UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
The Context Model:
Language Understanding In Context

Permalink

btt_gs:[[escholarship.orq/uc/item/3147c8k3|

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 4(0)

Author
Arens, Yigal

Publication Date
1982

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/3147c8k3
https://escholarship.org
http://www.cdlib.org/

The Context Model:
Language Understanding in Context*

Yigal Arens

Division of Computer Science

Department of EECS

University of California at Berkeley

1. Introduction

This paper describes the language understanding
component of the Unix Consultant (UC) system being
developed at the Berkeley Artificial Intelligence
Research project. The purpose of UC is to hold a conver-
sation with a naive user of the Unix operating system
while he or she is worlking on the computer, answering
questions and solving problems for the user. The system
has several other components, including the common
sense planner PANDORA (Faletti, 1982), and the plan
understander PAMELA (Norvig, 1982).

Our natural languege understanding system con-
tains as a subpart the PHRAN phrasal analysis program
ilensiky and Arens, 1980a) (Wilensky and Arens, 1980b)
Arens, 1981). PHRAN's knowledge base consists of
Pattern-Concept Pairs — pairings of language structures
with a conceptual representation of their meaning. It
operates by matching the pattern parts of the pairs
against the input and using the corresponding concept
to describe its meaning.

The current system attempts to deal with the fact
that PHRAN by itself unable to deal with reference, and
cannot disambiguate unless the linguistic patterns used
require a particular semantic interpretation of the
words. In addition, we wish to account for the fact that
the same utterance may be interpreted differently in
different contexts. These inabilities on the part of
PHRAN originate in the fact that PHRAN's knowledge is
almost entirely of the language. as opposed to knowledge
about the entire conversation, more general world
knowledge, etc. Of course, in order to specify the pat-
terns, PHRAN needs at least some information about the
semantics of the words appearing in the sentences it
analyzes, but this is limited to the semantic categories
the objects described by the language belong to (a.g.
Person, Vehicle) and a Conceptual Dependency represen-
tation (Schank, 1975) of the actions. In order to hold a
meaningful and useful conversation, however, it is clear
that such a system must go beyond the (almost) purely
linguistic analysis of the sentence to include the effect
and the interaction this analysis has on our model of the
conversation and on our knowledge as a whole.

The systemn we are currently constructing has a sin-
gle mechanism which addresses many of these problems,
which we call the Context Model The Context Model
contains a record of knowledge relevant to the interpre-
tation of the discourse, with associated levels of activa-
tion. There are rules governing how elements introduced
into the Context Model are to influence it and the
system's behavior.

PHRAN and the Context Model interact continually.
PHRAN passes its limited interpretation of the input to
the Context Model. and it in turn determines the focus of
the conversation and uses it to resolve the meaning of
ambiguous termns, of references, etc., and passes these
back to PHRAN.

Although it too involves the use of spreading activa-
tion and associations among semantic structures for the
purpose of understanding text, the Context Model differs
substantially in scope from Quillian's work in TLC as
described in (Quillian, 1985). TLC was concerned mainly
with the determination of the conceptual representation
of the input sentence, a task which is handled here
mostly by the phrasal analyzer. The Context Model
groups related entries in it and arrives at a notion of the

*This research was sponsored in part by the Office of Naval
Research under contract NOOO14-80-C-0732 and the National Science
Foundation under grant MCS78-08543.

174

Berkeley, CA 94720

situation being discussed. Alternative situations in which
a concept may appear can be ignored, thus enabling the
systemn to have a more directed spreading of activation.

(Grosz, 1980) develops in great detail a scheme for
determining focus of a task oriented dialog and using it
to resolve references. Grosz's system relies heavily on
the inherent temporal structuring of the task - whereas
we are trying to develop a more general approach,
independent of the type of subject matter discussed.
Qur system must have the ability to shift focus freely
according to the user's input, including the ability to
store and recall previous contexts into focus.

The resulting system is able to converse and answer
questions, while allowing the user to move in a relatively
free manner from one topic to another, as the next
example illustrates.

1.1. Example
The exchange described below takes place with the
UNIX Consultant (UC) systern being constructed at
Berkeley. The purpose of the system is to answer the
questions of naive users of the UNIX operating system
while they are using the computer. See (Wilensky, 1982).
[1] User: How do | print the file fetch.l on the line

printer?
[2] UC: To print the flle fetch.l on the line printer
type 'lpr fetch.l'.

(intervening commands and questions)

User: Has the flle fetch.l been printed yet?

UC: The flle fetch.l is in the line printer queue.

User: How can | cancel it?

UC: To remove the file fetch.l from the line
printer queue you must type 'lprm arens'.

In this example the user first asks a question [1]
and receives a reply from the system. Then come
several other questions and answers, and then the
second part of the example. The user asks another rela-
tively straightforward question and then a more prob-
lematic one. In order to reply to the last question the
system must find the referent of 'it'. The language used
implies that this must be a command, but the command
in question was issued long ago. The system is able to
determine the meaning of [5] only because the context
of [1] and [2] had been stored and so could be recalled
upon the seeing of [3]. This example will be discussed in
more detail in section 3.

L

2. The Context Model and Its Manipulation

The Context Model is in a constant state of flux.
Entries representing the state of the conversation and
the system's related knowledge and ‘intentions' are con-
tinually being added, deleted, or are having their activa-
tion levels modified. As a result the same utterance may
be interpreted in a different manner at different times.
Following are short descriptions of the diflerent ele-
ments of the system.

2.1. Entries

The Context Model consists of a collection of entries
with associated levels of activation. These entries
represent the system's interpretation of the ongoing
conversation and its knowledge of related information.
The activation level is an indication of the prominence of
the information in the current conversational context, so
that when interested in an entry of a certain type the



system will prefer a more highly activated one among all
those that are appropriate.

There are various types of entries, and these are
grouped into three general categories:

1) Assertions — statements of facts known to the sys-
tem.

2) Objects — objects or events which the system has
encountered and that may be referred to in the
future.

3) Intentions -

a) Entries representing information the system
intends to transmit to the user (i.e. output) or
other components of an understanding system
(e.g. goal tracker, planner).

b) Entries representing information the system
intends to determine from its knowledge base.

2.2. Clusters

The entries in the Context Model are grouped into
clusters representing situations, or associated pieces of
knowledge. If any one member of a cluster 13 reenforced
it will cause the rest of the members of the cluster to be
reenforced too. In this manner inputs concerning a cer-
tain situation will continue reenforcing the same cluster
of entries — those corresponding to that particular situa-
tion. Thus the system arrives at a notion of the topic of
the conversation which it uses to help it choose the
appropriate interpretation of further inputs.

2.3 Reenforcement

When the parse of a new input is received from
PHRAN the system inserts an appropriate entry into the
Context Model If there already exists an entry matching
the one the system is adding then the activation levels of
all entries in its cluster(s) are increased. The level of
activation decays over time without reenforcement, and
when it falls below a given threshold the item is removed.

2.4. Stored Clusters

Upon inserting a new item in the Context Model the
system retrieves from a database of clusters all those
that are indexed by the new item. Unification iz done
during retrieval and the entries in the additional clusters
are also inserted into the Model, following the same pro-
cedure described here except that they are given a
lesser activation. We thus both avoid loops and accom-
modate the intuition that the more intermediate steps
are needed to associate one piece of knowledge with
ancther the less the mention of one will remind the sys-
temn of the other.

The system begins operation with a given indexed
database of clusters, but clusters representing various
stages of the conversation are continually added toit. In
principle, this should be performed automatically when
the system is cued by the conversation as to the shifting
of topic, but currently the system user rmust instruct it
do so. Upon receiving such an instruction, then, all but
the least activated entries in the Context Model are
stored as a cluster indexed by the most highly activated
among them. This enables the system to ‘recall’ a situa-
tion later when presented with a related input

2.5. Operations on Entries in the Context Model

After a new entry is made in the Context Model the
process described above takes place and eventually the
activation levels stabilize, with some of the itemns being
deleted, perhaps. Then the system looks over each of
the remaining entries and. if it is activated highly
enough, performs the operation appropriate for its type.
The allowed operations consist of the following:

1) Deleting an entry.

2) Adding another entry.

3) Transmitting a message to another component of
the system (i.e. output to tne user or data to
another program, e.g. PANDORA (Faletti, 1982), for
more processing}

4) As part of the UC system, getting information from
the UNIX system directly (and inserting an entry
corresponding to the result).

3. Details of the Example

In [1] the user asks a simple question. PHRAN
analyzes the question and sends the Context Model a
streamn of entries to be inserted. Among thermn are the
fact that ‘fetch.l’ is the name of a flle, and that the user
asked what is the plan for printing it on the line printer.
The systemn records these facts in the Context Model.
Indexed under the entry representing the user's desire
to obtain a goal there is a cluster containing entries
representing the system's intent to find a plan for the
goal the user has and instructing the system to tell the
user of this plan. This cluster is instantiated here with
the goal being the particular goal expressed in the ques-
tion. The entry expressing the system's need for a plan
for the user's goal leads to the plan in question being
introduced also. This happens because the system hap-
pens to already have this association stored. When the
system looks over the entries in the Context Model and
comes to the one concerning the need to find the plan in
question it will check to see if an entry for such a plan
already exists, and in our case it does. But if no plan
were found, the system would insert a new entry into the
Context representing its intent to pass the information
about the user's request to the planner PANDORA
(Faletti, 1982). PANDORA will in turn return the plan to
be inserted in the Context Model

So the system finds the plan (issuing the command
above) and inserts a new entry instructing the system to
output it to the user. And eventually that is done -
hence [2].

The topic shifts and the previous context is stored
(with the operator's aid, as mentioned above), indexed
by the most highly activated entries. including the file
name, the mention of the line printer, the event of print-
ing the file, and the command issued.

In [3] and [4] we have an exchange similar to the
previous one except that the system actually bas to con-
sult the operating system in order to find the answer to
the question. There is one major addition however - as a
result of the existence of the new cluster described
above, the system has all this extra information trig-
gered and loaded into the Context Model. And this is
what makes it possible for the system to determine the
referent of 'it' in [5]. Several other commands were
mentioned and executed more recently, but in the new
cluster just loaded many entries match aiready existing
ones causing all — including the command intended for
cancellation — to be more highly activated.

4. Shortcomings

The system is not currently able to determine on its
own that the topic has changed and that it must store
the current context. In addition to linguistic cues, we
should be able to use the Context Model too in order to
help in such a determination, but this work has not been
done yet.

When it is instructed to, the current system stores
essentially a copy of the more highly activated elements
of the Context Model when creating a new cluster. They
are not assumed to have any particular structure or
relations among them other than all being highly
activated at the same time. This causes two problems:

1) As a result it is very difficult to generalize over such
clusters (cf. Lebowitz, 1980). The system may at
some point determine a plan for changing the own-
ership of a particular flle, and store a cluster con-
taining it. If it is faced with the need to change the
ownership of another file, however, the system will
not be able to use this information. In the example
above this problem was not encountered because
the clusters used were preprogrammed to include
variables in place of particular flles.

2) There is no way to compare two clusters and deter-
mine that in fact they are similar. Thus we may
have many clusters indexed by a certain entry all of
which actually describe essentially the same situa-
tion.

Ancother element missing from the system is a
mode! of the user. Certain assumptions are made as to
the knowledge the user has of the Unix operating
system, but these are built in and cannot be meodified
according to past interactions. Constructing such a

175



model will probably require work beyond the scope of
this project.

5. References

Arens, Y. (1981). Using Language and Context in the
Analysis of Text. In Proceedings of the Seventh /nterna-
tional Joint Conference on Artificial /ntelligence, Van-
couver, B.C.

Faletti, J. (1982). PANDORA — A Program for Doing Com-
monsense Planning in Complex Situations. Submitted to
The Second Annual National Conference on Artificial
Intelligence, Pittsburgh.

Grosz, B., J. (1980). Focusing and Description in Natural
Language Dialogues. ln Elements of Discourse Under-
standing. Proc. of a Workshop on Computational Aspects
of Li istic Structure and Discourse Setting. A K
Joshi, I. A Sag, and B. L. Webber, eds. Cambridge Univer-
sity Press.

Lebowitz, M. (1980). Generalization and Memory in an
Integrated Understanding System. Tech. Report 1886,
Yale University Department of Computer Science. Ph.D.
Thesis.

Norvig, P. (1982). Integrating Frame-Based and Goal-
Based Processing in a Story Understanding Program.
Submitted to The Second Annual Vationol Conference on
Artificial fntelligence, Pittsburgh.

Quillian, M., R (1989). The Teachable Language
Comprehender: A Simulation Program and a Theory of
Language. In Communications of the ACM, v.12, no.8.

Schank, R. C. (1975). Conceptual /nformation Process-
ing. American Elsevier Publishing Company, Inc., New
York.

Wilensky, R (1982). Talking to UNIX in English: An Over-
view of UC. Submitted to The Second Annual National
Conference on Artificial Inteligence, Pittsburgh.

Wilensky, R, and Arens, Y. (1980). PHRAN - a

Knowledge-Based Natural Language Understander. In

Proceedings of the 18th Annual Meeting of the Associa-
jon for & sl 13 iatics, Philadelphi

Wilensky, R. and Arens, Y. (1980). PHRAN - a Knowledge
Based Approach to Natural Language Analysis. Univer-
sity of California at Berkeley, Electronic Research
Laboratory Memorandum No. UCB/ERL MB80/34.

Wilensky, R.. and Morgan, M. (1981). One Analyzer for
Three Languages. University of California at Berkeley,
Electronic Research Laboratory Memorandum No.
UCB/ERL MB1/87.

176



	cogsci_1982_174-176



