
the highest and lowest expressed genes showed modest statistical
significance (p= 0.008; Supplementary Fig. 26). Functional

module analysis showed these sex-specific regulons were
annotated to different processes in males and females (Supple-
mentary Figs. 22e,f, 25b).

Like Foxl2, Nr5a1 expression was largely restricted to
gonadotropes (Fig. 8b), and the genes comprising this regulon
differed in gonadotropes from males and females. Promoter
accessibility was also a major determinant of the composition and
functional pathways of the NR5A1 sex-specific regulons in these
cells (Supplementary Fig. 27). The correlation between regulon
gene expression and promoter and gene body methylation levels
was not significant (Supplementary Fig. 27e). These results
indicate that sex-specific regulons encompass different biological
functions in males vs. females, and that promoter accessibility is a
fundamental determinant of the sex differences in regulon
activity. Based on these results, we propose a model for the cell
type-specific regulation of regulon composition and function
(Fig. 9).

Discussion
We generated an integrated, sn multi-omics resource to elucidate
the epigenetic mechanisms that regulate transcriptional networks
in the pituitary. Our study identified epigenetically-defined cell
type composition, cell type-specific and sex-specific differences in
transcriptional and epigenetic programs, an experimentally sup-
ported cis-regulatory domain, and epigenetic mechanisms con-
tributing to cell type-specific and sex-specific regulon
composition.

We observed inter-animal differences in specific cell types in
both snRNAseq and snATACseq datasets. We considered whe-
ther these differences might be the result of technical or tissue
handling artifacts. Arguing against technical artifacts, the differ-
ences were restricted to specific cell types, with other cell types
from the same animals being similar. All samples of each sex were
processed simultaneously, reducing any laboratory processing
variability. Finally, post-mortem changes can be excluded because
these pituitaries were snap-frozen immediately after collection45.
These considerations support the interpretation that these data-
sets have captured animal-to-animal differences in the in vivo
transcriptome and accessibility landscapes.

Analysis of the paired sn transcriptome and chromatin acces-
sibility datasets from individual animals suggests the presence of a
continuum between developmentally determined cell types and
transient cell states. Analysis of our sn multi-omics data identifies
and characterizes all the classical major pituitary cell types at the
levels of RNA expression, chromatin accessibility, and methyla-
tion. We find the most cell clusters in snRNAseq (18 in male, 18
in female), followed by snATACseq (11 in male, 15 in female)
and the fewest in sn methylome analysis (9 in male). Our results
are consonant with the formulation that major developmental cell
type assignment depends on methylation state46. All major
known pituitary cell types are identified in all three data mod-
alities. However, whereas transcriptome and chromatin accessi-
bility studies of pooled samples cannot unravel whether
additional cell clusters are present in all specimens, our dataset
has the power to resolve in transcriptome and chromatin

Fig. 8 Cell type-specific regulons. a Schematic of a cell type-specific regulon, using FOXP2 as an example. A regulon consists of a TF driver (e.g., FOXP2)
and its target genes. The regulon genes are cell type-specific (e.g., they differ in stem cells vs. gonadotropes). b Dot plot of the top regulons in male
gonadotropes and their relative expression in other cell types. The color scale is indicated. The dot size symbolizes the percentage of cells expressing that
regulon. c UMAP and cell type identification from the SCENIC regulon analysis recapitulates the clusters identified by data integration (Fig.5c). d Venn
diagram of the overlap of FOXP2 regulon genes between the different cell types in males. e Scatter plots showing the correlation between relative promoter
accessibility and relative gene expression for the 1,676 genes composing the FOXP2 regulon in male gonadotropes (Left) and male melanotropes (Right).
Characteristic gonadotrope and melanotrope genes are framed in red. f Annotated gene modules showing the different functions associated with the
FOXP2 regulon in gonadotropes (Left) and in melanotropes (Right). Refer to Supplementary Fig. 24 for the corresponding analysis of female samples.
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accessibility data distinct clusters that originate from different
animals. For example, analysis of clusters of several cell types seen
only with male snRNAseq data identifies these clusters as coming
from one male specimen. Their differentiating transcript
expression is comprised of IEGs. Therefore, these clusters
represent a transient change in cell physiology that we spec-
ulatively attribute to some perturbation of this animal prior to
death. In females, we observe differences in cell clusters between
individuals, which we attribute to one animal likely being in a
distinct reproductive (e.g., estrous cycle) state.

Cluster fluidity was also observed in the merged snRNAseq and
snATACseq datasets. A somatotrope subcluster closer to lacto-
tropes and most clearly distinguished in the snRNAseq data
shared expression of some lactotrope markers in addition to
somatotrope markers, expressing a low level of Prl and a relatively
high level of Gh (Fig.2a, Supplementary Fig. 2a and 4a). Previous
histological studies have described subpopulations of somato-
tropes in rat and pig47–49, including cells co-expressing Prl and
Gh50–52. Recent scRNAseq analysis of murine pituitaries also
resolved somatotrope sub-populations1,53. Our analysis raises the
possibility that what has been identified as a somatotrope sub-
cluster might represent an intermediate cell type between the
somatotrope and lactotrope lineages.

We note several limitations in the present analysis of cell types
and cell states. This study is based on the analysis of data from a
small number of animals, and further investigation on larger
numbers of samples is warranted. Another caveat is that the
snMethyl analysis used pooled samples and was performed only
in males, which provides no methylation-level data on inter-
animal variation and no information on females. As high-quality
data were obtained from only a few thousand nuclei, the reso-
lution of the methylation data for cell subpopulations is limited.
Despite these caveats, these results point the way towards a
refined model of cell identity. We propose the working hypothesis
that cell state and cell type form a continuum gradually shifting
from transient transcriptional changes to more stable devel-
opmentally programmed changes in expression, chromatin
structure, and methylation. Importantly, our results provide the
foundation for future studies of correlated transcriptional and
epigenetic changes across the reproductive cycle and in response

to perturbations, having the statistical power furnished by indi-
vidual subject resolution.

We identified distinguishing transcriptional and chromatin
accessibility programs for each major cell type. Using the PLIER
framework, we determined coordinated cell type-specific gene
sets showing inter-sexual and inter-individual differences in RNA
expression and promoter chromatin accessibility (Fig. 7, Sup-
plementary Fig. 21). Distinctive gene expression and promoter
accessibility patterns were found in females, and cell type-specific
patterns were distinguished across individuals, corresponding to
the proposed differences in reproductive state among the females.
Since these animals were randomly selected with no determina-
tion of cycle status, further studies are needed to precisely define
the relationship between reproductive endocrine status and
coordinated gene program changes in the pituitary. Earlier studies
identified a sexual difference in transcriptome-wide gene
expression in the pituitary gland54, and recently in scRNAseq
analysis of the mouse pituitary3. Similar to Ho et al., we observed
a predominance of somatotropes in males vs. females, and a
higher proportion of lactotropes in females vs. males. Under-
standing the sexual differences in the pituitary gland within both
transcriptomic and epigenomic layers could have important
clinical implications in humans, such as for the development of
gender-specific treatments for pituitary disorders.

The transcriptional state of a cell is governed by the activity of
GRNs or regulons. Regulons are GRN gene sets that share a
common TF driver (see Fig. 8a). Notably, when the snRNAseq
data were deconvoluted into pituitary regulons using the SCENIC
framework, the activity of regulons within each cell was sufficient
to reliably cluster the major pituitary cell types (see Fig. 8c). Thus,
regulon activity, which reflects the physiology of each cell, enables
its classification. Expression of the regulon gene set may be
identified in one or more cell types and should require an
expression of its TF driver. Consistent with the key regulatory
role of TF driver expression, most pituitary regulon TFs are found
to be expressed in a single or limited number of cell types (see
Fig. 8b).

When a regulon is expressed in more than one cell type, each
of the cell types may express only a subset of the entire pituitary-
based regulon gene set40. The mechanism for this cell

Fig. 9 Model of cell type-specific regulon control mechanisms. Schematic of the proposed mechanisms for cell type-specific regulation of regulon
composition and function. Three layers of control shape the expression and composition of a cell type-specific regulon and its biological function: cell type-
specific expression of the TF driver, presence of cis-regulatory domain at the target gene promoter, and epigenetic control of promoter accessibility.
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type-specific expression is unknown. To study possible epigenetic
mechanisms, we first investigated the FOXP2 regulon, which is
expressed in gonadotropes, melanotropes, and stem cells. Foxp2 is
a novel gonadotrope-enriched marker identified both by
scRNAseq and by immunohistochemistry in vivo1. Its function in
the pituitary has not been investigated. The genes comprising the
FOXP2 regulon in the three cell types differed significantly (see
Fig. 8d). Notably, we showed that promoter chromatin accessi-
bility and expression level of genes comprising the entire FOXP2
are highly correlated, indicating that the chromatin accessibility
landscape in each cell type is shaping the cell type-specific reg-
ulon composition. We were unable to identify gene methylation
features that strongly correlate with gene activity. As regulon
expression and genome-wide DNA methylation levels could
independently segregate the major pituitary cell types, this lack of
correlation of cell-type-specific regulon genes and methylation
was surprising. Our results suggest that other mechanisms may
regulate the epigenetic landscape that shapes the cell type-specific
regulons.

Sex-specific regulons within a pituitary cell type have not been
reported thus far. We identified and characterized two sex-
specific regulons expressed only in gonadotropes, those driven by
FOXL2 and by NR5A1. FOXL2 is essential in basal and activin-
stimulated Fshb transcription and FSHβ expression in gonado-
tropes, and subsequently impacts mouse fertility55–59. NR5A1
mediates basal expression of Lhb, Fshb, and Cga60–62. Nr5a1
knockout mice are sterile, do not mature sexually, and show
decreased LH and FSH levels63. For each of these two regulons,
we found differences in the regulon composition between males
and females that are highly correlated with promoter chromatin
accessibility within each sex. There was no high correlation
between gene methylation and gene expression. Thus, identifi-
cation of these sex-specific regulons shaped by chromatin acces-
sibility patterns may contribute to elucidating the mechanisms
responsible for differences in the physiology and function of male
vs. female gonadotropes.

Both the cell type-specific regulon and the sex-specific regulons
that we studied are annotated to different functional processes in
different cell types or sexes. This functional module analysis
indicates that the differing composition of the cell type- and sex-
specific regulons may serve distinct biological functions in dif-
ferent cell types in the two sexes, respectively. Based on these
findings, we propose a model where TF driver expression, target
site presence, and gene promoter chromatin accessibility repre-
sent three layers of control that influence the expression and
composition of cell type-specific and sex-specific regulons and
their physiological roles (Fig. 9). Elucidating the interaction
between the epigenetic mechanisms contributing to gene chro-
matin accessibility and cell type- and sex-specific regulon com-
position represents an important area for further investigation.

We have developed and presented our datasets and analyses as
a resource for the research community (snpituitaryatlas.prince-
ton.edu). As we demonstrate, this resource can be used for ana-
lyses ranging from global evaluation of candidate mechanisms
underlying GRN activity to the identification of a novel upstream
cis-regulatory site in a specific gene of interest. We include
comprehensive co-accessibility analysis in this resource. As a test
case of this resource for generating specific hypotheses, we
identified a co-accessible region upstream of the Fshb gene that
corresponds to the site of the human SNP rs11031006, and
generated experimental support for the regulatory role of this
region. We demonstrate the value of integrated multi-omics and
single animal datasets in providing deeper insight into the iden-
tity of cells and the mechanisms contributing to their distin-
guishing transcriptional programs. Our work lays the foundation
for characterizing the general epigenetic regulatory principles that

control cell type-specific animal-specific and sex-specific gene
expression programs.

Methods
Animals and pituitary collection. Pituitaries were collected from male and
randomly-cycling C57BL/6 female mice aged 10–12 weeks. Animals were on a 12-
hour on, 12-hour off light cycle (lights on at 7 AM; off at 7 PM). Pituitaries were
immediately snap-frozen following dissection, and stored at −80 °C.

Animals and dissociation of primary murine pituitaries
Standard protocol used for dissociation. Pituitaries were collected from male and
randomly cycling female C57BL/6 mice aged 10–12 weeks. Animals were on a 12-
hour on, 12-hour off light cycle, with lights on at 7 AM and off at 7 PM. Upon
collection, single pituitaries were digested with 40 μl of 1.5 mg/ml collagenase
(Sigma, Type I-C0130) in low Ca2+ HBSS (pH 7.2–7.4) and dispersed with 4 μl of
2.5 μg/ml pancreatin (10X; Sigma #P3292) in 0.85% NaCl with 36 μl HBSS (NO
CALCIUM) and the dissociated cells were collected acutely. About 0.7–2.5 × 10^6
cells were collected from single pituitaries and placed in individual tubes for
cryopreservation.

Improved protocol used for gentle dissociation with downstream SC assays. Upon
removal, pituitaries were cut in half, rinsed 2x in Ca/Mg-free PBS, and transferred
to a tube containing trypsin solution (final concentration at 0.37 mg/ml, Sigma
T9935) and gently agitated at 37 °C for 10 min. After gentle aspiration and
expulsion of the tissue, the removed supernatant was diluted with MEM/10% FBS,
and the process repeated for three cycles. The combined supernatants were cen-
trifuged and the pellet resuspended in MEM/10%FBS. Approximately 1.7–2.5 ×
10^6 cells were collected from single pituitaries.

Ethical compliance. We have complied with all ethical regulations and institu-
tional protocols. All murine work was conducted at McGill University (Montreal,
Quebec, Canada) under animal use protocol 5204, as approved by the Facility
Animal Care Committee of the Goodman Cancer Research Centre.

Cryopreservation/thawing of dissociated pituitary cells. Dissociated pituitary
cells were cryopreserved in 90% FBS/10% DMSO and shipped to New York on dry-
ice. Upon arrival, cells were stored in liquid nitrogen. On the day of an experiment,
the vial was removed from liquid nitrogen on dry-ice, thawed quickly in a 37 °C
water bath, and cells were serially diluted with 10% FBS /DMEM until a minimum
volume of 8 ml was reached. Cells were centrifuged at 300xg for 5 min, resuspended
in 1 ml of medium and counted.

ScRNAseq assay. ScRNAseq was performed as described (10x Genomics, Plea-
santon, CA; (24)), following the Single Cell 3’ Reagents Kits V2 or V3 User
Guidelines. Cells were filtered, counted on a Countess instrument, and resuspended
at a concentration of 1,000 cells/μl. The number of cells loaded on the chip was
determined based on the 10 × Genomics protocol. The 10X chip (Chromium
Single Cell 3’ Chip kit A v2 PN-12036 or v3 chip kit B PN-2000060) was loaded to
target 5,000–10,000 cells final. Reverse-transcription was performed in the emul-
sion and cDNA was amplified before library construction following the Chromium
protocols v2 or v3. Each library was tagged with a different index for multiplexing
(Chromium i7 Multiplex kit PN-12062). Quality control and quantification of the
amplified cDNA were assessed on a Bioanalyzer (High-Sensitivity DNA Bioana-
lyzer kit). Sequencing was carried out at the NYGC on Illumina Novaseq using 98
+ 26 paired-end reads.

Quality control (QC) assessment. We tested different protocols to assess the best
approach for building a murine sc pituitary atlas. We assessed the quality of our
samples and data by measuring cell viability for cryopreserved dissociated pituitary
cells, and by observing the nuclei shapes and sizes during nuclei isolation and
counts. We followed the standard QC recommended in the 10 × Genomics pro-
tocols, making sure the emulsion step was not compromised, performing biona-
lyzer assessment of the samples after the cDNA amplification stage for sc/sn
RNAseq, as well as after library preparation for all samples (sc/sn RNAseq and sc
ATACseq). After sequencing standard metrics were assessed in Cell Ranger to
make sure our samples were passing QC. Sequencing metrics are presented for all
samples in supplementary tables and figures.

Nuclei isolation from dissociated pituitary cells. Nuclei were isolated from all
cells remaining after the scGEM Drop-seq RNA-seq assay was done. Cells were
centrifuged at 500 × g for 5 min at 4 C. The supernatant was carefully removed and
0.1X lysis buffer (1 × : 10 mM Tris-HCl pH 7.5, 10 mM NaCl, 3 mM MgCl2,
nuclease-free H2O, 0.1% v/v NP-40, 0.1% v/v Tween-20, 0.01% v/v digitonin) was
added. After 5 min incubation on ice, 1 ml of wash buffer was added. The nuclei
were pelleted at 500 × g for 5 min at RT, resuspended either in 1X PBS/0.04% BSA
for scGEM Drop-seq RNA-seq or in diluted nuclei buffer for snATAC-seq. Nuclei
were counted and the concentration adjusted to run the given assay.
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Nuclei isolation from pituitaries. On the ice, snap-frozen pituitaries were thawed
and prepared based on a modified protocol from64. Same-sex samples were pro-
cessed simultaneously, with all three female samples processed one day, and all
three male samples processed another day. Briefly, RNAse inhibitor (NEB
MO314L) was added to the homogenization buffer (0.32 M sucrose, 0.1 mM
EDTA, 10 mM Tris-HCl, pH 7.4, 5 mM CaCl2, 3 mM Mg(Ac)2, 0.1% IGEPAL CA-
630), 50% OptiPrep (Stock is 60% Media from Sigma; cat# D1556), 35% OptiPrep
and 30% OptiPrep right before isolation. Each pituitary was homogenized in a
Dounce glass homogenizer (1 ml, VWR cat# 71000-514), and the homogenate
filtered through a 40 μm cell strainer. An equal volume of 50% OptiPrep was
added, and the gradient centrifuged (SW41 rotor at 17,792 × g; 4 C; 25 min). Nuclei
were collected from the interphase, washed, resuspended either in 1X nuclei
dilution buffer for snATACseq (10 × Genomics) or in 1X PBS/0.04% BSA for
snRNAseq, and counted (Invitrogen Countess II).

snRNAseq assay. SnRNAseq was performed following the Single Cell 3’ Reagents
Kits V3 User Guidelines (10x Genomics, Pleasanton, CA). Nuclei were filtered and
counted on a Countess instrument. A minimum of 1,000 nuclei were loaded
(Chromium Single Cell 3’ Chip kit A v2 PN-12036 or v3 chip kit B PN-2000060).
Reverse-transcription (RT) was performed in the emulsion, cDNA amplified, and
library constructed with v2 or v3 chemistries. Libraries were indexed for multi-
plexing (Chromium i7 Multiplex kit PN-12062). Same-sex samples were processed
together from nuclei isolation to sequencing, with the three female samples pro-
cessed one day, and the three male samples processed another day.

snRNAseq data analysis of individual samples. SnRNAseq data were processed
using the Cell Ranger pipeline v3.0.2, and aligned to whole transcripts rather than
exonic regions only so as to include pre-mRNA. This resulted in a 2.15-fold
increase in the median number of genes detected per cell in females and 2.3− 2.4
fold increase in males relative to a traditional exonic-only alignment. Clustering
and differential gene expression analysis were performed using Seurat v.3.1.1 and
standard procedures65,66. SnRNAseq data contain a background level of the most
expressed genes in the sample. We first identified gel-beads in emulsion (GEMs)
that contained only background as a peak in the UMI count distribution around
255 counts. We used troughs at both the high-end and low-end of the background
peak to delimit the range of UMI counts to include in our background calling.
Typically, this gave us a UMI counts range of roughly 150 to 400. GEMs that
include cells were called with a minimum UMI count of 500 in Cell Ranger, and
were thus well separated from those consisting of pure background. We verified
that all expressed genes correlate linearly with the total UMI count within back-
ground gel-beads, meaning that their proportions did not change. Next, we added
200 random background barcodes into the output Cell Ranger cell-filtered feature
matrices, and repeated the clustering. Background GEMs all clustered together and
separated from any of the cell clusters (except for the debris cluster), confirming
their homogeneous and distinct nature.

We used our background identified GEMs to derive the background
distribution of each expressed gene. While only a handful of transcripts were
present at a concentration larger than one molecule per gel-bead, they could
nevertheless reach counts of up to ~100 in the case of Gh in male samples and Prl
in female samples. Transcripts with a background concentration larger than 0.5 per
gel-bead in any one sample were excluded from the clustering analysis. We
identified doublets following a specific step-by-step approach (Refer to
Supplementary Information for the full description, Supplementary Figs. 28-31).
All feature plots for individual samples (UMI counts, mitochondrial content, and
ribosomal gene contents) are presented in Supplementary Figs. 32-34.

snATACseq assay. SnATACseq was performed following the Chromium Single
Cell ATAC Reagent Kits V1 User Guide (10x Genomics, Pleasanton, CA). Nuclei
were counted (Countess counter), transposition was performed in 10 μl at 37 C for
60 min on at least 1,000 nuclei, before loading of the Chromium Chip E (PN-
2000121). Barcoding was performed in the emulsion (12 cycles) following the
Chromium protocol. Libraries were indexed for multiplexing (Chromium i7
Sample Index N, Set A kit PN-3000262). Same-sex samples were processed toge-
ther from nuclei isolation to sequencing, with the three female samples processed
one day, and the three male samples processed another day.

snATACseq analysis of individual samples. SnATACseq data were processed
using Cell Ranger-ATAC pipeline version 1.2.0 that eliminates barcode multiplets.
Same-sex samples were combined using the Cell Ranger-ATAC aggr function. We
used Signac version 1.0.0 to perform clustering analysis of the merged samples, and
used the pipeline’s intrinsic K-Means clustering analysis for individual samples, as
the pipeline’s graph-based clustering tended to over-cluster. We employed a k= 10
(females), and a k= 7− 9 (males), as they had fewer sequenced cells. Cell types
were annotated based on cutsite pileup sums at promoter regions of known cell
type markers. Cell types present in too low numbers for the K-Means algorithm
(which is limited to k= 10) were identified as a separate cluster (for example non-
pituitary cells). Nevertheless, we were able to visually locate these less abundant cell
types as split on the tSNE plot and identify them using promoter sums of known

markers. In individual male samples, which contain fewer nuclei, we were unable to
split non-pituitary cells apart since their numbers were too low.

Doublet identification in the snRNAseq datasets. Same-type doublets/multiplets
were mitigated by setting an upper limit UMI at 45,000 counts. Cross-type doublets
were identified in two ways described as follows. Doublets of the most abundant
cell types formed separate clusters and were identified by our clustering analysis.
This was the case for Somatotrope-Lactotrope doublets as well as Melanotrope
doublets and Stem cell doublets (with other cell types). Supplementary Fig. 28a
shows the results of our clustering analysis on a t-SNE projection in which we
identified four clusters as doublets. Supplementary Fig. 28b shows the same t-SNE
plot color-coded by total UMI count and illustrates the higher UMI counts of those
barcodes populating doublet clusters. Supplementary Fig. 28c shows a gene
expression heatmap of the Melanotrope doublets cluster. Shown are the top-20
markers of some of the main cell types. We could clearly recognize the expression
of the top melanotrope markers in this cluster, but in addition, we saw the
expression of other gene programs. Based on which of these gene programs were
expressed in any given barcode, we were able to infer the exact two (or more) cell
types constituting each doublet (or multiplet). Supplementary Fig. 28c is organized
in such a way as to illustrate this, as we grouped barcodes by exact cell-type
doublet/multiplet. All barcodes that form this cluster were thus confirmed to be
indeed doublets or multiplets.

The second step of the doublet identification was motivated by the realization
that those doublets which were not numerous enough to form their own cluster at a
resolution that makes sense for the sample at hand, will be amalgamated into one
or the other of the main cell type clusters. Nevertheless, these would show up on a
heatmap of gene expression as shown in Supplementary Fig. 29, which illustrates
the gene expression of the initial Corticotropes cluster and where many barcodes
could be observed to display expression of a secondary program (showing up as
“streaks” on the heatmap). These could be flagged and given an identity that
reflects their doublet or multiplet gene expression. The expression in the cleaned
sample is much more homogeneous, and, in particular, free of the streaks observed
in the original clustering. Running through the heatmap of all of the original
clusters, we were thus able to flag and identify all doublet and multiplet barcodes.

We note that the level of expression of a secondary program can sometimes be
significantly lower than that of the primary expression. More often than not, the
two cells constituting a doublet will not contribute equally to the signal.
Nevertheless, the signal will be ubiquitous across the set of markers of the
secondary cell type, and this is what we looked for. To make our identification, we
used the entire list of markers not only the top-20. Doublets with a dominant cell
type would cluster with and project onto the space occupied by cells of that
dominant type, whether on a t-SNE or UMAP. They nevertheless stood out on the
gene expression heatmap and could be properly identified.

As a third step, we verified our doublet identification by running through all of
the two main cell type combinations and generated plots such as those shown in
Supplementary Fig. 30, which illustrates, in the case here of Melanotropes –
Lactotropes1-2 doublets, how doublets break away from one or the other of their
constituting cell types in the aggregate expression of cell-type markers. In addition,
we could see that doublets displayed higher UMI counts (Supplementary Fig. 30d),
further validating their identification.

Lastly, we looked at the UMI count distribution as a function of cell quality, or
multiplet order (Supplementary Fig. 31) Despite the fact that we identified
doublets, triplets and higher-order multiplets solely based on their gene expression,
we observed, as expected, a regular increase in the UMI count from single-cell
barcodes to doublets, to triplets and to clumps (higher-order multiplets). We also
noticed a broadening of the distributions, which is also an expected behavior of
combinatorial probability. In addition to multiplets, Supplementary Fig. 31 also
shows that barcodes identified as containing background (ambient RNA), debris,
or low-quality / damaged cells. These pile up at the low cutoff limit of UMI counts.
Finally, barcodes in which more than 0.5% of transcripts were hemoglobin
transcripts were flagged as contaminated with erythrocyte debris.

Merged snRNAseq or snATACseq analysis. All male and female samples were
merged by sex in Seurat at the UMI count level, and all of the clustering analysis
was repeated on the merged samples independently from the beginning. We fol-
lowed the same analysis steps as for individual samples. Unlike our integrated
samples (see later section), the merged samples do not have batch effects removed.
Despite that, we do not observe any systematic batch effect between our samples.
We do, however, see differences in gene expression from one animal to another
among some specific cell types. The merged samples allow us to highlight these
differences in the implicated cell types.

Quality control (QC) and sequencing of libraries. QC and quantification of
libraries were done by Bioanalyzer (High-Sensitivity DNA Bioanalyzer kit), Qubit
(Thermofisher), and Mi-seq (Illumina). Sequencing was carried out at the New
York Genome Center (NYGC) on an Illumina Novaseq using 98+ 26 paired-
end reads.
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snMethyl assay. The snmC-seq2 protocol was applied to individual nuclei isolated
from a pool of 30 adult male pituitaries, following a protocol that included bisulfite
conversion and subsequent preparation of the snmC-seq2 libraries as previously
described25,67. Sequencing was done at the Salk Institute on Illumina Novaseq 6000
using 150 bp paired-end reads. Female pituitaries were not analyzed by snMethyl
due to the heterogeneity caused by cycling, and the technical requirement of
pooling pituitaries.

snmC-seq2 mapping and preprocessing. A versatile mapping pipeline (cemba-
data.rtfd.io) was implemented for all the sc methylome-based technologies devel-
oped by the Ecker Lab25,67,68. The main steps of this pipeline included: (1)
demultiplexing FASTQ files into sc; (2) reads-level QC; (3) mapping; (4) BAM file
processing and QC; (5) final molecular profile generation. Details of the five steps
for snmC-seq2 were described previously33. We mapped all the reads onto the
mouse mm10 genome. After mapping, we calculated the methyl-cytosine counts
and total cytosine counts for two sets of genomic regions in each cell. The non-
overlapping 100 kb genomic bins of the mm10 genome (generated by “bedtools
makewindows -w 100000”), which was used for clustering analysis and ANN
model training, and the gene body region ± 2 kb defined by the mouse GENCODE
vm22, which was used for cluster annotation and integration with the other
modalities.

Clustering analysis and DMR calling. Before clustering, we first filtered the cells
based on these main mapping metrics: (1) mCCC rate < 0.03. mCCC rate reliably
estimates the upper bound of bisulfite non-conversion rate67, (2) overall mCG rate
> 0.5, (3) overall mCH rate < 0.2, (4) total final reads > 500,000, (5) bismark
mapping rate > 0.5. The clustering analysis was performed as previously
described68. In brief, we used the mCG and mCH 100 kb genomic bins matrices as
inputs of the clustering analysis. After calculating the normalized posterior esti-
mation of mCG and mCG rate based on the beta-binomial distribution, we selected
the top 2500 highly variable features and performed Principal Component Analysis
(PCA) on each matrix, and concatenate the first 20 PCs from both matrices. We
performed KNN-Louvain clustering (K= 25, Louvain resolution= 0.8) on the
concatenated PCs. We manually annotated clusters based on marker genes learned
from other modalities. After clustering, we merged the sc ALLC files (whole-
genome cytosine count table for each cell) by cluster to get pseudo-bulk ALLC files.
We then performed differential methylated regions (DMR) analysis using the
“methylpy DMRfind” function among all clusters, as previously described68. For
cell-type identification, only mCG levels at the promoters of known pituitary cell
type genes were used as non-CG DNA methylation (mCH) was a rare event in our
pooled male sample.

PLIER data analysis of sc and sn assays. PLIER analysis was performed on
scRNAseq studies done on dissociated pituitary cells from nine samples (four
females and five males) applying the latent variables (LVs) obtained from the
snRNAseq data from the snap-frozen samples.

B is a PLIER-derived expression value for the genes associated with a given LV
across the different samples. It can be treated similar to average expression, weighted
by gene association with the LV. Technically, B is a matrix of size #LVs x #Samples. It
is one of two matrices in PLIER, along with Z of size # of genes x #LVs. The goal of
PLIER is to find values of B and Z that minimize the equation | |Y - Z*B | | where Y is
our data matrix of size #genes x #samples. So PLIER is finding a suitable number of
LVs that can be used to connect the genes and samples and accurately estimate our
data matrix.

To examine more deeply the trends in gene expression of assigned cell types
across samples and data types, we treated each sc dataset as a collection of bulk
datasets for given labeled cell types. Each cell type was then treated as a separate
bulk measurement within each sample.

For snATACseq data, peak counts for a given gene were generated by selecting
the peak closest to the transcription start site (TSS). These peak counts per gene
were then collected into single bulk measurements for each cell type in each
sample. We focused specifically on eight relevant cell types in the pituitary:
corticotropes, gonadotropes, lactotropes, melanotropes, proliferating cells,
somatotropes, stem/progenitor cells, and thyrotropes. For the snRNAseq dataset,
this process generated 48 bulk measurements over six samples (three females and
three males), and for the snATACseq dataset, we generated 42 bulk measurements.
Proliferating cells were not identified in snATACseq. We applied PLIER37, which
finds patterns in count data that are associated with known prior information (such
as Reactome and Kegg). PLIER was run on each set of samples separately with LVs
generated on the bulk measurements in an unsupervised fashion. LVs were then
curated to find patterns relevant to individual cell types as well as sample-wide
trends such as sex-based differences. Statistical significance of LVs was computed
through the Kruskal–Wallis non-parametric test for multiple groups as part of the
stat_compare_means R method. Comparisons between LVs within and across
datatypes were achieved by comparing the overlap of the 50 genes most associated
with a given LV.

Generation of the CRISPR LβT2 clone. The murine LβT2 cell line69,70 was a gift
from Dr. Pamela Mellon (UCSD). Cells were maintained in 10-cm diameter dishes

containing Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin/streptomycin (Invitrogen, Carlsbad,
CA) in a humidified incubator at 37 °C and 5% CO2. A 20 bp target site
GCCCTGTGATATTTATTTCA was chosen to induce double-strand DNA breaks
at the TT location using CRISPR-Cas9 (University of Utah Mutation Generation
and Detection Core). LβT2 cells were transfected at 50% confluency with 4 µg
CRISPR Cas9-gRNA-GFP constructs, and 1 µg of a gel-purified mutagenic primer
targeting mouse rs11031006 using PolyJet in vitro DNA Transfection Reagent
(SignaGen Laboratories). At 18 h post-transfection, cells were washed with PBS,
digested with 0.5 ml 0.25% trypsin-EDTA, and reconstituted with 0.5 ml DMEM.
Cells were sorted for GFP expression and collected by an Avalon Cell Sorter
(Propel Labs, Fort Collins, CO), before being plated on a 12-well plate in sup-
plemented DMEM. Isolation, genotyping, and expansion of individual colonies
were repeated three times to establish new clonal cell lines. The QIAamp DNA
Mini Kit (QIAGEN, Hilden, Germany) was used to extract DNA of each colony for
verification of the clonal genotype by Sanger sequencing using rs11031006 primers.
Genotype was identified using Poly Peak Parser71. One clone was selected for
further studies.

Quantitative real-time PCR (qPCR). Edited and unedited LβT2 cells were plated
at 1,500−5,500 cells per well into 96-well plates in DMEM with 10% fetal bovine
serum and 1% penicillin/streptomycin. Cells were treated for 24 h either with
vehicle or with 10 nM GnRH and 1 nM activin A (R&D Systems, Minneapolis,
MN) in serum-free DMEM with 0.1% BSA.

Total RNA from each well was extracted using the RNeasy Mini Kit (Qiagen,
Valencia, CA) and reverse transcribed to cDNA using SuperScript VILO
MasterMix (ThermoFisher, Rockford, IL). Samples were then subjected to qPCR
using PowerUp SYBR Green Master Mix (ThermoFisher, Rockford, IL). qPCR
reactions were carried out with the following conditions: 50 °C for 2 min; 95 °C for
10 min; 40 cycles of 95 °C for 15 sec and 60 °C for 1 min using an Applied
Biosystems 7900HT (Foster City, CA). SDS 2.1 software was used to identify the
cycle number for each target (Applied Biosystems, Carlsbad, CA). Three technical
qPCR replicates were run for each biological replicate. Results were exported as
cycle threshold (Ct) values, and Ct values of target genes were normalized to those
of Gapdh in subsequent analysis. Data were expressed as arbitrary units by using
the formula, E= 2500 × 1.93(Gapdh CT value− gene of interest CT value), where E is the
expression level in arbitrary units. The data were expressed as the mean ± s.e.m,
and a value of p < 0.05 was considered statistically significant. All primers used in
CRISPR and in qPCR experiments are provided in Supplementary Table 8.

Radioimmunoassays. FSH secreted in the medium was assayed, and the repor-
table range for the FSH assay was 1.1–54.1 ng/mL. The intra-assay and inter-assay
%CV for FSH was 7.4% and 9.1%, respectively. These assays were performed at the
University of Virginia Core Ligand and Assay Laboratory.

sn data integration. The snRNAseq, snATACseq, and snMethyl data were inte-
grated in a reference-query based manner, mainly using the “FindTransferAn-
chors” and “TransferData” functions from the Seurat v3 package65,66. The
snRNAseq datasets were used as the reference and the other modalities were
integrated into them. To integrate snATACseq to snRNAseq, the peak-by-cell
accessibility matrix was converted to a gene-by-cell activity matrix based on the
chromatin accessibility within each gene’s gene body and a 2 kb upstream region,
under the assumption that chromatin accessibility and gene expression were
positively correlated. The variable features from the snRNAseq data were used to
find the anchors and the snATACseq data in the LSI low-dimensional embedding
were used to transfer the data from snRNAseq to snATACseq. To integrate the
snMethyl data to snRNAseq, the normalized methylation rates for each gene’s gene
body and+ /− 2 kb flanking region were used. This gene-by-cell methylation rate
matrix was converted to an activity matrix by “activity= 1 / normalized methyla-
tion rate”, under the assumption that methylation and gene expression are nega-
tively correlated. The variable features from the snRNAseq data were used to find
the anchors and the snMethyl data in the PCA low-dimensional embedding were
used to transfer the data from snRNAseq to snMethyl. Co-embedding of the three
modalities was done by concatenating snRNAseq with the transferred data of
snATACseq and snMethyl, and running dimension reduction on the concatenated
dataset.

Regulon analysis. We used SCENIC39 to reconstruct the GRNs from snRNAseq
data, with 3 steps: (1) identifying sets of genes that are co-expressed with TFs in the
snRNAseq dataset, (2) refining the target genes for each TF based on enrichment of
its cis-regulatory binding motifs, and (3) measuring the enrichment of each regulon
(consisting of a TF and its target genes) in each nucleus using an AUC score
(regulon activity score). SCENIC was run on filtered and pooled datasets of three
females and three males with the raw UMI counts used as an input. In each dataset,
only genes with UMI count >= 3 in at least 3 cells were kept, and cells identified as
doublets were removed.

The output was a regulon-by-cell matrix composed of the activity of each
regulon in each cell type. Cell type-level regulon activities were calculated by the
average of sn-level regulon activities. For a regulon in a cell type, the relationship
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between chromatin accessibility and RNA expression of target genes was
determined using their relative levels, defined as the ratio between cell type average
and whole-dataset average. Chromatin accessibility of the target genes was
measured by the accessibility either in the promoter region (500 bp region in the
upstream of TSS) or in the gene body region. We determined the relationship
between relative gene accessibility and expression by scatter plots and linear
regression.

Determination of “relatively high” and “relatively low” expression was done by
setting a threshold for defining relatively high and low expression. In the analysis
combining multiple samples (e.g., all males), a gene is identified as “high” if it is
“high” in at least one sample. To study the target genes specifically turned on in
each regulon and each cell type, we identified a target gene as specifically highly
expressed in a cell type if it satisfied either of these two conditions: (1) its relative
averaged normalized RNA expression in this cell type vs. the whole dataset was
greater than 2, and it had non-zero UMI counts in at least 10% of the cells in this
cell type; and (2) it had non-zero UMI counts in at least 50% of the cells, and its
relative averaged normalized RNA expression in this cell type was greater than 1.
The rationale here was to avoid genes being classified as “high” if they were
universally lowly expressed across all cells but showed high relative expression
because of noise. In the analysis involving multiple samples such as all males, a
target gene was defined as specifically highly expressed in a cell type if it was
specifically highly expressed in the cell type in at least one sample.

Regulon activity calculations. Regulon activity scores for each cell were calculated
using the AUCell function from the SCENIC pipeline39. Basically, the activity of a
regulon in a cell was evaluated by the enrichment of the regulon genes in the highly
expressed genes of this cell, and the enrichment was measured by the area under
the curve (AUC) of recovering the regulon genes from the expression-based
ranking of all genes. The cell-type level regulon activity scores were calculated by
averaging the sc level regulon activity scores across all the cells of the cell type.

Co-accessibility and putative regulatory region. Co-accessibility between all
pairs of snATACseq peaks within 500 kb was calculated using the Cicero
package31. To find putative distal regulatory regions for a gene, we used the
snATACseq peaks within the gene promoter region, and identified their co-
accessible peaks that were at least 5 kb away.

Functional module analysis of target genes. To identify the functions enriched
in the lists of on and off genes in each regulon, we used the functional module
detection method from the HumanBase resource (https://hb.flatironinstitute.org/
module). The method clusters genes by their connectivities in a tissue-specific
functional network and finds enriched GO terms for each of the gene clusters44.

Conservation analysis. PhastCon and PhyloP(60) analyses were performed to
analyze conservation among vertebrate species34,35. PhyloP was performed on 60
vertebrate species.

Boxplots. For all box plots comparing ATAC or Methyl between lowly and highly
expressed genes, the box plots are plotted using the quantiles described below.
Specifically, the geom_boxplot function from the R package ggplot2 is used. This
applies to Supplementary Fig. 22d, Supplementary Fig. 24a,c, Supplementary
Fig. 26b,c, and Supplementary Fig. 27a. The lower and upper box bounds corre-
spond to the first and third quartiles (the 25th and 75th percentiles). The upper
whisker extends from the upper box bound to the largest value no further than 1.5
* IQR (inter-quartile range, or distance between the first and third quartiles) from
the upper box bound. The lower whisker extends from the lower box bound to the
smallest value at most 1.5 * IQR from the lower box bound. Data points outside of
the range of whiskers are plotted as individual points.

Two-sided Wilcoxon rank-sum tests (a.k.a Mann-Whitney U tests) were used,
and p values were calculated by normal approximation. Specifically, the R core
function wilcox.test was used.

ggboxplot generates a boxplot with the center equal to the 50th percentile, the
bounds of the box are the 25th and 75th percentile and the bounds of the whiskers
are the smallest/largest values 1.5 times the interquartile range below the 25th
percentile or above the 75th percentile, respectively.

Statistics. For the assessment of sex difference in cell type proportions (Fig. 4e, f),
we used a two-way analysis of variance (ANOVA) followed by Bonferroni multiple
comparisons post-hoc test, with n= 3 biological replicates per cell type, F(11, 47)
= 20.80 for snRNAseq, and F(8, 15)= 23.77 for snATACseq.

For analysis of LV sex differences by PLIER (Fig. 7b, Supplementary Fig. 21a),
we used a two-tailed Wilcoxon rank-sum test with n= 48 (8 cell types, 6 biological
samples), 1 degree of freedom, W= 490, p= 1.108e-05 for the snRNAseq data
(Left panel) and with n= 12 (2 cell types, 6 biological samples), 1 degree of
freedom, W= 36, p= 0.002165 for the lactotrope and somatotrope snATACseq
data (Right panel). For evaluating the cell type differences of gonadotrope-specific
LVs by PLIER (Fig. 7b, Supplementary Fig. 21b), we used a two-tailed
Kruskal–Wallis analysis to test whether all samples originated from the same

distribution. For LV2rna applied to snRNAseq data (Left panel), n= 48 (8 cell
types, 6 biological samples), 7 degrees of freedom, χ2= 34.561, p= 1.352e-05. For
LV2atac applied to snATACseq data (Center panel), n= 42 (7 cell types, 6
biological samples), 6 degrees of freedom, χ2= 37.34, p= 1.512e-06. For LV2rna
applied to snATACseq data (Right panel), n= 42 (7 cell types, 6 biological
samples), 6 degrees of freedom, χ2= 30.813, p= 2.752e-05.

For analysis of LV sex differences by PLIER applied to the dissociated pituitary
dataset (Supplementary Fig. 17), we used a two-tailed Wilcoxon rank-sum test with
n= 48 (8 cell types over 6 biological samples), 1 degree of freedom, W= 490, p=
1.108e-05 for the snap-frozen snRNAseq data (Left panel—as seen in
Supplementary Fig. 21a) and with n= 64 (up to 8 cell types over 9 biological
samples), 1 degree of freedom, W= 905, p= 1.142e-08 for the dissociated pituitary
RNAseq data (Right panel).

For determining whether the association of PLIER LVs to known prior
knowledge gene pathway information was random, we applied a cross-validation
test37 that determines if each association between LV and prior knowledge pathway
was robust to removing random one-fifth subsets of the genes associated with each
pathway. AUC values were calculated based upon the ability to recover each
pathway for a given LV.

For all the boxplots comparing chromatin accessibility or methylation between
highly and lowly expressed genes, two-sided Wilcoxon rank-sum tests (a.k.a.
Mann–Whitney U tests) were used, and p values were calculated by normal
approximation. Specifically, the R core function wilcox.test was used. The number of
genes tested and the W values from the Wilcoxon rank-sum tests were: 235 highly
vs. 75 lowly expressed genes (W= 3388, Supplementary Fig. 22d), and 669 highly
vs. 957 lowly expressed genes (W= 158752, Supplementary Fig. 24a). The number
of genes tested and the W values from the Wilcoxon rank-sum tests were: in
Supplementary Fig. 26b, 232 highly expressed vs. 75 lowly expressed genes (W=
8995); in Supplementary Fig. 26c, 25 highly expressed vs. 25 lowly expressed genes
(W= 175); in Supplementary Fig. 27a, 284 highly expressed vs. 112 lowly expressed
genes for males (W= 6771), and 332 highly expressed vs. 64 lowly expressed genes
for females (W= 4419); in Supplementary Fig. 24c, 871 highly expressed vs. 755
lowly expressed genes (W= 182337).

For Fshb expression (Fig. 6d), statistical analyses were all performed using
GraphPad Prism version 5.04 (GraphPad Software, San Diego, CA, www.graphpad.
com). We used a two-way ANOVA followed by Bonferroni multiple comparisons
post-hoc test, with n= 4 biological replicates per sample (each measured in
technical triplicates), F(1, 29)= 29.54 in the GnRH + activin A treatment in the
unedited vs. CRISPR clones, and F(1, 29)= 22 in the CRISPR clone for the basal vs.
GnRH + activin A treatment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets (scRNAseq, snRNAseq, snATACseq) and snMethyl data generated in the
present study are deposited in GEO (GSE151962 and GSE152011). The sn mouse
pituitary multi-omics atlas can be browsed via a web-based portal accessible at
snpituitaryatlas.princeton.edu. All data is available from the authors upon reasonable
request.

Code availability
Any computational code used in the paper is available upon request.
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