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Abstract

As a direct outcome of economic development coupled with an increase in population, global energy demand will continue
to rise in the coming decades. Although renewable energy sources are increasingly investigated for optimal production, the
immediate needs require focus on energy sources that are currently available and reliable, with a minimal environmental
impact; the efficient exploration and production of unconventional hydrocarbon resources is bridging the energy needs and
energy aspirations, during the current energy transition period. The main challenges are related to the accurate quantificatior
of the critical rock properties that influence production, their heterogeneity and the multiscale driven physico-chemical nature
of rock-fluid interactions. A key feature of shale reservoirs is their low permeability due to dominating nanoporosity of the
clay-rich matrix. As a means of producing these reservoirs in a cost-effective manner, a prerequisite is creation of hydraulic
fracture networks capable of the highest level of continued conductivity. Fracturing fluid chemical design, formation brine
geochemical composition, and rock mineralogy all contribute to swelling-induced conductivity damage. The Caney Shale is
an organic-rich, often calcareous mudrock. Many studies have examined the impact that clay has on different kinds of shale
productivity but there is currently no data reported on the Caney Shale in relation to horizontal drilling; all reported data on
the Caney Shale is on vertical wells which are shallow, compared to an emerging play that is at double the depth. In this
work we develop geochemical-geomechanical integration of rock properties at micro-and nanoscales that can provide insights
into the potential proppant embedment and its mitigation. The novel methodology amalgamates the following: computed X-
ray tomography, scanning electron microscopy, energy dispersive spectroscopy, micro-indentation, and Raman spectroscop)
techniques. Our results show that due to the multiscale heterogeneity in the Caney Shale, these geochemical and structure
properties translate into a variation in mechanical properties that will impact interaction between the proppant and the host
shale rock.

Keywords: Energy Transition, Caney Shale, Computed Tomography, Raman Spectroscopy, Energy Dispersive Spectroscopy,
Indentation.

1. Introduction « ergy (Mwesigye and Meyeg017;Mwesigye and Yilmaz,

ver since the industrial revolutions of the eighteen% 2021). As conventional reservoirs are depleting and are un-
E century, energy has been a vital element in det&- able to match the energy demand, hydraulic fracturing of

minina how humans live. Todavs hiah demand for ef unconventional shale reservoirs is part of the ongoing search

9 . : ys nigh a s . for new sources of energys@o et al.,2020;Huang et al.,
ergy has been driven by huge demographic and €CONOTNIC,H 020 Middleton et al 2017). Extensive research has been
growth around the world (Kadoshin et ap00). Over X N :

the coming decades, a mix of energy will be used -y carried out in recent decades into the economic and environ-
sisting of dominantly,fossil fuels (Middleton et a201’7' s« mental impact of gas shale production via hydraulic fractur-

Mohr et al.,2015) and supplemented by newer renewabie ing, driven by various controversies related to this technol-
sources (DYJfW et al2020) such as geothermal and solar ok 00, such as seismicity, pollution of underground water and
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the need for transparency related to chemical design ofiky- X-ray computed tomography devicArfdrews et al.202Q
draulic fracturing fluids leehan 2016 Solarin and Bellp 1.0  Crandall et al. 2017 Ma et al, 2020 Voltolini and Ajo-
202Q Yuan et al, 2015. Although shales have convenn Franklin 202Q Voltolini et al., 2021). Only this type of
tionally been used as sites for carbondioxide storBgis¢h 112 assessment therefore can enable researchers to make a truly
et al, 2008, more recently attention has been paid to their accurate and rational comparison on the mechanistic factor
value as hydrocarbon source rocks. Consequently, theinpo-that influence shale productivity.
tential as gas and oil reservoir rocks is now being exploited
in several locationsBoyer et al, 2011). us  1.1. Contribution and novelty of this study

Shale reservoirs are characterised by low levels of perme-  The overarching goal of this study is;
ability and a very low matrix porosityQlarkson et al.2013
Davudov et al.202Q Sun et al, 2020. Hydraulic fractur- "
ing is required if they are to be productividifidieton et al, e
2017). Improvements to horizontal drilling and hydraulic’
fracturing technology have allowed the production of large
volumes of shale oil and gas; however, challenges remain
in the area of quantifying the key geo-mechanidtdrobia **
and Ahmad 2020 properties of shale reservoirs, such a%; Yy DRSS i ' !
strength, Young’s moduli, elasticity, plasticity, brittless, and d|str|put|on, on the micromechanical properties of
ductility and fracture toughness. Elastic modulus, spe&t the emerging Caney Shale play.
ically, significantly impacts the hydraulic fracture apers 3. Understand the mechanisms of proppant embedment

1. There is no Correlative data set that combines Electron
Microscopy, Raman Spectroscopy and Micro Indenta-
tion data on Caney Shale cores, as an effort to correlate
geochemical composition to geomechanical response
of the Caney shale.

2. Integration of 2D and 3D shale compositional hetero-
geneity, in terms of mineralogy, organic matter volume

ture Fjaer et al. 2008 Ma et al, 2020 during hydraulic 1 through application of correlative Raman spectroscopy
fracturing, while hardness impacts on the proppant embed- ~ With micro-indentation and scanning electron mi-

ment He et al, 202Q Mueller and Amrg 2015 Nakagawa 12s croscopy, and its potential translation into more ef-
and Borglin 2019 Zhi and Elsworth 2020, which in turn o fective completions technology for Caney Shale well-

affects the fracture conductivity achieved. 131 bores.

Extensive studies have been conducted by multipleise-  Multiple scholars Anderson et a)202Q Bai et al, 2013
search teamsintinao Fuentealba et aR02Q Goral et al, 13z Liu et al, 2017 Ma et al, 202Q Saif et al, 2017 Sharma
202Q Heng et al,202Q Holt et al, 2020 Houl et al,2019 i« and Sircay 2020 have attempted to delineate the impact
Islam and Skalle2013 Kasyap and Senetaki2022 Mi- 15 that clay has on different kinds of shale productivity but
nardi et al, 202% Sone and Zoback2013ab; Yin et al, 1 there is currently no data reported on Caney shale in rela-
2019 over the last decade on the mechanical properties-of tion to horizontal drilling; all reported data is on vertica
shale that influence shale productivity, the majority hawe wells and in Caney formations that is shallow, compared to
been at macro scale, as specimen size usually ranges froman emerging play that is at double the depth. However, there
several millimeters to several centimeters. As an example, also remains a lack of understanding of the mechanisms in-
a considerable volume of rock material is required for re- volved.
searchers to carry out the uniaxial and triaxial compressi® ~ The combination of the use of indentation techniques
test, which is the most commonly used in the determina- with Raman spectroscopy as a means of comprehending
tion of elastic modulus. Further limitations are that ferce: shale well production is an area that hasn’t yet been as-
displacement curve analyses are subjective and macro testsessed. The use of Raman spectroscopy is a non-invasive
cannot give a comprehensive understanding of the deforima-technique that can enable researchers look at a fractured
tion mechanisms which underlie the stress-strain relatien wall in post API-RP61 test and no drying of a sample is
Hence, microDu et al, 202Q He et al, 2020 Kasyap andws required. We believe that this method can provide an un-
Senetakis2022 Luo et al, 202Q Ma et al, 2020 Zong 1 derstanding into trends and help connect to field perfor-
et al, 2006 tests are important to complement macro-scate mance that would enable more comprehensive completions
testing due to their ability to study the micro-structudadc 2 and avoid fracture plugging and loss of production. By iden-
acteristics and thereafter deduce the mechanisms. These artifying insights into the composition matrix of the shaledan
understood to be tests in which the micro component is ®ot the impact this has on its mechanical properties, we propose
specimen size, but the characteristic length of the objegts that it may be possible to adjust fracturing fluid compositio
under study. Changes in the micro-structure are simuka- such that it is precisely tailored to the mineral compositio
neously monitored, with specimens subjected to mechani- for the Caney Shale. This can potentially avoid proppant
cal loading(s) under a microscop@y( et al, 202Q Hagen 1s» embedment and increase the production of stimulated shale
and Thaulow2016 Saif et al, 2017 Zhang et al.2018 or s volume.
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2. Study Area and Geologic Setting of the Caney Formation

\ ¥
Stephens Co. Caney Shale Structure TVD Map [ft]
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OGS Oklahoman Basins
Structure TVD [ft] 1000
Oklahoma, USA Date
I Murray Co. 08120/2021
—
-2000.00
Johnston Co.
-4000.00
Legend
-6000.00
1 .
00000 County Lines
-10000.00 Ardmore basin m—
-12000.00 Faults —

Carter Co.

25miles

-14000.00

-16000.00

-18000.00

-20000.00

R

State of Oklahoma

Ardmore Basin i1
i \

Figure 1: TVDSS structure map of the Caney Shale in the Arénaod Marietta Basin, Oklahoma. The wells correspond to
key locations and interpreted cores. County names higtielihim yellow.

The Caney shale shown in Figule is located in thew. the Caney goniatites are also found in the Batesville sand-
Arkoma basin, is stratigraphically comparable to the Bas- stone and Fayetteville shale. This indicates that the Caney
nett shale found in the Fort Worth Basin. In the aftermath shale correlates with both these formations and the Moore-
of the significant success of the Barnett play, the formatien field.
has progressed to become a producer of gas and oil congden- Radonjic et al(2020 microstructurally characterised the
sate Andrews 2007 Kamann 2006 Maughan and Dem-s; Caney Shale by evaluating an area of the Caney core span-
ing, 2006 Schad 2004. The Caney shale is a large com= ning 200 ft that was extracted from a well drilled in 2007
stituent composed of an organic-rich calcareous shale.de-located in southern Oklahoma. The outcomes of their anal-
posit that contains large concretions of carbonR&dpnjic 0  ysis revealed that the Caney Shale is clay-rich dominated
et al, 2020. Over the past few years, it had become ap- by illite. They also found matrix pores that ranged from
parent that the way in which the Caney Shale is interpreted nanometers to micrometres in scale.
by geologists was based on the exposures in the Arbugkle Unlike the Barnett, Eagle Ford, Marcellus or even the
Uplift (Andrews 2007, 2012, while its name was derived.s Fayetteville, no one has developed a standard completion
from a location with little-known exposures. 205 process for the Caney that will generate reliable produactio

The Caney Shale was initially annotated and nameckdy Given that every shale play is different and what works for
Taff. (1901 Taff. (1901). According to Maughan andzr Barnett, Fayetteville, Eagle Ford is not guaranteed to work
Deming (2006, in the 1920’s, some degree of confusienm for Caney or any other shale play. This is because important
in terms of the stratigraphic nomenclature of rocks foundd#n differences exist in deposition, mineralogy, microstaet
basins within Oklahoma was introduced by petroleum ge- and petrophysics characteristics.
ologists. The Pennsylvanian Caney term was applied to an
area above the Caney. This was later formally renamedthe 3. Experimental Methods and Materials
Goddard Shale.Andrews(2003 used an alternative term,, 3 1. Selecting samples from drilled Caney Cores
the False Caney, to describe a Goddard section.

According to Girty. (1909, the Caney shale is formed Table 1: Selected Formation intervals
from a variety of exposures that are located throughout Formation Description
the Arbuckle within the central areas of the Chickasaw & based on Well Log
Choctaw nations. The thickness of the shale does not ex-

Well Depth (ft) Sample Name

ceed 1,000 feet, and it is formed of black and blue argillites X006 Sample A Re_serVOIr L .
) X087 Sample B Clay-rich formation
that feature local sandy strata in the upper area. Although :
. . ; X139 Sample C Reservoir 2
the majority of the Caney shale is black, the beds found in . .
the upper area are lighter in color and potentially have-a dif X171 Sample D Clay-rich formation
P g b y X404 Sample E Reservoir 3

ferent fauna. Girty. (1909 also highlighted how some of
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The most critical decision, in selecting samples from tg- published by NETL in 2021). The 2/3 core was viewed,
trieved drilled core for all laboratory investigations cefed .., and project team decision was made for locations from
in this paper, was to focus on relevant rock properties with which plugs were retrieved The following samples varying
regards to production. This was done by optically evalugt- in depth shown in Tablé have been used in this study.

Ing the entire core displayed for viewing and comparing it to From the identified formation intervals shown in Talje

the logs obtained during drilling, with industry and resdar® : . .
partners present and involved in the selection decisior. Th core plugs were extracted at two different orientations tha

common goal is that the drilling and completions of the fi- is; 45 & 90° as shown in Figure. Samples of 1’ 0.5”

ture wellbores in Caney shale can benefit from detailed [&b- were cut using a diamond saw _and_then prepared for pol-
oratory investigation and relevant modeling, which inelsid® ishing. The core samples used in this study were fresh and

rock properties at various scales as well as the sample-ofién Zﬁgurgztjkggmed'ately after the core was recovered, cleaned

tation with regards to the bedding of the rock and the imp#ct
on mechanical and chemical properties of the Caney shale Core cleaning and sampling were conducted in a climate-
during drilling, completions, and production. 2a - controlled facility. Samples for mechanical propertiestde

The complete section of the Caney Shale was cored andwere acquired first to ensure freshness and alleviate pos-
recovered from a well drilled in January/February 2020.in  sible changes to the fabric and mineralogy resulting rock-
the Ardmore Basin. This 650 feet of four-inch core was atmospheric reactions. In addition, samples were taken
retrieved, cleaned, and petrophysically analyzed. A %43 from the cores interior to avoid rock that came in contact
slab was CT scanned at the NETL (the CT report will he with coring and cleaning fluids.

— ~~_\~..\
F—4-inches — 4-inches—{ |—4—inches\i"’I‘“~~~».,_ é ]
(@ (b) () (d) -

Figure 2: (a) Coring at 90 degrees to the bedding plane, (bphgGat 45degrees to the bedding plane, (c) Sample surface on
which SEM imaging and indentation shown in fig@e/as conducted after polishing(Secti®2.2. The sample surface was
divided into four quadrants to identify the effect of hegaeity on all samples (d) End point of the cores that wenentied

and crushed into powder to represent bulk mineral compuositi

»ss  crushed into powder to represent bulk mineral composition,
7 twenty grams of crushed rock powder was used to identify
28 the mineral composition.

0 3.2.2. Sample Polishing
260 After samples had been scanned(sectid) with an in-

s dustrial CT scanner, they were then cut to 0.5-in in length
»2 as shown in Figur&(c) and prepared for polishing. The
23 Polisher shown in FigurAl has been used for polishing all
e the samples. The purpose of polishing is to achieve better
s Vvisibility on a scratch free surface under a microscope and
»s during indentation. The various elements within the sys-
27 tem were aligned to deliver the optimal outcomes and to
s Make sure that the rotation axis sits upright to the platen
Figure 3: lllustration of how indentation was planned and and the fixture-mounting reference and the platen are par-
executed on the Caney Shale polished samples. 20 allel. The dimensions of the sample were used to cut a
an matching piece of sheet wax, which was subsequently af-
3.2. Sample Preparation a2 fixed to the fixture for .the purposes of the alignment.. The
_ ) 273 sample was then positioned above the wax. The fixture,
Sample preparation was done in absence of water o pre-jnq|,ding wax, was heated on a hot plate at a temperature
vent them from potential clay swelling. 25 of 100Pc. After the wax had completely melted, the sam-
3.2.1. Crushing of samples into powder zs ple was cooled and subsequently stuck to the platen. The
At each of the selected sample depth shown in Table sample was then ground down until flat with the use of a
end point of the cores shown in Figu2evere trimmed and.»s 600-grit silicon carbide abrasive disk that was operated at

@=25.4mm

o
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200 rpm and a sample load of 500g. This ensured that anyflat creating a least possible topography and contrast which
deformation that remained after previous processing epesa is the basis for secondary electron image interpretation.
tions was fully removed, after which the sample was viewad Once all the quadrants (shown in Fig@a for all the sam-
under a microscope to verify the uniformity of the scrateh ples of interest were scanned, the system was vented and
pattern. A fluid dispenser was employed to automatically samples were taken out and the chamber was closed.

dose the polishing lubricant and, thus, ensure the sample3.3.4. Raman Spectroscopy

was prepared in a repeatable and consistent fashion. Putple Over the last ten years, Raman spectroscopy has
lubricant which is perfect for water-sensitive samples was evolved Chen et al.2019 Truong-Lam et a.2020) to be-

used during polishing and dispensed using buttorDe- s come an extremely effective approach in analytical science
formation was removed via grinding using ané diamond z.; because of its molecular sensitivity and ease of implemen-
suspension on a gold-label polishing cloth with the purple tation. Furthermore, unlike Infrared radiation spectopsg
lubricant dispensed using butt@at 150rpm and a samaxs the presence of liquidsBpdnar and Frezzott2020 does

ple load of 500g and/m diamond suspension on a whitex not hinder the applicability of Raman spectroscopy. Confo-
label polishing cloth in combination with the purple lubris;  cality (Turrell and Corset1996 plays a fundamental role in
cant dispensed using butt@rat 150 rpm. The sample ther. suppressing undesirable fluorescence background and any
underwent a final processing step that involved the uses0f backgrounds from substrates, which can potentially serve
a 0.0m water-free colloidal silica suspension dispensed to mask the signal of a thin coating layer. The use of Raman
using buttord at 150rpm and a sample load of 500g onsa spectroscopy is vital in alleviating the limitations of veav
Chem-pol polishing cloth. All samples were polished over length dispersive X-ray fluorescence(WDXRF) by identi-

a sustained duration to make sure any deformations werefgying a precise composition of mineralogy on sample at
removed and, as such, the specimens were suitable for elecscales less thanuin without any sample preparatioBtem-

tron back-scattered diffraction analysis. After a samplé s mermann et a]2020.

been sufficiently prepared, it was removed from the pasal- The procedure for Raman (FiguA8) testing involved

lel polishing fixture, inspected under a microscope and he loading the sample onto the sample stage and a video mode

process was repeated for each sample. w2 was enabled to ensure that the sample surface is seen. An
. . s appropriate lens was chosen and the sample was placed in
3.3. Experimental Techniques s focus of the microscope using a joy-stick control pad. Once

3.3.1. Computed Tomography Scan of the Samples ; ; ; ;
1iinx2-in core plugs were drilled from 4-in cores &F the sample was in focus, a video image was acquired and the

different orientations as shown in Figue These were™ Raman microscope was then turned to Raman mode. Using

then scanned using an industrial medical CT scanner ffdm the Contrql software, and a combination of power and in-
the National Energy Technology Laboratory(NETL). Cofé tegrated time was chosen. To generate Raman spectra the
plugs were scanned using a sub-millimeter core-scale fas-following parameters were used: 20X and S0X objective

. . a0 lenses, an excitation wavelength from the 532nm laser dis-
Z::J;chgirgﬁrg:z%lgn?: 10Qum with & voltage of 135kv3n tributed by a 600 g/mm BLZ=500nm grating, a laser power

3.3.2. X-ray Diffraction(XRD) analysis a2 between 0.5-5 mW and an integration time of 1s. Raman

. a3 Spectra were then acquired using points and an area scan
i Al teach of th? selehct((ajd salznple gepth ShOWI’Id Itn Tg'bl?tz was done. Ten accumulations were measured on each acqui-
t\;]v:?n%n%rraarlnio?n;(r)us?ti:n J\zi(t:h zoévruire\;vﬁ)sfau:gvar?clec?ys sition on all the samples so as to minimize noise on spectra
. : . . o = Obtained. Once the Raman scan was done, the set-up was
ray Dlﬁracnon(XRD)_ mstrument in the Ventu_re | facilitt a% changed to video mode and the sample was unIoadedF) The
OllilahomadSt?tetUmversny Laboratory that is coupled wit procedure was repeated for all the subsequent samples.
alynxeye detector. ars  3.3.5. Laser Surface Profilometry

3.3.3. Scanning Electron Microscopy(SEM) ' . .
SEM imaging was carried out using a FEI Quanta 600 The laser surface profilometer linked to the Raman mi-

field-emission gun Environmental Scanning Electron N croscope was used for quantifying the indentation depths on

croscope illustrated in Figura2, in both secondary elec® each of the indented samples. Samples were placed under a

tron mode and in the backscattered electron mode. Imatjes,;Raman microscope shown in Figure A3. To obtain a surface

maps and spectra were obtained at 20KeV, and various rifag-Profilometry map, the following parameters were used: 20X
nifications, from a larger field of view to a higher magnifi® and 50X objective lenses, an excitation wavelength from the

cation that revealed characteristics of interfaces anfasar™® 32N laser distributed by a 600 g/mm BLZ=500nm grat-

properties of various phases. SEM images are neces&anjnd: & laser power between 0.55 mW.
to describe and classify the pore types in the Caney Shale.
In addition, energy dispersive spectroscopy was used to Ob-
tain chemical elemental maps, to identify components #ot  The indenter illustrated in Figur&4 was used in deter-
detected by XRD and assess the surface chemistry ofthemining the mechanical properties of the Caney Shale. The
Caney Shale and how these elemental components mightprocedure for indentation on shale samples involved firstly
impact its response to hydraulic fracturing. a2 ensuring that the anti-vibration table is pressurised tmab
Samples of interest were scanned in back-scatter made20psi to prevent any imperfections during the test. This was
because it provides a good illustration of the different eosma subsequently followed by calibrating the vickers diamond
ponents in shale particularly because polished samplessarendenter tip using a steel block provided for calibration to

3.4. Micro/Nano Indenter
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ensure that the elastic modulus and hardness obtained:durference between quadrants 1&3 for all the samples.

ing indentation are comparable to the ideal values of steel. Figure5 shows the load versus displacement curve dur-
Once this was achieved, a test sample was loaded as showiing indentation and a schematic of the indentation impress
in FigureA4. The indenter tip was manually lowered untili:  after load removal taken with the 5X objective lens linked
was visibly close to the sample surface. The contact surfaceto the indenter described in Figuid.

for the sample was identified by doing an contact procedare  The mechanical properties were computed using the
with an indenter tip load of 20N and a speed of 500N/m. Oliver and Phar(1992 empirical relationships described
When the indenter tip made contact with the sample, theidn- below:

denter tip was raised to Qumbove the sample surface and a
the indenter tip was moved to a new location. The next step
involved calibrating the depth sensor. As soon as the depth Frnax

sensor was calibrated, the indenter tip was moved to the test H = A @
location. In all out tests, we use a test load of 5N and inte-

grate the effect of creep by holding the indenter tip for 36s whereFmax is the maximum load applied

when it reached the maximum load and then unloading of A is the projected area of the vickers diamond
the tip preceded. tip and is computed from equati@

1. Hardness was computed from equation

Ac = 4-h2-tarfg = 4-h?-tar?68 = 245-h? (2)

h. represented in Figureis the vertical distance
of contact from the tip and is computed from
equation3;

3F
he = Nmax— Nt = hmax— [ﬁ(} (3)

Figure 4: lllustration of fhe final surface after indentatio S is computed from the slope of Figibes;

This was obtained using a Raman Surface Profilometry de- dF

scribed in sectior.3.4conducted in Quadrant 1 of Sample S= [%} 4)
unloading

B @ 9Cto bedding . 2. Young's modulus(E) was computed from equation

To investigate heterogeneity, fifty indentation tests were (1-?)E - E
carried out using a b indentation pattern and a spacing = ?—Z)E] (5)
of 40Qum between each indent as shown in FigBgeFig- o E isthe indentérrl dulﬁis. '

ure4, indentation was carried out in quadrants 1 and 3 ‘&f-
ter conducting an SEM(see secti®r3.3 analysis that indi—432
cated that quadrants 1&2 as well as quadrants 3&4 have no
micro-structural difference but there was a significant dif

vj is the indenter Poisson’s ratio.
v is the sample Poisson’s ratio.

E, is the reduced modulus given By =

VaS
2VA: T
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lllustration of a load displacement curve after load removal. Illustration of an Indentation Impress after load removal.

Figure 5: Load versus displacement curve during indentatial illustration of the indentation impress after load ogat.

4. Results «0 and the results are presented in sectigh The post inden-
The results from this study were organized to demé?- tation analysis with the laser ;urface profilometry was-crit
) : a2 cal to understand how potential proppant embedment would
strate how heterogeneity of shale rocks resulting from min- . : : .
o 3 be related to the mineralogical 2D maps obtained using EDS
eral composition, carbon content, structure and texture, a . . .
. . 44 mMaps and the indenter marks are presented in context with
pore structure is relevant to geochemical, geomechanical . .
. . . . 45 the elemental maps in sectidrb.
and mineralogical properties that may impact proppant em-
bedment. The description of the results begins by presgntin
CT-scans of 1 x 2 inch core plugs, which show the imp&f- 4.1. Computed Tomography Scans of the Samples.
tance of sample orientation to the rocks, depositional bed-  Figure6 shows two-dimensional isolated planes through
ding as well as providing an insight on mineralogical het the vertical center of the samples as scanned with the medi-
erogeneity and presence of fractures. The CT scans shawedal computed tomography scanner at the NETL. The 1X2in
properties of the rock, but compositional XRD results that cylindrical core plugs after coring show a significant vari-
is focused on bulk analysis showed clay-carbonate-quartz ation in structure and fabric of the shales. The CT scans
versus metallic type of minerals present. The results are were conducted using a voltage of 135kV and a current of
all quantitative except for differentiating various typefs -z 200mA with a Toshiba Acquilon RKL medical CT scan-
clays which was not completely achieved with the avail- ner. In the greyscale images shown in Figure 6 the bright
able techniques. From the bulk analysis obtained from @G- zones are high density minerals and the dark zones are voids
scans and XRD, we then narrow down and look at the Ra- and fractures. Overall, Sample A cored af 8 the bed-
man spectroscopy analysis that can capture organic contentding showed distinct features having a fracture filled by sec
which we were not able to identify chemically under the ondary mineralization because of fibrous mineral growth.
SEM/EDS. This is followed by the microstructure of the Samples B, C, and E cored at®a® the bedding exhibited
rock in a scanning electron microscope (SEM) and the car- natural fractures whereas sample E cored attd5he bed-
responding microchemistry as captured using Energy Ris- ding exhibited pyrite on the CT scans because it is an elec-
persive Spectroscopy (EDS). We finish the results section trical highly conductive mineral. Cross bedding and ndtura
with the micro-mechanical properties that were obtaineds fractures are observed in samples cored 4ttd5he bed-
ing 2D mapping of polished surfaces with a micro-indenter ding.
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Sample E @90°

’
.~
LS . .

SampleA@45°  SampleB@45° Sample C @ 45° Sample D @ 45°
Figure 6: 2D isolated planes through the vertical centethefrhedical CT scans of thex2-inch core plugs described in

section3.1 CT scans were conducted using an industrial CT medicahgedrom the National Energy Technology Labora-
tory(NETL).

4.2. Rock fabric composition, Mineralogy and Total Qs ganic pores formed by the loss of volume during the con-
ganic Content so1  version of solid kerogen/organic matter to liquid or gageou
Rock fabric and composition are major factors contrek- hydrocarbonsl(oucks et al.2012).
ling mechanical properties of shales. Diagenetic prosgsse
especially cementing enhance brittleness and make the rock
more amenable to natural fracturing and less-prone to ®m-4.2.1. Composition of the Rock fabric as revealed by XRD
bedment. Cemented fractures tend to reopen during stisu- Powder X-ray diffraction shows that mineralogy varies
lation and the layer of cement adhering to the fracture wall across the five (5) samples. Quartz is the most common rock
armors it against embedment. Silica and calcite cementareconstituent and ranges from a low of approximately 39% in
essential to the success of the Woodford Shale and Basnettsample E to 64% in sample A. Clay minerals critical to duc-
Shale plays, respectively, and are important factors in suc tile behavior such as illite and mixed layer illite-smeetit
cessful shale playsAlix et al., 2010. Organic contentsss range from a combined low of about 11% in sample A and
is critical to shale plays as it is not only the source of al B to 29% in sample D. Carbonate minerals calcite, dolomite
and gas contained in source/reservoir mudrocks, but argani and ankerite combined reach a high of 26% in sample E are
content provides storage for oil and gas within in intraee lowest in sample D with 7%.
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Figure 7: Mineral composition of the Caney Shale samplesriesl in section3.1 as revealed through XRD analysis.
(a)Sample A, (b)Sample B, (c)Sample C, (d)Sample D, (e)$&amp

The five pie charts shown in Figuiecompare the com-zs E, Sample A and lastly Sample B. Moving on to other con-
position of the rock fabric for the five samples described stituents such as calcite, dolomite, Ankerite, Muscowvite a
in Table1 of section3 as revealed through XRD analysiss Kaolinite varying proportions are seen in all the Samples.
Overall, it can be seen that the percentage of clay minetal In detail, the largest percentage of calcite which is 20.6%
constituents vary with the depth of each sample. The bulk came from Sample E followed by Samples A&B, Sample
of quartz content in the samples whose composition was C, and Sample D.
64.2% came from Sample A followed by sample C, Sample
B, Sample D and leastly sample E. In contrast to the illite Radonjic et al(2020 noted that the higher the clay min-
content, the largest proportion of illite content which was eral content, the more ductile the sample is whereas a lower
26.1% came from Sample B followed by sample C, Samgple clay mineral content indicates brittleness.
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s 4.2.2. Raman Spectroscopy Analysis and Surface Chemistry
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Figure 8: Raman identification of minerals from the Caneyl&lsamples described in secti@l before indentation
(a)&(b)Sample A, (c)&(d)Sample B, (e)&(f)Sample C, (g)88ample D, (i)&(j)Sample E.
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Figure 9: Raman identification of minerals from Sample A af thaney Shale samples described in secBidnbefore
indentation.

Raman spectra can be used to determine the molecylarrigures 8(e)&(f) show the identification of pyrite(Fep
vibrational frequency and the surface chemical compasitiQ nodules on analysis of sample C. FiguBég)&(h) show
of a variety of materialsfodnar and Frezzott202Q Chen ., the identification of pyrite(Fe$ nodules on analysis of
etal, 2019 Lubwama et al.2013 Sarycheva and Gogotsi;, sample D. Figures3(i)&(j) show the identification of
202Q Stemmermann et a02Q Truong-Lam et a.2020 ., calcite(CaCQ) crystals on analysis of sample E. A fur-
and quantify their phases including a myriad of minergls ther analysis of sample A depicted pyrite(FpSand

that includes organic material in gases and rocks. The gur-quartz(SiQ) crystals as shown in Figur&gk)&(I).
face chemistry of shale is of critical importance because it

determines the interactions of fluids and proppants with4#ae It can be seen in Figur8 in all spectra acquired from
rock. As such, Raman spectroscopy is useful because itdifferent samples that there exists a broadband centered at
could facilitate the identification of very small grains thas roughly 136@nT? termed as the D-band and referred to as
are difficult to identify through the use of conventional ops the disordered band while a narrower band centered at ap-
tical microscopy which is limited to a bulk configurationo proximately 1604n7? termed as the G-band which stands
of the intermixed phases. Raman spectroscopy is an objec-for graphitic band. This is becuase during categenesis and
tive, reproducible and non-destructive method for examin- metagenesisT{ssot and Welte1978, the chemical struc-
ing particles, cuttings, cores, plugs or thin sections of ma ture of organic matter is fundamentally changed. The ther-
terials and the presence of liquidBgdnar and Frezzottis.a  mal maturation of kerogen is called graphitization which
2020 doesn't hinder its applicability. The Raman shift ias generally thought to take place later in the metagenetie pro
dicates the arrangement of molecules and molecular bosads,cess and occurs due to the loss of hydrogen-rich aliphatic
allowing a distinction to be made between minerals that carbon groups, resulting in hydrogen-poor residual karoge
have the same composition but different underlying strse- dominated by aromatic carbon structures. Organic matter
tures. The atoms are arranged differently in those crystads that is dominantly kerogen under metamorphic conditions
as such, the spectra varies. ss0 decomposes leading to the creation of pure carbon in the
Figures8(a)&(b) show the identification of pyrite(Feb s2 form of graphite. These observations are consistent with
nodules on analysis of sample A. FigB&)&(d) depict . findings from other researchefsducher et a).2017 Henry
dolomit§CaMg(CQ3),} spectra on analysis of Sample Bs et al, 2018 Tusche] 2013 Yakaboylu et al.2020.
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s« 4.3. Scanning Electron Microscopy and Energy Dispersivec8pscopy Analysis

s 4.3.1. Scanning Electron Microscopy Analysis
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Figure 10: (a)Sample A @45(b) Sample A @99 (c) Sample B @4%(d) Sample B @90from quadrant 1; (e) Sample A
@42, (f) Sample A @90, (g) Sample B @4%(h) Sample B @90from quadrant 3 : to bedding orientation SEM Backscatter
Electron Diffraction (BSED) micrographs at 20kV and 1030b&ections within the Caney Shale. In the backscatter mode,
heavier elements appear brighter and thus pyrite is seer tibiminant. All images were acquired before indentation on
polished an uncoated samples and they indicate existertm@arhite, Quartz, pyrite, and natural fractures.



JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING 13

Natural Fractures

Inter-OMP

Inter-OMP
Matural Fractures m

F—4-inches —
Coring at 90 degrees to the bedding

5
e A - N
BT | S
2J_—in
1-in—

—4-inches—
Coring at 45 degrees to the bedding

. -
oy
> -

: £ -

(g) (h)
Figure 11: (a) Sample C @25b) Sample C @90 (c) Sample D @4%(d) Sample C @90from quadrant 1; (e) Sample C
@42, (f) Sample C @99 (g) Sample D @4%(h) Sample D @90from quadrant 3 : to bedding orientation SEM Backscatter
Electron Diffraction (BSED) micrographs at 20kV and 1030b&sections within the Caney Shale. In the backscatter mode,
heavier elements appear brighter and thus pyrite is seee tominant.All images were acquired before indentation on
polished an uncoated samples and they indicate existertm@arhite, Quartz, pyrite, and natural fractures..
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Figure 12: (a) Sample E @25b) Sample E @30from quadrant 1; (c) Sample E @4%d) Sample E @30from quadrant
3 : to bedding orientation SEM Backscatter Electron Diffiae (BSED) micrographs at 20kV and 1030X of sections within
the Caney Shale. In the backscatter mode, heavier elengreaiabrighter and thus pyrite is seen to be dominant.Albiesa
were acquired before indentation on polished an uncoateglea and they indicate existence of dolomite, Quartz t@yri
and natural fractures.

Q

Scanning electron microscope(SEM) was utilized sto ter appeared as dark masses whereas pyrite appeared in
study the micro-structure and morphology of the sampies spheroidal cluster and displays as a bright element when
described in sectior3.1L The results illustrated in Figs2 imaged in a backscatter mode under the SEM. The micro-
ures10, 11, 12 indicate heterogeneity and that the sam- porosity seen in Figure$0, 11, 12 is associated with or-
ples consist of mainly: pyrite, dolomite,micro-porosity; s« ganic matter. This is attributed to the thermal maturation
ganic matter, natural fractures and clays. In all the quad- of organic matter during burial diagenesis and catagenesis
rants shown in Figurg(c), SEM images were acquired uss resulting in formation of a pore network of bitumen and
ing the backscatter mode as opposed to secondary eleetrormobilized hydrocarbons within the organic material. This
mode because it provides a good illustration of the differen process then creates channels of pores in the organic matter
components in shale particularly because polished samples
are flat creating the least possible topography and contsast Furthermore, a variation in micro-structure and mineral-
which is the basis for secondary electron image interpte- ogy is observed from Figurek), 11, 12 as the orientation
tation. From the backscatter images, compositional vasia- changes indicating that micro-structural and mineralalgic
tion in dark and bright areas are observed. Organic mat- changes are dependent on bedding orientation.
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sz 4.3.2. Energy Dispersive Spectroscopy Analysis

Figure 13: Surface Chemistry of the Sample A as revealed d¥tiergy Dispersive Spectroscopy. SEM micrographs were
acquired using a Backscatter Electron Diffraction (BSEDeat 20kV in areas where indentation was done. Yellow ig mos
likely FeS or Pyrite. Pale blue is Calcite, magenta is quartz, greas-isl dolomite, and majority of fine-grained matrix are

different types of clays

Figure 14: Surface Chemistry of the Sample B as revealedd¥ttergy Dispersive Spectroscopy. SEM micrographs were

acquired using a Backscatter Electron Diffraction (BSEDpeat 20kV in areas where indentation was done. Yellow ig mos
likely FeS or Pyrite. Pale blue is Calcite, magenta is quartz, greae-isl dolomite, and majority of fine-grained matrix are

different types of clays
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acquired using a Backscatter Electron Diffraction (BSED@peat 20kV in areas where indentation was done. Yellow ig mos
likely FeS or Pyrite. Pale blue is Calcite, magenta is quartz, greae-isl dolomite, and majority of fine-grained matrix are

different types of clays

Figure 16: Surface Chemistry of the Sample C as revealedé¥tiergy Dispersive Spectroscopy. SEM micrographs were
acquired using a Backscatter Electron Diffraction (BSEDpmat 20kV in areas where indentation was done. Yellow ig mos
likely FeS or Pyrite. Pale blue is Calcite, magenta is quartz, greae-isl dolomite, and majority of fine-grained matrix are
different types of clays



614

615

616

617

618

619

620

621

622

623

JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING 17

S

Figure 17: Surface Chemistry of the Sample C as revealedéiziiergy Dispersive Spectroscopy. SEM micrographs were
acquired using a Backscatter Electron Diffraction (BSED@peat 20kV in areas where indentation was done. Yellow ig mos
likely FeS or Pyrite. Pale blue is Calcite, magenta is quartz, greae-isl dolomite, and majority of fine-grained matrix are
different types of clays

The surface chemistry of shale is of critical importange SEM micrograph and elemental compositions of of Samples
because it determines the interactions of fluids and prap- A,B,C,D&E. All Figures show heterogeneity in the spatial
pants with the rock. As such, EDS analysis was cea- distribution of the minerals but the elemental constitaent
ducted because it could facilitate the identification of miex are common in all; pyrite, calcite, dolomite and quartz is
eral phase variation along the grains. Samples were coatedseen in all the samples. However, Sample D shown in Fig-
with carbon and loaded into the SEM chamber(FighB3, s urel6shows a higher concentration of framboidal pyrite on
SEM micrographs were taken in areas where indentation the surface. The findings from EDS analysis agree with the
had been conducted and an elemental composition analysisurface chemistry findings from the Raman Spectroscopy
was done using EDS. EDS analysis of Samples A,B,C,D&E presented in Figurg, and Figure9.
are presented. Figures3, 14, 15 16, 17 show the
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Figurel8illustrates the proportion of hardness and elas- on the orientation tested. The yellow regions indicate high
tic modulus from Micro-Indentation testing of the five samr hardness and elastic modulus along the area tested. These
ples A to E tested in quadrants 1&3 at°4% 90° orienta- s 2D hardness and elastic modulus distribution maps were
tions to the bedding plane which compare with results fresn constructed based on the indentation area of 4mBmm
micro indentation tests conducted on Woodford Shalestty shown in Figure8& 4.

Abousleiman et al(2007 and consolidated shale drill cut- Hardness describes how a material behaves in the pres-
tings by Martogi and Abed{2019. Fifty indentation tests’" P

were conducted in each quadrant 1&3 as shown in Figuf& ence of a harder surface under a particular load and, as
. 4 . ez such, is significant when determining proppant embedment
& Figure 4. Thus for one sample one hundred indentation . : . o
tests were conducted with fifty tests per quadrant. o because it delineates the surface properties. The variabil
Overall, it can be seen that the highest proportion of hard- ity in the values shown in Figuré8 is attributed to the;
' . i o6 _ discontinuities in formation, heterogeneity of the mirera
ness and elastic modulus are seen in sample A cored’ at

9CP to the bedding plane in quadrants 1&3. Furthermord”a f:omposmon, and the fluid contact during hydraulic fractur

significant variation in hardness and elastic modulus is 6b- Ing. From Flgure18,. itis clear that Sa”.‘p'e B has the least
served in all the quadrants for each sample and orientaﬁ?%n..harcmesS and elastic modulus values implying that samples

It can be seen that the properties change in each quaéar‘)antn this zone are more susceptible to proppant embedment

but it is also a function of which orientation is tested. Sam- oliowed by Sf"‘mp'e E, Sa”.‘p'e D, sample C as comp_ared to
ples cored at 90to the bedding showed significantly highégr2 sample A \.Nh'Ch had the hlg_h_e_st hardness and elastic mod-
hardness and elastic modulus in all the quadrants than sﬁgm—lJIus Implying that the possibility of proppant embedment

) . s« IS minimal due to the high surface hardness and a higher
ples cored at 45to the bedding. This demonstrated thg;i elastic modulus. It is certainly worth noting that these find

same material can exhibit different characteristics ddpen . . C -

; . ; oo o ; 35 INgs agree with the spatial distribution maps shown in Fig-

ing on which orientation is tested. This is attributed to the
; . . es7 Ureslo, 20, 21, 22, 23.

orientation of the natural fractures to the bedding and min-

eralogy which play a significant role in governing plasticitss With a lower rock elastic modulus, the optimal proppant

Additionally, we have to consider that the fracturing prexess packing ratio will increase, and the permeability correati

causes a damage zone due to the fluid injection that leads tafactor will be lower. This is because when the elastic mod-

a change in material properties where clay swelling can®@c- ulus of the rock is smaller there is a large susceptibility to

cur leading to a reduction in strength and elastic modubds. proppant embedment and a lower proppant elastic modulus

This heterogeneity can be seen in the spatial distributfiom0 presented more proppant deformation. Both of these pa-

the mechanical properties seen in Figut8s20, 21, 22, 23. «4 rameters reduce the fracture apertukbdmed et a].2023,

Figuresl9, 20, 21, 22, 23 illustrate the hardness and elass Liu et al, 2021 Maslowski and Labus2021 Mueller and

tic modulus distribution in each quadrant per sample based Amro, 2015 Zhi and Elsworth2020.
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Figure 19: Maps showing the Spatial distribution of the Mauhal Properties from Sample A. Sample A is annotated ifeThbnder sectior3.1
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Figure 23: Maps showing the Spatial distribution of Hardn@sd Elastic Modulus from Sample E. Sample E is annotatedbieT under sectior3.1
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4.5. Surface Profilometry of the Samples after indentation
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Figure 24: Surface profilometry of the Caney Shale samplesrited in sectioB.1after indentation (a)Sample A, (b)Sample
B, (c)Sample C, (d)Sample D, (e)Sample E, (f)Depth versukhnof the first row along the cross sectional line drawn on
samples A, D&E to illustrate how the indentation depth cary e every indent per sample.

Figure 24 shows the surface profilomentry conducted-in entation. Samples that had the highest content of clays had
Quadrant 3(See Figuc)) of all the samples after indens. the least reported hardness and elastic modulus values com-
tation. Overall, Sample A shows smaller indents compared pared to sample with the least amount of clays.
to all the samples. The smaller the indents the harder the
sample and thus higher hardness and elastic modulus. This Furthermore, to investigate the shale rock proppant in-
is also seen in Figur&8 where Sample A had the highest teraction after indentation was done, surface profilonyentr
hardness and elastic modulus compared to all the sampleswas done on the first row of indents in Sample E. The results
Micro-fractures are seen in Samples: B,C,D and E. Sample show that the indentation depths are different along each in
E had the largest visible fractures and the largest visible:is dent which is attributed to the variation in composition of
dents indicating that the surface is soft and thus the hasdne the rock fabric. The variation in composition of the rock
and elastic modulus are low compared to all other samples fabric implies that proppants will interact differentlyoalg
as seen in Figur@4. This hardness and elastic modulus the surface of the same material and as such a variation in
variation is attributed to clay mineralogy and bedding o#- the degree of proppant emebedment is expected.
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746

5. Modeling of indentation tests and proppant embed-
dment

747

748
5.1. Elasto-plastic parameters from micro-indentations _

In this section, we apply numerical modeling to inveg;
tigate the potential for evaluating elasto-plastic shae p,
rameters from the micro-indentation tests. The numerigal
modeling of these experiments is part of an ongoing £f-
fort to improve coupled multiphase fluid flow and geomg;
chanical modeling of proppant-filled fractures during hy:-

and applications are based on the linking of the TOUGHR2
multiphase flow simulator with the FLAC3D geomecha#n-

ical simulator {tasca 2011, Pruess et al.2012 Rutqvist 7

2017. For the modeling of the micro-indentation tests, the
FLAC3D geomechanical simulator is applied with detaileg
modeling of the Vickers pyramid indenter and its contagt
with the shale surface.
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Figure 25: Numerical model of the micro-indentation tests
77
The geometry of the Vickers pyramid-shaped indenter-al-
lows for modeling the experiment using a 1/8 symmetric
model of the full 3D geometry (Figur25). The rollers in 7o
Figure 25 illustrate boundaries where displacement is al-
lowed parallel to the boundary surface while no displage-
ment is allowed normal to the boundary. On top of the -

26

denter, vertical velocity is imposed to first pressure the in
denter downwards to a desired indentation depth. Once the
depth is reached, the vertical velocity is reversed to whloa
the indenter. The diamond indenter is modeled as an elastic
material with a Young’s modulus of 1040 GPa and Poisson’s
ratio of 0.07, i.e. a very stiff material compared to the shal
samples. Figur@5also shows the mesh discretization. The
mesh was refined near the indenter tip until to such a degree
that smooth load-indentation curves were achieved from the
firstinstant of indenter touching the simulated shale sampl

drocarbon production. The necessary model developments

We adapted an elasto-plastic Mohr-Coulomb model that
was subsequently applied to model proppant embedment in
shale fractures under field conditions. The application of
a Mohr-Coulomb model for the interpretation of indenta-
tion in ductile shale was recently demonstrated/aftolini
et al.(202]) involving high-resolution X-ray micro-imaging
of strain. The modeling of the indentation experiment in
Voltolini et al. (2021 showed that different combinations
of cohesion and internal friction angle could be used in a
model to match the experimental load-indentations curves
of the type shown in Figur@6a. However, modeling of
the strain field as observed from the X-ray micro-imaging
could be used to further constrain the values of cohesion
and friction angle. For the micro-indentation tests on the
Caney shale we model the loading and unloading curves
and the observed indentations pattern. We also compare
the elasto-plastic properties used for the modeling of the
micro-indentation tests with those evaluated from triexia
compression experiments on core-samples. In fact, the co-
hesion and internal friction angle as well as the Young’s
modulus and Poisson’s ratio evaluated from previous core-
scale laboratory experiments are used as an initial pasgmet
set. The triaxial core-scale compression experiments were
performed at the University of Pittsburgh and the resuks in
clude the parameter values listed in TaBleThe actual ex-
perimental data provide Young's modulus and Poisson’s ra-
tio at different confining stress levels, while in this madgl|
study we used the average values that are listed in Pable

Table 2: Elasto-plastic material properties for five Canegle formations evaluated from triaxial compression testhe
University of Pittsburgh. These parameter values were asea starting set of parameters in the modeling of the micro-

indentation tests.

Formation Young's Poisson’s | Cohesion | Internal
Modulus ratio (-) (MPa) friction an-

Reservoir 1

(Sample A) 25.6 0.19 27.2 25.1
Ductile 1

(Sample B) 26.2 0.2 16.8 34.4
Reservoir 2

(Sample C) 23.3 0.2 10 49.7
Ductile 2

(Sample D) 20 0.15 225 25.9
Reservoir 3

(Sample E) 26.8 0.17 60.4 4.6
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Sample C Cored at 90° to the bedding, results from Quadrant 1 Sample D Cored at 90° to the bedding, results from Quadrant 3
6
( a ) Data ( b) Data
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Figure 26: Experimental load-indentation curves for (anpke C and (b) Sample D with modeled load-indentation curves
using elasto-plastic parameters listed in Table

Figure 26 shows two examples of simulated load-
indentation curves overlain on top of a number of expesi- also fall within the range of experimental load-indentatio
mental load-indentation curves. The model simulations are curves. However, the simulation results for Sample E de-
performed with the properties listed in Talldor Sample s viate in terms of the shape of the indentation pit with a
C and D properties, which represent two formations with significant pile-up at the edge of the indentation pit (Fig-
markedly different clay content. The results show that the ure27a). Such a significant pile-up can occur for the com-
modeling using the elasto-plastic parameter evaluated fia bination of a low friction angleq = 4.6°) and high cohesion
the triaxial core-scale compression tests provides mddele (C = 60.4) that were used as an initial parameter set based
unload-loading curves that are within the range individeal on the core-scale experiments. If we apply an alternative
indentation experiments on each formation. Such an agsee-pair of strength parameters with higher friction angbe=(
ment shows consistency between the elasto-plastic pasam-30°) and a lower cohesion (C = 18) no significant pile-up
eters from micro-indentation and core-scale experiments. is calculated (Figur@7b). This alternative pair of strength
The range of the micro-scale load-indentation curves d#or parameters was determined by calibrating the cohesion for
each formation can be attributed to micro-scale heteregene a fixed friction angle = 3C°) until the approximated load-
ity of the shale samples. The simulated indentation tests indentation curve matches the load-indentation curvehfer t
show a maximum indentation depth of respectiveri@nd s;  original strength parameters. Thus, the simulations wai¢h t
21um and corresponding hardness of about 2 and 0.5sfor two sets of parameters € 4.6° with C = 60.4 and 4 = 30°
Sample C and D models. A much smaller indentation depth with C = 18) results in identical load-indentation curves bu
for Sample C modeling can attributed to a much higher a significant difference in pile-up adjacent to the indenter
friction angle. A high friction angle have a high impaet (Figure27). The depth profiles from the experiments shown
on strength at high confining stress. The modeling results in Figure24 does not indicate significant pile-up for Sample
show that the very high stress of hundreds of mega-PasgalsE. Therefore, the model parameters with 30° and C = 18
develops in the shale samples just below the indentergin- seems to better match with the Sample E micro-indentation
cluding high values of all three principal stresses. The sign data.
ulated load-indentation curves for Samples A, B and E do
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Figure 27: Modeled indentation pit for two alternative S#ertp properties after unloading.
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5.2. Modeling of elasto-plastic proppant embedment ss  between neighboring proppants in a monolayer and will de-

Susceptibility to proppant embedment is assessed bysnau-pend on the reservoir pressure. The modeling is performed
merical modeling using the Mohr-Coulomb elasto-plastic using an axial symmetric model, similar to that for the
material parameters that were evaluated from the moedel- micro-indentation tests, but considering the sphericapsh
ing of the micro-indentation tests in Sectidrb. Here we s0  Of the proppant (Figur@8). An average spacing, or center-
conduct modeling using properties for Samples C andsd, to-center distance, between individual proppants are sim-
where Sample D represents a formation with higher clay ulated by changing the radius of the axisymmetric model.
content and weaker strength properties. We consider a frac-The rollers in Figure8b illustrates boundaries where dis-
ture closure stress of 10,000 Psi (72 MPa), which is esti- placement is allowed parallel to the boundary surface while
mated for a depth of about 14200 feet(3400 m) in Okia- no displacement is allowed normal to the boundary. A ver-
homa Julgamore et al.2008. Moreover, we consider thess tical force is applied on top of the half proppant model.
potential embedment of an ideal spherical proppant of €.5 The model results are visualized by assembling the axisym-
mm (50Qum) in diameter. The load taken by one proppant metric model as shown in FiguSc considering repetitive
from the fracture closure stress will depend on the spacing Symmetry depicted in Figur2ga.

Axisymmetric Model

IIIIIIIIIIIlIH
LTI
i i

IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIII\ I||||IIIIIIIII

c) Assembled for visualization
(a) Plane view of proppant distribution (©)

Figure 28: Axisymmetric model for simulation of proppantksdment and fracture closure for a distribution of proppait
a uniform center-to-center distance. .
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Sample

Figure 29: Modeled proppant embedment due to elastic arsfipkhale deformation for (a) Sample C and (b) Sample D
shale properties and proppant center-to-center spacihgroh.

Figure 30: Modeled proppant embedment due to elastic arsfipkhale deformation for (a) Sample C and (b) Sample D
shale properties and proppant center-to-center spaciagnoh.

Figure29, Figure30 present modeling results of embed= proppants would be about 42@ (0.42 mm) for Sample C
ment for two different idealized cases involving 0.5 mim properties and 3Q6n for Sample D properties. Considering
(50Qum) diameter proppants located at center-to-center gis- the case of a 2 mm center-to-center distance between prop-
tances of respectively 1 mm and 2 mm. While this spage- pants, the average load on one single proppant is estimated
ing between grains is arbitrarily selected, it serves aifipee» to be 249N (Figur&0). In the case of Sample C properties,
purpose which is to illustrate the sensitivity of the result: the proppant embedment for 249N proppant load is about
to this detail of the proppant distribution. In the case of:a 115um (0.115 mm), with a remaining aperture of 2n0
1 mm center-to-center distance, the calculated average doa (0.27 mm). In the case of Sample D properties, a complete
on a proppant is estimated to be 62N for an extreme caseembedment of the proppant and closure of the fracture oc-
of complete pressure depletion due to fluid production (Rig- curred at a proppant load of about 200N, which is well be-
ure 29). The proppant embedment is calculated to abeut low the estimated maximum load of 249N upon complete
40um for Sample C properties and 106 (0.1 mm) for =« pressure depletion.

Sample D properties. Thus, the fracture aperture betwgen 1 modeling demonstrates the importance of plastic de-
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formation and plastic strength properties for proppant etm- open by proppants located at more competent fracture wall
bedment as localized shear failure in the shale just belewsth rock. However, high load concentration at those locations
proppant-shale contact can accommodate embedmentsMecould be prone to crushing and local fracturing at the shale-
applied a Mohr-Coulomb model with parameters obtained proppant contact. Effect of shale micro-scale heteroggnei
from core-scale experiments and validated against mieto- on proppant-filled fractures will be included in future mod-
indentation tests. The modeling reveals a significant éif- eling efforts. Moreover, longer term proppant embedment
ference in proppant embedment behavior for Sample C andduring production can involve a significant creep deforma-
D properties. Note that individual micro-indentation gest: tion, a process that will be studied in future research withi
showed strongly heterogeneous load-indentation behawior the Caney Ductile Shale Project. Still, even with the lim-
indicating significant local variability of hardness andsl v itations of scope in the present work, it is clear that prop-
tic modulus. The two cases presented in FigB®g) and «.0 pant embedment can vary significantly among the forma-
Figure 30(b) for Sample C and D properties correspornd tions and, of practical relevance, that achieving clos@{ro
to hardness values of about 2 and 0.5. In the field, het- pant packing is important for limiting proppant embedment,
erogonous shale properties would lead to a fracture held especially in weaker formations.

6. Discussions ss  present, which correlates with the mineralogical analyisis
6.1. The effect of clay mineralogy a9 IS therefore necessary to directly delineate the type of cla
Variations in the microstructure and mechanical proper- and the impact of its properties; for instance, swellingzsh

ties illustrated in Figuré8indicate the amount of total clay&’ "€SIStance and shrinkage.

0

Caney Shale-Reservoir 1
Caney Shale-Ductile 1

Caney Shale-Reservoir 2
Caney Shale-Ductile 2

Caney Shale-Reservoir 3
Marcellus Shale

(Data from Hupp and Donovan, 2018)
Barnett Shale

(Data from Gao and Hu, 2016)
Haynessville Shale

(Data from Lucier et al, 2011)
Fayetteville Shale

(Data from Bai et al, 2013)
Fayetteville Shale

(Data from Briggs et al, 2014)
Bakken Shale

(Data from Wang et al 2020)

e - >0

/ 7 7

0 25 50 75 100
Carbonate (%)

Figure 31: lllustration of the Mineralogical Compositiohtbe Caney Shale in comparison to other producing Shalederm
tions

Overall, mineralogical composition for these five zones reservoir samples. The swelling and shrinkage effect often
of interest is shown in Figur8l, separating reservoir secs: results in a reduced strength bearing capacidgsh et al.
tions, from ductile sections, primarily by amount of clays (2012 2019 demonstrated that the strength of the shale
present. This is also in comparison with other produciag corresponds with both the cation exchange capacity(CEC)
shale plays such as: Marcelluduypp and Donovar2018, . and the content of the silt. As such, clays have anisotropic
Barnett Gao and Hyu 2016, Haynessville [(ucier et al, «ss properties that are intrinsic and caused by stress. Dielec-
2011, Fayetteville Bai et al, 2013 Briggs et al, 2014 9 tric constants are related to water content, and the disper-
and Bakken Shalé/Nang et al. 2020. The Caney Resers« sion in dielectric constants depends on the CEC of clays
voir sections (1, 2 and 3) have from 13.5 to 18.4% total and strength of the rock. The orientation of the micro-
clays, while Caney ductile regions have more than doulale fabrics with respect to bedding planes was found to be a
the amount of clay fraction, up to 38%, when compareddo critical factor in stress-induced anisotropyachytel et al.
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(2017 have studied the influence of calcite on mineralagi

31

ties of Pierre shale cored at different orientations. The re

cal composition. The results of the study revealed thatdhe sults suggested that the bedding plane and the failure plane

carbonates showed a more significant effect on the influ-

coincide nicely, implying that the bedding plane orierdati

ence of the elastic modulus and the brittleness index than affects properties significantly.Goral et al.(2020 exam-

quartz. Yakaboylu et al(2020 examined the deformatiofaos
and microcracking behavior of the Marcellus shale throuwgh

ined the macroscopic and microscopic properties of shale.
Their outcomes showed that the behavior of Pierre shale

micro-strain analysis. They tested samples that were cefedin terms of its geomechanical properties is scale-dependen

perpendicular and parallel to the bedding. Sample min-
eralogy was quantified using X-ray diffraction(XRD) and
XRD peak shapes were analyzed using the William htall
approach, demonstrating higher concentrations of lattéceo.
fects and associated in-homogeneous crystallographio strs

and directly influenced by structural anisotropy. The bed-
ding planes in shale were analyzed Ibieng et al.(2020
using a Brazilian test, direct shear and three-point bendin
tests and looking at outcrop samples from the Longmaxi
Formation. Their study showed that the bedding layers are

in calcite than in quartz. The parallel-bedded shales also weak spots in terms of the strength of tensile tension, the

indicated more micro-strain than the perpendicular-bddde
shales. The results indicate that micro-cracking intidtis

and propagation, as well as mechanical deformation of.cal-
cite minerals, are dependent on micro-strain level and bed-

ding orientation. 1019
1020
1021

6.2. The effect of bedding orientation

1022

A large number of researcheisrtinao Fuentealba et al.
202Q Goral et al, 202Q Heng et al, 202Q Holt et al, ***
202Q Houl et al, 2019 Islam and Skallg2013 Lu et al,
2021 Minardi et al, 2021, Sone and Zobac¢k013ab; Yin

1024

et al, 2019 have endeavored to delineate the key mech&n-

strength of shear tension, and fracture toughness. Thésis b
cause when fractures propagate in the direction that is nor-
mal or oblique to bedding, complex fracture geometry with
tortuous propagation paths are generally caused by bedding
cracks and fracture deviations toward bedding in the paral-
lel orientation. Ibanez and Kronenbeid 993 explain that
shale samples can exhibit scale fractures, bands of kink and
shear zones, with the location of the fractures and the ge-
ometry of the shear zones depending on which direction the
sample was cored in relative to the bedding.

6.3. The role of the microstructure

ical properties of shale. These studies concluded thatethe Microstructural characterization is critical for bettar-u

orientation of the sample with which the sample is cored #el-

derstanding of the rock susceptibility to mechanical or

ative to the bedding plane influences the mechanical param-chemical failure. Figured0,11& 12 show consistent pres-
eters obtained. The variation in the mechanical parametersence of structural heterogeneity in all the SEM micrographs

obtained illustrated in figur&8 can be attributed to the posso
sibility that the cracking characteristics might differ thg 10

which could have a major impact on the fracture initiation
and propagation as well as the long-term fracture conduc-

orientation changes. Many fabrics are parallel to beddiag tivity. The internal architecture of the rock matrix, prima

planes which are produced by platy clay minerals depesi-

tion (Heng et al.202Q Islam and Skalle2013. The lateraloss

ily the solid vs pore/fracture volume, geochemical composi
tion, mineral shape, size and packing, all can influence how

cracks propagate along these fabrics when the core samgplesock responds to both, physical and chemical stimulation.

are retrieved at 90and 4% to the bedding planes, leadings
to the formation of a chipping-dominated crack geometry
adding complexity to a myriad of natural fractures that is.aé

during wellbore construction and the consequent prodactio
of fluids.
As observed in Figur&2 below, which shows an area

ready existent and observed at the micro-scale with SEMiin where all constituents are present, from organic matter

figures10, 11, 12. When indentation is conducted on saiwe

(OM) to fine grained clay matrix that envelops larger car-

ples cored perpendicular to the bedding planes, this maiysfa- bonate grains and much smaller particles of quartz, pesticl

cilitate the propagation of axial cracks. Once there are-dem

of sand would have very different response upon landing on

inant axial cracks, the elastic energy will be released, :and each of the above-mentioned shale components. This gets
the stress concentration will be reduced at the edges abthefurther complicated as the rock is contacted by hydraulic

indentation impress. As a result, radial cracks will became
less prevalent. Therefore, if the indentation is conduotees
samples cored at 450 the bedding planes, axial and ra~
dial crack-dominating cracks can form. This implies that

fracturing fluid, which may cause dissolution/precipiati
and formation of new materials.

Figuresl10,11 & 12 have shown varying heterogeneity in
all the SEM micro-graphs indicating that is vital to char-

the mechanical parameters that are obtained are likely tedeacterize the microstructure such that it could enable {ocat

different, and the trend in variation is likely to replicaket 1050

observed in the core-scale experiments by previous sehol-

ars. Sone and Zoback2013ab) examined the static angk:
dynamic attributes and anisotropy of; Barnett, Haynesyitks

ing fracture intervals. All the physical and chemical alter
ations of the shale rock are time sensitive, and the evaelutio
seems to have a negative impact, based on the field data and
the prevailing decline of production in most unconventiona

Eagle Ford, and Fort St. John shale rocks as they relate: toplays after 1-3yrsGarum et al.202% Guan et al.202% Lu
mechanical properties. The results of their study show that et al, 2021 Radonjic et al.202Q Saif et al, 2017 \Voltolini

the elastic anisotropy of shale is an outcome of the orien-

tated deposition of clay minerals and attributes of clalgs. s
lam and Skall€2013 used a triaxial test including a Brazilss

et al, 2021). The goal of this study has been to character-
ize Caney shale core samples and based on the data pre-
dict which core samples would be susceptible to proppant

ian test, and CT scans to investigate the mechanical preper-embedment. From Figurgg, it is evident that sample B
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has the least hardness and elastic modulus values implyingelastic modulus implying that the possibility of proppant
that samples in this zone are more susceptible to proppantembedment is minimal due to the high surface hardness and
embedment followed by sample E, sample D, sample Gsas a higher elastic modulus.

compared to sample A which had the highest hardness and

z /Ay o - Clays
. " Carhonate A A
2 o e Carbonate

OME: iy HEE A Sl

“Carbonate *

Figure 32: Backscattered Electron (BSE) micrograph (lefi)) the EDS map (right) obtained from a polished surface of
Caney sample, show the presence of the dominant fine gralagdnatrix that envelops larger carbonate grains and much
smaller particles of quartz and some organic matter (OM)

7. Conclusions 1002 proppant-shale contact can accommodate proppant

. 1093 embedment.
The work presented in the paper has shown that amal-
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Appendix A. Sample Preparation and Analysis
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Figure A1l: Schematic illustration of the polisher in the e | facility at Oklahoma State University Laboratory dskiring
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Figure A2: Schematic of the Scanning Electron Microscogeupen the Venture | facility at Oklahoma State University
Laboratory used during the sample analysis.
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CORRELATIVE RAMAN SPECTROSCOPY INTEGRATED
WITH: CT, SEM, EDS AND INDENTATION
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core plugs were drilled

i OolomitefCaMgiCO ) ) |
| SR
- {DoGerea D) band; GraphitictG) band
S
e i
(2) Surface on which (b) Raman Spac‘tra obtained
Raman is conducti

L L
(d) Surface chemistry with EDS

(e) Indentation with an indenter and surface
profilometer linked to a Raman microscope






