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Abstract

We consider the problem of answering queries using views, where queries and views are conjunctive
queries with arithmetic comparisons over dense orders. Previous work only considered limited variants of
this problem, without giving a complete solution. We first show that obtaining equivalent rewritings for
conjunctive queries with arithmetic comparisons is decidable. Then we consider the problem of finding
maximally contained rewritings (MCR) where the decidability proof does not carry over. We investigate
two special cases of this problem where the query uses only semi-interval comparisons. In both cases
decidability of finding MCRs depends on the query containment test. First, we address the case where
the homomorphism property holds in testing query containment. In this case decidability is easy to prove
but developing an efficient algorithm is not trivial. We develop such an algorithm and prove that it is
sound and complete. This algorithm applies in many cases where the query uses only left (or right) semi-
interval comparisons. Then we develop a new query containment test for the case where the containing
query uses both left and right semi-interval comparisons but with only one left (or right) semi interval
subgoal. Based on this test, we show how to produce an MCR which is a Datalog query with arithmetic
comparisons. The containment test that we develop obtains a result of independent interest. It finds
another special case where query containment in the presence of arithmetic comparisons can be tested
in nondeterministic polynomial time.

1 Introduction

In many data-management applications, such as information integration [B+97, C+94, HKWY97, IFF+99,
LRO96, Ull97], data warehousing [TS97], web-site designs [FLSY99], and query optimization [CKPS95], the
problem of answering queries using views [LMSS95] is of special significance. The problem is as follows:
given a query on a database schema and a set of views over the same schema, can we answer the query using
only the views? To answer the query using the answers to the views efficiently, we rewrite the query using
only the view literals. See [Lev00] for a good survey.

∗Part of this article was published in [ALM02]. In addition to the prior materials, this article contains more results (Sections 4
and 5.2 are new) and complete proofs that were not included in the original paper.
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A lot of works on query rewriting using views have addressed the problem when both queries and views
are conjunctive. In most commercial scenarios, however, users require the flexibility to pose queries using
conjunctive queries along with arithmetic comparisons (e.g., <, ≤, �=) between attributes and constants that
can take any value from a dense domain (e.g., real numbers). For instance, queries could have conditions
such as carPrice < $3000 and carYear > 1998. Similarly, views are also described using conjunctive
queries with arithmetic comparisons. Thus the problem of answering queries using views when queries and
views have arithmetic comparisons is important in these applications.

Abiteboul and Duschka [AD98] and Levy et al. [LMSS95] have observed that the problem of answering
queries using views is closely related to the problem of query containment. Although prior research [Klu88,
GSUW94] has addressed the issue of containment of conjunctive queries with arithmetic comparisons, not
many results are known on the problem of query answering and especially query rewriting in the presence
of arithmetic comparisons. Abiteboul and Duschka [AD98] have also shown that the problem is intractable
(co-NP hard for data complexity) in many cases.

In this paper, we study the following problem: how can we rewrite a query using views when the query
and views are conjunctive with comparisons (e.g., <, ≤, >, ≥, �=)? We take the open-world assumption about
the views [Dus97]. That is, the views do not guarantee to export all tuples in the world that satisfy their
definitions. Instead, views export only a subset of such tuples. We focus primarily on finding maximally-
contained rewritings (MCR), but we also develop some results on finding equivalent rewritings. Our results
on maximally contained rewritings concern two questions: (1) Given a query and a set of views which are
conjunctive queries with arithmetic comparisons, is there an MCR in a given query language? (2) If the
answer in (1) is positive – and since it is known that the problem of finding an MCR is far beyond PTIME
– is there an algorithm which by using some heuristic can find an MCR efficiently? The following is the
structure of the paper and the contributions of this work.

• In Section 2 we review preliminary results in the literature on this problem and on query containment
which is recognized to be closely related. We formulate the problem being investigated and discuss
its challenges with examples. We present also some new observations concerning subcases where the
query containment test can be simplified.

• In Section 3, we first show that the following problem is decidable: for a query and views that are
conjunctive with comparisons, is there any equivalent rewriting in the language of unions of conjunctive
queries with comparisons? Then we turn our attention to MCRs and take question 1 above. In
particular we ask the following decidability question: for a query and views that are conjunctive with
comparisons, is there an MCR in the language of unions of conjunctive queries with comparisons? We
answer this question positively for two cases: a) the case where all variables in each view definition
also occur in the head and b) when the homomorphism property holds (i.e., when one mapping suffices
to show containment). In fact, we prove that there always exists an MCR in these two cases, and our
proof gives an algorithm to find it. An independent contribution in this section (which we need as a
tool to prove the results about existence of MCR) is the introduction of the notions of AC-containment
between two rewritings and of an AC-MCR. We show that we are only interested in AC-MCRs because
they produce exactly the same set of answers produced by any MCR.

• In Sections 4 and 5 we take question 2. We develop an efficient algorithm to generate a maximally-
contained rewriting in (identified sub-cases of the) case where the query has left-semi-interval (LSI)
or right-semi-interval (RSI) comparisons, and the views have general arithmetic comparisons, thus
answering question 2 for these cases. (In fact according to [ALM04], these are cases where the homo-
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morphism property holds.) Our algorithm extends the shared variable bucket algorithm and similar
techniques [Mit01, PL00] to capture comparisons in an efficient way and finds an MCR in the language
of union of conjunctive queries with arithmetic comparisons (CQAC in short). The proof of soundness
and completeness of the algorithm is nontrivial because the algorithm prunes very much on the space
of contained rewritings which are considered for candidates to form an MCR. Thus the challenge is to
prove that it does not miss any rewritings that are contained in the query and in MCR. In particular,
in Section 4 we describe the algorithm and its proof for the conjunctive query (CQ in short) case,
hence our contribution here is providing the proof for soundness and completeness of the algorithm
(the algorithm itself is known in the literature, see Table 1). In Section 5 we develop a new efficient
algorithm for finding an MCR when the homomorphism property holds and prove its soundness and
completeness.

• In Section 6, we answer question 1 for a more general case than queries with only left or only right semi
interval comparisons. We study the problem of finding a maximally-contained rewriting for queries
with semi-interval arithmetic comparisons. We consider a subcase where Datalog programs with semi-
interval comparisons are sufficient to express a maximally-contained rewriting. We first show that the
language of conjunctive queries with arithmetic comparisons is not sufficient to find an MCR. Then we
show that query containment in this case can be polynomially reduced to containment of a conjunctive
query in a Datalog query. Based on this result, we develop an algorithm for finding a maximally-
contained rewriting in the language of Datalog with arithmetic comparisons. For this special case, we
also obtain a result of independent interest, i.e., we identify a new class of conjunctive queries with
comparisons for which the containment problem is in NP.

1.1 MCR: Related Work and Our Contributions

Query Views MCR’s References
CQ CQ unions of CQs [GM99, LRO96]

[PL00, Mit01]
Datalog CQ Datalog [DG97]
Datalog union of CQ Datalog [AGK99]
CQ with LSI, RSI CQ with LSI, RSI unions of CQs with LSI, RSI [PL00]

Section 3.2 and 5
CQ(�=) CQ co-NP-hard (data complexity) [AD98]
CQ with comparisons CQ with comparisons unions of CQs with Section 3.2

all variables distinguished comparisons
CQ with LSI, RSI CQ with comparisons unions of CQs with LSI, RSI Section 3.2 and 5
CQ with LSI1, RSI1 CQ with SI Datalog with SI Section 6

Table 1: Work on finding maximally-contained rewritings (“MCR”). “CQ” represents “conjunctive queries.”
For definitions of SI, LSI and RSI see Section 2.1.

A lot of work has been done on MCRs when queries and views are conjunctive, specifically efficient
algorithms have been discovered and implemented known with the name bucket algorithms [LRO96, Mit01,
PL00]. The algorithms in [PL00] and in [Mit01], called respectively the MiniCon algorithm and the shared
variable bucket algorithm are complete for conjunctive queries and views. The algorithm in [PL00] handles
also restricted cases when arithmetic comparisons are present in the views but it is not complete for these
cases. Certain answers and their relation to MCRs has been studied in [AD98, GM99]. In [AD98] it has
been also proven that MCRs in a polynomially computable language is unlikely to exist in the case the query
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has inequalities (�=); in particular it was proven that the data complexity of computing certain answers is
co-NP hard. However recursion in the query does not present a problem when views are conjunctive queries,
since in [DG97] an algorithm is given that computes an MCR of a Datalog query which is a Datalog query
itself. However it has been observed that when views are unions of conjunctive queries then only in special
cases we can find an MCR which is a Datalog query [AGK99]. Table 1 summarizes results on the problem
of finding maximally-contained rewritings (MCRs), including those presented in this paper.

In addition Beeri et al. [BLR97] and Calvanese et al. [CGL00] study the problem of answering conjunctive
queries over description logics using views expressed in description logics. Description logics are more ex-
pressive than conjunctive queries with comparisons. Also, recent work [ACGP06] has developed an efficient
algorithm for finding equivalent rewritings in the presence of arithmetic comparisons.

2 Basic Definitions

In this section we give the notation used in the paper, review the problem of query rewriting using views,
summarize results in the literature on the containment of conjunctive queries with arithmetic comparisons.

2.1 Conjunctive Queries with Arithmetic Comparisons

We focus on conjunctive queries and views with arithmetic comparisons of the following form:

h(X̄) :- g1(X̄1), . . . , gn(X̄n), C1, . . . , Cm.

The head h(X̄) represents the results of the query. The body has a set of ordinary subgoals g1(X̄1), . . . , gn(X̄n),
also known as “regular subgoals” or “uninterpreted subgoals” or “ordinary subgoals.” Each subgoal gi(X̄i)
includes a relation gi, and a tuple of arguments X̄i corresponding to the relational schema. An argument
can be either a variable or a constant. The variables X̄ are called distinguished variables. Each Ci is an
arithmetic comparison in the form of “A1 θ A2,” where A1 and A2 are variables or constants. If they are
variables, they appear in the ordinary subgoals. The operator “θ” is �=, <, ≤, =, >, or ≥. We use the terms
“inequality” and “arithmetic comparison” or simply “comparison” interchangeably to denote either of the
above operators. In addition, we make the following assumptions about the arithmetic comparisons:

1. Values for the arguments in the arithmetic comparisons are chosen from an infinite, totally densely
ordered set, such as the rationals or reals.

2. The arithmetic comparisons are not contradictory; that is, there exists an instantiation of the variables
such that all the arithmetic comparisons are true.

3. All the comparisons are safe, i.e., each variable in the comparisons appears in some ordinary subgoal.

We use the term closure(S) of a set of arithmetic comparisons S, to represent the set of all possible arith-
metic comparisons that can be logically derived from S. For example, for the set of arithmetic comparisons
S = {X ≤ Y, Y ≤ 5, Y < Z}, the closure(S) = {X ≤ Y, Y ≤ 5, Y < Z, X < Z, X ≤ 5}. For the sake of
simplicity, we use “CQ” to represent “conjunctive query,” “AC” for “arithmetic comparison,” and “CQAC”
for “conjunctive query with arithmetic comparisons.” If a CQAC is written as “Q = Q0 + β,” it means
that “β” is the comparisons of Q, and “Q0” is the query obtained by deleting the comparisons from Q; we
refer to Q0 as the core of Q. We say an arithmetic comparison is open if its operator is < or >; it is closed
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if its operator is ≤ or ≥. A query is called left semi-interval (“LSI” for short), if all its comparisons are
LSI comparisons, i.e., of the form X < c or X ≤ c, where X is a variable, and c is a constant. A right
semi-interval CQAC (“RSI query” for short) and a right semi-interval comparison are defined similarly, i.e.,
comparisons are of the form X > c or X ≥ c, where X is a variable, and c is a constant. We use the notation
SI (semi interval) to refer to queries and sets of comparisons that contain both LSI and RSI comparisons.

Given a CQ query Q we obtain a canonical database D of Q by freezing the variables of Q to constants
and then we consider D to contain exactly all frozen subgoals in the body of the query.

2.2 Query Containment and Equivalence

The problem of answering queries using views is closely related to testing for query containment.

Definition 2.1 (Query containment) A query Q1 is contained in a query Q2, denoted Q1 � Q2, if for
any database D, the set of answers of Q1 on D is a subset of the answers of Q2 on D. The two queries are
equivalent, denoted Q1 ≡ Q2, if Q1 � Q2 and Q2 � Q1. �

Given two conjunctive queries Q1 and Q2, Q1 � Q2 if and only if there is a containment mapping from
Q2 to Q1, such that the mapping maps a constant to the same constant, and maps a variable to either a
variable or a constant. Under this mapping, the head of Q2 becomes the head of Q1, and each subgoal of
Q2 becomes some subgoal in Q1 [CM77].

Let Q1 and Q2 be two conjunctive queries with arithmetic comparisons (CQACs). Often we need to
test whether Q2 � Q1. To do the testing, we can first normalize both queries Q1 and Q2 to Q′

1 and Q′
2

respectively as follows.

• For each occurrence of a shared variable X in the normal subgoals except the first occurrence, replace
the occurrence of X by a new distinct variable Xi, and add X = Xi to the comparisons of the query;
and

• For each constant c in the query, replace the constant by a new distinct variable Z, and add Z = c to
the comparisons of the query.

The following theorem is from [GSUW94, Klu88, ZO94].

Theorem 2.1 Let Q1, Q2 be CQACs and Q′
1 = Q′

10 + β′
1, Q

′
2 = Q′

20 +β′
2 be the queries after normalization.

Let µ1, . . . , µk be all the mappings (homomorphisms) from Q′
10 to Q′

20. Then Q2 � Q1 if and only if the
following logical implication φ is true:

φ : β′
2 ⇒ µ1(β′

1) ∨ . . . ∨ µk(β′
1).

That is, the comparisons in the normalized query Q′
2 logically imply (denoted “⇒”) the disjunction of the

images of the comparisons of the normalized query Q′
1 under these mappings. �

We refer to φ as the containment entailment. Notice that in the theorem, the “OR” operation “∨” in the
implication is critical, since there might not be a single mapping µi from Q1,0 to Q2,0, such that β2 ⇒ µi(β1).
The following example shows that to prove containment we need to consider all mappings.

EXAMPLE 2.1 Consider the following two queries, which are graphically illustrated in Figure 1.
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Q1() :- r(X1, X2), r(X2, X3), r(X3, X4), r(X4, X5), r(X5, X1), X1 < X2.
Q2() :- r(X1, X2), r(X2, X3), r(X3, X4), r(X4, X5), r(X5, X1), X1 < X3.
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Figure 1: Graph representations of two equivalent queries.

Although the two queries have different comparisons, surprisingly, Q1 ≡ Q2. To show Q1 � Q2, we
consider the five mappings from the five ordinary subgoals of Q2 to the five of Q1. Each mapping corresponds
to a “rotation” of the variables. Under these mappings, β2 becomes X1 < X3, X2 < X4, X3 < X5, X4 < X1,
and X5 < X2, respectively. We can show that (it is easy to see that if the right hand side of the implication
that follows is false then X1 = X2.):

(X1 < X2) ⇒ (X1 < X3) ∨ (X2 < X4) ∨ (X3 < X5) ∨ (X4 < X1) ∨ (X5 < X2).

Therefore, Q1 � Q2. Similarly we can prove Q2 � Q1. Notice there is no single containment mapping µi

such that β2 ⇒ µi(β1). �

Notice that in Example 2.1 we did not need normalization. The following example shows that the
containment test of Theorem 2.1 does not go through without having both queries normalized before we find
the mappings and check the logical implication. Thus normalization is important and we show below the
intuition of this importance.

EXAMPLE 2.2 Consider the following two queries:

Q1() :- p(A, 4), A < 4.
Q2() :- p(X, 4), p(Y, X), X ≤ 4, Y < 4.

Q2 is contained in Q1. The informal justification is that if variable X in Q2 is less than 4 then subgoal
p(A, 4) can be mapped to subgoal p(X, 4) and if X = 4 then the second subgoal becomes p(Y, 4) and in this
case subgoal p(A, 4) maps to p(Y, 4). However there is only one containment mapping from the ordinary
subgoals of Q1 to Q2 and if try to work out the logical entailment using this containment mapping, then we
will conclude that the logical entailment is false. The normalized versions of the two queries are:

Q′
1() :- p(A, B), A < 4, B = 4.

Q′
2() :- p(X, Z), p(Y, X1), X ≤ 4, Y < 4, X = X1, Z = 4.

To convince ourselves that normalization of only Q2 does not suffice we may want to try to work the test of
Theorem 2.1 on Q1 and Q′

2. The informal reason that it does not work is that if we are to consider more
than one mappings, then we must map subgoal p(A, 4) to p(Y, X1) but constant 4 requires a constant to
map on (actually the same constant 4) and X1 is not a constant. However when we deal with Q′

1 we do not
have this problem because now we require to map variable B to a variable X1 which is allowed. Thus by
taking the two mappings on the normalized queries we have to check the following entailment:

X ≤ 4 ∧ Y < 4 ∧ X = X1 ∧ Z = 4 ⇒ (X < 4 ∧ Z = 4) ∨ (Y < 4 ∧ X1 = 4)
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If we rewrite the above entailment equivalently we have the (obviously true) entailment:

X ≤ 4∧Y < 4∧X = X1∧Z = 4 ⇒ (X < 4∨Y < 4)∧(X < 4∨X1 = 4)∧(Z = 4∨Y < 4)∧(Z = 4∨X1 = 4)

�

Another containment test [Klu88, LS93] is based on canonical databases and does not need normalization.
For a CQAC query Q the set of its canonical databases with respect to another CQAC query Q′ is constructed
as follows: We consider the set of the variables of Q and the constants of Q and Q′ and we partition this set
into blocks with the restriction that two distinct constants do not belong to the same block. For each total
ordering of the blocks we construct a canonical database of Q by a) equating the variables in the same block
to a distinct constant (or the constant in the block if there is one) so that the total ordering is satisfied and
b) adding to the canonical database exactly those tuples that result from the frozen relational subgoals of
the query.

The test is the following: To test whether Q2 � Q1 consider all canonical databases of Q2 with respect to
Q1. Then Q2 � Q1 iff the following holds on any canonical database D of Q2: if the head of Q2 is computed
on D then the head of Q1 is also computed on D.

2.2.1 Simpler Containment Tests

In this subsection we present some observations as to special cases where the containment test can be
simplified.

There are special cases where the test for containment is simpler, since a single containment mapping
suffices for the containment test. We identify in lemmata 2.1 and 2.2 two such cases, both having special
conditions on the queries. Further in Theorem 2.2 we identify a case where normalization is not necessary.

Lemma 2.1 Let Q1 = Q1,0 + β1 and Q2 = Q2,0 + β2 be two CQAC queries. If β2 is a total ordering of
all the variables in Q2,0 and all the constants in both Q1, Q2, then Q2 � Q1 if and only if there is a single
containment mapping µ from Q1,0 to Q2,0, such that β2 ⇒ µ(β1). �

Proof: In every canonical database of Q2, its variables map to constants that preserve the total order of
β2. Hence, a containment mapping from the variables of Q1 to a canonical database can be thought of as a
mapping µ from the variables of Q1 to the variables of Q2 such that β2 ⇒ µ(β1).

Another case is where queries have comparisons that are left or right semi-interval. However, there are
subtle subcases that require more than one mapping for the containment test. For a complete analysis on
this case, see [ALM04]. The following lemma from [ALM04] presents a simple such case.

Lemma 2.2 Let Q1 = Q1,0+β1 and Q2 = Q2,0+β2 be two left-semi-interval (or right-semi-interval) queries.
If β2 does not contain a closed arithmetic comparison when β1 contains an open arithmetic comparison, then
Q2 � Q1 if and only if there is a single containment mapping µ from Q1,0 to Q2,0, such that β2 ⇒ µ(β1). �

Finally there are cases where we do not need to normalize as the following theorem shows.
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Theorem 2.2 Consider two CQAC queries Q1 = Q1,0 +β1 and Q2 = Q2,0 +β2 that may not be normalized.
Suppose β1 contains only ≤ and ≥, and each of β1 and β2 does not imply “=” restrictions. Then Q2 � Q1

if and only if:
φ′ : β2 ⇒ γ1(β1) ∨ . . . ∨ γl(β1)

where γ1, . . . , γl are all the containment mappings from Q1,0 to Q2,0. �

Proof: The proof is based on the following observation. For all orderings of the variables in Q2 we consider
the set of all those canonical databases of Q2 such that distinct variables are frozen to distinct constants
(also distinct from the constants in the queries). We call them leading canonical databases. It is useful
to think how we construct a leading canonical database: We consider partitions into blocks (recall how
we construct any canonical database) but each block contains only one variable or constant. Thus leading
canonical databases are constructed from the same blocks and differ from each other only on the order of
the blocks. Also the following hold: For every canonical database D on which the head of Q2 is computed,
there is a leading canonical database D′ such that (i) there is a homomorphism from the tuples of D′ to the
tuples of D which preserves comparisons ≤ and ≥ and (ii) Q2 computes its head on D iff Q2 computes its
head on D′. We call D′ a leader of D.

We give the construction of D′ from D. When we construct D we consider certain total ordering among
the blocks. Moreover, since the head of Q2 is computed on D, this total order satisfies the comparisons
in Q2. Observe that all total orderings which satisfy the comparisons (from Q2) are produced as follows:
We partition the variables of Q2 into blocks and then we define a total order on the blocks. For each block
consider the comparisons that are satisfied by instantiating their both variables/constants to elements in this
block. Obviously such comparisons are satisfied as to their = option (since we only have ≤ and ≥ comparisons
and equalities are not implied). Thus any such comparison can also be satisfied by its instantiation being
to variables/constants that are related by < or > instead of =. Since the comparisons in the body of the
query Q2 do not have contradictions, there is at least one instantiation of all the variables in the block to
distinct constants which satisfy the comparisons in Q2. We use the order implied by this instantiation for
each block to construct the leading canonical database D′ which is a leader of D.

The “if” direction: Suppose the entailment φ′ holds. Let D be a canonical database of Q2 on which its
head is computed. According to the above observations, it suffices to consider the leader D′ of D and prove
that the head of Q1 is computed on D′. The left hand side of φ′ holds on D′, hence one of the disjuncts
must hold. This implies that there is a homomorphism (the corresponding to the γ of this disjunct)from
the relational subgoals of Q1 to D′ which also satisfies the comparisons of Q1, hence the head of Q1 is also
computed on D′.

The ”only if” direction. Suppose Q2 � Q1. Towards contradiction, suppose φ′ is false. Then there is a
canonical database of Q2 and hence (according to the discussion above) a leading canonical database D′ of
Q2 on which its head is computed and where all disjuncts in φ′ are false. However the mappings γ considered
in φ′ are all the mappings that exist from the relational subgoals of Q1 to D′. Hence, the head of Q1 is not
computed on D′ hence Q2 � Q1 is false, contradiction.

2.2.2 Work on Complexity of Query Containment

Chandra and Merlin [CM77] have shown that the problems of containment, minimization, and equivalence of
conjunctive queries are NP-complete. Klug [Klu88] has shown that containment for conjunctive queries with
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arithmetic comparisons is in ΠP
2 , whereas when only left or right semi-interval comparisons are used, the

containment problem is in NP. A containment test based on canonical databases was developed in [Klu88,
LS93]. A more efficient containment test was presented in [GSUW94] but the problem still remained in ΠP

2 .
In [vdM92, vdM97], containment for conjunctive queries with inequality arithmetic comparisons is proven
to be ΠP

2 -complete. Klug [Klu88] stated that the searching for other classes of conjunctive queries with
arithmetic comparisons for which containment is in NP is an open problem. We have shown in [ALM04]
more classes of conjunctive queries with arithmetic comparisons that are in NP. In this paper we present
(Theorem 6.2) a new class of conjunctive queries with comparisons where containment is in NP.

In [Qia96, CR97] special cases were identified where conjunctive query containment is in PTIME. The
property that makes it polynomial is acyclicity [Qia96] and its extension which is defined as bounded query
width [CR97]. Saraiya in [Sar91] proved another case where containment of conjunctive queries is in PTIME.
It is the case where each predicate appears at most twice in the contained query. Kolaitis et al. [KMT98]
have studied the computational complexity of the query-containment problem of queries with disequations
(�=). In particular they have shown that the problem remains ΠP

2 -hard even in the cases where the acyclicity
property holds and each predicate occurs at most three times. However, they proved that if each predicate
occurs at most twice then the problem is in coNP.

Containment of a conjunctive query in a Datalog query is shown to be EXPTIME-complete [CK86,
CLM81, Sag88]. Containment of a Datalog query in a conjunctive query is proven to be doubly exponen-
tial [CV92].

Table 2 summarizes work on query containment including our contribution in this paper.

Q1 Q2 complexity References
CQAC CQAC ΠP

2 complete [Klu88, GSUW94, vdM97, ZO94]
CQ �= CQ �=, each predicate ΠP

2 complete [KMT98]
acyclic at most 3 times
CQ �= CQ �=, each predicate coNP [KMT98]

at most twice
CQAC CQAC NP [Klu88, ALM04]
homomorphism prop.
CQSI1 CQSI NP Section 6,Theorem 6.2
CQ CQ NP-complete [CM77]
CQ CQ each predicate PTIME [Sar91]

at most twice
CQ acyclic CQ PTIME [Qia96, CR97]
bounded query width
recursive Datalog nonrecursive Datalog EXPTIME-complete [CK86, CLM81, Sag88]
nonrecursive Datalog recursive Datalog doubly exponential [CV92]

Table 2: Complexity of query containment: checks whether Q2 is contained in Q1.“CQ” represents “conjunc-
tive queries,“CQ �=” represents “conjunctive queries with only �=”, “CQAC” represents “conjunctive queries
with any arithmetic comparisons”. For more on notation see definitions in this section.

2.3 Rewriting Queries Using Views

The problem of rewriting queries using views [LMSS95] is as follows: given a query on a database schema and
views over the same schema, can we answer the query using only the answers to the views via a rewriting?
The following notations define the problem formally.
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Definition 2.2 (Expansion) The expansion of a query P using views V only, denoted by P exp, is obtained
from P by replacing all the views in P with their corresponding base relations and comparisons from their
definitions. Non-distinguished variables in a view are replaced with fresh variables in P exp. �

Definition 2.3 (Rewritings) Given a query Q and a view set V , a query P is a contained rewriting of
query Q using V if P uses only the views in V , and P exp � Q. That is, P computes a partial answer to
the query. Given a rewriting language L (e.g., unions of conjunctive queries with comparisons), we call P

an equivalent rewriting of Q using V w.r.t. L if P is in L, and P exp ≡ Q. We call P a maximally-contained
rewriting (“MCR” for short) of Q using V w.r.t. L if (1) P is a contained rewriting in L of Q, and (2) there
is no contained rewriting P1 in L of Q such that P1 properly contains P . �

Intuitively, an MCR of Q using V w.r.t. a language L is a query in the language L that uses only the
views. Moreover, it is a contained rewriting, and it computes the maximal answer to Q using the views. In
the rest of the paper, unless specified otherwise, we use “rewritings” to mean “contained rewritings.”

When the queries and views are expressed as conjunctive queries (without arithmetic comparisons), we
know how to find equivalent rewritings (if they exist) and maximally-contained rewritings (MCRs) that are
unions of conjunctive queries [Lev00]. However, arithmetic comparisons introduce many complications to
the problem. The following examples show some of the subtleties that arise in the presence of arithmetic
comparisons.

EXAMPLE 2.3 This example shows that the comparisons in a rewriting may look very “different” from
those in the query and views. Consider the query Q1 in Example 2.1 and two views that are “decomposed”
from Q2:

v1(X1, X3) :- r(X1, X2), r(X2, X3).
v2(X1, X3) :- r(X3, X4), r(X4, X5), r(X5, X1).

The following is an equivalent rewriting of Q1 using the views:

Q1() :- v1(X1, X3), v2(X1, X3), X1 < X3.

Notice the comparison X1 < X3 looks quite “different” from the comparison X1 < X2 in Q1. �

EXAMPLE 2.4 This example shows that arithmetic comparisons could “export” nondistinguished vari-
ables. Consider the following query Q1, and views v1 and v2:

Q1(A) :- r(A), A ≤ 4.
v1(Y, Z) :- r(X), s(Y, Z), Y ≤ X, X ≤ Z.
v2(Y, Z) :- r(X), s(Y, Z), Y ≤ X, X < Z.

The following query P is a contained rewriting of the query Q1 using v1:

P (A) :- v1(A, A), A ≤ 4.

To see why, suppose we expand this query by replacing the view subgoal v1(A, A) by its definition. We get
the expansion of P :

P exp(A) :- r(X), s(A, A), A ≤ X, X ≤ A, A ≤ 4.

The arithmetic comparisons imply X = A, and the expansion is thus contained in Q1. Notice how the
presence of the arithmetic comparisons helps in the existence of the rewriting. To see that, consider how the
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two views differ. Although v1 and v2 differ only in their second inequalities, v2 cannot be used to answer Q1.
The reason is that the variable X of r(X) in v2 does not appear in the head, and it cannot be equated to
another view variable appearing in the head using arithmetic comparisons. Therefore, the condition A ≤ 4 in
the query cannot be enforced on v2. However, in v1 the variable X of r(X) was “exported” as distinguished
with the help of the proper inequalities. �

EXAMPLE 2.5 This example shows the importance of the language of maximally-contained rewritings.
For the following query and views, in the language of unions of conjunctive queries with arithmetic compar-
isons, there is no maximally-contained rewriting. We might need the power of Datalog to find a maximally-
contained rewriting:

Q2() :- e(X, Z), e(Z, Y ), X > 6, Y < 8.
v1(X, Y ) :- e(X, Z), e(Z, Y ), Z > 6.
v2(X, Y ) :- e(X, Z), e(Z, Y ), Z < 8.
v3(X, Y ) :- e(X, Z1), e(Z1, Z2), e(Z2, Z3), e(Z3, Y ).

We can show that for any positive integer k > 0, the following is a contained rewriting:

Pk :- v1(X, Z1), v3(Z1, Z2), v3(Z2, Z3), . . . , v3(Zk−1, Zk), v2(Zk, Y ).

In fact, the following recursive Datalog program is a contained rewriting of the query:

Q2() :- v1(X, W ), T (W, Z), v2(Z, Y ).
T (W, W ) :- .
T (W, Z) :- T (W, U), v3(U, Z).

This example shows that we may need a language more expressive than that of the query and views to have
a maximally-contained rewriting. �

Several algorithms have been developed for answering queries using views, such as the bucket algo-
rithm [LRO96, GM99], the inverse-rule algorithm [Qia96, DG97], and the algorithms in [ALU01, Mit01,
PL00, ]. [LMSS95, AD98] study the complexity of the problem. It has been shown that the problem of find-
ing a rewriting of a query using views is NP-complete, even if the query and views are conjunctive [LMSS95]
and the rewriting is expressed in the language of conjunctive queries.

Abiteboul and Duschka [AD98] use certain answers to denote those answers to the query that are con-
tained in the answers of any database D over the database schema such that the following holds: The given
view answers are among the output tuples when we apply the view definitions to this database D. Abiteboul
and Duschka have also proven that, when both query and views are conjunctive, the maximal set of certain
answers is obtained by maximally rewriting the query using the views (supposing an MCR exists) and then
evaluating the rewriting using the views. Duschka [Dus97] extends this result to the case where both the
query and views are conjunctive queries with arithmetic comparisons. In this paper, we focus on finding
such rewritings. Note that the result in [AD98] is proven supposing a maximal rewriting exists. As we will
see later, it is not easy to tell whether such a maximal rewriting exists, and moreover, it is hard to know
how to find one.

3 Decidability results for the Language of Union of CQACs

In this section we study decidability of finding equivalent rewritings and MCRs for a query and views with
respect to the language of union or conjunctive queries with arithmetic comparisons.
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3.1 Decidability result for Equivalent Rewritings

Theorem 3.1 (CQAC Equivalent Rewriting) For a query and views that are conjunctive queries with
arithmetic comparisons, it is decidable whether there is an equivalent rewriting for the query using the views,
in the language of rewritings which is conjunctive queries with comparisons. If such an equivalent rewriting
exists, there is an algorithm to find it. �

Proof: The key idea is to compare a CQAC query Q with the expansion E of an equivalent rewriting P ,
which is a single CQAC. Suppose Q is of size s. We consider all (at most 2O(s)) orderings of the variables
and constants of Q that satisfy the arithmetic comparisons in Q. For each total ordering, there must be
a containment mapping from E to Q that preserves order. Associate with each variable of E a list of the
2O(s) variables that each of these mappings sends the variable of E to. We define two variables of E are
“equivalent” if their lists are the same. Since lists are of length at most 2O(s) and each entry on the list has
one of s values, there are at most s2O(s)

equivalence classes.

Design a new solution P ′ that equates all equivalent variables. P ′ is surely contained in P after expansion,
since all we did was equate variables, thus restricting P and E. However, E′, the expansion of P ′, has
containment mappings to Q for all orderings, since all we did was equate variables that always went to the
same variable of Q anyway. Thus Q is contained in P ′. Since Q contains E, which contains E′, it is also
true that E′ is contained in Q. Thus, P ′ is another equivalent rewriting of Q. Thus, there is a doubly
exponential bound on the number of subgoals in P ′. The conclusion is that we need to look only at some
doubly-exponentially sized solutions.

This proof gives an exhaustive algorithm, and its search space is doubly-exponential.

Theorem 3.2 (Union-of-CQAC Equivalent Rewriting) For a query and views that are conjunctive
queries with arithmetic comparisons, it is decidable whether there is an equivalent rewriting for the query
using the views, where the rewriting is a finite union of conjunctive queries with comparisons. If such an
equivalent rewriting exists, there is an algorithm to find it. �

Proof: We extend the proof of Theorem 3.1 to the case where an equivalent rewriting is a union of CQACs.
Let P be a union of CQACs that is an equivalent rewriting of Q. We again consider all orderings of the
variables in Q that satisfy the arithmetic comparisons in Q. Now, however, for each ordering, there must
be a containment mapping from the expansion of one of the CQACs of P to Q that preserves the order.
Then, for each CQAC in P , we argue as in the proof of Theorem 3.1 to show that we need to look only at
doubly-exponentially sized solutions for each CQAC of P . Finally, there are only triply-exponentially many
combinations of CQACs of at most doubly-exponentially size. We need to look at all of them.

This proof gives an exhaustive algorithm, and its search space is triply-exponential.

3.2 Decidability results for MCRs

Now we turn our attention to MCRs. We ask the following decidability question: For given query and views
in the language of conjunctive queries with comparisons, is there an MCR in the language of finite union of
conjunctive queries with comparisons?
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The proof in Theorem 3.1 is based on the fact that the query is contained in the rewriting’s expansion.
This fact puts a bound on the size of the rewriting, as the size of the query is given. In the case of
MCRs, however, we cannot use this technique. Moreover, in the case we have arithmetic comparisons, the
containment test could use more than one containment mapping from the containing query to the contained
one, unlike the case where pure conjunctive queries are involved. Therefore, potentially we might have to
use an arbitrarily large number of mappings to test containment from the query to the expansion of the
rewriting. Consequently, we might get arbitrarily long CQAC contained rewritings. In this section we prove
MCR decidability for special cases by setting a bound on the size of a CQAC rewriting.

3.2.1 Views with no nondistinguished variables

We consider views which do not use nondistinguished variables in their definition, i.e., all variables used are
also projected in the head.

Theorem 3.3 (MCRs) Given a CQAC query and a set of CQAC views, where all view variables are
distinguished. It is decidable whether there is an MCR of the query using the views w.r.t. the language of
unions of CQACs; and there is an algorithm to find it. �

Proof: Let Q = Q0 + β0 be a CQAC, and V be a set of CQAC views. Suppose there is an MCR that is a
union of CQACs using the views. Consider each CQAC Pj in the MCR, and Pj is a contained rewriting of
Q.

The proof has two steps. In the first step, we replace each Pj by a set of rewritings whose union is
equivalent to Pj , such that the arithmetic comparisons of each new rewriting define a total ordering on
all its variables and constants. In the second step, we treat (after the modifications in the first step) the
MCR as a union of CQACs, where the arithmetic comparisons in each CQAC define a total ordering. We
consider each of these CQACs and show that its size is bounded. The second step is feasible because there
are no non-distinguished variables in the view definitions, and the total ordering on the variables of a CQAC
contained rewriting implies a total ordering on the variables of its expansion too.

First step: We replace Pj with a set {P j
1 . . . P j

rj
} of contained rewritings whose union is equivalent to

Pj as follows. For each ordering oi of the variables and constants appearing in the views of Pj that satisfy
its arithmetic comparisons, we construct a P j

i that has the same ordinary subgoals as Pj and arithmetic
comparisons that define the particular total ordering oi on the variables and constants.

Second step: We consider a CQAC P of the MCR after step 1. Let P = P1 + β1, where P1 uses P ’s
ordinary subgoals and head, and β1 is the arithmetic comparisons defining a total ordering of variables and
constants appearing in P1. Since all view variables are distinguished, we have P exp = P exp

1 + β1, and P exp

has exactly the same variables as P , hence, β1 defines a total ordering on the variables and constants of P exp
1

too. For each P , we construct a new contained rewriting P ′ as follows. Since P exp � Q, by Lemma 2.1,
there is a single containment mapping µ from Q to P exp, such that β1 ⇒ µ(β0). The ordinary subgoals of P ′

are those views whose expansions contain subgoals in µ(Q0). Its arithmetic comparisons are the projection
of β1 onto the variables in µ(Q0). Notice that as all view variables are distinguished, there are no variables
in µ(Q0) that are not contained in P . We replace P by P ′.

It remains to be proven that P ′ contains P and that P ′ is a contained rewriting of the query. P ′ contains
P since P ′ has a subset of the subgoals of P . In addition, the containment mapping µ shows that the
expansion of P ′ is contained in Q, since the expansion keeps the images of Q under µ. Moreover β1 ⇒ β0,
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and µ(AC(P ′)) is the projection of β1 onto the variables in µ(Q0). Since the query is safe, all variables in
β0 appear in Q0. Thus, P ′ is a more containing contained rewriting of Q than P . Notice that the number
of ordinary subgoals in P ′ is bounded by the number of ordinary subgoals in Q. Hence there is a bound on
the number of subgoals in P ′, and we need to look only at rewritings within this bound.

The number of view homomorphisms that we need to consider is exponential and the number of combi-
nations of views that produce candidate rewritings is doubly exponential on the size of the input (the size
of the input is equal to the size of the query and the size of the views).

3.2.2 MCRs and AC-containment

Before we proceed with the next result, we discuss, in this subsection, the notion of two rewritings containing
each other. We show that we need a subtler notion of containment between two rewritings in order to avoid
arbitrarily long MCRs. Thus, we introduce here the notion of AC-extension of a rewriting and the notion of
AC-containmnet between two rewritings, which leads to the notion of AC-MCR.

In the previous subsection, we were considering views with all variables distinguished, and we showed
that for any contained rewriting there is a contained rewriting of bounded size which contains it. However,
in general this is not the case as the following example shows.

EXAMPLE 3.1 Consider the following query and views.

Q(A) :- r(A), A < 4.
v1(Y, Z) :- r(X), s(Y, Z).
v2(Y, Z) :- r(X), s(Y, Z), Y ≤ X, X ≤ Z.

We observe that the following is a rewriting:

P (Y1) :- v2(Y1, Z1), v2(Y2, Z2), Z1 ≤ Y2, Y1 ≥ Z2, Y1 < 4.

The expansion of P is:

P (Y1) :- r(X1), s(Y1, Z1), Y1 ≤ X1, X1 ≤ Z1, r(X2), s(Y2, Z2), Y2 ≤ X2, X2 ≤ Z2, Z1 ≤ Y2, Y1 ≥ Z2, Y1 < 4.

We observe that in the expansion of P , all the variables in P will be equated because the two copies
X1 and X2 of the nondistinguished variable in the view definition will be combined with the comparison
subgoals in the rewriting and yield the equation. It is not hard to see that P is not contained in any rewriting
that uses only one copy of the view although there is such a rewriting: P ′(X) : −v2(X, X), X < 4. However
rewriting P ′ cannot be obtained from P by standard tableau minimization, it does not suffice to remove
subgoals, but we have also to add comparisons. For the same reason, for any positive integer k, the following
is a rewriting:

Pk(Y1) :- v2(Y1, Z1), v2(Y2, Z2), . . . , v2(Yk, Zk), Z1 ≤ Y2, Z2 ≤ Y3, . . . , Zk−1 ≤ Yk, Zk ≤ Y1, Y1 < 4.

Moreover, there is no “shorter” rewriting that contains it. �

In this example an MCR can be arbitrarily large. However, rewriting Pk is pathological in that, whenever
there is a view instance on which the body of this rewriting is satisfied, all the variables in Pk are instantiated
to the same constant and from this observation, it can be shown that a shorter rewriting can also serve to
obtain the same answer to the query.
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Thus, this example shows that a rewriting may have many semantically equivalent yet syntactically
different variants, whose size is not a priori bounded. However, the ”minimized” variants do have bounded
size. The interesting part is that for the minimization, as opposed to known minimization techniques
(e.g., tableau minimization), it does not suffice to simply remove subgoals, but one may have to also add
comparisons. This is the reason AC-extensions are of interest.

Definition 3.1 (AC-extension) Let V be a set of views and P be a CQAC query using V . The AC-
extension of P is a query P ′ on V which is a copy of P with some additional arithmetic comparisons. We
add in P ′ the comparison X θ Y if X and Y are variables in P , and the expansion of P contains arithmetic
comparison subgoals that imply X θ Y . �

Proposition 3.1 Given a query Q, a view set V, and a view instance I such that I ⊆ V(D) (for some D),
let P be a rewriting and P ′ its AC-extension. Then P and P ′ produce the same set of answers on I. �

Proof: The one direction is easy because P contains P ′. Let t be an answer to P . Then, the variable
assignment that produced t in P can also serve as a variable assignment to produce t in P ′ because the
additional comparison subgoals of P ′ are satisfied as a consequence of the fact that the constants in I satisfy
the inequalities from the expansion of P (since I ⊆ V(D)). Therefore, t is also an answer to P ′.

Definition 3.2 (AC containment) Let V be a set of views defined by CQACs and let P1 and P2 be two
queries on V . Let P ′

1 and P ′
2 be their AC-extensions. We say that P1 AC-contains P2 if P ′

1 contains P ′
2. �

In the example above, Pk is AC-contained in P , which is AC-contained in P0(A) :- v2(A, A), A < 4. Note
that in order to decide AC-containment, we use the AC-extension of rewriting P which does not introduce
any fresh variables, it only uses some additional comparisons among the variables already occuring in P .
Hence it is not the same as containment as expansions. Therefore, it is applicable under the open-world
assumption [AD98] because of Proposition 3.1.

Definition 3.3 (AC-MCR) Given a query Q and a view set V , we call P an AC-maximally-contained
rewriting (“AC-MCR” for short) of Q w.r.t. L if (1) P is a contained rewriting (in L) of Q, and (2) there is
no contained rewriting P1 (in L) of Q such that P1 properly AC-contains P . �

Proposition 3.2 Given a query Q and a view set V and a view instance I such that I ⊆ V(D). Let P be
an AC-MCR and P 0 be an MCR over the language of union-CQAC (not necessarily finite). Then P and P 0

produce the same set of answers on I. �

Proof: The proof is a direct consequence of Proposition 3.1.

3.2.3 Homomorphism Property

The crux of the problem of rewriting conjunctive queries using views lies in ensuring that the expansion
of the rewritten query is contained in the original query. Testing for containment of conjunctive queries
with arithmetic comparisons can be done more efficiently when the homomorphism property holds. Given a
CQAC query Q we denote by core(Q) the ordinary (relational) subgoals of Q and by AC(Q) the arithmetic
comparison subgoals of Q.
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Definition 3.4 (Homomorphism property) Let Q1, Q2 be two classes of CQAC queries. We say that
containment testing on the pair (Q1,Q2) has the homomorphism property if for any pair of queries (Q1, Q2)
with Q1 ∈ Q1 and Q2 ∈ Q2, the following holds: Q2 � Q1 iff there is a homomorphism µ from core(Q1) to
core(Q2) such that AC(Q2) ⇒ µ(AC(Q1)). �

In this case, we may apply the following containment test. The query q is contained in the query q′ iff
there is a mapping µ from the variables of q′ to the variables of q such that (1) for the ordinary subgoals, µ is
a containment mapping and (2) an arithmetic comparison subgoal X θ c maps to an arithmetic comparison
subgoal µ(X) θ c. (For this test to hold, we assume that the ACs do not imply equalities and that the ACs
of the contained query are complete, i.e., all the arithmetic comparisons that are implied by the ACs and
use constants in the ACs of the containing query are computed. The latter is only a convenience, because
otherwise we could say that each inequality of q′ is mapped on an inequality which is implied by the ACs in
q [ALM04].)

Definition 3.5 (Homomorphism property for query rewriting) Let Q1, Q2 be two classes of queries.
We say that query rewriting problem on the pair (Q1,Q2) has the homomorphism property if for any query
Q ∈ Q1 and set of views V ∈ Q2, the following holds: Any rewriting (in the language of unions of CQACs)
of Q using the views in V is such that its expansion can be tested for containment in the query by using a
single containment mapping. �

In cases where the homomorphism property holds, we have the following non-deterministically polynomial
algorithm that checks if Q2 � Q1. Guess a mapping µ from core(Q1) to core(Q2) and check whether µ is a
containment mapping with respect to the AC subgoals too (the latter meaning that an AC subgoal g maps
on an AC subgoal g′ so that g′ ⇒ g holds).

Klug [Klu88] has shown that for the class of conjunctive queries with only open-LSI (open-RSI re-
spectively) comparisons, the homomorphism property holds. In [ALM04] more cases are found where the
homomorphism property holds. In [ALM04] it is proven that in many natural cases of query and views
where the query uses only LSI or only RSI comparisons the homomorphism property holds. The following
theorem is an immediate consequence. It can be extended to capture a wider class of queries and views but
its statement will be somewhat cumbersome1.

Theorem 3.4 In the following cases, the homomorphism property holds for the query rewriting problem:

• The query is an open-left-semi-interval (OLSI) conjunctive query (correspondingly open-right-semi-
interval, i.e., ORSI) and the views are conjunctive queries with open arithmetic comparisons (CQOAC).

• The query is a closed-left-semi-interval (CLSI) conjunctive query (correspondingly closed-right-semi-
interval, i.e., CRSI) and the views are conjunctive queries with arithmetic comparisons (CQAC).

�

Now we present the third main result of this section in Theorem 3.5, which is an immediate consequence
of the following proposition.

1Full details are given in [ALM04]
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Proposition 3.3 Let Q and V be query and set of views such that the homomorphism property holds for the
query rewriting problem. Then for any contained rewriting P , there exists a contained rewriting P1 which
AC-contains P and the number of subgoals in P1 is at most equal to the number of subgoals in the query. �

Proof: Consider the AC-extension Pe of P and its expansion P exp
e . Both the query and the expansion have

been rewritten equivalently so that no equalities are implied by the ACs. Since the homomorphism property
holds, there is a containment mapping µ which maps all sublgoals (ordinary and comparison subgoals) of Q

to subgoals in P exp
e . Now the key observation is that there is no pair of variables in Pe which are equated

in P exp
e – the reason is that all ACs that would contribute to such an equation are already exported in Pe

by definition. Thus, all variables that are targets of µ in P exp
e appear in at most n subgoals in Pe (n is the

number of subgoals in the query). Hence, we construct a rewriting P1 by keeping those subgoals of Pe which
contain target variables. It is easy to prove that P1 is a contained rewriting and also contains Pe hence
AC-contains P .

Theorem 3.5 (MCRs) Let Q and V be query and set of views such that the homomorphism property holds
for the query rewriting problem. Then there is an AC-MCR in the language of union of CQACs. Moreover
there is an algorithm to find it. �

In Section 5 we will provide an efficient algorithm to find an MCR in this case. Our algorithm extends
the algorithm in [Mit01, PL00] to capture comparisons in an efficient way.

4 Finding a Maximally-Contained Rewriting for Queries Using
Views without Comparisons

In this section, we revisit the problem of finding a maximally-contained rewriting for a query using views,
where both the query and views do not have comparisons. We outline the MiniCon [PL00] and the Shared-
Variable-Bucket [Mit01] algorithms to illustrate how they rewrite queries without arithmetic comparisons
using views. Since these two algorithms share similar ideas, they are denoted “the MS algorithm” in the rest
of this paper. Our algorithm extends the MS algorithm to handle arithmetic comparisons, and the proof of
the correctness of our algorithm is an extension of the correctness proof of the MS algorithm. Thus, we give
a complete description of the MS algorithm together with the proof for completeness and soundness. Then,
in Section 5, based on the description of the MS algorithm, we first point out the complications introduced
by the presence of arithmetic comparisons. We then present our algorithm and prove its completeness
and soundness. Most of the machinery developed in these two sections is used to prove completeness and
soundness.

4.1 Mappings and the Most Containing Rewriting

4.1.1 Motivating Example

Our setting consists of a conjunctive query and a set of conjunctive views. We name the subgoals in the query
and the view definitions by unique names. Moreover, equations do not exist as subgoals – they are absorbed,
i.e., if there is a subgoal X = Y equating variables X and Y , then we replace variable Y by X and delete the
equation from the subgoals. A rewriting might have multiple occurrences of the same view. Although we
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retain the same view subgoal name for different occurrences of a view, we use a new set of variable names,
reflecting the fact that in the expansion of a rewriting we use fresh variables for each occurrence of a view.

EXAMPLE 4.1 Consider three relations: relation car(make, dealer) stores information about car makes
and dealers who sell them. Relation loc(dealer, city) stores information about dealers and their located
cities. Relation part(store, make, city) has information about a store, the car makes whose parts are
sold by the store, and the store’s located city. A user submits the following query:

Q : q1(S, C) :- car(M, anderson), loc(anderson, C), part(S, M, C).

which asks for cities and stores that sell parts for car makes sold in the anderson branch in this city.

Assume that we have the following views on the base relations, and we need to consider two occurrences
of view V1. (For each occurrence of a view in a rewriting, the MS algorithm chooses a copy of the view.
Here, for the sake of an example, we show arbitrarily two copies of V1.)

V1: v1(M1, D1, C1) :- car(M1, D1), loc(D1, C1).
V ′

1 : v1(M ′
1, D

′
1, C

′
1) :- car(M ′

1, D
′
1), loc(D

′
1, C

′
1).

V2: v2(S2, M2, C2) :- part(S2, M2, C2).
V3: v3(M3, D3, C3) :- car(M3, D3), loc(D3, C3).

We name the three subgoals of the query by g1, g2, and g3, respectively. We name the first subgoal of view
v1 by g11 and the second subgoal g12 and, in general, the j-th subgoal of view vi by gij .

Let P be a contained rewriting of Q using the views. Then there is a containment mapping from Q to the
expansion P exp of P , which proves that P exp is contained in Q. This containment mapping can be viewed
as a subgoal mapping from subgoals of Q to subgoals of the views that P is using, together with an argument
mapping among the variables and constants used in the arguments of those subgoals. (The MS algorithm
first considers subgoal mappings, and then argument mappings, and finally checks whether the mappings
can be turned to containment mapping.) Now consider the rewritings:

P1: q1(S, C) :- v1(M, anderson, C), v2(S, M, C).
P2: q1(S, C) :- v1(M, anderson, C1), v1(M ′

1, anderson, C), v2(S, M, C).

For rewriting P1, the containment mapping from the query to the expansion of the rewriting can be
viewed as (a) the subgoal mapping: g1 to g11, g2 to g12, and g3 to g21; (b) the argument mapping: M to M1,
anderson to D1, C to C1, S to S2, M to M2, and C to C2. For rewriting P2, the subgoal mapping is the
same. However (since we use two occurrences of view v1), the argument mapping is: M to M1, anderson

to D1, anderson to D′
1, C to C′

1, S to S2, M to M2, and C to C2. For rewriting P2, we say subgoal g1 is
covered by g11, g2 is covered by g12, and g3 is covered by g21. �

4.1.2 Mappings and Contained Rewritings

Based on this intuition, we define three kinds of mappings for a query and a set of views.

A subgoal mapping is a mapping from the query subgoals to view subgoals of a view such that the
predicate names match. A subgoal mapping is total if it maps all query subgoals.

A subgoal mapping induces an associated argument mapping, which maps each query variable/constant to
a variable/constant in the body of the view definition, such that for each query subgoal g that is mapped to a
view subgoal, their variables and constants are also mapped argument-wise. (For each query subgoal we use
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a fresh copy of a view.) Notice that an argument mapping is not restricted to map a query variable/constant
to a single view variable/constant (as in a containment mapping), since it may map a query variable/constant
to several view variables/constants.

Given an argument mapping, we associate with it several containment mappings. An associated contain-
ment mapping is a mapping from query variables/constants to view variables/constants defined by a partition
P on the set of the view variables/constants into equivalence classes, in such a way that: (1) Each query
variable/constant is mapped to elements of a single equivalence class. (2) The following three conditions
hold: (a) each equivalence class with more than one element is populated by either (identical) constants
or/and distinguished variables; (b) an equivalence class which is the image of a constant has only distin-
guished variables (even if it contains only one element) and possibly the same constant. (c) Distinguished
variables map to distinguished variables. (3) All variables/constants of a query subgoal are mapped on the
variables/constants of a single copy of a view. By extension, we define an associated containment mapping
of a subgoal mapping.

Given a total subgoal mapping and one of its associated containment mappings M (if there exists any),
we define the following query over view subgoals. The defined query is the one that uses the view copies that
are involved in the associated containment mapping. Distinguished view variables are equated according to
the partition that defines the associated containment mapping. We call this query the associated view query
or associated query rewriting of the containment mapping M.

Proposition 4.1 Given a total subgoal mapping and an associated containment mapping M of it, the as-
sociated view query of M is a contained rewriting. �

Proof: It is easy to prove that the associated containment mapping is a containment mapping from the
query to the expansion of the rewriting.

Thus, we can refer to this contained rewriting as the associated contained rewriting of M. Moreover,
considering a total subgoal mapping and all its associated containment mappings, we refer to all associated
contained rewritings as the associated contained rewritings of the subgoal mapping.

Now we show that each contained rewriting is produced as an associated rewriting of a subgoal mapping.

Proposition 4.2 Given a contained rewriting P , there is a subgoal mapping and an associated containment
mapping such that P is the associated rewriting of this containment mapping. �

Proof: Take the expansion of P and the containment mapping from the query to the expansion that proves
that P is a contained rewriting. This containment mapping induces a subgoal mapping and an associated
containment mapping.

EXAMPLE 4.2 In our running example, let us consider rewriting P2 and the subgoal mapping that pro-
duces it (as in Proposition 4.2). Taking the argument mapping of this subgoal mapping, we also consider
the associated containment mappings. First, we observe that there are more than one containment map-
pings associated with this argument mapping. In fact, one of those associated containment mappings is a
containment mapping associated with P2 and another with P1. The following two partitions are associated
containment mappings:
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• Partition M1 has three equivalence classes: {D1, D
′
1}, {M1, M2, M

′
1}, and {C1, C2, C

′
1}.

• Partition M2 has five equivalence classes: {D1, D
′
1}, {M1, M2}, {C′

1, C2}, {M ′
1}, and {C1};

In the first mapping, the two occurrences of view v1 are identical, hence we delete one occurrence and
get rewriting P1. The second mapping M2 constructs rewriting P2. Observe that P1 is contained in P2 as
queries. Thus, M1 is contained in M2. �

So far we have settled that in order to find all rewritings, it suffices to consider all total subgoal mappings,
and for each subgoal mapping, find all its associated rewritings. Now we prove that, when we want to con-
struct a maximally-contained rewriting, for each subgoal mapping, we only need to construct one associated
rewriting. The reason is that all other associated rewritings of this subgoal mapping are contained in this
one. We shall call this rewriting the most relaxed (or the most containing) rewriting of this subgoal mapping.

4.1.3 The Most Containing (Relaxed) Rewriting

Given a specific argument mapping, we say that a containment mapping M1 contains a containment mapping
M2 if the partition that defines M1 “contains” the partition that defines M2, i.e., any equivalence class of
the second is the union of some equivalence classes of the first (also known as the one partition being a finer
partition of the other).

Proposition 4.3 Consider a total subgoal mapping and two associated containment mappings M1 and
M2. Then M1 contains M2 iff the associated contained rewriting of M1 contains the associated contained
rewriting of M2. �

Lemma 4.1 Let M be a subgoal mapping and let R be all the associated containment mappings. Then all
containment mappings in R form a semi-lattice with respect to partition containment. �

Proof: We need to prove that for any pair of P1 and P2 in R, there exists a containment mapping P in
R such that (a) P contains both P1 and P2; and (b) P is contained in any associated mapping in R that
contains both P1 and P2. The associated containment mapping P is defined by the intersection partition of
the partitions that define P1 and P2. The intersection partition is defined by taking as equivalence classes
all pairwise intersections of an equivalence class in P1 with an equivalence class in P2.

First we prove that P is an associated containment mapping in R. We prove that each query variable has
its images in a single equivalence class. Suppose that query variable X is mapped to variables in two distinct
equivalence classes of P . Then X is either mapped to two distinct equivalence classes in P1, or mapped to
two distinct equivalence classes in P2. This result contradicts the fact that X maps to a single equivalence
class in P1 (P2 respectively). To prove (a): The containment mapping from P to P1 is defined by mapping
all variables in an equivalence class of P to the equivalence class of P1 they were constructed from. To prove
(b): Let P ′ be the associated containment mapping that contains both P1 and P2. Hence, each equivalence
class in P ′ is contained in an equivalence class C1 of P1 and in an equivalence class C2 of P2. Therefore it
is also contained in the intersection of C1 and C2 which is an equivalence class of P .

Lemma 4.2 Let M be a subgoal mapping and let P be all the associated contained rewritings. Then all
rewritings in P form a semi-lattice with respect to query containment. �
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Proof: The proof is a consequence of Lemma 4.1.

Corollary 4.1 Given a total subgoal mapping, there exists an associated rewriting that contains all associated
rewritings of this subgoal mapping. We call the rewriting the most relaxed rewriting, and the corresponding
containment mapping most relaxed containment mapping. �

For a given subgoal mapping, the above results show a semi-lattice structure of the containment relation-
ship among associated containment mappings and a semi-lattice structure of the containment relationship
among associated rewritings. For each subgoal mapping, it suffices to consider the most relaxed rewriting,
since the rest are contained in it. In conclusion, we have proven so far that an algorithm that considers all
subgoal mappings and for each subgoal mapping computes the most relaxed rewriting (if there exists one)
is complete.

4.2 The MS Algorithm

Now we formally present the MS algorithm and prove its correctness. So far we have shown that, to
save on the number of rewritings in the MCR, for each subgoal mapping we only need to consider the most
relaxed rewriting, since all other associated rewritings are contained in it. The algorithm also prunes subgoal
mappings that do not have any associated containment mapping early in the algorithm. We do the pruning
by constructing subgoal mappings in a systematic fashion, then trying to construct associated containment
mappings for subgoal mappings that are not necessarily total, and discard this branch if we fail. Based on
condition (3) in the definition of containment mappings, the following is an easy but very useful observation
towards formalizing this pruning.

Lemma 4.3 A total subgoal mapping has at least one associated containment mapping only if it can be
decomposed into partial subgoal mappings, each of which using only one view copy and having the property:
(a) It has an associated containment mapping; and (b) if a query variable X is mapped on a nondistinguished
view variable, then all query subgoals that contain X belong in this partial mapping. �

In this lemma, Property (b) is called the shared variable property. A partial subgoal mapping is called
an MCD if it is minimal, i.e., it cannot be decomposed into other nontrivial partial mappings. (MCD stands
for Minimal Condensed Description and is introduced in [PL00]). The decomposition property established
in Lemma 4.3 is called the local property. Now the algorithm finds MCDs and combines them. Notice
that in the MS algorithm (formally described next), we should still check in the end whether an associated
containment mapping exists.

A partial MCD with shared variables is a subgoal mapping on a single view copy where the following is
true:

1. there is a query subgoal in this partial MCD that contains a variable X mapped on a nondistinguished
view variable; and

2. X also occurs in query subgoals that do not belong to this partial MCD — X is referred to as the
shared variable.

We call a subgoal mapping legal if it has an associated containment mapping. A legal MCD is one
which is defined by a legal subgoal mapping. Before we describe the two parts of our algorithm, namely the
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two procedures “GenMCD” and “CombineMCD,” we describe a procedure which is called in both to find
legal MCDs and to find the most relaxed mapping when a subgoal mapping is given. This is the following
procedure “FindMostRelaxedMapping.”

Input: a subgoal mapping
Output: the most relaxed associated containment mapping
Method:

For each query variable/constant X do:
Form a class that contains all view variables/constants that are images of X;

While classes are not disjoint do:
Merge classes that share an element;

return(classes) or fail if there is a class containing two distinct constants;

Figure 2: Procedure: FindMostRelaxedMapping.

Proposition 4.4 The above procedure produces the most relaxed associated containment mapping. �

Proof: In each step, a class is a subset of an equivalence class in any partition, such that an initial class
(obtained by the argument mapping) is contained in an equivalence class. Since we stop merging classes as
soon as we reach a phase where classes are disjoint, which means that we reach a partition, this is the finer
partition.

Let GQ be the set of all query subgoals. The first step of the algorithm constructs MCDs, as shown in
the procedure “GenMCD” in Figure 3.

Input: a query Q, a set V of views;
Output: a set of MCDs;
Method:
for each query subgoal g in Q

for each view V in V
for each subgoal g′ in V {

find containment mapping µ from g to g′, if there exists one;
if µ exists, construct new partial MCD: (G = {g}, µ)

}
while (there are partial MCDs with shared variables) {

for each partial MCD (G, µ) {
choose a shared variable X in G;
choose a query subgoal g not in G and that contains X;
for each view subgoal g′ that has an argument mapping µ′ from g {

extend µ with µ′;
replace the current partial MCD with new partial MCD: (G′ = G ∪ {g}, µ′ = ext(µ));

}
}

}

return (all legal MCDs);

Figure 3: Procedure: GenMCD.

The second step of the algorithm combines MCDs to generate rewritings, as shown by the procedure
“CombineMCD” in Figure 4. We say that a set of MCDs (G1, µ1), . . . , (Gm, µm) covers all query subgoals
without overlapping if the following conditions hold: (i) The pairwise intersection of the query subgoals set
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Input: a set of MCDs
Output: a set of all most relaxed rewritings
Method:

For each combination of MCDs that covers all query subgoals without overlapping {
Check whether there exists an associated containment mapping;
If it does {

Find the most relaxed associated containment mapping;
Create the most relaxed rewriting;

}
}
return (these rewritings);

Figure 4: Procedure: CombineMCD.

is the empty set, i.e., Gi ∩ Gj = φ for i �= j; and (ii) The union of all query subgoals sets is equal to the set
of all query subgoals, i.e., G1 ∪ . . . ∪ Gm = GQ.

In the procedure, the reason we only consider nonoverlapping subgoal mappings will be clear in the
soundness proof. The following theorem proves that the MS algorithm is sound and complete.

Theorem 4.1 Given a query and views that are conjunctive queries, the MS algorithm finds an MCR in
the language of union of conjunctive queries. �

Proof: Completeness: A straightforward consequence of Corollary 4.1 and Proposition 4.4.

Soundness: There exists a mapping from the query to the expansion of the rewriting. This is the union
of all mappings associated with MCDs that were covered by views in the rewriting. It remains to prove
that the union maps a query variable/constant to a single variable/constant in the expansion. Let a query
variable X be mapped on a view variable Y in MCD1 and on a view variable Z in MCD2. If both Y and
Z are distinguished view variables, then we can equate them. If one of those is nondistinguished (say Y ),
then all query subgoals containing X are in MCD1. As there is no overlapping, no query subgoal containing
X is in MCD2 and as we take the most relaxed variable mapping for each MCD, X has no image under
MCD2. This is a contradiction. Similarly, for a constant C in the query, by construction of the MCDs,
constant C maps to either a distinguished variable Z or the same constant C. The distinguished variable Z

is then replaced by the constant C in the rewriting. If two constants C and C′ map to the same distinguished
variable Z, then the algorithm rejects the mapping in the last step.

5 Finding a Maximally-Contained Rewriting for Queries Using

Views with Comparisons

In this section, we present an algorithm for finding a maximally-contained rewriting for a query using views,
where both the query and the views are CQAC’s. We assume the existence of the homomorphism property
between the query and the expansion of each MCR. The following is a direct consequence of the results
in [ALM04] and the discussion in Section 3.2.3. The algorithm is applicable to the following cases:

• The query is open-left-semi-interval (OLSI) conjunctive queries (correspondingly open-right-semi-interval,
i.e., ORSI) and the views are conjunctive queries with open arithmetic comparisons (CQOAC).
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• The query is a closed-left-semi-interval (CLSI) conjunctive query. The views are conjunctive queries
with arithmetic comparisons (CQAC).

As in the case without comparisons, our algorithm can be thought of as having two parts. The first part
constructs buckets, and finds partial mappings from the query subgoals to the view subgoals. The second
part combines these mappings to construct a maximally-contained rewriting.

For the rest of this section, whenever we refer to contained rewritings, we mean the AC-extensions of
contained rewritings, unless otherwise mentioned. The first subsection presents the new ideas that need
to be introduced in the algorithm of the previous section in order for the algorithm to capture comparison
subgoals as well. The second subsection contains the algorithm and the proof of correctness.

5.1 Exportable Nondistinguished View Variables

In this subsection, we develop our tools and show informally with examples why these technical notions
are needed in our algorithm. The algorithm we develop in this section is an extension of the algorithm in
the previous section and it has the same structure. So, in this subsection, while informally explaining the
usability of the new notions, we refer to concepts we defined in Section 4. However, we will formally define
again (when necessary) those concepts in subsection 5.2 where we formally describe the algorithm.

Let us revisit Example 3.1 which shows that a nondistinguished view variable can be exported due to
the comparison predicates in the views.

EXAMPLE 5.1 Consider the following query and views.

Q(A) :- r(A), A < 4.
v1(Y, Z) :- r(X), s(Y, Z).
v2(Y, Z) :- r(X), s(Y, Z), Y ≤ X, X ≤ Z.

While trying to use v1 to answer query subgoal r(A), we have a partial mapping A → X . However, variable
A appears in A < 4, but X is a nondistinguished view variable. Since v1 does not export variable X , we
cannot put a restriction X < 4 on X in a rewriting that uses v1 to cover r(A). Thus this partial mapping
will be rejected in step 1 of the algorithm.

Even though v2 has the same ordinary subgoals as v1, we cannot reject the mapping from r(A) to r(X)
in v2. The reason is that we can export variable X due to its comparison predicates. In particular, the
following is a contained rewriting of the query using v2:

Q(A) :- v2(A, A), A < 4.

In this contained rewriting, we equate v2’s head variables Y and Z, and its comparison predicates become
A ≤ X and X ≤ A, implying that A = X . Then variable X becomes exported, and we can add A < 4 to
the rewriting.

Another slightly different aspect of the same observation can be shown in the case of the following query

Q′ :- r(A), A < 4.

Then we have the following rewriting:
Q′ :- v2(Y, Z), Z < 4.

The constraint “< 4” is imposed on the argument of r indirectly because it is implied (in the expansion of
the rewriting) by the two inequalities Z < 4 (in the rewriting) and X ≤ Z (in the definition of the view). �
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Definition 5.1 (Exportable view variables) A nondistinguished variable X in a view v is exportable
if there are two distinguished view variables Y and Z, such that the equation Y = Z together with the
comparisons of the view imply that X = Y = Z. In this case, we say that variable X can be exported. �

5.1.1 Conditions for Exporting Variables

To find exportable nondistinguished variables in a view v, we use the comparison predicates in v to construct
its inequality graph [Klu88], denoted G(v). That is, for each comparison predicate A θ B, where θ is < or
≤, we introduce two nodes labeled A and B, and an edge labeled θ from A to B. Clearly if there is a path
between two nodes A and C, we have A < C. If there is no <-labeled edge on any path between A and C,
then A ≤ C.

Definition 5.2 (leq-set) Given a nondistinguished variable X in a view v, the leq-set (less-than-or-equal-to
set) of X , denoted S≤(v, X), includes all distinguished variables Y of v that satisfy the following conditions:
There exists a path from Y to X in the inequality graph G(v), and all edges on all paths from Y to X are
labeled ≤. In addition, in all paths from Y to X , there is no other distinguished variable except Y . �

Correspondingly, we define the geq-set (greater-than-or-equal-to set) of a variable Y , denoted S≥(v, Y ).
We want to know which view variables are exportable. For instance, in Example 3.1, S≤(v1, X) = {},
S≥(v1, X) = {}, S≤(v2, X) = {Y }, and S≥(v2, X) = {Z}.

Lemma 5.1 A nondistinguished variable X in view v is exportable iff both S≤(v, X) and S≥(v, X) are
nonempty. �

Proof: If the sets are non-empty, choose one element from each and equate them to obtain a head
homomorphism h. X is exportable using h. If the variable is exportable, by definition, there are variables
in the S≤ and the S≥ . Thus, they are non-empty.

To export a nondistinguished variable X in a view v, we can equate any pair of variables (Y1, Y2), where
Y1 ∈ S≤(v, X) and Y2 ∈ S≥(v, X). X becomes exported since it is equal to Y1 and Y2, as are all variables in
the path from Y1 to Y2.

Example 3.1 shows that comparison predicates make it possible to equate even nondistinguished variables.
While constructing a partial mapping from a query subgoal g to a subgoal in view v, a query variable A

might be mapped to two different view variables X1 and X2. These variables still could be equated, as
illustrated by the following example.

EXAMPLE 5.2 Consider the following query and views:

Q(A) :- r(A, A).
v(X1, X2, X3, X6, X7, X8) :- r(X4, X5), s(X1, X2, X3, X6, X7, X8), X3 ≤ X5, X5 ≤ X7,

X1 ≤ X4, X8 ≤ X2, X2 ≤ X4, X4 ≤ X6.

Figure 5 shows the graph G(v). In order to construct a mapping from query subgoal r(A, A) to view
subgoal r(X4, X5), we need to equate X4 and X5, since both are the images of A. That is, we need X4 ≤ X5

and X5 ≤ X4. For the former, it can be satisfied if there is a path from X4 to X5 in graph G(v). If such
a path does not exist, we can have this inequality by equating a variable in S≥(v, X4) with a variable in

25



�� ���� ��

� � �

�� �� ��

�

��

�

�

Figure 5: The graph G(v) in Example 5.2.

S≤(v, X5). A similar argument holds for X5 ≤ X4. Since neither inequality exists in the graph, we need to
satisfy them by equating distinguished variables.

Clearly we have S≤(v, X5) = {X3}, S≥(v, X5) = {X7}, S≤(v, X4) = {X1, X2},and S≥(v, X4) = {X6}.
Note that X8 is not in S≤(v, X4), because X2 is “closer” to X4 in the path from X8 to X4. The following
are two most relaxing ways to equate variables to imply X4 = X5: (1) X6 = X3, X1 = X7, and (2)
X6 = X3, X2 = X7. They are most relaxing in the sense that any other way to equate variables to imply
X4 = X5 either includes the comparisons in (1) or it includes the comparisons in (2). �

In our algorithm, we construct a set P of pairs of view variables that should be equated, so as to construct
a valid partial mapping. Note that we have to consider only valid equating of variables (similarly to head
homomorphisms in [PL00]). Namely, while equating variables to generate head homomorphisms for a view,
some head homomorphisms make the comparison predicates in the view not satisfiable, and the view should
be removed from the buckets. For instance, consider the following query and view.

Q(X, Y ) :- p(X, Y ), X < 3, Y > 5.
v(A) :- p(A, A).

We construct a mapping µ to map both X and Y to A. However, µ will map the query comparison predicates
to “A < 3 and A > 5,” which is not satisfiable. Thus we cannot use this view to cover the query subgoal.

5.1.2 Dual Roles of Exportable Nondistinguished Variables

When a nondistinguished query variable maps to an exportable nondistinguished variable, we have two
choices. Either we can export the nondistinguished variable and then treat it as a distinguished variable,
or we can treat it as a nondistinguished variable and map to it. The following example illustrates the dual
roles exportable nondistinguished variables can play.

EXAMPLE 5.3 Consider the following query and views.

Q :- p(A), r(A).
v1(X) :- r(X).
v2(X, Z) :- p(X), r(Y ), s(Y, Z), X ≤ Y, Y ≤ Z.

To cover the query subgoal p(A), we need to use the view v2. Since A maps to the nondistinguished Y ,
we can export Y first and then create a multi-subgoal bucket corresponding to the subgoals that share A,
namely, p(A) and r(A). The view v2 covers both subgoals and thus, we have the contained rewriting

R1 : Q :- v2(A, A).

Alternatively, we can use v2 to cover p and v1 to cover r and thus have the rewriting

R2 : Q :- v1(X), v2(X, Z).
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Observe that in rewriting R1 we have exported variable Y , whereas in rewriting R2 we did not need to
export variable Y . Moreover, these two rewritings do not contain each other. Thus, although variable Y can

be exported, if we restrict ourselves to obtaining only those rewritings in which Y is used as an exported
variable, we miss some rewritings. Moreover, the missed rewritings are not contained in any other rewritings
that use Y as an exported variable. Therefore, variables (like Y ) that can be exported must be used in
our algorithm in both their roles, as variables that are exported and as variables that are treated as regular
nondistinguished variables. �

5.1.3 Satisfying Comparisons in the Rewriting

In the second step of our algorithm, we consider combinations of views from the buckets to answer all
query subgoals. Each combination represents a candidate rewriting, and we add comparison predicates to
satisfy the comparison predicates in the query. Consider a query arithmetic comparison “X θ c,” where
X is mapped to a view variable Y in a partial mapping, and θ is < or ≤. The expansion of a rewriting
must imply the image of this restriction, i.e., Y θ c. If Y is distinguished, we can just add “Y θ c” to the
rewriting. If Y is nondistinguished, we cannot add any arithmetic comparison using Y , since Y does not
appear in the rewriting at all. However, there are two ways to satisfy this restriction even in the case that
Y is nondistinguished.

• Case I: the arithmetic comparisons of the view v imply “Y θ c” by themselves.

• Case II: there is a path in G(v) from Y to a distinguished variable Z, so we can just add an arithmetic
comparison “Z < c” or “Z ≤ c” as appropriate to the rewriting to satisfy “Y θ c.”

For example, consider the following query and views.

Q(A) :- p(A), A < 3.
v1(X1) :- p(X1), X1 < 3.
v2(X2, X3) :- p(X1), r(X2, X3), X2 ≤ X1, X1 ≤ X3.
v3(X2, X3) :- p(X1), r(X2, X3, X4), X2 ≤ X1, X3 ≤ X1, X1 ≤ X4.

While mapping the query subgoal p(A) to the view subgoal p(X1) in view v1, we have a partial mapping
µ that maps variable A to X1. For a rewriting of the query Q(A) that uses this view, its expansion should
entail µ(A < 3), i.e., X1 < 3. The comparison predicate in v1 belongs to case I, since its comparison predicate
X1 < 3 can satisfy this inequality. The comparison predicates in v2 belong to case II. In particular, since
v2 has a comparison predicate X1 ≤ X3, and X3 is distinguished, thus we can add X3 < 3 to satisfy the
inequality X1 < 3. The comparison predicates in v3 do not belong to either case, thus v3 cannot be used to
cover the query subgoal.

5.2 Extending the MS algorithm to CQACs

Now we present formally our algorithm for generating MCRs for a query using views. Without loss of
generality, we assume that the comparisons in the query and views do not imply equalities.

5.2.1 Mappings and the Most Containing Rewritings

First let us repeat the following definition. A distinguishable or exportable variable is a variable X such that
there are two view variables X1 and X2 with a ≤-path from X1 to X to X2. We call X1 and X2 anchors.
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Later on, in describing the algorithm we will distinguish between distinguishable and exported variables, in
that by “distinguishable” we will mean that are potentially able to be treated as distinguished, whereas by
“exported” we will mean that we actually treat them as distinguished and add the necessary equalities to
export them. A semi-distinguishable variable is a variable such that there is a θ-path from the variable to a
distinguished variable. The latter variable is called the anchor. We say then that the variable has an anchor.

We will use the notions earlier-defined in subsection 4.1.2 with a few changes. Thus, we will retain the
first item of this definition that defines a subgoal mapping, and the second item that defines an argument
mapping. However, we change slightly the definition of an associated containment mapping. In the definition
that follows we “almost” repeat the third item in the definition of subsection 4.1.2 with a few changes that
are marked in emphasized font.

Definition 5.3 (Mappings) Assume we are given a query and a set of views. We denote the conjunction
of the ACs in the query by β1. Given an argument mapping, we associate with it several AC-containment
mappings. An associated AC-containment mapping is defined by a partition P on the set of the view
variables/constants into equivalence classes together with a set SAC of inequalities on the view variables, in
such a way that each query variable/constant is mapped to a single equivalence class, and the following three
conditions hold:

• (a) each equivalence class with more than one element is populated by either (identical) constants
or/and distinguished variables or/and distinguishable variables;

• (b) an equivalence class which is the image of a constant has only distinguished or distinguishable
variables (even if it contains only one element).

• (c) distinguished variables map to distinguished or distinguishable variables.

• (d) If a query variable X in β1 (hence there is a comparison X θ c) maps on an equivalence class, then
this class contains distinguished or distinguishable or semi-distinguishable view variables and Y θ c is
added to SAC, where Y is the variable representing the equivalence class in the first two cases, and is
the anchor of the class variable in the last case.

By extension, we define an associated containment mapping of a subgoal mapping. �

As in Section 4.1, we define the associated rewriting of an associated AC-containment mapping and we
get the following two propositions that are the same as Propositions 4.1 and 4.2 (only with a slightly different
proof).

Proposition 5.1 Given a total subgoal mapping and an associated AC-containment mapping M of it, the
associated view query of M is a contained rewriting. �

Proposition 5.2 Given a contained rewriting P , there is a subgoal mapping and an associated AC-containment
mapping such that P is the associated rewriting of this AC-containment mapping. �

Proof: The proof is along the same lines as Proposition 4.2.

Thus the above propositions have settled that a total AC-containment mapping produces a rewriting and
vice versa.
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5.2.2 The Most Containing Rewritings

Now, we will discuss how to construct the most containing rewritings. Given a subgoal mapping, we define
containment among its associated AC-containment mappings as in Section 4.1 only extending it to include
also that they use the same comparisons. Thus we have again the following proposition.

Proposition 5.3 Consider a total subgoal mapping and two AC-associated containment mappings M1 and
M2. Then M1 contains M2 iff the associated contained rewriting of M1 contains the associated contained
rewriting of M2. �

We are given an associated AC-containment mapping and the inequality graph. As we mentioned,
the partition into equivalence classes has implications for some nondistinguished view variables due to the
existence of the arithmetic comparison predicates.

An AC-containment mapping partition is maximal if there is no other AC-containment mapping partition
that contains it. In the non-AC case, we proved that there is only one maximal containment mapping
partition. Now we may have several.

In the case without comparisons, when we were to define a containment mapping, we were defining
equivalence classes explicitly. Now, besides defining them explicitly, there is an implicit way that puts
variables into classes. Whenever two variables belong to the same class and there is a third variable that is
connected by comparisons to both, then these comparisons together with the equation of the two variables
(implied by the fact that they belong to the same equivalence class) may imply that the third variable is
also equal, and hence should be put in the same class. Note that this is a consequence of the fact that we
understand an equivalence class, in this setting, as a set of variables that are equated. For example, suppose
that variables X and Y are in the same class and there are two comparisons: X ≤ Z and Y ≥ Z. Since
the fact that X and Y are in the same equivalence class implies that X = Y , this equation together with
the X ≤ Z and Y ≥ Z imply that Z = X . Hence Z is in the same class as are X and Y .

In the next paragraph we give the necessary definitions that will help us obtain all most containing
rewritings efficiently. Thus Lemma 5.2 facilitates a pruning of all possible containment mappings in a
similar fashion as in the case without comparisons in the previous section. Also Examples 5.4 and 5.5
illustrate why the definitions in this paragraph are needed.

We are given a subgoal mapping together with a set E of exportable variables. Let P (E) be a partition
on a subset of view variables. We define P (E) to be an exporting subpartition if it exports all variables in
E (i.e., if we equate all variables in the same class, then each variable in E is equal to some distinguished
variable). We define P (E) to be a maximal exporting subpartition if there is no exporting subpartition that
contains it. (As two exporting subpartitions of E may not refer to the same subset of view variables, we
want to clarify what we mean by containment in such a setting: A subpartition P (E) contains P ′(E) if each
class of P (E) is contained in a class of P ′(E).) Given a partition PS0 on a set S0 of variables and a subset S

of S0, we say that PS is an induced exporting subpartition by a set E of variables if PS exports E and each
class of PS is contained in a class of PS0 . Given a subgoal mapping, any associated containment mapping
induces (viewed as a partition on the set of view variables) an exporting subpartition on the set of exporting
variables that the containment mapping uses.

Lemma 5.2 All AC-containment mappings (viewed as partitions on the set of view variables) associated
with a) a certain subgoal mapping b) a set of exporting variables and c) a maximal exporting subpartition
form a semi-lattice. �
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Proof: The proof is done along the lines of the proof of Lemma 4.1. We only need to additionally observe
that by fixing a set of exporting variables E and a maximal exporting subpartition P (E), any partition Mi

of the view variables which exports the fixed set of variables E and induces the subpartition P (E) has the
properties of the partitions of containment mappings without comparisons. This means that the set of Mi’s
form a semi-lattice with respect to partition containment.

The following lemma essentially says that it is sufficient for a certain subgoal mapping and set of exporting
variables, to consider all partitions that induce one of the maximal subpartitions. I.e., if we obtain all those
associated rewritings, then all other rewritings are contained in them.

Lemma 5.3 If P (E) a is maximal subpartition, then there does not exist a partition on “all” view variables
which exports E and such that the induced subpartition by E properly contains P (E). �

Proof: Towards contradiction, suppose the induced subpartition contains P (E). Then P (E) is not
maximal.

The following examples show why we need to fix also a set of exporting variables and a maximal exporting
subpartition in the statement of the Lemma 5.2, i.e., they show that there are cases that we have more than
one set of exporting variables, and cases where we have more than one maximal exporting subpartition.

EXAMPLE 5.4 The first example shows a case where we have more than one set of exporting variables.

Q(X, Z) :- a(X, Y ), a(Y, Z).

v(X, Z, A, B) :- a(X, Y ), a(Y, Z), b(A, B), A ≤ Y, Y ≤ B.

There are two rewritings that correspond to the following two sets of exported variables: one is φ, and
the other one is {Y }.

P1(X, Z) :- v(X, Z, A, B).

P2(X, Z) :- v(X, Z1, Y, Y ), v(X1, Z, Y, Y ).

The expansion of P2(X, Z) is

P2(X, Z) :- a(X, Y1), a(Y1, Z1), b(Y, Y ), Y ≤ Y1, Y1 ≤ Y, a(X1, Y2), a(Y2, Z), Y2 = Y.

or,
P2(X, Z) :- a(X, Y ), a(Y, Z1), a(X1, Y ), a(Y, Z), b(Y, Y ).

Note that P1 and P2 do not contain each other in either direction as queries. Also, note that the two
rewritings occur because of the dual nature of the variable Y in v. Y can be treated as a nondistinguished
variable, and that results in P1. Y can also be treated as an exportable variable, that results in the second
rewriting. The point here is that the rewritings P1 and P2 do not relate to each other, hence we need to
construct them both. �

EXAMPLE 5.5 We now give a second example for the “maximal exporting subpartition.” Suppose we
have the distinguished variables X1, X2, X3, X4, X5 and the distinguishable variables Y1, Y2, Y3 with the
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following ACs among them in the view. X1 ≤ Y1, X1 ≤ Y3, X2 ≤ Y1, X2 ≤ Y2, Y1 ≤ X3, Y2 ≤ X4, Y3 ≤ X5.
Suppose we want to export the variables Y1, Y2, and Y3. Then there are the following two maximal exporting
subpartitions:

• Subpartition 1: {X1, X5, Y3}, {X2, X4, X3, Y1, Y2}.

• Subpartition 2: {X1, X5, X3, Y1, Y3}, {X2, X4, Y2}.

Notice that there is no relation between them (i.e., no subpartition is a finer partition of the other), hence
we need to consider them both in the algorithm. �

Finally the above lemma leads to the main result:

Lemma 5.4 Let M be a subgoal mapping with a set of exporting variables E and a maximal exporting
subpartition P (E). Let P be all the associated contained rewritings that export exactly E with subpartition
P (E). Then all rewritings in P form a semi-lattice with respect to query containment. �

The proof is a consequence of Lemma 5.2 and Proposition 5.3.

Corollary 5.1 Given a total subgoal mapping with a set of exporting variables E and a maximal exporting
subpartition P (E), there exists an associated rewriting that contains all associated rewritings of this subgoal
mapping that export exactly E with subpartition P (E). We call this the most relaxed rewriting (containment
mapping respectively). �

5.2.3 Construction of legal MCDs

The same optimization can be applied as in the case without comparisons with some additional observation
which concerns the ACs.

Lemma 5.5 The elements of any maximal subpartition of a given set E are contained in the sets leq-set
and geq-set of E formed by the inequality graph. �

Proof: Suppose P is a maximal exporting subpartition of E which uses a variable Y not in either of these
sets. Then, by construction of these sets, for every variable X in E there is a variable uX which is on a
path (in the inequality graph) from Y to X . Hence uX is in the same equivalence class as X , therefore by
deleting Y , X is still exported. As this is true for any X in E, Y is redundant, hence P is not maximal,
contradiction.

Lemma 5.6 If we delete any element from leq-set or geq-set of E, there might exist a rewriting that is not
contained in the contained rewriting generated by the algorithm. �

Proof: Easy to construct a counterexample.
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5.2.4 The Algorithm

The algorithm contains the same three modules as the algorithm without arithmetic comparisons which was
presented in Section 4. Given a subgoal mapping, the procedure that finds the most relaxed associated
containment mapping is the same where exported variables are treated as distinguished variables. The only
difference is that the input also contains some apriori non-empty classes. Each of these classes contains
variables that need to be equated for the exportable variables to be actually exported. The elements in these
classes are found as explained in subsection 5.2.2 by finding all maximal exporting subpartitions.

Before we give the algorithm that finds MCDs, we need to change the definition of a legal argument
mapping as follows — the changes are marked by boldface. We say that an argument mapping is legal if
the following is true: (a) a distinguished variable is always mapped to a either a distinguished or a
distinguishable variable, (b)whenever a constant is mapped to a constant, then it is the same constant,
(c) whenever a constant is mapped to a variable, then this variable is either a distinguished or a dis-
tinguishable variable, (d) whenever a variable maps to a constant then it does not also map to a distinct
constant, e) two distinct constants do not map to the same variable.

We do not change the definition of shared variables which we repeat here for convenience. We say that a
partial MCD has shared variables if there is a variable X mapped on a nondistinguished view variable and
there is a query subgoal in this partial MCD which contains X and X is shared with query subgoals that do
not belong to this partial MCD. An MCD is defined to be a minimal partial MCD without shared variables
(minimal w.r.t. the shared variable property, i.e., there is not a subset of the query subgoals and a subgoal
mapping which is also an MCD) for which an associated containment mapping exists.

MCDs are also defined in the same way with the only difference that they include in their description a set
of exported variables. However we need also define AC-MCDs which are MCDs with a set of accompanying
comparisons. In Figure 6, we give the procedure that finds the MCDs.

The third procedure of the algorithm combines MCDs. We combine AC-MCD’s in a similar way as before
with the only difference that in the end we also check whether we need add some arithmetic comparisons
subgoals for the containment mapping from the query to the expansion to exist. To do that, we check
whether the arithmetic comparisons in the expansion of the rewriting obtained from the definition of the
view implies the associated ACs or whether the algorithm must add an AC to the rewriting explicitly. In
the latter case, if the variable contained in the added AC is not distinguished then we check whether there
exists a variable Y in the geq-set (if the inequality is one of < or ≤) or in the leq-set (if the inequality is
one of > or ≥) of the AC variable. We then add an (appropriate) inequality on Y to the rewriting. The
following theorem proves that our algorithm is sound and complete.

Theorem 5.1 Given a query and views that are CQACs for which the homomorphism property holds, the
algorithm described above finds an MCR in the language of union of CQACs. �

Proof: The proof is similar to the corresponding theorem without comparisons. The proof for soundness is
similar. The extra complications that are introduced by the ACs are apparent in the proof of completeness.
This has been taken care of however in the proof of Lemma 5.4 whose direct consequence is the completeness
of the algorithm.
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Input: a CQAC query Q and a set V of CQAC views;
Output: a set of MCDs;
Method:
For each query subgoal g

For each view v
For each subgoal g′ in v {

Find legal argument mapping µ from g to g′ (if there exists);
Construct new partial MCD: (G = {g}, µ);

}

While there are partial MCDs with shared variables {
For each partial MCD (G, µ) {

Choose shared variable X in G;
If X is distinguishable {

Mark X as exportable;
Create new MCD with X being named as distinguished;

}
Consider as current the old MCD (G, µ);
Choose query subgoal g that contains X;
For each view subgoal g′ that contains µ(X)

If the extended subgoal mapping has a legal argument mapping and
there exists an associated AC-containment mapping

Replace the current partial MCD with new partial MCD: (G′ = G ∪ {g}, µ′ = ext(µ));
}

}

For each MCD {
Consider the set S of exportable variables;
For each maximal exporting subpartition of S

construct a new MCD and add the necessary ACs (if doable) to obtain an AC-MCD.
}
return all AC-MCDs;

Figure 6: Algorithm: finding MCDs.

6 Recursive MCRs

In this section, we consider a wider class of queries than the class considered in the previous section. We
allow for both left semi-interval and right semi-interval comparison subgoals in the query. In this case, we
first argue that we cannot find an MCR unless we add some recursion in the language in which we express the
rewritings. Then, we develop an algorithm which finds an MCR in the language of Datalog with arithmetic
comparisons. In order to do so, however, we need to first find a query containment test which is easier than
the general test in Theorem 2.1. It is also a contribution in query containment, since it finds another case
where the containment problem is in NP. Thus, the structure of this section is as follows. Subsections 6.1
and 6.2 discuss only query containment and obtain the result that simplifies the containment test in this
case and also proves membership in NP in Theorem 6.2. The last subsection discusses rewritings and uses
the result of Subsection 6.2 to develop an algorithm for finding MCRs. In more detail, we begin the section
with an example on which we prove that we cannot find an MCR in the language of unions of CQACs and
we observe that we might need recursion. Then we restrict our attention to testing query containment in the
special case where the containing query uses only one left semi-interval subgoal or only one right semi-interval
subgoal (CQSI1). In Subsection 6.1, we give an example on which we argue that checking for satisfaction of
the containment entailment in this case is simpler, and then we prove some preliminary results. Subsection
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6.2 proves that query containment in the case of CQSI1 containing query can be reduced to containment of
a CQ to a Datalog query. In the last subsection we show how we use the result obtained in Subsection 6.2
to build an algorithm which constructs an MCR when given views which are CQSI and query is a CQSI1.
We restrict attention to the case that only closed inequalities (≤ and ≥) are used (i.e., no strict inequalities)
because Theorem 2.2 simplifies the proofs.

Example 2.5 in Section 2 showed if some view variables are not distinguished, we can have an MCR that
is a recursive Datalog program. The following example shows that if we only consider the language of finite
unions of CQACs, the query Q does not have an MCR. This observation is not surprising given the results
in [AD98], even though it does not follow directly from the results in that paper.

EXAMPLE 6.1 Consider the following query and views:

Q :- e(X, Y ), e(Y, Z), X ≥ 5, Z ≤ 8, red(Y ).
v1(X, Y ) :- e(X, Y ), X ≥ 5, Z ≤ 8.
v2(X, Y ) :- e(X, Z1), e(Z1, Z2), e(Z2, Z3), e(Z3, Y ), red(X), red(Y ), red(Z2).

For each integer k ≥ 0, we get a CR:

Pk :- v1(X, Z1), v2(Z1, Z2), v2(Z2, Z3), . . . , v2(Zk−1, Zk), v1(Zk, Y ).

�

Proposition 6.1 In Example 6.1, there is no finite union of CQACs which contains all Pks and is contained
in Q. �

Proof: Let there be a finite union of CQACs, R, that contains all Pk’s and is contained in Q. Let s be
the maximum number of subgoals in any rewriting Ri ∈ R. Consider Pk such that k = s + 3. Construct a
view instance V by freezing the variables of the body of Pk to appropriate integers as follows: v1(X, Z1) is
frozen to v1(6, 4) and v1(Zk, Y ) is frozen to v1(9, 3) and, the rest is frozen to any distinct integers. Clearly
Pk is true on V . Since R contains Pk, there exists a rewriting Ri ∈ R of size less than or equal to s that
is true on V . Ri uses at most s tuples in V to satisfy its body and produce a valid head. Produce a view
instance V ′ that contains only the s tuples used to produce a valid head for Ri. Since V ′ contains s tuples,
whereas V contained s+3, at least one v2(Zj , Zj+1) tuple that was in V is not present in V ′. Now, construct
a database D′ from V ′ by replacing the tuples in V ′ with their expansions. For example, we replace the
first tuple v1(6, 4) by the tuple e(6, 4), the last tuple v1(9, 3) by the tuple e(9, 3), and so on. Replace the
variables in the expansion of v2(Zj , Zj+1) with distinct values ≥ 8, for l ≤ j, and with distinct values ≤ 5,
for l ≥ j + 1; e.g., replace v2(a, b) by e(a, 16), e(16, 17), e(17, 18), e(18, b) if a, b are the frozen counterparts
of variables Zl−4, Zl−3. Query Q is not true on D′ because it requires a red integer in the middle of two
consecutive e relations with ends being ≥ 5 (the starting end) and ≤ 8 (the other end). However, as Ri is
contained in Q, Q is true on D′, - a contradiction. Therefore, there exists no finite union of CQACs that
contains all Pks and is contained in Q.

6.1 CQAC-SI Containment: Preliminaries

The following is a motivating example showing that testing containment for CQAC-SI queries can be some-
what simplified compared to the general case.

34



EXAMPLE 6.2 Consider the following two queries.

Q1() :- e(X, Y ), e(Y, Z), X ≥ 5, Z ≤ 8
Q2() :- e(A, B), e(B, C), e(C, D), e(D, E),

A ≥ 6, E ≤ 7

There are three containment mappings from the ordinary subgoals of Q1 to the ordinary subgoals of Q2:

µ1: X → A, Y → B, Z → C
µ2: X → B, Y → C, Z → D
µ3: X → C, Y → D, Z → E

The following entailment holds.

A ≥ 6 ∧ E ≤ 7 ⇒ µ1(X ≥ 5 ∧ Z ≤ 8)
∨µ3(X ≥ 5 ∧ Z ≤ 8)

Hence, by Theorem 2.2, Q2 is contained in Q1.2 �

Now we want to examine in more detail a proof that shows this entailment to be true. For this purpose,
let us rewrite it as:

A ≥ 6 ∧ E ≤ 7 ⇒ (A ≥ 5 ∧ C ≤ 8) ∨ (C ≥ 5 ∧ E ≤ 8)

It is equivalent to:

A ≥ 6 ∧ E ≤ 7 ⇒ (A ≥ 5 ∨ C ≥ 5) ∧ (A ≥ 5 ∨ E ≤ 8)
∧(C ≤ 8 ∨ C ≥ 5) ∧ (C ≤ 8 ∨ E ≤ 8)

The latter holds because

1. A ≥ 6 ⇒ A ≥ 5, and E ≤ 7 ⇒ E ≤ 8;

2. true ⇒ C ≤ 8 ∨ C ≥ 5.

In other words, the entailment of each conjunct in the right-hand side follows from one of the two following
reasons.

1. because a single inequality in the left-hand side implies a single inequality in the right-hand side (called
a direct implication);

2. because the disjunction of two inequalities in the right-hand side is true (called coupling implication).

It turns out that this observation can be generalized even in the case the left hand side contains any
arithmetic comparisons. In the following lemma we prove that whenever we want to derive a disjunction of
SI inequalities from a given set of inequalities, we only need to consider these two kinds of implications.

Lemma 6.1 1. Let b1, . . . , bk be the closure3 of a set of inequalities and e1, . . . , en be SI inequalities. Then

b1 ∧ . . . ∧ bk ⇒ e1 ∨ . . . ∨ en

2Remember that µ1(X ≥ 5 ∧ Z ≤ 8) denotes µ1(X) ≥ 5 ∧ µ1(Z) ≤ 8 which, under the given mapping µ1 is equivalent to
A ≥ 5 ∧ C ≤ 8. Similarly for any µi.

3The closure of a set S of inequalities contains all inequalities implied by the conjunction of the inequalities in S.
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iff either (a) there are bk and ei such that bk ⇒ ei (direct implication), or (b) there are ei and ej and
bk = XθY such that XθY ⇒ ei∨ej (θ-coupling implication) or (c) there are ei and ej such that true ⇒ ei∨ej

(coupling implication).

2. Let b1, . . . , bk and e1, . . . , en be SI inequalities. Then

b1 ∧ . . . ∧ bk ⇒ e1 ∨ . . . ∨ en

iff either (a) there are bk and ei such that bk ⇒ ei (direct implication), or (b) there are ei and ej such that
true ⇒ ei ∨ ej (coupling implication). �

Proof: Observe that
b1 ∧ . . . ∧ bk ⇒ e1 ∨ . . . ∨ en

is equivalent to
¬(b1 ∧ . . . ∧ bk) ∨ e1 ∨ . . . ∨ en

which is equivalent to
¬(b1 ∧ . . . ∧ bk ∧ ¬e1 ∧ . . . ∧ ¬en)

which is equivalent to
b1 ∧ . . . ∧ bk ∧ ¬e1 ∧ . . . ∧ ¬en ⇒ false

We can easily prove that the last implication holds iff there is a cycle in the inequality graph of the inequalities
b1, . . . , bk,¬e1, . . . ,¬en which contains at least one edge with label being a strict inequality.

The result now is an immediate consequence of the fact that cycles that contain SI inequalities are only
of these two (three respectively) kinds (see also [Ull89] page 886 for a complete set of inference rules that
derive all inequalities implied from a given set of inequalities).

Now we focus on entailments that have the pattern of the entailment asked to be proven in the CQAC
containment test of theorem 2.2, that is, on the left hand side of the entailment we have the closure of a
set of inequalities and on the right hand side we have a disjunction where each disjunct is a conjunction
of inequalities. For ease of reference, we call these entailments containment entailments (although it is not
necessary that they have to relate to a query containment test). Moreover we have the following constraints:
a) the inequalities used in the right hand side are only SI inequalities and b) in each disjunct in the right
hand side there are a number of LSI (RSI respectively) inequalities and at most one RSI (LSI respectively)
inequality. We call these SI1 containment entailments

The following lemma is an easy observation.

Lemma 6.2 Let E be an SI1 containment entailment. Then there is at least one disjunct di for which the
following holds: There is at most one inequality in di which is not directly implied by the left hand side. We
call di a leaf disjunct. �

Proof: We prove by contradiction. Suppose there is no leaf disjunct. Then each disjunct contains at least
two inequalities that are not directly implied by the left hand side. Since each disjunct contains at most one
RSI (LSI respectively), there is no disjunct that contains two RSI (LSI respectively) inequalities that are
not directly implied by the left hand side. Hence, the following claim: All disjuncts contain at least one LSI
(RSI respectively) which is not directly implied by the left hand side.
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Applying distributive law, we can turn equivalently the right hand side of the entailment into a conjunc-
tion. Based on the above claim, we deduce that there is a conjunct which contains only LSI (RSI respectively)
inequalities each of which is not directly implied by the left hand side. However according to Lemma 6.1 the
only other choice for the entailment to be satisfied is for a coupling inequality to hold. But this is impossible
when we have only LSI or only RSI inequalities. Hence this entailment is not true, contradiction.

Finally the technical lemma that follows is one of the main technical tools used in the proof in the next
subsection.

Lemma 6.3 Let E: β ⇒ βa1 ∨ βa2 . . .∨ βak
be a SI1 containment entailment which contains more than one

disjunct. Suppose that E is true and also, if we drop any of the disjuncts then E does not hold. Let E contain
k disjuncts and let βai be a leaf disjunct and let e be the inequality in βai which is not directly implied by β

(see Lemma 6.2).

Then the following SI1 containment entailment E ′ that has k − 1 disjuncts is also true: (suppose wlog
that βai = βak

):
β ∧ ¬e ⇒ βa1 ∨ βa2 . . . ∨ βak−1

�

Proof: We deduce from
β ⇒ βa1 ∨ βa2 . . . ∨ βak

that
β ∧ ¬βak

⇒ βa1 ∨ βa2 . . . ∨ βak−1

or equivalently (assuming βak
= e1 ∧ . . . ∧ et, where eis are single inequalities)

(β ∧ ¬e1) ∨ (β ∧ ¬e2) ∨ . . . ∨ (β ∧ ¬et) ⇒ βa1 ∨ βa2 . . . ∨ βak−1

Assume wlog that e = e1. Since each ei except e1 is entailed by β, each disjunct except the first one in the
lhs is always false. Hence, the latter entailment is equivalent to:

β ∧ ¬e ⇒ βa1 ∨ βa2 . . . ∨ βak−1

6.2 CQCA-SI Containment: A Reduction

In this subsection, we f want to check containment of CQAC queries in the case the containing query uses
only SI inequalities and moreover it either uses a single LSI inequality or a single RSI inequality. We call
them CQAC-SI1 queries.

We first show how to reduce containment in this case to containment of a CQ to a Datalog query. The
reduction is done as follows: Suppose we want to check whether Q1 contains Q2. We will first transform Q2

into a CQ QCQ
2 and Q1 into a Datalog query QDatalog

1 and then we will prove that checking containment of
Q2 in Q1 is equivalent to checking containment of QCQ

2 in QDatalog
1 . Without loss of generality, we restrict

attention in this section to boolean queries.

We will describe the construction of QDatalog
1 , QCQ

2 in parallel with an example.
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Construction of QCQ
2 : We introduce new unary EDBs [Ull89], two for each constant c in Q2, namely

U≥c and U≤c. For each AC of the form Xθc, we refer to Uθc as the associated U -predicate.

One rule for QCQ
2 : We copy the regular subgoals of Q2 and for each AC predicate Xiθci in β2 we add a

unary predicate subgoal Uθci(Xi).

EXAMPLE 6.3 Consider two queries:

Q1 :- e(X, Y ), e(Y, Z), X ≥ 5, Z ≤ 8
Q2 :- e(A, B), e(B, C), e(C, D), e(D, E), A ≥ 6, E ≤ 7

Q1 contains Q2. For Q2, we construct QCQ
2 .

QCQ
2 :- e(A, B), e(B, C), e(C, D), e(D, E), U≥6(A), U≤7(E)

�

Construction of QDatalog
1 : We construct three kinds of rules, mapping rules, coupling rules and link

rules. Also, we construct a single query rule.

We introduce new unary IDBs [Ull89], two pairs for each constant c in Q1, namely I≥c, I≤c and J≥c,
J≤c. We also use all unary EDB predicates we introduced for QCQ

2 in the link rules. For each pair of one
inequality Xθc and one IDB predicate atom Iθc(X) ( Jθc(X) respectively), we refer to each other as the
associated I-atom ( associated J-atom respectively) or the associated AC.

The query rule copies in its body all subgoals of Q1 and replaces each AC subgoal of Q1 by its associated
I-atom. We get one mapping rule for each single inequality, e, in Q1. The body is a copy of the body of the
query rule, only that the I atom associated to e is deleted. The head is the J atom associated to e.

For every pair of constants c1 ≤ c2 used in Q1, we construct two coupling rules. One rule is I≤c2(X) :- J≥c1(X)
and the other is I≥c1(X) :- J≤c2(X).

Finally, we construct the link rules: For each pair of constants (c1, c2) from Q1, Q2 respectively, if Xθc2

entails Xθc1, we construct the rule: Iθc1(X) :- Uθc2(X)4.

EXAMPLE 6.4 We continue on the previous example. For Q1, we construct a Datalog program QDatalog
1 :

QDatalog
1 :- e(X, Y ), e(Y, Z), I≥5(X), I≤8(Z) query rule

J≤8(Z) :- e(X, Y ), e(Y, Z), I≥5(X) mapping rule
J≥5(X) :- e(X, Y ), e(Y, Z), I≤8(Z) mapping rule
I≤8(X) :- J≥5(X) coupling rule
I≥5(X) :- J≤8(X) coupling rule
I≥5(X) :- U≥6(X) link rule
I≤8(X) :- U≤7(X) link rule

The two last rules are link rules, and they will change if we change the query Q2. The other rules depend
only on Q1. �

4The link rules are the only rules of QDatalog
1 that depend on Q2; actually they relate the comparison predicates of Q1 to

the comparison predicates of Q2.
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The intuition as to the reason this construction is expected to work is as follows. The unary predicates
(both IDBs and EDBs) in the Datalog program are used to mark whether the argument of the predicate
satisfies an inequality of the form Xθc (c is a constant) (the subscript in the predicate name is a reminder
of which inequality). Actually the J predicates are used as reminders that a coupling inequality is needed
whereas the I and U predicates are used in the role of either “direct” implication or that the coupling
inequality is provided.

Each link rule encodes an entailment of the form X ≤ 7 ⇒ X ≤ 8, i.e.,it encodes in general an entailment
X ≤ c1 ⇒ X ≤ c2 where c1 ≤ c2. A coupling rule is motivated by part 2(b) of Lemma 6.1. A mapping rule
encodes a mapping from Q1 to Q2. Lemmas 6.2 and 6.3 provide the technical support for all the technical
details to go through. Now note that any CQ Qπ produced by the Datalog program5 can be viewed as the
union of copies of the subgoals of Q1. Thus a mapping from Qπ into the subgoals of Q2 can be thought of
as a set of mappings from the ordinary subgoals of Q1 into the ordinary subgoals of Q2.

Thus, according to our claim, in our running example we expect that the conjunctive query QCQ
2 produced

by the transformation is contained in the Datalog query QDatalog
1 . This is easy to see, however we show the

details in the example that follows.

EXAMPLE 6.5 We continue on the previous example. To show that QDatalog
1 contains QCQ

2 : Unfold rule
5 into the query rule:

QDatalog
1 :- e(X, Y ), e(Y, Z), J≤8(X), I≤8(Z).

Unfold rules 2 and 3 into the above and get:

QDatalog
1 :- e(X, Y ), e(Y, Z), e(X1, Y 1), e(Y 1, X), I≥5(X1), I≤8(Z).

Unfolding the four last rules into it, we get:

QDatalog
1 :- e(X, Y ), e(Y, Z), e(X1, Y 1), e(Y 1, X), U≥6(X1), U≤7(Z).

The latter is a CQ produced by the Datalog program, and this CQ maps on QCQ
2 , thus showing the con-

tainment. �

The following theorem is the main technical result of this section.

Theorem 6.1 Let Q1 be a CQAC-SI1 query and Q2 be a a CQAC-SI query. Let QDatalog
1 be the transformed

Datalog query of Q1 and QCQ
2 be the transformed CQ of Q2. Then Q1 contains Q2 iff QDatalog

1 contains
QCQ

2 . �

Proof: Suppose Q1 :- Q10 + β1 and Q2 :- Q20 + β2. The “if” direction. Since QDatalog
1 contains QCQ

2 ,
there is a computation C of QDatalog

1 on the canonical database of QCQ
2 which returns the answer “yes” to

the boolean query. Following this computation, we will construct, a set of mappings µ1, µ2, . . . , µn from Q10

to Q20 which will satisfy:
β2 ⇒ µ1(β1) ∨ µ2(β1) ∨ . . . ∨ µn(β1)

Computation C consist a number of stages, each stage consisting of an application of a mapping rule of
QDatalog

1 . (Between stages, there might be a number of coupling rules fired but this counts still for one stage.

5A Datalog program is equivalent to the union of all CQs produced by unfolding the rules several times until no recursive
predicates are contained

39



Link rules are fired only in the leaves of the computation.) We construct one mapping for each stage, i.e.,
one mapping for each application of a mapping rule.

The proof is done by induction on the number of stages required for a ground fact to be added in a
J-predicate relation.

Inductive hypothesis: Suppose that the J-atom Jθc(x) is computed at stage ≤ l. Let µ1, µ2, . . . , µl be all
the mappings used for firing the mapping rules. Then, it holds:

β2 ⇒ µ1(β1) ∨ µ2(β1) ∨ . . . ∨ µl(β1) ∨ ¬(xθc)

Proof of the induction. The basis step is easy. For the inductive step, suppose fact Jθc(x) was computed
at stage k. In the top of the computation tree of this fact, a mapping rule is used. In order to fire this
mapping rule, we used some I-facts. Those I-facts are computed from J-facts using coupling rules. Naturally
those J-facts were computed at stages ≤ k. Suppose that these J-facts are Jθici(xi), i = 1, . . . , and each is
computed using a set of mappings Si = {µi

1, . . . , µ
i
li
}.

Assume that µnew(β1) = e1 ∨ . . . ∨ et, where ejs are single inequalities. By construction, for each set Si

there is a ji such that ¬(xiθici) ⇒ eji . This covers all ejs except one, the one associated to Jθc(x), suppose
this is the et. Then, for each Si, we get:

β2 ⇒ µi
1(β1) ∨ µi

2(β1) ∨ . . . ∨ µi
li(β1) ∨ eji

or equivalently,
β2 ⇒ µi

1(β1) ∨ µi
2(β1) ∨ . . . ∨ µi

li(β1) ∨ eji ∨ ¬et

Since, for the not covered et, we can also write: β2 ⇒ et ∨ ¬et, we end up with the desired entailment:

β2 ⇒ ¬(xθc) ∨ µnew(β1) ∨
∨

all Si

µi
1(β1) ∨ µi

2(β1) ∨ . . . ∨ µi
li(β1).

The “only if” direction. Since Q1 contains Q2, there are mappings µ1, µ2, . . . , µn from the regular subgoals
of Q1 to the regular subgoals of Q2 such that: β2 ⇒ µ1(β1) ∨ µ2(β1) ∨ . . . µn(β1). Intuitively, we will prove
this direction, by proving that the mappings µ1, µ2, . . . µn provide all the mappings that will fire the mapping
rules in the computation of QDatalog

1 on the canonical database of QCQ
2 . Recall that, by construction, the

canonical database of QCQ
2 contains the frozen ordinary subgoals of Q2 and all the U facts associated with

inequalities in β2.

We prove the general case of this direction by induction on the number n of mappings.

Inductive hypothesis. For all n ≤ k it holds: Let µ1, µ2, . . . µn be mappings from the ordinary subgoals
of Q1 to the ordinary subgoals of Q2 and ei, i = 1. . . . , L be an SI inequality from β1 with its variable
replaced by a variable of Q2. Suppose that the following entailment holds: E : β2 ∨ ¬e1 ∨ . . . ∨ ¬eL ⇒
µ1(β1) ∨ µ2(β1) ∨ . . . µn(β1). Consider the Datalog query QDatalog

1 applied on the union of the canonical
database of QCQ

2 and the set of the following facts (on elements of the domain of the canonical database
of QCQ

2 ): a fact Iθc(x) is added for each ei = Xθc in E (x is the frozen variable for X in the canonical
database). Then the answer that QDatalog

1 returns is ”yes”.

Proof of the initial step (k = 1): We have two cases: a) If there are no ei’s in E then E : β2 ⇒ µ1(β1).
Because of Lemma 6.1 this implication is true only if there is a direct implication for every inequality in
the right hand side of E . All direct implications however are captured in the link rules of the Datalog query
which therefore are fired and I facts are produced which together with the mapping µ1 fire the query rule.
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b) There are ei’s in E . The argument is the same only that now the direct implications are not all captured
by the link rules, hence some I facts may not be produced by the link rules. These facts however are added
to the database by construction (see inductive hypothesis), hence, the query rule is again fired.

Proof of the inductive step: Given an entailment E : β2∨¬e1∨ . . .∨¬eL ⇒ µ1(β1)∨µ2(β1)∨ . . . µk+1(β1)
with k+1 disjuncts, according to Lemma 6.3 the following entailment is also true: E ′ : β2∨¬e1∨ . . .∨¬eL∨
¬enew ⇒ µ1(β1) ∨ µ2(β1) ∨ . . . µk(β1). According to the inductive hypothesis, the Datalog query answers
”yes” on the canonical database D of QCQ

2 with the I facts associated to e1, . . . ,¬eL,¬enew added. To prove
the inductive step, we need to prove that the Datalog query applied on database D after we remove the I

fact for enew answers ”yes” too. This is true because, the removed fact is added by the application of a
mapping rule and a coupling rule: The mapping rule uses the mapping µk+1 and produces a new J fact and
a coupling rule produces the deleted I fact from this J fact.

Proposition 6.2 The reduction described above is polynomial. �

Proof: For the containing query: We have only one query rule of size linear on the size of one of the
queries and we have one mapping rule for each comparison subgoal of size again linear. We have a number
of coupling rules and link rules of constant size each and their number is at most quadratic on the number
of comparison sublgoals.

The following result is a consequence of this reduction.

Theorem 6.2 The problem of testing whether a CQSI query is contained in a CQSI1 query is in NP. �

Proof: The reduction described in this section is a polynomial reduction. Also the Datalog program that
we are constructing is monadic, i.e., all its IDB predicates are of arity less or equal to 1. Thus, it suffices to
show that testing whether a CQ Q2 is contained in a monadic Datalog query Q1 is in NP. (In the general
case this problem is EXPTIME-complete.)

For the special case of monadic Datalog (wlog assume boolean queries), we argue as follows: The test
is to run the Datalog query Q1 on the canonical database D2 of the CQ Q2. Q2 is contained in Q1 iff it
returns the answer “yes.”

The certificate is: a) the unary IDB facts computed (polynomially many) b) the derivation tree that
computes them (polynomial in size, if we do not repeat nodes–instead redirect the links. I.e., we describe
the tree using an acyclic graph). c) for each fact the mapping from the subgoals of Q1 to the subgoals of Q2

which computes this fact.

Test that the certificate proves that the answer is “yes”: a) Test that the derivation tree is a tree or
equivalently that its succinct description is a directed acyclic graph. b) test that the given containment
mappings are using only IDB facts that are children (in the derivation tree) of the currently computed IDB
fact. c) test that each of the mappings is a containment mapping.

6.3 Finding MCR

We use the result in the previous section to construct an algorithm that produces an MCR given a CQAC-SI1
query and CQAC-SI views. Our algorithm reduces this problem to the problem of finding an MCR given
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a Datalog query and conjunctive views (without arithmetic comparisons) and then uses the algorithm in
[DG97].

We need the following Lemma. It essentially says that we do not need to consider contained rewritings
that use other arithmetic comparisons besides semi-interval.

Lemma 6.4 Let query Q and views V be CQSI. Let P be a contained rewriting of Q using views V . Then,
there is a finite union of contained rewriting of Q using V , P1, . . . , Pk, which contains P and uses only SI
ACs. �

Proof: Let P = P0 + βP = P0 + βSI
P + βrest

P , where βSI
P are the SI comparisons of βP and βrest

P are the
remaining comparisons of βP . We construct P1, . . . , Pk as follows: The head of Pi is the same as the head of
P . The body of Pi contains a copy of all ordinary subgoals of P , all SI inequalities in the closure of βP and
some additional SI ACs. These additional SI ACs cover all possible placements of the variables of P with
respect to the constants in Q that are consistent with the inequalities in βP . In particular, for constants
c1 ≤ c2 ≤ c3 . . . ≤ cm, we consider 2m+1 intervals: (−∞, c1](c1, c2], . . . ... Thus, P ′

i = P0 + βSI
P + βi where

βi contains only SI inequalities and define a specific placement of the variables in P0 w.r.t. all constants
in Q. For an example suppose that we have two constants used in the query and views, say 5 and 15 and
we have two variables X, Y in the rewriting P . Then we have 9 different ways to place the variables in the
intervals (−∞, 5], (5, 15], (15,∞), thus we form 9 new rewritings. One of these rewritings, e.g., is P with the
following βi added: βi = X ≤ 5, Y ≤ 5.

It is easy to see that the union of those rewritings contain P : We may think of the Pis as follows: We
can rewrite P equivalently as a union of contained rewritings, P ′

1, . . . , P
′
k. The body of each P ′

i is the same
as the body of P. P ′

i has some additional SI ACs, the ones in βi. Clearly the union of P ′
i s contains P . Now

each Pi that we constructed is actually P ′
i with some ACs dropped. But this is more containing than P ′

i ,
hence the union of Pis contains P too.

It remains to be proven that each of them is a contained rewriting in the query. Let βP = βSI
P + βrest

P .
We prove that Pi = P0 + βSI

P + βi is still contained in Q. We consider the expansions of P and Pi. Let
P exp = P exp

0 + βSI
P + βrest

P + βviews and let P exp
i = P exp

0 + βSI
P + βi + βviews. We will prove that if P exp is

contained in Q then P exp
i is contained in Q too. The proof is based on the following claim which is an easy

consequence of Lemma 6.1.

Claim: Let E be a containment entailment which contains only SI inequalities in the right hand side.
Turn the right hand side of E into a conjunction of disjunctions. Then E holds iff the following is true: For
each conjunct, one of the three conditions in Lemma 6.1.1 holds.

The entailment E that proves containment of P exp in Q differs from the entailment Ei that proves
containment of P exp

i in Q in the following: The left hand side of E may contain some ACs of the form
XθY that are not contained in Ei. The only condition in Lemma 6.1.1 which uses such inequalities is the
θ-coupling condition. So it suffices to argue on this condition.

Suppose that one of the conditions that prove that E holds is: X ≤ Y ⇒ X ≥ c1 ∨ Y ≤ c2. Then, the
only Pi whose SIs do not entail X ≥ c1 ∨ Y ≤ c2 is the one which contains the SIs X ≤ c1 ∧ Y ≥ c2. But
this is inconsistent with X ≤ Y , hence this Pi was discarded during the construction.

Algorithm:

1. For the query Q, we construct the Datalog query QDatalog. We use the construction in the previous
section.

42



2. For each view vi, we construct a new view vCQ
i . We use the construction in the previous section.

3. We also construct a new set of views, uθc, one for each unary predicate Uθc The definition is uθc(X) :- Uθc(X).

4. We find an MCR P for the Datalog query QDatalog using the views vCQ
i ’s and uθc’s [DG97].

5. To obtain an MCR P0 for Q, we replace in the found MCR P each vCQ
i by vi and each uθc(X) by AC

Xθc.

The correctness of the algorithm is based on the following proposition.

Proposition 6.3 Let Q and V be CQAC-SI and Q be CQAC-SI1 and let QDatalog and the views V ′ be as
in the algorithm. Let P , P0 be as in the algorithm. Then P is an MCR of QDatalog using V ′ iff P0 is an
MCR of Q using V . �

Proof: The proof is based on Lemma 6.4 and theorem 6.1. According to Lemma 6.4, any (possibly
infinite) union of contained rewritings (that are CQACs) in Q is contained in a (possibly infinite) union of
contained rewritings in Q that use only SI comparisons. Hence, if an MCR exists in the language of (possibly
infinite) union of CQACs then an MCR exists in the language of (possibly infinite) union of CQAC-SIs. Each
CQAC-SI Pi has an expansion P exp

i that is contained in Q. According to theorem 6.1 this is equivalent to
the following: P exp−CQ

i (that is the transformed P exp
i as in theorem 6.1) is contained in QDatalog. However

P exp−CQ
i can be viewed also as the expansion of a rewriting PCQ

i of QDatalog using V ′, where PCQ
i is Pi

with views from V replaced by views from V ′ and unary EDBs Uθc(X) replaced by comparisons Xθc.

The following theorem proves correctness of the algorithm and is a straightforward consequence of the
above proposition.

Theorem 6.3 Given a query Q which is CQAC-SI1 and views V which are CQAC-SI, the algorithm finds
an MCR of Q using V . �

7 Future Work and Conclusion

We believe that the problem of answering queries using views in the presence of arithmetic comparisons
is fundamental to any database system using views. This paper identifies cases where the problem can be
solved and provides algorithms to do so. Specifically, we have developed an efficient algorithm to obtain
MCRs for left-semi-interval queries. We have also shown that recursive datalog programs are necessary to
rewrite semi-interval queries and identified subcases where there is an MCR in datalog with comparisons
and provided an algorithm to find it.

The decidability of finding an MCR of a query with comparison predicates using views with comparison
predicates, especially, when all the view variables are not distinguished, needs to be investigated for other
subcases too.

Acknowledgements: We thank Jeff Ullman for many useful suggestions and also for the proof of Theorem
3.1.
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