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Cosmological simulations of galaxy formation are limited by
finite computational resources. We draw from the ongoing rapid
advances in artificial intelligence (AI; specifically deep learning)
to address this problem. Neural networks have been developed
to learn from high-resolution (HR) image data and then make
accurate superresolution (SR) versions of different low-resolution
(LR) images. We apply such techniques to LR cosmological N-
body simulations, generating SR versions. Specifically, we are able
to enhance the simulation resolution by generating 512 times
more particles and predicting their displacements from the ini-
tial positions. Therefore, our results can be viewed as simulation
realizations themselves, rather than projections, e.g., to their
density fields. Furthermore, the generation process is stochas-
tic, enabling us to sample the small-scale modes conditioning on
the large-scale environment. Our model learns from only 16 pairs
of small-volume LR-HR simulations and is then able to generate
SR simulations that successfully reproduce the HR matter power
spectrum to percent level up to 16 h−1Mpc and the HR halo mass
function to within 10% down to 1011 M�. We successfully deploy
the model in a box 1,000 times larger than the training simulation
box, showing that high-resolution mock surveys can be generated
rapidly. We conclude that AI assistance has the potential to revolu-
tionize modeling of small-scale galaxy-formation physics in large
cosmological volumes.

cosmology | deep learning | simulation | super resolution

As telescopes and satellites become more powerful, obser-
vational data on galaxies, quasars, and the matter in inter-

galactic space becomes more detailed and covers a greater range
of epochs and environments in the Universe. Our cosmological
simulations (see, e.g., ref. 1) must also become more detailed
and more wide-ranging in order to make predictions and test the
effects of different physical processes and different dark-matter
candidates. Even with supercomputers, we are forced to decide
whether to maximize either resolution or volume, or else com-
promise on both. These limitations can be overcome through
the development of methods that leverage techniques from the
artificial intelligence (AI) revolution (see, e.g., ref. 2) and make
superresolution (SR) simulations possible. In the present work,
we begin to explore this possibility, combining knowledge and
existing superscalable codes for petascale-plus cosmological sim-
ulations (3) with machine learning (ML) techniques to effectively
create representative volumes of the Universe that incorporate
information from higher-resolution models of galaxy formation.
Our first attempts, presented here, involve simulations with dark
matter and gravity only, and extensions to full hydrodynamics
will follow. This hybrid approach, which will imply offloading
simulations to neural networks (NNs) and other ML algorithms,
has the promise to enable the prediction of quasar, supermas-
sive black hole, and galaxy properties in a way that is statistically
identical to full hydrodynamic models, but with a significant
speed-up.

Adding details to images below the resolution scale (SR image
enhancement) has become possible with the latest advances in
deep learning (DL; ML with NN; ref. 4), including generative

adversarial networks (GANs; ref. 5). The technique has appli-
cations in many fields, from microscopy to law enforcement (6).
It has been used for observational astronomical images by (7),
to recover galaxy features from below the resolution scale in
degraded Hubble Space Telescope images. Besides SR image
enhancement, DL has started to find applications in cosmolog-
ical simulations. For example, refs. 8 and 9 showed how NNs can
predict the nonlinear formation of structures given simple linear
theory predictions. NN models have also been trained to predict
galaxies (10, 11) and 21-cm emission from neutral hydrogen (12)
from simulations that only contain dark matter. GANs have been
used in ref. 13 to generate image slices of cosmological mod-
els and to generate dark-matter halos from density fields (14).
ML techniques other than DL find many applications, too. For
example, Kamdar et al. (15) have applied extremely randomized
trees to dark-matter simulations to predict hydrodynamic galaxy
properties.

Generating mocks for future sky surveys requires large vol-
umes and high accuracy, a task that quickly becomes compu-
tationally prohibitive. To alleviate the cost, recently, Dai and
Seljak (16) developed a Lagrangian-based parametric ML model
to predict various hydrodynamical outputs from the dark-matter
density field. In other work, Dai et al. (17, 18) sharpened the
particle distribution using a potential gradient descent method
starting from low-resolution (LR) simulations. Note, however,
that these approaches did not aim to enhance the spatial or mass
resolution of a simulation.

Significance

Cosmological simulations are indispensable for understand-
ing our Universe, from the creation of the cosmic web to
the formation of galaxies and their central black holes. This
vast dynamic range incurs large computational costs, demand-
ing sacrifice of either resolution or size and often both. We
build a deep neural network to enhance low-resolution dark-
matter simulations, generating superresolution realizations
that agree remarkably well with authentic high-resolution
counterparts on their statistical properties and are orders-
of-magnitude faster. It readily applies to larger volumes and
generalizes to rare objects not present in the training data.
Our study shows that deep learning and cosmological simu-
lations can be a powerful combination to model the structure
formation of our Universe over its full dynamic range.
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On the DL side, recently, Ramanah et al. (19) explored using
the SR technique to map density fields of LR cosmological sim-
ulations to that of the high-resolution (HR) ones. While the goal
is similar, our work has the following three key differences. First,
instead of focusing on the dark-matter density field, we aim to
enhance the number of particles and predict their displacements,
from which the density fields can be inferred. This approach
allows us to preserve the particle nature of the N-body simula-
tions and therefore to interpret the SR outputs as simulations
themselves. Second, we test our technique at a higher SR ratio.
Compared to ref. 19, which increased the number of Eulerian
voxels by 8 times, we increase the number of particles and thus
the mass resolution by a factor of 512. Finally, to facilitate future
applications of SR on hydrodynamic simulations in representa-
tive volumes, we test our method at much smaller scales and in
large simulations whose volume is much bigger than that of the
training data.

Results
In this work, we employ DL, the class of ML algorithms involving
artificial NNs, to progressively transform an LR input simula-
tion via multiple layers of neurons into an output that statistically
reproduces the HR target. We build and train a DL model based
on physical considerations and use the displacements of particles
in the N-body simulations as inputs and outputs. This allows us
to interpret the results as simulation realizations themselves. To
help train the generative network, we employ a GAN approach
to simultaneously train a discriminative network that contests
with the generator in a game by evaluating its outputs. We val-
idate our model by comparing the generated SR simulations to
the authentic HR simulations, both visually and quantitatively,
using summary statistics, including the power spectrum and the
halo-mass function.

Visual Comparison. First, let us visually compare the generated
SR results to the authentic HR simulations. We obtain the SR
particle positions by moving them from their original grid loca-
tions using the predicted displacements. In the three columns of
Fig. 1, respectively, we show the LR, HR, and SR dark-matter
density fields at z = 0. We visualize all dark-matter particles
in blue and highlight the Friends-of-Friends (FOF) halos (see
below) in orange.

As shown in Fig. 1, our SR technique is able to recover
sharp features and small-scale structures starting from inputs of
extremely poor resolution. It forms halos where the input LR
cannot resolve them; e.g., in the figure, the LR can only form the
most massive handful of halos in the box, whereas SR is able to
improve the halo mass range by orders of magnitude. The SR
outputs trace the large-scale environment set by the LR inputs,
while appearing statistically almost indistinguishable from the
HR targets on the small scales.

Our method also allows us to map the same LR input to mul-
tiple outputs. We achieve this by adding noise between layers
in the generator, as explained in Materials and Methods. In Fig.
2, we show one HR and three random SR projections, of the
same (20 h−1Mpc)3 regions and the same LR field, at z = 2.
As expected, above and around the input-resolution scales, the
HR and SR fields are consistent with each other, while being
apparently different, but visually similar, on smaller scales. To
demonstrate their remarkable similarities, we invite the readers
to guess which panel is HR before checking the answer in the
footnote of Fig. 2.

The visual tests have demonstrated that our SR technique
is able to not only generate small-scale structures that statis-
tically resemble the target, but also sample them condition-
ing on their larger-scale environment. These capabilities make
our method extremely promising for a variety of other SR
applications.

Power Spectrum. The matter power spectrum, which describes
the amplitude of density fluctuations as a function of scale, is per-
haps the most commonly used summary statistic in cosmology.
It describes in Fourier space the two-point correlation, which
completely specifies the statistical properties of Gaussian ran-
dom fields. And, to the best of our knowledge, the cosmological
density field is well represented after the Big Bang by a Gaussian
random field and remains so in the linear growth regime. There-
fore, it is standard to compare the SR and HR simulations on
their matter power spectra P(k).

For a periodic simulation box, the matter power spectrum can
be measured by a discrete Fourier transform

P(ki) =
1

Ni

∑
ki<k≤ki+1

|δ(k)|2

V
, [1]

where V is the simulation volume and δ(k) is the discrete Fourier
transform of the overdensity field δ(x)≡ ρ(x)/ρ̄− 1, with ρ(x)
and ρ̄ being the matter density field and its mean value, respec-
tively. Due to statistical isotropy, the power spectrum is only
a function of the wavenumber k = |k| and independent of the
direction of k. The above estimator has already exploited this
by averaging spherically within each k -bin. Ni is the number of
modes falling in the i-th bin (ki , ki+1].

We compute the density field by assigning the particle mass
to a 5123 mesh using the CIC (Cloud-in-Cell) scheme, for all
LR, HR, and SR simulations. A common practice in power-
spectrum estimation is deconvolution of the resampling window
(here, CIC) after the discrete Fourier transform (20). However,
this amplifies the noises and leads to artifacts in the LR results.
Instead, using a large fast Fourier transform (FFT) grid for both
resolutions, we avoid deconvolving the resampling window and
can compare power spectra from different resolutions on an
equal footing.

In Fig. 3, we compare the dimensionless power spec-
tra ∆2(k)≡ k3P(k)/2π2, at z = 4, 2, and 0. The vertical
dashed lines mark the Nyquist wavenumber knyq =πNmesh/Lbox

with Nmesh = 512 and Lbox = 100 h−1Mpc. The monotonically
increasing ∆2(k) is a good proxy for the variance of matter den-
sity as a function of scale, and thus a useful indicator that divides
the linear and nonlinear (toward increasing k) regimes, by kNL,
where ∆2(kNL) = 1.

Due to limited mass resolution, LR power quickly vanishes on
small scales at z = 4. This deficit persists and is partly compen-
sated by formation of poorly resolved halos at z = 2 and z = 0.
On the other hand, the SR power spectra successfully match
the HR results to percent level to kmax≈ 16 h−1Mpc at all red-
shifts, a dramatic improvement over the LR predictions. This is
remarkable, considering the fact that the SR model fares equally
well from the linear to the deeply nonlinear regimes. While the
model can learn and compare on even smaller scales using a
larger FFT grid (and a larger grid for density field as input to
the discriminator, as described in Materials and Methods), the
choice of kmax≈ 16 h−1Mpc is justified by the fact that the model
has reached an accuracy level comparable to that of the N-body
simulations.

Halo Mass Function. Beyond the two-point correlation test—i.e.,
the power spectrum—we compare higher-order statistics of the
fields that quantify the non-Gaussianity arising in the nonlin-
ear regime. As the most nonlinear dark-matter structures, halos
host most of the luminous extragalactic observables in the sky.
Therefore, halo abundance is a natural choice when considering
non-Gaussian statistics. We find the dark-matter halos in the
simulations using an FOF halo finder (21) with linking-length
parameter b = 0.2. The FOF algorithm links all pairs of particles
within b times their mean separation and collects each group of
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Fig. 1. Two-dimensional projections of the LR, HR, and SR dark-matter density fields at z = 0. The blue background shows the smoothed density field of
all of the dark-matter particles. The particles in FOF groups are highlighted in orange to help visually identify the halos. The top images show slabs from
the full box of 100 h−1Mpc side length and 20 h−1Mpc thickness. The middle images zoom into the orange boxes (A) from the top image, each of size
(20 h−1Mpc)3. The bottom two rows show the four zoom-in boxes (B–E), which are (10 h−1Mpc)3 in size, to reveal even finer details. The first two columns
show the LR and HR simulations, which have the same initial conditions, but a factor of 512× different mass resolution. The rightmost column shows one
of the SR realizations generated by our trained model. All density projections are smoothed by a Gaussian filter on a scale of 5 h−1 kpc, using gaepsi2
(https://github.com/rainwoodman/gaepsi2).

connected particles into one halo. We only keep halos with at
least 32 particles.

In Fig. 4, we compare the halo mass functions with a
(100 h−1Mpc)3 test set simulation, at z = 4, 2, and 0. The mass
function is defined as φ≡ dn/d log10Mh, where n is the comov-
ing number density of halos above threshold mass Mh. Poisson
errors on the halo abundance are shown. These are conservative
bounds because there are only small-scale differences between
the HR and SR realizations (Fig. 2) due to their conditioning

on the same LR field. Due to their large particle mass and low
force resolution, the LR simulations can only resolve the most
massive halos above 1013 M�, forming no halos at z = 4. The LR
halo abundances are also underpredicted near the mass cut, with
deviation significantly larger than the Poisson error estimates.

Using our GAN model, the SR field generated from the
LR input has the same mass resolution as the HR field,
resolving halos over the whole mass range down to 1011 M�.
The generated SR fields predict halo populations accurately

Li et al.
AI-assisted superresolution cosmological simulations
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Fig. 2. Using our GAN-based algorithm, we can generate different SR realizations from the same LR inputs. We show one HR and three random SR
projections, of the same (20 h−1Mpc)3 regions and the same LR field, at z = 2. To demonstrate their remarkable similarities, we intentionally omit the HR
and SR labels in panels A–D and invite the readers to guess which panel is HR before checking the answer in the footnote.∗ The HR and three SR realizations
have the same large-scale structures, but are all different in their small-scale features. Yet, they appear statistically indistinguishable. The color scheme and
smoothing method are the same as in Fig. 1.

∗The answer to Fig. 2 is A.

compared with the HR results, to 10% level throughout the mass
range.

Application to a Large Volume
As described in Materials and Methods, we train our GAN model
on fields cropped from (100 h−1Mpc)3 volume simulations. In
all previous results, our trained model has proven to work
well on a new SR realization of the same volume. Moreover,
translational symmetry has been carefully preserved by our crop-
ping and padding schemes. This implies that our method can
be applied to any cosmological volumes. The additional long-
wavelength modes in the large volume lead to rare massive
structures that the model has not encountered in the training
set. We apply our generative model to a (1 h−1Gpc)3 LR sim-
ulation with 6403 particles, a volume 1,000 times larger than the
training-set simulations, and obtain an SR realization with 5,1203

particles. The generating process takes only about 16 h on one
graphics-processing unit (GPU), including time for input/output
(I/O). This consumes significantly less computing resources than
partial differential equation-based N-body solvers.

Fig. 5 illustrates the generated (1 h−1Gpc)3 SR result at z = 2,
teeming with finer details throughout the whole volume com-
pared to the same LR field, We zoom in to inspect a same halo
in the SR and LR fields. It has a mass of 2× 1014 M�, larger
than the most massive halo in the (100 h−1Mpc)3 training sets.
Remarkably, even though our GAN model has not been trained
upon such massive halos, it performs well and generates them

with reasonable morphology, apparent substructure, and correct
population density (see below).

Quantitatively, we identify FOF halos in both the LR and SR
large volumes and compare their resultant halo mass functions
in Fig. 6. Again, the LR halos can only be well resolved above
1013 M�, while the SR halo abundance agrees remarkably well
with both the (1 h−1Gpc)3 LR and the previous (100 h−1Mpc)3

HR mass functions. The SR prediction even has the right abun-
dance for the massive halos above 1014 M�, which are too rare
to be present in the training volume. Our model generalizes and
extrapolates surprisingly well to predict structure formations on
scales over which it has not been directly trained.

This exercise demonstrates the potential of our method to
tackle the fundamental challenge of constructing large-volume
cosmological simulations at otherwise unfeasibly high resolu-
tion, with a dramatically lower footprint in computing resources.
It opens up an avenue for constructing large-volume cos-
mological (eventually hydrodynamical) simulations and creat-
ing large ensembles of associated mocks at scales compara-
ble to the current and future surveys, for maximal scientific
return.

Discussion
We have shown how a GAN SR architecture inspired by Style-
GAN2 can be used to enhance cosmological simulations so
that they reproduce the appearance and statistics of much
higher-resolution models. Our approach has similarities to the
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Fig. 3. Dimensionless matter power spectrum ∆2 comparison on LR (purple), HR (blue), and SR (black) test realizations, at z = 4, 2, and 0. The vertical
dashed lines mark the Nyquist wavenumber. LR power quickly vanishes on small scales at z = 4. This deficit persists and is partly compensated by formation
of poorly resolved halos at z = 2 and z = 0. The SR result is a dramatic improvement, with the SR power spectra matching the HR curves remarkably well,
within a few percent on all scales at all redshifts.

work of Ramanah et al. (19), who showed how SR dark-matter
density fields can be generated. Among the differences with this
work are our use of particle displacements as the inputs and
outputs of our modeling. By generating a field of SR particle
displacements, we effectively create a whole simulation, which
can be analyzed (for example, by carrying out halo finding) in
the same manner as a full simulation run at the higher resolu-
tion. This in contrast with methods, such as ref. 19 or 13, which
generate a density field.

One can ask whether there is fundamental limit to the level of
SR enhancement that our approach is able to produce. In princi-
ple, one should be able to generate simulations completely using
a GAN, without an LR model for conditioning, e.g., refs. 13 and
22. Logically, such an approach would need proportionally more
training data to produce satisfactory results, as it would be gen-

erating large-scale modes as well. At the opposite end, Ramanah
et al. (19) have added SR details to their simulations by enhanc-
ing by a factor of two in length scale. In this paper, we have shown
that our SR modeling works well to produce small-scale struc-
tures a factor of 8 in length (and 512 in mass) below the LR scale.
At these scales, one can begin to find bound structures, such as
subhalos.

The main advantage in the use of SR simulations over full
HR runs is the potentially huge reduction in the computational
resources involved. As an example, for the (100 h−1Mpc)3 vol-
ume simulations of our test set, it takes approximately 560 core
hours to run a 5123 particle HR model to z = 2, while the
643-particle LR run takes only about 0.6 core hours, a factor
of ∼1,000 faster. We can achieve even more dramatic speed
up when applying the SR model to a larger volume. For a

Fig. 4. FOF halo mass function comparison among LR (purple), HR (blue), and SR (black) test simulations, at z = 4, 2, and 0. The LR simulations can only
resolve the most massive halos (Mh & 1013 M�). Our generated SR fields have the same mass resolution as the HR fields, resolving halos all of the way down
to 1011 M�. Their halo populations closely match the HR results, at the 10% level throughout the mass range.

Li et al.
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Fig. 5. Illustration of the (1 h−1Gpc)3 volume SR with 51203 particles generated from the input 6403 LR field using our GAN model. Colors are the same as
in Fig. 1. The large panel shows a slice through the full box, 1 h−1Gpc in length and 20 h−1Mpc in thickness. The top left inset in the white box shows the
same field from the LR simulation. In the two red inset panels, we show a (20 h−1Mpc)3 zoom-in region around a massive halo in both the SR and LR field.
That central halo has a mass of 2× 1014 M�, larger than the most massive halo in the (100 h−1Mpc)3 volume training set. The generating process only takes
about 16 h on one GPU.

(1 h−1Gpc)3 cosmological volume as shown above, only 500 core
hours are needed to run a 6403-particle LR simulation to z = 2.
To run a 5,1203 HR counterpart with an N-body code would
be daunting and require dedicated supercomputing resources.
Our trained GAN model, on the other hand, only takes 16 h
with 1 GPU (including the I/O time) to generate a 5,1203 SR
field for the (1 h−1Gpc)3 volume, a tiny fraction of the cost of
the HR counterpart. An additional advantage, made apparent
by our processing the simulations in distinct chunks, is that the
SR enhancement can be applied where it is needed—e.g., in the
vicinity of a specific galaxy cluster or supermassive black hole.
The data storage required can therefore also be much less than
for a full HR run.

The stochastic nature of the StyleGAN implementation is also
an interesting feature that can be exploited. As we have seen
in Fig. 2, it is possible to sample multiple “realizations” of the
small-scale clustering, conditioning on the large-scale modes, by
varying the input noise component. This opens up the possibility
to improve the statistical inference of cosmology from the small-
scale clustering of galaxies, by jointly sampling the small-scale
modes with the cosmological parameters.

To train and test our model, we have used simulations of
the same cosmology, and this simplifies the learning task. It is
expected that the LR to HR mapping should depend weakly on
cosmology, and introducing such dependence should make the
model adaptable and more accurate for a range of parameters
spanned by the training set. Furthermore, to fully capture the
state of a simulation, our model can be used to learn particle

velocities as well. We leave those cosmology dependence and
velocity improvements for future work.

A central question for GANs (and DL in general) is how to
determine if enough training data are being used. Different diag-
nostics can be employed, and the dependence of accuracy on
training set size can be evaluated. We have seen that our SR
simulations are at least able to reproduce the power spectrum
and halo mass function well with a very limited set of training
data. A related issue is the fact that in astrophysics, we often deal
with rare objects (e.g., quasars or galaxy clusters), and there may
not even be a single example in the training data. In the future,
one should examine how best to assemble a training dataset that
sufficiently covers all cases that will be studied. As an example,
separate universe or constrained simulations—e.g., refs. 23–25—
could be used to enhance the number of high-mass objects in the
training data.

So far, though, we have demonstrated that our method is capa-
ble of generating SR simulations 1,000 times larger than the
training sets. Our large SR simulation does successfully repro-
duce the halo mass function and power spectrum over several
orders of magnitude. It also leads to the formation of visually
reasonable large and rare galaxy clusters. Future work will fur-
ther evaluate the quality of generated rare objects using other
measures.

Particularly in the way we have generated them (as full
particle-position datasets), the SR simulations could be used
for many purposes that would have needed HR simulations.
These include mock galaxy catalogs for large-scale structure
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Fig. 6. Halo mass function comparison of the (1 h−1Gpc)3 LR (blue),
the (1 h−1Gpc)3 SR (black and generated from the former), and the
(100 h−1Mpc)3 HR (orange) simulations at z = 2. Limited by mass resolution,
the LR run only resolves the most massive halos with Mh & 1013 M�. Also,
limited by volume, the HR run lacks halos above Mh & 1014 M�. Our SR real-
ization is able to match both the resolved LR and HR abundances over the
whole mass range. We emphasize that our model generalizes surprisingly
well to successfully predict the mass function of the massive halos that it
has not been trained on, for over three orders of magnitude in abundance,
demonstrating its extrapolating power in modeling structure formations.

studies—e.g., ref. 26. Our current SR models are dark matter
only, but could be used for mocks in the same manner as HR
models with resolved halos. As we discuss below, extensions of
this work will mean that it will be possible to include hydro-
dynamic and star-formation effects, through training using HR
models, which have these physics incorporated. SR mock cata-
logs could then be made that are more complex—for example,
including reionization (27). This type of mock making would
have some similarities with the “painting” of galaxies onto dark-
matter simulations by Agarwal et al. (28), except that, unlike that
paper, our method is conditioned on the entire density distribu-
tion rather than a few halo properties and would also add SR
structure to the model.

Straightforward extensions of this work can be imagined, with
different levels of sophistication. Particle data can be used to
generate SR three-dimensional (3D) gas, star, and dark-matter
particle distributions. Because the prediction will be of SR par-
ticles, these would effectively function as full simulations, as we
have mentioned previously. In order to achieve this, training will
have to be carried out on full physics models—e.g., refs. 3 and 29.
It should also be possible to train on HR models run with differ-
ent hydrodynamics algorithms [e.g., ENZO (30)] than are used
in the LR models (as long as the initial conditions are identi-
cal). In such SR calculations, we will still be adding SR details
to simulations after the LR models have been run, as in this
paper.

Another extension is to replace the LR scheme, currently
a full N-body solver, with faster alternatives, such as another
DL model—e.g., D3M (8)—or a pseudo N-body solver—e.g.,
FastPM (31) or FlowPM (32). The computational cost of an
SR realization can be further reduced. We will also be able to
compute the full sensitivity matrix of the LR-SR model from

back-propagation, which, in turn, allows us to use the method
in Hamilton Monte Carlo or similar sampling methods (e.g.,
refs. 33 and 34) for a joint study of the initial condition and the
cosmology parameters.

Beyond this, an improvement will be to run AI algorithms “on
the fly,” alongside the hydrodynamic simulation codes. This will
allow coupling and feedback between the physical processes at
superresolved scales and the LR scales. For the most accurate
modeling, this will be important—for example, star-formation-
driven winds or metal pollution from supernovae can spread far
from a galaxy. This means that the SR structure on galaxy scales
should ideally be able to affect the properties of the LR simula-
tion. To achieve this, it may also become necessary to carry out
training on the fly as HR and LR simulations run together. We
leave development of these methods to future work.

The ongoing revolution in AI has already changed many
fields of science. Applications of these techniques are becom-
ing widespread in cosmology also. SR enhancement, which we
have explored here, has many attractive features: Conventionally
generated large-scale Fourier modes are fully linked to rapidly
generated small-scale structures. This will allow consistent full-
volume simulations of the Universe to be produced, covering an
unprecedented dynamic range.

Materials and Methods
A Survey of Models. A variety of DL models have been applied to tackle
SR tasks, ranging from early convolutional NNs (CNNs) plus simple loss-
function-based supervised approaches [e.g., SRCNN (35)] to more recent
unsupervised methods such as GANs [e.g., SRGAN (36)].

To generate SR outputs, both types of models use fully convolutional net-
works, which apply multiple convolution layers with learnable kernels of
finite size. The difference between the two lies in their loss functions. By
applying a simple loss function—e.g., the `2 or `1 norm—on the difference
between the HR output and target, the first approach is a fully supervised
learning task, and therefore easy to train. However, the drawback is that
those simple loss functions typically lead to blurry output images, due to
the fact that the target almost always contains information not present in
the input—i.e., high-frequency features in Fourier space.

As a remedy, more complex loss functions have been used to match the
output to the target on high-level features (37). Known as perceptual loss
or content loss, it feeds the output and target separately to another NN
(pretrained on some other image dataset) and compares their feature maps
at intermediate layers, still by a simple loss function. Because those inter-
mediate results contain higher-level features compared to the raw output
or target, this method is able to generate less blurry images. However, such
models are still deterministic and generate only one output for each fixed
input, whereas, in principle, each input could map to infinitely many outputs
due to the variability in the high-frequency modes.

The output image quality can be further improved by unsupervised learn-
ing methods, such as GAN (36). A GAN (5) is a class of DL system in which
two NNs contest with each other in a game: The generative network gen-
erates candidates, while the discriminative network evaluates them. Given
a training set, this technique learns to generate new data with the same
characteristics as the training set. GANs can be used to generate entirely
new data from initially random inputs, or, in the case of SR, HR images from
LR ones. When the discriminator receives, in addition to SR or HR, the LR
data as input, it is able to identify true and generated data conditioning on
its large-scale knowledge. This technique is known as the conditional GAN
(cGAN) (38).

To solve the one-to-many problem in the input-to-target mapping, a
model needs more than the LR input to generate nondeterministic out-
put. Different ways of introducing random factors have been attempted.
For example, the image-to-image translation model pix2pix (39) uses test-
time dropout to add uncertainty to its output. More successfully, the
image-generation models StyleGAN and StyleGAN2 (40, 41) have achieved
state-of-the-art results on generating human faces. It achieves a nondeter-
ministic mapping by simply adding noise after every convolution layer. In
our architecture, we use the same noise mechanism as in StyleGAN2 to add
stochasticity to the output.

In designing our NN model, we are inspired mostly by StyleGAN2. Even
though this model was originally designed for image-generation tasks,
it does so by successively upsampling some initial (constant) LR input,
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a process extremely similar to our SR task. We have also been influ-
enced by the SR model SRGAN and the image-to-image translation model
pix2pix.

Physical Considerations. We perform the SR simulation task in the
Lagrangian description. Most often, the particles are originally located on a
uniform grid, so we can structure a displacement field from the N-body par-
ticles as a 3D image with three channels. Each channel corresponds to one
component of the displacement vector, and the value in each voxel provides
the displacement of the particle originally from that voxel.

The DL model takes the LR particle displacements as the input and out-
puts a possible realization of their HR counterparts. Therefore, the outcome
can be viewed as a higher-resolution simulation with more particles and
higher mass resolution. Thus, we name them the “SR simulations.”

Limited by the size of GPU memory and the fact that 3D data consume
more memory than lower-dimensional tasks, we cannot feed the whole sim-
ulations into the GPU during training and testing. To overcome this, we crop
each simulation into smaller spatial chunks. While doing so, it is desirable
to preserve the translational symmetry that arises naturally from the fully
convolutional networks. We explain the procedure below in more detail.

In addition to translational symmetry, the equations of motion of an
N-body system are also invariant under rotation. Under the periodic bound-
ary conditions imposed in numerical cosmological simulations, the full 3D
rotation group SO(3) reduces to a finite group of 48 elements, known as
the octahedral group Oh. Each group element can be decomposed into a
permutation of the simulation box axes and reflections along those axes.
During training, we feed the NNs with input and output pairs that are
randomly transformed by these group elements. Such data augmentation
greatly enlarges the training dataset and better enforces the said symmetry
in the trained model.

With many more particles in the HR simulations, they can contain small-
scale information that is not present in their LR counterparts. To generate SR
simulations that statistically match the HR targets, a generator NN requires
extra stochasticity in addition to that present in the LR input. Also, this addi-
tional stochasticity needs to be transformed in a way such that it results in
the right correlations on different scales. To this end, we add white noise to
the intermediate feature maps, with learnable amplitudes, throughout all
stages of the NN. Noise injected at early stages is later upsampled and can
then introduce correlations across multiple voxels.

Network Architecture and Loss Function. The design of our NNs is mostly
inspired by StyleGAN2 (41). The generator is illustrated in Fig. 7. The ladder-
like structure of the generator upsamples the resolution by a factor of two
at each of its rungs. See the figure legends for more architectural details.

With the LR simulations l as inputs, our generator G produces SR outputs
G(l) to mimic HR target simulations h. To train the generator, one simple
option is to minimize the voxel-by-voxel mean squared error (related to the
`2 norm) between G(l) and h

L2 = El,h
[
‖G(l)− h‖2

]
, [2]

where El,h is the expected value while sampling all LR and HR simulation
pairs. With the L2 loss, the generator model is easier and faster to train, and
we can produce output tightly correlated with the HR target on large scales.
However, below the input-resolution scale, L2 leads to blurry results that lack
high-frequency features, as explained above when introducing different DL
models.

This problem can be addressed by replacing the simple loss function with
a discriminator network, which provides higher-level feedback to the gen-
erator on its performance. As shown in Fig. 8, our discriminator utilizes
residual connections (42) that perform well on classification tasks. See the
figure legends for more architectural details. Given either a generated SR
or an original HR sample as input, the discriminator D learns to assign a
score for it being real. In the original GAN, this score is a probability to be
compared to the known values (zero or one) using the binary cross entropy.

Wasserstein GAN [WGAN (43)] introduced a different score, which can
be used to evaluate the Wasserstein distance, the distance between the dis-
tributions of real and fake images by optimal transport. The discriminator
(usually referred to as the critic in WGAN) is subject to constraint of it being
Lipschitz-continuous with a Lipschitz constant of one—i.e., |D(x1)−D(x2)| ≤
|x1− x2|. Compared to the vanilla GAN, WGAN is empirically superior, for
it requires less tuning for training stability and has a loss function that
converges as the generated image quality improves. However, it requires
more computation per batch to maintain the Lipschitz constraint. This is
most often achieved by adding a gradient-penalty regularization term to
the WGAN loss function [WGAN-gp (44)]. We train our networks using the
WGAN-gp method and only penalize the critic gradient every 16 batches for
training efficiency.

Because the HR and LR images must correlate on large scales, and high-
frequency features should depend on the low-frequency context, we can

A B

C

Fig. 7. Generator network architecture, inspired by StyleGAN2. The whole network structure is shown in A, with components enlarged in B and C. The
colored plates are different operations, connected by lines or arrows from the input to the output. The sizes (channel number × spatial size) of the input,
intermediate, and output tensors are next to the arrows. The generator takes the shape of a ladder, where each rung upsamples the data by 2×. The left
rail consists of consecutive convolution blocks (“conv” in blue plates) operating in the high-dimensional latent space and is projected (“proj” in yellow
plates) at every step to the low-dimensional output space on the right rail. The projected results are then upsampled by linear interpolation (“interp” in
gray plates), before being summed into the output. A key ingredient is the addition of noise (on red plates), which adds stochasticity absent from the input
at each level of resolution. The added noises are then transformed into high-frequency features by the subsequent convolutions and activations. The kernel
sizes of the convolutions are labeled in their plates (that distinguish them from the conv block). Note that with a kernel size one, “conv 13” is simply an
affine transformation along the channel dimensions, and thus a convolution only in the technical sense. All activation functions (“act” in green plates) are
Leaky ReLU with slope 0.2 for negative values. All conv blocks have the same structure as shown in B, except the first one, which starts with an additional
13 convolution and an activation.
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Fig. 8. Discriminator (critic) network architecture, inspired by the StyleGAN2. The whole network structure is shown in A, with the residual block enlarged
in B. The residual block consists of two branches: The so-called “skip” branch is only a 13 convolution, and, on top of that, the other branch has real
convolutions and activations to learn the “residuals.” It then downsamples by 2× the sum of the two branches with linear interpolation. Aside from the
residual blocks, the first conv block includes a 13 convolution followed by an activation, and the last conv block has a 13 convolution to double the channel,
an activation, and a 13 convolution to reduce the channel to 1. See Fig. 7 for other details.

make the discriminator more powerful by giving it the LR images as addi-
tional input, making our model a cGAN. To achieve this, we concatenate the
upsampled LR images (by linear interpolation) to both the SR output and
HR target, respectively, as inputs to the discriminator. In addition, we also
concatenate the density fields, computed with a differentiable CIC opera-
tion, from all three displacement fields. This allows the discriminator to see
directly the Eulerian pictures of formed structures, thus greatly enhancing its
capability. We find this addition crucial to generating visually sharp images
and accurate predictions of the small-scale power spectra.

The final adversarial loss function we use is

LWGAN−gp = El[D(l, G(l))]− El,h[D(l, h)]

+λ El,h

[(
‖∇iD(l, i)‖2− 1

)2], [3]

where the first line gives the Wasserstein distance and the last term is the
gradient penalty. i is a random sample drawn uniformly from the line seg-
ment between pairs of real (h) and fake (G(l)) samples. We refer the readers
to ref. 44 for more details on WGAN-gp. During training, we update the
discriminator to minimize LWGAN−gp, involving all three terms, and update
the generator to maximize it when only the first term takes effect.

In both the generator and the discriminator, we use convolution layers
with no padding. Recall that the inputs and outputs of our networks are
cropped parts of the bigger simulations, as limited by the size of GPU mem-
ory. Convolutions with zero padding or other forms of nonperiodic padding
break translational invariance. Without padding in the convolution layers,
the outputs of the generator are smaller than a simple factor-of-eight scal-
ing. We compensate for this by adding extra padding to the inputs of the
generator.

N-body Simulation Dataset. To train and validate our SR model, we use N-
body simulations that only contain dark matter interacting via gravity. The
dynamics of dark matter are evolved by using MP-GADGET (3, 45). It is an
N-body and hydrodynamics cosmological simulation code optimized to run
on the most massively parallel high-performance computer systems. MP-
Gadget was used to run the BlueTides simulation (45) on BlueWaters, the
only cosmological hydrodynamic code that has carried out full machine runs,
scaling to 648,000 cores and producing more than 6 petabytes of useable
data. In all simulations, the gravitational force is solved with a split Tree-PM
approach, where the long-range forces are computed from a particle-mesh

method, and the short-range forces are obtained with a hierarchical octree
algorithm.

We use 1/30 of the mean spatial separation of the dark-matter particles
as the gravitational softening length. The simulations have the WMAP9 cos-
mology with matter density Ωm = 0.2814, dark-energy density ΩΛ = 0.7186,
baryon density Ωb = 0.0464, power-spectrum normalization σ8 = 0.82, spec-
tral index ns = 0.971, and Hubble parameter h = 0.697. We train our model
separately on simulation snapshots, at redshift z = 4, 2, and 0, of different
levels of nonlinearity. We expect that it is harder for the model to learn to
form nonlinear structures than linear ones, and these redshifts allow us to
test the performance degradation due to nonlinearity.

For training and testing, we run, respectively, 16 and 1 LR-HR pairs of
dark-matter-only simulations with box size of (100 h−1Mpc)3, and 643 and
5123 particles for LR and HR, respectively. The mass resolution is mDM =

2.98× 1011 M�/h for LR and mDM = 5.8× 108 M�/h for HR. So, our SR task
is to enhance the spatial resolution by 8× and mass resolution by 512×.
We also run a (1 h−1Gpc)3 LR simulation, of otherwise the same config-
uration as the smaller LR runs, to test deploying our model to a larger
volume.

Training and Testing. Our GAN model is trained upon the displacement field
in Lagrangian space. We first preprocess the training data by converting the
particle position to their displacement vector with respect to the initial grid.
Then, for each mini-batch, we crop a 143 grid from the LR displacement
field as input and pad three cells on each side to compensate for the loss of
voxels during the generator convolution layers. This transforms into an SR
output of size 1183 through the generator (see sizes annotated in Fig. 7),
out of which we crop the inner part to match the corresponding (8× 14)3 =

1123 grid from the HR target displacement field. Therefore, all of the mini-
batches for training are about (22 h−1Mpc)3 in size. We then concatenate
the trilinear interpolations (8× upsampling per dimension) of the LR inputs
to the SR outputs or the HR targets. The results are six channel images to
be taken by the discriminator and transformed in a similar way, as shown in
Fig. 8. Data augmentation is applied for each mini-batch.

We train our NN model using the Adam optimizer with learning rate
1× 10−5 and exponential decay rates β1 = 0 and β2 = 0.99. We start with
five epochs of supervised training with the simple loss function given in
Eq. 2. This allows the generator to quickly learn to generate SR outputs that
are consistent with LR inputs above the input resolution. We then proceed
to the adversarial training and update the generator and the discriminator
alternately, for 150 epochs.
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For the test set, we use a new pair of 643 LR and 5123 HR simulations
with the same volume of (100 h−1Mpc)3. The test set shares the same cos-
mological parameters as the training sets, but is a new realization with
different initial conditions. Therefore, our comparison is free of overfitting
to the training dataset. Remarkably, we are able to deploy our model to LR
input of 1,000× bigger volume and demonstrate the scaling ability of our
approach.

The procedure of generating the SR simulation from the LR input goes as
follows. We first preprocess the LR input by converting the particle position
to the displacement field of shape 3× 643. Then, we use our trained GAN
model to generate the SR displacement field with shape 3× 5123 and obtain
the particle positions by moving them from their original positions on a
lattice by these displacement vectors. The generation process from LR to SR
is done in chunks due to the limit of GPU memory. We crop the LR input
into pieces, generate their corresponding SR field, and stitch the output
patches together to exactly match the shape of the target. The generated
full SR field is periodically continuous through this procedure, thanks to the
translational symmetry preserved by our GAN model.

We have implemented our model and training in map2map (https://
github.com/eelregit/map2map), a general NN framework to transform field
data.

Data Availability. Code and model implemented with map2map, a pytorch-
based NN to emulate field data, have been deposited in GitHub (https://
github.com/eelregit/map2map).
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