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Abstract of the Dissertation 

l\1aking Mathematics on Paper 
Constructing Representations of Stories About Related Linear Functions by 

Rogers Pierpoint Hall 
Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1990 
Professor Dennis Kibler, Chair 

This dissertation takes up the problem of applied quantitative inference as a central 
question for cognitive science, asking what must happen during problem solving for 
people to obtain a meaningful and effective representation of the problem. The core of 
the dissertation reports exploratory empirical studies that seek to answer the 
descriptive question of how quantitative inferences are generated, pursued, and 
evaluated by problem solvers with different mathematical backgrounds. These are 
framed against a controversy, described in Chapter 2, over the theoretical and empirical 
validity of current cognitive science accounts of problems, solutions, knowledge, and 
competent human activity outside of laboratory or school settings. 

Chapter 3 describes a written protocol study of algebra story problem solving 
among advanced undergraduates in computer science. A relatively open-ended 
interpretive framework for "problem-solving episodes" is developed and applied to their 
written solution attempts. The resulting description of problem-solving activities gives 
a surprising image of competence among an important occupational target for standard 
mathematics instruction. 

Chapter 4 follows these results into detailed verbal problem-solving interviews with 
algebra students and teachers. These provide a comparison across settings and levels of 
competence for the same set of problems. The results corroborate similar generative 
activities outside the standard formalism of algebra across levels of competence. 
Notable among these nonalgebraic problem-solving activities are "model-based 
reasoning tactics," in which people reason about quantitative relations in terms of the 
dimensional structure of functional relations described in the problem. These tactics 
support different activities within surrounding solution attempts and usually describe 
"states" in the problem's situational structure. 

Chapter 5 holds these activities accountable to local combinations of notation and 
quantity, reinterpreting result~ for model-based reasoning in an ecological analysis of 
material designs for constructing and evaluating quant'itative inferences. This analysis 
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brings forward important relations between what material designs afford problem 
solvers and the complexity of episodic structure observed in their solution attempts. 
The dissertation closes with a reappraisal of the relationship between knowledge, 
person, and setting and, I will argue, puts us on a more promising track for a 
descriptively adequate theoretical account of constructing mathematical representations 
that support applied quantitative inference. 
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Cl1apter 1 

Making and Using Mathematical 
Representations 

1.1 The proble1n 

How do people in school, at work, and in their daily lives reason about quantitative 
relationships? There ]s no shortage of answers under particular views of how people 
should reason about mathematics, but these idealized accounts of quantitative inference 
generally fall short of telling us much about what actually happens as quantitative 
problems arise and are resolved among individuals. In keeping with prescriptive views, 
·we might better ask what does not happen when people solve these kinds of problems, 
particularly in light '.'.- evidence for stationary or even falling levels of achievement 
among American students in the classroom and after entry into the working world (e.g., 
National Commission on Educational Excellence, 1983). Quantitative inference has 
become part of a high profile social agenda, but 've know relatively little about how it 
occurs outside of formal assessments. 

1.2 Ill-structured problems 

Confronted with an algebra story problem, a student faces a fundamental sort of 
"ill-structured problem" (Newell, 1969; Simon, 1973; Star, 1989b ). The problem text 
gives information about initial and goal states, but state-transition operators taking 
the text into a quantitative solution are hardly well-defined. Even assuming the 
student has an adequate grasp of mathematical principles and operators within the 
formalisms of arithmetic and algebra (e.g., the distributive property of multiplication 
over addition or using algebraic substitution), a solution to the presented problem is 
often obvious only in retrospect. Rather than searching for a solution path in a 
well-defined space of representational states, the problem solver is more likely to he 
attempting to construct a representation in which the problem becomes routine or 
familiar. Omitted or incorrectly introduced constraints within the problem 
representation can lead to prolonged and often meaningless calculations, and may 
encourage otherwise sophisticated problem solvers to give up entirely. 
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In many respects, the idea of solving ill-structured problems is oxymoronic for 
traditional studies of artificial intelligence, where problems need to be reasonably 
well-structured before even "weak methods" can be applied to search for a solution. 
Granted that problem solving can be improved by a change in an existing problem 
space (e.g., chunking parts of the space with macro-operators), what makes 
ill-structured problems difficult is that a representation sufficient to support search in a 
problem space (even if horribly uninformed search) is required before the computational 
sense of problem solving can even begin. It is little wonder, then, that 
information-processing models of ill-structured problem solving remain elusive. 

This state of affairs might be puzzling but acceptable if algebra story problems were 
transient disturbances in the secondary school curriculum. However, these problems 
recur as a general task throughout the mathematics curriculum and are even found in 
the quantitative sections of entrance examinations for professional schools. If prevalence 
alone is an insufficient basis for study, the prescribed role of these problems in bringing 
mathematical formalisms into contact "·:ith "everyday experience" recommends them 
highly. Viewed from within the classroom, story problems are thought to provide 
students with an opportunity to apply acquired mathematical abstractions in more 
familiar domains (e.g., traveling or shopping). Viewed in a wider context, these 
problems also provide a curricular microcosm of a central pedagogical problem: transfer 
of training from the algebra classroom to students' later educational or life experiences. 

Interpretations derived from either vantage are controversial. For example, I have 
anecdotal evidence that these problems are avoided by some teachers as being too 
difficult for both students and teachers. On the other hand, studies of mathematics in 
practice suggest that "real-world" curricular materials may have little correspondence 
with mathematical problems or their solution in "real life" (Lave, 1986, 1988a). For 
cognitive and educational theorists alike, the problem is to determine how applied 
problems are solved by competent problem solvers and how acquisition of that 
competence might be supported. 

Algebra story problems of the sort shown in Table 1 have been studied extensively 
by cognitive and educational psychologists, both as a representative task for 
mathematical problem solving (e.g., Hinsley, Hayes, and Simon, 1977; Mayer, Larkin, 
and Kadane, 1984; and Paige and Simon, 1966) and as experimental materials for 
studies of transfer (e.g., Dellarosa, 1985; Reed, 1987; Reed, Dempster, and Ettinger, 
1985; and Silver, 1979, 1981). Many studies treat problem solving as an opaque process 
with an inspectable output (i.e., correct or incorrect) and duration. Manipulations in 
problem content or presentation are introduced, performance data are collected, and 
inferences are drawn concerning hypothetical problem-solving mechanisms. In contrast, 
much as in Kilpatrick's early work (1967) and subsequent studies of mathematical 
problem solving by Lucas (1980) and Schoenfeld (1985), I have chosen instead to 
present people with representative problems and then to observe and analyze their 
uninterrupted responses in some detail. This approach trades experimental control over 
the problem-solving setting for a richer interpretive v~ew of problem-solving activities. 



Table 1.1: Representative algebra story problems. 

Motion: Opposite direction (MOD). 

Two trains leave the same station at the same time. They travel in opposite 
directions. One train travels 60 km/h and the other 100 km/h. In how many 
hours will they be 880 km apart? 

Motion: Round trip (11RT). 

George rode out of town on the bus at an average speed of 24 miles per hour 
and walked back at an average speed of 3 miles per hour. How far did he go 
if he was gone for six hours? 

\Vork: Together absolute (\VT). 

Mary can do a job in 5 hours and Jane can do the job in 4 hours. If they 
\York together, how long will it take to do the job? 

\Vork: Competitive (\VC). 

Randy can fill a box with stamped envelopes in 5 minutes. His boss, Jo, can 
check a box of stamped envelopes in 2 minutes. Randy works filling boxes. 
\Vhen he is done, Jo starts checking his work. How many boxes were filled 
and checked if the entire project took 56 minutes? 

In addition to finding whether or not a subject has gotten a problem "right," this 
approach allows exploration of the solution strategies that subjects select and their 
tactical course in achieving solutions, right or wrong. This is useful for characterizing 
"·hat competent problem solvers actually do when solving these problems (i.e., a 
succession of strategic and tactical efforts) and is a necessary first step tO\vards finding 
methods for supporting acquisition of competent problem-solving behaviors. 

1.3 Constructing well-structured problems 

Given an algebra story problem text, a problem solver must somehow convert the 
ill-structured task of finding a precise value from a written description of a situation 
into a task that is familiar enough to support inferences about quantitative relations 
between given and unknown quantities. The conventional instructional approach, one 
also adopted by .early computational studies of language comprehension (reviewed in 
Chapter 2), is somehow to "translate from words to equations" and then to manipulate 
the resulting equations to find a precise value for the requested quantitative unknown. 
\\'hile a cursory examination of algebra textbooks shO\ys that this method is still taught 
in beginning algebra classes, most would agree that this kind of activity is a rather 
narrow form of competent quantitative inference. 
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1.3.1 Competent algebra story problem solving 

Figure 1.1 shmvs a written protocol collected with an advanced undergraduate in 
computer science, taken from a larger study described in Chapter 3. It is important to 
note that this student is a competent mathematical problem solver, in the sense that she 
has been trained to institutional standards in the University of California system. 
Given this background, what does the written protocol tell us about constructing an 
algebraic representation of related linear functions? 

First, there are many notations and quantities used in this solution attempt, 
including a diagram, labels on diagrammatic components, textual annotations recording 
conjectures or observations, a table organizing related quantities, traditional algebraic 
expressions showing an algebraic proportion, and an arithmetic expression that clearly 
violates any conventional interpretation of equality (i.e., "30 min = 80 miles"). Second, 
we can divide the written protocol into what appears to be a series of coherent 
problem-solving episodes, starting with a diagram showing part of the specified train 
separation. Successive extensions to the diagram appear to be used to calculate 
cumulative distance, leading to a conjecture about relative motion - i.e., "The trains 
are moving apart at 160 km/h?" The diagram appears to be used as a model that shows 
the relative position of trains after two hours of travel, based on implicit inferences that 
distances elapsed can be combined and that the trains travel at the same time. 

Only part way info this solution attempt, we find that the student has already 
constructed a quite elaborate material representation of the events depicted in the 
problem, that labels in this drawing carry relevant quantities, and that this 
construction has consequences for generating further quantitative inferences (i.e., the 
conjecture about combined rates). Next, the student outlines a table and iteratively 
constructs individual "states" consistent with the model from the first episode. Each 
successive state organizes a set of simple arithmetic calculations (addition and 
multiplication), and the recorded values give implicit evidence for a linear relationship 
between time and individual distances travelled or the distance apart. These state 
calculations eventually exceed the global constraint that trains end up 880 km apart, 
but confirm the earlier conjecture about relative motion (i.e., "Yes. It will take between 
5 & 6 hours at that rate.") and constrain the desired value both above and below. 

This is a dramatic shift in representation, moving from one well-structured account 
of train separation (e.g., the connected diagram) to another that appears more likely to 
remain within the confines of the working surface. Furthermore, the table explicitly 
records values for time that were left implicit in the original diagram. Moving beyond 
the given limit 6f 880 km with integral values for time in the table, the first evidence of 
standard algebraic formalism appears as a simple set of assignments. In the third and 
final episode, the difference between the distance apart at 5 hr (800 km) and the given 
distance is found (80 km). Along with the combined rate of travel, these are assembled 
into an algebraic proportion between the 160 km covered in 1 hr and the distance 



Two trains leave the same station at the same time. They travel in opposite 
directions. One train travels 60 km/h and the other 100 km/h. In how many 
hours will they be 880 km apart? 
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Figure 1.1: Protocol of student W22 on the MOD problem. 
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remaining after 5 hr. Finding it will take 30 min to travel the remaining 80 km, the 
student combines partial times and presents a solution. 

1.3.2 Applied quantitative inference 

6 

'Where is the mathematical representation in this solution attempt? The algebraic 
proportion that finished the work would be the most traditional choice, but this is only 
an incomplete piece of the algebraic calculation that would be required to solve the 
entire problem. Thus, the "mathematics" of this solution attempt must also lie further 
upstream in episodes using nonstandard notations and quantities to construct a model 
of problem structure. Furthermore, where did these materials come from as the 
problem solver was working? The experimental setting in this study resembled a typical 
classroom examination, so these notations must have been constructed by the problem 
solver. Further, it is unlikely that their particular structure or contents were directly 
recalled as the solution attempt progressed (e.g., combining motion rates). This 
dissertation takes up these and related questions about constructing mathematical 
representations on paper as a form of "applied quantitative inference." 

1.4 Overview of the dissertation 

Research reported in this dissertation places the problem of applied quantitative 
inference as a central question for cognitive science, asking what must happen during 
problem solving for people to obtain a meaningful and effective representation of some 
problem. As shmvn in later chapters, this is an intriguing but illusive theoretical issue 
for traditional cognitive theories of human inference. The core of the dissertation 
reports exploratory empirical studies that seek to answer the descriptive question of 
how quantitative inferences are generated, pursued, and evaluated by problem solvers 
with different mathematical backgrounds. These are framed against a controversy, 
described in Chapter 2, over the theoretical and empirical validity of current cognitive 
science accounts of problems, solutions, knowledge, and competent human activity 
outside of laboratory or school settings. 

The starting point for these explorations is that we lack an adequate theoretical 
language for describing how representations or problem spaces are constructed, short of 
their being committed to memory as a result of reading verbal instructions. Rather 
than asking how a representation might be used with increasing efficiency, the question 
is :how to construct a representation of a problem in the first place. This is one excellent 
reason for adopting "algebra story problems" as an exploratory task, since these 
problems appear in a form that does not serve as a representation for obtaining 
quantitative precision. Chapter 2 also presents a prescriptive analysis of the 
quantitative and situational structure of algebra story1 problems, asking how these 



structural aspects might interact to support the construction of a meaningful 
mathematical representation. 
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Chapter 3 describes a written protocol study of algebra story problem solving 
among advanced undergraduates in computer science. In order to examine the activities 
and content of solution attempts, a relatively open-ended interpretive framework for 
"problem-solving episodes" is developed. This framework is applied to written 
protocols in Chapter 3, but also serves to organize exploration of more detailed verbal 
protocols in Chapters 4 and 5. The problem-solving activities of mathematically 
sophisticated undergraduates give a surprising image of competence among an 
important occupational target for standard mathematics instruction. 

Chapter 4 follows these results into detailed verbal problem-solving interviews with 
algebra students and teachers. These provide a comparison across settings and levels of 
competence for the same set of problems, and the results corroborate similar generative 
actiYities outside the standard formalism of algebra for each comparison. Notable 
among these nonalgebraic problem-solving activities are "model-based reasoning 
tactics," in which the problem solver reasons about quantitative relations in terms of 
the dimensional structure of functional relations described in the problem. These 
tactics support different purposes within surrounding solution attempts and appear on 
paper as nonstandard combinations of notations and quantities that usually describe 
"states" in the problem's situational structure. 

Chapter 5 holds these activities accountable to local combinations of notation and 
quantity, reinterpreting results for model-based reasoning in an ecological analysis of 
material designs for constructing and evaluating quantitative inferences. This analysis 
brings forward important relations between what material designs afford problem 
solvers and the complexity of episodic structure observed in their solution attempts. 
These analyses close the dissertation with a reappraisal of the relationship between 
knowledge, person, and setting and put us on a more promising track for a descriptively 
adequate theoretical account of constructing mathematical representations that support 
applied quantitative inference. 



Cl1apter 2 

Representations Prescribed: 
Algebra Story Problems 

2.1 Quantitative inference and complex 
mathematical structure 

A theme running throughout this dissertation is that "representations" are designed 
artifacts, and that to understand mediating "mental representations" we must also look 
outside the individual, into the material and social setting, in order to adequately 
describe competent use of these artifacts. In this chapter, the type of problem shown in 
Figure 1.1 is treated as just such a designed artifact. Algebra story problems, under 
this view, sit at the boundary of many interest groups, each having quite different 
relations to the problems and their meaning. These groups include algebra students, 
school alumni, and their teachers, but also the larger social worlds of professional 
mathematicians, mathematics educators, and behavioral scientists. Considered 
together, these different views of algebra story problems contribute to a broader 
understanding of competent mathematical problem solving. 

This chapter focuses primarily on how cognitive and educational research have 
treated these problems. However, on the basis of interviews (described in Chapter 4) 
and anecdotal conversations with both algebra alumni and teachers, for many students 
these problems are the best remembered, the least preferred, and a terminal experience 
in mathematical instruction. For their teachers, these problems are often a disruption 
in the delivery of mathematics instruction, managed with difficulty, and sometimes 
dropped from the curriculum altogether. 

In sharp contrast, these problems are perhaps nowhere so important as for 
researchers in cognitive and educational psychology. First, students' difficulties when 
solving algebra story problems are one of the more consistent empirical findings in 
empirical studies of quantitative reasoning (reviewed below). Second, these problems 
have become an idealized standard for complex human problem solving, partly because 
they are so difficult, but also because they stand in as a microcosm for a central issue in 
theories of learning and instruction - i.e., transfer of training beyond the instructional 
setting. These different perspectives on algebra story problems are crucial for 
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understandiLg competent quantitative inference, since interpretations of 
problem-solving activity either implicitly or explicitly reflect views of "problem," 
"solution," and "competence" that originate in the communities that surround the 
artifacts themselves. 

2.1.1 Chapter overview 

This chapter approaches algebra story problems from several points of view. First, a 
brief "archaeology" of applied mathematics problems is presented, starting with 
representative problems and pedagogy found in the first mathematics textbook ever 
published with movable type. This singular historical event is examined against the 
historical institutionalization of mathematics instruction in this country, both in terms 
of ·what counts as realism within the mathematics classroom and shifting designs for 
competent quantitative inference among school alumni. This is followed by an 
examination of the current distribution and status of applied problems in mathematics 
texts, a cultural repository that stands in simultaneously as a central concern for 
educators and cognitive scientists. The archaeological tour is concluded by reflecting 
over these diverse materials in terms of the current (and recurrent) reform movement 
expressed as "standards" for mathematics education. 
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Second, empirical studies of problem solving con·l::cted with arithmetic and algebra 
"story problems" are reviewed. Theoretical and metLodological parallels between these 
research programs are used to identify shortcomings in the current stock of ideas for 
understanding competent quantitative inference, both on ostensibly "real world 
problems" in the classroom and in the world of human activity outside of school. This 
comparison points to a profound discontinuity between school mathematics and the 
quantitative inferences that people construct and reconstruct in their "everyday" lives. 

Third, the structure of a particular collection of algebra story problems is analyzed 
prescriptively at both quantitative and situational levels. This analysis leads to a 
proposal for interactions between these levels, asking what happens in the gap between 
"words and equations" when people construct quantitative inferences while attempting 
to solve these problems. The review of theoretical and empirical literatures on applied 
quantitative inference provides starting questions for the studies presented in Chapters 
3 and 4 of this dissertation. In addition, the analytic view of problem structure 
developed here is carried through interpretations of problem-solving activity. 



2.2 An archaeology of applied mathematical 
problems 
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\Vhile the origin of mathematical knowledge, either as ideal entities or socially 
constructed practices, is a topic of philosophical debate (e.g., Kitcher, 1983), there can 
be little doubt that the genre of applied mathematical problems sometimes used to 
communicate or work with mathematical knowledge are designed artifacts. This section 
looks briefly into the history of applied problems typically found in secondary school 
texts. Despite a continual evolution in preferred views of competent mathematical 
knowledge, these problems have a remarkably durable form. 

2.2.1 Word problems and practical arithmetic 

The first "word problems" ever to appear in a popular edition of a mathematics 
textbook can be found in the Treviso A r£thmetic, published in 14 78 as an manual for 
training young men to serve as "computers" for commercial transactions in Renaissance 
Italy (S,vetz, 1987). The text contains no formal algebraic notation, and instruction 
proceeds by presenting procedures for arithmetic calculation followed by a collection of 
applied techniques (i.e., the "rule of three things") for solving problems typical in 
commercial transactions. These calculations were primarily oral prior to the widespread 
adoption of Hindu-Arabic numeration, and they often presented considerable 
difficulties for intricate transactions. Each technique in the Treviso includes several 
worked examples, and problems cover categories for coin, cost, percent, barter, mixture, 
motion and work. Many of these problems would be recognizable to arithmetic or 
algebra students today: 

The Holy Father sent a courier from Rome to Venice, commanding him that 
he should reach Venice in 7 days. And the most illustrious Signoria of 
Venice also sent another courier to Rome, who should reach Rome in 9 days. 
And from Rome to Venice is 250 miles. It happened that by order of these 
lords the couriers started their journeys at the same time. It is required to 
find in how many days they will meet, and how many miles each will have 
traveled (Swetz, 1987, p. 158). 

As a textbook, the Treviso presents an image both of the value of mathematics for 
a particular clientele (clerks and apprentices to merchants) and of beliefs about effective 
teaching. To relate instruction in arithmetic calculation to intended practice, the 
anonymous author of the text enjoins his students to attend carefully to their studies: 

As a carpenter (wishing to do well in his profession) needs to have his tools 
very sharp, and to know what tools to use first, and what next to use, etc., 
to the the end that he may have honor from his work, so it is in the work of 
the Practica (p. 101). 
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Thus, the instruction given in this text explicitly offers a mathematical belief system to 
its readers, in terms of the difficulty of the techniques presented, the amount of work 
required to master these techniques, and their eventual utility in the surrounding 
society. These exemplify applied problems as tools for real-world activity, a theme that 
holds common in instructional texts for the following 500 years. However, as Swetz 
(1982) points out in an historical survey of this and other practical arithmetics, even on 
their first printing, these applied problems diverged from commercial practice in 
significant ways and were little more than preparation for a longer commercial 
apprenticeship by students to some trading house. 

2.2.2 Institutionalizing the mathematics curriculum 

Mathematics in secondary and higher education has had a varied history in the United 
States, emerging relatively suddenly between 1820 and 1830 (Cohen, 1982) and 
continuing to grow into a societal norm of "numeracy" by the beginning of the 20th 
century. This historic~! period saw an increasing the number of students remaining in 
school through adolescence, accompanied by a standardized curriculum for mass 
education designed to convey "routine abilities: simple computation, reading 
predictable texts, reciting religious or civic codes" (Resnick, 1987a, p. 5). Against this 
historical development, more ambitious goals for the acquisition of diverse areas of 
mathematical knowledge are a more recent and still contentious proposal. 

Hirstein, Weinzweig, Fey and Travers (1982) argue that the elementary algebra 
curricula from the turn of the century to 1960 was dominated by applied problem 
solving, the primary motivation being to introduce students to algebra as a tool for 
solving practical problems. Commercial algebra textbooks and standardized 
assessments during this period made frequent use of "word" problems, to the extent 
that most textbooks introduced manipulative operations with these problems rather 
than in a deductive or axiomatic method. For example, a text in the 1940's introduced 
operations on signed numbers with a series of stories about savings (Hirstein et al., 
1982, pp. 375-376): 

If a man saves $4 a day, then 3 days from now he will have $12 more than 
now. We may write: (+3) x (+$4) = +$12 

Only after every combination of multiplying signed numbers was shown in this way did 
the text present the "rule:" 

RULE. The product of two numbers having like signs is positive; the 
product of two numbers hav~ng unlike signs is negative. 

Starting in the 1950's, a curriculum reform initiated primarily by professional 
mathematicians sought to introduce new conceptual cc;mtent into elementary algebra, 
ii;icluding a systematic treatment of variables (versus ~iteral numbers), attention to 
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inequalities and sets, and an axiomatic justification for manipulating traditional 
notations (unlike the presentation shown above). This "curriculum revolution" took a 
full ten years to reach implementation in the commercial market for textbooks, 
standardized assessment for :q:iathematical achievement, and changes in teacher 
training. After this period of establishment, however, the elementary algebra 
curriculum contained new symbolic notations and had greatly reduced the use of 
applied problems, both as exercises and as demonstrations for mathematical concepts. 
For example, the I x I notation for absolute value allowed an axiomatic definition of 
multiplying signed numbers, eliminating the need (in theory) for any applied 
development of the these operations. By incrementally replacing more traditional 
text books and training (or retraining) mathematics teachers in the more rigorous 
curriculum, this reform movement eventually displaced institutionalized patterns of 
mathematics teaching that had existed unchanged since the turn of the century. 

One of the forces essential to achieving this reform was the expansion of 
standardized assessments of mathematical achievement, and in the early 1970's these 
showed falling student achievement in computational skills. These declines were 
generally associated with the "new math" and its introduction of rigor into the 
curriculum at the expense of basic skills. In reaction, many local school districts 
initiated "back to basics" movements that stressed calculation skills over more difficult 
to measure mathematical concepts. Despite these reactions and owing largely to the 
replacement of traditional curricular materials and a trained workforce of mathematics 
teachers, the element~ry algebra curriculum of the 1980's has retained much of its 
formal content. 

2.2.3 The current status of applied problems in the 
mathematics curriculum 

These observations on the history of applied mathematical problems and the 
mathematics curriculum are only intended to show that definitions of numeracy have 
changed dramatically since the original appearance of a relatively stable genre of 
arithmetic and algebraic story problems. Despite their varied history of pedagogical 
intent, these problems have recently been adopted by cognitive and educational 
psychologists as a representative task for studies of complex human problem solving. In 
fact, Mayer's (1981) analysis of approximately 1100 story problems appearing in ten 
California secondary school texts has been taken as a common starting point for 
cognitive studies, both to describe the structure of problems and to judge their relative 
prevalence in cul"rent algebra textbooks. 

A hierarchical taxonomy for contemporary algebra story problems. Mayer 
classifies story problems in this sample within a hierarchical taxonomy. At the most 
inclusive level, a problem belongs to a family by sharing a source formula with other 
problems, generally a three term multiplicative relatio.n between quantities. Four of 
Mayer's families involve rates, and these account for Sl.3% of the observed problems. 
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For example, all of the problems shown in Table 1.1 belong to an "amount-per-time 
rate" family because they involve a characteristic output = rate x time formula. Other 
families involve more general quantitative constraints in geometry, physics, or statistics 
(e.g., perimiters or Ohm's Law). At the next lower level, a problem belongs to either a 
simple or complex category according to its general content domain. For example, 
problems MOD and MRT are from l\fayer's complex "motion" category, while problems 
WT and WC would be classified in his complex "work" category. 

Within families and their categories, Mayer also classifies each problem according to 
its propositional template, which describes semantic relations between problem 
components (i.e., the "story" presented by the problem) and variations in the assigment 
of given and unknown values to typed quantities. For example, in Mayer, Larkin and 
Kadane (1984, p. 249), the template of problem 110D in Table 1.1 is given the 
following collection of propositions: 

(RATE FOR A) = _ 
(RATE FOR B) = _ 

(DISTAl\CE BET\VEEN A & B) = _ 

(TL\1E) = UNK 

In contrast, distance and time in problem MRT are rendered using different 
propositions: 

(TIME FOR ENTIRE TRIP)=_ 

(DISTANCE FOR ENTIRE TRIP)=_ 

Although some of Mayer's (1981) categories appear to confound rate structure and 
semantic domain (e.g., amount-to-amount rates appear in motion and work domains), 
they present several interesting aspects of the current applied problem solving 
curriculum. First, most algebra story problems involve simple rates (13.5% of observed 
problems) or compound relations between two or more rates (67.8% of observed 
problems). The most numerous of these are from the amount-per-time family (27.8% of 
observed problems). Second, these problems reproduce each of the semantic domains 
for "applications" contained in the Treviso Arithmetic, despite a passage of over 500 
years. That is, the curricular view of applied mathematical reasoning still consists 
predominately of commercial transactions around planning work, payment for 
purchases or sales, currency conversions or making change, and various investment 
calculations. For example, the addition of more recent scientific calculations (e.g., 
Ohm's law, permutations, or maximization) accounts for less than 20% of the applied 
problem-ilolving curriculum, at least as judged by the prevalence of problem types. 

Aside from a comparison with 15th century mathematics texts, the existing 
distribution of algebra story problems might help to explain what school alumni are 
learning about applied problem solving. For example, Stigler, Fuson, Harn and Kim 



(1986) have shown that the distribution of arithmetic word problems in first, second, 
and third grade textbooks in the United States tends to over-represent problem 
structures that are easiest for children to solve - i.e., the arithmetic solution exactly 
parallels the semantic structure of the problem. Stigler et al. hypothesize that the 
biased distribution of less challenging problems in U.S. texts may be the result of 
feedback between standardized assessment and textbook development. 
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In a similar survey of Soviet mathematics texts, they found problems to be 
distributed more equally by difficulty (as measured among U.S. school children), and 
the sequencing of problem types was also more varied. Although there does not yet 
exist a systematic body of research on problem difficulty for algebra story problems, the 
situation may be similar. For example, Mayer et al. (1984) found that frequently 
occuring algebra story problems have a simpler relational structure than less prevalent 
problems. Since relational propositions were also least likely to be recalled correctly, it 
may be that easier problems also predominate in algebra textbooks. In related findings, 
they reported that ranked frequency of occurrence for algebra story problems in 
textbooks correlated positively with successful recall and that conversion errors in recall 
resembled more prevalent textbook problems. 

Curricular standards for applied mathematical problem solving. The 
actual distribution of algebra story problems may also be incompatible with 
prescriptions for curricular standards. The most recent National Council of Teachers of 
Mathematics (NCTM) standards for algebra in secondary schooling (NCTM, 1989) give 
every indication that another curricular "revolution" is underway, this time attempting 
to integrate aspects of mathematics as an abstract conceptual domain with more 
intuitive, physically motivated, or real-world curricular approaches. These calls for 
reform promote using multiple systems of representation to render a particular 
mathematical idea, including close attention to informal representational systems that 
students might bring into the classroom from their outside-of-school lives. Another 
motivating claim for current visions of reform is that algebra should serve as a 
conventional vocabulary for later mathematical and scientific work, including significant 
extensions (or transfer) to work sites outside the school setting. As with the 
incremental reformation of the "new math" described by Hirstein et al. (1982), forces of 
institutional inertia in commercial textbooks, the market structure of educational 
software, teacher training, and standardized assessment lend a certain stability to the 
current set of arrangments. 

The point of this brief archaeology of applied mathematics problems is simply that 
they are objects reflecting multiple, sometimes incompatible purposes: real~world 
accesibility, consistent manipulation, unambiguous communication, and preparation for 
after-school life. Cognitive studies of complex human problem solving over the past two 
decades generally accept these problems and their place in the curriculum at face value, 
treating their structure as an idealized medium for evaluating theories of text 
comprehension, mathematical problem solving, or analogical inference. Given an 
explicit curricular rationale of transferring mathematical knowledge outside of school 
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settings, it is ironic that the majority of "applied" problems today are oriented towards 
an after-school life that existed 500 years ago. 

2.3 Empirical studies of applied mathematical 
problem solving 

There is a sizable empirical literature on students' solutions of "applied" or 
"real-world" mathematical problems, including algebra story problem solving. These 
studies provide a meaningful starting point by focusing on the kinds of knowledge 
hypothetically required to solve these problems, the sorts of text comprehension and 
calculation strategies that appear to be involved in solution attempts, the 
domain-specific categorizations adopted by expert problem solvers, and the prevalence 
of analogical inference under different problem-solving conditions. The majority of 
these studies come out of traditional research methods in cognitive psychology, but an 
alternatfre and theoretically challenging line of analysis has developed in the fields of 
cultural psychology and cognitive anthropology. These studies challenge the theoretical 
and methodological status of "problem," "knowledge," "setting" and "competence" 
that are generally taken as nonproblematic assumptions in studies of quantitative 
inference. The challenge to these assumptions is \Vhether they provide a suitable level 
of analysis, empirical methodology, or interpretive vocabulary for examining the 
detailed structure of individual solution attempts and how problem-solving activities 
interact with the social and material setting. This section reviews and compares major 
studies in these parallel disciplinary traditions. 

2.3.1 Assessments of mathematical achievement 

An indirect but important source of information about "applied" quantitative inference 
comes from standardized assessments of mathematical achievement. In particular, the 
National Assessment of Educational Progress (NAEP), established in 1969 to track the 
achievements of United States students in middle and secondary schooling, provides 
evidence for recurrent difficulties in different areas of mathematical reasoning as well as 
some indications of how these areas have changed in the past two decades. The brief 
review in this section is drawn from analytic summaries presented to the mathematics 
education community at the conclusion of each major assessment (e.g., see Brown, 
Carpenter, Kouba, Lindquist, Silver and Swafford, 1988 and Kouba, Brown, Carpenter, 
Lindquist, Silver and Swafford, 1988 for a summary of the fourth NAEP assessment of 
mathematics). 

Although NAEP mathematics assessments cover a broad spectrum of topics, there 
are several findings in these achievement data that are important for understanding 
applied quantitative inference, both in the middle school years and in secondary 
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schooling where algebra story problems appear in the traditional curriculum. First, 
students appear to be relatively successful at arithmetic calculation by grade 7 and at 
manipulating given algebraic expressions by grade 11. The manipulatory performance 
of students at these grade levels may even have improved over successive assessments, 
although arithmetic calculations appear less stable when the numbers involved are 
non-whole or unfamiliar (e.g., fractions or decimals). On test items designed to assess 
conceptual understanding of mathematical concepts underlying calculation, 
performance at both grade levels drops considerably. For example, in the most recent 
assessment only 203 of 7th graders and 34 3 of 1 lth graders chose the correct answer 
for "9 is what percent of 225?" (Kouba et al., 1988). 

Second, and in contrast to students' achievements in manipulating given 
mathematical expressions, when students are presented with a verbal description of 
some quantitative situation and asked to identify an algebraic expression that describes 
the situation (e.g., "the number of chairs (C) is twice the number of students (S)" ), 
approximately half of 11th grade students with two years of algebra ans,vered 
incorrectly. \Vhen verbal situations presented by items are more complex and require 
that the student find a precise quantitative solution (i.e., traditional arithmetic or 
algebra story problems), performance is highest on the least complex problems that 
appear most often in mathematics textbooks (e.g., "Combine" problems, described in a 
following section). Performance declines when problems present more complex 
quantitative structures (e.g., 2-step and multiplicative structures) or when problems 
present unfamiliar situations. For example, on a multi-step multiplication problem: 

Lemonade costs 95 cents for one 56 ounce bottle. At the school fair, Bob 
sold cups holding 8 ounces for 20 cents. How much money did the school 
make on each bottle? 

only 113 of 13 year-olds and 29% of 17 year-olds were able to choose the correct 
answer (Carpenter, T.P, Corbitt, 1\1.K. Kepner, H.S., Lindquist, 1\1.M. and Reys, R.E., 
1980). There is little evidence that performance on these kinds of problems has 
improved over successive N AEP assessments. 1 

Finally, assessments of students' attitudes towards mathematics, the instruction 
they receive, and the utility of both for later life present several puzzling results (Brown 
et al., 1988). 

• The majority of students in 7th and 11th grades agreed that they liked 
mathematics, that it was an important school subject, and that they were good at 
mathematics. 

• In contrast, 7th graders responded that mathematics was one of their easiest 
courses, while 11th graders found it one of their hardest courses. 

1Sampling strategies, timing constraints, and item presentation formats have changed 
over successive NAEP assessments, making detailed comparisons of changes in achieve-
ment difficult. , 
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• Half or fewer of 11th grade students agreed that mathematics was important for 
getting a good job or that they expected to do work after school graduation that 
required mathematics. 

• Half or more of both groups responded that mathematics was based on rules, that 
learning mathematics primarily required memorization, but that the process of 
finding solutions was more important than getting a correct answer. 

On the one hand, students view mathematics instruction as an important aspect in 
their school experience, a valued but increasingly difficult curricular subject. On the 
other hand, they view the constituent activities and meaning of mathematics as having 
very narrow utility, both in school and out. 

The image of school mathematics presented by these assessments, both in terms of 
students' achievement and attitudes towards mathematics instruction, is not very 
encouraging for standard visions of education that emphasize a conceptual 
understanding of mathematics or the development of "higher-order thinking" among 
school alumni. Instead, there appears to be an inversion between modest gains in 
skilled calculation and gradual deterioration of conceptual understanding evident in 
successive assessments (Resnick, 1987a). That is, it may be that students learn to 
manipulate mathematical notations without learning how to construct or interpret 
these same notations as meaningful mathematical models of situations presenting 
quantitative constraints. Still, patterns of performance on standardized testing tell us 
little about the actual phenomenology of applied quantitative inference, either inside or 
outside the mathematics classroom. The following sections review an extensive 
literature on these very issues. 

2.3.2 Cognitive studies of applied quantitative inference 

For a variety of methodological reasons, mathematical problems presented as a story 
about world events have become representative tasks for cognitive studies of complex 
human problem solving. First, competent performance on these problems has some 
obvious relevance to preferred cultural activities: sophisticated mathematical reasoning 
is generally thought to require high intelligence and considerable training; mathematics 
often stands in as a foundational discipline for other sciences and so accrues a generally 
high cultural regard for diverse scientific activities (i.e., the "queen of the sciences"); 
and these problems are commonplace in traditional mathematical schooling and its 
assessment, the.institutional arenas where these cultural valuations are reproduced. 
Second, these problems provide compact, remarkably inexpensive, and relatively 
malleable experimental materials for traditional studies of memory and inference in 
complex problem solving. Third, and because of their regular form, these problems 
appear to provide an unambiguous interpretation of correct or incorrect performance -
i.e., whether or not a subject as found a solution and thus comprehended the story and 
its quantitative implications. Algebra story problems are indeed a "twentieth century 
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fable" (Hinsley, Hayes and Simon, 1977), but for many different constituencies and for 
many different reasons. 

There are two parallel lines of empirical research on applied mathematical problem 
solving as it appears in school, one dealing with arithmetic word problems involving 
additive structures, and the other dealing with relatively more complex algebra word or 
story problems involving both additive and multiplicative structures. 2 Using traditional 
research methods in cognitive psychology, these studies focus on the kinds of knowledge 
hypothetically required to solve these problems, the domain-specific categorizations 
adopted by expert problem solvers, the sorts of text comprehension and calculation 
strategies that appear to be involved in solution attempts, and the prevalence of 
analogical inference under different problem-solving conditions. 

Knowledge sources and quantitative inference. The origin of interest in 
algebra story problems for many of the studies reviewed in this section is Bobrow's 
(1968) dissertation on computer understanding of natural language texts. Rather than 
taking these problems as a medium for studying mathematical cognition, Bobrow wrote 
a program, called STUDENT, that could demonstrate an equifinal sense of text 
comprehension by finding a correct value for a quantitative unknown requested in a 
traditional textbook word problem. This was accomplished through a systematic, 
template-driven translation of textual phrases into variables and relations, with the 
application of more specialized translation templates as needed (e.g., for determining 
the value of dimes versus quarters in a coin problem). Similar computational techniques 
were later extended to the solution of word problems in calculus (Charniak, 1969) and 
physics (Novak, 1976), with the general conclusion that adequate text comprehension 
required domain-specific knowledge about both "commonsense" aspects of story 
entities (e.g., that Mary is a person) and their representation as quantitative 
abstractions (e.g., that Mary can be treated as a point of mass). 

Paige and Simon (1966) used Bobrow's STUDENT as a hypothetical information 
processing model of human problem solving with algebra story problems, but they 
compared its line-by-line translation processing with think-aloud protocols taken with 
high school and undergraduate students of high mathematical ability. Students were 
presented with story problems, some of which had impossible quantitative constraints 
(e.g., "One piece (of a board] was two thirds as long as the whole board and was 
exceeded in length by the second piece by 4 feet"), were asked to find an equation using 
a single unknown, and were only allowed to tell the interviewer what to write on a 
blackboard as they worked on each problem. There were notable differences between 
students and the STUDENT program, the most important being students' use of 
"auxiliary representations" that allowed them to identify implicit relations between 
problem components. Detecting these constraints helped some subjects to recognize 

2Treating the mathematical content of these problems as "structures" is an analytic ex­
tension by Vergnaud (1981, 1983) to the conceptual analysis that these problems usually 
receive. 



physically impossible problems or to alter a problem's representation so that it was 
physically possible (i.e., introducing a fortuitous misconception). 
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Auxiliary representations were described as any sort of information that helped a 
student comprehend the problem situation. Thus, as in Bobrow's STUDENT, the value 
of currency in a coin problem was "indispensable as a supplement to the direct 
translation processes" (p. 85). However, students sometimes instructed the interviewer 
to write out diagrams that related problem components and quantities, as in a labeled 
number line for an impossible board cutting problem (i.e., quantities label intervals 
designating board length) or a variety of labeled containers for a wet mixture problem. 
Paige and Simon conjectured that these diagrams, or mental representations that were 
"functionally equivalent" to diagrams, promoted "crucial conservation assumptions 
[that] can be read directly off the figure" (p. 105). \\Then students were asked to draw 
diagrams after solving all of the presented problems, materials included in their 
diagrams corroborated the distinction between syntactic translation and more 
"physical" approaches to modelling problem structure. 

These findings present a paradox for information processing theories of complex 
human problem solving. On one hand, mathematically capable students sometimes 
approach algebra story problem solving as if they were syntactic translators, ignoring 
semantic constraints when asked to generate algebraic expressions. On the other hand, 
students also produce materials that help them to comprehend the quantitative 
structure of a problem before generating any equations. Similar discontinuities appear 
when students are given verbal descriptions of a multiplicative relation and asked to 
i,vrite algebraic equations. For example, asked to use variables S and P in an equation 
for "There are six times as many students as there are professors at this university," 
students with widely varying backgrounds produce a characteristic "reversal error," 
writing 6S = P rather than the correct S = 6P. Errors on this and similar tasks occur 
among 25% to 52% of students, depending on their educational background (Clement, 
1982; Kaput and Sims-Knight, 1983). 

Although some students do appear to adopt a syntactic translation scheme (e.g., 
"Vlell, the problem states it right off: '6 times students.' So it will be six times S is 
equal to professors" in Clement, 1982, p. 19), many students construct "equations" for 
a sensible quantitative model that compares collections of typed entities (e.g., "Six 
times as many students as professors ... S for students ... You got a ratio of six to one ... 
S to P ... OK, just ah, 6S equals ah, P, lP" in Clement, 1982, p. 24). Despite writing 
algebraic expressions that are incorrect for a standard view of the multiplicative 
relation, these students are generally able to find precise quantitative solutions without 
standard algebraic manipulation, even though they are also able to correctly 
manipulate algebraic expressions that are given to them (Wollman, 1983). 

Clearly, various kinds of "auxiliary representations" support quantitative inference 
among competent problem solvers. They provide an intriguing view of knowledge and 
activity that often differs from the formal structure of algebraic expressions, yet they 
may also help to generate and evaluate standard algebraic expressions. With the 
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exception of research on semantic relations within arithmetic word problems (reviewed 
in a following section), more focused empirical investigations of quantitative inference 
outside the standard notation of algebra have not been undertaken. Thus, a number of 
important theoretical and empirical questions can be asked: What kinds of auxiliary 
representations are observed when people with different mathematical backgrounds 
solve algebra story problems, how do these representations support quantitative 
inference, and what are their limitations? In contrast, existing cognitive research has 
largely taken algebra story problems as a self-contained task for investigating problem 
categorization or recall in relation to competence or analogical inference. The relevant 
methodological and theoretical assumptions can be drawn directly from exemplary 
studies: 

[Algebra story problems provide] rigorous standards for accurate 
comprehension ... there is a standard and widely known representation used 
for solving algebra ·word problems - algebraic equations. This 
representation is useful for tracing the process of comprehension. (Hinsley et 
al., 1977, p. 89) 

People's performances differ because people possess differing information 
processing systems that differ and because people possess differing amounts 
and kinds of knowledge. (Mayer, Larkin and Kadane, 1984, p. 233) 

These assumptions are certainly not incompatible with hypotheses about "auxiliary 
representations" that allow "conservation assumptions" to be directly constructed, but 
by relying on a prescriptive view of mathematical structure as a primary knowledge 
source and underlying mental representation, these assumptions beg fundamental 
questions about representation and the construction of quantitative inference. 

Knowledge, problem categorization, and memory for texts. If 
domain-specific and mathematical knowledge are critical for solving algebra story 
problems, then differences in the quantity and quality of these knowledge sources should 
be observed when novice and expert problem solvers are compared. This has been 
taken up as a theoretical hypothesis in a variety of studies of problem categorization 
and recall, where the rationale is to show that differences in problem categorization or 
memory for representative problems are related to objective measures of competence. 

Hinsley et al. (1977) presented textbook algebra story problems to high school, 
undergraduate, and graduate students who were successful alumni of traditional algebra 
instruction. When asked to sort problems by "type," these people reliably produced 
approximately 16 clusters that resembled Mayer's (1981) later classification of problems 
by category (e.g., DRT, river current, or interest). In a similar task, participants were 
asked to judge categories while reading problems line-by-line. Most were able to 
produce a correct category judgement before reading more than a quarter of the text, 
and some participants gave detailed predictions about unseen problem materials and 
about their likely solution strategies. Think-aloud protocol studies with several more 
advanced problem solvers (e.g., psychology graduate students) indicated that early 
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categorization and recalled strategies were actually used when these people were asked 
to solve the problems. Hinsley et al. concluded that these findings corroborated their 
hypothesis that competent problem solvers possessed "problem-solving schemata": 

information about the problem categories which is useful for formulating 
problems for solution. This information includes knowledge about useful 
equations and diagrams and appropriate procedures for making relevance 
judgements (p. 104). 

Subsequent studies have examined the relation between educational experience and 
problem categorization more systematically. Silver (1979) asked high ability prealgebra 
students to sort relatively difficult verbal mathematics problems that were designed to 
cross mathematical structure and content similarity. Sortings were collected before and 
after students both attempted to solve these problems and studied correct solutions 
that were given by their instructor. Sorting on the basis of similar mathematical 
structure was positively correlated with measures of mathematics ability and 
achievement, likewise with students' success in solving the problems after the first sort, 
and these relationships were stronger for the second problem sorting after students had 
studied and discussed correct solutions for each problem they attempted to solve. The 
relationship between problem-solving performance and perception of structural 
similarity was corroborated in a subsequent study b·: Silver (1981), and Dellarosa 
(1985, Experiment 1) has found differences in sortiL.- behavior when students were 
required to ansv,·er scliema "orie1, :ing" questions about the texts to be sorted. These 
studies show that students with different mathematical backgrounds or exposure to 
problem-specific training perceive problem structure differently, at least as measured by 
the way they sort problems on a brief reading. Although the sorting task itself does not 
allow students to solve problems, the explicit experimental rationale is to look for 
evidence of knowledge structures that more or less competent problem solvers would 
have available when doing so. 

There have been similar studies of students' memory for selected aspects of algebra 
story problems, under the assumption that pre-existing knowledge sources would 
influence the way in which story problems were read and committed to memory. Mayer 
et al. (1984) reported that when undergraduates were asked to remember but not to 
solve representative problems, errors in cued recall were more common for propositions 
involving questions or relations (e.g., the rate in still water is 12 mph more than the 
rate of the current) than for simple value assignments, and errors of commission tended 
to convert relation propositions into assignment propositions (e.g., the rate in still 
water is 12 mph). Errors in cued recall were also more frequent for propositional 
materials that were irrelevant to the problem's quantitative structure (e.g., the name of 
a character or type of vehicle). These recall errors were interpreted as evidence that (a) 
relational propositions are difficult for students to represent and (b) irrelevant problem 
materials are not assimilated to problem schemata used during text comprehension. 

These studies of categorization, memory and expe,rtise break problem-solving 
~ctivities into hypothesized ·stages for translation, comprehension, planning, and 
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calculation (e.g., see Mayer et al., 1984, p. 235). Under this analytic decomposition, 
problem sorting and recall can be taken as evidence that problem-specific sources of 
knowledge influence translation and comprehension processes. From a cross-sectional 
view, students with higher mathematical abilities sort problems in a way that 
corresponds to a normative account of quantitative structure, they are less likely to 
misrecall relevant aspects of problem texts they have read, and they are more likely to 
find correct solutions when later asked to solve these problems. From a longitudinal 
view, when students are exposed to problem-specific instruction that focuses on 
quantitative structure, their problem sorting begins to reflect this structure. 

\Vhile there indeed appears to a relation between sorting, memory for problem 
texts, and problem solving performance, this relationship cannot be unambiguously 
attributed to differences in the knowledge structures held by problem solvers. Since 
students do not solve the problems they are asked to sort or recall, they may construct 
a differently elaborated representation of problem structure when reading or sorting. 
Rather than direct evidence for what students know before the experimental task 
begins, these relationships may also reflect the nature of categorization or recall tasks 
as settings for activity. For example, this would be consistent with the uninterpreted 
observation in Mayer et al. (1984) that question propositions were equally likely to be 
misrecalled as relational propositions when problem "comprehension" was decoupled 
from "planning" and "execution" of solution strategies. I return to these alternative 
interpretations at the end of this chapter. 

Situation models, text comprehension, and quantitative inference. \Vhile 
studies of problem categorization and recall provide indirect evidence for students' 
knowledge of problem-specific information, a diverse literature focuses on the role of 
"situation models" in text comprehension and quantitative inference on arithmetic 
word problems typical of mathematics instruction at the elementary school level. These 
problems have a semantic structure involving combinations or comparisons of quantified 
sets, and these structures are managed differently depending upon the age of the 
problem solver (Carpenter and Moser, 1984; Riley and Greeno, 1988). These problems 
and the attending literature focus on the development of particular types of 
quantitative inference that involve.the selection and procedural execution of one or two 
arithmetic operations. The primary factors influencing problem difficulty appear to be 
students' age and level of schooling, the complexity of problem structure, the types and 
distribution of quantities carried in the problem statement (e.g., given, unknown, or 
implied), the specific linguistic forms used to describe quantities and quantitative 
relationships, and the availability of concrete materials during problem solving. 

The structu:r;-e, recipients, and theoretical status of algebra story problem solving 
differs from arithmetic problems in several important ways. First, students asked to 
solve algebra story problems are older and so are generally assumed to have reached a 
stage of cognitive development that supports formal reasoning about quantitative 
relationships. This a.Ssumption can be traced to Piaget's clinical investigations of 
children's inferences about motion and speed (Piaget, 1970) and about functional 
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relationships (Piaget, 1977), where the ability to reason formally about proportional 
relations appeared stable at 12 to 13 years of age. Subsequent investigations have 
challenged these findings for stable cognitive stages and transitions between them, even 
for familiar multiplicative structures involving speed, time, and distance (e.g., Richards 
and Siegler, 1979; Wilkening, 1981). Nonetheless, research on algebra story problem 
solving has generally assumed that formal reasoning about algebraic structures lies 
within the range of abilities of high school or college students. Although comparisons 
are made between "novices" and "experts," both groups are generally assumed to 
engage in formal quantitative reasoning. 

Second, the structure of algebra story problems is more diverse than that found in 
typical arithmetic \vord problems. \Vhen this complexity is coupled with the explicit 
aim of having students use algebraic expressions as a standard notation for representing 
and solving these problems, the content and activity of problem-solving outcomes are 
often narrowed to include only these expected pedagogical materials. Despite these 
differences, studies of arithmetic word problem solving provide a useful comparison. 
Content and activities identified as important in their solution may also be important 
for competent inference about algebraic structures (e.g., reasoning about relations 
between quantified sets). In addition, general issues about the relationship between 
situational and quantitative structure may also apply to algebra story problem solving 
(e.g., the use of concrete models to identify quantitative relations or to organize 
calculation). 

Arithmetic word problems have been shown to have a regular semantic and 
quantitative structure around the arithmetic operations of addition and subtraction, 
and this structure appears to influence problem-solving performance across levels of 
ability. For example, Nesher and Teubal (1974) showed that children's choice of 
operations for solving arithmetic word problems were biased by keywords appearing in 
the text (i.e., "less" or "more"), but then argued that direct translation could not be a 
generally sufficient process for solution because these problems were easily modified to 
make keywords either facilitating or misleading verbal cues. To account for sources of 
problem difficulty, general semantic categories for arithmetic word problems have been 
identified as hypotheses about levels of representation and processing intermediate that 
are intermediate between problem texts and symbolic operations (Carpenter and 
Moser, 1981; Riley, Greeno, and Heller, 1983; Vernaud, 1981). 

These were summarized by Nesher, Greeno and Riley (1982) as "Combine," 
"Change," and "Compare" problems, each presenting a different semantic relation 
between quantities given in the word problem text. A Combine problem involves the 
composition of two quantified sets to obtain a resulting set, a Change problem involves 
a transformation to a starting set that yields a resulting set, and a Compare problem 
involves a quantitative comparison between two sets: 

(Combine) Joe has 3 marbles. Tom has 5 marbles. How many marbles do 
they have altogether? 



(Change) Joe had 3 marbles. Then Torn gave him 5 marbles. How many 
marbles does Joe have now? 

(Compare) Joe has 5 marbles. Tom has 8 marbles. How many marbles does 
Tom have more than Joe? (Riley and Greeno, 1988) 
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As experimental tasks, these general categories have been manipulated by changing the 
distribution of given and unknown quantities (e.g., an unknown starting set for a 
Change problem), the sequence in which collections of objects are mentioned (e.g., 
presenting composite before component sets in a Combine problem), and the direction 
of change or comparison (e.g., taking away marbles in a Change problem). 

Performance on these problems improves as children become older and progress 
through schooling (Riley, Greeno, and Heller, 1983). Despite their simple and relatively 
homogeneous quantitative structure, these problems (a) were less difficult when the 
unknown quantity was the result of the activity described in the problem statement 
(i.e., a combination, change, or comparison), (b) were more difficult when a relational 
comparison was involved (i.e., Compare problems), (c) were more difficult when the 
arithmetic operation required was different from the activity described in the problem 
statement (e.g., when giving away marbles requires addition to find an unknown 
starting set in a Change problem) and ( d) were more likely to be solved when children 
used concrete tokens to carry out counting strategies that mirrored the semantic 
structure of the problem. These :findings have generally been interpreted as evidence 
that students possess or must learn to use conceptual schemata that organize different 
quantitative roles in the story. Furthermore, since solutions usually did not involve any 
written materials, children clearly were not translating directly from words into 
arithmetic expressions. 

Many of these studies provided children with concrete materials that could be used 
to designate given or unknown quantities and to manipulate extensive models of these 
quantities when finding a solution (i.e., placing tokens in sets and counting or matching 
the members of sets). Comparisons of performance with and without concrete materials 
(Riley and Greeno, 1988) showed that concrete materials often enabled younger 
students to find solutions to problems they could not solve otherwise. The use of 
concrete or mental models in arithmetic word problem solving was taken up directly in 
a series of experiments by Johnson (1988). Children in kindergarten who were allowed 
to use concrete tokens solved Change problems at a level comparable to or below that 
found in previous studies (Riley and Greeno, 1988), but their performance was 
facilitated by changes in problem wording that made set relations more explicit (e.g., 
from "2 trees burned down" to "Then 2 of the trees burned down"). When a 
comparable gro~p of children were asked to solve the same problems without access to 
concrete materials, performance fell by as much as 50%, and changes in wording no 
longer had a facilitating effect. 

In another experiment, Johnson asked 2nd and 3rd graders to model problems with 
concrete materials (puppets and tokens) in one setting, and then later asked them to 
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solve the same problems without concrete materials. Children demonstrated the correct 
meaning of "more than" in the modeling task (i.e., comparative difference as a set 
found by comparing two original sets) but not in the problem solving task, where they 
most often added the given numbers together regardless of problem structure. When 
debriefed, they reported that this was the way that "more problems" were solved in 
their arithmetic classes. Thus, at least for young children, access to concrete materials 
facilitated problem solving and appeared to enable use of more explicit linguistic 
information regarding quantification. Among older children with more exposure to 
mathematics instruction, the use of concrete materials in a modeling task enabled 
inferences about complex quantitative entities (i.e., comparative differences), but these 
inferences were not evident when children were asked to solve problems without 
concrete materials. Instead, the children appeared to suspend competent quantitative 
reasoning in favor of their understanding of "school math." 

The central finding in these empirical studies is that some interaction between 
conceptual and quantitative understanding is necessary for competent problem solving. 
This interaction appears to depend upon the construction of concrete (i.e., material) or 
mental models of quantitative relations as a primary form of inference. Furthermore, 
these interactions between modeling, understanding, and calculating relate to the 
interpersonal setting for problem solvers' activities in ways that are not yet well 
understood. To explain conceptual understanding in solving arithmetic word problems, 
two related projects have proposed various kinds of situational and quantitative 
knowledge, organized as schemata that support the integration of text comprehension 
and problem-solving strategies. These proposals are more fully developed than the 
problem schemata hypothesized to support categorization and recall of algebra story 
problems, and they begin to address interesting questions about the content and 
structure of "situation models," either as mediating mental representations or as 
expressed in the material structure of the setting (e.g., concrete collections of tokens). 

Riley and colleagues (Riley, Greeno and Heller, 1983; Riley and Greeno, 1988) 
proposed three stages of conceptual competence for solving these problems: the first 
included schemata for constructing and counting quantified sets, the second added 
conceptual schemata that organize quantified sets (e.g., a Set-Compare) specific to 
problem types, and the third added more general schemata for quantitative relations 
(i.e., a Part-Whole schema). Each level was implemented as a computational 
simulation within a production system framework, and the performance of these 
simulations was compared to problem-solving performance by children at different ages. 
The higher-order schemata contained problem-specific and quantitative relations that 
served to organize lower-le,:cl set schemata, and this hierarchical arrangement allowed a 
relatively simple planning ; . ocess to coordinate between local sets, their relations, and 
a collection of counting procedures for simple arithmetic calculations. 

For example, at the first level of competence, individual sets were constructed as 
successive phrases of an arithmetic word problem were read, and these sets were to 
correspond to the child's arrangement of concrete materials while attempting to solve 
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the problem. Without higher-order schemata allowing a coherent interpretation of 
indeterminate sets (e.g., Tom has some marbles), a child at this stage of competence 
might disregard this phrase in the problem text and simply deliver a given quantity as 
the solution. The hypothesis that learners pass through these stages as they acquire 
specific forms of knowledge was partly supported by a comparison of empirical data on 
problem difficulty with the performance of computer simulations designed to reflect the 
influence of increasing schematic knowledge at each stage (Riley and Greeno, 1988). 
The fit of empirically derived and simulated performance was accurate for young 
children (kindergarten and first grade), but was less complete for older children and on 
problems involving a difference between two sets (i.e., Compare problems). 

Kintsch and Greeno (1985) and Dellarosa Cummins, Kintsch, Reusser and 'Weimer 
(1988) described similar process models for different stages of competence in solving 
arithmetic word problems. However, they argued for a wider influence of text 
comprehension strategies, following the theoretical framework of van Dijk and Kintsch 
(1983) to include the construction of a "propositional textbase" from which logical (i.e., 
sets), conceptual, and quantitative schemata could be recognized and instantiated. 3 

\Vhile Riley and Greeno (1988) concentrated on childrens' possession of these schemata 
as a key predictor of competent problem solving, Dellarosa Cummins et al. argued that 
competence with various linguistic forms determined childrens' ability to connect 
already well-established conceptual schemata with the specific demands of arithmetic 
word problems. This hypothesis was based on empirical findings that even young 
children were able to make complex quantitative inferences when problem texts were 
written to facilitate these inferences. For example, Hudson (1983) found that most 
preschool children were unable to solve a problem in which "There are 5 birds and 3 
worms. How many more birds are there than worms?" However, most of these children 
found a correct solution when the question was changed to "How many birds won't get 
a worm?" 

Dellarosa Cummins et al. found that structural errors in childrens' recall of 
arithmetic word problems corresponded to conceptual errors in their solutions to the 
same problems. As an explanation, they argued that children were forming an incorrect 
conceptual understanding of these problems and then correctly solving the 
misunderstood problem. Thus, developmental patterns in solution errors might be 
based on systematic miscomprehension of problem structure caused by linguistic 
difficulties rather than by deficits in conceptual knowledge. To explain these findings, 
they compared versions of their computer simulation in which different areas of 
knowledge were ablated or changed: either higher-order quantitative schemata were 
removed (e.g., a "SUPERSET" part-whole schema), problem-specific schemata were 
removed (e.g., a "TRANSFER" schema for Change problems), or explicit linkages 
between propositions and other schemata were changed. In the latter version, the 

3Kintsch (1988) has since described a construction-integration model in which infer­
ences about quantitative relations are more strongly guided by local lexical coherence, 
achieved by parallel retrieval and competitive inhibition during construction of a problem 
model. 
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mapping between lexical items in the text base and problem-specific or more abstract 
quantitative schemata was changed to produce many of the errors characteristic of 
children's incorrect solutions. For example, when the mapping from "some" to an 
unquantified set was changed so that "some" was encoded as a simple modification, the 
simulation did not construct a set for the indeterminate reference, and it consequently 
used "default strategies" to produce an incorrect solution (e.g., reporting the 
cardinality of the most recently constructed set). Since changes to mappings between 
language terms and conceptual schemata accounted for more observed conceptual errors 
than removing either quantitative or problem-specific schemata, Dellarosa Cummins d 
al. argued that childrens' knowledge of this mapping could explain developmental 
patterns in solution difficulty. 

Despite differences in the complexity of problems and the mathematical experiences 
of problem solvers, two findings in the literature on arithmetic word problem solving 
are relevant both to the specific case of algebra story problem solving and to the more 
general issue of describing competent quantitative inference. First, these inferences 
depend on a complex interaction between comprehending relative}y abstract forms of 
language and constructing concrete or mental representations of problem structure 
during a solution attempt. Second, directly recalling problem-specific mathematical 
forms serves poorly as an explanation of problem-solving activity, even on problems 
presenting relatively simple arithmetic relations (i.e., additive structures). At the very 
least, a theory of applied mathematical problem-solving needs to ·account for the active 
sense of constructing a "situation model" as a representation that holds together 
diverse materials, including sources of knowledge that arise outside the pedagogical 
ideal of mathematical structure. 

Analogical inference and problem structure. Because algebra story problems 
have a regular quantitative structure that can be partly decoupled from their "stories," 
they have frequently been used as task materials for studies of analogical inference. As 
with more traditional information processing tasks (Hayes and Simon, 1977; Kotovsky, 
Hayes and Simon, 1985; Simon and Hayes, 1976), the approach has been to manipulate 
systematically the surface content and deeper relational structure cl problems and then 
to present problem solvers with different opportunities to make comparisons between 
related problems. Analogical inference would be seen to occur if aspects of problem 
structure or solution on a "source" problem were used to comprehend or solve a 
"target" problem.4 

There have been several studies of the kinds of similarity judgments that problem 
solvers make between source and target algebra story problems. If people can reliably 
sort these problems into similar categories (e.g., Hinsley et al., 1977), then they should 
also be able to judge the similarity of related pairs <>f problems, particularly whether 
two problems can be solved in similar ways. Other studies have used more direct 

4See Hall (1986, 1989) for comparative reviews of analogical inference in problem 
solving and learning. 
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interventions to determine whether information from a source problem is actually used 
in the solution to a target problem. 

Reed (1987) asked college algebra students to rate whether the solution to one 
problem in a pair would be useful for solving the second problem in a pair, without 
solving or seeing a solution to either problem. Pairs of problems were arranged to be 
the same or different in story context (i.e., motion or work, as in Mayer's "category"} 
and the same or different in solution procedure (i.e., the distribution of given and 
unknown quantities). Thus, a pair was either equivalent (same context/same solution 
procedure), isomorphic (different/same), similar (same/different), or unrelated 
(different/ different). \Vhen story contexts were diverse (e.g., mixture versus interest 
problems), students rated equivalent and similar pairs of problems as most useful, 
apparently preferring context over solution procedure when making problem 
comparisons. Only when the range of surface similarity in problem pairs was designed 
to be minimal (i.e., variations of work problems) were participants able to judge 
comparative utility on the basis of quantitative structure - i.e., equivalent > similar, 
isomorphic > unrelated. Unlike studies showing a positive relation between 
mathematical achievement or ability and categorization (e.g., Silver, 1979), students 
who were identified as good or poor estimators of solutions on a similar set of problems 
did not differ in the order of utility judgements. 

\Veaver and Kintsch (1988) reported a follow on experiment in which 
undergraduates were asked to rate the similarity of pairs of problems that systematically 
crossed the kind of multiplicative relation presented (e.g., rate as a relation across 
measured dimensions versus area as a simple product) with the form of equations that 
might be used to solve the problem (i.e., variations in the distribution of given and 
unknown quantities). Students rated pairs of problems with similar multiplicative 
structures as being more useful than pairs with similar equations, and these judgements 
improved after brief exposure to a graphical network language showing relevant 
differences between multiplicative relations. Unlike Reed's study, however, there was no 
content-level similarity between the problems used, so participants could not have been 
influenced by solution-irrelevant similarities between problems. 

Combining these studies with evidence from the categorization experiments 
reviewed earlier, empirical support for schema-driven perception of quantitative 
structure has not been compelling. The categories reported by Hinsley et al. (1977) 
differentiated by the situational materials of story problems as well as algebraic 
structure. For example, DRT, current, and interest problems all share 
Amount = Rate x Time as a quantitative relation, yet they were sorted into different 
categories. Dellarosa (1985) found strong sorting by quantitative structure only when 
students engaged in orienting tasks that focused their attention on relevant quantitative 
relations. Only Silver {1979, 1981) found convincing evidence that good problem 
solvers, as judged by their teachers or their performance on achievement tests, sorted 
problems according to their mathematical structure. However, these performances were 
balanced by relatively poor problem solvers' sortings according to surface materials. 
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In short, it appears relatively difficult to get students to use quantitative structure 
(as designed for experimental materials) when rating the utility of one hypothetical 
solution for another. Only when the availability of surface similarity for problem pairs 
is reduced (Reed, 1987; Weaver and Kintsch, 1988) or when students are oriented 
towards relevant aspects of similarity by some form of instruction (\Veaver and Kintsch 
1988), do they reliably rate similarity in quantitative structure as useful for an 
analogical comparison. Although statistically reliable, the preferences observed in these 
studies are small - e.g., a 21 % advantage for similar over different multiplicative 
structures in Weaver and Kintsch (1988). These would seem to be anomalous findings 
for a theory of applied quantitative inference based on memory for problem classes as 
generalized mathematical structures. Instead, the empirical findings on perception of 
problem similarity suggest that, at least when they are not allowed to solve problems or 
otherwise explore aspects of problem structure, people's judgements often reflect task 
demands in the experimental setting as much as a priori differences in mathematical 
knowledge. 

The more direct question is whether or not people use the structure of a source 
problem or its solution "·hen attempting to solve a target problem. Silver (1981) asked 
prealgebra students to judge whether a previously studied source solution was 
"mathematically related" to a target problem and then asked them to solve the target 
problem. Those who correctly classified the source as related were most likely to find a 
correct solution to the target problem. However, these students were generally more 
successful at solving these kinds of problems, and they did not report using source 
solutions in their work on target problems. Following this and related work in 
analogical problem solving (e.g., Gick and Holyoak, 1980, 1983), Reed, Dempster and 
Ettinger (1985) gave worked examples of source problems to college algebra students 
and then asked them to solve target problems that were either equivalent, similar (e.g., 
different given and unknown quantities), or unrelated to the source problem (i.e., 
different content and quantitative structure). Even when these students were given a 
hint that the source problem might be useful, correct performance on equivalent target 
problems only exceeded similar or unrelated problems if explanations for the source 
solution were elaborated and the students were directed to consult these solutions. 
None of these manipulations improved performance on similar and unrelated pairs of 
problems, although there was an increase in the number of matching equations 
generated on similar problems. 

The difficulty of obtaining empirical evidence for analogical inference in problem 
solving has prompted more elaborate experimental interventions, along with outcome 
measures carefuily designed to detect the effects of these interventions. Dellarosa (1985) 
hypothesized that college students would induce schematic abstractions for problem 
categories if they engaged in different "orienting tasks" while reading algebra story 
problems. On a verification task, students identified relational statements about 
problem components· as being correct or incorrect; on a schema task, students chose 
between two statements describing the basic structure. of a problem; and on an analogy 
task, students completed proportional analogies that compared elements from two 
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different problems - i.e., a:b::c:{ dl or d2?}, where the a:b terms came from a source 
problem and the c:{ dl or d2?} terms came from a target problem. After the orienting 
task, each student was asked to match previously read and new (i.e., transfer) problems 
with descriptions of algebraic techniques that might be used to solve them. Finally, 
students were asked to attempt solutions for some of these matched problem/solution 
pairs. 

'\Then matching transfer problems to descriptions of algebraic solutions, students 
who participated in analogy and schema orienting tasks performed better than those in 
the verification task. However, none of these groups were better at matching problems 
to algebraic solutions than a group of control subjects who had simply read the same 
set of problems. V/hen students worked through the problem/solution pairs they had 
chosen, there were no differences in reaching correct solutions between controls and 
students participating in any of the orienting tasks. Still, those participating in the 
schema task made fewer conceptual errors than analogy, verification, or control students 
(e.g., assigning an incorrect value to a variable in a given equation). Thus, a series of 
elaborate interventions designed to facilitate components of a hypothetical model of 
analogical inference and schema induction (e.g., detailed comparisons of local and 
global structure across problems) had relatively little effect, even when problem-solving 
outcomes were designed in accordance with these interventions. 

In an attempt to improve the materials available for analogical transfer from a 
"source solution," Re~d and Ettinger (1987) provided college algebra students with 
source solutions that included tables of given, inferred, and unknown quantities and 
then asked these students to either fill in a table for the target problem or to use a 
completed table when constructing target equations. Their hypothesis was that a 
completed table for the target problem would enable "pattern-matching" heuristics 
during the construction of target equations. By comparison with a control group (i.e., 
without tables on target problems), students asked to fill in target tables did not 
construct more correct equations, but completed target tables did facilitate their 
construction of equations when target problems were equivalent to source problems. 
These gains were smaller for isomorphic pairs of source and target problems, and tables 
did not facilitate the construction of equations on pairs of problems that were similar 
(i.e., with a different distribution of given and unknown values). As in Reed's other 
studies (Reed, 1987; Reed et al., 1985), syntactic matching errors increased as target 
problems were less similar to source problems, suggesting that participants were 
responding to task instructions (e.g., hints to use source solutions) without 
understanding the structure of source or target problems. 

The empirical results of studies of analogical inference in algebra story problem 
solving have not been encouraging for a theory of competent quantitative inference 
based on analogical comparisons between problems. Instead, a variety of interventions 
have had little effect on the reliable finding that spontaneous analogical comparisons 
are rare in experimental settings (Gick and Holyoak, 1980, 1983). These include giving 
a hint that a worked example might be useful, directh1g students to use particular 
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source solutions, giving elaborated source solutions to insure that students have 
appropriate materials for transfer, intervening when problems are read to insure that 
students attend to relevant comparative features, and arranging outcome measures to 
reduce the complexity of the· overall task and to focus on hypothesized effects. However, 
these kinds of problem comparisons should be an integral component in a theory of 
applied quantitative inference that depends upon problem categorization and the recall 
of problem-specific mathematical information (i.e., problem schemata) to explain 
problem-solving activities. 

In summary, the empirical findings for perception of problem structure (i.e., 
problem sorting or judging the analogical utility of problem pairs) and analogical 
inference do not provide compelling support for a theory of competent problem solving 
based solely on recall and instantiation of problem-specific mental schemata. Problem 
solvers with different mathematical backgrounds indeed vary in their performance on 
these tasks when given algebra story problems (or comparably difficult mathematical 
problems), but we do not yet have a descriptive account of problem-solving activities or 
outcomes that moves beyond proportion correct or how equations that students 
produce match a normative version of quantitative structure. Unlike the situation for 
arithmetic word problems, we know very little about how novice or expert problem 
solvers manage to integrate constraints provided by the problem "situation" with 
quantitative relations required to find a precise solution - i.e., the very "auxiliary 
representations" with which Paige and Simon (1966) inaugurated this area of research. 

2.3.3 Studies of quantitative inference in everyday life 

Findings reviewed in the preceding sections are difficult to put aside as relatively minor 
anomalies in an otherwise coherent account the role of conceptual knowledge in 
competent problem solving. With continued research, it might be possible to design 
settings that bring perceptions of problem structure, solution attempts, and problem 
comparisons under tighter experimental control. In contrast, the research reviewed in 
this section moves beyond the relatively narrow confines of a single experimental setting 
with diverse "problems" to consider diverse settings in which the conceptual knowledge 
assumed in more conventional studies is ostensibly deployed. First, questions about the 
nature of problems and the mathematical principles thought to underly their competent 
solution are examined. These provide an introductory motivation to a representative 
collection of studies that challenge the "received view" in contemporary cognitive 
theories of knowledge, solving problems, and transferring knowledge or solution 
strategies across settings. 

The nature of problems and principles. As argued in the introduction to this 
chapter, algebra story problems, and applied mathematical problems more generally, 
are boundary objects between very diverse constituencies, each having a particular 
interest in their structure, meaning, and solution. As 'pointed out by Kilpatrick (1985), 
a "mathematical problem" at once describes the activity of an individual, a 
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social-anthropological negotiation between individuals, a constructed and constitutive 
object in the community of practicing mathematicians, and a pedagogical vehicle for 
theoretical notions of competent mathematical reasoning. Thus, in the research 
reviewed above, we are presented with descriptions of problems and solutions as a form 
of genuine human activity, but the theoretical "constructs" at stake and the 
methodological choices made to pursue them are constructed in a very specialized 
culture. As described from a different cultural specialization by Lave (1988a, p. 43): 

Problems of the closed, "truth or consequences" variety are a specialized 
cultural product, and indeed, a distorted representation of activity in 
everyday life, in both senses of the term - that is, they are neither common 
nor do they capture a good likeness of the dilemmas addressed in everyday 
activity. Such a culturally exotic form is more appropriate a category to be 
explained than a source of analytic terms and relations. 

If "problem solving" in conventional empirical studies of school mathematics is 
suspect in terms of ecological validity, there are two primary sites to look for more 
appropriate evidence for the nature of problems and their solutions: before children are 
enrolled into school activities and in the after-school activities of school alumni. The 
story on quantitative inference before schooling is both revealing and perhaps 
cautionary, since children apparently reach school well aware of some important 
mathematical principles that govern things like numbers, sets, and counting (Gelman 
and Greeno, 1989). However, their ensuing school experiences sometimes disrupt these 
relatively principled performances, perhaps by displacing them with relatively poorly 
understood symbolic procedures - e.g., the difference between modeling and solving 
arithmetic word problems found by Johnson (1988). Although mathematics education 
is clearly about extending students' limited and largely implicit principles with a wider 
and more explicit collection of mathematical activities, instruction might be better 
designed to build upon what its recipients bring to school life. 

Quantitative inference at work. An alternative site for ecologically valid studies 
of problems and their solutions is to move outside of school mathematics or 
psychological laboratories and into homes, markets, or everyday work sites. 
Mathematical problem solving occurs not only in schools, but also in kitchens, 
supermarkets, and a host of traditional work settings, and some of these studies show 
striking intra-individual discontinuities between school and after school competence. A 
diverse collection of recent studies are reviewed in this section that either move into 
these settings or make explicit comparisons between school and everyday quantitative 
reasonmg. 

Scribner (1984) conducted detailed descriptive and experimental studies of 
relatively mundane arithmetic calculations required for different types of work in an 
industrial milk-processing plant. By observing daily activities at different work sites in 
the dairy, she identified recurrent job tasks requiring calculation, was able to construct 
simulated tasks that varied the quantitative structure. of these recurrent tasks, and then 
compared the performance of dairy workers, clerks, and local high school students on 
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these simulated tasks. For example, "product assembly" work was performed by 
relatively unschooled (i.e., to 10th grade), blue collar workers who put together 
collections of various types of products according to computer-generated order forms. 
The quantitative structure of this task depended jointly upon the types of quantities 
specified on the order form and the actual array of products available for making up 
successive orders in the "icebox" where orders were filled. Forms expressed orders as 
mixed combinations of cases, which held a fixed number of product units (e.g., 16 
quarts of lowfat milk to the case), and units, which appeared when a customer's order 
required only part of a case. Thus, an order might call for 2 cases + 8 units or 1 case -
3 units, where leftover units were added if less than or equal to half a case and 
subtracted otherwise. Order forms presented numerals and arithmetic operators 
without showing case or unit terms (e.g., "l - 3"). 

Since the actual array of products available for filling an order included both full 
and partial cases, it was possible for product assemblers to trade off movement of 
physical units against mental calculation when dealing with partial cases. 

For example, if an order is 1 - 6 (10) quarts and a preloader has the option 
of using a full case and removing 6 quarts (the literal strategy) or using a 
case with 2 quarts already in it and adding 8, the literal strategy is optimal 
from the point of view of physical effort: it saves 2 moves. If the partial 
case, however, has 8 quarts and only 2 quarts must be added, filling the 
order as 8 + 2 is the least-physical-effort solution (the saving is 4 quarts). 
(Scribner, 1984, 'pp. 21-22) 

Preloaders at work adopted least-effort strategies in 1003 of the orders that allowed 
these savings. In a series of simulated assembly tasks designed to provide opportunities 
for physical effort savings, preloaders correctly used nonliteral strategies 723 of the 
time, inventory workers and drivers at the dairy 653, dairy clerks 4 73, and high school 
students 253 of the time. 

Examining videotaped protocols of simulated task performance, Scribner found that 
students and clerks, both better educated but with less product-specific experience, 
tended to use a single algorithm for numerical calculation before assembling product 
orders in a literal and relatively inflexible way. In contrast, those with more direct 
product experience but less schooling were able to flexibly and efficiently construct 
orders according to the existing array of products. Furthermore, they gave little 
evidence of overt or covert numerical calculations, instead reporting "I don't never 
count when I'm making the order. I do it visual, a visual thing, you know" (p. 26). 
Similar improvisational calculations were observed among dairy drivers, who used 
personalized combinations of case and unit prices to reduce mental calculation when 
totalling the value of order deliveries on their routes. Scribner concluded that 
"expertise" in the kinds of quantitative inference required for dairy work was very 
different from the model of "expert" calculation as taught in schools. Quantitative 
inference at work was both motivated and constrained in ways that school mathematics 
tasks were not, since speed and precision in the work setting have different and more 



immediate consequences both for repairing incorrectly completed work products and 
creating local disruptions in the social organization of the setting (i.e., introducing 
delays into coordinated activity or requiring more work from others). 
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Not only can quantitative inference outside of school settings be flexibly rearranged 
to accommodate work situations, but complex forms of quantitative reasoning can be 
distributed across the social and physical working environment. Based on observations 
of routine calculations required for ship navigation Norman and Hutchins (1988) 
described the working arrangements for solving a recurrent mathematical problem (p. 
10): 

Imagine a navigator who has just plotted a position fix and needs to 
compute the ship's speed based on the distance the ship has moved in the 
interval of time that elapsed between the current fix and the previous one ... 
[T]he two fix positions are 1,500 yards apart and ... 3 minutes of time have 
elapsed between the fix observations: \Vhat is the ship's speed (in knots)? 

These were typical conditions under which a navigator might be asked to solve a 
Distance = Rate x Time problem. In an algebra classroom, this problem would require 
written calculations, algebraic manipulation of the given formula, and multiple unit 
conversions. In the genuinely time-limited work of a navigational bridge, however, 
specially designed representations - the nomogram, navigation slide rule, and 
"3-minute rule" - were embedded in the working environment in a way that 
practically eliminated the need for manipulating algebraic expressions or conducting 
extended written calculations. Instead, these tools required that navigators draw lines, 
rotate dials and align numbers, or delete trailing digits in a system of units that 
matched the quantities actually produced in the environment. Each was a designed 
"cognitive artifact" that organized common cognitive abilities by transforming the task 
into a representational system in which answers and methods for achieving them were 
accessible to workers who might not otherwise have the time or ability to conduct rapid 
algebraic calculations. 

Quantitative inference in and out of school. Naturalistic aspects of 
quantitative reasoning do not occur only under the constraints of wage labor. In a 
study of quantitative measurement among members of a Weight Watchers program, de 
la Rocha (1986) found that dieters used formal measurements (i.e., calculations with 
fractions and unit conversions) in less than half of the kitchen circumstances calling for 
precise food quantities. Instead, they either used "package arithmetic" or adopted a 
collection of "personal inventions" that were less disruptive to the ongoing activities of 
preparing food for themselves and their families. Package arithmetic enacted 
calculations directly around the conventional packaging of commercial foodstuffs, as 
described by one of de la Rocha's participants: 

Vlell, I had a pound package of veal and I just split it into four equal pieces 
and made four patties, froze three and just cooked one. (de la Rocha, 1986, 
p. 226) 
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As might be expected, package arithmetic was most frequent when the units of 
measurement provided by commercial products matched exactly, were multiples, or 
fractions of the precise amounts required by the \\1eight \Vatchers program. 
l\feasurement based on inventions included personal devices like using a familiar 
container as a standard measure (e.g., filling a cereal bowl to a particular level), 
personal rules like recalling the number of spoonfuls in a half cup of corn, or personal 
units like cutting slices of cheese to cover a piece of bread: 

You know, if you cut three pieces of cheese to fit bread crosswise, it'll 
exactly weigh the way I cut it. It '11 weigh out exactly one ounce of cheese. 
(de la Rocha, 1986, p. 233) 

Use of these inventions varied according to physical properties of the foods being 
measured, with personal devices most often used on liquids and personal units most 
often applied to solid materials. 

Presented as quantitative constraints embedded in dietary instructions, 
measurement problems were represented and resolved using materials available in the 
physical work setting of the kitchen. As with Scribner's (1984) dairy workers, de la 
Rocha's dieters achieved a form of efficiency in their measurement activities, converting 
"problems of scale" presented by the need for quantitative precision into "problems of 
sense" that made use of materials in the local setting. This conversion from scale to 
sense allO\Yed them to reduce or eliminate disruptions in meal preparation brought 
about by the need for calculation, with the result that quantitative inferences both 
produced local materials and were constructed out of these same materials (i.e., 
personal inventions). The result, as described by Lave (1988c, p. 9), is that: 

When people own problems about quantities and their relations, they act to 
relate them in ways that make sense within ongoing activity. They do not 
"pop out" to represent them in mathematical formulas, which furnish only 
an impoverished representation when the world is available as a "model" of 
itself. 

Carraher and colleagues have carefully compared strategies and performance on 
school arithmetic tasks with quantitative problems that occur in everyday work 
settings. Among children who worked as street vendors in Brazilian markets (Carraher, 
Carraher, and Schliemann, 1985), relatively complex calculations required to make 
correct change were conducted orally, using the the currency itself to organize an "add 
on" strategy: change was counted up, starting from the purchase price, by adding the 
values of currency notes until reaching the amount of money paid by the customer. 
During interviews conducted in the marketplace, children of various ages seldom made 
errors when making change (98% correct). However, when identical quantitative 
problems were posed as traditional school problems, only 74% of these same children 
gave correct responses in a word problem format, and only 37% succeeded on identical 
calculation exercises commonplace in school. Thus, there were significant 



intra-individual differences in competent mathematical reasoning on tasks that could 
be described as quantitative isomorphs of one another. 
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Carraher and Schliemann (1987) found similar activities among 3rd grade children 
·who were not street vendors. On closer inspection, differences between oral and written 
calculation strategies appeared to more important for explaining their success than the 
actual problem situation: simulated market transaction (80% oral calculation), word 
problem (50% oral), or numerical calculation (15% oral). In oral calculation for 
addition and subtraction, a decomposition heuristic was used to partition numbers 
around decimal place values (e.g., lOO's, lO's, 1 's ), and children then operated on these 
parts from left to right. For example, in a word problem requiring 200 - 35 a child 
responded "If it were thirty, then the result would be seventy. But it is thirty-five. So, 
its sixty-five, one hundred sixty-five" (p. 91). In oral calculation for multiplication and 
division, a repeated grouping heuristic was used to partition numbers by place value 
and then to add or subtract these amounts. For example, in a word problem requiring 
75 + 5 a child responded "If you give ten marbles to each, that's fifty. There are 
twenty-five left over. To distribute to five boys, twenty-five, that's hard. That's five 
more for each. Fifteen each" (p. 93). 

Carraher and Schliemann argued that oral calculation was not only different from 
written calculation in its organization (i.e., adding on, left to right ordering), but that 
the quantities involved in oral calculation retained their relative value during narrated 
operations, whereas written calculations generally separated numbers from their value 
in the place system. For example, the value 10 remained "ten" during oral 
multiplication but was referred to as "one" during a written multiplication. Although 
decimal place-value and individual arithmetic operations in oral calculation were similar 
to the written procedures taught in school, the meaning and control over quantitative 
operations in each case were quite different. 

These patterns are not only true of single-step addition or subtraction problems 
solved by children in school or the marketplace. Carraher, Schliemann, and Carraher 
(1988) asked construction foremen with different levels of schooling to answer questions 
about scale drawings that were different from their routine work in two ways: (a) the 
drawings did not show the scale used and (b) the implied scale was not one that would 
be familiar to them. The question was whether foremen would be able to flexibly 
modify their routine calculations by finding the implicit scale, and whether they would 
then be able to transfer their routine calculations to novel scales. Two strategies were 
observed and were unrelated to level of schooling. The majority of foremen (60%) 
discovered a simplified ratio by dividing quantities given in the drawing and then 
enacted a form of "rated addition" that incremented each part of the resulting 
proportion using addition or multiplication. For example, in a drawing were 5 
centimeters was shown for 2 meters, a foreman found that "One meter is worth 2 1 /2 
centimeters," began an iterative series of calculations as "Two meters, 5 centimeters. 
Three meters, 7 1/2 ... " (p. 82), and eventually found a precise solution. These 
strategies showed a flexible adaptation of their conventional calculations that 

I 
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transferred from familiar to unfamiliar scales. In contrast, 34% of the foremen used 
calculations with given quantities to test whether the drawing used a familiar scale and 
reported being unable solve problems that involved an unfamiliar scale. 

It is also possible to find ecologically interesting activity within the ongoing work of 
teaching mathematics in the classroom. Lampert (1986) described an innovative 
approach to teaching multidigit multiplication, using reciprocal telling of stories about 
quantitative relations by the students and the teacher. These were combined with the 
collaborative design of pictorial representations, maintained by the teacher at a 
blackboard and updated at the request of either the teacher or students. At various 
points during work on a problem, a member of the class would propose a 
representational approach to organizing quantitative information, often highly 
persona.lized and at variance with prescribed arithmetic notations. These proposals 
were sorted out by the class as a whole, and the teacher acted as a referee to resolve 
arguments between students about competing quantitative conjectures and solution 
methods, all with respect to the mathematical principles of multiplication that were an 
intended part of the curriculum. Lampert 's approach used the social structure of the 
classroom to change the learning task presented to students: from acquiring procedural 
skills within a prescribed notation to constructing a representational system that 
conforms to principles the prescribed notation was designed to obey. Although a 
requirement appeared to be extraordinary teaching performance, at least part of the 
advantage of this approach was obtained by a collaborative exploration of 
representational systems for multiplication. 5 

\Vhat do studies of teaching multiplication, measuring food in the kitchen, making 
change in the markets of Brazil, pricing deliveries in a dairy, and finding speeds during 
ship navigation have in common that poses a challenge to predominate theories of 
competent mathematical problem solving? All these studies place the generative 
character of linkages between "sense" and "scale" at the foreground of competence. 
Rather than receiving as input or recalling a problem space for problem solving, 
problem solvers faced with nonroutine problems appear to generate representational 
systems that use aspects of the physical setting, sometimes placed in correspondence 
with various conventional notations. As problems become routine, these representations 
often become historical artifacts that intentionally or unintentionally embed 
quantitative inference and calculation directly in the work environment. These become 
"cognitive artifacts" {Norman and Hutchins, 1988) when their design and use give 
continuity to the ongoing activities of work. When the routine circumstances of work 
break down, these artifacts may need to be renegotiated, as in Lave's (1986, pp. 96-97) 
analysis of one of de la Rocha's dieters managing a seemingly obvious multiplication of 
fractions to find "three-quarters of two-thirds of a cup of cottage cheese" by directly 
manipulating the cottage cheese into a circle, marking a cross on the circle, and then 

5Similar advantages for for collaborative problem solving and learning have been found 
for teaching concepts in Newtonian physics (Roschelle and Behrend, 1988) and for con­
ventional problem-solving puzzles (Levin, Reil, Co~en, Goeller, Boruta and Miyake, 
~986). ' 



cutting av;ay one of the resulting quadrants. Finally, the emergence of physically 
embedded representational systems when nonroutine problems are solved or become 
routine challenges theories of quantitative inference that rely on encoding and later 
recall of problem-specific mathematical forms as a primary explanatory construct. 
That is, the social and material context of problem solving is involved both in 
generating representational systems and in "remembering" them for later use. 

2.4 Problem structure 
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Before presenting exploratory studies, I will examine the domain of algebra story 
problems at two levels of abstraction: the quantitative structure of related mathematical 
entities and the situational structure of related physical entities within a problem. The 
central issue in problem solving is to find convergent constraints through constructive 
elaboration of a problem representation. Structural abstractions examined in this 
section give two basic materials for such a constructive process. Ultimately, these and 
other levels of analysis may provide a relatively complete domain "ontology" (Greeno, 
1983) for algebra story problems and other situations that give rise to mathematical 
problem solving. For present purposes, I want to identify materials that can provide a 
descriptive vocabulary for behavioral observations presented in later chapters and can 
assist intuitions about problem solving, learning, and teaching within this domain. 
These materials can play several roles: as a description of the task of solving algebra 
story problems, as a hypothetical account of the representations held by subjects during 
the solution process, and as an illustrative medium for teaching. 

2.4.1 Quantitative structure 

By the quantitative structure of algebra story problems, I mean the mathematical 
entities and relationships presented or implied in the problem text. A particular 
problem has a "structure" at this level of analysis to the extent that the relationships 
between mathematical entities take a distinguishable form when compared with other 
algebra story problems. Of course, there might be many ways of characterizing the 
quantitative structure of an arbitrary problem or group of ostensibly related problems 
- e.g., as algebraic equations or as matrices of coefficients. Bobrow (1968) used 
algebraic equations as a canonical internal representation of meaning for story problem 
texts, while Reed et al. (1985) used equations to define the a priori similarity of 
problems and their solution procedures. The language of algebraic equations may be 
sufficient for analyzing the task of algebraic manipulation, but it is fundamentally 
incomplete when the analysis is to include what students actually understand, 
construct, and use while learning to solve algebra story problems. 

A network language of quantitative entities. This analysis starts with a 
conceptual framework originally proposed by Quintero (1981; Quintero and Schwartz, 
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Figure 2.1: A multiplicative relation involving two extensives and a single intensive. 

1981) and later extended by Shalin and Bee (1985) and Greeno (1987; Greeno, Brown, 
Foss, Shalin, Bee, Lewis, and Vitolo, 1986). The framework serves all three roles 
mentioned above: as an analysis of task structure, as a hypothetical account of 
subjects' representations of algebra problems, and as an instructional medium. My 
interest in this work is twofold. First, I will use the framework as a means for 
describing constraints essential for problem solution, although several additions to the 
framework will be necessary for it to serve as a representational hypothesis. Second, I 
will employ some aspects of the framework to describe how an arbitrary pair of 
problems might be considered similar by a problem solver. 

Shalin and Bee (1985) described the mathematical structure of an algebra story 
problem as a network consisting of quantitative elements, relations over those elements, 
and compositions of these relations. Quantitative elements are divided into four basic 
types: an extensive element denotes a primary quantity (e.g., some number of miles or 
hours); an intensive element denotes a map between two extensives (e.g., a motion rate 
relates time and distance); a difference element poses an additive contrast of two 
extensives (e.g., one time interval is 2 hours longer than another); and a factor element 
gives a multiplicative comparison of two extensives (e.g., one distance is twice another). 
Composing these elements according to their type yields quantitative relations. A 
quantitative relation is defined as an arithmetic operation (i.e., addition, subtraction, 
multiplication, or division) relating three quantities. For example, the fact that a train 
traveling 100 km/h for 5.5 hours covers a distance of 550 km can be expressed as a 
relational triad over two extensives (550 kilometers and 5.5 hours) and a single 
intensive (100 km/h) as shown in Figure 2.1. Each element is presented graphically as a 
box containing several expressions. The shape at the top of the box designates element 
type - e.g., a rectangular top designates an extensive, a triangular top an intensive. 

As an additional level of structure, relational triads can be composed by sharing 
various quantities to yield "problem structures." These are quantitative networks 
describing typed quantities and constraints among them. As shown with solid lines6 in 
Figure 2.2(a), a single quantitative network can be used to graphically represent the 

6Portions of the network in dashed lines will be discussed shortly. 
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problem of trains traveling in opposite directions (problem MOD from Table 1.1). 
Sharing a common time, two rates combine through multiplicative triads to yield parts 
of the total distance. These parts are combined in an additive triad to give a single 
extensive quantity representing the total distance. Figure 2.2(b) shows a quantitative 
network corresponding to the round trip (MRT) problem. In both networks, the term 
"output" serves as a generalization over distance and work. 

Taken together, quantities, relations and structures provide a language for 
describing the quantitative form of particular algebra story problems. \Vhile a variety 
of equivalent graphical languages might be used (e.g., parse trees for arithmetic 
expressions), this language gives explicit representational status to mathematical 
entities, associates a quantitative type with each, and incorporates a metaphorical sense 
of storage for holding semantic information (e.g., textual phrases) and intermediate 
calculations. Constraints on the arithmetic composition of typed quantitative entities 
restrict the space of possible quantitative relations (Greeno et al., 1986). For example, 
the multiplicative composition of intensive and extensive quantities (rate and time) in 
Figure 2.1 is allowed, while an additive composition of the same quantities would be 
disallo,ved. Greeno (1987) points out that constraints are also available from 
compositional restrictions on the units of measurement for quantities,7 although the 
network language does not presently incorporate these constraints. Finally, the 
interconnectivity of a quantitative network supports a form of written algebraic 
calculus. Expressions can be propagated through the network with the goal of finding 
convergent constraints on the given unknown. 

Quantitative networks provide a visually accessible notation for comparing the 
structure of different algebra story problems. However, the notation and compositional 
constraints do not specify which of the permissible quantitative structures a person 
might generate when solving an algebra story problem. For example, the quantitative 
network shown with solid lines in Figure 2.2(a) describes the opposite direction problem 
after several crucial inferences have occurred: component distances have been inferred 
within the total of 880 kilometers, and a single extensive quantity for travel time has 
been correctly inserted in the network. For the same problem, consider elaborating the 
quantitative network to include network components shown with dashed lines in 
Figure 2.2(a). We might imagine a problem solver inferring that the given rates can be 
added. The resulting combined rate (160 km/h), when multiplied by the unknown time, 
gives the total distance without adding constituent distances. Empirical studies with 
this and similar problems (described in Chapters 3 and 4) show considerable variety in 
the solution approaches taken by different people as well as by individuals within a 
single problem-solving effort. 

7 An instructional system developed by Schwartz (1982) enforces unit constraints to 
help users avoid irrelevant calculations, particularly when using intensive quantities. 
Thompson (1988) combines quantitative networks and unit constraints in another system 
named "Word Problem Assistant." 
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Figure 2.2: The quantitative structure of two problem classes: (a) contains problems 
MOD, \VT while (b) contains MRT, WC. 
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The networks shown in Figure 2.2 are idealized graphical representations of 
problem structure that might be constructed by problem solvers who understand the 
quantitative network language and are able to use the language to comprehend and 
solve algebra story problems. These networks give a particular quantitative 
representation, but their content is largely the result of inferential processes that draw 
on other knowledge sources. These processes may include: 

• recognizing quantitative entities directly contained in or implied by the problem 
text, 

• composing these entities into local relational structures, 

• composing relational substructures into larger problem structures, 

• recognizing familiar substructural arrangements, and 

• detecting when constraints are sufficient for solution. 

The results of each action lie within the quantitative formalism for which Shalin and 
Bee's (1985) frame,York provides a functional description. However, the enablement 
conditions for these actions or the knowledge sources that support them lie partly 
outside the formalism. These issues are explored further when I describe the situational 
structure of problems. 

Quantitative networks as problem classes. Quantitative networks provide an 
analytic tool for examining aspects of quantitative similarity. At the level of entire 
problems, this approa:ch gives a stronger basis for mathematical similarity than simply 
noting common equations. At a more fine-grained level, there may be significant areas 
of substructural isomorphism in globally dissimilar problems. 

The problems from Table 1.1 can be grouped into structurally similar pairs as 
follows: MOD/\VT and MRT/WC. Each problem in a pair is a "quantitative isomorph" 
of the other, as shown graphically in Figure 2.2. In the MOD/WT pair, extensives for 
kilometers traveled correspond with those for parts of a job completed ( outputl and 
output2 ). In the MRT /WC pair, a round trip travel extensive corresponds with an 
extensive for boxes filled and then checked (output). Comparing problems within each 
pair, extensive and intensive quantities play identical roles in the surrounding network 
structure. However, when comparing problems across pairs, structural roles of similar 
quantitative entities change or are even reversed. For example, the additive extensive 
relation for combined distance (or work output) in Figure 2.2(a) is locally similar to the 
additive extensive relation for combined time in Figure 2.2(b ), but these relations play 
very different roles in their overall quantitative structures. From a normative view, a 
specific quantitative network defines an equivalence class of algebraic problems, each of 
which may have a different situational instantiation. Of course, being directly similar in 
form does not mean that problems must be solved in the same way. Figure 2.2 presents 
the quantitative structure of problem materials required for a quantitative solution. \Ve 
could as well depict the quantitative structure of intermediate representational states 
apparent in people's solutions, an exercise that sometimes leads to a surprising 
sequence of graphical images as various conceptual errors are introduced or repaired. 



43 

Turning to a finer-grained level of comparison, classes of problems are similar to 
each other by sharing particular quantitative substructures. A substructure is a 
subgraph within a larger quantitative network consisting of stated quantities, inferred 
quantities, and relationships among these quantities. For example, "current" problems 
are similar at a quantitative level because they contain an additive relationship between 
the rate of the vehicle (steamer, canoe, etc.) and the rate of the medium in which it 
travels (current, tide, etc.). \Vhile other aspects of the quantitative structure for a pair 
of current problems can be dissimilar, such a shared substructure may contribute to 
subjects' estimates of problem similarity. As in the results of Hinsley et al. (1977), 
similarity judgments at the level of "river current" versus "DRT" problems may appear 
an educational failure: problem solvers demonstrate content-specific categorizations 
when the instructional goal was to facilitate their learning of mathematical forms. 
Another interpretation is that quantitative substructures are learned through 
instruction and problem-solving experience and thus form part of the underlying 
competence in this domain. Since particular substructures are correlated with problem 
types, the resulting categorizations appear overly content-specific. However, there may 
be a functional or pragmatic basis for learning these problem classes: despite 
dissimilarity of overall mathematical structure, shared quantitative substructures 
require similar partial solution strategies. 

2.4.2 Situational structure 

The quantitative network formalism does not attempt to account for the problem 
structures that subjects actually generate during problem solving, although some 
constraints are placed on combining quantitative types into relational triads. In this 
section, I examine another level of analysis - the situational structure of a story 
problem - as a source of additional constraint when people construct a 
solution-enabling representation of an algebra story problem. This view of the 
situational structure of an algebra story problem is not synonymous with what other 
researchers have called "surface content." Although surface materials like trains, buses, 
or letters are important problem constituents, and may be particularly so for novice 
problem solvers, I will not focus on these materials. 

Instead, I present a language for describing the situational structure of "compound" 
algebra story problems involving related linear functions, and use the language in a 
detailed examination of problems involving motion or work8 (see Table 1.1). As with 
the quantitative network formalism, this language for describing the situational 
structure of problems can play several roles: as an analysis of problem structure, as a 
hypothetical cognitive representation, or as an educational medium. Here I develop a 
relational language for describing problems, argue for its utility in generating key 
problem-solving inferences, and then use the language to present a viewpoint on the 

8Motion and work are frequently used as the setting for story problems in algebra 
texts, comprising 20% of an extensive sampling by Mayer (1981). 



space of possible algebra story problems that is complementary to problem classes 
based on quantitative structure. In later chapters, I also use the language to help 
interpret various activities observed in exploratory studies of algebra story problem 
solving and then to consider the theoretical and educational implications of these 
:findings for mathematical competence. 
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A relational language of situational contexts. Basic terms of the relational 
language are presented first, followed by an example of their use shown in Figure 2.3. 
Compound motion and work problems are assembled around related events - e.g., 
traveling in opposite directions, working together, riding a bus and walking, or filling 
envelopes and checking them. In each event, an agent engages in activity that produces 
some output (distance or work) over a period of time. Hence, output and time are the 
basic dimensions that organize story activities. These activities start and stop with 
particular times, locations, or work products that can be modeled as places along the 
appropriate dimension. Places that bound an activity define particular segments of 
output or time, and these segments can be placed in relation to each other within a 
common dimension. 9 Rates of motion or work give a systematic correspondence 
bebYeen dimensions of output and time, and using rates in the solution of a 
quantitative problem requires a strategy for integrating these dimensions. Arranging 
output and time dimensions orthogonally gives a rectilinear framework in which rate is 
a two-dimensional entity. Rate entities are modeled as inclines that associate particular 
output and time segments. Relational descriptions involving typed dimensions, places, 
segments, and inclines provide a language for expressing the situational context of an 
individual problem. 

The situational context of problem MOD (from Table 1) is shown in Figure 2.3. 
Parts (a) and (b) of the figure show place and segment representations for output 
(distance) and time, while part ( c) of the figure shows an orthogonal integration of 
these dimensions with time on the vertical axis. In part (a) of the figure, trains 
traveling in opposite directions from the same station provide two spatial segments 
(Distance 1 and Distance 2) sharing a place of origin (S) but with unknown places for 
destinations. These segments are collinear and oriented in opposite directions. Since 
trains leave from the same place of origin, these distance segments are also adjacent 
and can be arranged within the horizontal dimension shown in part (c) of the figure. In 
part (b) of the figure, trains leave at the same time (tO) and are separated by 880 
kilometers at some later time, ptoviding time segments (Time 1 and Time 2) that are 
congruent (i.e., coinciding at all points) when arranged within the vertical dimension. 
This assumes collinearity and the same directional orientation for all time segments. 
Representing rates of travel as two-dimensional inclines, part (c) of the figure puts 
particular instances of output and time in correspondence (e.g., 60 versus 100 
kilometers in the first hour of travel). Inclines can either represent a concrete situation, 
as shown here, or an invariant relation between output and time dimensions. Treating 

9Segment relations within a dimension are similar to Allen's (1983, 1984) relational 
descriptions of temporal intervals. 
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(a) (b) 
Collinear /\ Opposite-direction Collinear 

Distance 1 Distance 2 · ... Time 1 . .":<.. Time 2 .. ·· 
. . 

C) ® @) 

(c) 

Congruent 
100 k Adjacent 

60 k 

Figure 2.3: A situational context for motion in opposite directions: (a) and (b) show 
places and segments for output and time, while ( c) shows inclines for rates when these 
dimensions are arranged orthogonally. 

rate as an irn·ariant relation approaches the algebraic sense of rate as a linear function. 
Each interpretation enables different problem-solving activities, discussed below. 

Problem-solving inferences based on situational contexts. Before using this 
relational language to describe a space of situational contexts for algebra story 
problems, I briefly consider its utility as a representation for problem solving. First, I 
describe how a representation of situational context like that shown in Figure 2.3 could 
be constructed; second, I consider how this relational description might be useful for 
problem comprehension and solution. Both questions bear on the role of this 
situational language as a representational hypothesis and as an instructional medium. 

On the issue of how these representations might be constructed (either 
spontaneously or as an educational exercise), I will propose a series of constructive 
inferences that operate on a case frame representation10 of the events described in the 
text of a compound algebra story problem. These inferences build a situational model 
of the problem by assembling a relational description of a particular situational context. 
Assuming the case frames contain roles that specify typed places and segments (e.g., 
the starting location versus the starting time), a problem solver could model these roles 
as situational places and segments within output and time dimensions. From these 
initial entities, a series of elaborative inferences identify places and segments implicit in 

10See Brachman (1979) for a review of related representation schemes and Kintsch and 
Greeno (1985) for an example of a case frame representation for the text of arithmetic 
word problems. 
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the problem statement and relations over segments within each dimension. \Vhat 
results is a relational description of situational context as in Figure 2.3. Constructive 
inferences that assemble a relational description of situational context are similar to the 
comprehension strategies that Kintsch and Greeno (1985) use to take propositional 
encodings of arithmetic word problems into a set-based representation. 

On the issue of utility, I suspect that segment relations within situational 
dimensions support the construction of quantitative representations like the networks of 
Shalin and Bee (1985). For example, knowing that spatial segments are collinear and 
adjacent while times are congruent supports two useful problem-solving inferences in 
problem MOD: constituent distances can be added to yield a total distance, and the 
rates of each train can be added to give a combined rate. The first inference is a 
necessary quantitative constraint for solution (i.e., a "conservation assumption" for 
Paige and Simon, 1966), while the second inference effectively compresses the 
compound problem into a simpler problem \vhich can be solved without extended 
algebraic manipulation. These are precisely the inferences about problem structure that 
were not accounted for in an examination of quantitative structure. For example, the 
network components shown with dashed lines in Figure 2.2(a) would result if a student 
decided to add motion or working rates. Hence, in addition to constructive inferences 
that build a situational context, there are also constraint-generating inferences that 
take descriptions of situational structure into quantitative relations. Each inference 
about a quantitative constraint, supported by relevant situational relations, gives a 
substructural component in a larger set of constraints that may enable a solution. 

It is also possible to use dimensions, places, segments, and inclines directly in a 
solution attempt by treating these representational entities as a model of the problem 
situation. I will develop a prescriptive account of model-based reasoning as a 
problem-solving tactic here. Following chapters introduce operational categories for 
interpreting this tactic within the structure of written protocols and give an empirical 
account of its use and consequence in algebra story problem solving. 

Placed within a single dimension to model time or output, segments provide an 
explicit spatial representation that. enables a variety of problem-solving operations like 
"copying," "stacking," "comparing," or "decomposing" their one-dimensional extent. 
Similarly, using inclines as models of rate enables operations like "joining" or "scaling" 
their two-dimensional extent. Joining, shown in part (a) of Figure 2.4, places copies of 
the concrete incline along the diagonal in an iterative fashion. Scaling, in part (b) of 
the figure, treats the incline as an invariant relation by estimating the extent of a 
segment in one dimension and then projecting that value through the incline to 
generate an associated extent in the other dimension. Each operation is based on a 
different interpretation of rate as a relation across dimensions, and each coordinates 
operations on associated segments within single dimensions. 

Both join and scale operations enable problem solving by model-based reasoning 
without requiring algebraic representation. Figure 2.5 shows hypothetical solution 
attempts using join and scale operations on the opposite direction motion problem 
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Figure 2.4: Operations based on different interpretations of two-dimensional inclines: (a) 
shows a concrete situation successively "joined" to give an iterative simulation of states 
within the problem model; (b) shows an invariant relation "scaled" to give a heuristic 
estimate of a final state in the model. 

(MOD). Treating inclines as concrete entities in part (a) of the figure, the join operator 
enables an iterative simulation over five successive one hour increments in the time 
dimension. These correspond to intermediate states in a two-dimensional model of the 
problem, successively constructed and tested against the given constraint of being 880 
kilometers apart after a common interval of time. Treating inclines as invariant 
relations in part (b) of the figure, the scale operator enables a heuristic estimate of the 
problem's final state by choosing five hours as the time at which the trains will be 880 
kilometers apart and projecting this choice of a common time through each incline to 
find associated distance segments. In both solution attempts, spatial relations within 
the two-dimensional model support and organize relatively simple quantitative 
operations like addition, multiplication, and value comparison. Thus, even without 
utilizing the metric qualities that such a model might afford (e.g., testing \Vhether 
adjacent distance segments precisely "fill" the composed 880 kilometer segment), 
model-based reasoning can lead to a solution without explicitly constructing an 
algebraic representation of the problem. 

While entities and operations in model-based reasoning can support solution 
attempts directly, they also provide a vocabulary of problem-solving activities that 
could be used to construct an algebraic representation. For example, introducing a 
variable, t, as a label on the unknown common time in part (b) of Figure 2.5, we can 
use the scale operator to project that variable into expressions for labels on each 
distance segment in the horizontal dimension. Since these segments are adjacent and 
must fill the given combined distance of 880 kilometers, addition of label expressions in 
the horizontal dimension gives an algebraic expression for the combined distance, 
lOOt + 60t = 880. Thus, model-based reasoning operations can also participate in 
constraint-generating inferences described earlier. 
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Figure 2.5: Solution attempts using model-based reasoning on problem MOD: (a) "joins" 
successive concrete inclines in an iterative simulation; (b) "scales" inclines as an invariant 
multiplicative relation in a heuristic estimation. 

In general, inferences in model-based reasoning correspond to relatively opaque 
operations in the algebraic formalism (e.g., distribution of a product). Their spatial 
character and granula:rity may provide an accessible problem-solving medium for 
subjects who are newcomers to the algebraic formalism. In addition, the results of these 
operations could justify more abstract activities in an algebraic or quantitative network 
representation, allowing problem solvers to verify quantitative constraints or results 
about which they are uncertain. Evidence for these hypothetical roles of model-based 
reasoning, even in competent problem solvers, is presented in the chapters that follow. 

Situational contexts as problem classes. Beyond their role as a 
representational hypothesis or an instructional medium, situational contexts provide a 
viewpoint on the space of possible compound algebra story problems that is 
complementary to the problem classes provided by quantitative structure. Even if we 
restrict analysis to compound motion problems in which movement must be collinear 
and directed, a variety of situational contexts are possible. Taking two collinear 
distance segments we can select from a set of spatial relationships (e.g., congruent or 
adjacent) and combine this selection with directional orientation (e.g., same or 
opposite) to yield a distinct spatial situation. Also selecting a relation between time 
segments (e.g., congruent or adjacent), we can combine segment relations for distance 
and time dimensions to yield a particular situational context for a compound motion 
problem. For example, problem MOD has adjacent distance segments oriented in 
opposite directions and has congruent time segments, yielding the situational context 
used in Figure 2.5. 

A similar approach is possible with compound wo~k problems. Work outputs can 
also be modeled as collinear.segments, although their directional orientation is less 
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Figure 2.6: A matrix of situational contexts for pairs of isomorphic motion and work 
problems. 

directly interpretable. In the present analysis, I exclude a sense of direction for v.:ork 
outputs. \Vorking "together" can be modeled as adjacent output segments and 
"competitive" work as congruent output segments. For example, the \Vork together 
("'T) problem has adjacent output segments that add to yield a single job and 
congruent time segments that, in concert with additive output, allow addition of 
working rates. This corresponds directly with the situational context of problem MOD, 
without directional orientation of output segments. The competitive work problem 
(\VC) can be modeled in a similar fashion. Since Randy and Jo each work on the same 
set of boxes, we choose congruent segments to model the same output. Adjacent time 
segments are associated with the completion of each output, leading to a direct 
situational correspondence with the round trip problem (MRT). 

Figure 2.6 shows a matrix of situational contexts formed by crossing segment 
relations from output and time dimensions. Compound motion and work problems in 
each cell have a common situational structure (e.g., problems MOD and \VT in the 
upper right cell), and off-diagonal cells contain pairs of problems that reverse segment 
relations for time and output. For example, reversing adjacent distances and congruent 
times in problem MOD produces problem MRT, provided that opposite directions are 
retained in both problems. Problem structures in diagonal cells of the figure (shaded) 
are not used in this study but also provide the basis for particular algebra story 
problems. For example, the lower right cell of Figure 2.6 contains what Mayer (1981) 
called "speed change" problems. This constructive approach to situational contexts can 
be extended to larger relational vocabularies for outptlt and time (e.g., including 
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overlap, disjoint, etc.), yielding a sizable space of situational contexts that provide the 
dimensional basis for algebra "stories" about motion and work. 

These examples show that a language of dimensions, places, segments, and inclines 
can be used to model compound motion and work problems. I have also examined the 
coverage of this language over different classes of algebra story problems, like those 
included in Mayer's exhaustive taxonomy (1981 ). Useful models of situational context 
can be constructed for most of these classes, including current, mixture, simple interest, 
cost, and coin problems. Some extensions of the language appear necessary to model 
relational constraints involving additive and multiplicative comparisons (e.g., "12 more 
than" or "twice as fast as"). In general, however, models of situational context are 
possible for any problem in which related linear functions can sensibly be shown within 
two dimensions. Although arbitrarily complex quantitative relations can be graphed in 
a Cartesian plane, the provision that their dimensions be "sensible" restricts our 
modeling language to situations where one-dimensional relations like adjacent and 
two-dimensional operators like "joining" or "scaling" have meaning. Thus, dimensional 
models of situational context may be applicable beyond textbook algebra story 
problems and include everyday situations involving related linear functions. 

Comparison of situational and quantitative structure. Isomorphism \vithin 
cells and reversed structure across cells of the matrix in Figure 2.6 partition the space 
of compound algebra story problems in a way that is complementary to the problem 
classes described in the preceding section on quantitative structure. In fact, the 
problems paired in each cell also have an isomorphic quantitative structure, and 
problems from off-diagonal cells reverse quantitative relations. For example, an 
additive triad over distance extensives in problem MOD contrasts with a shared 
extensive for distance in problem MRT. I will argue that this complementarity arises 
precisely because the quantitative substructures serve as a mathematical abstraction for 
describing situational contexts. In turn, a relational language of situational contexts 
provides an abstraction for describing (or modeling) events within particular problems. 
Thus, choosing segment relations for output and time gives rise to an organized space 
of situational contexts for compound motion and work problems, each with a 
corresponding quantitative structure. 

Vlhile quantitative and situational viewpoints on algebra story problems are 
complementary, they are not identical. The quantitative network formalism models 
conceptual entities of time, output, and rate as abstractions that preserve quantitative 
type (e.g., extensives versus intensives) and value, either as a number or an algebraic 
expression. In contrast, situational segments and inclines model these same entities as 
individuals that· preserve semantic type (e.g., time versus output), dimensional order 
(i.e., segments versus inclines), quantitative value, a physical sense of extent (i.e., the 
length of a segment or the slope of an incline), and local "spatial" relations between 
individual instances of extent (e.g., the 60 and 100 kilometer segments after the first 
hour of travel are adjacent). Preserving physical extent and relations of locality may 
allow problem solvers to utilize spatial knowledge whEµi identifying or verifying 
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quantitative constraints. For example, when a total distance can be decomposed into 
component distances which exactly fit within the total, there is a direct physical 
justification for their addition. "Joining" or "scaling" inclines using a two-dimensional 
model of rate promises a similar physical justification for operations on intensive 
quantities. \Vhether students actually use such a vocabulary for justification is an open 
question that is addressed in 'later chapters. My hypothesis is that shared aspects of 
situational structure, in addition to quantitative structure, contribute to subjects' 
judgments of similarity between an arbitrary pair of algebra story problems. 

Quantitative and situational structure are not the only materials in the domain of 
algebra story problems that are important for problem solving, learning, and teaching. 
Neither can we tacitly assume that these structures, as described above, are actually 
held by subjects during problem solving. However, these structural abstractions may 
help to understand what subjects actually do when confronted with a problem to be 
solved, and to hypothesize what must be learned for competent problem solving to be 
achieved. Knowledge sources that guide the generation of quantitative representations, 
and the manner in which they are manifested during problem solving, comprise an 
important part of competent performance. By grounding quantitative structure in 
conceptual understanding, these knowledge sources may allow a problem solver to 
effectively assemble and validate representational structures and operators in the 
algebraic formalism. 

2.5 Discussion 

This chapter draws across several disciplinary boundaries to frame concerns for a 
descriptively adequate theory of applied quantitative inference. The history and 
cultural status of applied problems as instructional materials is reviewed first to show 
that these problems are quite "real" for very different communities. Next, studies of 
applied mathematical problem solving from different perspectives are reviewed. On the 
one hand, traditional cognitive science approaches to these problems have refined the 
actual phenomenology of problem solving into a collection of loosely related theoretical 
components that do not provide a coherent or empirically compelling description of 
human activity. Most of the large collection of studies reviewed in this chapter provide 
interesting glimpses of quantitative inference, but their starting assumptions about 
problem-solving and the methodological consequences of these assumptions give a 
necessarily fragmentary view of the whole activity. On the other hand, studies of 
quantitative inference in cognitive anthropology and cultural psychology move between 
classroom, laboratory, and work settings to describe problems and their solutions as 
integrated activity. These studies also provide an interesting view of both "school" 
problems and "after-school" or everyday problems. 

In light of these literatures, the structure of algebra story problems is examined at 
both quantitative and situational levels, with the explicit purpose of leaving open to 
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empirical study the fine-grained episodic structure of solution attempts evident in the 
written protocol example shown in Chapter 1. The account of problem structure that 
results is prescriptive at several levels: as an analysis of "tasks" for protocol studies of 
algebra story problem solving, as a collection of entities for hypotheses about mental or 
concrete representation, and as an illustrative artifact with some potential for 
instruction. These prescriptive aspects are carried through the remainder of the 
dissertation, influencing the kinds of problems presented to study participants and the 
analysis made of their responses. However, they do not delimit either the interpretive 
vocabulary for observed problem-solving activity or the kinds of explanations that are 
possible for these observations - i.e., interactions between quantitative and situational 
aspects of "problem structure" is not proposed as a closed system or a simulation of 
human activity. This concluding section attempts to find meaningful points of 
intersection within the diverse collection of reviewed studies. The general conclusion is 
that much remains to be understood about even seemingly mundane cases of applied 
quantitative inference. 

2.5.1 Towards an ecological theory of applied quantitative 
inference 

Finding a meaningful intersection between traditional cognitive science studies of 
human inference and studies of "everyday" cognition is an explicit theme of this 
dissertation. As this theme is developed over the remaining chapters, applied 
quantitative inference is reconsidered as constructive activity that both responds to and 
acts upon the immediate material setting. In this sense of interaction, problem solving 
can be studied as an ecological system that opens up the received view of 
"representation" in cognitive science to include correspondences between aspects of 
mental, material, and interpersonal experience. This theme resurfaces throughout the 
remaining chapters. Several points of commonality and difference remain implicit in the 
preceding reviews, and they are worth bringing forward here. To simplify the 
discussion, I will use the term "cognitive" to describe traditional cognitive science 
accounts of quantitative inference and the term "ecological" to describe studies of 
quantitative inference that move into the wider settings of "everyday" life. Neither 
term is offered as a satisfactory description of these diverse research programs. 

A primary difference between these perspectives is the status of "problems" and 
their "solutions" in human activity. The cognitive approach generally takes applied 
mathematics problems, as they appear in textbooks, as representatives of an idealized 
class of tasks. From this vantage, the characteristics of existing textbook problems 
provide an objective definition of a "problem" (e.g., Mayer, 1981) that can then be 
manipulated to assess the relative influence of different characteristic features. Likewise, 
the correct solution of these problems is best described within the standard ontology 
and notation for expressing and manipulating quantitative relationships, in this case 
algebraic expressions. In contrast, the ecological approach starts with human activities 
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in particular settings and asks what recurrent disruptions in these settings require 
changes in activity. Thus, the need to make formal calculations while cooking (de la 
Roche, 1986) presents a "snag" in ongoing activity that can be framed as a problem. 
The changes in activity around this problem comprise its solution, and both may have 
relatively little to do with conventional mathematics instruction. I focus on the "task" 
of solving algebra story problems based on the observation that these problems are 
recurrent disruptions in the instructional and assessment experiences of many people. 
This is not to insist that these problems are "real" substitutes for after-school life. 

A closely related question is the issue of ascribing "competence" to individuals on 
the basis of their solutions to problems. In cognitive studies, competence is often 
operationalized precisely around the actual solution offered for a representative problem 
(e.g., an unknown value or collection of algebraic equations). Alternately, competence 
can be factored across an analytic decomposition of problem-solving into a set of 
related processes, as in studies of problem categorization or comparison (e.g., Reed, 
1987). Ecological approaches instead hold competence accountable to the local 
demands of the setting in which the problem and its solution are enacted. As with 
Scribner's (1984) dairy workers, the issue may not be simply whether or not one has 
gotten the correct quantity, but whether the activities required to find that quantity 
allow the person to remain engaged in an ongoing line of work. Thus, high school 
students may be prodigious calculators, but their relative inflexibility in comparison 
with icebox workers makes them "novices" in the dairy setting. That theoretical 
ascriptions about competence have consequences can be seen in the discontinuity 
between relatively principled quantitative reasoning among preschoolers and the 
progressive inversion between manipulative skills and conceptual understanding in later 
school mathematics (Resnick, 1987a). The studies reported in the following chapters 
contrast people with different levels of competence as conventionally ascribed in school 
settings, but analyses of their activities when solving algebra story problems bring 
forward several surprising commonalities. 

Perhaps the deepest schism between cognitive and ecological approaches is over the 
issue of what constitutes "knowledge," its location, and its relation to activity. The 
cognitive perspective proposes mental structures as the primary basis for coherent 
individual activity. The boundary between an individual's knowledge and the material 
or social setting is permeable through processes that encode perceived aspects of 
relevant external inputs. Thus, Paige and Simon's (1966) intriguing observations about 
the material structure of diagrams for making quantitative inferences are attributed to 
"functionally equivalent" mental representations of the diagrams. In contrast, the 
ecological perspective admits more to the material and social setting when analyzing 
the relation between knowledge and activity. For example, the "knowledge" involved in 
ship navigation appears to be distributed across people and "cognitive artifacts" like 
the nomogram or "3-minute rule," both of which are required to manage a competent 
navigational performance (Norman and Hutchins, 1988). The role of material structure 
in "models" of functional relationships is treated in a similar fashion in the following 
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representational conventions were adopted or how these fit together to give a coherent 
understanding of any individual problem. Third, these introspective efforts gave little 
insight into problem-solving attempts where routine classification broke down and the 
textbook problem effectively came "alive" as a genuine problem. 

On the basis of pilot studies collected with undergraduate and graduate students, 
the study of competent problem solvers described in this chapter was undertaken. An 
analysis of written solution attempts on representative algebra story problems taken 
with undergraduates in nontechnical majors suggested that a wide variety of 
problem-solving activities were commonplace, including various forms of nonalgebraic 
representation (i.e., diagrams, tables, and written natural language arguments). 
Surprisingly, similar activities were observed in a small group of graduate-level 
computer science students, suggesting that a detailed account of competence in the task 
domain of algebra story problems might diverge widely from existing accounts in the 
empirical literature. The study of written protocols described in this chapter provides 
one line of evidence on the episodic structure of solution activities observed in a group 
of competent mathematical problem solvers. 

3.2 Method 

The primary goal of this study is to characterize the activities of "competent" problem 
solvers on representative algebra story problems. \Vhen compared with the activities of 
beginning algebra students, the contrast should give a rough image of the terrain over 
which a learner must travel to become a skilled problem solver. Participants were 
chosen who had clearly mastered the algebra curriculum up to existing institutional 
standards, but who were not recent recipients of algebra-based instruction. Thus, 
findings describe a primary target of traditional instruction in algebra: a problem solver 
who has mastered the tools of the algebraic formalism, has practiced these skills during 
instruction, and should be able to apply these skills in novel settings. The study 
involves minimal experimental intervention, so interpretation and analysis of 
problem-solving protocols are primarily descriptive. 

3.2.1 Participants 

Participants in this study were 85 undergraduate computer science majors in their 
junior and senior years. They were enrolled in an introductory course in artificial 
intelligence and participated in the study as part of their classroom activities. They 
could be viewed as "experts" in algebra story problem solving, because they must h ;n-e 
successfully completed courses in algebra during secondary schooling. In addition, 
prerequisites to the artificial intelligence course included three university-level courses 
in calculus and completion or concurrent enrollment in courses covering discrete 
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mathematics. As a result, the level of mathematical sophistication in this sample of 
problem solvers should be high - i.e., they are institutionally certified problem solvers. 
Still, as shown in later analyses, the solutions offered by many members of this sample 
do not resemble the smooth execution of a practiced skill. 

3.2.2 Materials 

Participants were asked to solve the four algebra story problems shown in Table 1.1. 
Problems MOD, MRT and '\VT were taken directly from Mayer's (1981) sample of 
algebra story problems, with minor alterations in their number set and phrasing. These 
alterations were intended to free participants from unwieldy calculations during 
problem solving and to make wording between selected pairs of problems more similar. 
Problem '\\'C was constructed to be isomorphic to the MRT problem at the level of 
quantitative structure. 

These problems were selected for two reasons. First, with the possible exception of 
'\VC, they are typical of problems found in secondary school texts. From an exhaustive 
set of 1,097 algebra story problems drawn from 10 texts, Mayer found that problems 
like MOD, MRT, and WT accounted for 7.83 of all observed problems. Second, 
different pairings of these problems present participants with opportunities for positive 
or negative transfer across contiguously presented problems. 

Aside from their use as representative problem-solving tasks, algebra story 
problems often serve as materials for studies of analogical transfer .1 Given a target 
problem to solve, participants exhibit positive transfer when they can use the solution 
method from a previously encountered source problem to help solve the target problem. 
Alternately, participants exhibit negative transfer when they access and use the 
solution from an inappropriately related source problem. 

Specifically, problem pairings MOD-WT and MRT-'\VC are isomorphic in their 
quantitative structure (see Figure 2.2) and have similar situational contexts. In the 
MOD-WT pair (see Figure 2.6), output segments are adjacent, being collinear and 
sharing a starting point, while time segments are congruent, overlapping completely by 
sharing both starting and ending times. In the MRT-'\VC pair, outputs are congruent 
while times are adjacent and of different value. Should subjects recognize this 
similarity, they may exhibit some form of positive transfer. Alternately, problem 
pairings MOD-MRT and WT-WC are similar at a more superficial level, sharing types 
of surface materials (e.g., distance traveled or parts of a job completed) while having 
quite dissimilar quantitative and situational structures. In fact, relations over output 
and time dimensions are exactly reversed, as described in the preceding section on 
quantitative structure. In the MOD-MRT pair for example, outputs in MOD are 

1See Hall (1986, 1989a) for comparative reviews of analogical inference in problem 
; 

solving and learning. 
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manipulative errors, and the status of the episode in the overall solution attempt. The 
last category covers relative correctness and the reason for transition to a new episode. 
\\Tith the exception of conceptual content, each category is further differentiated into 
alternative subcategories, as shown in Table 3.1. In some cases only one subcategory is 
selected as best describing the more general category (e.g., simulation as a type of 
model-based reasoning under tactical content); in other cases, each subcategory can 
occur within a single episode (e.g., various kinds of conceptual and manipulative errors). 

The remainder of this section takes up each of these interpretive categories in 
detail, showing representatiV,e written protocols as examples of their use in scoring the 
episodic structure of participants' solution attempts. For example, student M20 in 
Figure 3.1 goes through three error-free episodes, each with a specific purpose, tactic, 
content, and transition. In the protocols shmvn in figures as illustrations of various 
categories, episodes are separated by dashed lines, and their sequence is shown with 
circled numbers. Several protocol excerpts are presented directly in the text without 
accompanying figures. 

3.3.1 Strategic purpose 

The strategic purpose of an episode describes its relation to the goal of finding a 
solution. Judgments of a problem solver's "purpose" are clearly a matter of our own 
interpretation, although scoring criteria are presented that make these judgments 
operational across individual ratings. In this regard, our scoring distinguishes among 
three abstract problem-solving modes. 

Comprehension. The participant is not directly seeking a final solution, but is 
constructing a representation of the problem by incorporating various constraints. In 
Episode 1 of Figure 3.1, the participant finds a way to express working rates by 
considering their outputs after one hour. 

Solution attempt. The participant is attempting a series of operations that work 
directly toward a solution (Figure 3.1, Episode 2). 

Verification. The participant has already produced a solution to the problem and 
is now seeking confirmatory evidence for it, for instance by rederiving the solution with 
another tactic or by inserting the answer in some intermediate equations (Figure 3.1, 

_ Episode 3). 

3.3.2 Tact'ical content 

The tactical content of an episode is the method a participant uses to achieve some 
strategic purpose. Operational criteria refer primarily to the protocol material for the 
current episode, but in a few cases information contained directly in the protocol was 

! 



Table 3.1: Categories for interpreting the content of problem-solving episodes. 

I. Strategic purpose 
Comprehension 
Solution attempt 
Verification 

II. Tactical content 
Annotation 

Problem elements 
Retrieval of formulas 
Diagram 

Algebra 
:rvlodel-based reasoning 

Simulation 
Heuristic 

Ratio 
\\Thole/part 
Part/whole, part/part 
Proportion 
Scaling 

Unit 
Procedure 

III. Conceptual content 

IV. Errors 
Conceptual errors 

Errors of commission 
Errors of omission 

:Manipulation errors 
Algebraic errors 
Variable errors 
Arithmetic errors 

V. Status of episode in solution attempt 
Consistency 

Before 
During 
After 

Transition 
Subgoal 
\Vrong 
Impasse 
Lost 
Final solution 
Found solution wrong 
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Mary can do a job in 5 hours and Jane can do the job in 4 hours. If they 
work together, how long will it take to do the job? 
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Figure 3.1: Protocol of student M20 on the WT problem. 
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insufficient to make an operational category judgment. In these cases, surrounding 
episodes and post hoc written explanations supplied by the participant were used to 
assist scoring. 
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Annotation. These episodes usually occur early in the protocol when participants 
are collecting information about the problem. Three cases are covered. 

• Problem elements. The participant is recording elements of the problem text (e.g., 
VA = 60km/ hr, Figure 3.2, Episode 2). 

• Retrieval of formulas. The participant is remembering and writing down 
memorized formulas that seem relevant (e.g., v =%,Figure 3.2, Episode 4). 

• Diagram. The participant draws a picture of the problem situation (e.g., 
Figure 3.2, Episode 1). 

Algebra. An episode is algebraic if it makes use of one or more equations placing 
constraints on the value of one or more variables. However, simple assignments are not 
treated as equations. Thus neither 100 + 60 = 160 nor d = SSO is considered an 
equation, whereas d = 100 x tis considered an equation. As shown unusually clearly in 
the protocol of Figure 3.3, the tactical approach of the typical algebraist is to express 
constraints as a system of one or more equations (or proportions) and to solve for the 
appropriate unknown. There are also cases of participants trying equations in a 
generate-and-test fashion until, as one explained, an equation "looks good." 

Model-based reasoning. This category is scored when a participant "executes" a 
model of the problem situation along the dimension defined by an unknown quantity 
such as time, distance, or work. The two subcategories of model-based reasoning relate 
to constructive problem-solving inferences described in the preceding chapter in the 
section on situational structure. 

• Simulation. 2 The participant selects a base unit for the chosen dimension and 
"runs" the model for each successive unit increment as illustrated in Episode 3 of 
Figure 3.2. Consistent with earlier descriptions of situational structure, a 
simulation episode could be interpreted as an iterative "joining" of concrete 
individual inclines. Simulation can also be partial (just one or two increments) in 
that it is not used to reach a solution, but to examine relations between quantities 
and to enable some other solution method. In both Episode 1 of Figure 3.1 and 
Episode 5 of Figure 3. 7, a simulation for one hour establishes the quantitative 
combination of entities from distinct events. 

• Heuristic. The base quantity "jumps" by variable increments whose magnitude is 
determined at each point by estimations of closeness to the solution. A heuristic 

2This sense of simulation differs from computational studies of common-sense reason­
ing. For example, de Kleer's (1977, 1979) envisionment uses quantitative calculation to 
resolve qualitative ambiguity, whereas the current sense of simulation uses a qualitative 
model to help disambiguate quantitative constraints. 



Two trains leave the _same station at the same time. They travel in opposite 
directions. One train travels 60 km/h and the other 100 km/h. In how many 
hours will they be 880 km apart? · 
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Figure 3.2: Protocol of student W06 on the MOD problem. 
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George rode out of town on the bus at an average speed of 24 miles per hour 
and walked back at an average speed of 3 miles per hour. How far did he go 
if he was gone for six hours? 
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Figure 3.3: Protocol of student M39 on the MRT problem. 
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Two trains leave the same station at the same time. They travel in opposite 
directions. One train.travels 60 km/h and the other 100 km/h. In how many 
hours will they be 880 km apart? 
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Figure 3.4: Protocol of student M03 on the MOD problem. 

model-based reasoning episode could be interpreted as "scaling" inclines that 
represent invariant relations, as described earlier. The progression of this 
generate-and-test approach can be monotonic, as in Episode 2 of Figure 3.4, or it 
can follow some form of interpolation search. After each generation of a base 
value, the state of the problem situation being modeled is reconstructed and 
evaluated. 

Ratio. This subcategory covers tactics in which relations of proportionality 
between quantities are used, sometimes providing clever "shortcuts" to a solution. 
These tactics clearly utilize a representation of quantity (e.g., intensive quantities, as 
described earlier), but the manner in which related quantities are integrated may 
depend on constructive inferences within the situational context (e.g., composing 
segments or inclines). 
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Mary can do a job in 5 hours and Jane can do the job in 4 hours. If they 
work together, how k>ng will it take to do the job? 
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Figure 3.5: Protocol of student M32 on the WT problem. 
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• Whole/part. The participant views a part as fitting some number of times into a 
whole quantity, as in Episode 6 of Figure 3. 7 where the student divides a given 
distance apart by an incorrect rate of separation. 

• Part/whole and part/part. These two types of ratios compare portions of entities. 
Use of the part/whole ratio is illustrated in Episodes 2 to 4 of Figure 3.5, where 
the participant considers parts of the total job. A version of the part/part ratio 
appears in Episode 2 of Figure 3.6, involving the respective rates of bus and foot 
travel. 

e Proportion. Nonalgebraic proportions cover reasoning of the type exhibited by 
student m05 on the \VT problem: "they've done 1

9
0 [of a job] in 2 hrs, so ~ hr 

more would do for [the job] left to be done." 

• Scaling. The participant solves a related version of the problem or reaches an 
unexpected answer and simply scales the answer to fit the quantities given in the 
problem. This may relate to our earlier description of scaling rates as invariant 
two-dimensional inclines. In Episodes 3 and 4 of Figure 3.6, for example, the 
participant solved an easier problem by heuristic model-based reasoning and then 
scaled her answer to "fit" the MRT problem. 

Unit. In a few cases, a participant reasons purely in terms of units of measurement 
given in the problem. For instance, on the work competitive problem (\VC), student 
M44 examines alternative rate forms with the following manipulations: 
" . box . min= box min . box =min." 

min(utes) box 

Procedure. This subcategory is scored when there is evidence that a participant is 
executing some stored sequence of actions or operations other than routine algebraic or 
arithmetic manipulation. For example, on the work together problem (\VT), student 
1\121 appears to use a simple averaging tactic for combining quantities, writing 
"total= !(5 + 4) = ¥ = 4!hrs." 

3.3.3 Conceptual content 

The conceptual content of an episode reflects the participant's conceptualization of the 
problem situa.t.ion and the resulting set of constraints between problem entities. There 
is a subtle but crucial distinction between situational understanding and the 
quantitative constraints that are implied by it, as suggested in previous sections. The 
scoring of conceptual content simply includes constraints that the participant clearly 
recognizes and uses in the episode. For instance, participant M39 in Figure 3.3 appears 
to understand all of the necessary constraints in problem MRT: equal distances, 
additive composition of times, and the distance-rate-time relation. 

In order to track correct or incorrect structural inferences across episodes, a 
normative account of the constraints contained in a problem must be imposed. 
N"aturally, this account of a problem's structure may be at odds with quite reasonable 



George rode out of town on the bus at an average speed of 24 miles per hour 
and walked back at an average speed of 3 miles per hour. How far did he go 
if he was gone for six hours? 

I 
-~:\._~ I 

C0 I */fl /-17 hJj g(,(4 ht- v fi'f: I --------------

69 

t;o rf ~ .l3u~ frttvel~ ~ mlfe~ -f'vr one. Vioi1r) , 
c;eor-~e -fy-tlue{~ bacCz 2Lf mi(e~ ~r B ¥lo(Ar~ 

~2So~~- q_Jtoi~ ~ _;_ --:- -<!?-2-- _ 
~ilt' LOe ~cu1t 0 VlO<Af'~ . U)~t ch 'S 91' cl 

'Z- -- -3 

[ 1 (o mi I es ] 

Figure 3.6: Protocol of student Wl 7 on the MRT problem. 
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conceptualizations that participants construct, and the normative interpretation used 
here attempts to remain open to coherent alternative viewpoints on problem structure. 
Returning to the earlier analysis of problem structure, the components of a problem can 
be divided into one and two dimensional entities, with specific relations possible 
between these entities. Comparing the structural relations between these components 
that are evident in a participant's written protocol with a normative view of problem 
structure, correct structural inferences or conceptual errors are identified in each of the 
following categories: 

• relations over output or time entities (e.g., distances are the same), 

• the form in which the rate is expressed (e.g., as output over time), 

• relations between rates (e.g., addition or ratio), and 

• complex expressions relating multiple entities. 

Correct and incorrect relations between one di.mensional entities (i.e., output or 
time) vary over problems as described earlier (e.g., congruent times have equal values in 
problem MOD). Rate form as a relation over one dimensional entities and relations 
between rates present more difficult interpretations, since status as correct or incorrect 
must be determined by considering the way in which the participant uses rates to 
organize one dimensional entities. For example, in problem WC student Ml3 forms a 
rate as time-per-box (5 and 2 minutes per box), composes these rates by adding (7 
minutes per box), and then uses the composite rate as a divisor of the total time to find 
that eight boxes are filled and checked in 56 minutes. This is a reasonable and effective 
conception of problem structure, but the rate form reverses a normative view of 
working as box-per-time and leads to a very different algebraic construction (e.g., 1/5 
T1 = 1/2 Tc)· 

The complex expression category covers relational constraints over several entities 
that could not be unambiguously broken into more specific constraint categories during 
protocol scoring. For example, on problem MOD student WOl writes "x/60 + x/100 = 
x/880," a complex expression that cannot lead to a correct value for an unknown time 
(assuming xis a variable for a common time), but it is difficult to tell whether 60 and 
100 are being treated as rates or partial distances in some kind of algebraic proportion. 
The policy taken in this case is to treat the entire expression as a conceptual error, 
categorized as a complex expression. 

After coding these categories as absent or containing a particular relational 
constraint for conceptual content, errors of omission, and errors of commission on each 
problem-solving episode, we can track the introduction of correct and incorrect 
structural inferences can be tracked across successive episodes within each participant's 
solution attempt on each problem. Introducing operational accounts of the origin of 
correct or incorrect constraints enables finding which tactics are responsible for 
inferences about problem structure and how incorrect structural inferences might be 
''repaired" during subsequent episodes. 
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Figure 3. 7: Protocol of student M19 on the MOD problem. 



72 

3.3.4 Errors 

Within each problem-solving episode, two broad classes of errors are considered. 
Conceptual errors. These are scored when a participant either includes a constraint 
that is inappropriate for the problem or excludes a constraint that is a critical 
requirement for the current episode. 

• Errors of commission. These errors are incorrect constraints that the participant 
introduces during an episode, either by incorrectly representing the situational 
context of the problem or by making erroneous quantitative inferences. For 
example, in Episodes 4 to 6 of Figure 3. 7, the participant subtracts distances 
thinking the trains are going in the same direction. 

• Errors of omission. These errors are overlooked constraints. To be scored as an 
error of omission, an overlooked constraint has to be critical to the solution 
method applied by the participant. This usually means that two entities are 
explicitly used, whereas the relation between them is ignored. In Episode 3 of 
Figure 3.8, the participant overlooks that working times represented as x and y 

are equal. 

I\1anipulation errors. Because written protocols usually display algebraic or 
arithmetic manipulations clearly, scoring identifies manipulative errors of three types. 

• Algebraic errors. For example, on the MOD problem, student ·w39 wrote 
"880 - 160 " followed by "T - 880 " - T - 160" 

• Variable errors. Two types of errors related to the concept of variable are scored. 
In switch errors, the meaning of a variable changes in the course of problem 
solving. In label errors, participants use variables as labels for quantities. For 
instance, in the round trip problem (MRT), student MIO writes the equation 
"lB + 8TV = 6hrs" and explains that "for every 1 hour on the bus, it takes 8 
hours to get back." 

• Arithmetic errors. For example, on the opposite direction motion problem 
(MOD), student M20 wrote "~~g = ~1 ." After detecting this arithmetic error in a 
verification episode, they recovered by using the ratio scaling tactic mentioned 
earlier. 

3.3.5 Status of episode within solution attempt 

Categories listed so far deal with internal characteristics of an episode. The final 
categories of the scoring scheme, consistency and transition, describe the relation of an 
individual episode to the overall problem-solving effort. 

Consistency. This category assesses the correctness of an episode in the context of 
the surrounding problem-solving sequence and is scored correct or incorrect for three 
facets. 
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Mary can do a job in 5 hours and Jane can do the job in 4 hours. H they 
work together, how long will it take to do the job? 
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Figure 3.8: Protocol of student W23 on the WT problem. 

• Before. This subcategory reflects the correctness of the context inherited by the 
episode. For example, errors may be generated in former episodes and passed into 
the current episode, as with the conceptual error of commission (same direction) 
passed between Episodes 4 and 5 of Figure 3.7. 

• During. This scores the correctness of the current episode with respect to the 
inherited context. An episode producing an incorrect result can be internally 
correct if it is consistent with an incorrect context. For example, Episodes 5 and 6 
of Figure 3. 7 are internally consistent with the conceptual error of commission 
introduced in Episode 4. 

• After. This subcategory assesses the absolute correctness of the outcome of the 
current episode. If a solution is presented, the scoring reflects its correctness; 
otherwise, scoring assesses whether or not the participant is on a possible right 
track in their solution attempt. 

Transition. The intent of scoring transition is to determine the reason a 
participant passes from one episode to the next. Unlike consistency, which reflects the 
scorers' judgment of correctness, this aspect attempts to capture the participant's point 
of view. 
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• Subgoal. The participant accomplishes an intermediate goal, bringing the episode 
to an end (Figure 3.1, Episodes 1 and 3). Information identified when achieving a 
subgoal (e.g., changing the form of a working rate) is generally carried into 
subsequent episodes. 

e Wrong. The participant decides that she is on the wrong track and abandons the 
current approach, usually by marking through the work (Figure 3.7, Episode 3). 
This transition is often the result of an explicit verification episode. 

e Impasse. The participant reaches a point where she cannot continue with the 
current method. A good example of impasse is shown in Episode 3 of Figure 3.2, 
where the student correctly applies simulation by hourly increments, overshoots 
the noninteger solution, and then switches to an algebraic tactic after adding 
rates. 

e Lost. The participant reaches a point where she cannot determine how to 
proceed, as in Episode 2 of Figure 3.8. 

• Final solution. The participant reaches a result and presents it as a solution to 
the pro bl em. 

e Found solution wrong. The participant realizes or believes that the solution 
presented is incorrect. 

This presentation of a framework for interpreting written protocols gives an overly 
linear picture of its use in scoring solution attempts. In fact, categorizing the episodic 
structure of a written protocol within this framework was usually done quickly (from 5 
to 20 minutes per protocol) and \vith little subsequent disagreement among the scorers. 
By design, each category was rated with at least 75% agreement over four scorers; most 
categories approached unanimous agreement. 

In addition to determining whether or not a participant has managed to find a 
correct solution to an algebra story problem, this framework for interpreting 
problem-solving episodes allows us to describe the internal structure of their solution 
attempt. Analysis of episodic structure supports more fin~grained explorations of the 
strategic and tactical course of problem solving. In the quantitative results section 
which follows, composite analytic categories are formed by identifying episodic patterns 
among the atomic category judgments already described. These analyses can speak of 
participants reaching a "final episode" with some particular tactic and content or can 
examine a series of contiguous episodes during which model-based reasoning is used. 

3.4 Quantitative Analysis of Problem-Solving 
Episodes 

Developed as a working hypothesis in Chapter 2, competent problem solving proceeds 
as an elaborative, interdependent exploration of two distinct problem spaces: (a) the 
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situational context of a story problem and (b) the quantitative constraints given 
explicitly or implicitly in the problem statement. Results presented in this section 
provide evidence for this interdependency at a global level of problem-solving activity 
and at a more detailed level of episodic content. The analysis distinguishes between 
participants' problem-solving attempts and the episodic structure of those attempts. A 
problem-solving attempt, includes all the activities evident in the written protocol, 
which may include several distinct episodes. Episodic structure describes the 
alternation of problem-solving episodes of various types, and the constraints or errors 
that are contained within and across those episodes. 

The tactical content, strategic purpose, transitional status, and errors present in 
participants' solution attempts are analyzed first. These analyses pool episodes within 
solution attempts to show the prevalence of different interpretive categories, and so 
they provide only a coarse image of competent problem solving. The second level of 
analysis looks within individual solution attempts and examines two episodic patterns 
in detail. An analysis of the episode during which a final solution is offered provides a 
finer image of problem-solving outcome, describing relations between solution outcomes 
and other interpretive categories within the episode. This level of analysis also identifies 
individual episodes of model-based reasoning to permit a closer examination of 
problem-solving activity outside the traditional algebraic formalism. By considering 
the content of surrounding problem-solving episodes, participants' reasons for using 
model-based reasoning can be examined, and the effectiveness of this tactic for making 
correct problem-solving inferences or recovering from existing errors can be assessed. 
Third, we pool episodes across participants to look at the origin of inferences about 
problem structure, asking which problem-solving tactics are "responsible" for the 
introduction of correct structural inferences versus conceptual errors of omission or 
commission. These analyses also examine problem-solving tactics for those episodes in 
which prior conceptual errors are "repaired," either by being eliminated or replaced 
with a correct structural constraint. 

3.4.1 Problem-solving attempts 

Because interpretive categories advance hypotheses about problem-solving processes, 
their frequency of occurrence among participants is presented. Table 3.2 shows the 
percentage of participants having one or more episodes in which various rated 
categories were observed. Percentages are shown separately for each problem (MOD, 
MRT, WT, WC) but are collapsed over groups (M, \V) since none of these contrasts 
were statistically reliable. Most findings are as expected, while several are surprising. 

Tactical content of scored episodes. Although most participants use algebra in 
their solution attempts (63.5% to 85.9% across problems), reasoning outside the 
algebraic formalism is surprisingly common. 
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Table 3.2: Percentage of subjects with a scored category during their solution attempts. 

Problem 

Category MOD MRT WT \VC 

Tactical content 
Algebra 82.4 85.9 71.8 63.5 
Model 30.6 22.4 35.3 47.1 
Ratio 17.6 14.1 15.3 42.4 
Procedure 0.0 1.2 21.2 0.0 
Units 3.5 1.2 1.2 1.2 
Notations 7.1 15.3 21.2 29.4 
Diagram 69.4 36.5 8.2 9.4 

Strategic purpose 
Comprehension 84.7 64.7 57.6 60.0 
Solution attempt 100.0 100.0 100.0 100.0 
Verification 28.2 20.0 7.1 20.0 

Episode transitions 
Solution 97.6 75.3 85.9 97.6 
Impasse 9.4 10.6 7.1 4.7 
Lost 4.7 21.2 15.3 3.5 
·wrong 16.5 38.8 25.9 16.5 

Errors 
Omission 7.1 21.2 23.5 11.8 
Commission 17.6 49.4 42.4 14.1 
Arithmetic 9.4 4.7 3.5 2.4 
Algebra 5.9 8.2 8.2 0.0 
Variable 1.2 5.9 14.1 2.4 



77 

e Looking within individual problems, at least one model-based episode is used bv 
22.4% to 47.1 % of participants, depending on the problem. A separate analysis. 
pooling across problems shows that 72.9% of participants have one or more 
episodes of model-based reasoning in their written protocols. These episodes are 
explored more fully later. 

e Use of ratios is the next most prevalent nonalgebraic tactic (14.1 % to 42.4% 
across problems) and may depend on a variety of factors: (a) the complexity of 
the constraints presented by a problem's quantitative structure, (b) the 
accessibility of situational justifications for those constraints, and ( c) the manner 
in which the constraints are presented in the problem text. 

• Few solution attempts contain episodes using a "procedure" or reasoning with 
"units." Most participants using a procedure on problem \VT chose to take an 
average over \vorking rates, a strategy that violated the situational meaning of 
"working together" in that problem and generally led to an incorrect solution. 

• Annotations, in the form of diagrams or notations about problem elements, were 
either scarce or common, depending on the situational and surface content of the 
story problem. Motion problems (MOD, MRT) showed few notations for problem 
elements (7.1 %; 15.3%) but more frequent diagrams (69.43, 36.53), whereas 
work problems showed frequent notations (21.23, 29.4%) but fewer diagrams 
(S.23, 9.4%). Although it is likely that the spatial content of motion problems 
makes them more suitable for diagrams, some participants are able to construct 
effective diagrams for work problems (e.g., see Figure 3.5, Episode 3). 

Strategic purpose of scored episodes. Most participants show explicit 
attempts at comprehension in their written protocols (57.63 to 84. 7% across 
problems), typically through diagrams, notations about problem elements or 
model-based reasoning. Although all participants make some attempt to solve the 
problem, only a minority give evidence of attempting to verify the results of their work 
(7.13 to 28.23 across problems). 

Transitions out of scored episodes. Most participants find and explicitly 
present a solution (either correct or incorrect) as part of their problem-solving attempt, 
although problems MRT and WT appear more difficult than their quantitative 
isomorphs in this regard (WC and MOD). A more detailed analysis of solution 
outcomes follows shortly. Likewise, the three transitions without solution (i.e., impasse, 
lost, or wrong) are most common in the more difficult problems (MRT and WT). 

Errors in scored episodes. Conceptual errors of omission and commission 
increase for the more difficult problems (MRT and WT), and appear much more 
frequently than manipulative errors (arithmetic, algebraic, or variable errors) on all 
problems. 

Several interesting patterns emerge in these findings. First, participants' written 
protocols are not composed solely of material generated while performing algebraic 
transformations. Instead, many use various forms of model-based reasoning; conducted 
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v•:ithin their understanding of the context posed by a story problem text. Second, 
although most participants do present a solution in some form, their efforts do not 
appear as a smooth progression toward a quantitative solution. Rather, their 
problem-solving efforts are often interrupted by varied conceptual. difficulties that must 
be repaired before a solution is found. Third, manipulation errors within algebraic and 
arithmetic formalisms do occur, but these are overshadowed by conceptual errors of 
omission or commission as a primary source of problem-solving difficulty. Consistent 
with the treatment of problem structure in Chapter 2, these findings are interpreted to 
mean that participants form an understanding of the problem at the level of its 
situational context and then use this understanding to introduce quantitative 
constraints. As a result, many of the activities present in an episodic analysis of algebra 
story problem solving J all outside the traditional algebraic formalism. 

3.4.2 Final episodes: outcome, tactical' content, and errors 

Examination of the written protocols clearly shows that participants undertake a 
variety of problem-soiving activities when attempting to solve these problems, 
particularly when they encounter difficulties in reaching a solution. However, the 
previous findings speak only to the presence of various conditions in participant's 
problem-solving efforts. As scored, participants average approximately 2.5 episodes per 
problem-solving effor~, with some protocols presenting evidence for as many as 10 
distinct episodes. The following analyses look within individual protocols for more 
finely detailed episodic structure. 

Vo/ithin an individual's efforts on any given problem, a final episode is extracted for 
a first level of detailed analysis. This episode need not be their last effort in a solution 
attempt, but it is final in one of three senses: it is the last episode during which they 
present a solution that is correct, the last episode during which they present a solution 
that is incorrect, or the last episode of a problem-solving effort in which no solution is 
presented. Incorrect means the participant presents an incorrect final solution without 
detecting any errors. The no solution category includes participants who present an 
incorrect solution but realize they have done so during a subsequent attempt at 
verification, without being able to recover. Thus, the final episode may be correct, 
incorrect, or present no solution. 

Performance outcomes and problem order. Table 3.3 shows the final 
outcomes for each problem, broken down to show anticipated effects of problem 
ordering. On some target problem, participants are expected to perform better if they 
have just seen a relevant source problem than if they have seen no prior problem or have 
just seen an irrelevant source problem. For example, if participants recognize and use an 
analogy between adjacent problems, group W should perform better than group M on 
problem MOD (shown as M < Win the table), since those in group Ware exposed to a 
relevant problem (WT) just before seeing problem MOD. Problem WT is a relevant 
source, as described in the Methods section, since it is isomorphic in quantitative 



Table 3.3: Final Episodes: Percentage Correct by Subject Groupings. 

Problem by Group Contrast t 

MOD MRT \VT \VC 

Outcome M < \V M > \V M > \V M < \V 

Correct 89.1 92.3 47.8 56.4 58.7 64.1 93.5 
Incorrect 6.5 7.7 19.6 15.4 28.3 20.5 6.5 
No-solution 4.3 0.0 32.6 28.2 13.0 15.4 0.0 

f Group contrasts (M vs. W) anticipate effects of problem order. 
M sees :MOD, \VT, \VC, MRT; \V sees \VT, :MOD, MRT, \VC. 

89.7 
5.1 
5.1 
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structure to problem l\lOD. If positive analogical transfer occurs, participants in group 
1\1 should be at a relative disadvantage, having seen no prior problem. 

Similarly, on problem MRT group M should perform better than group \V (shmrn 
as M > \Vin the table), since those in group M are exposed to a relevant source 
problem (\VC, a quantitative isomorph) immediately prior to seeing problem MRT. In 
contrast, participants in group \V will have just seen an irrelevant source problem (\VT, 
with reversed quantitative structure) and may be at a greater disadvantage on the 
MRT problem. 

None of the group contrasts shown in Table 3.3 are statistically significant, and 
several show trends that are opposite what would be expected if participants were 
transferring material between adjacent problems. However, this analysis does not 
consider outcomes on prior source problems, which might facilitate or inhibit 
participants' use of problem comparisons. Table 3.4 and Table 3.5 also show percentage 
correct but take into account whether participants were correct, had no solution, or 
were incorrect on preceding problems. Thus, participants with an incorrect solution or 
no solution on a relevant prior source, and hence little of value to transfer, can be 
separated from those with a correct solution on a relevant prior source. 

In these more detailed analyses, trends for problems MOD and \VT are in the 
direction expected if positive transfer plays a facilitating role, but contrasts on 
problems MRT and WC show no similar effects. Even when these analyses were 
repeated using the presence of any conceptual error in a participant's solution attempt 
for each problem, group contrasts were still mixed and statistically unreliable. 

Thus, the problem-ordering manipulation introduced to provide opportunities for 
positive and negative transfer had little effect on performance at the level of solution 
correctness. This finding is considered in more detail i.n the Discussion. Clearly, 
problems MRT and WT were most difficult, with pertentages of participants reaching a 
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Table 3.4: Percentage correct on a target problem without any prior source problem 
versus with a relevant prior source problem. 

Relevant source outcomes t 

Target No source c N I Total 

MOD (n) (46) (25) (6) (8) (39) 
c 89.1 92.0 100.0 87.5 92.3 
N 4.3 0.0 0.0 0.0 0.0 
I 6.5 8.0 0.0 12.5 7.7 

\VT (n) (39) ( 41) (2) (3) (46) 
c 64.1 65.9 0.0 0.0 58.7 
N 15.4 12.2 50.0 0.0 13.0 
I 20.5 22.0 50.0 100.0 28.3 

fOutcomes: C = correct, N = no solution, and I = incorrect. 

correct solution (51.8% and 61.2%, respectively) falling well below those reaching 
correct solutions on problems MOD and \VC (90.6% and 91.8%, respectively). 

Relations between solution outcome and tactical content. Table 3.6 shows 
tactical content and error categories for final problem-solving episodes. For tactical 
content, a participant receives a single category score, so cell frequencies sum to give 
appropriate column totals. A few protocols contain insufficient information to score 
tactical content in the final episode. For errors, a participant may achieve a correct 
solution in the final episode but still demonstrate several types of errors. As a result, 
cell entries for errors do not always add up to coincide with column totals. 

The prevalence of tactical content and error categories in the final episode is 
generally consistent with findings for overall solution attempts. Looking within these 
attempts, the analysis can focus more closely on relations between tactic and outcome. 

• Even within the final episode, not all solutions (correct or incorrect) are found 
using algebra. Excluding those with no solution or with contents that were not 
scorable, between 22.03 and 44.03 of participants (across problems) used other 
tactics to find their final solution. 

• Use of ratios is the most prevalent form of nonalgebraic reasoning in final 
episodes, with the exception of an incorrect averaging procedure on problem vVT. 
Model-based reasoning is the next most prevalent tactic. 

• Algebra, model-based reasoning, and ratio tactics .are comparably effective in the 
final episode. Averaging across problems, algebra is slightly more successful 
(79.53 correct) and slightly less error-prone (8.83 incorrect) than either of the 
nonalgebraic tactics in participants' final problemLsolving episode. 
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Table 3.5: Percentage correct on a target problem with a relevant prior source problem 
versus an irrelevant prior source problem. 

Irrelevant source outcomest Relevant source outcomes 

Target c N I Total c N I Total 

MRT (n) (36) (0) (3) (39) (43) (0) (3) ( 46) 
c 58.3 0.0 33.3 56.4 48.8 0.0 33.3 47.8 
K 27.8 0.0 33.3 28.2 34.9 0.0 0.0 32.6 
I 13.9 0.0 33.3 15.4 16.3 0.0 66.7 19.6 

WC (n) (27) (6) (13) (46) (22) (11) (6) (39) 
c 96.3 83.3 92.3 93.5 86.4 90.9 100.0 89.7 
N 0.0 0.0 0.0 0.0 4.5 9.1 0.0 5.1 
I 3.7 16.7 7.7 6.5 9.1 0.0 0.0 5.1 

+outcomes: C = correct, N = no solution, and I = incorrect. 

Table 3.6: F~nal episodes: tactical content and errors by outcome. 

Problem by Outcomet 

MOD MRT WT \VC 

Category c I N c I N c I N c I N 

n 77 6 2 44 15 26 52 21 12 78 5 2 

Tactic 
Algebra 58 6 0 36 8 20 43 5 7 44 2 1 
Model 3 0 0 4 2 6 2 1 2 12 1 0 
Ratio 13 0 2 4 3 0 5 3 2 22 1 1 
Procedure 0 0 0 0 0 0 1 11 1 0 0 0 
Units 2 0 0 0 0 0 0 0 0 0 0 0 
Not scored 1 0 0 0 2 0 1 1 0 0 1 0 

Errors 
Conceptual 1 6 0 0 14 16 1 27 10 1 4 0 
Manipulative 7 2 0 1 5 2 4 7 1 2 1 0 

f Outcomes: C = correct; I = incorrect; N = no solution. 



82 

Thus, even within the final episode where a solution might be found, a normative 
account of problem solving consisting of successive algebraic transformations vmuld be 
disconfirmed by these data. Instead, participants find solutions through a variety of 
reasoning strategies that, in some cases, involve relatively little formal algebra. The 
episodic structure of model-l;>ased reasoning tactics is examined more closely later. 

Relations between solution outcome and errors. Errors observed during final 
episodes are also interesting, although more difficult to interpret because individual 
students can have multiple errors. The error categories are shown in the lower panel of 
Table 3.6 distinguish between conceptual errors, which arise through omission or 
commission of specific quantitative constraints, and manipulative errors, which arise 
through improper use of arithmetic, algebraic operations, or variables. 

• \Vitb the exception of problem MOD, conceptual errors are more prevalent than 
manipulation errors. This is particularly true of the more difficult problems 
(MRT and \VT). Participants who achieve a correct solution have fewer 
conceptual errors than those with an incorrect solution or no solution (1:6, 0:30, 
1:37 and 1:4 across problems MOD, MRT, \VT, and \VC, respectively). In the 
few cases where a solution is found despite conceptual errors, offsetting 
manipulative errors fortuitously "correct" these conceptual errors. 

• Although manipulative errors are found among participants not reaching a correct 
solution, they are also observed among those giving a correct solution. These 
errors are "repa~red" within the final episode to allow for a correct solution. 
Among participants reaching an incorrect solution, the number with manipulative 
errors could not account for more than about a third of these failures (2/6, 5/14, 
7 /27, and 1/4 across problems). Thus, approximately two thirds of the incorrect 
solutions must be based on conceptual errors. 

One interpretation of these results is that manipulative errors are less frequent and 
more recoverable than conceptual errors. That is, participants who make an error 
during a problem-solving episode are more likely to recover from that error if it sterns 
from arithmetic or algebraic manipulation than if it is a result of misunderstanding the 
structure of the problem. Because errors may persist across episodes, this conclusion 
cannot be unambiguously supported. Nonetheless, the most serious errors among this 
group of relatively competent problem solvers are conceptual rather than manipulative. 

3.4.3 Episodic structure of model-based reasoning 

One of the most intriguing findings in these data are participants' use of model-based 
reasoning. In these episodes, they depart from the algebraic formalism and reason 
directly within the situational context presented by the story problem. This section 
examines the functional role that model-based reasoning plays within the overall 
solution effort. The analyses attempt to determine under what circumstances this form 
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Table 3.7: Errors and transitional status of a previous episode compared \\'ith the purpose 
of a model-based reasoning episode. 

Problem by Purposet 

MOD MRT \VT \VC 
(n = 26) (n = 19) (n = 30) (n = 40) 

Previous episode c s v c s v c s v c s v 

None 7 1 0 1 4 0 17 4 0 10 2 0 

No errors 
On track 3 9 0 0 6 0 2 2 1 10 11 2 
Abandon 1 0 0 1 1 0 0 2 0 0 0 0 

Errors 
On track 1 0 0 0 0 0 0 0 0 1 1 0 
Abandon 2 2 0 1 5 0 0 2 0 1 2 0 

f C = comprehension; S = solution attempt; V = verification. 

of reasoning occurs, what purpose it serves within a particular solution attempt, and 
what outcomes are likely when problem solvers reason in this fashion. 

As with the analysis of final episodes, specific episodes within participants' solution 
attempts are identified where model-based reasoning occurs. The analysis also extracts 
the preceding problem-solving episode in the hopes of identifying enabling conditions 
for model-based reasoning. Because some participants' only use of model-based 
reasoning occurs during their first scored episode, they will have no preceding episode. 

Precursors to model-based reasoning. A first task for describing the role of 
model-based reasoning in participants' solution attempts is to determine their reasons 
for using this method. These are evident in the contrast between correctness and 
transition out of an immediately preceding episode and the purpose (as rated) for using 
model-based reasoning. 

Table 3. 7 shows the number of participants using model-based reasoning for some 
purpose (scored.as comprehension, solution attempt, or verification) subsequent to 
various conditions in the preceding episode. An individual may have (a) no preceding 
episode, (b) a preceding episode without errors, or ( c) a preceding episode with one or 
more scored errors (i.e., an error of commission, omission, or manipulation from which 
the individual does not recover in that episode). 
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• From 26.3% (5 of 19 on l\fRT) to 70.0% (21 of 30 on \VT) of model-based 
reasoning episodes occur as the first episode in a solution attempt. Of these initial 
model-based episodes, the majority (except for problem MRT) are undertaken for 
the apparent purpose of comprehending some aspect of the presented problem. 
The remaining initial episodes are scored as solution attempts. 

• For participants having a preceding episode, their transition out of this episode is 
scored as achieving a subgoal, finding a solution, reaching an impasse, or deciding 
they are wrong. 

Of the model-based reasoning episodes following an error-free episode, there are 
two essentially different scenarios. In the first, a participant's preceding episode ends 
with achieving a subgoal or finding a solution. This solution attempt can be considered 
"on track." In the second scenario, participants "abandon" the preceding episode after 
reaching an impasse (also after getting lost, as described earlier) or deciding that their 
efforts are wrong. They are technically on track because their preceding episodes are 
error-free, but they encounter sufficient difficulty that they abandon a previous line of 
reasoning in favor of model-based reasoning. 

• Almost all participants who are on track in a preceding episode either attempt a 
solution or continue attempts at comprehension during the model-based 
reasoning episode. 

• Only a few participants are on track and undertake model-based reasoning for the 
purpose of verification. On problem ·we, these verification episodes follow finding 
a solution; the single verification attempt on problem \VT comes from a student 
\vho verified a recalled formula using a simplification of the original problem. 

• Participants abandon (i.e., decide they are lost, at an impasse, or wrong) a prior, 
error-free episode infrequently and subsequently use model-based reasoning for 
comprehension or to attempt a solution. 

Model-based reasoning episodes following an episode with errors are less frequent 
than the case already discussed, but fall into similar categories. Relatively few 
participants have preceding errors, are unaware of those errors, and proceed as if on 
track (i.e., achieve a subgoal or find a solution). Participants who are aware of their 
preceding error nearly always decide that they are wrong and abandon the preceding 
episode. Among those who abandon a preceding episode with errors, subsequent 
model-based reasoning is used either for comprehension or as an attempt to find a 
solution. 

Although based on a subset of all participants studied, these findings support an 
interpretation in which model-based reasoning plays four basic roles in problem solving: 
(a) as a preparatory comprehension strategy when the model-based episode is either the 
first problem-solving activity attempted or follows other comprehension episodes, (b) as 
a solution strategy when participants feel they are on track, ( c) as an evidence 
gathering strategy when a solution has been found previously (this is infrequent), and 
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Table 3.8: Errors before and during model-based reasoning. 

Problem by Errors During Ivfodel Episode 

MOD :MRT WT \VC 
(n = 26) (n = 19) (n = 30) (n = 40) 

Before Errors None Errors None Errors None Errors None 

No episode 0 8 2 3 1 20 0 12 
Errors 1 4 2 4 0 2 1 4 
No errors 0 13 1 7 0 7 0 23 

(cl) as a recovery ·strategy when participants suspect that their comprehension or 
solution efforts may be "off track." These interpretations are consistent with the earlier 
argument that reasoning within the situational context of a problem supports the 
generation of quantitative constraints, can be used directly as a solution method, or can 
be used to verify that these constraints are appropriate. 

Effectiveness of model-based reasoning. To assess the effectiveness of 
model-based reasoning, the occurrence of any errors within successive episodes is 
examined. Table 3.8 shows the relationship between errors during a preceding episode 
(when there is one) and errors within the model-based reasoning episode. 

• "'hen model-based reasoning is the participant's first evident activity, as 
indicated by "No episode" in Table 3.8, errors are not often encountered within 
that episode. The two errors shown for problem 1'.fRT are misconceptualizations 
in which participants assumed that round-trip times were equal. The error in 
problem WT comes from a student who assumed that Mary and Jane did equal 
amounts of work. 

• When a previous episode contains errors, the subsequent model-based episode is 
usually error-free. Thus, existing errors may be "repaired" during model-based 
reasoning. Across problems, from 66.7% to 100% (problems MRT and WT, 
respectively) of participants showed no conceptual or manipulative errors in the 
following model-based reasoning episode. 

• Following an error-free episode, only one student introduced a new error with 
model-based reasoning by omitting the constraint that distances are equal on 
problem MRT. 

Although these findings are not conclusive, they are again consistent with the four 
hypothetical roles for model-based reasoning described in the analysis of final episodes. 
First, preparatory comprehension promotes an error-free conceptualization of the 
problem situation, enabling participants to assemble c;orrectly the quantitative 
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Table 3.9: Percentage of all tactical episodes introducing any correct structural inference. 

Tactic 

Problem Algebra Model Annot. Ratio Proc. Unit 

MOD 68.6 83.9 33.3 15.8 0.0 25.0 
(n) (105) (31) (81) (19) (0) (4) 

MRT 66.9 76.2 54.1 43.8 100.0 100.0 
(n) (l18) (21) (61) (16) (1) (1) 

YVT 57.1 90.0 22.6 38.9 25.0 0.0 
(n) (84) (33) (31) (18) (20) (1) 

\VC 7i.6 54.9 5.9 17.0 0.0 0.0 
(n) (76) (51) (34) ( 47) (0) (1) 

structure of the problem during later reasoning episodes. Second, participants also 
attempt to find solutions directly through model-based reasoning, generally without 
introducing errors. Third, after encountering an error during previous problem-solving 
activities, participants may be able to recover through the use of model-based 
reasoning. Fourth, model-based reasoning can play a confirmatory role when 
participants have identified important problem constraints or a possible solution. 

3.4.4 Tactical Course of Structural Inferences 

The preceding analyses of model-based reasoning as a problem-solving tactic looked 
within participants' solution attempts to find what relations held between this tactic 
and conceptual errors, both before· and during an episode of model-based reasoning. In 
this section, a similar form of analysis tracks the introduction of correct inferences 
about problem structure and conceptual errors of omission or commission. The analysis 
also takes a closer look at the tactical course of "repairing" conceptual errors during a 
solution attempt. These analyses test hypotheses about the role of model tactics in 
generating and evaluating quantitative constraints . 

. Tactical origin of correct structural inferences. Table 3.9 pools over 
participants' solution attempts to show which tactical episodes are most likely to 
introduce correct structural inferences about each problem. A structural constraint is 
"introduced" on its first scored occurrence in a participants' solution attempt. For 
example, on problem MOD a student whose first use of the constraint that times are 
the same comes during a model-based reasoning episdde would contribute one case to 
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the number of structural inferences attributed to model-based reasoning. By analyzing 
the percentage of all episodes of a particular tactic that introduce a structural 
inference, this analysis adjusts for the number of opportunities for structural inferences 
afforded by more or less frequent tactical categories. Naturally, tactics that occur 
infrequently give poorer estimates of the origin of structural inferences. 

• Excluding tactical episodes that occur very infrequently (i.e., Unit and Procedure, 
except on problem \VT), model-based reasoning is more likely than any other 
tactic to introduce correct structural inferences on problems MOD, MRT, and 
\V'T. By comparison with algebraic tactics on these problems, an episode of 
model-based reasoning is from 1.2 to 1.6 times more likely to introduce a correct 
problem constraint (problems MOD and \VT, respectively). 

• On problem \VC, this trend is reversed, with algebra tactics 1.4 times more likely 
to originate a correct structural inference. Even on this problem, however, over 
half of the problem-solving episodes scored as using model-based tactics 
introduce a correct structural inference. 

• The constraints introduced using a procedure tactic on problem \VT correctly add 
work output during an otherwise incorrect attempt to find an average time. 

• Pooling over problems and excluding procedure and unit tactics, model tactics are 
most likely to introduce correct constraints (73.5%), followed by algebra (6i.4%), 
annotation (33.3%), and ratio tactics (2.5.0%). These differences are statistically 
reliable (Tactics. x Correct constraints, x2 (3) = 118.0, p < .001). 

Rather than playing an "auxiliary" role in competent problem solving (Paige and 
Simon, 1966), using a dimensional model to reason about problem structure appears to 
play a central, generative role. This supports two important hypotheses: (a) situational 
structure as a normative domain ontology may enable constructive and 
constraint-generating inferences, and (b) model-based reasoning as a problem-solving 
tactic is important for preparatory comprehension. 

Tactical origin of incorrect structural inferences. Just as some tactics are 
more likely to introduce correct structural inferences about a problem, this tracking 
analysis can show which tactics are most likely to introduce conceptual errors. 
Table 3.10 shows an identical analysis of the tactical origin of conceptual errors, again 
pooling over participants' solution attempts. Excluding infrequent tactical categories 
(i.e., Unit and Procedure, except on problem WT), a complementary image of the 
relative risks of model-based and algebraic tactics is found. 

• On all four problems, algebraic tactics are more likely to introduce conceptual 
errors than are model-based tactics - from 1.6 times more likely on problem 
MOD to 9.8 times more likely on problem WC. 

• Ratio tactics are comparable to or more error prone than model-based tactics, 
except on problem MOD where most participants constructed a ratio of the total 
distance to the distance travelled after the first hour without introducing any 
conceptual errors. 
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Table 3.10: Percentage of all tactical episodes introducing any incorrect structural infer-
ence. 

Tactic 

Problem Algebra Model Annot. Ratio Proc. Unit 

1\10D 15.2 9.7 6.2 5.3 0.0 25.0 
(n) (105) (31) (81) (19) (0) (4) 

MRT 42.4 23.8 8.2 25.0 100.0 0.0 
(n) (118) (21) ( 61) (16) (1) (1) 

\VT 27.4 3.0 0.0 44.4 85.0 0.0 
(n) (84) (33) (31) (18) (20) (1) 

\VC 19.7 2.0 2.9 6.4 0.0 0.0 
(n) (76) (51) (34) ( 47) (0) (1) 

• On problem \VT, ratio and procedure tactics introduce more conceptual errors 
than any other tactic. For ratio tactics on this problem, most errors originate 
when participants introduce a conceptual error of commission over working times 
(e.g., adding times). 

• For procedure tactics on problem \VT, most conceptual errors originate when 
participants attempt to find an average working time. 

• Again pooling over problems and excluding procedure and unit tactics, algebra 
tactics are most likely to introduce incorrect constraints (27.23), followed by 
ratio (16.03), model (7.43), and annotation tactics (5.3%). These differences are 
also statistically reliable (Tactics x Conceptual errors, x2(3) = 56.9, p < .001). 

As with the origin of correct structural inferences, these findings largely support 
hypotheses about quantitative inferences based on situational structure and 
model-based reasoning as a problem-solving tactic. Furthermore, the relatively 
error-free status of model-based episodes admits the possibility that this tactic might 
be used to recover from conceptual errors introduced during algebraic or other tactical 
episodes. This hypothesis is examined next. 

Detection. and repair of conceptual errors. Since participants' solution 
attempts are broken into successive episodes of coherent problem-solving activity, it is 
possible for conceptual errors introduced early in a solution attempt to be "repaired" 
during later episodes. For example, student M42 subtracts distances in an algebraic 
episode on problem MOD (an error of commission), but then decides to add distances 
during a subsequent model-based episode. This represents one operational case of 



89 

Table 3.11: Percentage of tactical episodes retracting or replacing an earlier conceptual 
error. 

Tactic 

Problem Algebra Model Annot. Ratio Proc. Unit 

:MOD 9.5 19.4 2.5 0.0 0.0 25.0 
(n) (105) (31) (81) (19) (0) (4) 

MRT 22.0 23.8 9.8 31.2 0.0 0.0 
(n) (118) (21) (61) (16) (1) (1) 

\VT 15.5 6.1 3.2 11.1 25.0 0.0 
(n) (84) (33) (31) (18) (20) (1) 

\VC 10.5 7.8 0.0 8.5 0.0 0.0 
(n) (76) (51) (34) (47) (0) (1) 

repair, where a conceptual error is replaced by a correct constraint. The other case of 
repair occurs when participants remove an earlier conceptual error but do not explicitly 
replace it with a correct structural inference. 

Table 3.11 shows the relative frequency with which prior conceptual errors are 
removed or replaced with correct structural constraints during various tactical episodes. 

• On problems MOD and MRT, model-based tactics are comparable to or better 
than algebraic tactics for accomplishing repairs, while on problems WT and \VC, 
algebraic tactics surpass model-based reasoning for repairing prior conceptual 
errors. 

• On problem MRT, constructing a ratio is more likely than any other tactic to 
accomplish repairs, and on closer inspection most of these cases show either 
specific attention to an earlier conceptual error (e.g., establishing a ratio over 
times after omitting their addition) or a complete reconceptualization of problem 
structure. 

• The large percentage of "repairs" using a procedure on problem WT are an 
artifact of displacing earlier conceptual errors with an equally problematic 
averaging· tactic. 

• Pooling over problems and excluding procedure and unit tactics, algebra tactics 
are most likely to repair conceptual errors (14.9%), followed by model (12.5%), 
ratio (11.0%), and annotation tactics ( 4.3%). These differences are statistically 
reliable (Tactics x Repairs, x2(3) = 15.0, p < .002). 
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Combined with estimates of the relative likelyhood of introducing correct and incorrect 
structural inferences, the analysis of "repairs" provides support for the hypothesis that 
model-based reasoning can be used to repair conceptual difficulties introduced during 
previous problem-solving episodes. Tracking the introduction, removal, and repair of 
conceptual errors within solution attempts shows that model-based reasoning has no 
particular advantage over other tactics in repairing conceptual errors. However, since 
these errors are most likely to occur within episodes using other tactics (i.e., algebra, 
ratio, or procedure), reasoning about a dimensional model of problem structure plays 
an important role in competent problem solving by introducing correct structural 
inferences, seldom introducing conceptual errors, and sometimes repairing earlier 
conceptual errors. 

3.5 Discussion 

Interpreted as a series of problem-solving episodes, the written protocols provide an 
opportunity to look within individual solution attempts for strategic and tactical 
activity. Analyses reported in this Chapter look across a relatively large sample of 
mathematically sophisticated students in an effort to describe "typical" 
problem-solving behaviors. This section briefly summarizes the major quantitative 
findings and compares these results with other research on mathematical problem 
solving. A discussion of the implications of these findings for conceptions of 
mathematical knowledge and instruction appears in the concluding chapter (Chapter 
6). This study yields several unexpected findings and leads to a set of hypotheses about 
constructive mathematical competence that provide a framework for more detailed 
protocol studies of algebra story problem solving (Chapter 4) and motivate a functional 
account of how people construct and use dimensional models of problem structure as a 
major component of competent problem solving (Chapter 5). 

3.5.1 Summary of quantitative findings 

As part of an effort to explore the episodic structure of algebra story problem solving, 
the previous section presented four levels of quantitative analysis: (a) the prevalence of 
different interpretive categories in participants' overall solution attempts, (b) relations 
between outcomes, tactical content, and errors in their final episodes of problem 
solving, ( c) the role and effectiveness of model-based reasoning episodes within the 
wider problem-solving context, and (d) the tactical course of structural inferences 
across participants' solution attempts. Each successive level of analysis tightened the 
focus on findings at coarser levels. 

A global view of solution attempts revealed significant nonalgebraic reasoning as a 
prevalent and somewhat unexpected activity in competent problem solving. Most 
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prevalent among these tactics was model-based reasoning. Among observed errors, 
conceptual omissions or commissions were more frequent than manipulative errors 
within arithmetic or algebraic formalisms. An examination of final episodes, the 
"bottom line" in a very lean view of these problems, corroborated this global image of 
significant nonalgebraic rea.Soning on nonroutine problems. Looking more closely at 
errors, analyses showed that manipulative errors were both less frequent and less 
damaging than conceptual errors, because problem solvers were more likely to recover 
from errors of manipulation within the final episode. 

After examining the episodic structure of model-based reasoning, four roles for this 
tactic were proposed: (a) as preparatory comprehension, (b) as a solution method, ( c) 
as evidence-gathering for a candidate solution, or ( d) as a recovery method for errors 
generated earlier in the solution attempt. These hypothetical roles were supported by 
an analysis of the tactical course of structural inferences, both correct and incorrect, 
across participants' solution attempts. Model-based tactics competed favorably with 
algebraic and other tactics for introducing correct structural inferences, while at the 
same time introduced far fewer conceptual errors than algebraic tactics. In addition, 
model-based reasoning was effective in repairing conceptual errors introduced in 
preceding episodes and was generally comparable to other problem-solving tactics in 
this role. 

These quantitative analyses of problem solving episodes corroborate the earlier 
description (Chapter 2) of an interplay between the quantitative and situational 
structure of algebra story problems. The following sections take up the implications of 
these findings for normative accounts of competent algebraic problem solving, the 
prevalence and consequences of problem comparisons for transfer across solution 
attempts, and the position of model-based reasoning in a theoretical account of 
mathematical understanding and the construction of mathematical representations. 

3.5.2 Competent problem solving 

The study reported in this chapter explores competent algebra story problem solving. 
The term competent contrasts problem-solving activity observed among advanced 
undergraduates with images of problem-solving "expertise" portrayed in the literature. 
For example, Hinsley et al. (1977) and Mayer et al. (1984) reported that experienced 
problem solvers use problem-solving schemata to categorize problems by type and then 
solve these problems using recalled quantitative constraints. Although this account 
corresponds with some of the protocols, many participants in this study appear to 
construct solutions to algebra story problems. Rather than resembling a smooth 
execution of a highly practiced skill or the application of a familiar schema, these 
constructions often proceed with difficulty and include reasoning activities only partly 
connected to algebraic or arithmetic formalisms. 
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As noted earlier, participants in this study should be considered competent 
mathematical problem solvers. Nonetheless, judging from the episodic activities 
observed, these algebra story problems were not routine tasks. On problems MRT and 
\VT, for example, many failed to reach a correct solution, and those who did succeed 
often experienced consMerable difficulty. Analyses of errors during solution attempts 
show that conceptual errors of omission and commission are both more prevalent and 
more damaging than manipulative errors in algebra or arithmetic. These results 
support an account of algebra story problem solving in which problem comprehension 
and solution are complementary processes. Integrating situational and quantitative 
materials in a problem is a central aspect of competence. These intermediary structures 
provide a representational bridge between the text of a problem and a quantitative 
solution. Reasoning about the situational context of a problem can serve as a 
justification for assembling quantitative constraints that may eventually lead to a 
correct solution. Empirical findings show that a substantial portion of problem-solving 
activity is devoted to reaching an understanding of the problem that is sufficient for 
applying routine calculations. 

Despite their mathematical backgrounds, perhaps advanced undergraduates have 
yet to achieve competent algebra story problem solving, well beyond the curricular 
setting designed to teach it. Alternately, they may have been "experts" during and 
shortly after algebra instruction, but with the passage of time they have lost the facile 
performance demonstrated by Hinsley et al. (1977). As a practical matter, neither 
position provides an entirely satisfactory explanation, because the issue remains how to 
characterize ostensibly competent problem solving in a clientele for whom the algebra 
curriculum is designed. Recent studies of mathematical problem solving in "practice" 
(Carraher, Schliemann, and Carraher, 1988; de la Rocha, 1986) have presented similar 
images of competent quantitative reasoning: problem solvers organize their quantitative 
knowledge around the demands of the situational context presented by the task, often 
using the problem situation (or knowledge of it) to assemble or verify quantitative 
constraints. As a theoretical matter, then, the question of what it means for people to 
construct and understand a mathematical representation remains open. If an image of 
competent problem solving in this domain is to inform teaching efforts - that is, if it is 
to have some predictive capacity as described in the introduction of this dissertation -
then activities like these are a legitimate topic of study. 

3.5.3 Transfer effects 

The problem materials used in this study were chosen as quantitative isomorphs and 
then presented in a sequential order that might influence participants' use of analogical 
comparisons between adjacent problems. Other studies of analogical transfer with 
algebra story problems have produced mixed results, but show that both positive and 
negative transfer sometimes occur. Positive transfer has been more likely when 
participants are alerted to the experimental manipulation (Reed, 1987; Reed et al., 
1985) or are high in mathematical achievement (Novitk, 1987). Transfer effects related 
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to higher achievement have been attributed to participant's improved attention to 
aspects of quantitative structure (Novick, 1987; Silver, 1979) and better memory for 
previous solution methods (Silver, 1981 ). Negative transfer in participants with lower 
achievement (Novick, 1987) has been attributed to a reliance on inappropriate problem 
features and an inability to reject misleading analogical sources. Finally, Dellarosa 
(1985) experimentally manipulated participants' use of analogical and schematic 
problem comparisons to produce improvements in their categorization and solution of 
related problems. 

This study did not alert participants to the comparability of problems or encourage 
them to look back over their prior solutions as they worked through the problems. 
Their backgrounds ensure high mathematical achievement, and entrance requirements 
for academic majors in computer science and engineering preselect for high quantitati,·e 
abilities. There is no performance-level evidence of positive or negative transfer within 
the problem-solving session, despite a manipulation of problem structure and 
presentation order to elicit these effects. At the aggregate level, participants appear to 
take the "school math" task at face value: each problem, presented individually on a 
blank sheet of paper, is treated as a self-contained exercise, rather like what a student 
might face during examinations in an algebra course. In many ways, this is an entirely 
reasonable reading3 of the study setting by participants, since relevant similarity 
bet\veen test items would be redundant in a conventional school assessment. 

Despite finding no reliable evidence of transfer between solution attempts, a closer 
inspection of individi.ial protocols and explanatory remarks shows that some 
participants do exhibit negative transfer. In some of these cases, transferred material 
directly violates the quantitative and situational structure of the target problem. For 
example, student \VOS incorrectly attempted to add working rates on problem \VC, 
first writing 1/5 *boxes+ 1/2 *boxes= 56, followed by 7 /10 *boxes = 56. In 
explanatory remarks, they stated: "The mistake I made was that I assumed it was like 
problem 1 where they \vork together." In the preceding solution to WT, this student 
had written "Together = 1/5 + 1/4 in one hour = 9/20" and then correctly divided one 
job by the combined rate. Adding working rates in problem WT is justified because 
Mary and Jane work together at the same time. However, situational and quantitative 
relations are exactly reversed in problem WC (see Figures 2.2(b) and 2.6 in Chapter 2). 
Because times are added together (adjacent) and work is performed on the same boxes 
(congruent), the addition of working rates (i.e., output over time) cannot be similarly 
justified. 

In other cases, participants recognize an appropriate source problem but then fail to 
transfer information at the correct level of abstraction. For example, on problem MOD 
student WOl correctly attempted to add motion rates, but used an algebraic expression 
of the form: 1/60 + 1/100 = x/880. On the previous (WT) problem, the student 
managed a correct solution using an expression of the form, 1/5 + 1/4 = l/x, and 

3Pea (1987) makes a similar argument for "reading situations" when reviewing studies 
that compare quantitative reasoning in practical versus school settings. 
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remarked that this "is a formula used to find a total of time they work together." 
Although the addition of rates can be justified in both problems, it appears that the 
rate form in the retrieved formula was reversed (i.e., time over output) when used in a 
solution attempt on the MOD problem. Thus in a situation where participants should 
benefit by transfer of a solution approach, their failure to justify transferred material 
actually produces a negative effect. 

It may be that the problem-solving context (completing a test booklet in a 
proctored examination setting) as well as not alerting participants to the comparability 
of problems prevented them from recognizing and elaborating effective analogical 
comparisons between problems. In verbal interviews reported in the next chapter, 
participants are sometimes prompted to make problem comparisons. Analyses of their 
protocols sbow that spontaneous attempts at analogical inferences between algebra 
story problems are common. These comparisons are sometimes lengthy and can 
introduce misconceptions, but they also frequently lead to fruitful explorations of 
problem structure, both quantitative and situational. In addition, comparisons need 
not encompass the entire problem structure but can make effective use of relevant 
substructural similarities. These alternative findings are largely consistent with other 
verbal protocol studies of learning from worked examples (Chi, Bassok, Lewis, 
Reimann, and Glaser, 1989; Pirolli and Anderson, 1985; Singley, 1986) and suggest that 
analogical comparison may be a common problem-solving and learning strategy in 
settings where people have some control over their work. 

3.5.4 Model-based reasoning 

The findings of this chapter are not the only documented evidence for model-based 
reasoning during mathematical problem solving. Several psychological studies have 
found similar evidence, although interpretations of this activity vary. Paige and Simon 
(1966), comparing human protocols with Bobrow's (1968) computational model of 
translating algebra story problems into equations, found that participants with varied 
mathematical backgrounds used "auxiliary representations" of the physical setting of a 
problem. These representations allowed some people to detect impossible problems 
before constructing algebraic expressions or to assemble relevant quantitative 
constraints (e.g., additivity in part-whole relations). Studying the prevalence of Polya's 
(1945) heuristics for mathematical problem solving, Kilpatrick (1967) reported that 
60% of an abov~average group of eighth graders used "successive approximation" while 
attempting to solve word problems. These trial-and-error approaches were often 
successful and were sometimes combined effectively with more deductive solution 
strategies. Silver (1979) found similar successful approximation strategies in students 
who had yet to receive formal algebraic training. 

Studying geometry problems, Schoenfeld (1985) found that students used a 
trial-and-error approach to generate hypotheses abo~t geometric relations and then 
evaluated these hypotheses by physical construction. He argued that these exploratory 
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episodes of "naive empiricism" were usually poorly organized and often interfered with 
forms of deductive verification that students had been trained to use. Finally, Kintsch 
and Greeno (1985) described a process model of solving arithmetic word problems in 
which quantitative strategies were triggered by information contained in a "situation 
model" of the problem. The situation model was constructed during text 
comprehension and contained a set-based representation of typed quantities and their 
interrelationships (e.g., part-whole). Kintsch (1986, 1988) has since shown that the 
construction of a situation model is important for recall, inference, and learning from 
text. 

Looking over this evidence, it is clear that studies of mathematical problem solving 
consistently encounter activities similar to model-based reasoning: people construct 
some form of situation model, make inferences within the model to help comprehend 
and sometimes to solve a quantitative problem, and use the model in a supportive role 
to assemble or to. verify quantitative constraints. Beyond model-based reasoning in 
mathematical problem solving, similar evidence is available across a wide range of 
cognitive activities. For example, Johnson-Laird (1983; Johnson-Laird and Bara, 1984) 
argued for a model-driven account of syllogistic reasoning that underlies common-sense 
inference. Given a pair of premises such as All the artists are beekeepers and All the 
beekeepers are chemists, Johnson-Laird's participants appeared to build successively 
more elaborate models of the situation described by the premises 'vhen searching for 
valid inferences. The validity of each inference, rather than being logically deduced by 
sound rules of inference, was evaluated with respect to these concrete models of the 
premises. Errors occurred when participants "·ere unable to build sufficient models of 
the premises and thus overlooked or failed to eliminate various inferences. Relatively 
concrete forms of reasoning outside traditional (i.e., schooled) formalisms have also 
been observed for decision making under uncertainty (Tversky and Kahneman, 1974), 
various forms of statistical reasoning (Nisbett, Fong, Lehman, and Cheng, 1987), and 
explanations of physical processes (Clement, 1983; McCloskey, 1983). 

In general, these studies raise questions about the relationship between what 
students bring to an educational setting - that is, their preconceptions about a subject 
matter - and materials that the curriculum explicitly presents. In the domain of 
mathematical problem solving, students' preconceptions and associated activities are 
often pushed to the background of legitimate practice and inquiry. At best they are 
auxiliary to quantitative reasoning; at worst they interfere with preferred 
problem-solving activities and produce "lost opportunities, unfocused work, and wasted 
effort" (Schoenfeld, 1985, p. 308). In their stead, the manipulation of symbolic 
representations of quantity, apart from the situations and activities that give rise to 
these quantities, is held in the foreground. Findings for model-based reasoning in this 
chapter, in concert with other studies reviewed briefly, suggest that this 
foreground/background conception of quantitative problem solving may need to be 
reconsidered. 
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In this sample of advanced undergraduates, a routine problem is one in which the 
use of familiar algebraic operations will provide a precise value for an unkno\vn entity. 
This is the pmver of the algebraic formalism: it is perfectly general, sound, and often 
simple to apply. However, quantitative precision is of little value when a participant is 
uncertain about the problem's structure. Findings on overall episodic activity, the 
frequency and consequence of conceptual versus manipulative errors during those 
episodes, and the role of model-based reasoning show that routine activities within the 
algebraic formalism make up only a portion of competent problem solving. For many 
competent problem solvers, algebra story problems are not routine exercises. Instead, 
much of their problem-solving activity is devoted to assembling a sensible set of 
constraints on a desired quantity, an effort that uncovers the problem's structure. 
\Vhen algebraic constraints are unclear, participants sometimes attempt solutions using 
model-based reasoning (e.g., Figure 3.2), a tactic that approximates a certain value for 
an unknown entity. The value is certain when quantitative constraints that determine 
its derivation are embedded in a model of problem structure that is familiar to the 
participant. 

The strategic significance of model tactics is consistent with various explanations. 
On one hand, enacting a set of physical constraints may provide otherwise skilled 
problem solvers with an efficient means of estimating quantitative solutions. Under this 
interpretation, the model-based episode shown in Figure 3.2 results simply from the 
student's preference for repeated additions over a more complicated division. \Vilkening 
(1981) made a similar argument when interpreting results of a developmental study on 
the relationship between velocity, time, and distance. In contrast, the preceding 
analyses suggest that episodes of model-based reasoning serve a.s problem-solving 
strategies in their own right and are used when more "formal" activities (e.g., algebraic 
substitution) are unreachable given the current problem representation. Under this 
interpretation, the student in Figure 3.2 undertakes model-based reasoning because her 
representation of the problem cannot justify a division of the total distance by a 
combined rate. Enacting motion and time constraints over successive hours of travel 
makes the quantitative structure of the problem more certain and supports a 
conceptualization of quantitative constraints in which the total distance can be divided 
by a combined rate to give a precise account of the elapsed time. Further constraints 
are introduced by establishing that the correct quantitative solution must fall between 
the fifth and sixth hours of travel. 



Cl1apter 4 

Representations Observed: 
Learning and Teaching 

4.1 A wider view of problen1s, problen1 solvers, 
and solutions 

The preceding study of written problem-solving protocols presents an image of 
competence for the domain of algebra story problem solving. Findings of significant 
episodic activity outside the algebraic formalism are surprising in contrast with existing 
accounts of competent problem solving in the empirical literature and intriguing for a 
wider account of nonroutine mathematical reasoning. This chapter presents a more 
detailed analysis of think aloud protocols taken during problem-solving interviews. 
These analyses expand the restricted observational window on problem-solving activity 
that written protocols afford, both to confirm earlier findings and to obtain a more 
detailed account of several hypotheses about the construction and evaluation of 
quantitative inferences. In addition, these verbal protocols extend the analysis to a 
wider range of participants, including newcomers to the algebraic formalism at one 
extreme and algebra teachers at the other extreme. 

The chapter is organized as a conventional cognitive study, first describing the 
methods used to collect verbal reports of problem solving and analytic conventions for 
using these data. Results present a series of comparisons between algebra students, 
their teachers, and advanced undergraduates from the previous chapter. Comparisons 
range across problem structures and across tactical variations in problem-solving 
activity to explore a set of outstanding questions that open the chapter. In addition, 
these comparisons provide new explanatory material for understanding competent 
quantitative inference and its acquisition. 

97 



98 

4.1.1 Overview of major findings in written protocols 

In the written protocol study, competent algebraists produced varied materials during 
their solution attempts on representative algebra story problems. In particular, the 
analysis focused on three major interpretive findings: 

1. Solution attempts were interpreted as having an episodic structure, with 
individual episodes identified on the basis of coherence in strategy, tactic, and 
content. 

2. Episodes using nonalgebraic tactics were quite common, including: diagrammatic 
annotations, inferences drawn over a dimensional model of problem structure, and 
various uses of ratios without algebraic notation. 

3. Model-based reasoning tactics played several different roles within the episodic 
structure of solution attempts: (a) generating inferences about structural 
constraints including algebraic notation, (b) directly determining unknown values 
without introducing algebraic notation, and ( c) evaluating or repairing inferences 
about problem structure. 

Each of these findings was sensible but a little curious, given that the initial purpose of 
the study was to gain an empirical image of algebraic competence. \Vhy is it that 
people, well past mastery of school algebra, place so much of their activities outside of 
the traditional algebraic notation? 

4.1.2 Outstanding questions 

\Vhile the interpretive analysis of written protocols allows us to look within the episodic 
structure of problem-solving attempts, these analyses are inherently conservative 
because the means of observation are so narrow. As mentioned earlier, we have no 
timing information, must rely on the written order in which various tactics are used, 
and cannot query participants about what they take various notations to mean or 
about their reasons for making transitional decisions. This interpretively conservative 
window onto problem-solving activities raises a number of additional questions that 
call for more detailed verbal protocols collected with more diverse participants. These 
questions concern: 

• The time course and pattern of episodic sequences. 

• Participants' reasons for transitioning between episodes, including their accounts 
of problem-solving impasses. 

• The internal structure and content of model-based reasoning episodes. 

• Interactions between algebra and model tactics, particularly as they give rise to 
inferences about problem structure. 
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o The prevalence and outcome of problem comparisons. particularly given a change 
in problem setting from a written examination format to a problem-solving 
interview. 

• A contrast between competent problem solvers and newcomers to the algebraic 
formalism. 

Each of these issues is important for understanding the cognitive activities involved 
in competent mathematical reasoning. If significant aspects of what we have called 
model-based reasoning persist at the strategic and tactical levels of competent problem 
solving, do algebra students and their teachers exhibit similar forms of quantitative 
inference? In their problem-solving activities, do they use model-based reasoning to 
construct, support, and evaluate different kinds of quantitative representation? This 
chapter combines qualitative and quantitative analyses of materials collected during 
relatively open-ended verbal interviews with algebra students and algebra teachers. 
Results of these analyses confirm and extend exploratory findings from Chapter 3, as 
well as comparing different problem solvers sampled at various locations along an 
idealized continuum of problem-solving competence. 

4.2 Method 

In Chapter 3, an analysis of each solution attempt as a sequence of episodes allowed 
various quantitative summaries of the relation between tactics, representational 
content, and outcomes. In the analyses of verbal protocols that follow, contrasts 
between problem-solving tactics are primarily qualitative, informed by earlier findings 
but directed tmvards an account of how various tactical approaches lead to structural 
inferences and transitional outcomes in different problems. 

There are methodological problems with studying any spontaneous human activity, 
particularly where the circumstances of the activity are part of the research question. 
The study reported in this chapter replicates and extends earlier findings by (a) looking 
for evidence of model tactics among different problem solvers in less restrictive settings, 
and (b) collecting verbal report data about transitions between tactical episodes. 

There is a simple logic to this design that follows a "constant comparative method" 
developed in sociological approaches to grounded theory (Glaser and Strauss, 1967; 
Strauss, 1986). In grounded theory, comparative analyses of qualitative data iteratively 
confirm and extend theoretical categories by moving their interpretation strategically 
across different settings. Each of the comparisons listed above is intended to carry 
interpretive categories constructed in the the written protocol study into different 
positions along relevant sampling dimensions: problem solvers, settings, and detailed 
personal accounts of problem-solving activity. 

The materials of these comparative analyses are careful interpretive readings of 
observed problem-solving activity in terms of theoretical categories carried into the 
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analysis or generated during its undertaking. For example, the previously monolithic 
category of model-based reasoning is further refined by the observation that quite 
different notational systems are employed during these tactical episodes. Qualitative 
and quantitative analyses in this chapter provide one explanatory account of 
participants' problem-solving activity, presented in enough detail that a sceptical 
reader could construct a different explanatory account. 

Like conventional reports of verbal protocol studies, I use transcript material as an 
illustration of theoretical categories and contingencies. Certainly this presentation is 
selective, driven by an attempt to sample different settings with an interpretive 
category in hand (e.g., diagrammatic notations for state simulation). Unlike 
conventional uses of verbal protocols, however, I also treat transcript material as a 
resource with continuing value beyond my own reading of it. Thus, I include both 
verbal and written transcript materials freely within the body of the chapter, in 
addition to reporting analytic summaries of problem-solving intervie,vs. 

4.2.1 Participants 

Participants in these problem-solving interviews were selected to give boundaries on 
either "side" of the competent problem solvers from the preceding chapter, along a 
continuum of algebraic expertise. At the lower end, two students were selected, one in 
an introductory algebra class at a local junior high school and the other in an 
intermediate algebra class at a local junior college. At the upper end of the continuum, 
algebra teachers from similar settings were selected, one an instructor in math and 
science at the high school level and the other a mathematics instructor at a local junior 
college. These four respondents are not presented as a statistically representative 
sampling from various levels of mathematical schooling and achievement. Instead, they 
provide a theoretically relevant contrast for questions about tactical activity and 
personal significance in competent mathematical problem solving. Participants were 
paid $3.00 per hour for the problem-solving interviews. 

Celeste. Celeste is an eighth grade student taking a beginning algebra course. She 
describes her performance in the class as "average" and relates that algebra is not her 
strongest subject area. The problem solving interview is conducted in the setting where 
Celeste usually does her algebra homework: she sits on her bed, writing on a notebook 
held in her lap, with finished problems placed around the work surface (her bed) in 
small piles. While working on a new problem, she periodically rearranges the finished 
work, pulling selected sheets to the surface and leaning over them to inspect her earlier 
activities. 

Celeste's introductory algebra course is organized around 110 "problem sets," and 
students progress en mass through the sets during the year. She is currently on lesson 
88, which includes a worksheet with several word problems like: 



The creature wolfed down 36% of the food. If there were 75 pounds of food 
to start, how many pounds were left? 
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According to Celeste, her te.acher solves example problems at the board, while students 
read the problem and suggest equations to write down. \Vhen the students are silent, 
he writes in equations of his own and tells them why those equations fit the story. She 
describes the teacher's explanations as using "another language" that she and her 
classmates would later translate for each other, depending on who was having difficulty. 
Asked if his explanations contain words like "expression," "term," "variable," or 
"polynomial," she laughs and reports that she and her friends talked to each other by 
saying "times by this thing" and so on. 

Karen. Karen is a 24 year old undergraduate in a local junior college. She is 
currently enrolled in an intermediate algebra course, and completed an introductory 
course the previous semester. These courses satisfy background mathematics 
requirements for further undergraduate study in a four year undergraduate program. 
Her study plans are still open regarding a major concentration, and she has not yet 
made applications to other colleges or universities. \\Thile Karen is also new to algebra, 
she has received more instruction than Celeste and has more concrete contingencies 
surrounding her school performance, since her matriculation involves transferring 
algebra courses for undergraduate credits. 

Karen works at her dining table, where she usually does her algebra homework. On 
seeing that we would be doing story problems, she commented that she finds story 
problems very difficult and that her algebra instructor spends lots of time on these 
problems in class. Karen takes algebra as a personal challenge, mentioning that by 
treating the algebraic notation as a foreign language to be learned (she likened it to 
Chinese) she is able to lessen her apprehension about these classes. She has designed a 
system in which a roommate gives her M-and-M candies for each equation she solves, 
placing herself on a continuous reinforcement schedule for what she finds an arduous 
task. Piecing her comments on algebra together, she finds the subject difficult, feels 
that her lack of confidence interferes with performance, and has turned algebra into a 
personal project that extends beyond the classroom. 

Paul. Paul is a 40 year old science and math teacher, who works in a local hospital 
with an adolescent CARE Unit for children with substance abuse problems. He teaches 
mathematics and science in a classroom setting, depending upon the clientele in any 
given week, but his teaching regularly includes introductory algebra. Paul specializes in 
teaching approaches with "learning disabled" children and, during discussions of his 
current teaching activities, shows a creative facility for making quantitative problems 
concretely accessible to students. He creates applied problem-solving projects for his 
students, such as estimating the number of beans in a jar or the number of hairs on a 
student's head, that encourage students to develop physical approaches when using a 
given formula (e.g., the volume of a cylinder). These projects are enormously popular 
with otherwise very difficult students. 
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The interviews were conducted out of the hospital setting where Paul teaches, both 
in office settings where Paul sometimes prepares classroom materials. Between 
problem-solving attempts, he describes two objectives in his approach to teaching 
mathematics: (a) to make the problems real and accessible for his students and (b) to 
encourage practical approaches to finding quantitative solutions, using algebraic 
manipulation of formulas as supporting tools. According to Paul, this approach reflects 
his own discovery of what works with students, rather than a teaching approach he 
learned as part of his certification. Though his work in the interviews and his reflective 
statements about mathematics contain material about teaching students and about 
how he learned to solve story problems, Paul engages the interview tasks as a problem 
solver rather than as a teacher. 

Richard. Richard is a mathematics instructor in a community college and was 
recommended by an adult (the mother of another subject, not reported in the following 
analyses) who had taken an algebra course with him. He is well known for making 
difficult concepts accessible for students \vho have had few positive experiences in the 
mathematics curriculum and are returning to school for some form of professional 
certification. His reputation is both for putting apprehensive students at ease and for 
giving many of them their first experience of having understood a mathematical idea. 
Richard also writes a popular math puzzle column for a local paper. While Paul 
describes mathematics as a relatively minor part of his work as a teacher, Richard 
describes his work as teaching mathematics and his interests in the subject extend well 
beyond the classroom. 

The interview was in an empty classroom where Richard teaches. He works at the 
board, alternating between explaining his teaching style when the problem is routine 
and a genuine verbal report of problem solving when the problem is not routine. The 
classroom and board provide an interesting mix of public and private settings, on the 
one hand making his work a performance for an audience trying to understand what he 
is doing (myself or his students), but on the other hand making it possible for him to be 
wrong while embedded in surroundings that emphasize his role as an authority. As a 
result, the difference between routine and nonroutine problems takes on a special 
significance, since the uncertain outcome of nonroutine problems introduces risk into 
Richard's public performance. Nonroutine problems, presented by an academic 
observer, are "live" in a way that classroom demonstrations often are not. 

4.2.2 Materials 

Problems used in this and the preceding chapter are drawn from a space of compound 
algebra story problems about motion and work. Problems can be generated by choosing 
different time and output relations to be depicted in the story text. For example, in 
problem MOD of the preceding chapter, distances travelled are collinear and adjacent, 
since the trains share a starting place and travel away from each. Times in this problem 
are the same, since the trains start together and reacli 880 kilometers apart at some 
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Figure 4.1: Algebra story problems constructed within a problem matrix that crosses 
selected output and time relations. 

later time. We can generate other problems in this relational space by choosing 
different output and/or time relations, as in problem MRT where round trip distances 
are the same but travel times are sequential. 

The problems used in this study were generated from the relational structures 
found by crossing same, adjacent, and anchor-overlap relations between distances or 
work outputs with same, sequential, and same finish relations between times. Excluding 
problem structures with identical relations in distance (or output) and time, this gives 
the six off-diagonal problem classes shown as a matrix in Figure 4.1. In each class, 
three problems were constructed, either directional variations of motion (e.g., 
separation or closure at the same time) or a work problem (e.g., working together at 
the same time). The problem labels shown in Figure 4.1 are used to identify problems 
within the chapter, individual problems are reproduced as needed in the text, and the 
full set of problems are shown in Appendix A. 

Since participants were interviewed for different lengths of time (described below), 
each worked on a different subset of the problems shown in Figure 4.1. From the 
resulting transcripts, solution attempts on a set of "reference problems" (MOD, HOS, 
MRT, and WC) provide a basis for comparison with advanced undergraduates, while 
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solution attempts on a ,a,rger set of "comparison problems" (including RACE and 
BAGELS) provide a basis for comparing students and teachers. Celeste was the only 
participant who attempted to solve problems from each structural class. 

4.2.3 Procedure 

Participants were interviewed individually, asked to work through a common series of 
problems, and encouraged to "think out loud" as they worked. As possible, problem 
solving interviews were conducted in the settings where participants usually worked on 
algebra problems, either at home or in the classroom. Interview sessions lasted from one 
and one-half to two hours, and participants were interviewed either once (one teacher), 
twice (one teacher and one student), or four times (one student). Approximately fifteen 
hours of audiotaped interviews were transcribed for further analysis. 

Settings. The work settings in which verbal reports were collected differed from 
the classroom examination format of the written protocol study. During the interviews, 
participants were allowed access to earlier work, and at times the interviewer 
encouraged them to look back over earlier solution attempts, as described in a moment. 
There were no time constraints placed on the solution of individual problems, and 
several of the problems elicited lengthy solution attempts. In contrast, undergraduate 
students in the written protocol study worked through a bound problem booklet, were 
interrupted and told to move to the next problem at 8 minute intervals, and were never 
encouraged to consult earlier problems. Finally, the interpersonal character of the 
verbal protocol sessions, attended by a generally benevolent observer, differed 
dramatically from the anonymous examination format of the written protocol study. 

These differences provide a meaningful contrast between problem-solving as a form 
of assessment in the classroom and problem-solving as a form of work, carried out at 
home (on beds, desks, and kitchen tables) or at a blackboard at the front of a 
classroom. The presence of an interviewer changes the character of this mathematical 
work, which is usually private and can be "cleaned up" later if need be, but 
participants acclimate quickly to this change, even taking the interview as an occasion 
to relieve themselves of their misgivings about formal algebra instruction. 

Interview format. Problem-solving interviews were structured as "revised clinical 
interviews" (Ginsburg, Kossan, Schwartz, and Swanson, 1983) by treating the work 
surface and participants' written notations as concrete problem-solving supports. Thus, 
participants were asked to "talk aloud" while working on problems; they were also able 
to organize their work setting as they liked; and the materials they generated were 
taken up as part of the interview process. 

Several forms of intervention by the interviewer result in protocols that differ from 
traditional studies of verbalization during problem solving (Ericcson and Simon, 1984). 
As is customary, the interviewer prompts the problem solver to "talk" or "tell me what 
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you're thinking" after prolonged silence. However, the interviewer also asks for 
clarification when what the problem solver means by some verbal or written material is 
puzzling. Beyond solving presented problems, participants were also explicitly asked to 
recall earlier problems (generally at the start of the second interview) and were 
periodically prompted to compare solved problems with earlier problems. Thus, 
participants were indirectly alerted to the possible utility of problem comparisons 
during the interview, although explicit requests for problem comparison were generally 
post hoc. 

More direct interventions were used when problem solvers reached an impasse or 
appeared lost. For example, a respondent might state "I really don't knov/' or enter a 
prolonged period of indecision over alternative conceptions of problem constraints. In 
these cases, the interviewer identified possible misconceptions and suggested strategic or 
tactical alternatives. Direct interventions were least frequent with Richard (an algebra 
teacher) but were undertaken with equal frequency across the other participants. 
Sometimes these interventions allowed a problem solver to continue what would likely 
have been an unsuccessful or abandoned solution attempt. Finally, the intervie,ver 
presented short tutorial sessions on relationships between various problem-solving 
representations and problem structure to both groups. These interventions were 
sometimes didactic, but generally led to collaborative representational constructions by 
interviewer and participant. Prompts for explanation, suggestions about alternative 
strategies, and tutorial interactions result in interviev.:s that sometimes resemble a 
tutorial dialogue mor~ than a traditional think-aloud protocol study. Thus, in addition 
to relatively uninterrupted problem-solving sessions, the interviews include significant 
instructional content and discussion of participants' problem solving activities. 

4.2.4 Conventions for presenting transcript material 

Any qualitative analysis of ongoing human activity must structure the observational 
record, risking unwarranted generalizations as ambiguous or seemingly unrelated 
observations are deleted from the interpretation. In some respects, these deletions are a 
routine part of scientific work (Star, 1983) that are required if the complex scope of 
observations will be given any coherent interpretation. This chapter attempts to 
balance these tensions by liberally including temporally contiguous excerpts from 
interview transcripts, together with written protocols taken during the interview. Thus, 
analytic distinctions are not only exemplified in the observational materials presented, 
but that material is presented in enough detail so that a reader can assess whether 
analytic categor.ies are responsible to the ongoing activities of problem solving. One test 
for whether this balance has been achieved is whether or not a reader could construct 
alternative interpretations of the problem-solving setting and subjects' activities. 

Several notational conventions are used in presenting verbal transcripts: ellipses 
( ... ) indicate silent periods of three or more seconds; parenthetical elements note 
descriptive or timing information made during transcription from audiotape; capitalized 
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words show EMPHATIC tone; and bracketed elements [ ... ) indicate omitted material. 
Utterances are numbered within interviews, both for reference in the text and to 
provide relative timing information. Written material shown in figures has been 
redrawn for clarity in reproduction, with care taken to preserve its relative position and 
local topology. 

4.2.5 Analytic framework 

The analysis of verbal and written protocol material in this chapter starts with problem 
MOD, the first problem seen by each participant. This problem provides a common 
reference point for the empirical findings in Chapter 3, and analyses presented here 
follow the same interpretive framework by dividing solution attempts into episodes of 
coherent problem-solving activity. A persistent methodological problem with protocol 
materials is that they are difficult to analyze in ways that allow one to use transcripts 
as more than exemplary materials (Anderson, 1987; Seifert and Norman, 1987). As a 
way of managing verbal and written interview material, the interpretive framework of 
problem-solving episodes acts as a relati\'ely neutral organizational overlay that can 
later serve as an analytic index for qualitative and quantitative comparisons. This is 
siµiilar to Newell and Simon's (1972) use of problem-behavior graphs, but the 
interpretive categories do not depend on any particular theory of problem solving. 

Thus, we can look for replications of the episodic patterns examined in the study of 
competent problem solvers (e.g., model-based recovery from conceptual errors) within a 
much richer sample of problem-solving activities that correlates verbal reports with 
written notations. In addition, we can compare beginning and career algebraists with 
advanced undergraduates to determine if significant activity outside the algebraic 
formalism is used by these participants as well. I call algebra teachers "career 
algebraists" because they are neither professional mathematicians nor institutionally 
trained to be competent mathematical problem solvers in the sense of computer science 
or engineering undergraduates. Instead, they are trained to introduce newcomers to 
algebra in a way that may lead to institutional certification, so in a very particular 
sense they have made algebra (and other areas of mathematics) their career. 

A detailed analysis of solution attempts on problem MOD not only relates to 
hypotheses advanced in the earlier study, but these analyses also generate several new 
theoretical categories that help to explain problem-solving tactics, content, and 
outcomes. These can be broadly previewed as (a) the transparency of written notations 
for supporting inferences about problem structure, (b) the role of these notations in 
maintaining control over quantitative manipulation, and ( c) the personal 
epistemological position of different participants towards various written notations in 
algebraic problem solving. These are taken up with supporting protocol material in the 
next chapter, which sets out an explanatory account of competent quantitative 
inference. 



4.3 Moving in opposite directions 

(MOD) Two trains leave the same station at the same time. They travel in 
opposite directions. One train travels 60 km/h and the other 100 km/h. In 
how many hours will they be 880 km apart? 
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As mentioned above, problem MOD provides a reference point for findings and 
hypotheses presented in the preceding chapter. Each problem-solving interview starts 
with this problem, before any significant interaction between participant and 
interviewer. These solution attempts provide a baseline against which to examine the 
effect of various instructional interventions, either planned or spontaneously undertaken 
in response to the course of events within an individual interview. For example, with 
the beginning student (Celeste), there is evidence for significant learning events over the 
course of several interviews, and these can be understood against the tactics, episodic 
transitions, and written materials of her initial problem-solving activities. 

Qualitative analyses of solution attempts on this problem are shown separately for 
each participant. Each follows the interpretive framework developed earlier, treating 
the solution attempt as a sequence of tactical episodes with content, errors, and 
outcomes that either finish the solution attempt or transition to another episode. 
Embedded in these analyses are references to the outstanding questions that opened 
this chapter, and these are collected in the discussion section that ends this chapter. 

4.3.1 Celeste: Model-based inference as the "weird way 
out." 

Celeste starts the interview with the first of many model-based reasoning episodes, 
using iterative simulation as a "weird way out" of the quantitative dilemma posed by 
uniform rates related under given constraints (S-3, below). Her written protocol for 
problem MOD is shown in Figure 4.2. Celeste's reflective comments about model-based 
iterative simulation are a revealing summary of the tension between mathematical 
activities that are familiar for her but illegitimate by contrast with the precision of 
prescribed ways of making sense of a school math problem. Her tactic is certain, in that 
she can determine an unknown value within her understanding of the problem's 
structure. However, as a public report, the tactic is a "guess" and she knows "there's 
some other way to do it." Although her use of a model of the problem situation is not 
yet well integrated with prescribed quantitative activities, she is generally able to find 
solutions to these problems without introducing algebraic notation. 

S-1 They travel in opposite directions ... OK, if there's one train ... 
they're going different diredions ... so say this one is going 60 and this one's 
going 100 (gestures some distance apart). 

I-1 So they are yeah far apart, on either end? 



S-2 Yeah, is this per hour? 

I-2 Yes, those are kilometers per hour. 

S-3 So, I try to ... I guess I take the weird way out. I would, I guess ... 
add like 100 to that (indicates 100 kph) because that '11 make two hours and 
add 60 to that (indicates 60 kph) to make two hours for that. I know there's 
some other way to do it. 

I-3 So you'd see what happened in two hours? Why don't you write this 
down - don't worry about making mistakes. 

S-4 I'd probably go 120 2 hours ... would be 120 and 200 (writes "2 hrs 
120 200" in a row) ... and then times by 2 again ... and see what that got 
and that would be 240 and 400. So far this is 640 and we need ... more ... 
880. So ... this would be 3 hours and then (writes "3 hrs 2 2" in a row) ... 
I'd say that if you did it again, it'd be too much cause you'd have 800 and 
480 and that's too much (nothing written). So I'd take like the half way out. 

I-4 Half way of what? Or half way between what? 

S-5 Divide this by two (indicates 240) and this by two (indicates 400) ... 
but I don't know where that would get me because you're just going back to 
where you started. 
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Celeste sets up a model-based tactic by gesturally enacting the first hour of travel 
(S-1). Her narrative account of rate as an invariant capacity of trains (i.e., "going 60") 
is converted into a concrete product for the first hour of travel. The first arithmetic 
operation comes after gestural enactment, when she constructs the second state by 
adding concrete rate values to find a cumulative distance apart (S-3). This is an 
interesting transition from a model of train travel as a horizontal movement of her hands 
apart, to a narrated calculation that accumulates distances travelled after 2 hrs. Both 
sets of activities yield problem states in which trains are some distance apart after a 
common interval of time, yet two hours into the train trip Celeste's paper is unmarked. 

At I-3, the interviewer suggests writing down her work, and Celeste begins working 
on her own paper (shown in Figure 4.2). Celeste's initial calculations become a table 
that starts with distances at 2 hrs and then stacks columnar multiplications to generate 
values for successive states (S-4). Common times are recorded at the left margin of a 
row, while distances for each train are organized under columns. She records distances 
for the second hour, but then reports "times by 2 again" as a repetition of the 
calculations taking her between successive states. Celeste uses this doubling operation 
to find that the trains are 640 km·apart after the third hour,1 a distance that should 

1 Figure 4.2 shows "4 
originally wrote "3 hrs" 
factors (i.e., "3 hrs 2 

rs" as a row label, reflecting a later repair by Celeste, who 
directly under "2 hrs" in a. row with common multiplicative 
2"). 
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Figure 4.2: Celeste's solution to problem MOD. 

actually occur after the fourth hour of travel. Considering the next (her fourth) hour, 
she narrates doubling prior distances to get 800 and 480 and remarks "that's too 
much." Attempting to recover, Celeste selects "the half way out" and halves excessive 
distances, only to find that she returns to the prior state and is "going back to where 
you started" (S-5). 

An impasse in model-based iterative simulation. Interpreting these 
materials as a problem-solving episode, Celeste reaches an impasse in model-based 
iterative simulation used as a solution attempt. She has correctly inferred that travel 
times are the same (and equal valued), that adjacent distances can be added together 
to find the total distance between trains, and that the sum of these cumulative 
distances will eventually equal 880 km. Her difficulty, which can be interpreted as an 
error of commission for rate as a relation between time and distance, comes from 
incrementing hours travelled by 1 hr units at successive states while doubling the 
distances trains travel after each hour. 

What does Celeste's conceptual error tell us about her understanding of rate as a 
linear function? From a formal view of the problem, is something wrong with Celeste's 
understanding of train separation as an instance of the mathematical concept of related 
linear functions? To preserve linearity under composition of these functions, any 
transformation in one dimension (i.e., multiplying distances by two) must have an 
equivalent transformation in the other dimension (i.e., multiplying times by two), a 
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principle violated by Celeste's doubling transition between successive states. She may 
not yet correctly integrate related dimensions in her concrete conception of a linear 
rate, perhaps even omitting rate as a relational constraint across dimensions. Although 
she almost certainly is not thinking of train travel in this way, a literal reading of her 
calculations might even suggest that she is simulating successive states in a model of 
nonlinear acceleration (e.g., D =Rx 2T-1 ). 

Alternately, Celeste's difficulties may not lie solely within the mathematical 
concepts implicit in the problem's structure. The contested row in her table of state 
calculations is intended to be about the third hour of travel, perhaps independent of 
formal principles of rate as a linear function. Celeste is clearly using some relation 
across dimensions, because calculations are subordinate to and driven by her intention 
to construct successive states in the model. Moving from gestures that enact the 
model's state at one hour to a written record of the second hour, Celeste replaces a 
correct constructive activity (adding successive concrete rate values) with an incorrect 
inference about the quantitative relation between successive states (doubling distances 
from the prior state). Arithmetic operations that are originally embedded in a correct 
conception of problem structure implicitly diverge from what Celeste understands the 
calculations to be about. 

The structure of the table as an external record of simulated states may partly 
explain her use of doubling to construct successive states. Noticing that train distances 
double in value from the first to second hours, Celeste constructs the third hour of 
travel by doubling distances at the second hour. Vhitten as a table, prior calculations 
act as an external template for subsequent state constructions and allow Celeste to 
flexibly extend the written record of her simulation down the page. However, the two 
dimensional structure of rows and columns in her table provides little explicit feedback 
about quantitative operations or their results. State construction clearly motivates 
Celeste's calculations and provides meaningful points of reference for derived quantities 
(e.g., Celeste never adds times and distances), but her control over these calculations 
relies on a notation that does little more than record prior results. Interpreting 
calculation and its written record as tools for organizing simulated states, Celeste has 
made an unfortunate choice of tools in this solution attempt. 

State-driven repair and solution within the model. Treating Celeste's 
complaint (S-5) as a genuine impasse, the interviewer recommends that she reconsider 
the third hour of travel and prompts her to explain the values she finds for time elapsed 
and distance travelled in this state (not shown). After considering how far trains travel 
in a single hour, Celeste detects the doubling error and replaces 3 hrs with 4 hrs as a 
row label in her table of state calculations. She also manages to synchronize time and 
distance in the iterative simulation, and when asked to recount the first hour of travel 
(I-13, below), she spontaneously resumes state simulation at the fifth hour (S-15), 
constructs another state at 5 and 1/2 hours, and finds the solution. Celeste's change 
from columnar multiplication at 4 hours to columnar addition at 5 hours shows that 
she has repaired her earlier error of doubling successive state distances. 



I-13 Just to start it off, show me what would happen in 1 hour. 

S-13 In 1 hour it'd be 120 ... no, no, wait... it'd be 60. 

I-14 One train would go 60 ... 

S-14 And the other 100. And then in another hour ... yeh. 

I-15 It would be another 60 and another 100. And that's how you get 
120 and 200. 

S-15 Ok, ok, so you'd go plus 60 and that'd be 500 and 300 and that's 
800. 

I-16 How many hours is that? 

S-16 5. Yeh, and then ... wouldn't it have to be like, 5 1/2 hours or 
something? Because if you wanted to do this ( 5 hour row) by half or 
something ... these two by half? 

I-17 So in a half an hour, how far would the 60 mph train go? 

S-17 That'd be 30 and ... um 50. Hey! Then I got it! Because you add 
330 and 550 and you ... and that's 880. Yeh. 
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A retrospective account of problem structure. Celeste's table organizes 
states as successive rows with like dimensional quantities arranged under columns. 
Paradoxically, the table shows very little about relations between states that would help 
to discover her conceptual error, but at the same time the table provides a natural 
structure for controlling the simulation by extending new rows down the page. Since 
the table plays such a mixed role in her performance, the interviewer asks Celeste to 
draw a picture of what is going on in the problem (I-21 ). She draws a literal scene 
directly below her tabular record of states in Figure 4.2. 

I-21 Could you draw a picture of this thing? 

S-21 Yeh, so here's the train ... with little wheels and stuff .. and he's 
going this way... 60 here... and this guy is going 100 and you wanna find 
out ... If you switched the problem around and you say, how far will it go in 
5 1/2 hours, then you could like go backwards. 

I-22 Backwards, you mean you could solve it backwards? 

S-22 Yeh, you could do it ... You know that this is 60 and you say that 
in one hour ... and in two hours it'd be 120. I guess it would be easier if you 
said that ... in 5 hours because you know how much it is in one hour. So if 
you just go 1 and 1 and 2 and 2 and 1/2, then that's five. 



I-23 Do you often solve problems in this way? (she nods) You do? 

S-23 Yeh, sometimes I try to say ... It used to be hard for me to picture 
that in my head ... a train actually doing that... it'd just confuse me because 
it doesn't seem like numbers and trains go together. But if they all have 
something in common then that's a lot easier for me to do. 

I-24 So, what do they have in common here? 

S-24 They're going in opposite directions for one thing. And one is 
going faster than the other, but they both have kilometer per hour. So you 
know that in some time both of them are going to be this far apart from 
each other._ So they're gonna be like ... just like moving your arms out .. and 
they're gonna be a certain distance apart from each other and that's gotta 
be something that has to do ... that can be evenly into that. 

I-25 Into what? 

S-25 Into 880, both of them because they have to be some distance 
apart. This one goes 60 kilometers per hour and this one goes 100 
kilometers per hour, and then eventually they're gonna get there somehow. 
And since you know the hour and the distance that they need to be, you 
can check your answer and everything. 
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Although Celeste's diagram shows a very literal account of train travel without 
significant rendering of state information or boundary constraints on train travel, .she 
nevertheless gives an insightful verbal summary of problem structure. 

• At S-21 Celeste changes the format of the problem by giving time (5 1/2 hrs) and 
working "backwards" through the rate to find how far apart the trains would end 
up. At S-22 she appears to scale the rate to 5 hrs, saying it "would be easier" 
than an iterative simulation. 

• At S-23 Celeste remarks on the difficulty of learning to think about situations 
and quantities as having "something in common." In this sense, algebra story 
problems are a disruption in more prevalent school-math activities like 
performing calculations or recalling formulas. 

• At S-24 what makes "numbers and trains go together" is a justification for 
various quantitative relations in the problem, expressed both verbally and 
gesturally.· These provide a retrospective justification for various quantitative 
inferences that Celeste made during the solution attempt. 

With a solution in hand, Celeste gives clear evidence of understanding the multiplicative 
relation between distance, time, and rate by exchanging given and unknown values in 
the problem statement. Her doubling error during iter;ative construction of states in a 
model of train separation, initially hidden in a two dimensional table, cannot be 
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explained by a lack of knowledge about this multiplicative relation or by an 
understanding of train travel as being accelerated. Instead, her doubling error 
originates at the transition between gestural and written state simulation, leads to an 
impasse between halving and doubling as symmetrical calculations, and is detected and 
repaired during a prompted examination of travel during a single state. 

The anatomy of model-based state simulation. Looking back to outstanding 
issues that motivate these verbal interviews, the first solution attempt collected during 
this study both corroborates earlier descriptions of the strategic role of model tactics 
and presents new evidence for the internal structure and content of these episodes. The 
origin of Celeste's solution attempt is a state construction that transforms rate into a 
concrete product. The narrative, gestural, or written activities producing subsequent 
states literally have a structure in space and in time (i.e., moving hands apart, writing 
a next row, making another calculation). These activities partly correspond to the 
dimensional structure of quantities in the problem by serially accumulating both 
distances and times, although this correspondence is critically dependent upon the 
notation that Celeste chooses - a tabular arrangement of written calculations. 

Relations between problem, activity, and setting - events in the "story" presented 
by the problem statement, quantities given in the statement, activities in the 
spatio-temporal setting of the interview, and changes to that setting as written 
notations are introduced - are all integral to a complex human performance of 
"model-based reasoning." After limited intervention, the tactic is successful without 
algebraic notation, and this reflects a personal "way out" of a dilemma that Celeste 
experiences at several levels: managing residual quantities, finding a precise solution to 
this problem, and making public a "weird ·way" of dealing with school algebra. The 
qualitative analysis shows that (a) model tactics do occur among newcomers to algebra 
and that (b) these tactics have a characteristic structure, content, and meaning for 
their users. 

4.3.2 Karen: Working between diagrams and recalled 
formulas 

In contrast with Celeste's relatively exclusive use of model tactics, Karen's solution 
attempt on problem MOD moves between diverse notations and tactics in an attempt 
to construct a suitable algebraic expression. At S-2 (below), Karen's reading of the 
problem text is interleaved with construction of a diagram, shown at the top of her 
written protocol in Figure 4.3. Opposite-directed segments emanate from a common 
origin ("we've got the station"), drawn as a vertical line segment. These segments are 
labelled with quantities that are narrated as rates ("he's going 60") and letters that 
differentiate trains. 

Model-based evaluation of an algebraic conjecture. Having constructed the 
diagram, Karen reports that her annotation serves primarily as an occasion for recalling 
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algebraic formulas that might be suitable for this problem (i.e., "God, I don't remember 
formulas or anything for this."). At S-3, however, she recalls the three term 
multiplicative relation between time and distance and considers trying to find the time 
required for a single train to travel the given distance (i.e., 880/60 = T). Before writing 
or manipulating an expression, Karen rejects this algebraic conjecture by comparison 
with her earlier diagram, which she updates with boundaries drawn as large parens to 
designate the given distance apart (l.e., "Oh, but they have to be 880 apart, like that"). 
This interpretation of Karen's activities is corroborated by her retrospective comments 
at S-4 (i.e., " ... that was wrong because they both have to be this much apart, 880 
apart."). 

S-2 Two trains leave the station. So we've got the station. They travel 
in opposite directions. Say train A goes that direction (draws right directed 
segment) and he's going 60 (labels 60 km). B goes that direction ... 
opposite, yeh (draws left directed segment). That's train B (labels 100 km). 
How many hours ... will they be 880 ... God, I don't remember formulas or 
anything for this. 

I-2 You think there's a formula that would help? 

S-3 Yeh, I'm trying to think of that. I don't remember it, for setting 
that up. 60 kilometers in an hour ... 880 kilometers ... Oh, but they both 
have to be 880 apart, like that (draws large parens and labels 880). Oh, 
Rogers! (both laugh) 

I-3 One formula that might help is distance equals rate times time. Did 
you already know that? 

S-4 Yeh, I'm trying to figure out how to plug that into."° what's 
stumping me is that... first I was thinking to take the 880 and figure out how 
long it would take train A to go that distance. But that was wrong because 
they both have to be this much apart (indicates large parens), 880 apart. 

I-4 Ok. 

Interpreted as a series of problem-solving episodes, this excerpt shows an 
interesting interaction between annotation, algebra, and model tactics. Karen's initial 
annotation uses a diagram to integrate event boundaries with given quantities from the 
problem statement, but she does not introduce significant structural constraints. A 
conceptual error of omission (the faster train's trip) is introduced when she pursues a 
recalled formula relating distance, rate, and time. This algebraic approach is rejected 
when Karen returns to her earlier diagram and extends its structure to render the final 
state in train separation, converting a relatively weak annotation into a diagrammatic 
model that shows the part/whole composition of distances as an important structural 
constraint. 
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Figure 4.3: Karen's solution to problem MOD. 
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Doing the dirt: filling holes and making expressions. Karen has yet to 
assemble an effective set of constraints on the unknown time, but she has recovered 
from a conceptual error and constructed or recalled two important constraints: 
individual distances as parts of a given total and rate as a relation between time and 
distance. She is "stumped" (S-4) by being unable to recall a formula that integrates 
composite distances or to "plug" the problem into the simple multiplicative relation 
over distance, rate, and time that she has recalled. At S-5 she transitions to another 
written notation, a "dirt table" organizing quantitative roles (middle left in Figure 4.3). 
As conventionally presented in algebra texts, the table provides an organized array into 
which given and unknown quantities ca.n be placed. Within the interpretive framework 
of the preceding chapter, this excerpt could be interpreted as the beginning of an 
algebraic episode, since Karen is constructing and instantiating equations around the 
role table. Alternately, her recall and use of the role table might be interpreted as an 
instance of a new tactical category, using a specialized notation for constructing 
algebraic expressions. 

S-5 Ok, well let me set up my little dirt table ... I call it dirt ... R T 
(draws a 2 by 3 table, labels d, r, t for columns). So we've got train A and 



train B (labels A and B for rows). Ok, the rate is ... for train A is 60. Is that 
right? Yeh, rate ... so I'm trying to figure out the time .... The distance ... is 
880 for both of them. Well, yeh, its A plus B equals 880. That's right ... 
well, yeh. (writes 880 in each cell under d) That seems wrong to put 880 in 
there, though. 

I-5 \Vhere would you put it? 

S-6 In the distance box for either of those. This to me seems wrong. 
Ok, let me see ... One thing is A plus B is going to equal 880 (writes A + B 
= 880 below table). So ... 

I-6 What you thinking? 

S-7 \Vell, this is screwing me up. It may be right, but I'm feeling that 
its wrong to plug that distance in there. So, maybe there are 2 equations ... 
so we can put at here (writes t in time cells for A and B). 60 t equals 100 
(writes 60t = lOOt) ... no it doesn't equal 880, it equals part of 880. Oh, oh, 
its coming to me! Oh, good. 60 t equals ... no that's not right. That rate ... 
that rate PLUS that rate ... 60 t ... plus lOOt equals 880 (writes 60t + lOOt 
= 880). Is that right? I'm getting away from that formula, though. Rate 
times time... (long pause) 
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The "dirt" table directs Karen's attention to typed quantities for each train, but as 
a notational device leaves the relations between table quantities largely implicit by 
giving no evidence for whether or how various table cells might be quantitatively 
combined. After correctly inserting rates in rows A and B, she narrates a choice 
between treating distances as being equal ("880 for both of them") or as an additive 
composition ("its A plus B equals 880"). Karen incorrectly inserts 880 into distance 
cells for each train (S-5), producing a table that is at odds with her earlier diagram. 
Puzzled over this inconsistency, Karen correctly inserts a common variable in each time 
cell of the table, but she then generates an incorrect algebraic expression equating train 
distances (60t = lOOt). At S-7, she notes that each train travels a part of the combined 
distance, a structural constraint used in her earlier diagram to reject an incorrect 
quantitative conjecture (S-4) and generates a correct algebraic expression (60t + lOOt 
= 880). However, Karen worries that this sum of products is more complex than the 
three term relation she has recalled between distance and time ("I'm getting away from 
that formula, though."). 

Reminded of using multiple equations in her algebra course, Karen abandons the 
correct algebraic expression and begins several unsuccessful attempts to find two 
equations using only the three term relation between distance, rate, and time. After 
several minutes of algebraic manipulation (not shown), she reports that these activities 
lead back to an expression she previously rejected, 60t = lOOt. The interviewer 
intervenes by asking about the algebraic expression she abandoned earlier, 60t + lOOt 
= 880. . 



I-19 So what else do you need other than this equation? (indicates 60t 
+ lOOt = 880) 

S-20 (long pause) Oh! I need ... Ok, I'm thinking I need something to 
go in here other than the t, to be able to times it by that to get the ... Well? 
Ahh ... 

I-20 What do you know about their times? 

S-21 Well, let's see. He travels 60 kilometers per hour. .. (long pause) 
Oh! \Vell time is 1 (writes 1 in time cell for train A) ... No. 

I-21 So in one hour ... 

S-22 In one hour, he goes 60 kilometers, and in one hour he goes 100 
kilometers. So then that would just be 60 plus 100, and that's not 880 
(laughs). \Vait a minute, 60 times 100, no that's not it either. I'm confused. 

I-22 In one hour, what would happen? 

S-23 \Vell, yeh. He'd have gone 60 and he'd have gone ... that far in one 
hour (extends segment for B and draws a composite brace below A and B). 
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Karen again fails to recognize that the complex sum of products can be manipulated to 
determine a value for the unknown time. Asked to clarify the relation between times, 
she narrates the rate ( "60 kilometers per hour") and shifts from thinking about this 
quantity as an invariant property of trains to a concrete description of activity, as 
evident in her statement "Well time is 1" (S-21). Karen also records this value in the 
upper time cell of her table, signalling a dramatic change in her view of quantities in 
this problem. 

From equations to states. Asked to explain this inference (I-21), Karen searches 
for an arithmetic operation that relates 60, 100, and 880 and then concludes that the 
trains will be 160 km apart after 1 hr. This state construction leads her to return to her 
earlier diagram, redrawing the segment for the faster train (B) so it is longer than the 
slower train and recording the sum of partial distances with-a brace directly underneath 
the original directed segments (top of Figure 4.3). In contrast with much of her 
preceding algebraic activity, Karen again has a set of familiar constraints (literally) in 
hand: times are the same, distances are added together, and this sum of distances must 
eventually equal 880 km. When the interviewer restates the required unknown (not 
shown), Karen realizes that there is a "weird way" out of her algebraic impasse, much 
as in Celeste's solution to this problem. 

S-26 Allright, so in one hour, we've got 160 kilometers (writes 1 = 160). 
Well, I could just keep doubling it (laughs). That seems like a weird way to 
do it. Or not doubling, but... 



I-26 \\That would happen if you did that? 

S-27 Well, then in 2 hours, right (writes 2 = 320) ... Is that how it would 
work? Can I use this (calculator)? 

I-27 Sure. 

S-28 Is that right, though, to do it times 2. So in 2 hours they've gone 
320. In 3 hours ... but I'm wondering if I'm keeping the same ... 160 times 3 
hours ... 480. 

I-28 \\That are you worried about, with that? 

S-29 Oh, no. I'm just wondering if I'm plugging the right thing in. If I 
keep ... 

I-29 If after each hour you should plug in 160? 

S-30 Yeh, well its 160, and then ... yeh, 160 keeps ... right? Yeh. 4 
times ... is 640 ... I'll do this til I hit 880! (laughs) If I can't figure out the 
damn formula ... Ok, so 160 times 5 ... I just realized what I could do. Ok, so 
after 5 hours they go 800 miles ... kilometers. And you've got 80 more to 
worry about. Now what? Um .. . 

[ ... exchange about efficient use of calculator ... ] 

I-30 So you've got 80 miles to go ... 

S-31 Ok, and he can go ... ok, so ... yeh, which is half of 160, so its just 
another half an hour. No, wait ... That doesn't make sense. What am I 
thinking? Yeh, well in a half an hour ... Well, I'm thinking half of 160, which 
is what they do in an hour ... they go together in 1 hour. Um ... in half an 
hour they do 80 kilometers, 80 and 80 is 160. Ok, so ... 5 hours plus a half 
would give me 880. 

I-31 Ok. 

S-32 So in 5 and 1/2 hours, it would take them 5 and 1/2 hours to 
reach 880 kilometers apart. Now why can't I figure out how to put that into 
the formula? Or the damn table? That's weird. (writes 5 1/2 = 880) 
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After settling on "how it would work," Karen iteratively constructs states for successive 
hours of travel, continuing until she is within 80 kilometers of the given distance apart 
(S-30). Noticing that this is half of the combined distance per hour, she chooses a half 
hour to complete the simulation by finding a value for the unknown time. Ironically, 
despite having just enacted a model of the same complex expression she did not 
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recognize as determining the unknown time ( 60t + 1 OOt = 880), she does not see how 
her table of state values relates to either the formula she has recalled ( d = r x t) or the 
role table that she has constructed with some difficulty (S-32). 

Abandoning interleaved annotations ("dirt table") and algebraic tactics, Karen 
succeeds in a solution attempt using model-based iterative simulation. Within 
structural constraints that travel times are the same and distances are combined to give 
880 km, she unpacks the joint multiplicative relation between distances, rates, and time 
into a series of state calculations, each carefully accountable to her sense of motion in 
opposite directions. Resulting values are recorded in a table (lower left in Figure 4.3) 
that organizes common times in the left column, the composite distance apart in the 
right column, and the functional relation between time and distance as an arithmetic 
sign for equality (i.e., "="). Under conventional arithmetic interpretation, her series of 
state expressions (i.e., "l = 160" through "5 1/2 = 880") would be nonsensical. Thus, 
table entries are dearly not intended as arithmetic relations between quantities. 
Instead, Karen reads the final row as a state in a model of train separation: "it would 
take them 5 and 1/2 hours to reach 880 kilometers apart" (S-32). 

Model tactics in action. The summary comments for Celeste are confirmed by a 
qualitative analysis of Karen's solution attempt: model tactics occur among newcomers, 
model tactics have a written and active structure that corresponds in important ways 
with the dimensional structure of relafr, i linear functions, and these tactics have a 
difficult personal significance for newco: ·:rs in the face of prescribed school 
mathematics (e.g., a "weird way to do it .. at S-26). Karen's use of model tactics also 
corroborates hypotheses concerning their role in problem solving: 

• Generating quantitative constraints - e.g., Karen decides to add concrete rates 
while updating her diagram to render distances after 1 hour as adjacent segments. 

• Determining unknown values - e.g., Karen resolves her uncertainty over various 
algebraic expressions by finding a solution using iterative simulation. 

• Evaluating conjectured constraints - e.g., Karen rejects an incorrect algebraic 
relation by comparison with an extended version of her initial diagram. 

4.3.3 Paul: Old ways of getting to the new math 

On his first problem (MOD), Paul moves quickly from a diagram showing the first hour 
of train travel into a solution attempt using a whole/part ratio (S-2 and Figure 4.4). 

S-2 Two trains leave ... they travel in opposite ... one train travels 60, 
one travels 100 ... In how many hours will they be ... Ok, you start off from 
one starting spot (marks an X at origin of a line) and then you ... this is one 
hour's, this is 100 (draws two collinear segments, labeled 100 and 60) ... so 
they go 160 kilometers in 1 hour (writes 160 kmi below). How far will they 



be in ... 160 into 880 (written division), what's that? Divisione ... \Vhere's 
the calculator? So you do the new math ... 

1-3 (both laugh) 

S-3 I don't waste my time with that stuff. New math ... 5.5 ... hours 
between ... to be that distance apart (circles 880 in written division). 
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Paul's diagram uses collinear, adjacent segments to show the progress of trains after 
one hour, and these segments are labelled with values that denote scalar quantities for 
distance travelled. On the basis of this partial simulation, he infers that train distances 
can be combined and constructs a concrete association between distance apart and a 
common interval of time ("they go 160 kilometers in 1 hour"). 

Using this composite scene, Paul first considers "how far will they be in ... " some 
unstated amount of time. Though his diagram does not show any relation between the 
distance apart after one hour and the given constraint on total distance apart, he 
immediately transitions into a ratio tactic that partitions the given distance apart (880 
km) into 160 km components for each hour of travel. ·without explicitly introducing 
algebraic notation, he constructs a simple arithmetic calculation ("Divisione") that 
extends from a label on his diagram and yields a precise value for the required time. 
\Vith this value in hand (S-3), he attempts to describe its place in the diagrammatic 
model as ''hours between," but then explains the value by referring to "that distance 
apart" and circles 880 in his written notation for division. Ironically, there is nothing in 
his earlier diagram that can carry the result of his ratio solution. 

\Vhile Paul transitions smoothly between partial simulation using a collinear 
segment diagram and a simple ratio calculation, his diagram is interesting in what it 
leaves out of the problem model: any explicit notation for the temporal dimension, any 
global constraint on the given distance apart (880 km), and any explicit notation for 
rate as a diagrammatic convention (e.g., labelling segments with intensive quantities). 
Asked to explain what his diagram is showing (I-4), Paul recapitulates the inference 
about combined distance by narrating interdependent constraints between places that 
bound segments, the quantities that these segments carry as labels, and the 
quantitative relation (addition) that the configuration of labelled segments implies 
(S-4). Again, a. common travel time for trains is carried implicitly in his verbal report, 
but his explanation shows how a state, depicted as a spatial scene in the diagram, 
sanctions an important quantitative inference. 

I-4 Ok, tell me what this diagram is showing. 

S-4 I just start off with the origin, and then one goes 60 and one goes 
100, so its one hour's time. So ... they go 160 ... the distance from here to 
here is 60, and add to that ... its 160. So its that distance. It will be 880 
apart ... 
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Figure 4.4: Paul's solution to problem MOD. 
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State simulation as an explanation for arithmetic operations. Given the 
explicit content of the diagram and Paul's explanation of its use, it would be interesting 
to see how he might complete the diagram, since he uses a. single calculation to find a 
precise value for the unknown time. Accordingly, the interviewer asks Paul to show 
what the diagram would look like after 5 and 1/2 hrs of travel (I-5). 

I-5 So after 5 and 1/2 hours of doing that ... Show me what it would 
look like after 5 and 1/2 hours. One of the things I'm interested in is how 
people use diagrams. 

S-5 Ok well this is essentially 1 hour, 2 3 4 5 (draws equal length 
segments for each) ... so 5 and 1/2. 

I-6 Ok, they go on out. 

S-6 H that's right, I'd have to (checks number of segments) ... half an 
hour. 

Paul first reiterates that the existing scene depicts "essentially 1 hour," and then 
extends the initial diagram by drawing and la.belling successive states constructed at 1 
hr intervals. Since the interviewer's request is relatively open-ended, Paul's choice to 
conduct what a.mounts to an iterative simulation suggests (a.) that his conception of 
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Figure 4.5: Richard's solution to problem MOD. 
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The diagram mixes potentially incompatible notation schPmPs, making its proper 
reading as an integrated collection of constraints problematic. Adjacent, 
opposite-directed segments terminate at the boundaries of an enclosing brace that is 
labelled with a distance value (880 km). The spatial configuration of the segments, 
combined with the brace label, suggests a composite relation between distances. 
However, labels on the enclosed segments include two additional notations that 
associate rates with particular trains (e.g., 100 km/hr for train B). Thus, in a single 
diagram, Richard uses three different notations to label diagram components: one 
dimensional quantities for distances apart in a retrospective view of train separation, 
two rumensiona.l quantities for rates associated with train paths, and symbolic 
identifiers for trains associated with these paths. 

To give the spatial configuration of segments and their labels a consistent 
interpretation, a reader of the diagram must sort through these different notational 
systems. Richard moves between these alternative interpretive readings smoothly, 
avoiding potential confusions that might disrupt a student trying to make sense of or 
repeat his performance. For example, upper case letters used as identifying labels for 



trains might easily be confused with algebraic variables for the value of distances 
travelled, perhaps encouraging the modifier /nominal shift reported as a frequent 
difficulty among newcomers to the algebraic formalism (Sims-Knight and Kaput, 1983). 

"Dirt" tables taught. Having identified a collection of structural constraints on 
given and required quantities, Richard shifts to a "standard technique" for organizing 
the construction of algebraic expressions: a "box" or "window" divided into rows and 
columns. This notational device is the instructional version of Karen's "dirt table,"' 
used to organize and record inferences about relations between quantitative roles in the 
problem. 

S-4 Otherwise you don't know what you're after. And the standard 
technique that I think most of us teach around here, is for distance rate 
time problems we ... take a box, sort of a window, and divide it into three 
columns with as many rows as there are trips that are taking place (draws 
role table below diagram). 

I-4 OK. 

S-5 And there are two trips taking place, there's one ... I'll call it the 
60 ... well I think I'll call this vehicle A and this will be vehicle B over here 
( dra\vs and labels rows). I forgot what they were, were they trains? 

I-5 Yeh. 

S-6 And then the columns are labelled rate, time, and distance (labels 
them). I'm not doing this now as though you were a student of mine, 
because I would be going much more slowly. 

I-6 Sure, OK. 

As in the episodic analysis of Karen's solution attempt, the table can be thought of as 
an annotational tactic, perhaps a further specialization of the more general tactical 
category that includes diagrams and notes about various problem elements. The 
strategic purpose of this episode can also be interpreted as comprehending the 
problem's structure, ultimately to generate algebraic expressions between given, 
inferred, and required quantities. By the end of the episode (shown below), Richard 
succeeds in identifying quantitative relationships that will support a single algebraic 
expression, and this signals transition into an algebraic episode. 

While constructing this role table, Richard narrates general rules for constructing 
tables on problems that include multiple events, each involving related linear rates of 
travel (S-4). Rows record quantities for each event, while columns are labelled to 
identify types of quantities (i.e., "rate, time, and distance"' at S-5). This construction 
appears to be a routine pedagogical activity for Richard, evidenced by his losing track 
of what types of vehicles were mentioned in the original problem text. Thus, at least as 
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a public performance, Richard's solution resembles traditional accounts of competence 
in this task domain: retrieving, instantiating, and applying practiced problem-solving 
schemata (e.g., Hinsley et al., 1977). A final note of interest as Richard sets up the table 
is his deliberation over whether to use rate values or alphabetic symbols as labels for 
rows (S-5). As with his labels for diagram components, either choice treats the label's 
content as a property or modifier by referring to events given in the problem text. 

Organizing versus justifying quantitative inferences. At S-7, Richard sets 
out to fill in empty cells in the table, starting with "the givens" and then considering 
how to record a common time, implicit in his earlier textual annotation to the diagram. 
The role table effectively promotes individual quantities and their roles in the event 
structure of the problem, sorting given or inferred quantities into their respective 
dimensional types (i.e., rate, time, or distance) and story events (i.e., A and B trains). 
However, the role table provides no further constraints on what should fill its cells. 
Much as in Celeste's state table and Karen's role table, the two dimensional spatial 
array helps to organize structural inferences but does little to generate or sanction these 
inferences. For example, the multiplicative relation between distance, rate, and time is 
introduced later (S-9) under the assumption that students will have memorized this 
formula and be able to recall it as part of a table-building routine. 

S-7 The rate is given ... let me write in all the givens ... the rate is 60 
kilometers per hour (fills cell) and for the other, train B is a hundred (fills 
cell). For the time ... well, one thing that we don't know is the time. But 
what we ... this is the part they have so much trouble grasping, is that the 
time that it takes for each train to reach the point at which the total 
distance between them is 880 is the same for both trains. I don't know why 
I'm telling you this, because you know that (laughs). 

1-7 No, go ahead. 

S-8 If they leave at the same time, which I believe the problem said, 
and then at some specific time later they're 880 kilometers, then they must 
have travelled for the same amount of time. If you put two people on the 
train and started their watches at the same time the train left, then they're 
watches would say the same thing when you took the measurement between 
the trains. 

I-8 OK. 

S-9 So we'll call that time, whatever it is, we'll call it t, but its the 
same for both, that's why the letter is the same in both boxes (fills cells). 
And the distance travelled ... OH! We need to understand the distance 
equals rate times time formula, which we would have typically previously 
studied (writes "d = rt" to right of diagram). 

I-9 OK. 



S-10 This may be a cop out, probably requires explanation, but the 
distance would be the rate, 60, times the time, t. In the second box it would 
be the rate, 100, times the time, t. 

I-10 Uh, huh. 
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As he fills in the role table, Richard carefully justifies his choices for cell contents 
using model-based reasoning tactics. Consistent with the hypothesis that model tactics 
can generate or sanction quantitative inferences, Richard switches to a verbal account 
of places and intervals in a time dimension to justify "the part they (i.e., students) have 
so much trouble grasping" (S-7). At S-8, he explains the inference about common 
travel times as an interval bounded by common starting and finishing times, verbally 
constructing a model of time that is very similar to his earlier segment model for 
distance. This model of time is further elaborated as a scenario in which travellers on 
different trains synchronize their watches to measure a common travel time. Neither 
explanation uses an explicit written notation to show the time relation. Instead, as in 
his supporting scenario, time is literally carried by movement in an explicitly rendered 
distance dimension. Thus, his public explanation for filling role table cells appeals to 
inferences sanctioned outside the role table or algebraic formalism, narrated as a trip 
through places in a narrative model of train separation. 

Reading tables as algebraic structures. Richard offers a final model-based 
explanation for inferring a part-whole relation that combines distance products (S-11), 
returning to his earlier diagram and reading its spatial configuration as an additive 
relation over distances. This relation forms the basis for constructing an algebraic 
expression that integrates distance cells in the role table, written in the conventional 
symbolic notation directly below the table. Under an episodic interpretation, Richard 
interleaves role table annotation with explanatory model-based reasoning before 
constructing a single expression that initiates an episode of algebraic reasoning. 

S-11 Then, we can say, from the drawing, we can tell that when we add 
the two separate distances together, we get the total distance of 880 
kilometers. So 60t plus lOOt... equals 880. Solving this, and I don't think 
you 're after the methods, the algorithms for solving simple linear equations, 
so I won't take time to do that. Butt equals 880 divided by 160 or ... oh, 
about just over 5. And this is something that's good too, is to estimate an 
answer before you go to the calculator so that you know you 're in the right 
ballpark. 

I-11 Yeh. 

S-12 So it comes out to 5 and one half (using calculator). And to label 
the final answer and then to go back and see whether or not it makes any 
sense. If the first train, by that I mean the 60 kilometer per hour train, goes 
for ... just roughly for 5 hours, let's say, then it will have gone ... 60 times 5 



or about 300 kilometers, just over that. The other train, going at 100 for 5 
hours, would go 500 kilometers, just over that. The sum of those two, 300 
and 500 makes 800, just over that IS the distance that was given, so I would 
say the answer is probably right. 
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The resulting equation is manipulated to give a division operation ( "880 divided by 
60" at S-11), and llichard estimates a value for the unknown time before using a 
calculator to find the precise value. At S-12, he "goes back" in an explicit verification 
episode, estimating distances travelled by each train "roughly for 5 hours" and deciding 
that his precise answer is "probably right." Rather than simply plugging this answer 
into an earlier equation, Richard's verification carefully reiterates what various 
algebraic terms refer to in the problem situation, identifying quantities by their type 
and role in simultaneous travelling events. 

Models as idealized problem-solving activity. Even during a public teaching 
performance, model tactics play a significant role in Richard's solution attempt. 
Combined with Paul's solution on problem l\10D, model tactics appear prevalent across 
the competence continuum these analyses were designed to sample: algebra students, 
teachers, and advanced undergraduates all use model tactics in significant ways. Unlike 
newcomers, teachers tend to use these tactics to generate or evaluate quantitative 
inferences, but they do not generally find solutions using model tactics. In contrast 
with Paul's relatively open use of model tactics while solving the presented problem, 
Richard demonstrates similar tactics as something "they" (i.e., his students) might use. 
This also contrasts with students' views of model tactics as a "weird way out" of the 
demand for precision in the face of uncertain algebraic notations. Although Richard's 
personal position towards model tactics is less apparent. 2 as a relatively elaborate, his 
performance resembles what others have reported to be a common tutoring strategy: 
modelling the problem-solving activities of an "idealized novice" (Fox and Karen, 1988). 

4.4 Comparison with advanced undergraduates 

While a detailed qualitative analysis of a single problem is instructive, the verbal 
interviews provide a mass of data that can be analyzed quantitatively as well, similar to 
the quantitative analyses of episodic structure undertaken with written protocols 
reported in Chapter 3. This section uses similar quantitative analyses to contrast the 
solution attempts of algebra students, algebra teachers, and advanced undergraduates 
on a comparable set of algebra story problems. 

2Richard solves problem MOD a second time, showing "what it is that I would have 
done" (S-14) In his personal solution, he imagines sitting in one train and looking in "my 
rear view mirror" at the other train, speeding away at 160 kph. Again, model tactics 
play a generative role in quantitative inference. 
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Problems MOD, HOS, MRT, and \VC provide a reference point for comparing 
algebra students and teachers with mathematically sophisticated undergraduates 
studied in the previous chapter. These comparisons follow the earlier analyses of (a) the 
prevalence of interpretive categories within solution attempts, (b) relations between 
outcome, tactical content, and errors in final episodes, and ( c) the tactical course of 
making and pursuing quantitative inferences. Problem HOS has a quantitative 
structure that is isomorphic to problem WT, which was used in the written protocol 
study. However, its content (hoses filling a pool) was changed to be more accessible 
than the abstract sense of "a job" in problem \VT. Hence, these problems are not 
strictly comparable. Also, when comparing algebra students and teachers, analyses can 
be extended across another structural class of problems by including RACE and 
BAGELS (see Figure 4.1). 

4.4.1 Interpretation of verbal transcripts 

Verbal transcripts and written material are partitioned into problem-solving 
episodes, much as in the analysis of written protocols. An analysis of these more 
detailed solution attempts provides a useful framework for comparing the relative 
prevalence and significance of problem-solving tactics between students, teachers, and 
advanced undergraduates. However, since the interview format allows significant 
interventions on the p;art of the interviewer, the interpretive framework requires several 
extensions. 

Interviewer interventions. First, a distinction can be made between episodes 
that participants undertake spontaneously and episodes that they undertake in 
response to an intervention. As mentioned in the Method section, interventions take 
several forms in these interviews: (a) prompts to talk aloud, (b) requests for 
clarification of problem entities or solution activities, ( c) recommendations about these 
entities or activities, and ( d) demonstrations of problem-solving activities. Beyond 
reminders to talk aloud, the more invasive interventions generally concern interpretive 
categories for tactics, purpose, constraints, errors, and outcomes described in the 
preceding chapter. Thus, the interviewer might ask a participant to explain the relation 
between times in problem MOD, might recommend that she treat these times as being 
the same, or might demonstrate the construction of a diagram for times and show its 
implications for a quantitative relation. 

Interpretive categories and scoring. Interview transcripts were coded by the 
author using the interpretive framework developed in the preceding chapter. Since a 
single coder identifies and interprets episodic activity in these interview transcripts, no 
claim is advanced for reliability across observers. However, care was taken to use 
interpretive categories in a manner consistent with the scoring of written protocols. On 
one hand, the verbal transcript simplifies episodic interpretation by proYir1ing 
additional evidence for strategy, tactic, and content. 0n the other hand, t I 1e episodic 
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structure of problem-solving activity appears considerably more complex when written 
materials are combined with participants' verbal reports. 

4.4.2 Episodic structure of solution attempts 

None of the solution attempts on reference problems involve demonstrations by the 
interviewer, but during the solution attempts of both students and teachers the 
interviewer recommends constraints (e.g., "he's gotta come all the way back"), 
strategies (e.g., "how would you check a problem like this?"), or particular notations 
(e.g., "is there a diagram that would go with that?"). Of 99 scored episodes on the 
reference problems, 24 were preceded by recommendations from the interviewer. The 
prevalence of interviewer recommendations varies across participants on reference 
problems but is not more common for students than for teachers. Episodes undertaken 
after a recommendation by the interviewer are excluded from comparisons of students 
and teachers with advanced undergraduates unless otherwise indicated. 

Prevalence of episodes. There are more spontaneous episodes identified in verbal 
interviews with students and teachers than in written protocols from advanced 
undergraduates. Across reference problems, advanced undergraduates average 2.5 
episodes per solution attempt, algebra teachers average 4. 7 episodes, and algebra 
students average 6.5 episodes. 

The greater prevalence of spontaneous problem-solving episodes has several 
possible explanations. Without an imposed time limit on the reference problems (8 
minutes in the written protocol study), students averaged 12.4 minutes and teachers 
averaged 5.0 minutes to reach an unassisted final episode. At least for algebra students, 
longer solution attempts produce more problem-solving episodes. The requirements of 
talking aloud and giving explanations to the interviewer (some prompted) probably also 
contribute to a more complex episodic structure in participants' solution attempts. 
Finally, verbal transcripts show episodes in which participants produce no written 
material, they verbally elaborate relatively ambiguous written material, or they return 
to material generated during earlier episodes. None of these episodes could be detected 
in a written protocol alone. Removing the 8 minute time limit, requiring verbalization, 
and interpreting detailed narrative materials each help to account for the higher density 
of episodic activity found during solution attempts in verbal interviews. 

These differences might be seen as an artifact of an interaction between the 
interview procedure and interpretive coding, with relatively little to say about the 
episodic structure of quantitative inference. On the other hand, the difference in setting 
is an intentional move along a theoretical sampling dimension, comparing problem 
solving among undergraduates in class, using a written examination format, with 
relatively unrestricted problem-solving activity among algebra students and teachers in 
settings where they usually work on such problems. Under the latter view, the difference 
in episodic complexity between participants in these verbal interviews and advanced 
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undergraduates is meaningful: ::;olution attempts often fit neither within the time limits 
nor within the material limits of conventional school or experimental assessments. 

Problem-solving attempts. Among advanced undergraduates, the frequent 
presence of tactical episodes other than algebra was a surprising :finding. Their solution 
attempts did not progress smoothly as a series of algebraic manipulations but instead 
contained conceptual difficulties that were overcome with a variety of tactical 
approaches. As in the written protocol study, there is ample evidence for episodic 
activity other than manipulating algebraic expressions within these verbal interviews. 
Since the interviews involve only four participants,3 a comparison with advanced 
undergraduates can only speak to the presence of various interpretive categories among 
students and teachers. Table 4.1 collapses across problems to show the percentage of 
each participant's problem-solving episodes that contain a scored category. 

In the verbal interviews, each student and teacher uses algebra at least once while 
working on the reference problems, but the relative frequency of algebraic tactics within 
each participant's solution attempts is small, ranging from 6. 7% (1 of 15 episodes for 
Celeste) to 34.4% (11 of 32 episodes for Karen). Thus, for students and teachers alike, 
the majority of their problem-solving episodes do not explicitly use algebraic tactics. 
Instead, model-based reasoning is the most prevalent tactic for all but the intermediate 
algebra student (Karen), who more frequently uses tabular annotations to organize her 
construction of algebraic expressions (9 of her 12 annotations are "drt" and "trw" 
charts). 

There are no unit or procedure tactics found among students and teachers. Unit 
tactics were rare among advanced undergraduates, so understandably might not be 
observed in verbal interviews with only three or four participants. Procedure tactics 
among advanced undergraduates were most frequently observed on problem \VT, where 
participants found the time working together as an average over individual workers. In 
the verbal interviews, :filling a pool together in problem HOS appears less likely to be 
interpreted as an average working time. 

Like advanced undergraduates, each student and teacher attempts to :find a solution 
on every problem, but episodes for comprehension generally occur most frequently. 
Again, explicit episodes of verification are infrequent, though each student and teacher 
makes at least one spontaneous attempt to verify an inferred constraint or solution 
while working on the reference problems. When episode transitions are collected 
together as being "on track" (solution or subgoal) versus "off track" (impasse, lost, or 
wrong) there is large contrast between Karen, who :finishes 56.2% of her episodes off 
track, and Richard, who never transitions out of an episode off track. Celeste and Paul 
are intermediate-and roughly equivalent, :finishing 26. 7% and 33.3% of their episodes off 
track, respectively. Looking more closely at problem-solving difficulties, Karen and 

3Richard (a teacher) did not receive problems MRT or WC, so comparisons between 
algebra students and teachers rely on a single teacher's solution attempts for these prob­
lems (i.e., Paul). 
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Table 4.1: Percentage of participants' episodes with a scored category. 

Participant 
(number of episodes) 

Celeste Karen Paul Richard 
Category ( 15) (32) (18) (10) 

Tactical content 
Algebra 6.7 34.4 33.3 30.0 
1fodel 53.3 28.l 38.9 40.0 
Ratio 26.7 0.0 22.2 10.0 
Annotation 13.3 37.5 5.6 20.0 

Strategic purpose 
Comprehension 53.3 81.2 44.4 70.0 
Solution attempt 33.3 15.6 44.4 20.0 
Verification 13.3 3.1 11.1 10.0 

Episode transitions 
Solution 13.3 9.4 27.8 20.0 
Subgoal 60.0 34.4 38.9 80.0 
Impasse 20.0 12.5 16.7 0.0 
Lost 6.7 15.6 0.0 0.0 
Wrong 0.0 28.1 16.7 0.0 

Errors 
Omission 6.7 25.0 22.2 0.0 
Commission 6.7 28.1 16.7 0.0 
Manipulation 20.0 0.0 5.6 0.0 
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Paul resemble advanced undergraduates by having more conceptual errors of omission 
or commission than manipulation errors. In contrast, Celeste's relatively frequent 
manipulation errors switch the referent of a quantity during arithmetic or algebraic 
manipulation, while Richard encounters neither conceptual nor manipulative errors. 

In summary, the episodic content of problem solving (i.e., tactics, strategy, 
transitions and errors) among algebra students and teachers is roughly comparable to 
that found among advanced undergraduates. Nonalgebraic tactics play a significant role 
in the solution attempts of both teachers and students. Pooling across participants and 
problems, model-based reasoning tactics are most common (37.3%), followed by 
algebra (28%), various annotations4 (22.7%), and ratio tactics (10.7%). Much of the 
episodic content of problem solving focuses on comprehending problem structure 
(65.3%) rather than attempting a solution (26.7%), and participants seldom explicitly 
verify a possible solution (8%). 

Model tactics occured one or more times in the solution attempts of 73% of 
ad\·anced undergraduates and were used by 22.4% to 47.1 % of these problem solvers 
across different problems. In the verbal interview data on reference problems, every 
participant uses model tactics at least once on every problem, with the exception of 
Celeste (a student) on problem ·we. A higher prevalence of model tactics among 
students and teachers probably results from the verbal transcript allowing detection of 
model episodes that do not produce a clear written record. This suggests that the 
analyses of written protocols in the preceding chapter underestimate the prevalence of 
model-based reasoning in competent problem solvers' solution attempts. 

Final episodes: outcome, tactical content, and errors. Within their "final 
episodes," advanced undergraduates often found a solution without algebraic tactics. 
They failed to find a correct solution most often on problems MRT and WT, and their 
difficulties usually came from conceptual errors. A similar analysis of solution attempts 
from verbal interviews is possible, although four participants cannot provide a reliable 
basis for quantitative comparison. Table 4.2 shows tactics and outcomes for unassisted 
solution attempts by students and teachers on the reference problems. Cells in the 
table are filled with codes for each problem and show that teachers succeed on 5 of 6 
problems attempted (83.3% correct), while students succeed on only 4 of 8 problems 
attempted (50% correct). As with advanced undergraduates, problem MRT appears the 
most difficult for both students and teachers. 

Both students use model-based reasoning as a solution strategy, but their success 
with this tactic for :finding solutions is varied. Celeste uses model tactics on three of 
four problems b:ut succeeds only on problem MOD, using an iterative simulation over 
successive hours of train travel. On problems HOS and MRT, she loses track of correct 
intermediate state calculations without being able to satisfy limiting constraints. On 

464. 7% of annotations in the reference problems are twcrdimensional tables or charts 
that organize quantities for outputs, times, and rates; 23.5% are diagrams; and the rest 
are recalled formulas or arithmetic expressions. 
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Table 4.2: Tactics and outcomes for unassisted solution attempts on reference problems. 

Participant C 

Celeste 

Karen 

Paul 

Richard 

HOS 
WC 

HOS 

MOD 
HOS 

Algebra 

I 

WC 

N 

MRT 

MRT 

Tactic by Outcomet 

c 

MOD 
\~'C 

Ratio 

I N 

toutcomes: C = correct; I= incorrect; N = no solution. 

Model 

c I 

MOD 

MOD -

N 

HOS 
MRT 

problem \VC, Celeste constructs a correct algebraic proportion over working times, but 
she then switches the reference of an intermediate result and incorrectly presents this as 
a solution (i.e., 16 boxes filled and checked). 

In contrast, Karen uses model tactics to find a final solution only once, conducting 
an iterative simulation over successive hours of travel on problem MOD. She undertakes 
this state simulation as a last resort, being unable to choose between incompatible 
algebraic expressions generated during preceding episodes. Karen succeeds using 
algebraic tactics on problems HOS and WC, but she reaches an impasse during an 
algebraic solution attempt on problem MRT after incorrectly attempting to add 
one-way distances (a conceptual error of commission). Earlier on problem MRT, Karen 
abandons a model-based iterative simulation undertaken as a solution attempt by 
spontaneous comparison with her correct model-based solution on problem MOD. 

Neither teacher uses model-based reasoning when finalizing a solution attempt, but 
a detailed examination of Paul's final episodes shows that algebraic tactics do not 
always proceed smoothly. On problem HOS, Paul recalls and manipulates a formula to 
find a solution (1/6+1/2=1/x), but he then remarks that he could not explain the 
terms in the formula since "all of this is rote." On problem MRT, he constructs an 
algebraic expression for composite times, but then decides that a correct solution (16 
miles) is wrong because its value is less than the rate of the bus (24 mph). Finally, Paul 
constructs an algebraic expression with an incorrect rate form on problem WC 
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(56=x/5+x/2), but he then uses a ratio tactic to scale the resulting 80 boxes down to 
fit constraints given in the problem statement (i.e., a combined time of 56 minutes). 

Three of Paul's solutions involve skilled algebraic manipulation, but in none of 
these solutions are his algebraic expressions accountable to the problem statement. In 
contrast, Richard incrementally constructs algebraic expressions for both problems 
MOD and HOS, using model-based reasoning episodes as explanatory justifications for 
quantitative relationships (e.g., " ... from the drawing, we can tell that when we add the 
two separate distances together, we get the total distance of 880 kilometers."). He 
manipulates algebraic expressions only after deciding that they accurately render 
structural constraints contained in or implied by the problem statement. 

In summary, the solution attempts shown as final episodes in Table 4.2 appear to 
present a progression towards competence in algebra story problem solving. \Vhile both 
students and teachers use nonalgebraic tactics like model-based reasoning during their 
solution at tempts, they differ considerably in how (or whether) they use algebraic 
tactics to finalize these solution attempts. 

• Celeste uses algebraic tactics (i.e., a proportion) infrequently and with difficulty, 
preferring model tactics but often unable to organize local state calculations in a 
way that progresses towards a solution. 

• Karen frequently constructs or recalls incompatible algebraic expressions, is often 
uncertain about their relation to other constraints she can infer about a problem's 
structure, and sometimes returns to model tactics as a solution method. 

• Paul also constructs or recalls recalcitrant algebraic expressions, but he works 
around these expressions using constraints identified with nonalgebraic tactics, 
sometimes rejecting conceptual errors but also sometimes overturning correct 
quantitative results. 

• Richard uses model and ratio tactics to support inferences about quantitative 
constraints, carefully justifying terms in algebraic expressions before manipulating 
these expressions to find unknown values. 

Taken as a progression in algebraic competence, the solution attempts of these 
participants (a) resemble the episodic interpretation made of solution attempts by 
advanced undergraduates, (b) confirm that algebra story problems present difficulties 
for a wide range of problem solvers, and ( c) show the that the algebraic formalism is a 
brittle method when used in isolation. The latter point is clear in the contrast between 
Paul's recall of a relatively opaque algebraic formula ("all of this is rote" on problem 
HOS) and Richard's carefully justified construction of algebraic expressions on problem 
MOD. 

Tactical course of structural inferences. Among advanced undergraduates, 
tactical episodes contributed to problem solving by generating constraints, pursuing 
constraints to determine unknown values, and evaluating constraints in light of other 
information about problem structure. An analysis of the origin of correct and incorrect 
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Table 4.3: Percentage of episodes introducing correct or incorrect structural constraints. 

Tactic 

Participant Origin Algebra Ratio Model Annotation 

Students Correct 41.7 50.0 47.1 28.6 
Error 33.3 0.0 17.6 42.9 
(n) (12) (4) (17) (14) 

Teachers Correct 33.3 20.0 45.5 66.7 
Error 33.3 20.0 0.0 0.0 
(n) (9) (5) (11) (3) 

Students Correct 38.1 33.3 46.4 35.3 
and Error 33.3 11.l 10.7 35.3 
teachers (n) (21) (9) (28) (17) 

structural inferences showed that model tactics were comparable to or slightly better 
than algebra and ratio tactics for generating correct constraints and were much less 
likely to introduce conceptual errors. At the same time, model tactics were as likely as 
algebra and ratio tactics to play an effective role in evaluating constraints by recovering 
from conceptual errors. Similar analyses were performed for solution attempts in verbal 
interviews. 

Table 4.3 compares the percentage of problem-solving episodes that introduce 
correct structural constraints with those that introduce conceptual errors. As in the 
analysis of written protocols, tactical episodes are the unit of analysis. The origin of 
conceptual material is identified within individual solution attempts, allowing 
percentages to be interpreted as the relative likelihood that an episode using a 
particular tactic will introduce a correct constraint or an error within a participant's 
efforts on a single problem. Like the analyses of category prevalence and final episodes 
in verbal interviews, these quantitative comparisons exclude episodes that follow 
interviewer recommendations, though identifying the origin of inferences uses intact 
solution attempts (i.e., with interviewer recommendations). 

For both students and teachers, algebra and model tactics are comparable in the 
origin of correct structural inferences (Tactics x Correct constraints, not significant), 
but model tactic:s are less likely to introduce conceptual errors than are algebraic 
tactics (Tactics x Conceptual errors, x2(3) = 5.9, p < .12). Adding episodes from 
problems RACE and BAGELS to this analysis, algebra tactics are 3.7 times more likely 
than model tactics to introduce conceptual errors (Tactics x Conceptual errors, 
x2(3) = 9.3, p < .03). Model tactics are particularly resistant to errors among teachers, 
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Table 4.4: Percentage of tactical episodes retracting or replacing an earlier conceptual 
error. Tactic 

Participant Algebra Ratio Model Annotation 

Students 33.3 0.0 29.4 21.4 
(n) (12) (4) (17) (14) 

Teachers 22.2 0.0 18.2 0.0 
(n) (9) (5) (11) (3) 

Students and teachers 28.6 0.0 25.0 1 i.6 
(n) (21) (9) (28) (17) 

although teachers and students are comparable when making correct structural 
inferences with model tactics. 

The large contrast between students and teachers when introducing conceptual 
errors with annotation tactics results from Karen's generally unsuccessful use of tables 
to organize quantities and relations between quantities, essentially a method for 
constructing alge 1 ·•aic expressions that Richard performs without error. Ratio tactics 
occur infrequently in both groups. Celeste accounts for all student uses of this tactic, 
and in two of these episodes she introduces a correct comparison of times. Paul 
accounts for the only error originating during a ratio episode, when he leaves out the 
checking time for boxes on problem WC. 

Among advanced undergraduates, model-based reasoning showed no particular 
advantage in recovering from conceptual errors, and the same is true of students and 
teachers in the current analysis. Table 4.4 shows the percentage of episodes that either 
remove or replace an earlier conceptual error. An error is removed when a following 
episode no longer contains that error and is replaced when the following episode 
introduces a correct constraint in place of that error. As with the origin of structural 
inferences in verbal interviews, episodes with interviewer recommendations are excluded 
from this analysis. 

Students generally have more errors to recover from than do teachers (see 
Table 4.1), and as a result they show an increased likelihood of recovering from 
conceptual errors in all but ratio tactics. In comparison with teachers, students are 
almost twice as likely to recover from a conceptual error using model tactics. When 
episodes from students and teachers are combined, algebra, model, and annotation 
episodes are equally likely to recover from prior errors,, while ratio tactics support 
recoveries less frequently (Tactics x Repairs, not significant). Though not included in 
this analysis, the only recovery using a ratio tactic comes from Paul (a teacher), who 



retracts an error in rate form on problem V\/C during a prompted verification of an 
incorrect solution. 
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Spontaneous problem comparisons. The manipulation of problem ordering 
designed to elicit analogical transfer in Chapter 3 had little effect on advanced 
undergraduates in an examination setting. Approximately 10% of competent problem 
solvers gave clear evidence for undertaking a problem comparison, but most of these led 
to incorrect inferences about target problem structure, such as transferring an 
inappropriate algebraic expression. 

Part of the original reason for studying analogical problem-solving was the 
prevalence and success of analogical inferences observed in a relatively open-ended 
problem-solving interview with a prealgebra student, who was alerted to the possible 
utility of problem comparisons5 (Hall, 1987). Episodes of analogical comparison 
observed \vith this student (a) were articulate, usually signalled by a verbal exclamation 
and a shift in attention to retrieved material, (b) were time consuming, and ( c) drew on 
materials both inside and outside the interview setting (e.g., problems his parents had 
asked him to solve). 

As described in Section 4.2, participants in these interviews were periodically asked 
to compare a problem they had just solved with earlier problems, which either 
immediately preceded their solution attempt or were drawn from the entire set of 
preceding problems. Thus, students and teachers were alerted to the possible relevance 
of comparisons between problems, had unlimited time to pursue any such comparisons, 
and could easily select earlier work from their own arrangement of materials. One 
student reported routinely working on homework exercises by searching for related 
problems in the text or looking at the answers to paired problems at the back of an 
algebra text. Thus, problem-solving activities resembling analogy to worked examples 
(e.g., Chi, et al., 1989) were familiar for at least some participants in this study. 

Table 4.5 shows all observed instances of spontaneous problem comparison on a 
common set of problems. A comparison is considered spontaneous if it does not follow 
directly from a requested comparison. In the table, problem codes are annotated with a 
"+" if the comparison promotes a correct analogical inference, with a "-" if the 
comparison promotes an incorrect inference, and with a "(-)" if a candidate analogical 
inferences is rejected during the comparison. Only the "-" annotations should be 
considered incorrect inferences, since on closer inspection of these comparisons, 
rejecting an incorrect conjecture can be as useful as accepting a correct analogical 
inference. Evaluation of the rejected constraint often either implies a correct constraint 
or narrows the remaining alternative relations that a participant might consider. 

5 A low frequency of spontaneous analogical comparisons is a common finding in ex­
perimental settings where participants are not alerted to the utility of comparisons (e.g., 
Gick and Holyoak, 1980, 1983; Reed et al., 1985). 
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Table 4.5: Spontaneous problem comparisons involving correct, rejected, or incorrect 
analogical inferences about problem structure. 

Participant 

Target Celeste Karen Paul Richard 

MOD 

HOS CLOS+ CLOS+ 

MRT :MOD- n/a 
HYPO(-) 
BOATS(-) 
CLOS (-) 

\VC SINKS(-) n/a 
HOS(-) 

RACE TUT+ DANCE (-) WC(-) n/a 
CLASS+ CLOS- 1IRT (-) 

DANCE-

BAGELS BABYSIT+ n/a n/a 

Every participant verbally reports at least one spontaneous problem comparison. 
For example, Karen refers to her solution for problem MOD, saying "I was thinking if I 
did the table thing like we did before ... " as she begins an unsuccessful model-based 
solution attempt on problem MRT. Comparing students and teachers, spontaneous 
analogical comparison appear more prevalent among students, although Karen 
generates more comparisons than all other participants combined. Both groups are 
relatively successful when making problem comparisons, Karen being the only 
participant who introduces incorrect constraints by analogy to earlier problems in 3 of 
10 spontaneous comparisons (e.g., on problem MRT, as described above). Karen also 
recalls analogical sources outside the interview setting. For example, on problem MRT 
she recalls and then rejects a round trip BOATS problem involving river current. Recall 
of material outside the setting need not draw only on school math problems, as when 
Celeste chooses fractional parts of an hour for a simulation of baking BAGELS by 
analogy to charging her employers overtime while babysitting. Finally, Karen 
constructs an alternative diagrammatic model (HYPO) for an incorrect quantifative 
constraint on problem MRT, and she then rejects the spontaneously constructed model 
and its associated constraint by comparison with her <;iiagram for problem i'.1RT. 
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In summary, spontaneous problem comparisons are both more frequent and more 
successful by comparison with advanced undergraduates in the written protocol study. 
First, most of the spontaneous comparisons shown in Table 4.5 could never have been 
detected on the basis of written materials alone. Second, these analogical comparisons 
succeed by playing a different role in solution attempts than appeared to be the case 
among advanced undergraduates. While spontaneous comparisons among advanced 
undergraduates generally failed by importing a complex expression into the target 
problem, spontaneous comparisons among students a.re partial, often undertaken to 
supply or evaluate a single quantitative constraint rather than an entire problem 
structure. It may be that the kinds of spontaneous problem comparisons detected 
during verbal interviews were more common during the written protocol study but 
could not be detected. These kinds of spontaneous comparisons would also be relatively 
insensitive to the problem ordering factor introduced to manipulate participants' 
chances of making a correct analogical inference. The distribution of sources for 
spontaneous comparisons in the verbal interviews corroborates this latter 
interpretation, suggesting that problem solvers may choose among quite diverse 
materials while comprehending the structure of a new problem. 

4.5 Discussion 

The qualitative and quantitative analyses presented in this chapter represent the tip of 
a very large empirical iceberg. Putting aside empirical images of competence that rest 
on number of problems solved or simple time to solution, this and the preceding study 
attempt to look deep within the episodic structure of algebra story problem solving 
among a variety of participants. The findings are surprisingly at odds with existing 
accounts of "novice" versus "expert" problem solving in mathematics and other 
domains where formal reasoning is prescribed as a competent way of thinking. This 
discussion gives an overview of these findings in light of the outstanding issues that 
opened the chapter. 

4.5.1 Qualitative analyses of solution attempts on problem 
MOD 

A detailed qualitative analysis of participants' solution attempts on problem MOD 
both confirms earlier hypotheses about problem-solving tactics and extends several of 
these findings with new analytic observations. As in written protocols taken with 
advanced undergraduates, the solution attempts of algebra students and teachers have 
an episodic structure around strategy, tactic, and content. In both students and 
teachers, tactical episodes other than constructing or manipulating algebraic 
expressions are observed, including model, ratio, and various annotational tactics. 
Model tactics again play important strategic roles: generating relevant quantitative 
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constraints (e.g., Paul's use of a state diagram to infer that train distances can be 
added together), determining unknown quantities without introducing algebraic 
expressions (e.g., Celeste's and Karen's solution attempts using iterative simulation), 
and evaluating quantitative conjectures (e.g., Karen's retraction of an incorrect 
algebraic constraint by comparison with a role diagram). 

These qualitative analyses also bear on several of the outstanding issues that 
opened the chapter. Clearly, the episodic structure of problem solving is much richer 
than observed using written protocols, with the possible exception of Paul's relatively 
brief ratio solution. While participants' written notations, viewed retrospectively, give a 
largely sequential view of episodic structure, the verbal interview transcripts show that 
participants shift between episodes more frequently, often resuming, updating, or 
revising earlier written notations during a solution attempt. The higher density of 
episodic activity is corroborated in the quantitative contrast between algebra students, 
algebra teachers, and advanced undergraduates on a comparable set of problems. 

Some of these episodic patterns appear to be opportunistic, as when Paul shifts 
from a diagram as a model of the first hour of train travel to a whole/part ratio solution 
- a frequent episodic pattern among advanced undergraduates. Paul uses algebra 
explicitly only when the interviewer requests that he verify a solution that he considers 
a settled issue. In contrast, Karen and Richard pursue solutions in a prescribed tactical 
"style," Richard's performance providing a pedagogical model for Karen's attempt to 
systematically establish algebraic constraints over given and desired quantities. ·what is 
missing in Karen's performance is the careful coupling between model tactics as a 
source of quantitative inferences and algebraic tactics as a precise manipulative 
calculus. Ironically, Karen constructs a correct algebraic expression with great 
difficulty, but is so uncertain about what its terms refer to in the problem situation that 
she abandons the expression before manipulating it to find a value for travel time. 

The algebra students in these interviews, Celeste and Karen, provide a detailed look 
into the functional anatomy of model-based simulation. In many respects, their 
activities and notations mirror the dimensional structure of quantities carried in the 
problem statement. However, these activities and notations manage quantitative 
inference in a way that simultaneously mirrors the structure of events described by the 
"story" in a problem statement. In the words of Celeste, "if they all have something in 
common then that's a lot easier for me to do" (S-23). The consequence of this multiple 
correspondence is that quantities and calculations take a shape very different from the 
primarily static, retrospective character of school algebra. This is a fundamental quality 
of model-based simulation as a solution strategy . 

. Students' sofotion attempts also corroborate hypotheses about the functional role of 
model tactics in generating and evaluating constraints. However, their reflective 
comments about these tactics show that model activities (e.g., calculating and 
comparing state values) and notations (e.g., two dimensional tables or one dimensional 
diagrams) are familiar to students, providing a way to be certain about some aspects of 
problem structure in the face of the explicit demand for precision that algebra story 
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problems present. These tactics take on meaning for students: they are private and 
illegitimate, "a weird way to do it" (Karen, S-26), by comparison with the more public 
and legitimate tactics of school mathematics, "some other way to do it" (Celeste, S-3). 

4.5.2 Quantitative comparisons across competence 

Attempting to solve a comparable set of problems, algebra students and teachers 
show similar patterns of episodic activity in their solution attempts to those found 
among advanced undergraduates. 

• Solution attempts have a complex episodic structure, more often resembling the 
construction of quantitative constraints rather than direct recall of quantitative 
structures. 

• l\fodel-based reasoning is also prevalent as a nonalgebraic tactic among students 
and teachers, and even prevalent within each participant's solution attempts, 
ranging from 28.l % (Karen) to 53.3% (Celeste) of all observed episodes for each 
participant. 

• Model-based reasoning is sometimes used as a final solution method, though not 
by teachers and not always successfully by students. 

• Nonalgebraic tactics compete favorably with algebra for the introduction of 
correct structural inferences. 

• Algebraic tactics are much more likely to introduce conceptual errors than other 
problem-solving tactics, and this finding is even more pronounced among teachers 
than among students. This contrast is stronger still if Karen's frequent and 
error-prone "drt" and "trw" tables are interpreted as algebra tactics. 

• Model tactics are comparable to algebra and other tactics for recovering from 
conceptual errors. 

• Spontaneous problem comparisons are more frequent and successful in the verbal 
interviews, and are used most often among students. 

The analysis of verbal interview materials in many ways corroborates the interpretive 
framework developed using written protocols collected from advanced undergraduates. 
Complex episodes of problem-solving activity involving varied conceptions of problem 
structure are not idiosyncratic to advanced undergraduates. Instead, a similar episodic 
structure can be found in algebra students and teachers, suggesting that this descriptive 
account of algebra story problem solving holds across very different levels of 
competence. 

There is also evidence within the verbal interviews that the relation between model 
and algebra tactics changes as problem solvers gain more experience. Comparisons of 
solution attempts by algebra students and teachers show several important differences. 
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• Students use model tactics to solve problems directly, either without algebra or 
when they reach an impasse in algebraic tactics. When used to find a solution, 
however, model tactics sometimes require state calculations that are difficult to 
coordinate. 

• Teachers also use model tactics, though generally not to find solutions. Instead, 
their model-based reasoning episodes are combined with algebra and ratio tactics 
in a way that supports constructing and evaluating quantitative constraints. 

• 1fanipulation skills probably improve with experience, but manipulation errors 
are a minor source of difficulty across levels of competence. 

• Algebraic expressions are narrowly effective as recalled artifacts (e.g., Paul's recall 
of a "rote" formula for work problems) and quite brittle in isolation from other 
tactical materials (e.g., Karen's uncertainty over incompatible expressions). 

These findings suggest that nonalgebraic tactics, including model-based reasoning, 
shift from solution strategies among beginners to comprehension and evaluation 
strategies among more experienced problem solvers. However, competence in algebra 
story problem solving does not become a matter of routine recall and application of 
algebraic forms. Instead, competent problem solvers more often construct a collection 
of quantitative constraints, sometimes finding algebraic expressions that are 
accountable to what they recognize about problem structure. In contrast, beginning 
algebraists are able to use model tactics to comprehend and sometimes to solve algebra 
story problems, but these tactics may not be connected in a useful way to the 
prescribed ontology of algebra: quantitative roles bound in the relatively opaque 
structure of algebraic expressions. Acquiring competence, then, appears to be a matter 
of connecting up diverse notations, some familiar (e.g., diagrammatic or tabular 
depictions of states) and some taught (e.g., algebraic equalities), to precisely determine 
unknown values that are accountable to one's understanding of problem structure. 

4.5.3 Making mathematics on paper 

Quantitative inferences and solution attempts on algebra story problems are 
remarkably complicated human performances. What is striking in the solution attempts 
of all four participants studied in this chapter is the role of written notations in their 
progress on comprehending problem structure, planning calculations, and assessing 
progress towards a solution. Theories of problem solving in cognitive science usually 
seal most of this activity inside the head, treated as a cognitive architecture that 
converts environmental patterns into contingent behavior. This view of 
problem-solving activity relegates the work setting - papers, desks, beds, kitchen 
tables - to the role of a prosthetic memory, an adjunct to the cognitive machinery that 
holds the problem statement or records intermediate cognitive results. 

A careful analysis of the episodic structure of problem-solving activities - inferring 
constraints, reaching impasses, and working around these impasses - shows that 



144 

written materials shape problem-solving activity as they are constructed. Rather than 
playing an adjunct role, these materials provide the medium out of which constraints 
are constructed, activities are carried out, and problem-solving performances are 
accomplished. 

For example, in Celeste's solution attempt on problem MOD, a table of state 
calculations obscures an irrecoverable conceptual error about rate as a relation between 
time and distance. This error appears during her transition between gestural/narrative 
state construction and a written table of calcula.tions and leads Celeste into a 
problem-solving impasse. After the interviewer supports a repair to the table, she easily 
resumes an iterative simulation by extending her table down the page to find a precise 
solution. Thus, at the boundaries of what appears to be a mental performance, written 
notations on the one hand hide a conceptual error but on the other hand provide a 
natural structure for activities (i.e., a "plan") in a successful solution attempt. 

Analyses reported in this chapter have gone deeper into the content and structure 
of quantitative inference, showing that notations and activities around those notations 
provide empirical coverage for much of the episodic structure of participants' solution 
attempts. In the next and final substantive chapter of the dissertation, these ideas are 
taken into an analytical framework that asks how diverse notations can be integrated to 
produce a representational system within the problem-solving setting. 



Chapter 5 

Reconstructing Applied 
Quantitative Inference 

5.1 Models and quantitative inference 

\Vhat is model-based reasoning and how does it support quantitative inference? In 
analyses of solution attempts by ad\'anced undergraduates (Chapter 3), model tactics 
are one interpretive category among many in a framevrnrk for exploring the episodic 
structure of algebra story problem solving. Participants' problem-solving tactics involve 
a "model" when they produce states along a dimension defined by an unknown quantity. 
This operational definition interprets particular kinds of written material according to a 
prescriptive analysis of problem structure, which is described in Chapter 2 as the 
"situational context" presented by an algebra story problem. A problem's situational 
structure is made up of semantic relations between entities that exist within typed 
dimensions. These entities and relations provide a hypothetical ontology out of which 
models can be constructed, manipulated, and used to make quantitative inferences. 

In Chapter 4, model tactics are a focal point for qualitative and quantitative 
analyses of verbal interviews. When the interpretive framework for problem-solving 
episodes is applied across settings (i.e., group testing versus verbal interviews) and 
across participants with different levels of competence (i.e., advanced undergraduates, 
algebra students, and algebra teachers), similar episodic patterns are found: model 
tactics are prevalent, they are sometimes used to finalize solution attempts, and they 
compete favorably with other tactics when introducing correct constraints and repairing 
incorrect constraints on problem structure. Model tactics are used to generate and 
evaluate quantitative constraints at each level of competence, although algebra students 
are more likely than teachers or advanced undergraduates to attempt solutions using 
these tactics. 

Chapter overview. This chapter attempts to explain how diverse notations, 
quantities, and activities form a mathematical representation, both for beginning and 
experienced problem solvers. Activities interpreted as model-based reasoning play a 
central role in this analysis. On the one hand, model tactics allow beginners to manage 
the demand for quantitative precision in the face of uncertain mathematical notations. 

145 
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On the other hand, these tactics persist in significant functional roles among competent 
problem solvers. Looking more closely at the materials constructed during 
problem-solving episodes, why should this be the case? 

The answer comes in several parts. First, competing frameworks (i.e., cognitive and 
ecological) for an adequate theory of competent quantitative inference are compared in 
terms of their central claims about knowledge and representation. As with most going 
concerns in scientific practice, neither is directly falsifyable in any objective sense, and 
they may even stand in a symbiotic relation around complex human problem solving. 
Second, an ecological analysis is constructed on top of interpretive categories developed 
in preceding chapters. This analysis argues that problem-solving tactics, strategies, 
content and outcome are critically dependent on the structure of notations and the way 
these notations carry different kinds of quantities. Results of qualitative and 
quantitative analyses are presented as support for the epistemological importance of 
relations between knowledge and setting, treating notations as representational 
ecologies for competent quantitative inference. 

Third, the capacity of model notations for simultaneously managing the 
correspondence between quantitative and situational structure is developed as an 
explanation for how model-based quantitative inference works and why this form of 
inference persists across the competence spectrum sampled by written and verbal 
protocol studies. The empirical results and analytic arguments in this chapter lead to a 
conclusion for the dissertation, framing mathematical knowledge as both constructive 
and dependent upon concrete settings. The structure of tactics, their quantitative 
content and support for strategic activity are as much a part of the problem-solving 
setting as they are the subjects of mental representation. \Vhat a problem solver knows 
about mathematics becomes partly a matter of what she can construct in the problem 
setting at the very point of demonstrating competence. Taking this view seriously, 
competence becomes a matter of reconstructing knowledge across settings. 

5.1.1 Towards a theory of competent quantitative inference 

Analyses in the previous chapters bring model tactics to the foreground as empirical 
evidence for the constructive (versus recalled) nature of quantitative inference. For 
example, students' successful solution attempts on problem MOD show that model 
notations and activities simultaneously coordinate between the dimensional structure of 
quantities and the structure of events portrayed in the problem statement. This is a 
very delicate form of work: it is fitted to the local circumstances of the problem and 
physical setting (e.g., motion versus work, exact versus "close enough," beds versus 
desks), but it is not completely idiosyncratic, since problem solvers with very different 
backgrounds engage in similar activities (e.g., model tactics for comprehension). 

The interpretive framework for these studies ascribes "strategies" and "tactics" to 
problem solvers, and these allow us to describe relationships between problem-solving 
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activities and outcomes. These interpretive categories are operational definitions that 
may be applied to written or verbal protocols, but the resulting relationships can be 
consistent with quite different theoretical explanations for quantitative inference. The 
question taken up in this chapter is what sort of theory to embed these empirical 
contrasts within and, more important, whether the empirical interpretation developed 
in these studies can be used to support theoretical alternatives to existing accounts of 
competent quantitative inference. 

Descriptive and explanatory adequacy. \\That would a theory of quantitative 
inference that explains these phenomena look like - i.e., how can we approach 
traditional standards of descriptive or explanatory adequacy (Chomsky, 1965; 
Johnson-Laird, 1983)? First, we need to adequately describe what problem solvers are 
doing, within the observational record available in written protocol and verbal interview 
studies. This is a narrow observational window (though wider than many), and the 
studies in Chapters 3 and 4 examine only a subset of the existing variety of algebra 
story problems (e.g., see Mayer, 1981). \\Tith these limitations in mind, the questions to 
be answered are: how do participants reach the quantitative conclusions that they do, 
and why are some kinds of inference more difficult than others? The preceding chapters 
document several interesting empirical patterns in episodic activity, and this chapter 
provides an additional line of analysis that opens up individual episodes to look for 
relations between materials, activities, and outcomes. 

For the theory to be explanatory, we also need to say how people could acquire this 
descriptive account of competent quantitative inference. Comparisons across levels of 
mathematical experience in Chapter 4 show that competence is not so much what 
people know, in the sense of individual conventional notations for expressing quantities 
and relations, but how conventions are integrated together in a mathematical 
representation that is meaningful - i.e., a problem solver's sense of certainty and 
precision, at arm's length when the solution attempt starts, are brought together in a 
final solution. This chapter extends earlier comparisons across levels of competence 
with a new set of interpretive categories, identified in the qualitative analysis of 
Chapter 4 (Section 4.3) and operationalized in the next section. In many empirical 
studies of mathematical problem solving, students use standard quantitative notations 
(e.g., mathematical symbols) in apparent isolation from more familiar or conventional 
materials (e.g., concrete or mental models, Greeno, 1989), and this may be particularly 
true of algebraic expressions (Kaput and Sims-Knight, 1983). To understand how 
competence could be acquired, we must first determine what distinguishes the 
construction of a mathematical representation that supports quantitative inference from 
these apparently disconnected notations. 



5.1.2 Cognitive and ecological approaches to quantitative 
inference 
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The central issue for any theory of competent quantitative inference is the relation 
between knowledge, setting, and activity when people make these inferences. There are 
many relations possible, but I will contrast two broad alternative perspectives that have 
a special significance for recent studies of mathematical problem solving across settings 
(i.e., school versus everyday life, as discussed in Chapter 2). The first is what can 
probably be called the "received view" in contemporary cognitive science and looks 
within the individual: knowledge structures, carried in the form of mental 
representations, give rise to more or less competent activity across settings - i.e., a 
cognitive perspective. The second perspective opens up the relation between knowledge 
and activity by also looking outside the individual for constraints on competence: a 
person's knowledge, activity, and particular settings are mutually determining - i.e., 
an ecological perspective. While neither perspective denies the existence of the other's 
focus, neither would allow that the other treats the excluded aspect (knowledge 
structures versus settings) comprehensively. 

In important ways, these perspectives are competing accounts of the causal role of 
knowledge and setting in human affairs. They diverge over the phenomena of complex 
human inference, particularly in areas of human reasoning that have traditionally been 
seen as forms of logical inference (e.g., causal attribution) or procedural manipulation 
(e.g., mathematical problem solving). Careful empirical studies of these areas as "tasks" 
in laboratory settings have identified reliable sources. of difficulty and changes in 
performance with experience. But a growing empirical literature, collected in practical 
settings from classrooms to street markets over the past decade, poses serious challenges 
to the representativeness of these experimental phenomena and the adequacy of theories 
based on these phenomena. The challenge amounts to a profound discontinuity between 
cognitive theory and human practice, as in studies of quantitative inferences in and out 
of the classroom (Carraher, Schliemann, and Carraher, 1988; Lave, 1988a; Scribner, 
1984) or the complex enabling conditions for transfer of training (Campione and Brown, 
1990). Although cognitive accounts of complex human reasoning may ultimately "scale 
out" to encompass these discontinuities, the central theoretical challenge is to deal 
adequately with the situations in which human cognition and learning actually occur. 

An ecological analyses of "situated cognition" appears to require a shift in our 
working hypotheses about knowledge, from an objective structure possessed by an 
individual to a relation between the person and the social/material aspects of diverse 
settings (e.g., Brown, Collins and Duguid, 1988; Greeno, 1989). Although this debate 
concerns recent 'developments in cognitive science, the theoretical and methodological 
issues involved have a long history in the wider disciplinary structure of the behavioral 
sciences - e.g., Cole (1989) reviews related issues in cultural psychology, and Star 
(1988) frames recent ecological analyses of science within wider sociological traditions. 
Studies of algebra story problem solving will not resolve either the local debate in 
cognitive science or the broader disciplinary status of an ecological perspective on 
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human activity. However, by focusing on the central relation between knowledge, 
activity, and setting, we can examine very different explanations for constructing and 
using algebraic representations. The specific question, for each position, is what 
assumptions are required to explain the relationship between problem-solving 
strategies, tactics, and outcomes in a way that allows us to define "competence." 

Cognitive economies. The cognitive perspective assumes that strategies are 
abstract, plan-like knowledge structures (e.g., to solve an algebra story problem, find a 
precise value for the unknown quantity), while tactics are more specific knowledge 
structures that carry methods for implementing abstract strategies (e.g., to find an 
unknown quantity, write an algebraic expression that contains that quantity as a 
variable). Both are mental representations that are recalled in particular settings and 
give rise to activity that achieves better or poorer outcomes, depending on what 
knowledge these structures encode. Thus, what one knows resembles a cognitive 
economy: knowledge structures are carried in the head, selected in particular settings, 
and then converted into coordinated activity. Learning becomes a matter of getting 
knowledge into the head, usually in the form of explicit verbal instruction and practice, 
so that it can be carried across settings, and then getting this knowledge into action in 
an appropriate setting. 

This perspective is probably best articulated as what Newell and Simon (1976) call 
a "physical symbol system," a machine that interprets structured patterns of symbols 
which designate objects in the external environment. According to the Physical Symbol 
System Hypothesis, these interpretive machines and some peripheral mechanism for 
designating objects in the world are "necessary and sufficient means for general 
intelligent action" (p. 116). Although adherents to this view have begun to explicitly 
examine the relationship between environmental structure and more abstract 
constraints on behavior (Anderson, 1988), the designation relation is generally not part 
of the research program. Instead, competence remains firmly a matter of the knowledge 
that one holds and can use across settings (Newell, 1982, 1989). The distributed 
representation and processing movement (e.g., Rumelhart, McClelland, and the PDP 
Research Group, 1986) does not appear to restructure this theoretical position, though 
it does call symbolic representations into question as an explanatory level of analysis for 
mental representations. 

Representational ecologies. The ecological perspective similarly advances a 
causal argument about knowledge and human activity, but the organizing metaphor is 
one of interaction: knowledge is constructed as a mutually determining relation between 
a knower and settings. This might best be seen as intermediate between the cognitivist 
decision to attach knowledge of the world (i.e., settings) to mirror-like structures in the 
mind (Rorty, 1979) and earlier behaviorist theories that restrict mind to the peripheral 
status of stimulus-response bonds shaped by settings. Cognitivism and behaviorism are 
opposing poles of the familiar mind-body dualism, and they are polar opposites 
precisely because each resolves the dilemma of knowing about the world by eliminating 



the other's pole. The ecological perspective rejects this dualism by distributing 
knowledge across individual and settings (Costall and Still, 1987). 
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Because a.n ecological position takes knowledge as a relation between person and 
setting, problem-solving strategies can no longer be described in terms of internal 
knowledge structures alone. Instead, strategies become conventional and routine 
activities in an ongoing work process - i.e., a student tries to find an unknown value 
because this is what these problems are conventionally about in school and home work, 
and this activity is routine in the sense that one need not choose between alternative 
activities to get on with the conventional work. To the extent that teaching is 
organized around a view of learning in which the student needs to acquire a standard 
assortment of knowledge structures and then practice applying these in appropriate 
settings, the student should not choose alternative strategies during school or home 
work. In contrast, studies in Chapters 3 and 4 show that people do indeed deviate from 
the knowledge standard of recalled mathematical forms, sometimes in very interesting 
ways, and these nonstandard activities appear to be necessary constructive excursions. 

From an ecological perspective, tactics are extemporaneous local resolutions to 
snags (de la Roche, 1986; Lave, 1988a, 1988c) or impasses that arise in ongoing activity 
of pursuing strategies. They are constructed out of conventional materials and 
activities (e.g., drawing, making tables, and calculating) but are nonroutine in the sense 
that their eventual form cannot be determined in advance. \Vhen problems are novel, 
unanticipated impasses in conventional strategies are frequent, and this requires that 
the relation between person and setting (i.e., knowledge) is reconstructed across 
settings, a process of work that cannot simply be recalled. Taking knowledge as a 
relation between person and setting, passive vessel approaches to learning can be 
expected to produce inert forms of knowing (Brown, Collins, and Duguid, 1988), rather 
like the robust disconnection between school mathematics or physics and everyday 
cognition reviewed by Greeno (1989). Instead, settings have both material and social 
aspects that define a "practice," and learning occurs as one begins to participate in this 
practice (Lave and Wenger, to appear). Competence, then, is a particular set of 
working relations between a person and settings of practice (both material and social), 
perhaps culminating in full participation within the ongoing work of particular settings. 

5.2 Ecologies for quantitative inference 

Alternative theoretical accounts of knowledge, as an objective commodity versus a 
reconstructable 'relation, probably cannot be resolved by any analysis of hypothetical 
representations. As ecological analyses bring forward detailed observations of human 
practice in particular situations, proponents of the cognitive perspective design 
knowledge structures to handle each new observation. This could be seen as an 
adaptive relationship, even a research strategy: from careful descriptive studies of 
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human activity in open1 representational ecologies, we get descriptions of knowledge 
structures within closed representational systems. But these positions are not so easily 
reconciled when their explanatory accounts of knowledge inform our choices about 
important social issues like the design of educational materials and settings (Anderson, 
Boyle, and Reiser, 1985; Lave, 1988b; Resnick, 1987a, 1987b), assessment of individual 
competence (Collins, 1987; Newman, Griffin, and Cole, 1989), and the design of 
environments for complex human activity (Norman, 1988; Norman and Hutchins, 1988; 
Suchman, 1987, 1988). 

This is not to say that cognitive analyses of knowledge structures sufficient for 
complex activity are not revealing, or that criteria for representational equivalency have 
not been useful (e.g., Larkin and Simon, 1987). However, many problem-solving tasks 
have characteristics that these approaches, at present, do not adequately describe: (a) 
constructing a representation where there was none before, (b) solving problems when 
no single representation is expressive enough to make the problem well-structured 
(Simon, 1973; Star, 1989b), (c) solving problems where more than one agent is involved 
in performing a complex task (Hutchins, in press; Levin et al., 1986), and ( d) explaining 
why some types of inference are particularly robust or efficient. In important respects, 
algebra story problem solving has each of these characteristics, both for beginners and 
more experienced problem solvers. The analyses that follow are undertaken in the hope 
that an ecological approach will open up new descriptive and explanatory accounts of 
competent quantitative inference in this domain. In particular, we can begin an 
ecological analysis of quantitative inference by holding the interpretive categories of 
"strategy" and "tactic" accountable to a view of the notational and quantitative 
materials generated during problem-solving episodes. 

5.2.1 The material basis of quantitative inference 

Treating model tactics as an atomic category black-boxes important distinctions about 
the structure and content of quantitative inference. In the written protocols of 
advanced undergraduates (Chapter 3), state simulations most commonly appear as a 
series of calculations, organized as a table in which successive rows correspond to 
different states. Less frequently, states are constructed as a series of connected 
extensions to a spatial diagram, showing a single dimension explicitly (e.g., distance or 
work output) and carrying information from the other dimension (e.g., time) as 
peripheral annotations (e.g., quantitative labels, expressions, etc.). Model tactics also 
show a characteristic structure and content in qualitative analyses of solution attempts 
on problem MOD (Chapter 4). When problem solvers use model tactics to work around 

1The "open" character of representations in human activity has been described by 
Simon as the "hopelessness of defining in reasonable compass a problem space that could 
not, at any time during the problem solving process, find its boundaries breached by the 
intrusion of new alternatives" (1973, p. 188). This challenge has been taken up recently 
in the literature on "distributed artificial intelligence" (e.g., Hewitt, 1986; Star, 1989b ). 
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the dilemma of finding a precise value for an unknown quantity, their verbal reports 
add contextual detail to the role of conventional notations used during different tactics 
and the kinds of quantities that problem solvers explicitly manipulate. 

As argued in Chapter 4, interpretive categories for strategies and tactics give a 
relatively neutral organizational overlay to written and verbal protocol materials. These 
descriptive categories do not tell us how models are constructed, how they promote 
inferences, or how they help to organize problem-solving activities. However, the verbal 
interviews are richer than the current episodic interpretation admits, and by extending 
this framework slightly, we can analyze the material setting for quantitative inference in 
these problems. The following sections examine interview materials by treating the 
problem-solving setting as a representational ecology in which materials are 
constructed, manipulated, and revised as a solution attempt progresses. 

Framing assumptions. In the conventional meaning of an ecology (i.e., relations 
between organisms and their environment), what are the relations between people 
(problem solvers) and the environments in which they solve problems? The 
problem-solving settings studied here are complex ecologies in many respects: they are 
places where people work, places where they are asked to reproduce standard ways of 
thinking, and places where their efforts are evaluated by others. Although the verbal 
interviews do not study many of these aspects directly, the wider sense of ecology as a 
relation between a person and their work environment holds for advanced 
undergraduates, algebra students, and algebra teachers alike. The analysis of materials 
developed in this chapter focuses on a very narrow slice through the work settings of 
algebra students and teachers: the notational structures that they use and the ways in 
which they embed different kinds of quantities in these structures. 

Ecological analyses of quantitative inference are not so commonplace that we have a 
clear methodological trail to follow. Studies of quantitative reasoning outside of school 
settings generally employ detailed observation of inference and calculation embedded in 
ongoing activities - e.g., buying groceries (Lave, Murtaugh, and de la Rocha, 1984), 
preparing meals under dietary constraints (de la Roche, 1986; Lave, 1988c), filling 
package orders (Scribner, 1984), or receiving payment for marketplace transactions 
(Carraher, Carraher, and Schliemann, 1987). In each case, aspects of the material and 
social setting figure prominently in the observational record and the interpretation of 
findings. 

Even within the individualized context of working on school math problems, the 
material setting for quantitative inference is quite complex. Analyses in this chapter 
focus on specific materials constructed and manipulated by problem solvers during their 
solution attempts. Materials originate within and are carried across episode boundaries 
identified in a relatively coarse interpretive framework, and the following assumptions 
frame an analysis of these materials: 



153 

• There is a simple descriptive typology for the structure and content of materials 
that are produced within problem-solving episodes (described in a following 
section). 

• As combinations of notational structure and quantities, these materials form a 
representational ecology within which problem solvers work. 

• These materials are a physical setting in which problem solvers construct tactics 
that we interpret as a coherent problem-solving approach. 

• The quality of inferences about problem structure depend upon what local material 
constructions will afford, their surfaces offering niches for quantities and their 
structure helping to organize activity (e.g., calculations). 

• \Vhen people infer quantitative constraints on problem structure, competence is a 
working relation between the person and material setting. 

Clearly, the key assumption for an ecological analysis is that the material setting can, 
in some sense, "afford" a problem solver with opportunities for inference or 
manipulative activities (Gibson, 1979; Chapter 4.9 in Reed and Jones, 1982). This is 
similar to part of Gibson's original intent for the term: 

The affordances of the environment are what it offers the animal, what it 
provides or furnishes, whether for good or ill... It implies the 
complementarity of the animal and the environment (Gibson, 1979, p. 127). 

However, in using this term, I do not want to require that knowledge of the world must 
be direct, something for which Gibson's theory of direct perception (or ecological 
realism) has been roundly criticized (e.g., see Ullman, 1980, and the surrounding 
commentary). Instead, when problem solvers construct materials during a 
problem-solving episode, they are changing the local setting, with attendant changes in 
opportunities for inference and manipulative activity. By thinking of affordances as 
relations between the person and setting, I mean to introduce a level of analysis at 
which complex constructive problem solving can be examined. 

As mentioned earlier, there may be no analysis that will distinguish between 
cognitive and ecological approaches to complex human activity. In fact, an effective 
ecological analysis will describe regularities in human activity that can act as 
specifications for extending a hypothetical collection of knowledge structures. Without 
trying to settle theoretical claims, the following analyses examine (a) the relative 
prevalence of materials used by students and teachers, (b) the material construction of 
problem-solving tactics, ( c) relations between materials and strategic activities, ( d) 
relations between materials and local difficulties, and ( e) the relative likelihood of 
introducing inferences about problem structure (correct, conceptual errors, and repairs) 
when using different materials. 
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5.2.2 (Re) Constructing material designs 

The added detail in verbal interviews makes it possible to develop a more systematic 
account of notations and quantities used during model tactics, and to ask how these 
relate to other problem-solving tactics and conceptions of problem structure. To do 
this, new categories for "notational structure" and "quantitative ontology" are added to 
the interpretive framework for problem solving episodes. These categories describe the 
local material setting of problem-solving episodes, and they were applied to verbal 
interview transcripts along with the interpretive framework as described earlier 
(Section 4.2 in Chapter 4). 

Identifying local materials. Participants produce a variety of materials 
(enacted, narrated, or written) during an episode. Along with tactics, strategies, and 
other interpretations of episodic content, the following categories were used to identify 
conventional materials: 

• Gestures. Usually also narrated but without written material, the participant uses 
hand or arm movements to depict aspects of problem structure. For example, 
Celeste moves her hands apart and narrates arithmetic operations to enact the 
first and second hours of travel on problem MOD (Chapter 4, Section 4.3.1, S-1 
and S-3). 

• Narrative description. 'Vithout written material, the participant gives a verbal 
report of operations on quantities or relations among problem elements. For 
example, Richard describes travellers with synchronized watches as a justification 
for inferring that travel times are equal on problem MOD (Section 4.3.4, S-8). 

• Expressions. The participant explicitly writes either arithmetic or algebraic 
expressions. For example, Karen writes incompatible algebraic equalities before 
attempting a solution on problem MOD (Section 4.3.2, S-7). 

• Tables. Written material (quantities, labels, arithmetic or algebraic expressions) 
and narrative descriptions of these materials are organized around the two 
dimensional structure of a table. For example, Karen completes a table of state 
calculations in a successful solution attempt on problem MOD (Section 4.3.2, 
S-26). 

• Diagrams. Much as with tables, diagrams provide spatial locations for other 
notational material. For example, Paul constructs a diagram of successive states 
in problem MOD (Section 4.3.3, S-5), reading an arithmetic relation from the 
first state (i.e., adding distances) and later extending segm.ents labelled as states 
towards t~e given distance apart. 

These interpretive categories are are not independent, since tables and diagrams 
provide spatially organized niches ·or surfaces for placing or finding other notations 
(e.g., quantities or expressions). Thus, notations with more complex structure may 
afford opportunities for quantitative inference, much as local ecological conditions 
provide niches for organisms and their activities. Thei surfaces of more complex 
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notations also afford configural information about their contents, as when labels on 
congruent segments in a diagram are read to imply that quantities contained in those 
labels should have equal values. While configural information is also available in tables, 
their structure provides less in the way of semantic constraints on quantitative 
inference. For example, the contents of adjacent cells in a table may be related, but 
their spatial adjacency provides no constraint on what that relation might be. 

Notational structure. As ecological niches for inference and activity, notations 
afford configural constraints through their conventional structure. By conventional 
structure I mean the shape that materials take as they are constructed across space 
(e.g., successive rows in a table) and over time (e.g., constructing a sequence of states). 
Structural conventions need not be written, as when Richard's narrative description of 
time intervals on problem MOD describes a spatial shape (i.e., congruent intervals 
bounded by common places), while his narration follows a temporal structure (i.e., "If 
they leave at the same ... then at some specific time later ... " in Section 4.3.4, S-8). 
These shapes are conventional in the sense that different people construct and interpret 
them in similar ways. 2 

By moving from types of notation to their conventional structure, I am framing a 
specific hypothesis about the material basis of quantitative inference: the structure of 
conventional notations simultaneously renders and affords important relations between 
quantities. To pursue this hypothesis, we need to reinterpret descriptive types of 
notation as conventional structural forms: 

• Flat expressions. Written arithmetic or algebraic expressions have a superficially 
flat structure, as when Paul narrates and then writes an arithmetic expression 
during a whole/part ratio on problem MOD (Section 4.3.3, S-2). Clearly, these 
notations are not flat under interpretation, but their written shape is linear, 
compressed, and referentially redundant (i.e., multiple occurrences of the same 
term). 

• Narratives. Spoken materials have a conventional structure in two senses: (a) 
they often describe other structural shapes and (b) this descriptive talk has a 
temporal and articulatory shape of its own. For example, both are significant 
aspects of Richard's narrative model for equal times, described above. A detailed 
investigation of narrative structure is beyond the scope of this analysis, which 
treats narrative material without writing as a distinct category. However, 
narratives often provide configural material beyond the relatively fiat structure of 
expressions, rather like a spoken scenario. 

• Two dimensional {2D) tables. Tables organize quantities, expressions, and 
calculatioris around locations in a dimensional array. For example, Celeste 
organizes state calculations in a 2D table during her solution on problem MOD 
(Section 4.3.1, S-4). 

2Livingston (1986) makes similar points about the "lived work" of constructing and 
interpreting mathematical proofs. 
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• Scenes. Diagrams organize quantities around locations in an iconic drawing of 
typed entities in a single dimension. For example, Paul uses adjacent line 
segments emanating from a common place when inferring that train distances are 
added on problem MOD (Section 4.3.3, S-2). 

These structural categories oversimplify problem-solving activities by assuming that 
episodes showing conventional notations are mutually exclusive. Instead, more complex 
structures (i.e., 2D tables and scene diagrams) embed less complex structures (i.e., 
expressions and narrative material), meaning that problem solvers redundantly 
structure their activities with quantities both within and across episode boundaries. In 
order to analyze these materials, I also simplify the situation by pulling out what 
appears to be the primary form of notation (e.g., a diagram, with or without significant 
narration) and categorizing its conventional structure. 

Quantitative ontology. People use quantities and quantitative relations in 
different ways during their solution attempts, and these can be described as a local 
quantitative ontology. During any particular episode, they may either use quantities to 
describe a "state" within the problem's situational structure, "compare" quantities 
associated with different states, or present a post hoc summary of the "role" that 
quantities play in the problem's quantitative structure. 

• State. Model-based simulation tactics use intermediate states to organize 
calculations around a prospective partitioning of one dimension, as with time in 
Celeste's solution of problem MOD (Section 4.3.1, S-4). 

• State comparison. Ratio tactics usually compare quantities arising from 
distinguished states within the problems' structure, as in Paul's whole/part 
comparison when solving problem MOD (Section 4.3.3, S-2). 

• Role. Algebraic tactics typically use terms in expressions to summarize composite 
roles in a retrospective view of problem structure, as with train distances in 
Karen's various algebraic expressions on problem MOD (e.g., A+ B = 880). 

An alternative interpretation of quantitative roles as summaries is that they are "final 
states" in a temporal or exploratory history of problem-solving activities. In keeping 
with this view, state comparisons typical of ratio tactics may connect state. and role 
ontologies for quantity, arranging initial and final state values in what amounts to a 
structural analogy with a simple manipulative calculus (i.e., cross multiply and 
simplify). These kinds of solution attempts may sit at a boundary between arithmetic 
calculation and algebraic manipulation, as in Paul's solution to problem MOD 
(Section 4.3.3) .. Celeste also makes frequent and relatively successful use of arithmetic 
and algebraic proportions across interview sessions, and she often produces these 
materials when asked to use algebra. 

The following analyses reserve the ontological category of "state" for a prospective, 
partitioned sense of quantity that includes state comparisons. In contrast, the category 
of "role" captures a retrospective, composite view of quantity. Within any particular 
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episode, a problem solver might view a problem's structure as a collection of states or 
as a set of related roles. Notations and quantitative ontology usually change over the 
course of a participant's solution attempt( s). For example, Paul's solution for problem 
MOD (Section 4.3.3) shifts from a written diagram used to infer the relation between 
distances in a single state, to. a comparison of states using an arithmetic expression to 
divide the final distance apart by the distance apart after the first hour, and finally to a 
retrospective summary of quantitative roles using a recalled algebraic expression. 
Likewise on problem MOD, Karen shifts from diagrams, tables, and algebraic 
expressions that carry role quantities to a model-based simulation that organizes state 
values in a table (Section 4.3.2). 

5.3 Qualitative analyses of material designs for 
inference 

\Vhen categories for notational structure and quantitative ontology are combined, we 
have the materials for a much richer interpretation of differences between problem 
solvers and their problem-solving tactics. Only a few of these material combinations are 
"standard" activities in school mathematics. By standard I mean the prescribed use of 
conventional materials, as when algebra students are taught to manipulate expressions 
carrying quantitative roles. Similarly, ratio tactics using arithmetic or algebraic 
expressions to compare state quantities are sometimes explicitly taught in connection 
with algebra story problem solving. In contrast, complex notational structures carrying 
state quantities are decidedly "nonstandard" (i.e., 2D or scene notations), since they 
seldom3 appear as instructions for how to solve algebra story problems. The surprising 
findings of Chapters 3 and 4 are that nonstandard materials play such a critical role in 
competent problem solving, even after years of instruction with standard materials. 

5.3.1 Material designs within episodes 

Figure 5.1 shows examples of complex notational structures - i.e., 2D or scene 
structures - that carry either state or role quantities. Examples are drawn from 
solution attempts on problem MOD, analyzed in detail in Section 4.3 of Chapter 4. 
Each notation involves written quantities, embedded in the spatial structure of a 
notation under different conventions. These are "material designs" in the sense that 
people construct the particular combination of notation and quantity within the 
episode. From an ecological perspective, these materials provide "niches" for 
information given or implied in the problem statement. 2D tables provide an organized 

3While particular values for related variables are often shown in 2D tables as part of 
the conventional approach to graphing functions, these materials are not standard for 
instruction on applied problem solving. 
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array of cells that can be filled with different kinds of quantities, just as diagrammatic 
scenes provide iconic components whose surfaces can be labelled with different kinds of 
quantities. The _ecological hypothesis is that when problem solvers label or fill niches in 
these notations, the resulting configural arrangements afford different opportunities for 
quantitative inference and manipulation. The following paragraphs examine the 
affordances of different material designs, using examples from Figure 5.1. 

2D state tables. Celeste's table of state calculations (upper left in Figure 5.1) 
places quantities in cells of a 2D array: rows organize successive time intervals in the 
simulation, while columns separate quantities for faster and slower trains. Row and 
column position in the array designate properties of state quantities carried in each cell, 
and these properties often appear explicitly as row or column labels. Celeste's table 
uses this convention weakly by placing time units in successive rows, and a more 
explicit example of these conventions can be found in the third episode of Figure 3.2 in 
Chapter 3. Before starting the table, Celeste's calculations correctly use addition, 
embedded in a narrative and using hand movements to describe adjacent and 
opposite-directed motion during first and second hours of train travel. 

After writing these results as the first row of the table, Celeste considers the third 
hour in her simulation and mistakenly chooses to double distances accumulated after 
tv.·o hours. This shift from addition to doubling introduces a conceptual error and 
coincides with a shift from one form of notation (narrative/gestural) to another (2D 
state table). In keeping with the hypothesis that material settings afford inferences 
about problem structure, this change in setting affords Celeste a different 
understanding of linear rates. At this point in her solution attempt, conventions for 
extending the table (i.e., adding rows and filling their contents) organize state values 
and calculations adequately, but nothing in the structure of the table gives explicit 
evidence that doubling, as an operation for transitioning to the next state, violates 
linearity. In particular, the conventions for adding rows to the table do not require a 
linear relation across quantitative dimensions, and the array of constant values that 
results gives no configural clues for judging linearity (i.e., disproportionate spatial 
extension). Treating the next row in the table as the next state, Celeste continues 
without detecting her error and reaches an impasse within the configural structure of 
the table (i.e., "I'd take the half way out" at S-4, then "you're just going back to where 
you started" at S-5 in Section 4.3.1). 

As a material design, 2D state tables clearly support attempts to find precise 
solutions. They also provide positive and negative affordances for both inference and 
manipulation: 

+ a positional classification for the quantitative dimension of cell values (e.g., time 
or distance) by applying row and column labels (constrains inference, organizes 
manipulation) 

+ a replicable form for local relations like equal times and composite distances 
(constrains manipulation) 
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+ a local site for calculation, extending quantitative relations to the next row and 
state, in the case of iterative simulation (organizes manipulation) 

+ a local site for comparing the current state with limit constraints, as well as 
choosing a generating value for the next state in a heuristic simulation (organizes 
inference and manipulation) 

+ low overhead cost for revising the history of a simulation, simply by adding ne\v 
rows (flexible manipulation) 

- no configural constraints on choosing relations between state quantities from 
either dimension (inference) 

- no configural constraints on choosing quantitative relations that transition 
between states, essentially a local version of rate as a role quantity (inference) 

- no feedback on the linearity of rates or their composition (manipulation) 

- no configural constraint or explicit location for the limit constraint (inference and 
manipulation) 

State scenes. Paul's prompted completion of a drawing for train separation is 
shown in the upper right of Figure 5.1. The scene starts with distances travelled after 
the first hour, drawn as collinear and adjacent segments that are labelled with state 
values for distance. Elapsed time is not explicitly rendered, though Paul does narrate a 
temporal interval while constructing the state scene ("you start off ... this is one hour's" 
at S-2 in Section 4.3.3). This starting scene promotes correct inferences about adding 
distances and equal times ("So they go 160 kilometers in 1 hour" at S-2) and quickly 
leads to a ratio solution that compares starting and final states (i.e., shown below his 
diagram as a fiat arithmetic expression). 

\Vhen asked to complete the scene, Paul constructs four following hours as 
segments connected to the prior state's scene. These extend away from the common 
origin and are labelled with individual values for distances. Although Paul does not 
construct these state scenes as a solution attempt, it is difficult to imagine how he 
could replicate a conceptual error like Celeste's successive doubling operation. This 
would require that he double the number of segments constructed between each 
successive state or that he change the value of labels for successive segments in the 
diagram. Either activity would violate the configural sense of moving at a constant 
speed that Celeste retrospectively narrates but is unable to verify in her 2D table of 
state calculations. Thus, different notational structures carry the same kinds of 
quantities with very different consequences. 

Both 2D state tables and state scenes can organize calculations to determine precise 
solutions, but the configural properties of scenes afford a wider class of quantitative 
inferences: 

+ configural constraints on quantitative relations in the rendered dimension, 
including local and limiting relations (constrains inference) 
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+ quantities can be carried as labels on their iconic objects of reference, imposing a 
common type in the rendered dimension (constrains inference, organizes 
manipulatio:a) 

+ a local site for calculation, extending quantitative relations as connected 
components of the scene for iterative simulation (organizes manipulation) 

+ explicit feedback on the linearity of individual rates and their composition, within 
conventions for the shape and number of scene components (constrains inference, 
organizes manipulation) 

- high overhead cost for revisions to the history of a simulation, erasing and 
redrawing iconic states (manipulation) 

- multiple sites for state values, located at places or segments, and multiple 
renderings for segment labels, as local or cumulative values (inference, 
manipulation) 

- partial rendering of the implicit dimension (e.g., counting connected segments to 
determine cumulative time) violates configural constraints for all but congruent 
relations in the explicit dimension (inference, manipulation) 

- iconic components do not support metric precision for local or limit value 
comparisons, as in measuring cumulative distance (inference) 

- iconic quality of configural constraints is restricted to linearly ordered dimensions 
like motion, output, or time (inference, manipulation) 

2D role tables. Karen's 2D "dirt table" arranges role quantities in the lower left 
of Figure 5.1, providing cells for quantities that are typed by columns and related to 
events by rows. The structure of her table is much like Celeste's state table, but the 
contrast between role and state quantities is rendered by literally closing off any 
possibility of state activity at the bottom of the table. Also, the dimensions of the table 
do very different work in each material design. In Celeste's 2D table of state quantities, 
the horizontal dimension (columns) renders one quantitative measure (distance) in a 
way that separates the contribution of different trains, while the vertical dimension 
(rows) renders the other quantitative measure (time). Rate is distributed across the 
table as a history of simulation. In contrast, Karen's 2D role table mixes three 
quantitative measures together in the horizontal dimension (i.e., d, r, and t), while the 
horizontal dimension renders different events in the situational structure of the 
problem. These are very different material designs, both because of the different kinds 
of quantities carried in the table and because of the way the structure of the table is 
used to render relevant aspects of problem structure. 

Karen manages to insert given values for rates into appropriate cells, but then 
struggles with where to place the given distance apart (880 km). Without introducing 
algebraic expressions relating train distances (e.g., D1 and 880 - D1), the role table 
provides no correct niche for the limiting value, and Karen mistakenly inserts 880 into 
both distance cells for trains A and B. Transitioning between this annotation and 
algebra tactics (i.e., role expressions), she constructs several incompatible expressions 
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and ultimately abandons both tactics in favor of model-based iterative simulation. The 
point at which Karen abandons her 2D role table illustrates how the same notational 
structure supports very different material designs. As shown in Section 4.3.2 of Chapter 
4, she tries to insert a single hour into cells for role quantities: "Oh! \Vell time is 1 
(writes 1 in time cell for train A) ... No" (S-21). The conventional structure of the 2D 
role table will not hold state values for time in a way that is coherent with role values 
for rate and distance: "that would just be 60 plus 100, and that's not 880 ... 60 times 
100, no that's not it either" (S-22). Abandoning the role table as a material setting for 
state quantities, Karen reconstructs an earlier role scene to show a state in train 
separation after the first hour, and then finds a solution in a 2D table of state 
quantities somewhat better organized than Celeste's solution (see Figure 4.3). 

Unlike complex notational structures carrying state quantities, 2D role tables afford 
no manipulative capacity for determining precise values. However, they do afford 
additional constraints on the dimensional organization of table entries, even while they 
have many of the drawbacks of 2D state tables: 

+ positional classification of dimensional and event type for role quantities 
(constrains inference) 

+ recall of relations between adjacent columns when column labels carry a 
memorized formula (organizes inference) 

+ implicit convention for recognizing when a sufficient collection of quantitative 
constraints are available or when necessary quantities are missing (organizes 
inference) 

- no configural constraints on quantitative relations between quantities in cells 
(inference) 

- no unique position possible for composite quantities (inference) 

- no manipulative capacity 

Role scenes. Richard constructs a diagrammatic scene carrying role quantities 
(lower right in Figure 5.1). This role scene explicitly uses the spatial configuration of 
collinear segments to show a composite relation between train distances and a "brace" 
for the given total (880 km). Unlike Paul's state scene, which could be used to organize 
calculations in a solution attempt,4 Richard's role scene supports inferences about 
quantitative relations but cannot be directly manipulated to determine a precise value 
for the unknown time. 

In contrast with Karen's difficulties when trying to find locations for quantities in a 
2D role table and relations between these quantities as algebraic constraints, Richard 
uses this role scene to justify placing values and expressions in a 2D role table that is 

4Celeste uses state scenes for iterative simulation on several problems; Paul uses a 
state scene to record a heuristic simulation on problem MRT; and comparable materials 
are used by the advanced undergraduates studied in Chapter 3. 
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almost identical to Karen's (see Figure 4.5 in Chapter 4). He then generates algebraic 
expressions by carefully reading cell contents out of the two dimensional structure of 
the table. Richard infers that unknown times are equal after a narrative account of 
their common boundaries, and he infers that distances add on the basis of their 
con:figural position in the role scene (i.e., "from the drawing, we can tell that when we 
add the two separate distances together, we get the total distance of 880 kilometers" in 
Section 4.3.4, S-11). Thus, he overcomes the relative con:figural opacity of a 2D role 
table by constructing narrative scenarios or diagrammatic scenes that render one 
dimensional relations between quantitative roles. 

As with 2D role tables, role scenes afford no manipulative capacity for determining 
precise values. However, much like state scenes, their con:figural properties afford some 
forms of quantitative inference: 

+ con:figural constraints on quantitative relations in the rendered dimension 
(constrains inference) 

+ quantities can be carried as labels on their iconic objects of reference, imposing a 
common type in the rendered dimension (constrains inference) 

- no explicit rendering of the implicit dimension, though peripheral expressions are 
often used (inference) 

- iconic components do not support metric precision for value comparisons 
(inference) 

- iconic quality of con:figural constraints is restricted to linearly ordered dimensions 
like motion, output, or time (inference) 

- no manipulative capacity 

In summary, different combinations of notational structure and quantitative 
ontology within an episode can be interpreted as the construction of material designs, 
and these lead to very different forms of quantitative inference in algebra story problem 
solving. 2D tables provide a positional typology for state or role quantities, but they 
provide very little explicit information about how these quantities are related. By 
comparison, scene diagrams for states or roles also provide organized locations for 
selected quantities (e.g., distances in Paul's state diagram), but they are less complete, 
often leaving entire classes of dimensional entities implicit (e.g., times in Paul's state 
diagram). However, the scene notations shown in Figure 5.1 render explicit con:figural 
information about quantities and their relations that is absent in 2D notations. Thus, 
the con:figural properties of scene notations have an advantage for some forms of 
quantitative inference. 

While complex notational stillctures carrying states are nonstandard (i.e., not 
schooled), they are effective because there are conventions governing their use, and 
people usually come to the problem-solving setting aware of these conventions. 
Nonstandard material designs afford relevant inferences when their con:figural structure 
~arries quantities in a way that justifies particular quantitative relations (e.g., 
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same/equal, adjacent/additive). But material designs need to do more than afford 
relevant structural inferences if their users are to obtain precise results, and complex 
notations carrying state quantities often provide an effective (if not accepted) means for 
obtaining precision. For example, 2D tables or scene diagrams showing successive states 
support solution attempts because one can extend the written structure of the table or 
diagram through the simulated dimension to create new states, organize the 
calculations required for finding quantities in these states, and record the values that 
result within the local structure of the notation. That is, the conventions governing the 
construction of successive rows of a table or connected components of a diagram can 
carry quantities in what we have called model-based simulation. 

5.3.2 Combining materials across episodes 

Stepping back from the local arrangement of notation and quantity within episodes, the 
conventional written structure of nonstandard materials allmvs problem solvers to work 
around disruptions introduced by a need for precise calculation in a complex 
quantitative structure. But complex notational structures are not invented during 
algebra story problem solving. Instead, tables and diagrams are conventional notational 
systems in many settings, both inside and outside of school, and well before students 
are introduced to formal algebraic notation. For example, we might assume that 
pre-algebra students are able to read and use calendars, purchase and find seats in 
auditoriums, or memorize multiplication tables. Each designed artifact locates items 
(e.g., planned events, seats, or products) within multiple, ordered lists or classification 
schemes (e.g., days of the week versus weeks of the month). Similarly, we might assume 
that pre-algebra students are able to construct and interpret a simple map giving 
directions to some location. These drawings locate items in a configural scene, using 
distinguished places, labels, and topological relations of connectivity, relative position, 
etc. 

Calendars or maps are not solutions to algebra story problems. However, their 
material design rests on a set of conventions that, when suitably reproduced and 
combined, are sufficient to carry quantities and support some forms of quantitative 
inference. The central empirical finding of "model-based reasoning" in beginning and 
competent algebra story problem solving can be explained in terms of constructing 
combinations of conventional materials. Although complex notations for 2D tables and 
d.iagramma.tic scenes can take on more specialized conventions in the practice of 
mathematics (e.g., Cantor's diagonal method or Cartesian graphs for linear functions), 
people come to algebra instruction already :fiuent5 in a set of conventions for 

5This is a tacit "representational practice" not unlike relatively invisible aspects of 
scientific work recently described by sociologists of science (Fujimura, 1987; Lynch, 1988; 
Star, 1989a). In effect, the conventions around nonstandard materials allow them to act 
as "immutable mobiles" that are transportable across problem settings and locally fitted 
to particular problem settings (Latour, 1986). 
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constructing and interpreting these structures. Both support the construction of 
standard algebraic materials, but they also allow problem solvers to obtain quantitative 
precision without standard materials. This sense of conventions draws on sociological 
studies of constructing and interpretating artistic performances (Becker, 1982), and the 
idea that nonstandard material combinations "work around" algebraic precision draws 
on recent studies of routine computing use in diverse work settings (Gasser, 1984). 
Both lines of analysis stress the improvisational character of getting work done within 
and around formal systems. 

Structural inference versus precise calculation. How do the conventions of 
different material designs contribute to making structural inferences and organizing 
quantitative calculations? Within an episode, any particular material design may 
support inference or calculation to a different extent, and it is often when the a:ffordance 
for these activities is mismatched that people transition into another episode and 
construct another material design. These transitions sometimes occur when episodes go 
"off track" (i.e., the participant gets lost, reaches an impasse, or decides that they are 
wrong about some aspect of problem structure). For example, on problem MOD Karen 
cannot find a cell in her 2D role table that will sensibly carry a state quantity (the first 
hour of travel). Unable to pursue the state within a material design for role quantities, 
she reconstructs an earlier role scene into a state scene and confirms that the trains are 
separated by 160 km after one hour ("\Vell yeh. He'd have gone 60 and he'd have gone ... 
that far in one hour." at S-23 in Section 4.3.2). ·writing this inference as an association 
between values (1 = 160), Karen transitions into an episode where she constructs a 2D 
state table and finds a precise solution ("I'll do this til I hit 880!" at S-30). 

Transitions between material designs also occur when people are "on track" and 
working towards standard algebraic representations. For example, on problem 110D 
Richard combines different materials across episodes in his solution attempt, working 
around the relative configural opacity of a 2D role table by taking advantage of explicit 
configural relations in both a narrative scenario describing coincident time intervals as 
role quantities ("If they leave at the same time ... " at S-8 in Section 4.3.4) and a role 
scene showing composite distances ("from the drawing we can tell..." at S-11). These 
materials identify relevant structural constraints, and Richard incrementally assembles 
these in a material design with robust manipulative capacity - i.e., standard algebraic 
expressions. 

Conventional ways of working around problems. State quantities generally 
have an accessible manipulative calculus for students (i.e., model-based iterative or 
heuristic simulation), provided that these quantities and local quantitative relations 
between them c~ be embedded within given constraints. For example, Karen's 2D 
state table on problem MOD allows her to accumulate local values for time and 
distance "til I hit 880!" Successive states are constructed by adding rows at the bottom 
of a 2D table, performing a common set of arithmetic calculations (160 x k, where k is 
the "next" value for time), and writing the results in cells of each new row. These 
continue until the calculated result equals or exceeds the given distance apart (880). A 
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nonintegral remainder (e.g., "you've got SO more to worry about" at S-30) is a 
relatively minor disturbance within the organizational structure of the table, since local 
calculations can be scaled to "fit" within given constraints (e.g., "its just another half 
an hour" at S-31). 

This is the sense in which model tactics are constructed as workarounds to standard 
algebraic solutions. The event structure of the problem text acts as a specification for a 
nonstandard material design: one can get started in a complex notation without 
committing to quantitative roles or their relations, relations are afforded in the course 
of constructing the design, and the conventions for manipulating components of the 
design (e.g., adding a row or connected scene) carry the organization for a solution 
attempt just as they carry quantities (e.g., a label on a segment or the contents of a 
table cell). However, workarounds using nonstandard material designs can break down: 
(a) when the problem describes events that are not states within a global constraint -
e.g., "A small hose can fill a swimming pool in 6 hours ... " in problem HOS;6 (b) when 
limiting constraints are difficult to evaluate - e.g., equal distances in composite but 
unequal times, in problem MRT; or (c) when written materials are so weakly structured 
that progress is difficult to monitor. For example, during a solution attempt using 
model-based heuristic simulation on problem MRT, Celeste rearranges the dimensional 
structure of a 2D state table at subsequent states and loses track of progress towards a 
precise solution. 

Role quantities carried in complex notational structures (i.e., 2D tables or scene 
diagrams) cannot be directly manipulated to find solutions. That is, there are no 
conventional activities with components of either notation that physically organize the 
calculation of precise values. A 2D role table shows composite values or variables for 
unknown values, but extending the table in any direction violates the dimensional 
meaning of events (vertical dimension) or role quantities (horizontal dimension). 
Similarly, a role scene shows relations between quantities but cannot be extended to 
obtain more precise information about these quantities. As a result, constraints that 
are identified using either material design must be carried into other materials that 
have a manipulative capacity. By design, the manipulative conventions of specialized 
notations like arithmetic or algebraic expressions support precise calculations that are 
rigorously consistent. However, these relatively flat notations must be constructed (or 
given) before manipulation is possible. While complex material designs for role 
quantities do no afford precise calculation, they do carry role quantities or even 
expressions in their cells or labels, and these can be assembled (perhaps with difficulty) 

6See Appendix A for the texts of problems mentioned in this section. 



55(; I< 3301< 
t 

Figure 5.2: Tutorial in one dimensional scenes on problem MOD. 

into a collection of related expressions. Within an ecological view of the material 
setting, this assembly transitions into a different material design. 

5.3.3 Learning to combine standard and nonstandard 
materials 
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In order to construct an effective mathematical representation, one needs to be able to 
do more than use conventional materials in isolation. In fact, the studies reported in 
Chapters 3 and 4 show that people with very different levels of ascribed competence are 
able to use both standard and nonstandard materials, although algebra students have a 
much more difficult time combining these in a way that leads to standard algebraic 
expressions. At least part of what one needs to learn a.bout algebra story problem 
solving is how to combine these materials to determine precise values within the 
standard notational structure of algebraic expressions. 

Collaborative combinations of conventional materials. What follows is a 
series of protocol excerpts from interviews with Celeste ( a.n algebra student) that show 
the results of a. relatively simple tutorial intervention. Towards the end of her third 
session {of four), the interviewer presents a. convention for drawing and la.belling 
diagrammatic scenes for each quantitative dimension. Although the intervention and 



subsequent collaboration are brief, Celeste incrementally changes her approach to 
subsequent problems. 

I-49 I'll give this to you, and you can use it if you want. In this trains 
problem we saw we could draw (draws an elongated rectangle with an arrow 
on the end) ... here's a distance going in that direction. They're travelling in 
opposite directions, directly away from each other (draws another). So this 
one's gonna go 550 kilometers (labels above) ... 

S-49 And the other one's gonna be 330 ... 
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As show at the top of Figure 5.2, horizontal and adjacent directed segments for distance 
are drawn at the top of the page (1-49), and Celeste easily finishes labelling these with 
values, found earlier while solving the problem. Below and to the left, vertical and 
congruent directed segments are drawn for identical 5 1/2 hr intervals of travel (S-54). 
In this case, the relation between quantitative states and roles in the time dimension is 
described by analogy to a clock running to produce "piled up hours" and shown as 
(upward) directed segments in the scene. 

1-51 Now we can draw times in the same way. I can draw a segment for 
the time. Let's draw the times going up and down, as if its a clock where 
you just keep piling hours on top ... 

S-51 Oh yeh. 

1-52 So here's a bunch of hours piled up, let's say the clock is running 
in this direction (draws an arrow at the top), its running upwards. So here's 
5 and 1/2 hours. 

S-52 And here's where they started (indicates base). 

I-53 They start down at the bottom, that's the starting time. 

S-53 Ok. 

I-54 And so here's another 5 and 1/2 hours. Its actually the same 5 
and 1/2 hours ... 

S-54 Um hmm ... for the other train, its exactly the same. 

This collaborative construction of dimensional scenes for related distances and 
times depends on shared conventions for drawing, labelling, and reading diagrams that 
Celeste is already capable of using (e.g., her abbreviated diagram in Figure 4.2). 
However, the tutorial occurs after Celeste has solved the problem using a 2D table of 
state calculations (i.e., model-based iterative simulation), and directed segments are 
labelled with constant values rather than algebraic expressions. Thus, the tutorial does 



not actually use these role scenes to solve a problem or to construct a standard 
algebraic representation. 
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Constructing standard materials, after the solution. On the next problem 
(RACE, the last of the comparison problems), Celeste finds a solution by iteratively 
constructing states that extend a segment diagram (i.e., another model-based iterative 
simulation). However, immediately after finding a solution (S-106, below), she 
spontaneously draws a scene showing overlapped distances and writes an algebraic 
expression that captures the relation between role quantities for these distances. 

(RACE) Frank and Joan both plan to run in the West End race. Joan is 
faster and can run 10 kilometers per hour, while Frank only runs 8 
kilometers per hour. Frank cheats by starting the race 5 kilometers ahead of 
Joan so that they will cross the finish line together. If both runners start 
the race at the same time, how long do they run? 

S-106 Ok, they went like this ... (draws two equal length, same direction 
segments, one slightly above the other). Like that. 

I-107 Ok, so now they're going in the same direction. Its really the 
same distance, the way you've written it. 

S-107 Right. So it would be, like Dl equals D2. 

I-108 Ok, but we know that's not quite true. 

S-108 Well, yeah. Ohhh! That sounds like one of my algebra problems, 
because you go ... like, um ... Dl equals D2 plus 5 (writes this). Because 5 is 
the amount he cheated. And then you have to figure that out. 

I-109 Good. Ok. Now you already know what those values are, why 
don't you just write them in underneath. 

S-109 You could say, well, Dl is 25 and D2 is 20 plus 5. 

At this point, the conventions for constructing and interpreting scenes and expressions 
that carry role quantities come together on the same surface, without prompting by the 
interviewer. Celeste also constructs a scene for equal times and writes an algebraic 
expression that describes these role quantities (i.e., T1 = T2 ). However, she still solves 
novel problems with 2D tables or scenes that carry state quantities, and only combines 
materials to construct a standard algebraic representation after the fact. 

Constructing solutions with standard materials. During the fourth (and 
final) session, Celeste starts a solution attempt by constructing role scenes and then 
assembling algebraic expressions around components in these scenes (see Figure 5.3). 
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Figure 5.3: Celeste's solution to problem COMMUTE. 

(COMMUTE) Nancy lives in Angleton and works in Beeville, while Jeff 
lives in Beeville and works in Angleton. Jeff cycles to work at 15 miles per 
hour, while Nancy drives to work at 45 miles per hour. For each to be at 
work on time, Jeff must leave his home 20 minutes before Nancy leaves her 
home. How far does each travel from home to work? 

S-78 Ok. ... Ok, like for the diagram things. Let me start out doing it. 
Um ... they're gonna go ... here (draws two vertical, same-finish segments). 

1-78 So what are you drawing? Times here? 

S-79 Yeh. Yeh, Jeff has to leave his house 20 minutes before her, so 
he's got a head start here. Well, no wait ... Ok, so ... since he rides his bike, 
he goes slower. So the distance ... they're going the same distance, but she's 
going faster. And he has kind of a head start. 

I-79 So which time is his? 

S-80 This (indicates shorter time). 
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Celeste constructs a scene in which collinear, directed segments finish at the same time, 
but she initially associates the shorter segment with :Jeff's "head start." This would be 
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a sensible reading of the scene as a model of distance, though she has already stated 
that "they're going the same distance" (S-79). Prompted to focus on the duration of 
Jeff's head start, Celeste correctly associates commuters with time segments and labels 
their difference (i.e., 20 min). 

S-89 And so he goes 20 minutes earlier, and she goes 20 minutes later. 

I-89 Ok, show me the distances now. 

S-90 So ... the distances here are gonna be ... ·wait, they're going the 
same direction (draws congruent segments, same direction). So they go the 
exact same distance ... say 15 miles or something. 

I-90 That's right, yeh. So what can you do with that? 

S-91 (both laugh) You have to solve the problem now! Ok, um ... she 
goes faster though. This is the distance (writes D above segments). So 
Nancy's time is gonna be ... wait. Jeff's time is gonna be equal to Nancy's 
time plus 20, because he left 20 minutes earlier. (writes TJ =TN+ 20) Like 
minus ... plus 20. So ... hmm ... its kinda like this problem. 

[ ... Celeste retrieves prior problem, BUS-FLY ... ] 

Despite misreading the direction of travel, Celeste draws a scene showing distances, 
narrates the relation qetween them ("So they go the exact same distance ... " at S-90), 
and then constructs an algebraic expression for travel times beneath her original role 
scene. The retrieved problem, BUS-FLY (see Appendix A), is a quantitative isomorph 
of COMMUTE. On this problem, Celeste abandoned a solution attempt using a 2D 
table of state calculations, and the interviewer guided her through a collaborative 
solution using role scenes to construct algebraic expressions. 

S-95 Yeh, they went ... um ... ok, so you could go that ... like here 
(indicates algebraic expression over times in BUS-FLY), her distance or 
Jeff's distance, say. You say ... well I already have this ... 

I-95 The time. 

S-96 Both distances are the same, the distance of Jane or Jeff and the 
distance of Nancy are exactly the same. (writes TJ = TN) 

I-96 Ok, you probably want to call these D, rather than T. 

S-97 (laughs) Yeh, right (overwrites with DJ= DN ). So the distances 
are the same, and so you'd take 15 miles per hour, and the time of Jeff. I 
mean ... yeh, that is the time of Jeff, and the time of Nancy plus 20 equals 
45 miles per hour ... 45 time of Nancy, cause that's how fast she goes. So 
it'd be ... 15 Tn plus 7 300 ... that's not right ... equals 45 Tn. And then ... 
minus 15 minus 15 ... whoops ... 30 Tn 300 equals ... over 30 over 30. So it 
would be 10. I mean ... yeh, 10. 
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Starting with nonstandard materials (scenes for role quantities), Celeste constructs a 
pair of algebraic expressions in which terms refer to components of role scenes and 
operators refer to relations in the problem situation (e.g., "plus 20, because he left 20 
minutes earlier" at S-91). After literally retrieving an earlier solution to a related 
problem, she uses a multiplicative relation between distance, rate, and time (either 
recalled or transferred from BUS-FLY) and manipulates the resulting algebraic 
expression to determine a precise value for Nancy's time. 

1-97 So what's 10. 

S-98 10 is the number... the time of Nancy to get there. And so now 
you have to find out the time of Jeff. You have the time of Nancy, so it takes 
Jeff 30 minutes, because the time of Nancy plus 20 is 30. Time that Nancy 
took. .. 10 minutes, and you already know that Jeff had a ... cause it fits. 

1-98 Sure, if you add 10 and 20 you 're gonna get his time, that's 
exactly right. \Vhat are you supposed to find? 

S-99 The ... how far does each travel? Oh, well ... in 10 minutes ... You 
gotta find out how far Nancy goes in 10 minutes. Because how far Nancy 
goes in 10 minutes is how far they both go, or how far Jeff goes in 30 
minutes. So if he goes 15 miles per hour, then he goes 7 and 1/2 miles to 
work. Because 1/2 of 15 ... for half an hour, he goes 7 and 1/2. 

1-99 Ok, and if he goes 7 and 1 /2, how far does ... 

S-100 She goes 7 and 1 /2 too! 

1-100 Its the same, yeh. Right. 

S-101 Neat. That was short, yeh. That was great. Yeh! If you just find 
everything else, you can just find that really easy. 

In her earlier solution attempts, Celeste seldom constructed algebraic expressions 
without assistance, and her attempts to hold algebraic terms accountable to the 
problem situation showed that the expressions she did construct were relatively opaque. 
Although Celeste is able to find precise solutions using state simulation, these solution 
attempts are outside the standard notational structure and quantitative ontology of 
algebra (i.e., role expressions) and so cannot pass as competent problem solving within 
the algebra curriculum. Furthermore, as with her doubling error in an iterative 
simulation on problem MOD, she often encounters difficulties when using nonstandard 
materials designs. Although constructed out of conventional notations like tables or 
segment diagrams that organize familiar arithmetic calculation, the "weird way out" is 
often difficult as well. 
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The tutorial demonstration that opens this section is an intervention along several 
dimensions that are relevant to an analysis of constructing algebraic representations as 
material designs. First, the demonstrated materials almost exclusively use role 
quantities, in contrast with Celeste's predominate use of state quantities in her 
spontaneous solution attempts. Second, the intervention uses the text of algebra story 
problems as a specification for constructing independent scenes in each quantitative 
dimension, unlike role scenes observed in spontaneous solution attempts, which 
explicitly render only a single quantitative dimension. Third, the demonstrated 
materials are fundamentally incomplete as instructions for how to construct an algebraic 
representation of related linear functions, since rates are not explicitly present as two 
dimensional entities (e.g., "intensives" in the domain analysis of Shalin and Bee, 1985). 

Despite a shift in quantitative ontology and an incomplete design for linear 
functions, the demonstration and subsequent collaboration allow Celeste to gradually 
integrate constructing and labelling role scenes into her problem-solving activities. In 
doing so, she shifts from constructing standard materials, after an existing solution, to 
constructing algebraic expressions on top of scene structures as a way of finding a 
precise solution. Thus, the strategic arrangement of her problem-solving episodes 
changes as well as the material designs contained within them. Perhaps most 
fundamental, Celeste shifts from viewing quantities as prospective properties of states 
to viewing quantities as a retrospective summary of roles that are embedded in a 
coherent combination of material designs (e.g., Jeff's time, rather than the first hour of 
train travel). After a relatively brief intervention and some collaborative work in 
combining conventional materials, Celeste takes up the demonstration and produces a 
competent algebraic solution to a novel problem. 

This is encouraging for an argument that material designs are constructed out of 
conventional notations and that competence amounts to different constructive patterns 
for reaching standard algebraic representations. Still, Celeste's progress remains within 
the collaborative scaffolding of the verbal interview setting, and her shift from state to 
role quantities may well be both content-specific (i.e., to motion problems) and a 
short-lived adaptation to the social circumstances of the interviews. The tutorial is not 
a study of algebra instruction, but it does show that conventions for scene notations 
and role quantities can be combined, even by a beginning algebra student, to reach a 
standard algebraic representation. 

5.4 Quantitative analyses of material designs for 
inference 

In Chapter 4, I argued that competence cannot be entirely a matter of using individual 
tactics, since both algebra students and teachers use the same kinds of tactics. Instead, 
differences in competence must be a matter of how these tactics are combined, rather 
like selecting from a set of conventional materials and tools to design an artifact. 
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Problem solvers succeed when they combine tactics in a way that connects relevant 
structural constraints with manipulative activities that precisely determine unknown 
values. These successful combinations sometimes involve algebraic expressions, but 
people also find solutions without any evidence of using formal algebra. Model-based 
solutions to algebra story problems tell us about how people manage complex 
quantitative relationships, but they do not match a prescriptive view of competence in 
the algebra curriculum. 

Competent problem solvers manage to construct an effective set of algebraic 
expressions, either before or after solving the problem. For example, Paul (a teacher) 
uses algebra on request to verify a solution on problem MOD, but he finds the solution 
by comparing states with a ratio tactic (Section 4.3.3 at S-7). In contrast, algebra 
students are able to manipulate existing expressions, but they have great difficulty 
constructing these materials. Given some support, however, they may be able to 
combine available materials in a way that helps to construct standard algebraic 
expressions. For example, Celeste progressively adopts a demonstration of a particular 
combination of materials - i.e., role scenes are used to construct algebraic expressions 
- and with collaborative support, she reorganizes conventional aspects of her 
quantitative inferences into standard curricular forms. 

Even at different levels of competence, problem solving is not usually a matter of 
progressively refining a single representation of problem structure. Instead, successive 
problem-solving episC?des use different notational and quantitative materials, and the 
particular arrangement of these materials is constructed more often than recalled. This 
is an important empirical observation that is at odds with most existing accounts of 
competent quantitative inference at this level of mathematics. The constructed aspect 
of quantitative inference, even on seemingly innocent school math problems, raises an 
interesting theoretical possibility: what a problem solver appears to "know" about a 
mathematical concept may depend on how she structures the setting while solving any 
particular problem. This is the sense of a representational ecology described in the 
introduction to this chapter. 

We can describe these constructed and organizational aspects of a representational 
ecology by using the notational and quantitative materials observed within individual 
problem-solving episodes. If competence depends on constructing a setting that affords 
knowing about mathematics, then problem solvers with otherwise similar backgrounds 
should appear more or less knowledgeable depending on how they construct particular 
notational structures and embed different kinds of quantities in these structures. Under 
an ecological interpretation, these constructions are changes to the setting, each 
providing a new opportunity for knowing about related linear functions. 
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5.4.1 Local representational ecologies 

This section extends the interpretation of problem-solving episodes to look at (a) the 
prevalence of different material combinations of notation and quantity, (b) their 
comparative use by algebra students and teachers, and ( c) relations between these 
materials and problem-solving tactics, strategies, and outcomes. The prevalence of 
different materials gives empirical constraints on a descriptive theory of inference, 
telling us which kinds of notational structures embed which kinds of quantities for what 
purpose. The comparative use of these materials by algebra students and teachers helps 
to explain what needs to be learned to achieve the curricular sense of competent 
algebra story problem solving. 

Episodes as a unit of analysis. Quantitative comparisons reported in this 
section use the problem-solving episode as a unit of analysis, pooling together episodes 
taken from different participants on the same set of problems. Thus, contrasts between 
algebra students and teachers are not comparisons of individuals. However, relations 
between interpretive categories are similar whether comparing individual participants 
or comparing students or teachers using pooled episodes. For example, in Table 4.1 of 
Chapter 4, participants use the same tactics but do so with differing prevalence. 
Results are similar when comparing algebra students and teachers on the larger set of 
comparison problems: students and teachers again use the same tactics but use them 
with different prevalence (Participants x Tactics, x2 (3) = 8.5, p < 0.04). Although 
both groups use model tactics equally often, students are more likely than teachers to 
use annotations (29% versus 8.8% of their episodes), less likely to use ratios (6.5% 
versus 20.6%), and somewhat less likely to use algebra (24.2% versus 32.4%). 

Quantitative analyses in this section use episodes from six "comparison problems," 
combining reference problems used in Chapter 4 with two additional problems, RACE 
and BAGELS. These are drawn from the structural class shown at the upper right of 
Figure 4.1 in Section 4.2, and texts for these problems are reproduced in Appendix A. 
Using episodes as the unit of analysis allows statistical tests of the reliability of 
relationships between categories - e.g., does the likelihood of a conceptual error 
depend on notational structure? However, the relatively large number of episodes from 
verbal interviews come from only four participants, so any relationships reported here 
are tentative. These analyses explore the material setting of competent quantitative 
inference, holding differences in tactical or strategic categories accountable to the actual 
materials that problem solvers speak about or write down while solving problems. 

We can approach these questions by treating combinations of notational structure 
and quantitative ontology as material designs for different problem-solving tactics. A 
design, in this sense, is a commitment by a problem solver to a particular way of 
organizing and interpreting particular types of quantities. This opens up the elusive 
problem solving injunction to "choose a good representation," with the added 
provisions (a) that an effective representation of problem structure may require several 
such commitments, all held together at the same time, and (b) that much of the 
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purpose. The comparative use of these materials by algebra students and teachers helps 
to explain what needs to be learned to achieve the curricular sense of competent 
algebra story problem solving. 

Episodes as a unit of analysis. Quantitative comparisons reported in this 
.section use the problem-solving episode as a unit of analysis, pooling together episodes 
taken from different participants on the same set of problems. Thus, contrasts between 
algebra students and teachers are not comparisons of individuals .. However, relations 
between interpretive categories are similar whether comparing individual participants 
or comparing students or teachers using pooled episodes. For example, in Table 4.1 of 
Chapter 4, participants use the same tactics but do so with differing prevalence. 
Results are similar when comparing algebra students and teachers on the larger set of 
comparison problems: students and teachers again use the same tactics but use them 
with different prevalence (Participants x Tactics, x2(3) = 8.5, p < 0.04). Although 
both groups use model tactics equally often, students are more likely than teachers to 
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. We can approach these questions by treating combinations of notational structure 
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design, in this sense, is a commitment by a problem solver to a particular way of 
organizing and interpreting particular types of quantities. This opens up the elusive 
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. provisions (a) that an effective representation of problem structure may require several 
such commitments, all held together at the same tim~, and {b) that much of the 
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organizational structure of these designs is available in the problem-solving setting -
i.e., constructed on paper, in space, and across time by the problem solver. 

Under an ecological interpretation, particular material designs should support 
problem-solving activities differently. In an analysis of problem-solving episodes, this 
appears in the comparative use of tactical materials for different purposes (i.e., 
comprehension or solutjon attempts) and with different outcomes (e.g., transitioning 
out of episodes, making structural inferences, etc.). When material designs are only or 
never used for some purpose, we have a clear constraint on the kinds of activities that 
they afford their users. When the prevalence of material combinations differs across 
levels of competence (i.e., algebra students versus teachers), we have constraints on 
what must be learned to construct and interpret quantitative inferences in the 
problem-solving setting. Hence, the broad interpretive questions are: how do different 
material designs support quantitative inference and (b) how can differences in these 
designs be used to explain competence and how it might be acquired? 

Problem solvers, problems, and materials for design. If people are 
constructing material designs when given algebra story problems, we can start an 
exploration of representational ecologies by looking for material differences between 
levels of competence, on the one hand, and between different aspects of problem 
structure, on the other. 'Vhile earlier analyses showed that people with different 
mathematical backgrounds use the same tactics, they may not combine notational and 
quantitative materials in the same way when pursuing these tactics. Likewise, material 
designs may vary with different aspects of problem structure - i.e., the content domain 
of the problem (motion or work) or its normative structure (relations within and across 
dimensions). 

As a baseline observation, algebra students and teachers use each type of notational 
structure (i.e., expressions, narrative, 2D and scene) and each kind of quantity (i.e., 
state and role). Thus, competence cannot be a simple matter of knowing about a 
particular notation or type of quantity. Instead, students and teachers use these 
materials in different ways. Considering only the prevalence of different notations, 
students use fewer expressions, less narrative material, and many more 2D notations 
than teachers (Notational structure x Participant, x2(3) = 12.6, p < .006). Both 
groups use role quantities more frequently than state quantities (Quantitative ontology 
x Participant, not significant). 

Algebra students and teachers construct different material designs within 
problem-solving episodes. Table 5.1 shows the percentage of episodes with different 
material combinations for students, teachers, and both groups combined. 7 Students 
frequently use 2D notations to carry state quantities (e.g., Celeste's "weird way out" of 
problem MOD in Section 4.3.1 of Chapter 4), while teachers never use 2D state tables 
and seldom use 2D role tables (e.g., Richard's "chart" on problem MOD in 

7Percentages are calculated within panels for each group - e.g., 22.6% of students' 
episodes use a 2D table to carry state quantities. 
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Table 5.2: Notational structure and quantitative ontology in episodes from problems with 
different content (motion versus work). 

Materials 

Notational structure" 
Expression 
Narrative 
2D 
Scene 

Quantitative ontology"" 
State 
Role 

Problem Content 
(number of episodes) 

Motion 
(n = 62) 

30.6 
9.7 

30.6 
29.0 

29.0 
71.0 

\Vork 
(n = 34) 

41.2 
26.5 
20.6 
11.8 

58.8 
41.2 

Use of materials depends on content domain: *p < .04, **p < .01. 

only a small collection of algebraic schemata that cover a formal view of the most 
common categories of algebra story problems. With the exception of 2D state 
calculations, however, algebra students and teachers resemble each other more than 
either group resembles a normative account of remembering mathematical forms -
e.g., characteristic formulas and procedures for "extracting the appropriate equations 
from the text" (Hinsley et al., 1977, p. 98). While both groups recall formulas and 
other problem-specific information (e.g., "dirt" or "chart" annotations for motion 
problems), much of their episodic activity uses quite different materials (e.g., narrative, 
2D, or scene notations carrying state quantities). 

Materials appearing in problem solving episodes may also depend upon 
characteristics of the problem being solved. There are no reliable differences in the 
materials used for different problem structures (i.e., problem classes in Figure 4.1 of 
Chapter 4), but the content domain of these problems does influence which materials 
appear within episodes. Table 5.2 shows the percentage of episodes using different 
materials for motion or work problems. In the top panel, complex written notations 
(i.e., 2D and scene) are more common for motion problems, while narratives and 
standard expressions are more common for work problems. In a separate analysis (not 
shown), this pattern is stronger among students than teachers. The lower panel of 
Table 5.2 shows that work problems most often elicit state quantities (58.8%), while 
motion problems most often elicit role quantities (71 %). A separate analysis shows that 
this pattern is strongest among teachers. 
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The appearance of local materials across problem solvers and problems is consistent 
with an ecological hypothesis that problem solvers construct quantitative inferences, 
rather than simply recalling standard mathematical forms and applying them to a 
problem. There may be no reliable differences between materials constructed across 
structural classes of problems because these structures are not apparent to problem 
solvers as they work through a solution attempt. That is, problem solvers are not 
recalling the structure of problems so much as they are constructing inferences about 
problem structure within the material setting. This is not to say that problem solvers 
never recall materials that are useful to them, but that they seldom recall a complete 
quantitative structure. As the analysis of spontaneous problem comparisons in Chapter 
4 demonstrated (see Figure 4.5), recalled material need not even contain a correct 
quantitative inference to be useful. 

Both algebra students and teachers use complex notational structures, and these 
tend to follow the content domain of the problem being solved. ·when problems involve 
collinear motion, problem solvers often construct scenes out of directed segments and 
are then able to coordinate quantities, inferences about quantitative relations, and 
calculation around the components of these scenes. Output in work problems less 
directly resembles collinear segments, and there is a corresponding increase in 
alternative materials when people construct and pursue quantitative inferences. This is 
particularly true of narrative material, which increases threefold over that found with 
motion problems (algebraic expressions also increase). The twofold increase in state 
quantities for work problems can be interpreted similarly, since problem solvers often 
reason about quantities within the structure of events (e.g., the amount of a pool filled 
after an hour in problem HOS) rather than recalling standard algebraic expressions 
carrying role quantities. 

The material design of problem-solving episodes tracks the content of problems, 
and their construction changes with one's relation to the algebra curriculum. These 
analyses of episodic materials expand our descriptive account of competence in several 
important ways: (a) successful problem solving requires nonstandard materials, 
regardless of one's level of competence, (b) problem solving consists of activities that 
construct and interpret these materials, and ( c) one apparently becomes competent by 
learning to combine nonstandard and standard algebraic materials while constructing a 
problem representation. The sections that follow examine how conventional materials 
are used to construct tactics and whether these material designs shape problem-solving 
outcomes by determining what activities a problem solver can attempt and what 
inferences they can make about problem structure. 

5.4.2 Making: (re)constructing problem-solving tactics 

As an interpretive category, problem-solving tactics imply a particular view of problem 
structure - e.g., as a model of train separation or as a collection of related algebraic 
terms for problem MOD. The notational and quantitative materials introduced in this 
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Table 5.3: Notations and quantities used during problem-solving tactics. 

Notational structure 

Tactics Quantitative 
(episodes) ontology Expressions Narrative 2D Scene 

Algebra State 7.7 0.0 0.0 0.0 
(n = 26) Role 92.3 0.0 0.0 0.0 

Model• State 0.0 13.2 34.2 23.7 
(n = 38) Role 0.0 7.9 0.0 21.1 

Ratio State 36.4 36.4 0.0 0.0 
(n = 11) Role 9.1 18.2 0.0 0.0 

Annotation State 0.0 0.0 4.8 0.0 
(n = 21) Role 9.5 4.8 57.l 23.8 

Notational structures carry different kinds of quantity: *p < .02. 

chapter allow us to ask how these tactical viewpoints are constructed. In particular, 
how are nonstandard materials constructed, how are they combined with standard 
materials to form a representation of problem structure, and how are problem-solving 
outcomes shaped by these constructive activities? When problem solvers work outside 
the algebraic formalism, notations and quantities are not combined without intention or 
in a completely idiosyncratic fashion. Instead, these materials are used to construct 
different problem-solving tactics and strategies as problem solvers work to span the gap 
between text and equations (or precise values). 

Table 5.3 combines episodes from students and teachers to show how different 
notations and quantities are used to construct problem-solving tactics. Separate 
analyses show that students and teachers construct and use tactics in different ways, 
and differences that appear to be reliable are discussed in the text. The first question is 
how notation a.nd quantity are combined to construct what we interpret as 
problem-solving tactics. 

• Algebraic tactics exclusively use expressions, both among algebra students and 
teachers. These usually involve quantitative roles but sometimes compare states 
in an algebraic proportion. 

• Model tactics never use arithmetic or algebraic expressions alone. Instead, they 
use narration, 2D tables, or scenes to organize quantitative inferences, usually 
about state quantities (71.1 % of model episodes use state quantities). Within 
these notations, students and teachers construct model tactics very differently. 
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The majority of students' model tactics (523) are simulations that organize 
state quantities in 2D tables. Students also use scenes, most often to depict 
relations between role quantities. 

In contrast, teachers never use 2D notations to construct model tactics. The 
majority of their model tactics use scenes (69.23), most often to depict 
relations between state quantities. 

• Ratio tactics never use 2D or scene notations, use narratives more often than 
written arithmetic expressions (54.63 of ratio episodes), and most often involve a 
state comparison (72.83 of ratio episodes) rather than a comparison between role 
quantities. 

• Annotation tactics almost exclusively use quantitative roles (95.23 of 
annotations), and these are most often embedded in a 2D table (e.g., Karen's 
"dirt" table or Richard's "chart" on problem MOD). Next most common are 
diagrammatic scenes carrying role quantities (23.83 of annotations). As observed 
earlier, annotations of any sort are rare among algebra teachers (3 of their 34 
episodes). 

There are two striking patterns in the material design of problem-solving tactics, 
and they are found across levels of competence. First, algebra and ratio tactics never 
u.se 2D tables or scenes; instead they use either expressions or narrative materials alone. 
In contrast, model and annotation tactics most often rely on more complex notational 
structures like 2D tables or scenes, and they seldom use narratives or expressions alone 
to carry quantities. When people work outside the standard algebraic formalism, the 
material design of tactics adds layers of configural structure to standard notations for 
quantitative relations. The second major pattern cuts across notational structures: 
model and ratio tactics most often involve state quantities, while algebra and 
annotation tactics most often involve role quantities. Since ratio tactics use standard 
expressions to compare state quantities, a prospective, partitioned sense of quantity 
spans both standard and nonstandard approaches to quantitative inference. 

Although algebra students and teachers both use model-based reasoning, they 
construct this tactic out of different materials. As in Chapter 4, students often use 
model tactics to find precise values by organizing state calculations as a form of 
iterative or heuristic simulation. 2D tables of state quantities are the medium out of 
which these calculations are usually constructed, although state scenes can also 
accommodate simulation. In contrast, teachers most often use model tactics to generate 
or evaluate quantitative relations, and they seldom use these tactics to calculate precise 
values. Scenes carrying state quantities are a material design for these explorations. 



Table 5.4: Notations and quantities used during problem-solving strategies. 

Notational structure 

Strategy Quantitative 
(episodes) ontology Expressions Narrative 2D Scene 

Comprehension'""' State 0.0 12.9 6.5 8.1 
(n = 62) Role 24.2 8.1 19.4 21.0 

Solution attempt** State 19.2 0.0 34.6 11.5 
(n = 26) Role 34.6 0.0 0.0 0.0 

Verify State 12.5 12.5 12.5 12.5 
(n = 6) Role 37.5 12.5 0.0 0.0 

Notational structures carry different kinds of quantity: ""p < .005. 

5.4.3 Doing: material designs, strategies and manipulative 
capacity 
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The interpretive framework used in preceding chapters assumes that people use tactics 
to achieve some purpose or strategy. That is, a tactical view of problem structure 
supports activities that have consequences for problem-solving outcomes. Just how this 
occurs is at the heart of the theoretical contrast carried through this chapter: whether 
activity is determined a priori by what one knows (i.e., one's mental representation), or 
whether setting and activity interact to influence what one knows. The materials 
produced within an episode are important for either account of strategies used to make 
quantitative inferences and solve problems. From an ecological perspective, the 
material design of tactics afford different activities and different understandings of 
problem structure. The first can be found in relations between materials and 
problem-solving strategies (examined in this section); the second can be found in 
relations between materials and problem-solving outcomes - i.e., episode transitions, 
errors, and the episodic course of inferences (examined in the next section). 

The relation between materials and strategies is also important for describing 
differences in competence. Unlike problem-solving tactics, there are no reliable 
differences between algebra students and teachers in the prevalence of various strategies 
(Participant x Strategy, x2(2) = 1.9, not significant). Thus, competent quantitative 
inference cannot be attributed to simple differences in the adoption of strategies like 
routinely verifying determined values. A more useful contrast may be found by 
examining how materials support problem-solving strategies. 
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Table 5.4 shows which combinations of notation and quantity are used during 
episodes with different strategies (i.e., comprehension, solution attempt, or verification). 
Again, separate analyses show that students and teachers differ, and these contrasts are 
discussed in the text. 

• Comprehension episodes use every type of notation and most often involve role 
quantities (72.6% of comprehension episodes). 

- 'When scene notations are used for comprehension, students almost always 
examine role quantities (90.9%), while teachers most often examine state 
quantities (57.1 %). 

• Solution attempts most often involve expressions (53.8%), never use narrative 
materials alone, and never use 2D tables or diagrammatic scenes to carry role 
quantities. These are common constraints on finding precise values, but students 
and teachers use different materials for solution attempts. 

90.9% of teachers' solution attempts use expressions, and these more often 
carry role quantities (54.5% of solution attempts). 

60% of students' solution attempts use 2D tables to organize state 
quantities, followed by role expressions (20%) and state scenes (13.3%). 

• Verification epis.odes are infrequent (less than 10% of all episodes) and show no 
striking material patterns in either group. 

Algebra students regularly use 2D tables of state quantities to organize calculations 
during solution attempts, something never done by teachers. Algebra teachers 
sometimes undertake extended state calculations (e.g., Paul's retrospective simulation 
using a diagrammatic scene on problem MOD, Section 4.3.3), but seldom as a solution 
attempt. These contrasts are corroborated in Table 5.5, which shows how students and 
teachers use material designs to finalize solution attempts. While the number of 
episodes is small, students clearly attempt solutions using more varied notations, 
including 2D tables and scenes, while teachers exclusively use standard algebraic 
expressions. Although not statistically reliable, students usually attempt to find precise 
solutions using state quantities, while teachers most often use role quantities. 

Apart from differences in the way that students and teachers attempt solutions, it is 
interesting that of all episodes involving role quantities, only written expressions are 
used in solution. attempts. Narrative material, 2D tables, and diagrammatic scenes 
never carry role quantities in a way that supports a solution attempt; instead, these 
material combinations are used primarily as a comprehension strategy. These 
quantitative findings corroborate ·qualitative comparisons made in Section 5.3, where 
material designs were seen to support strategic activities very differently. Role 
expressions and 2D tables of state quantities both have conventional and effective 
manipulative capacities for ·determining precise values during solution attempts (e.g., 



181 
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earlier, annotations of any sort are rare among algebra teachers (3 of their 34 
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There are two striking patterns in the material design of problem-solving tactics, 
and they are found across levels of competence. First, algebra and ratio tactics never 
u.se 2D tables or scenes; instead they use either expressions or narrative materials alone. 
In contrast, model and annotation tactics most often rely on more complex notational 
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construct this tactic out of different materials. As in Chapter 4, students often use 
model tactics to find precise values by organizing state calculations as a form of 
iterative or heuristic simulation. 2D tables of state quantities are the medium out of 
which these calculations are usually constructed, although state scenes can also 
accommodate simulation. In contrast, teachers most often use model tactics to generate 
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values. Scenes carrying state quantities are a material design for these explorations. 
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to achieve some purpose or strategy. That is, a tactical view of problem structure 
supports activities that have consequences for problem-solving outcomes. Just how this 
occurs is at the heart of the theoretical contrast carried through this chapter: whether 
activity is determined a priori by what one knows (i.e., one's mental representation), or 
whether setting and activity interact to influence what one knows. The materials 
produced within an episode are important for either account of strategies used to make 
quantitative inferences and solve problems. From an ecological perspective, the 
material design of tactics afford different activities and different understandings of 
problem structure. The first can be found in relations between materials and 
problem-solving strategies (examined in this section); the second can be found in 
relations between materials and problem-solving outcomes - i.e., episode transitions, 
errors, and the episodic course of inferences (examined in the next section). 

The relation between materials and strategies is also important for describing 
differences in competence. Unlike problem-solving tactics, there are no reliable 
differences between algebra students and teachers in the prevalence of various strategies 
(Participant x Strategy, x2(2) = 1.9, not significant). Thus, competent quantitative 
inference cannot be attributed to simple differences in the adoption of strategies like 
routinely verifying determined values. A more useful contra.st may be found by 
examining how materials support problem-solving strategies. 
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Table 5.4 shows which combinations of notation and quantity are used during 
episodes with different strategies (i.e., comprehension, solution attempt, or verification). 
Again, separate analyses show that students and teachers differ, and these contrasts are 
discussed in the text. 

• Comprehension episodes use every type of notation and most often involve role 
quantities (72.63 of comprehension episodes). 

- 'When scene notations are used for comprehension, students almost always 
examine role quantities (90.93), while teachers most often examine state 
quantities (57.13). 

• Sol.ution attempts most often involve expressions (53.83 ), never use narrative 
· materials alone, and never use 2D tables or diagramma.tic scenes to carry role 
quantities. These ar'e common constraints on finding p~~cise values, but students 
and teachers use different materials for solution attempts. 

90.93 of teachers' solution attempts use expressions, and these more often 
carry role quantities (54.53 of solution attempts). 

603 of students' solution attempts use 2D tables to organize state 
quantities, followed by role expressions (203) and state scenes (13.33). 

• Verification episodes are infrequent (less than 103 of all episodes) and show no 
striking material patterns in either group. 

Algebra students regularly use 2D tables of state quantities to organize calculations 
during solution attempts, something never done by teachers. Algebra teachers 
sometimes undertake extended state calculations (e.g., Paul's retrospective simulation 
using a diagrammatic scene on problem MOD, Section 4.3.3), but seldom as a solution 
attempt. These contrasts are corroborated in Table 5.5, which shows how students and 
teachers use material designs to finalize solution attempts. While the number of 
episodes is small, students clearly attempt solutions using more varied notations, 
including 2D tables and scenes, while teachers exclusively use standard algebraic 
expressions. Although not statistically reliable, students usually attempt to find precise 
solutions using state quantities, while teachers most often use role quantities. 

Apart from differences in the way that students and teachers attempt solutions, it is 
interesting that of all episodes involving role quantities, only written expressions are 
used in solution attempts. Narrative material, 2D tables, and diagrammatic scenes 
never carry role quantities in a way that supports a solution attempt; instead, these 
material combinations are used primarily as a comprehension strategy. These 
quantitative :firidirigs corroborate 'qualitative comparisons made in Section 5.3, where 
material designs were seen to support strategic activities very differently. Role 
expressions and 2D tables of state quantities both have conventional and effective 
manipulative capacities for ·determining precise values during solution attempts (e.g., 
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Table 5.5: Notations and quantities used during final episodes. 

Materials 

Notational structure* 
Expression 
Narrative 
2D 
Scene 

Quantitative ontology 
State 
Role 

Participants 
(number of episodes) 

Students 
(n = 11) 

45.5 
0.0 

36.4 
18.2 

63.6 
36.4 

Teachers 
(n = 8) 

100.0 
0.0 
0.0 
0.0 

37.5 
62.5 

Use of"notations depends on participant, *p < .05. 

accumulating hours until trains are 880 km apart). In contrast, 2D tables or 
diagrammatic scenes that carry role quantities have no conventional manipulative 
capacity for determining precise values. 
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The relation between problem-solving tactics and strategies depends on what 
people construct inside the material setting of an episode: distinct notational structures 
that carry different senses of quantity. These constructions outline a chasm as one 
moves from nonstandard to standard designs for quantitative inference, a progression 
that involves two material boundaries: from more to less complex notational structures 
and from state to role quantities. Each combination of materials offers a particular view 
of problem structure and each supports particular activities. For algebra story problem 
solving, nonstandard materials outside the algebraic formalism (a standard material 
design) are required because neither material alone is sufficient for constructing and 
using a mathematical representation. For example, constructing a role scene can 
promote otherwise implicit relationships between quantities (e.g., Karen's inference 
about composite distances on problem MOD, Section 4.3.2), but some other material 
design will be required in order to find precise values for related quantities (e.g., 
Karen's 2D table of state calculations on problem MOD). 

Algebra students and teachers sometimes construct different material designs for 
model tactics, as in students' exclusive use of 2D tables of state quantities to organize 
model-based simulations. These material differences are understandable by looking 
beyond local episode boundaries: students' and teachers' activities diverge primarily at 
the point of constructing algebraic expressions, before these expressions are 
manipulated to determine precise values. Constructing a coherent collection of 
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algebraic expressions is difficult across levels of competence, but is particularly so for 
students, who can generally manipulate given expressions without errors. On the 
informal side of this material chasm, algebra students work around demands for 
algebraic precision by constructing alternative materials. These nonstandard material 
designs carry given and calculated values in a notational structure that supports precise 
calculation, and they become the representational ecology of model-based simulation. 
Algebra teachers also construct state simulations, but they seldom use these materials 
to find precise solutions without standard algebraic materials. These differences agree 
with the qualitative and quantitative comparisons of Chapter 4. 

5.4.4 Knowing: local outcomes and the origin of inferences 

Relations between materials (notations and quantity), tactics, and strategy describe the 
setting for problem-solving activities. That materials afford different opportunities for 
activity is one part of the evidence for viewing participants' solution attempts as the 
construction of a representational ecology. Another line of evidence for this view of 
problem solving is the influence of materials on problem-solving outcomes. That is, not 
only does the setting determine what a person can do, but its material form also 
influences what a person appears to know about problem structure. One place to look 
for evidence for this hypothesis is in empirical relations between materials and local 
difficulties around episode boundaries. These include subjective transitions out of 
episodes (i.e., a participant's sense of being on or off track) and various types of errors 
that influence activities within the episode (i.e., conceptual errors of omission or 
commission and manipulative errors). 

Materials and local outcomes in problem solving. Particular material 
designs contribute disproportionately to local difficulties. Table .5.6 shows the 
percentage of episodes with various local outcomes while participants are using different 
material combinations of notation and quantity. The slightly unorthodox convention of 
staggering table entries allows rows and columns to be read more easily as comparisons 
of the likelihood that different material designs will lead to difficulties. Reading across 
the first panel, we can compare different materials for the likelihood of transition off 
track; reading down a column, we can compare the relative strengths and weaknesses of 
a particular material design for encountering local difficulties. For example, expressions 
and scenes both carry role quantities, and we might wonder which notational structure 
is more likely to lead to local difficulties with this kind of quantity. Reading across the 
third row of each panel (i.e., Off track, Omission, etc.) shows that subjective and 
conceptual difficulties are much more likely when role quantities are carried by standard 
algebraic expressions (e.g., 59.3% of episodes with role expressions end off track). 
Again, differences between algebra students and teachers are discussed in the text. 

• Participants are most likely to transition off track when using expressions or 2D 
notations and least likely to do so when using narrative or scene notations 
(Notational structure x Transition, x2(3) = 11.8, p < .009). 
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Type of quantity alone has no reliable relation to local transitions, but the 
contrast between expressions and scenes is strongest for role quantities (i.e., 
role expressions are 7. 7 times more likely than role scenes to end off track). 

The relation between notational structure and transitional difficulty is 
similar across groups, though teachers most often have difficulties with 
expressions (87.5% of their off track episodes), while students most often 
have difficulties with 2D tables (46.4% of their off track episodes). 

• Omission errors are also most likely with expressions and 2D notations, but the 
relationship is not statistically reliable. Again, role scenes are comparatively 
resistant to local difficulties. 

• Commission errors never occur when participants use scene or narrative notations 
but are most prevalent when they use expressions (Notational structure x 
Transition, x2 (3) = 15.9, p < .002). 

As with transitions off track, role expressions are particularly error prone. 

The relation between notational structure and errors of commission is 
strongest among students. A similar pattern holds for teachers, who seldom 
use 2D notations, never use these to carry state quantities, and never 
encounter local difficulties of any kind with this notation. 

• Manipulation errors are generally infrequent and are not related to the materials 
used by students or teachers. 

Local difficulties are least likely when problem solvers use scene or narrative 
materials and are most likely when they use expressions or 2D notations. This pattern 
holds for algebra students and teachers, though students alone have difficulty with 2D 
notations. From an ecological view, how one constructs the material setting of problem 
solving not only influences activity (i.e., what strategy one pursues) but also influences 
what one appears to know about problem structure (i.e., the likelihood of local 
difficulties and conceptual errors). 

Within this broad pattern, there are two interesting contrasts in the way notations 
carry different kinds of quantity. First, expressions and scenes carry role quantities with 
very different local outcomes, expressions much more frequently leading people off track 
or showing conceptual errors. However, this does not appear to be the case when these 
notations carry state quantities. One explanation for this contrast is that quantitative 
relations are more easily inferred when the surrounding notation provides strong 
configural cons~raints (i.e., the iconic properties of scenes discussed in Section 5.3) or 
when the ontology of quantities is embedded in the situation depicted in the problem 
(i.e., a prospective, partitioned sense of quantity). Thus, the relative opacity of 
expressions may be reduced when they carry state quantities. 

Second and exclusively among students, 2D notations lead to different kinds of local 
difficulties when they carry different kinds of quantities. Students are most likely to 

I 



187 

Table 5.6: Percentage of episodes with local difficulties while using different materials. 

Materials: Notational Structure by Quantitative Ontology 

Expressions Narrative 2D Scene 
(33)t (15) (26) (22) 

State Role State Role State Role State Role 
Difficulty (6) (27) (9) (6) (14) (12) (9) ( 13) 

Off track* 51.5 20.0 50.0 13.6 

16.7 22.2 50.0 22.2 
59.3 16.7 50.0 7.7 

Omission 21.2 0.0 23.l 9.1 

16.7 0.0 7.1 11.l 
22.2 0.0 41.7 7.7 

Commission• 36.4 0.0 19.2 0.0 

0.0 0.0 28.6 0.0 
44.4 0.0 8.3 0.0 

Manipulation 9.1 0.0 3.8 4.5 

33.3 0.0 7.1 11.1 
3.7 0.0 0.0 0.0 

tvalues in parentheses are the number of episodes using each material category. 
•Local outcome depends on notational structure, p < .009. 
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leave out relevant constraints (i.e., conceptual errors of omission) when using a 2D table 
to organize role quantities. In contrast, they are most likely to introduce incorrect 
constraints (i.e., conceptual errors of commission) when using 2D tables to organize 
state calculations. In keeping with earlier arguments about the affordance of different 
notational structures, 2D role tables provide typological constraints on quantities (e.g., 
distance versus time), but they provide few (if any) constraints on how or whether 
embedded quantities should be related. This may explain why conceptual errors of 
omission predominate with these material designs, particularly among students who 
may not appreciate the relation between "dirt" tables and recurring algebraic formulas. 
Similarly, 2D state tables provide weak constraints for inferring quantitative relations, 
but they do provide an organizational structure for the calculations involved in state 
simulation. However, in order to use these material designs to calculate precise values, 
students must make commitments to quantitative relations that are not required when 
constructing and filling a 2D role table. This may explain why conceptual errors of 
commission are so common with 2D state tables. 

Do local difficulties simply occur whenever problem solvers attempt solutions? 
Although manipulative errors are most common during solution attempts (Strategy x 
Manipulative errors, x2(2) = 9. 7, p < .005), there are no reliable relations between 
strategy and transitioning off track or having a conceptual error. Thus, the material 
basis of local difficulties cannot be attributed to the difficulty of attempting solutions. 
Instead, there is a tradeoff between configural support for relevant inferences versus 
manipulative capacity,: what a problem solver might know and do in a particular 
material setting. As shown in Table 5.4, narratives, role scenes, and 2D role tables are 
never used in solution attempts. But even when material designs cannot be used in 
solution attempts, there are still marked advantages for particular notational 
structures. Narratives never lead to conceptual or manipulative errors, local difficulties 
which every other material design encounters. Scenes are somewhat less likely than 
narratives to lead problem solvers off track, but both narrative and scene notations lead 
to fewer local difficulties than 2D tables when these notations carry role quantities. 

Patterns in local difficulties can also be understood as a contrast between standard 
(explicitly schooled) and nonstandard material designs for making quantitative 
inferences. As nonstandard material designs, scene and narrative structures are least 
likely to produce conceptual errors, regardless of the kinds of quantities they carry. 
Thus, problem-solving episodes outside of the algebraic formalism are least often 
responsible for conceptual errors. In contrast, more than two thirds of conceptual errors 
appear with standard role expressions or 2D role tables (e.g., Karen's "dirt" chart), and 
these materials are more likely than any others to involve conceptual errors. 2D state 
tables, used exclusively by students and suitable for precise calculation, involve fewer 
conceptual errors than standard role expressions but more conceptual errors than either 
scenes or narrative materials. Thus, the likelihood of local difficulties increases as one 
moves towards materials that are designed more for quantitative precision than for 
quantitative inference. 
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error; both are counted as "repairs." Similar to the presentation of local outcomes in 
the last section, the percentage of episodes introducing inferences while using particular 
materials are arranged to facilitate relevant comparisons. Thus, reading across the first 
panel, we can compare different materials for the origin of correct constraints; reading 
down a column, we can compare the relative strengths and weaknesses of a particular 
material design (i.e., the relatively likelihood of introducing correct constraints, 
conceptual errors, or structural repairs). Differences between algebra students and 
teachers are again reported in the text. 

• Correct inferences about problem structure (e.g., that times are equal in problem 
MOD) most often originate during episodes in which problem solvers produce 
narrative materials and least often originate when they use standard expressions 
(Notational structure x Correct constraint, x2(3) = 10.1, p < .02). 

- The same pattern holds for students and teachers, though the advantage for 
narrative material is more pronounced among students (i.e., 6 of their 7 
narrative episodes introduce correct constraints, 85. 7%). 

Students produce 24 of the 26 episodes containing 2D notations. Among 
these, 2D role tables more frequently introduce correct constraints. 

• Conceptual errors of omission or commission originate almost exclusively during 
episodes in which problem solvers use standard expressions or 2D tables 
(Notational structure x Conceptual error, x2(3) = 14.1, p < .003). For scenes 
carrying role quantities, the only error of omission occurs when a student (Karen) 
draws a diagram of round trip distance segments that are not equal on problem 
:MRT. 

- Expressions frequently introduce conceptual errors in both groups, and these 
are the only conceptual errors among teachers (6 of their 15 episodes using 
expressions, 40%). 

- Again, students use more 2D notations than teachers, and they alone 
introduce conceptual errors with these materials (9 of their 24 episodes using 
2D tables, 37.5%). The majority of these originate in 2D role tables (i.e., 
Karen's "dirt" or "trw" tables). 

- Although not statistically reliable, notations carrying role quantities are 
more likely to introduce conceptual errors than those carrying state 
quantities (Quantitative ontology x Conceptual errors, x2(1) = 2.5, p < .12). 

• Repair of. conceptual errors does not reliably depend on notational structure or 
quantitative ontology. However, a comparison of expressions and 2D tables shows 
a marked asymmetry in the likelihood of repair: only role expressions repair prior 
conceptual errors, while only state tables repair these errors. 

Standard materials of algebra instruction, expressions and 2D tables carrying role 
quantities, are the loss leaders for making quantitative inferences about problem 
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structure. This is particularly true of role expressions, which seldom introduce correct 
constraints (29.6%) and more frequently introduce conceptual errors ( 40. 7% ). To their 
credit, role expressions are as likely as other materials to support structural repairs. 
The contributions of role expressions are similar for both algebra students and teachers. 
Among students, 2D tables carrying role quantities are as likely to introduce correct 
constraints as they are to introduce conceptual errors ( 41. 7% for each), and they never 
support structural repairs. 

In sharp contrast, nonstandard material designs are generally much more effective 
for making quantitative inferences about problem structure. Regardless of the type of 
quantity involved, narrative episodes are more likely than any other materials to 
introduce correct constraints, they never introduce conceptual errors, and they 
sometimes support structural repairs. Scene notations are somewhat less effective at 
introducing correct constraints, but they seldom introduce conceptual errors and are 
comparable to or surpass other materials for supporting structural repairs. In 
comparison with 2D role tables, tables carrying state quantities less often introduce 
correct constraints, but they also less often introduce conceptual errors and sometimes 
repair prior conceptual errors. For complex written materials, these findings corroborate 
qualitative observations of material designs made in Section 5.3 and uncover a 
surprising contribution from narrative episodes, for both algebra students and teachers. 

5.5 Discussion 

This chapter uses materials found within episodes to reconsider problem solving as the 
construction of material designs for quantitative inference. By adding material 
categories for notational structure and quantitative ontology to the episodic framework 
of preceding chapters, we obtain an interesting methodological synergy: (a) the episodic 
framework provides an interpretive vocabulary for detecting constructive inferences and 
their combination during solution attempts, and (b) the materials contained within 
these episodes provide a novel descriptive account of the problem-solving setting. 
Qualitative and quantitative analyses examine the relation between material designs 
and the interpretive categories of Chapters 3 and 4: problem-solving tactics, strategies, 
outcomes, and the origin of inferences. Each material design provides a partial view of 
problem structure, and individual designs must usually be combined to construct an 
effective mathematical representation. An ecological analysis of interactions between 
the inferential and manipulative capacity of different material designs helps to explain 
what people do and know when demonstrating mathematical competence. This analysis 
identifies different constructive packages for algebra story problem solving that have 
implications for theories of competent quantitative inference and instruction. 
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constraints (29.6%) and more frequently introduce conceptual errors (40.7%). To their 
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5.5 Discussion 

This chapter uses materials found within episodes to reconsider problem solving as the 
construction of material designs for quantitative inference. By adding material 
categories for notational structure and quantitative ontology to the episodic framework 
of preceding'chapters, we obtain an interesting methodological synergy: (a) the episodic 
framework provides an interpretive vocabulary for detecting constructive inferences and 
their combination during solution attempts, and (b) the materials contained within 
these episodes provide a novel descriptive account of the problem-solving setting. 
Qualitative and quantitative analyses examine the relation between material designs 
and the interpretive categories of Chapters 3 and 4: problem-solving tactics, strategies, 
outcomes, and the origin of inferences. Each material design provides a partial view of 
problem structure, and individual designs must usually be combined to construct an 
effective mathematical representation. An ecological analysis of interactions between 
the inferential and manipulative capacity of different material designs helps to explain 
what people do and know when demonstrating mathematical competence. This analysis 
identifies different constructive packages for algebra story problem solving that have 
implications for theories of competent quantitative inference and instruction. 

I 
I 



5.5.1 Constructing material designs for quantitative 
inference 
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From an ecological perspective, a mathematical representation is not simply a 
knowledge structure applied to a problem. Instead, problem solvers construct 
representations within the work setting, assembling conventional notational structures 
and particular kinds of quantities into what I have called a material design. These are 
local changes to the material setting, they are combined across the temporal and 
material boundaries of episodes within solution attempts, and these combinations make 
up a representational ecology for problem-solving. Different patterns of material 
construction are the primary characteristic that distinguishes more from less competent 
problem solving. 

Material designs. In episodes drawn from a common pool of comparison 
problems, algebra students and teachers use the same kinds of notations and quantities. 
Notations inc1ude relatively fiat expressions for arithmetic and algebra, temporally 
structured narratives, and relatively complex written structures for two dimensional 
tables or diagrammatic scenes. Both groups also use two different quantitative 
ontologies: a prospective view of quantities within states in the problem's event 
structure and a retrospective view of quantities as roles in the problem's quantitative 
structure. 

As in Chapter 4, episodes from both groups fall outside the standard material 
designs of algebra instruction (i.e., state or role expressions and 2D role tables). 54.9% 
of algebra students' episodes construct nonstandard material designs (i.e., narratives, 
scenes, or 2D state tables), compared with 49.9% of teachers' episodes. Although 
algebra teachers never use 2D state tables, material excursions from standard algebraic 
designs suggest that algebra students and teachers resemble each other more than 
either resembles a view of competence as recalling characteristic equations or 
translating from words to equations. 

Construction versus recall of material designs. Since algebra story problems 
provide only a text, people must either recall or construct the materials they use to 
solve these problem. Algebraic formulas (e.g., D = R x T) and the arrangement of 2D 
role tables (e.g., "dirt" tables) are sometimes directly recalled, but problem solvers 
more often must construct the material design of local episodes, both to identify 
quantitative constraints and to determine precise solutions. This claim for local 
construction is consistent with the finding that material designs follow the content 
domain of problems, scenes being more frequent in motion problems and narratives or 
expressions more frequent in work problems. Material designs that are not part of 
standard instruction appear to be a constructive response to being unable to recall 
standard mathematical forms (e.g., Karen's "God, I don't remember formulas or 
anything for this" at S-2 in Section 4.3.2 of Chapter 4). 

- -.·1 
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Material design of local tactics. Analyses in this chapter show that 
problem-solving tactics are constructed out of different materials. Standard material 
designs (i.e., state or role expressions and 2D role tables) are used only for algebra or 
ratio tactics, while nonstandard material designs (i.e., narratives, scenes, or 2D state 
tables) are most often used for model tactics. With the exception of 2D role tables, 
complex notational structures are the material basis for tactical excursions outside of 
schooled algebra. The material design of ratio tactics, using expressions or narrative to 
carry state quantities, suggests that they may be intermediate between nonstandard 
and standard approaches to algebra. 

People construct model tactics using notational conventions a\·~:.· ~ble outside of 
schooled mathematics (e.g., tables or diagrams) to carry quantities that are given or 
implied in the problem text. A qualitative analysis of narrative, gestural, and written 
work during these episodes suggests (a) that the text itself acts as a specification for 
constructing the model, (b) that the conventional structure and activities of familiar 
notations (narrative, 2D, or scene) provide a material setting in which to carry 
quantities, and ( c) that the resulting material design can organize inferences and 
calculation over the!!e quantities. Whether the design carries state or role quantities, 
both students and teachers can use models to identify and evaluate quantitative 
inferences. \Vhen the material design of a model carries state quantities, prospectively 
embedded in the structure of events described in the story and distributed over the 
dimensional structure of the notation, people sometimes undertake "model-based 
simulation" (e.g., constructing states as connected components in a labelled scene). 
Although algebra teachers seldom do so, algebra students and advanced undergraduates 
(Chapter 3) use these material designs to work around the problem of obtaining 
algebraic precision. 

5.5.2 Affordances for inference and manipulation of 
quantities 

Under an ecological view of problem solving, each type of material design affords 
different opportunities for inference and precise quantitative manipulation. As a result, 
there are tradeoffs in what any individual design can accomplish, and this helps to 
explain both the episodic structure of solution attempts and differences in levels of 
problem-solving competence. 

Material designs and quantitative inference. Qualitative analyses of complex 
notational stru~tures (Section 5.3) show that both 2D and scene notations afford 
quantitative inferences, although configural properties should give scenes an advantage 
over the positional array of 2D tables. This contra.st is confirmed by quantitative 
analyses of local difficulties and the origin of structural inferences (Section 5.4.4). 
These analysis also provide an unexpected finding that narrative materials perform 
better than either comP.lex written notation when introducing correct quantitative 



inferences and suppressing conceptual errors. In sharp contrast, standard role 
expressions most often lead to local difficulties or conceptual errors. 
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If the material setting influences what one can do or can understand about problem 
structure, these are the kinds of differences that we should expect. Scene and narrative 
materials are relatively free from local difficulties, and this can in part be explained by 
their configural properties, as written on paper or described during a narrative "tour" 
of problem structure. Drawing a scene showing related distances as labelled segments 
makes an explicit spatial commitment to the relation between train distances and their 
composite distance apart, as the scene is constructed and regardless of whether the 
drawer knows to add these distances at the outset of the episode (e.g., Karen's diagram 
at the top of Figure 4.3 in Chapter 4). Likewise, narrating an observer's view of train 
travel with synchronized watches requires that travellers start and stop recording times 
together, as the story is told and regardless of whether its teller knows that the times 
are equal at the beginning of the narrative (e.g., Richard's justification for equal times 
at S-8 in section 4.3.4 of Chapter 4). 

In each case, the configural arrangement of quantities simultaneously corresponds to 
relevant aspects of situational and quantitative strucbre. The structure of the scene or 
narrative scenario has an iconic correspondence (Smith, 1987)8 with relations between 
event boundaries in the story presenting the algebra problem. At the same time, the 
scene also has an iconic correspondence with quantities in a common interpretation of 
arithmetic relations between quantities (i.e., points and intervals on a number line). 
\Vhen the correspondence relations for a material design are simultaneously iconic with 
represented worlds of events and quantities, the design is a "model" of both represented 
worlds. As constructed on paper, this simultaneity is a powerful constraint that may 
explain advantages in quantitative inference observed for narrative and scene notations. 

By a similar analysis, state or role expressions show the least affordance for 
quantitative inference because their relatively compressed structure places a 
homogeneous pool of symbolic entities (constants, variables, and operators) in 
correspondence with heterogeneous elements of the problem's situational sfructure. 
Using Smith's terms, symbols and operators in expressions have a reified correspondence 
to entities and relations in the situation. Despite what may be an iconic correspondence 
for individual quantities presented by an algebra story problem (or at least their surface 
syntax), the standard material designs of algebra do not afford the simultaneous iconic 
correspondence with events and quantities that scene or narrative materials enjoy. 
Continuing the analysis, 2D notations should afford quantitative inferences less well 
than scenes, since they stand in typological correspondence with events and quantities. 
However, 2D notations should afford more than standard expressions, since relations 
between quantities are at least constrained by their type (either from events or 

8Following Palmer (1978), Smith catalogues a set of correspondence relations that 
a representing world (source) may take to a represented world (target). In an iconic 
correspondence, each object, property, and relation i~ the source corresponds to some 
o~ject, property, and relation in the target. · 



measured dimensions). Thus, affordances for quantitative inference can be partly 
explained in terms of the conventional structure of material designs. 
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l\1aterial designs and manipulative capacity. Analyses also show that 
material designs have very different affordances for manipulating quantities. Without a 
conventional structure to support precise calculation, narratives, 2D role tables, and 
role scenes are never used as solution attempts. In contrast, expressions carrying state 
or role quantities and complex written notations carrying state quantities all afford 
conventional manipulative activities for precise calculation. As a result, these material 
designs frequently appear in solution attempts - e.g., 64.3% of algebra students' 2D 
state tables are used in solution attempts, while 54.5% of teachers' role expressions are 
used as solution attempts. 

No single material design affords the inferences and manipulative capacity required 
for constructing and using a mathematical representation. Local mismatch between 
affordance for inference and manipulation produces much of the complex episodic 
structure of algebra story problem solving. Transitions out of episodes "off track" or 
with conceptual errors are most common with standard material designs, but transitions 
also occur when problem solvers are unable to manipulate correct quantitative 
constraints. Algebra teachers usually carry structural inferences into standard role 
expressions, though they sometimes attempt solutions outside of standard algebraic 
materials (e.g., a state scene during heuristic simulation). Algebra students mos1 often 
work around the need for algebraic precision by using nonstandard alternatives to 
algebra iri their solution attempts (54.6% of their "final e;··· .:..1des" use 2D or scene 
notations), despite making frequent attempts to construct '·. :.:,ebraic expressions. 

Thus a material chasm opens between algebra students' solution attempts and a 
curricular sense of competence usually demonstrated by teachers. The chasm is not 
between "words and equations" so much as between nonstandard and standard material 
designs, both constructed within the local setting of a solution attempt. The chasm is 
also not a matter of missing notations or quantities: with the exception of 2D state 
tables, algebra students and teachers regularly construct the same materials. Instead, 
what distinguishes competent algebra story problem solving from students' 
workarounds is different ways of combining material designs that afford quantitative 
inference with those that afford precise algebraic manipulation. 

Materials and knowing about mathematics. Material designs appearing in 
solution attempts are complex generative performances in which problem solvers with 
different backgrounds pursue quantitative inferences. When conventional materials are 
assembled into local designs, the setting for further inferences about quantitative 
structure changes, and different manipulative possibilities are introduced. What one 
knows about the situational and quantitative structure of a problem depends upon how 
one designs the setting to hold quantities. In ways that are important for 
problem-solving competence, knowledge about mathematical structure is locally 
constructed. 
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Material designs contribute differently to local difficulties encountered within 
problem-solving episodes. Both algebra students and teachers are least likely to 
encounter local difficulties when using narratives or scenes. In contrast, both are more 
likely to end episodes "off track" or have conceptual errors when using expressions, and 
particularly when these expressions carry role quantities. Students alone have 
difficulties with 2D notations, which are as likely as not to end off track. Students also 
introduce errors of omission with 2D role tables (i.e., leaving out necessary constraints) 
and introduce errors of commission with 2D state tables. This difference in the type of 
local errors corroborates qualitative observations that (a) the notational structure of 2D 
tables provides weak constraints on quantitative inference (e.g., primarily quantitative 
types), and that (b) state simulation requires explicit relations between local quantities 
and limiting constraints. 

Material designs also contribute differently to the origin of correct constraints, 
conceptual errors, and repair of prior conceptual errors. As in Ch2pters 3 and 4, the 
standard materials of algebra (i.e., role expressions) frequently introduce conceptual 
errors but have strong informal competitors for introducing correct inferences and 
repairing prior errors. Narrative and scene materials surpass expressions for introducing 
correct constraints, they introduce fewer errors than expressions, and they compete 
favorably for repairing prior conceptual errors. 2D state tables, used exclusively by 
students, are comparable to role expressions in their contributions to quantitative 
inference (both positive and negative). 2D role tables, a standard material design used 
primarily by students, introduce conceptual errors as often as correct constraints, and 
they never repair prior conceptual errors. 

5.5.3 Competent algebra story problem solving 

If materials produced during problem-solving episodes are tools for identifying and 
pursuing quantitative relations, people across levels of competence appear to be able to 
use the individual tools of algebra story problem solving. Unfortunately, the 
conventional skills for using a particular tool are not enough when one must construct a 
package of these tools that is customized to a particular situation (i.e., a problem). 
Again, materials that are most supportive of structural inference (i.e., narratives) are 
least supportive of precise calculation. 

Packages for quantitative inference. Materials assembled during solution 
attempts form three distinct "packages" for quantitative inference. The first is a 
standard instructional package, apparently designed to meet the constructive and 
manipulative requirements of algebra story problem solving. 2D role tables, as taught, 
are to help students organize inferences about quantitative relations, which are then to 
be read directly out of the structure of the elaborated table. It is ironic that "the 
standard method that I think most of us teach around. here" (Richard at S-4 on 



problem MOD, Section 4.3.4) is seldom used by teachers in the verbal interview 
protocols and is never observed among advanced undergraduates9 in Chapter 3. 
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The second package is used by teachers and advanced undergraduates, both well 
past formal instruction. Neither group makes significant use of 2D role tables, though 
both use complex notatfonal structures to infer quantitative relations and to manipulate 
state quantities. Narrative and scene materials carry quantities in a configural structure 
that affords inferences about relations between quantities (e.g., equality and additive 
structures), and these provide a setting in which standard materials with more robust 
manipulative capacity can be constructed. Thus, nonstandard packaging by competent 
problem solvers does not abandon algebraic materials, but competent problem solvers 
construct expressions around nonstandard material designs. 

The third package comes from algebra students, who use nonstandard material 
designs to work around the curricular demand for algebraic precision. Students 
construct state simulations, using 2D tables or scene diagrams as conventional and 
relatively error-resistant materials to find precise values. Unlike teachers, students' 
solution attempts often occur within the same problem-solving episode where they 
identify relevant structural constraints (e.g., simulation using a state scene or 2D state 
table). Students are well aware that this is a nonstandard (i.e., "'weird") way of solving 
algebra story problems. 'What they do not explicitly recognize is the correspondence 
between what they can construct (i.e., nonstandard material designs) and what they 
have been taught to manipulate (i.e., standard algebraic materials). 

Repackaging algebra story problem solving. What is required to reach the 
curricular sense of competence is movement across this material chasm: (a) from 
complex notational structures that support local inferences to compressed and relatively 
opaque notations that offer a rigorous manipulative calculus, and (b) from a prospective 
view of quantity embedded in the situation depicted by the problem to a retrospective 
summary of quantitative relations. Considering the configural opacity of 2D role tables 
and role expressions for the content domains and dimensional structure of algebra story 
problems about related functions, this standard instructional package may be a poor 
choice of materials for teaching the construction of algebraic representations. 

Since algebra students spontaneously construct conventional but nonstandard 
designs, an alternative approach would be to encourage them to assemble standard 
algebraic materials around the notational structure provided by these designs. The 
tutorial intervention described in Section 5.3.3 demonstrates a orthogonal configural 
arrangement or role scenes as a notational structure for constructing standard algebraic 
expressions. The expectation was that familiar conventions for individual role scenes 
could be combined in a two dimensional notation, and that the configural relations 
between scene components could be used as niches for constructing local algebraic 
relations between quantitative roles. By building on conventional structures that are 

9Written protocols were not analyzed using categories for notation and quantity, but 
none contain written material that resembles a 2D rol~ table. 
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Material designs contribute differently to local difficulties encountered within 
problem-solving episodes. Both algebra students and teachers are least likely to 
encounter local difficulties when using narratives or scenes. In contrast, both are more 
likely to end episodes "off track" or have conceptual errors when using expressions, and 
particularly when these expressions carry role quantities. Students alone have 
difficulties with 2D notations, which are as likely as not to end off track. Students also 
introduce errors of omission with 2D role tables (i.e., leaving out necessary constraints) 
and introduce errors of commission with 2D state tables. This difference in the type of 
local errors corroborates qualitative observations that (a) the notational structure of 2D 
tables provides weak constraints on quantitative inference (e.g., primarily quantitative 
types), and that (b) state simulation requires explicit relations between local quantities 
and limiting constraints. 

Material designs also contribute differently to the origin of correct constraints, 
conceptual errors, and repair of prior conceptual errors. As in Chapters 3 and 4, the 
standard materials of algebra (i.e., role expressions) frequently introduce conceptual 
errors but have strong informal competitors for introducing correct inferences and 
repairing prior errors. Narrative and scene materials surpass expressions for introducing 
correct constraints, they introduce fewer errors than expressions, and they compete 
favorably for repairing prior conceptual errors. 2D state tables, used exclusively by 
students, are comparable to role expressions in their contributions to quantitative 
inference (both positive and negative). 2D role tables, a standard material design used 
primarily by students, introduce conceptual errors as often as correct constraints, and 
they never repair prior conceptual errors. 

5.5.3 Competent algebra story problem solving 

If materials produced during problem-solving episodes are tools for identifying and 
pursuing quantitative relations, people across levels of competence appear to be able to 
use the individual tools of algebra story problem solving. Unfortunately, the 
conventional skills for using a particular tool are not enough when one must construct a 
package of these tools that is customized to a particular situation (i.e., a problem). 
Again, materials that are most supportive of structural inference (i.e., narratives) are 
least supportive of precise calculation. 

Packages for quantitative inference. Materials assembled during solution 
attempts form three distinct "packages" for quantitative inference. The first is a 
standard instructional package, apparently designed to meet the constructive and 
manipulative requirements of algebra story problem solving. 2D role tables, as taught, 
are to help students organize inferences about quantitative relations, which are then to 
be read directly out of the structure of the elaborated table. It is ironic that "the 
standard method that I think most of us teach around: here" (Richard at S-4 on 
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Conclusions 

6.1 Contrasting views of applied mathen1atical 
problem solving 

This dissertation provides a collection of analytic and empirical studies of "applied 
quantitative inference" observed when people with different mathematical backgrounds 
attempt to solve algebra story problems. The inferences required to deliver precise 
solutions to these problems are "applied" only in the conventional educational sense 
that students are expected to apply formal mathematical concepts to problems given in 
school or on standardized assessments outside of school. These are not occasions for 
"everyday" quantitative reasoning as they might be encountered in life after school. 
Considered as problem-solving tasks from a traditional cognitive science perspective, 
algebra story problems are "ill-structured" (Simon, 1973) in that there is no clearly 
defined set of operations that take one from an initial state, the problem as presented, 
to a final state, a precise value for an unknown quantity. The central questions are how 
people manage to structure this gap between words and precise solutions and what role 
algebraic equations play in that work. 

Cognitive and ecological analyses of competent quantitative inference. It 
is my hope that this dissertation has contributed new materials for competing 
theoretical accounts of mathematical reasoning, taking algebra story problem solving as 
a representative case of complex human problem solving. As reviewed in Chapter 2, 
quite different accounts come from traditional cognitive studies of applied mathematical 
problem solving, on the one hand, and a diverse collection of "ecological" analyses of 
quantitative inference in everyday settings on the other. More traditional cognitive 
analyses generally take algebraic equations as a primary normative ontology for 
problems, the knowledge required for competence, the activities of problem solving, and 
the nature of solutions. In contrast, ecological analyses locate problems and their 
solutions in the ongoing activities of people involved in material and social settings. 
These approaches to quantitative inference diverge over the the relation between 
"problems" and their "solutions," the distribution and use of "knowledge" in 
constructing both, and ascriptions of "competence" on the basis of problem-solving 
activity (Section 2.5). 
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Descriptively adequate interpretations of problem solving. Studies 
presented in the preceding chapters work towards a descriptively adequate theoretical 
framework for the problem-solving activities supporting quantitative inference. 
Although cognitive and ecological approaches to these kinds of problems have 
underscored the difficulty of school math problems and produced interesting 
observations of quantitative reasoning in practice, neither provides a detailed descriptive 
account of the origin of correct or incorrect quantitative inference, whether recalled 
directly from memory or constructed out of the local material and social setting. 

For example, Reed et al., (1985) reported that approximately half of a group of 
college algebra students who found a correct solution on a representative algebra story 
problem used a "generate-and-test strategy" without writing algebraic expressions. 
Instead of taking these activities as legitimate forms of inference, follow on studies 
manipulated materials and instructions to facilitate analogical comparisons, with the 
result that students apparently abandoned successful strategies in favor of syntactic 
(and error-prone) equation matching. In contrast, Carraher and Schliemann (19Si) 
found an almost identical form of "rated addition" among construction foremen, who 
were able to solve unfamiliar target problems involving linear proportions. Their 
analysis did not systematically examine how similar strategies could be used to manage 
more complex quantitative relations (e.g., related linear proportions) or how these 
activities related to other forms of quantitative inference. In this dissertation, detailed 
explorations of episodic structure in solutions to algebra story problems are used to 
develop a descriptive account of quantitative inference that relates "nonstandard" 
problem-solving activities to more "standard" forms of mathematical representation. 

6.2 Major contributions 

The major analytic and empirical contributions of the dissertation start with a 
prescriptive analytic framework for describing problem structure, aspects of which are 
used to describe how inferences about quantitative relations can be constructed and 
how precise calculations might be organized during problem solving. These lead to a 
relatively open-ended interpretive framework for analyzing the detailed structure of 
individual solution attempts, which is applied to written and verbal problem-solving 
protocols collected with advanced undergraduates, algebra students, and algebra 
teachers. Finally, relations between problem-solving tactics and various outcomes are 
reinterpreted within an ecological analysis of local episodes in which different "material 
designs" support quantitative inference. 

Analysis of problem structure. A variety of categorization schemes have been 
proposed for algebra story problems, but these generally fail to consider interactions 
between the quantitative and situational structure of typical problems. This 
dissertation describes a prescriptive analytic framework that combines a quantitative 
network formalism (Section 2.4.1) devised by Greeno and colleagues (Greeno et al., 
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1986; ShaHn and Bee, 1985) with an analysis of corresponding situational structure 
based on entities and relations within and across measured dimensions (Section 2.4.2). 
A prescriptive analysis of generating mathematical representations shows that these 
frameworks interact in interesting and useful ways. 

• Quantitative relations and larger structures can be generated or evaluated by 
constructing their corresponding situational structures in a dimensional model of 
the problem. 

e A dimensional model describing the situational context presented by a problem 
can be used in a form of simulation to find precise solutions without using formal 
algebraic representation. 

e The dimensional structure of such a model can be used to assemble and partially 
manipulate a standard collection of algebraic expressions. 

e Hypothetical interactions between ontological categories for quantity and 
situation are used to organize exploratory studies of problem solving in the 
remainder of the dissertation. 

An interpretive framework for episodic structure. Obtaining an adequate 
description of "solutions" in applied mathematical problem solving is a difficult 
theoretical and practical problem. On the one hand, adopting a prescriptive view of 
problem-solving activities may leave out the very materials or tactics that support 
competent performance (e.g., treating algebraic expressions as an exclusive outcome). 
On the other hand, these materials and activities may be quite diverse, burdening an 
analysis that looks closely at their interactions. This dissertation draws on traditional 
methods of protocol analysis to propose the problem-solving episode as a fundamental 
unit of analysis (Section 3.3). Episodes are identified as coherent strategic, tactical, and 
conceptual activities within an enclosing solution attempt. As a coherent segment of 
activity, the episode allows relatively open-ended investigation of relations between 
ascribed strategies, observed tactical materials, and problem-solving outcomes. 

The episodic structure of algebra story problem solving. The core of this 
dissertation reports two exploratory studies of applied quantitative inference. Problem 
solvers with quite different backgrounds were asked to show their work and/or talk 
aloud when solving a common set of algebra story problems involving related 
output-per-time rates. Their solution attempts were interpreted according to the 
framework for episodic structure developed in Section 3.3, and resulting protocol data 
were subject to quantitative analysis (Sections 3.4 and 4.4). 

• In both written and verbal protocol studies, problem solving episodes without 
explicit algebraic notations were quite common, including various annotations, 
construction and use of dimensional models of problem structure, and 
nonalgebraic uses of ratios. 

• Model-based reasoning was a surprisingly common activity across levels of 
competence: from newcomers (algebra students) to career educators (algebra 



teachers) to institutionally-certified competent problem solvers (advanced 
undergraduates in computer science and engineering). 
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• Model and ratio tactics also appeared in "final" problem-solving episodes, where 
people either offered a solution or failed to solve the problem. 

• The primary source of difficulty across groups was conceptual errors, in which the 
problem solver either omitted a. relevant structural constraint or introduced an 
incorrect constraint. Manipulative errors in arithmetic and algebra were less 
common and often were repaired within the episode. 

• Model tactics played a central role in applied quantitative inference: generating 
quantitative inferences, determining precise values for unknown quantities, and 
evaluating conjectured constraints. 

• Analyses tracking the origin of structural inferences showed that model tactics 
introduced more correct inferences and fewer conceptual errors than algebraic 
tactics. Model tactics competed favorably with other tactics for repairing (i.e., 
retracting or replacing) conceptual errors. 

• In the study of advanced undergraduates, manipulating problem structure and 
the sequence of presenting problems did not produce hypothesized positive or 
negative transfer effects. Closer examination of written annotations showed 
several cases of negative transfer that were unrelated to these manipulations. 

• In contrast, when problem solvers had more control over their work in a verbal 
interview setting, spontaneous problem comparisons were common and largely 
successful, even when the retrieved solution provided a poor or misleading 
analogical source. 

Qualitative analyses of solution attempts by algebra students and teachers in a verbal 
interview setting (Section 4.3) largely corroborated these findings and extended the 
interpretive framework for episodic structure in several ways. 

• The details provided by verbal interviews showed episodic structure to be 
non-linear and dense by comparison with analyses of episodes in written 
protocols. · 

• Model-based simulation, as written and narrated, simultaneously reproduced 
relevant aspects of quantitative and situational structure. In general, the 
temporal a.nd spatial structure of notations constructed during episodes appeared 
to influence subsequent activities and outcomes. 

• Particularly for students, solution attempts proceeded as a form of articulation, 
working around the tension between being certain (understanding the problem) 
and being precise (finding a particular value) under various external constraints 
(e.g., timeliness, prescribed activity, etc.). 

• Participants' descriptions of nonalgebraic tactics suggested that these were 
generally private and illegitimate problem-solving activities: the "weird way to do 
it" by comparison with "some other way to do it" for students. 



e Model tactics shifted from solution strategies among algebra students to 
comprehension or evaluation strategies among teachers, who seldom used 
model-based reasoning as a solution strategy. 
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An ecological reconstruction of mathematical representation. Detailed 
observations of the temporal and material production of problem-solving episodes in 
Chapters 3 and 4 were used to propose a novel account of constructing mathematical 
representations as the integration of "material designs" (Section 5.2). Material designs 
are local to episodes and combine differently structured notations (expressions, 
narratives, two dimensional tables, or scenes) with different views of quantity (state or 
role). As such, each provides an incomplete perspective on problem structure, but each 
also affords the problem solver with different inferential and manipulative capacities. 

Local designs can be "standard" school-taught materials like algebraic expressions 
or formula-specific tables; alternately, they can be "nonstandard" materials like 
diagrammatic scenes showing a succession of quantitative states. Different local designs 
are integrated across episode boundaries to construct a mathematical representation 
that supports more or less effective problem-solving , ctivity. The problem-solving 
episodes identified in verbal int c ,·iew protocols were reinterpreted using local material 
designs to organize questions about constructing problem-solving tactics, manipulating 
local materials to determine precise values for unknown quantities, and demonstrating 
competent mathematical problem solving (Sections 5.3 and 5.4). 

• Both algebra students and teachers use materials from each subcategory of 
notational structure and quantitative ontology, and both frequently combine these 
into nonstandard material designs that differ from traditional school mathematics. 
Unlike students, however, algebra teachers never construct two dimensional tables 
carrying state quantities. 

• Qualitative analyses of verbal protocols suggest that material designs are usually 
constructed, rather than recalled, and that they may even be constructive 
resolutions to being unable to recall mathematical forms. 

• "Model tactics" are constructed exclusively out of complex notational structures 
(i.e., narratives, 2D tables, or scenes), and these usually carry state quantities. 

• Qualitative analyses of representative cases of material designs suggest that 
correct inferences should be afforded better by the configural aspects of scenes 
than by the typed array of 2D tables. The relative advantages of different 
notations are also examined as different types of correspondence relations 
provided by material designs onto event and quantitative structure (Section 5.5). 

• A quantitative analysis of local difficulties and the origin of structural inferences 
confirms the advantage for scenes, but unexpectedly shows that narrative episodes 
perform better than either complex written notation. Expressions, which provide 
neither configural nor typing constraints on inference, generally perform below 
any other notation. 
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circumstances it could provide a useful instructional model for constructive aspects of 
problem solving (see also Hall, 1989b). As with any model used in teaching, there are 
problems of registration: the model may cover some aspects of the target domain well 
but cover other aspects poorly. This proposal addresses relations and operations 
possible within a representation of the situational structure of compound algebra story 
problems, and the correspondence of these aspects to relations and operations possible 
with a. representation of quantitative structure. Combined with a quantitative model 
like that proposed by Greeno et al. (1986), their joint contribution could prove more 
effective than either used alone. 

Figure 6.1 shows paired graphical representations of situational and quantitative 
structure for the MRT problem. At the top of the figure, a dimensional frame displays 
orthogonal output (in this case, distance) and time dimensions, with entities arranged 
along those dimensions by their respective situational relations: times are adjacent and 
distances congruent. At the bottom of the figure, a quantitative network (Shalin and 
Bee, 1985) shows the common distance found by applying motion rates to component 
times. Each representational device illustrates important aspects of competence in this 
problem-solving domain. 

In contrast with translation rules or tabular arrangements, the illustrative medium 
of dimensional frames provides a spatial abstraction for compound rate problems that 
promotes a physical justification for essential quantitative constraints. Time segments 
add because they are adjacent within the vertical dimension, while distance segments 
are equal because they are congruent within the horizontal dimension. As noted in 
earlier descriptions of quantitative structure (Section 2.4.1 ), substructures 
corresponding to these constraints must be constructed before using the quantitative 
network to find a solution - e.g., the additive triad over time extensives that centers 
the quantitative network in Figure 6.1. The ability to appropriately select and place 
these quantitative substructures appears to require a substantial investment in training 
time (Greeno et al., 1986). It may be that a well-designed illustration around the idea 
of dimensional frames could effectively support the acquisition and use of a quantitative 
network illustr~tion. 

In contrast with a set of algebraic equations, quantitative networks provide a 
spatial abstraction for variables and equivalence relations that makes the global 
structure of what would otherwise be a linear encoding more apparent. Rather than 
writing a set of equations with repeated variable names or constants, a notation that 
can obscure the role of quantitative entities and make the applicability of algebraic 
operations difficult to recognize, the quantitative network directly captures the notion 
of shared variables or constants and multiple ways of reaching a particular unknown. 
The network provides a visually inspectable form of algebraic calculus, essentially 
constraint propagation, that may prove easier for students to learn than more 
traditional instructional methods (i.e., algebraic operations on linear equations). Thus, 
the two illustrative media provide interdependent representational stages intermediate 
between a problem text and a correctly manipulated ~et of algebraic constraints. 
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Figure 6.1: Combining interactive illustrations: a two-dimensional frame and a quanti­
tative network for problem MRT. 
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• Some material designs do not afford any form of manipulation for obtaining 
precise values (e.g., narratives or 2D role tables). Mismatches between affordance 
for inference and precise manipulation provide one explanation for the complexity 
of episodic structure in applied problem solving. 

• Differences between "novices" and "experts" cannot be explained on the basis of 
knowing about individual material designs as problem-solving tactics alone. 
Instead, multiple designs are "packaged" together by competent problem solvers 
in a way that exploits the relative benefits of individual designs (i.e., inference 
versus manipulation). 

$ Anecdotal evidence, provided by a tutorial intervention with an algebra student 
(Section 5.3.3), suggests that more effective representational packages can be 
constructed around material designs that are already familiar to students. 

6.3 Future work 

There are a number of directions in which to extend this work. I will mention two in 
passing and then describe a proposal for designing an educational illustration in some 
detail. First, the ecological analyses of constructing material designs for quantitative 
inference could meaningfully be extended to the written protocols described in Chapter 
3, and these data could then support a similar form of analysis to that undertaken in 
Chapter 5. It would be interesting to see if relations between material designs, local 
outcomes, and the origin of structural inferences hold among this larger group of 
advanced undergraduates. 

Second, the burden of data analysis faced throughout completion of this 
dissertation has produced a rather large corpus of detailed episodic traces of 
problem-solving activities. Since these data are organized around a relatively 
well-structured language for episodic content, they provide an interesting database 
against which to compare different approaches to constructing and managing 
qualitative interpretations of students' activities. These range from relatively simple 
indexing schemes over protocols and analytic annotations in a hypertext format to 
more elaborate uses of machine learning techniques to induce descriptions of individual 
or aggregate patterns in solution attempts (e.g., Garlick and VanLehn, 1987). 

6.3.1 Material designs as educational illustrations 

In the preceding chapters, I have interpreted the relative prevalence and consequence of 
conceptual versus manipulative errors as evidence that people have difficulty in 
assembling the quantitative structure of algebra story problems, even long after they 
have mastered the algebraic formalism. Likewise, the prevalence and functional role of 
model-based reasoning were interpreted as evidence that even 
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mathematically-sophisticated problem solvers explore the situational context of these 
problems in an attempt to construct or repair a representation that will support a 
solution. Based on these findings and their interpretation, I now examine several 
implicat.ions for teaching mathematical problem solving. 

The primacy of conceptual errors and use of model-based reasoning, in some cases 
to recover from these errors, suggest that instruction based solely within the 
mathematical formalism will be inadequate for solving non-routine or applied 
problems. Textbook instruction in algebra story problem solving typically addresses 
this issue by providing some suggestions for " ... translating from words to appropriate 
algebraic forms" (Kolman and Shapiro, 1981, p. 64). These range from direct 
translation rules taking textual phrases into equations (e.g., rewrite twiceju as 2 x) to 
the construction of tables that organize quantitative entities and their interrelationships 
around known formulas. The desired result is a set of simultaneous linear equations 
amenable to algebraic operations. \Vhile these suggestions provide a sort of 
organizational strategy for the student's problem-solving activity, they fall well short of 
specifying how quantitative relations, particularly those that are only implied by the 
problem text, can be identified, arranged as entries in a table, or effectively used. 
Instead, the results of these studies point to persistent problem-solving difficulties that 
the traditional algebra curriculum addresses weakly if at all. 

How might these components of competent problem solving be taught more 
effectively? I will argue that the situational context of an algebra story problem, and in 
particular the correspondence between situational relations and quantitative 
constraints, should be a legitimate object of teaching in the algebra curriculum. This is 
clearly appreciated in other problem-solving curricula. For example, consider the utility 
of force diagrams for solving statics problems in physics. Students who ignore or 
incorrectly construct force diagrams can be expected to manipulate equations or 
formulas without visible signs of progress. This is quite similar to Paige and Simon's 
(1966) finding that "auxiliary representations" helped students to detect impossible 
algebra story problems, sometimes before writing any equations at all. The question, 
then, is whether there might not be a similar organizing representation for algebra story 
problem solving? There have been some suggestive precedents: Gould and Finzer 
(1982) described an animated computational environment that allowed students to 
make guesses about rate problems in a one-dimensional world of motion, and Greeno 
(1983) described an effective instructional technique in which students use an electric 
train set to help calculate solutions to compound motion problems. The intent in both 
cases was to provide students with an interactive illustration1 as part of their 
problem-solving instruction. 

As one possibility among many, I describe an illustration that draws directly from 
the analysis of situational structure presented earlier and consider under what 

10hlsson (1987) gives a prescriptive methodology for constructing interactive illustra­
tions as well as a particular illustration, called "Rectangle World," for the ratio sense of 
rational numbers. 
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circumstances it could provide a useful instructional model for constructive aspects of 
problem solving (see also Hall, l 989b). As with any model used in teaching, there are 
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Bee, 1985) shows the common distance found by applying motion rates to component 
times. Each representational device illustrates important aspects of competence in this 
problem-solving domain. 

In contrast with translation rules or tabular arrangements, the illustrative medium 
of dimensional frames provides a spatial abstraction for compound rate problems that 
promotes a physical justification for essential quantitative constraints. Time segments 
add because they are adjacent within the vertical dimension, while distance segments 
are equal because they are congruent within the horizontal dimension. As noted in 
earlier descriptions of quantitative structure (Section 2.4.1), substructures 
corresponding to these constraints must be constructed before using the quantitative 
network to find a solution - e.g., the additive triad over time extensives that centers 
the quantitative network in Figure 6.1. The ability to appropriately select and place 
these quantitative substructures appears to require a substantial investment in training 
time (Greeno et al., 1986). It may be that a well-designed illustration around the idea 
of dimensional frames could effectively support the acquisition and use of a quantitative 
network illustrCJ,tion. 

In contrast with a set of algebraic equations, quantitative networks provide a 
spatial abstraction for variables and equivalence relations that makes the global 
structure of what would otherwise be a linear encoding more apparent. Rather than 
writing a set of equations with repeated variable names or constants, a notation that 
can obscure the role of quantitative entities and make the applicability of algebraic 
operations difficult to recognize, the quantitative network directly captures the notion 
of shared variables or constants and multiple ways of reaching a particular unknown. 
The network provides a visually inspectable form of algebraic calculus, essentially 
constraint propagation, that may prove easier for students to learn than more 
traditional instructional methods (i.e., algebraic operations on linear equations). Thus, 
the two illustrative media provide interdependent representational stages intermediate 
between a problem text and a correctly manipulated ~et of algebraic constraints. 
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transform and then add motion rates in this problem restructures the dimensional 
frame to have single segments on both time and output dimensions - e.g., {4 hours for 
each "return trip" mile. The corresponding quantitative network would require only 
three entities: a time extensive (6 hours, given) results from multiplying the combined 
rate intensive ( 2~ hours per mile, inferred) by an unknown extensive for round trip 
distance. This is a sensible change in representation only because the time segment 
giYen in the "goal state" of the problem is presented as a composed whole (i.e., " ... he 
was gone for 6 hours" in the text of problem MRT), and round trip distance segments 
are congruent. Thus, representational choices in the dimensional frame provide 
justification for construction of a simplified quantitative network. 

Second, problem-solving activity (e.g., iterative simulation) within the dimensional 
framework can actually help to recover from prior conceptual errors. For example, 
consider a problem solver who first attempts a solution within the algebraic formalism 
and omits the constraint that distances are the same (i.e., the same variable). Finding 
two simultaneous linear equations in three variables, this person reaches an impasse. 
Choosing model-based reasoning for the purpose of comprehension in the next episode, 
they immediately face a representational decision in the distance dimension: should 
positionally distinct or identical spatial segments be chosen? Certainly, the possibility 
of an incorrect choice remains, but when making this choice in the algebraic formalism 
of the prior episode, the consequences of an incorrect representational decision were less 
apparent. Correctly choosing congruent distance segments in the dimensional frame 
could allow a problem solver to achieve a solution within the model-based reasoning 
episode, or to return to the algebraic formalism with a more complete representation. 

In summary, choosing an apt combination of situational and quantitative models for 
instructional purposes is a challenging problem. This suggestion for the dimensional 
frame as an illustrative mechanism would require further refinement in order to be 
effectively integrated with an algebraic illustration, as discussed above. Nonetheless, 
this approach is interesting in several respects. First, it is consistent with an empirical 
picture of episodic problem-solving behavior in people with quite different 
mathematical backgrounds. Taking these findings as evidence for competent problem 
solving, such an illustration might support what problem solvers actually do during 
attempts to solve non-routine problems. The proposal is based on a characterization of 
these attempts and an analysis of common problem-solving difficulties. Second, 
although the solution of a particular class of problems may become routine with 
practice, the ability to construct an algebraic representation will continue to be 
important for novel problems or problems that have become unfamiliar with the 
passage of time. Being able to construct a representation in the algebraic formalism, 
based on the constraint-generating inferences I have described as one role for 
model-based reasoning, may never become entirely routine. Last, combined illustrative 
media may be of some practical value in delivering instruction on algebra story problem 
solving, whether provided through computer-based instruction or a traditional algebra 
curriculum. 



Appendix A 
Algebra Story Problems 

The following problems were constructed as instances within structural classes formed 
by crossing different time and output relations (see Figure 4.1). Within each structural 
class, two motion problems and one work problem are included. 

Adjacent output, same time 

(MOD) Two trains leave the same station at the same time. They travel in opposite 
directions. One train travels 60 km/h and the other 100 km/h. In how many hours will 
they be 880 km apart? 

(CLOSURE) Tom can drive to Bill's house in 4 hours and Bill can drive to Tom's house 
in 3 hours. How long will it take them to meet if they both leave their houses at the 
same time and drive ~oward each other? 

(HOS) A small hose can fill a swimming pool in 6 hours and a large hose can fill it in 2 
hours. How long will it take to fill the pool if both hoses are used at the same time? 

Same output, sequential time 

(MRT) George rode out of town on the bus at an average speed of 24 miles per hour 
and walked back at an average speed of 3 miles per hour. How far did he go if he was 
gone for six hours? 

(DANCE) Martha left home for the dance studio, riding her bicycle at 8 miles per hour. 
After reaching the studio, she realized that her dancing shoes were still at home. She 
called her son, who left home immediately, driving at 24 miles per hour. If their 
combined travel time was 1 and 1/3 hours, how far was it from home to the studio? 

(WC) Randy can fill a box with stamped envelopes in 5 minutes. His boss, Jo, can 
check a box of stamped envelopes in 2 minutes. Randy works filling boxes. When he is 
done, Jo starts checking his work. How many boxes were filled and checked if the entire 
project took 56 minutes? 

Anchor-overlap output, same time 

(RACE) Frank and Joan both plan to run in the West End race. Joan is faster and can 
run 10 kilometers per hour, while Frank only runs 8 kilometers per hour. Frank cheats 
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by starting the race 5 kilometers ahead of Joan so that they will cross the finish line 
together. If both runners start the race at the same time, how long do they run? 

(BAGELS) Fred and Ethel begin making bagels at 9 in the morning. Fred can make 24 
bagels each half hour, while Ethel only makes 18 bagels. At what time will Fred have 
made 40 more bagels than Ethel? 

(BOARDS) Huck and Tom agree to paint opposite sides of the same fence. Tom can 
paint 10 boards on his side in an hour, while Huck can paint 14 boards on his side. 
Tom secretly paints 24 boards on his side the night before. If the boys finish the fence 
together the next day, how many hours did they work together? 

Same output, same-finish time 

(BUS-FLY) Karen leaves the county airport at noon, driving 60 miles per hour to a 
political meeting at the state capitol. Rudolph, realizing that she left her speech 
behind, catches a plane two and one half hours later. The plane flies at 180 miles per 
hour and lands at the capital just as Karen arrives. \\That is the distance from the 
county airport to the state capitol? 

(CROSS) Nancy lives in Angleton and works in Beeville, while Jeff lives in Beeville and 
works in Angleton. Jeff cycles to work at 15 miles per hour, while Nancy drives to work 
at 45 miles per hour. For each to be at work on time, Jeff must leave his home 20 
minutes before Nancy leaves her home. How far does each travel from home to work? 

(CAKES) Tim and Matt pack fruitcakes at the Country Vittles Food Company. Each 
packs 75 cakes an hour during a normal day. Tim shows up for work on time at 8:00 am 
Friday and begins packing fruitcakes. Matt, tired from a night out, comes to work three 
hours late and packs 120 cakes per hour so that he will pack as many cakes as Tim by 
the end of the day. How many fruitcakes does Matt pack on Friday? 

Anchor-overlap output, sequential time 

(DELIVERY) Albert and John, of the Fleet Delivery service, can pedal their bikes at 
20 and 28 kilometers per hour, respectively. Albert leaves Sandstone with a package for 
Baytown, but has to stop in Rockport because his chain breaks. He calls John, who 
leaves immediately from Sandstone and grabs the package as he passes Albert in 
Rockport. John travels another 20 kilometers to deliver the package. How far is 
Sandstone from Baytown if their total travel time was 5 hours? 

(RUN-BIKE) Ned lives along the route of the charity fun-run, exactly 6 kilometers 
from the start. Watching television at home, he sees his favorite runner, Hilda, start 
the race averaging 8 kilometers per hour. Just as Hilda crosses the finish line, Ned 
begins cycling along the race route in order to congratulate her in the winner's circle. If 
he cycles at 10 kilometers per hour and reaches the finish line 3 hours after the start of 
the race, how long was the race? 
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Appendix B 

Instructions for Written Protocol 
Study 

The following are two sets of instructions contained in a workbook of algebra story 
problems used to collect written problem-solving protocols. The first set of instructions 
occupied the first page of the booklet and were explained to participants as a group. 
Afterwards, they attempted to solve four problems, each on a separate page of the 
booklet. Their work on prior problems was not accessible without turning back to 
earlier pages in the booklet, and they were neither encouraged for forbidden to do this. 
A set of instructions for explaining their solution attempts appeared on the last page of 
the booklet, and these were explained to the participants after they attempted to solve 
all the problems. After the second set of instructions, participants wrote brief 
explanations for each of their solution attempts. 
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Instructions 

Your work on this exercise will be ANONYMOUS: once turned in, your work cannot be 
associated with you in any way. Your attendance in class will be checked after this 
exercise is over. 

On the pages which follow, you will see a series of algebra story problems. Please solve 
each of these problems. 

SHO\V ALL OF YOUR WORK in the space provided below the problem. 

\Vrite only on the problem page. 

·work from top to bottom, writing new material below previous material. 

\\Then showing your work, please DO NOT ERASE! If you make a mistake, simply 
mark through the mistake with a single line. 

You will be allowed 8 minutes to solve each problem. When you find an answer to a 
problem, DRA\V A BOX AROUND YOUR ANS\VER. 

Please DO NOT PROCEED to the next problem until instructed to do so. If you finish 
early, please sit quietly until instructed to continue to the next problem. 

Please do not turn page until instructed to do so. 
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Instructions for Giving Explanations 

You can assist us in interpreting your work. For EACH of the four problems you have 
just seen, please do the following: 

1. Explain your work on the BACK OF THE PRECEDING PAGE. DO NOT make 
any changes to the work you have shown on the problem sheet. 

For each VARIABLE which you used, please tell us what that variable 
refers to in the problem text. For example: 

C1 is the cost of 
John's lunch. 

EXPLAIN the important equations, relations or facts which you used in 
solving the problem. Some examples are: 

a known formula 

total cost is the sum 
of each item's cost 

the second event started 
10 minutes later 

e = mc2 

If you have time, show us what you would tell a friend to help him/her 
solve the problem. 

2. Again, please give us these explanatory comments on the BACK OF THE 
PRECEDING PAGE for each of the four previous problems. You will be given 20 
minutes to explain your work for all the problems. 

Please do not turn page until instructed to do so. 
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