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Magnetic damping of the t' = 1 diocotron mode 
G. Roberts and N. Rostoker 
Department of Physics. University of California, lroine, California 92 717 

(Received 29 October 1984; accepted 8 May 1985) 

Previous work has treated the diocotron mode for a low-energy beam and has found that any 
dissipative effect will cause this mode to grow. However, a treatment that considers the axial 
velocity of the beam shows that this mode will damp if the beam is relatively thin and the axial 
velocity of the beam is comparable with c. This damping is attributed to the perturbed magnetic 
field and is similar to the stabilization of sausage and kink modes in neutral plasmas. The damping 
rate for this case is compared with the damping observed in the University of California, Irvine 
(UCI) modified Betatron. Additionally, beam temperature effects are considered and these results 
are compared with the diocotron mode damping in the collective focusing ion accelerator. 

I. INTRODUCTION 

The I = 1 (see Fig. 1) diocotron mode describes the oscil­
lations of a beam in a cylindrical chamber. The modes with 
I> 1 are not observed, probably because of Landau damp­
ing, 1 so they will not be considered. Previous treatments of 
the diocotron mode have shown that it has negative ener­
gy .1·2 If the mode energy is negative any power dissipation 
will cause the energy to decrease, and therefore the wave 
amplitude will grow. These treatments, though, are only val­
id for beams with negligible kinetic energy. In this paper the 
effects of axial beam velocity (vz) and beam rotational veloc­
ity (v9 ) are examined. When the axial beam velocity (vz) is 
considered, it can be shown that the mode will damp if (vzl 
c)2 >(alb )2, where a is the beam radius and bis the radius of 
the chamber. For a reasonably thin and axially accelerated 
beam, damping should take place. The damping is attributed 
to a magnetic field created by the axial beam motion (see Fig. 
2) which can make the mode energy positive. When the mode 
energy is positive, dissipative effects cause damping of the 
mode. For a good but not perfect conducting boundary, the 
magnetic field will also cause a dissipation since it induces 
currents in the wall and creates an I 2 R power loss. The 
dampingratewhen(vzlc)2>(alb )2 isshown tobeitu{alb )2(81 
b ), where8 = (c2121Tua>) 112 is the skin depth. In the modified 
Betatron3 electrostatic probes show results consistent with 
this damping. 

The diocotron mode is also examined for a rotating 
beam. It is expected that for a finite length beam the beam 
rotation may create an axial magnetic field (see Fig. 3) that is 
sufficient to also cause magnetic damping. To explore the 
possibility of magnetic damping of the diocotron mode be­
cause of beam rotation, two equilibria will be examined. A 
"warm" equilibrium is examined in Sec. III. This analysis is 
done based on a rigid rotor Vlasov equilibrium with a Gibbs 
distribution. This equilibrium is expected to be the equilibri­
um into which a warm beam will evolve. With this equilibri­
um it is shown that the magnetic field cannot cause the mode 
to damp. Additionally, an equilibrium with velocity shear is 
postulated in Sec. IV, and it is shown that with this equilibri­
um the diocotron mode can be magnetically damped. Both 
of these results will be shown to be consistent with the elec­
trostatic probe measurements in the collective focusing ion 
accelerator (CFIA).4-6 

II. DAMPING OF THE DIOCOTRON MODE FOR AN 
AXIALLY MOVING BEAM 

It has been shown that the I = l diocotron mode energy 
of a low-energy beam is negative, so any dissipation will 
cause growth. This calculation is based on only the electro­
static fields. However, when a beam is accelerated axially 
there will be a poloidal magnetic field (see Fig. 2). If the beam 
moves off center it will compress the magnetic field and cre­
ate a perturbed field energy. This magnetic field energy can 
make the energy positive, and the result can be shown quick­
ly. It is expected that the axially moving beam will have a 
perturbed magnetic field given by i5 B = vx8 E/c so 
18 B l::::: l(vzlc)8E I. Sincetheelectrostaticenergyofthedioco­
tron mode is 1.2 

w .. gi - -
1-(!!..)2 

fr dr dB 8E2
, 

1617' b 
(1) 

where a is the beam radius, b is the radius of the chamber, 
and n is the beam density; if fr dr DB2 >(alb )2 fr dr 8E2, it 
is expected that the diocotron mode energy will be positive. 
Since8 B2 :::: (vzlc)2 8E2

, it is expected thatif(vz/c)2 >(alb )2, 

then the mode will have positive energy and any dissipation 
will cause damping. Additionally, the magnetic field also 
creates a dissipation since it induces currents in the wall. 
Thus it is expected that for a beam where Vz ~c. a small ratio 
of beam to chamber radius (alb) will cause the diocotron 
mode to damp. 

To show this effect rigorously, consider the equilibrium 
magnetohydrodynamic (MHD) equations for a beam: 

FIG. I. The l = I diocotron mode. This mode is caused by the EXB drift 
from the action of the charge induced on the wall and the toroidal magnetic 
field. 
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FIG. 2. Magnetic field caused by axial beam motion. This magnetic field 
will be perturbed when the beam moves and is expected to increase the dio­
cotron mode energy. 

an - + V·(nv) = 0, at 
a Vp e ( vXB) -(rv)+v-V(rv)+-=- E+--. at mn m c 

(2) 

(3) 

Also consider a general set of perturbed MHD equations 
that will be used for all the calculations in this paper. In these 
equations assume v = tl>0{r)r0 + VzZ, p = p(r), n = n(r), all 
perturbed and equilibrium quantities are independent of z, 
r = [1 - (vz/c)2

]-
112

, all perturbations are of the form ex­
p( - kut + i/8 ), the coordinates are defined in Fig. 4, and 
kz =0. 

- i(ll> - l@0 )Sn + Sv, an + nV·Sv = 0, (4) 
ar 

- i(@ - l@o}SV, - 'llvoSv8 +-1- asp - - 1
-2 ap Sn 

ymn ar ymn ar 
= (e/ym)S[E + (vXB)/c ]•r, (5) 

- i(ll> - l@0}Sv8 + ('llv0 + r B@o )sv, + i/Sp 
ar ymnr 

= (e/ym)S{E + (vXB)/c]·B, (6) 

- i(ll> -1@0}Svz = (e/my3)S[E + (vXB)/c)•z. (7) 

These equations are augmented by the perturbed Maxwell's 
equations: 

SB, = (lc/tl>r)SEz, (8) 

ic a SB8 =--SEz> 
(l) ar 

ic a le 
SBz = ---(r8E9)--8E,, 

@r ar @r 

ill> SE,= _.!!_SB,+ 41rne t>v,, 
c r c 

ill> a 41re 41rne ~ -SE8 =-(SB,) +--v8Sn +--uv8, 
c ar c c 

wall 

(9) 

(10) 

(11) 

(12) 

FIG. 3. Magnetic field caused by beam rotation. This magnetic field will be 
perturbed when the beam moves and is expected to influence the diocotron 
mode energy. 
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I 

\ 

' 
FIG. 4. Coordinate system used for all the calculations. 

ill> i a ii 
-t>E, = ---(rSB8 )+-SB, 
c r ar r 

41rne 41re + --t>v, + --VzSn, 
c c 

1 a ii 
- -(rSE,) +-t>E8 = 41reSn, 
r ar r 

i a ii --(r6B,)+-t>B8 =0. 
r ar r 

(13) 

(14) 

(15) 

For the axially moving beam case, assume a cold, constant 
density, cylindrical beam in a cylindrical chamber with a 
large axial magnetic field. In this case it can be shown that Ve 
= ll>oT = - (@2 /W.) [ 1 - (v,/c)2

] r, E = 21Tnerr, B = B,z 
+ 21Tner(v.lc)~, p = 0, Sp= 0, ll>; = 41rne2/(ym), and 

n. = eB,!(rmc). Furthermore, assume@! <n: so w5 <n:. 
Assuming that a>oliJr2/c2<1, Eq. (10) indicates 

; a 
SE, St. - I ar (rl>E9). (16) 

Using the above, Eqs. ( 13) and (14) will provide two coupled 
differential equations for fJEz and 8E9: 

V2l)Ez ~ - i41Tnea> Sv, - 41Tetl> (Vz) .!!!._ /)v,, (17) 
c2 (ll> - i@o)C C ar 

V2(rSE8)~ - [i/2wo/c(ll> - lll>0 )]41Tne(v,!c)Sv, 

41Tle an ~ + -uv,. 
(@ - l@o) ar 

. (18) 

Assuming @! r2[(a/b )2 + (/ - l)]//<c2
, then the above 

equations indicate that 

8E, ~ - (w!c)(v.lc)(rll}SE8. (19) 

This allows SB, Sv, and Sn to be determined: 

SB,~ - (vJc)SE8 , (20) 

SB8 ~(vzlc)SE,, 

fJB. ;:::::{U>o'/c)SE,, 

Sv, ~(eSE8!mn,)[ 1 - (v, /c)2
], 

e fJE, [ (v, )
2

] 
8ve ~ - m n, I - 7 ' 

Sv "" - ie ( a>r) (u•) SE8, 
z - /y(U> - IU>0 )m c c 

Sn~ -
iov, an 

(@ - l@o) ar 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Utilizing the previous expansion, @! r2[(a/b )2 + (/ - l)]/ 
l<c2

, the following equivalent form ofEq. (18) is obtained: 

v2(rSE9}a; - 2ktJo l an (rSE9). (27) 
(@ - /@a) rn ar 
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Outside the beam V2(r6E8 ) = 0. The above eigenvalue equa­
tion can be solved by using the boundary conditions r6E8 is 
finite when r-0, r6E8 = 0 when r = b, and (lln)(an/ 
ar) = - '5(r - a). This yields the following dispersion rela­
tion: 

2'<10 2 
------- = -----
(w - /(1)0 ) [ 1 - (alb )2 ] 

or 

( a )
2 

2Nec [ (Vz )2
) w = a>0(/ - 1) +@a - = - -- 1 - -

b Bzb 2 c ' 

(28) 

where I = 1 has been used and N = mra2 is the line density of 
the beam. The fields can also be determined: 

{

A, r<.a, 
6E8 = A [1-(b/r)2

) r>a 
[I -(b/a)2)' ' 

(29) 

where A is a constant. Using the above quantities the energy 
can be obtained. The sign of the energy will determine if 
dissipative effects will cause the diocotron mode to grow or 
damp. The wave energy density (w) is given by the following 
expression: 

aw = _l_ (E~ + H aB). 
a1 41r a1 ar 

(30) 

Assuming that the magnetic permittivity is unity, then Four­
ier decomposition of the above expression will yield the fol­
lowing7: 

W = - 1-f r dr d() (6B•·8B) 
1617" 

+ - 1-f r dr d() ('5E·~ ((J)E)·6E). (3 l) 
1617" a(J) 

where E is the dielectric tensor. The dielectric tensor is given 
by the following8

: 

41r 
E= (--.-a, 

t(I) 

where 

6J = u-6E. (32) 

Since 6Ez <6E8 and 6E,, only the perpendicular dielectric 
tensor needs to be determined for the energy calculation. 
Using the above equations a can be determined: 

[

0 , _ 2i(J)o ] 

- :- a= 2i@o, _ i:~ r(an/ar) · 

(J) (J)((J) - lw0 )n 

(33} 

The electric field energy can be determined from Poisson's 
equation by multiplying it by r oE: and integrating over fJ 
andr: 

-
1-J rdrdfJ (6E; + 6E~) 

1617" 

= _1_ f r dr do woroE ~ an . 
817" I (w - lw0 )n ar 

(34) 

The magnetic field energy can be found in a similar way: 
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-
1-J r dr dO (oB ~ + 8B ~) 

1617" 

= _l_ (Vz )2 Ir dr d() wor8E ~ !!!.... (35) 
817" c I ({t) - /w0)n ar 

Using the above equations the wave energy can be deter­
mined: 

1 [(vz)
2 (a)2 ]J r an Wet - B?T -; - b rdrd8-;;a;8E~. 

(36) 

where a is the beam radius, b is the radius of the beam 
chamber, and n is the equilibrium density. Since the beam 
density decreases with r, then an/ ar < 0, the above equation 
shows that if(vz/c)2 >(alb )2 the diocotron mode has a posi­
tive energy. It is easy to see that in betatron-type accelerators 
the diocotron mode will have positive energy once the beam 
has reasonably been accelerated. The growth (or decay) rate 
of the diocotron mode can be determined from the power 
loss by using the following: 

I'= -P/2W, (37) 

where Wis the wave energy and Pis the pow~r loss. 
If the walls of the cavity have resistance, then a magnetic 

field tangential to the wall will induce wall currents and cre­
ate a power Joss. This power loss is well known and is the 
following9 : 

p = WO I dO bOB ~ I = wob oB ~ I , (38) 
1617" r =b 8 r =b 

whereo = (c2/2m7w) 112 is the resistive skin depth. Using the 
above equations the growth rate resulting from resistive 
losses can be shown to be the following: 

I'= _ ~(alb )2(8/b) (391 
- [l - (alb )2(c/vz )2

] 

Other types of power dissipation will create growth or damp­
ing in accord with Eq. (37).2 The above growth rate shows 
that, ifthe ratio of beam to wall radius (alb) is such that (a/ 
b )2 <(vzlc)2

, then there will be damping of the diocotron 
mode. Otherwise, growth is expected. 

As stated previously, electrostatic probes show evidence 
for the decay of the diocotron mode in the modified beta­
tron. 3 In Fig. 5 a cutaway view of the UCJ modified betatron 
accelerator is shown. The modified betatron is an electron 
beam accelerator that is basically a betatron with a large 

FIG. 5. The modified betatron. Increasing current in the C, coil will create 
an electric field that will accelerate the beam. <; coils produce the betatron 
field which, in a conventional betatron, will balance the beam's centrifugal 
force; <;coils can trim the betatron field; c. coils produce the toroidal mag­
netic field. 
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toroidal magnetic field. In this experiment and CFIA, elec­
trostatic probes were used to monitor the beam oscillations. 
The electrostatic probes measure the electric potential 
between the probes' plate and the chamber wall. A reproduc­
tion of a typical electrostatic probe measurement is shown in 
Fig. 6. To interpret the electrostatic probe measurement, the 
method of injection must be considered. The beam is injected 
by the method of inductive charging.3

•
10 When the injector is 

fired it is believed that this causes a noise spike that shows up 
in the probe measurements. The beam is believed to be ini­
tially hollow 11

•
12 and therefore subject to the hollow beam 

diocotron instability. 13
•
14 This instability probably causes 

the initial growth in the diocotron mode. The damping of the 
mode can be attributed to the above calculated magnetic 
damping. The damping appears after the beam is accelerated 
and (v,/c)2 >(alb )2• Although not all the quantities needed 
to calculate the damping rate are known, an approximate 
damping rate can be found by assuming values that the ex­
periment indicates are reasonable. Specifically, Eq. (39) pre­
dicts a damping rate of about 20 µsec assuming <i> = 6 X 106 

sec - 1
, <T = 1015 sec- 1

, and (a/ b )2 = A· This damping rate is 
consistent with the observed damping. 

In the modified betatron, the diocotron beam motion 
can only be loosely related to the probe measurements since 
during the measurements the beam equilibrium moves to­
ward the outer wall 15 and therefore the probe and xrays indi­
cate that some electrons are lost throughout the measure­
ment. Calculations show that effects from the rising axial 
magnetic field and electron loss should not be large enough 
to account for the observed decay in amplitude, especially 
since the measured probe amplitude should experience some 
increase when the beam approaches and eventually collides 
with the probe wall. Also, there is evidence to indicate the 
existence of a background of nonaccelerated electrons in ad­
dition to the accelerated beam. 15 These background elec­
trons may cause other damping effects. 16 

Ill. DIOCOTRON MODE ENERGY IN A WARM ROTATING 
BEAM 

Before proceeding with the calculation of the diocotron 
mode energy for a warm rotating beam, it is advantageous to 
describe the collective focusing ion accelerator (CFIA) since 
several approximations in the calculation are motivated by 
it. Experiments were made with CFIA 6 where unneutralized 
electrons were injected into a mirror and accelerated by in­
creasing the mirror field. Figure 7 shows a diagram of the 
experiment. Since only one cell of the accelerator was used, 
the experiment was equivalent to a mirror. In this experi-

damping 
,rbeam hits 

; the wall 

I I I I I I I • 
0 10 20 30 

µ.sec 

FIG. 6. Envelope of a typical electrostatic probe measurement in the modi­
fied betatron. 
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Toroidal 
Field Coils 

Electrostatic 
Probes 

FIG. 7. The collective focusing ion accelerator: (a) shows a top view of the 
entire accelerator: (b) shows a cell of the accelerator, which is equivalent to a 
mirror. In the experiment indicated in this paper, only one cell was used and 
no ions were introduced. 

ment electrostatic probes were also used to measure the 
beam oscillations. During the beam lifetime the mirror {to­
roidal) magnetic field was increased by a factor of about 50, 
thereby causing an increase in v8 and a compression of the 
beam radius. Like the betatron, the method of injection was 
inductive charging. Electrostatic probe measurements (see 
Fig. 8) indicate that the diocotron mode initially grew, then 
damped after acceleration.6 Like the betatron the initial 
growth is probably caused by the hollow beam instability. 
Unlike the betatron the damping cannot be attributed to the 
magnetic field from the axial beam motion since (vz/c)2 ;::::0. 
However, the poloidal acceleration will increase the beam's 
rotational velocity which, in a similar manner, may cause 
magnetic damping. It is easy to see in Fig. 3 that an axial 

damping 

I I I I I I I I I I 
0 100 300 500 700 900 

!'-sec 

0 20 40 60 80 
!'-sec 

FIG. 8. Envelope ofa typical electrostatic probe measurement in CFIA. 
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magnetic field from the beam rotation will act like the pre­
viously described poloidal magnetic field by causing a com­
pression of the magnetic field lines as the beam moves away 
from the center of the chamber. Like the axial motion case, 
the magnetic field from the beam rotation should oppose otf­
center motion of the beam and add energy to the diocotron 
mode. However, an in depth calculation must be used to 
demonstrate that the magnetic field will cause damping in 
the presen~ of pressure/temperature effects. 

First, consider a cold "rigid rotor." In a cold beam with­
out angular velocity shear, the angular velocity must be close 
to either iv_= -iv;1wz or IV+= - 11%. These accelera­
tors would be expected to have an angular velocity iv_. In 
this case it can be shown that l'5Bl:::::l(iv_r/c)c5EI. As was 
shown in Sec. II, if this perturbed magnetic field is large 
enough to make the diocotron mode energy positive, the 
mode should damp. Since the energy without a perturbed 
magnetic field is 

W = - -
1-(!!...)2 

fr dr d8 '5E2
, (40) 

.. 161T b 

then if (iv _a/ c)2 >(alb )2 it would be expected thatthe energy 
would be positive. In CFIA, iv_zl08 sec- 1

, b 2 = 25 cm2
, 

and a2 z 1 cm2
, so the above is not satisfied. However, in this 

experiment the beam is accelerated so it is not expected that 
the cold beam treatment will apply since the particles have a 
large transverse energy. 

To indicate how the beam rotational velocity is changed 
by temperature consider the rigid rotor Vlasov equilibrium 
for a relatively cold constant density beam17

•
18

: 

lo= (mno/21T)c5(H - <Uof>e -1 mvi}. (41) 

where His the energy and Pe is the canonical angular mo­
mentum, which are both constants of motion, 

H = 1 m [ v: + t?g + (iv!/2)r2], (42) 

Pe = nn(ve + rl1z/2). (43) 

Using the above the pressure can be found 17
•
18

: 

! .mnvi [1-(r/a)2]. (44) 

Using the pressure, the equilibrium MHD equation [Eq. (3 )], 
and iv~ <11 ~, an expression for w0 is then obtained: 

iv0 e.ti>_ - vf/a211z. (45) 

If the effect of the perpendicular energy in the above is small, 
then iv0 e:iv_ and the beam can be considered cold. How­
ever, in CFIA, a::::: 1 cm, v~ z!c2

, Bz z 10'4 G, and n::::: 1010 

cm-3, so vfla211zw_ z30 and cll0 is not close to iv_. Specifi­
cally, since 

vi >a2 (J);, (46) 

the beam must be considered warm in a rigid rotor treat­
ment. To account for the beam temperature, consider the 
following Vlasov equilibrium11

•
18

: 

nom ( (H - (J)oPe)) fo=--exp - . 
21Tll n (47) 

This equilibrium is consistent with a warm beam without 
velocity shear. The equilibrium density is given by the fol­
lowing: 
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n(r) = n0 exp{ - (m/2ll) [ r2(w0 11, + (J)~) + 2e¢ Im]}. 
(48) 

Since the above is a function of the electrostatic potential ¢ 
and the equilibrium fields must be solved by using Poisson's 
equation, the fields will not have a closed form solution. 18 

However, by examining the inequality in Eq. (46), it is ex­
pected that the quantity ¢ appearing in the exponential can 
be treated as a small perturbation, since 

l4e¢/r2ml <w! <woflz~vifa2, (49) 

where <Ui,=41Tnoe2/m. Approximating the small quantity¢ 
as 1Tnoer2, the above relation can then be verified since the 
line density N =n01Ta2 shows 

N = i 2

.,. d(} L"' r dr n(r)=n01Ta2 

no21Tll 
~ - ----=------:--

m(l1z% + (J)~ + (J);12) 
(50) 

Sincell=! mv1 and assuming 11 ;>w;, the above indicates 

(J)0 Q!; -v1111,a2 +iv_, (51) 

as was anticipated. In this equilibrium the pressure can also 
be shown to be the following: 

P = m f dv, f dve [ti, + (ve - {J)1/'J2 lf0 = lln(r). (52) 

An equation of state relating p and n must also be found 
before proceeding with an MHD calculation. Equation (52) 
indicates pin = const = n. Also, the ratio of op and on can 
be found by determining the velocity dependence of '5/. This 
can be found from integrating the Vlasov equation: 

of=.!_(° dre-;"'"e-··ie·-e10E' af~. (53) mJ_.,, av 
where r=t' - t and all primed variables are evaluated at t '. 
For a rigid rotor the above equation leads to the following 
perturbed distribution19

: 

of= e af /(r), (54) 
aQ 

where 

I (r) = iroEe + (w - l<Uo) l 
00 

dr 

Q = (H -(J)oP9). 

The velocity dependence of of is set by the above equation. 
Using the above it can be shown that 

op m f dv(tl, +(Ve - (J)ef)2 ](af /8Q) =fl. 

on f dv(af !8Q) 
(55) 

Therefore, pin= const is a valid equation of state. This is 
expected since the magnetic moment is expected to be con­
stant. Assuming this equation of state, '5B, = oBe = ov, 
= 0, and (J)~ <11 ; , Eqs. (4H7) show that '5n is the following: 

(56) 
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where fJ = 41rpl B: is the plasma beta. For CFIA, fJ is 
::::: 10-•, so 8n is approximately the following: 

- (ielm)8E8 (8nl8r) 
8n~ . (57) 

lJz((t) - /(t)_) 

Also, 8 J is the following: 

8 J = {e{J)ol'8n -~ [8Er - ll ~ (.El!_)]} 1J 
41TlJ, e ar n 

{J); (~E illl 8n) A +-- u 8 --- r, 
41rflz e nr 

since Eqs. (57) and (16) show 

a ( 8n ) 2e/8Er 
ar -;;- <:.< mflz((J) - /{J) _ ')a2 , 

then 8 J can be expressed as the following: 

l>J = (- i(J)_{J)ol'l>Es an + Al>E,)1J 
((t) - (t) _ )21Tn ar 

-A8E8 r, 
where 

A= ({L)_/41r)[ 1 - lvUlJzfw - /a>_)a2 ) • 

(58) 

(59) 

(60) 

The plasma dielectric can be found from the above. This 
leads to the following energy: 

W = - _I_ ( {L)o ) J dB r dr 8E2 + - 1-J dB r dr 8 u; , 
161' (t) - 81' 

(61) 

where the expression for 8 E 2 was obtained from integrating 
Poisson's equation. In the above it should be noted that the 
electrostatic energy is negative. Here 18 Bz lean be obtained 
from Eq. (11) and is :::::l(a>o0lc)8EI. In order for the per­
turbed magnetic field to cause the above energy to be posi­
tive, 

where ac = v11flz. Clearly lv1 lcl < l , jajaj <I , and 
(1)0 > (t) _ , so this is not true and the energy is negative. The 
growth rate is expected to be given by the following: 

I'= -Pl2W, (62) 

where Pis the power loss from the axial magnetic field. This 
power loss is given by the fol1owing9: 

P= (1)
8 JdeMa;! = (t)l>b 8a:I • (63) 

161' r ~b 8 r=b 

where 8 = (c2l2mr(t))112 is the skin depth of the conducting 
wall. Assuming the wall will not allow the magnetic field to 
penetrate, the perturbed magnetic field between the wall and 
the beam can be related to the flux in the beam: 

llb rdr8Bz I = I[ rdr8Bz I:::::: I(~)(:) Lb rdr8E, I · 

(64) 

Assuming the beam length is greater than b, then outside the 
beam 8B2 should be essentially constant in r so that the 
above equation shows 
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b"l>a;ou,::::a2(v:r (:)2 2~ r ·rdr f" dB8E2
• (65) 

Therefore, the growth rate is approximately the following: 

(66) 

Thus in the warm beam limit there is growth given by the 
above. It can be seen that this growth increases with v1 , de­
creases for small ratios of beam to wall radius (alb), and 
decreases for small ratios of beam radius to Debye radius 
[ {J) _I%:::::: (al ).d) 2 ] • In CFIA it is reasonable to assume 

(t) _la>0 z 1130, w:::::6X 106 sec-•, u:::::3X 1013 sec-1, and 
acla::::::!, alb:::::!, so the anticipated growth time is about 10 
msec, which is an unobservably large time in CFIA. It 
should be noted that this equilibrium is expected to be the 
final equilibrium but it is probably not the equilibrium when 
damping is observed. Since Fig. 8 shows that the damping 
rate decreases with time, the beam may be evolving into this 
nondamping distribution. Section IV will consider an equi­
librium with angular velocity shear and show that the initial 
damping can be explained by assuming such an equilibrium. 
It is expected that this velocity shear would eventually disap­
pear and evolve into the equilibrium analyzed in this section. 

IV. MAGNETIC DAMPING OF A ROTATING BEAM WITH 
ANGULAR VELOCITY SHEAR 

In CFIA electrostatic probes indicate that the initial 
damping had a characteristic damping time of about 20 µsec; 
then the damping appeared to taper off and stop (see Fig. 8). 
The equilibrium analyzed in Sec. III was a Gibbs potential 
without any velocity shear. It is expected to be the final equi­
librium for CFIA and predicts unobservable growth in the 
diocotron mode which is consistent with the experiment. An 
equilibrium that has velocity shear can explain the initial 
damping. 

As a representative equilibrium, consider an equilibri­
um where the beam particles execute orbits like those seen in 
Fig. 9. In Fig. 9(a) the EXB drift radius is larger than the 
cyclotron radius (ac) and the average v6 is (t)_r = - ((t);1 
Wz)r. However, particles in the center of the beam have 
orbits like that in Fig. 9(b) where the cyclotron radius is larg­
er than theEXBdriftradiusandv8 ::::::(t)+rE -lJzr. In such 
a beam the angular velocity is expected to be the following: 

FIG. 9. Particle motion for the cases where (a) twice the cyclotron radius 
(a<) is larger than the EX B drift radius, and (b) twice the cyclotron radius is 
smaller than the EXB drift radius. In case (a) the average v8 corresponds to 
the EXB drift. However, in case (b) the average v8 depends on the cyclotron 
frequency. 
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(67) 

Since there is a large velocity shear it is expected that the 
equilibrium will eventually evolve into one where the angu­
lar velocity is constant and the poloidal velocity becomes the 
average poloidal velocity, which· is :::::w+(aJa)2r 
::::: MI a21Jz )r . This is consistent with the equilibrium in Sec. 
III. Consider a beam of constant density. Since w = w+ or 
w _ this equilibrium is consistent with a constant density 
beam without pressure. 18

•
19 Using Eqs. (4H6) the perturbed 

density can be shown to be the following: 

6
n ~ _ ie BEe (!Jz + 2w0)(an/ ar) 

m (w - /w0)v2 

_ (ie!m)6E8n !._ ( !Jz + 2w0 ), (6S) 
(w - la>o) ar v2 

v2 = [ (!Jz + 2woi( nz + 2wo + r a;o )- (w - la>o)2
] • 

Since awof ar~ - (a>+ - "'_)6(r - 2acJ , the second term 
can then be shown to contribute terms such as the following: 

6 (r - 2acl o'(r - 2ac) 

K+6(r-2ac)' [K+o(r-2ac)] 2 
(69} 

These terms will have negligible effects on 6n since they are 
only finite in the infinitesimal interval 2ac - £ < 
r < 2ac + E(E<a) and are therefore negligible. Using this on 
can be expressed as the following: 

Bn SI! _ ie 6E (an! ar) , (70) 
m IJz(w - /w_) 

which is the typical result for a cold beam where w0 = w _ 
throughout the beam. Additionally, the perturbed current 
can be calculated and the energy can be determined as was 
done in Secs. II and III. When this is done the electrostatic 
energy can be shown to be the following: 

W0 ~-(1!167r)(a!b)2 f r drd86E2
• (71) 

However, it is expected that the beam rotation will create a 
perturbed axial magnetic field given by the following: 

{
(v1 /c)6E,, r<2ac, 

6Bt::::: 
(w _r/c)/;E,, r> 2ac. 

(72) 

Therefore, using this and the results for the electrostatic en­
ergy, the electromagnetic energy is expected to be positive if 

(v1 /c}2(2acla)2 ~(alb )2
, 

in which case the mode will damp. In CFIA it is reasonable 
to assume that (v1 /c)2 :::::!, (2aJa):::::!, and (alb):::::!, so it is 
expected that the diamagnetic field will make the mode ener­
gy positive. The growth rate can be calculated from the pow­
er loss via the following equation: 

I'= -P/2W, (73) 

where Pis the power loss. The power loss from the diamag­
netic field inducing currents in the conducting boundary is 
given by the following: 
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p = w6 J d(J MB; I = w6b 6B ;· j , 
16-ir r=b 8 r - b 

(74) 

whereo = (c2/21Tua>)112 is the skin depth. In order to find the 
diamagnetic field at the boundary, consider that, for a good 
conducting wall, the magnetic flux inside the beam will be 
the same as the return flux which is in the area between the 
beam and the wall. Therefore, the ratio 

( l/1Ta2
)[ 21T f~ r dr (6B;)] 

(75) 
~B~l~=b 

is expected to be about (b /a)4
• Using this and assuming that 

the energy is primarily given by just the magnetic field ener­
gy then the damping rate predicted by Eq. (73) is the follow-
ing: 

I':::::a>(o lb )(alb )2 . (76) 

In the above it can be seen that the damping rate is pro­
portional to the ratio of beam to chamber radius (alb) and is 
similar to the result obtained in Sec. II in the limit 
(v,lc)2>(a/b )2• The above can explain the initial damping in 
CFIA. Like the modified betatron, some of the above quanti­
ties are not known exactly, but assuming w = 6 x 106 sec- 1

, 

u = 3 X 1013 sec-• and (alb)=!; the anticipated decay time 
is about 20 µsec. Figure 8 shows a typical electrostatic probe 
measurement. It can be seen that the predicted decay rate is 
roughly the initial observed decay rate. 

Additional evidence to support the damping of the dio­
cotron mode in this experiment is that x-ray measurements 
do not indicate that sufficient quantities of electrons were 
lost to account for the observed decay. It has also been ob­
served that after hundreds of microseconds the shape of the 
probe oscillations changes to a shape consistent with much 
smaller beam oscillations. 6 

ACKNOWLEDGMENTS 

We would also like to acknowledge the help of the ex­
perimentalists who worked on the modified betatron and 
CFIA: H. Ishizuka, A. Fisher, B. Mandelbaum, and F. Gol­
din. 

This work was supported by the Office of Naval Re­
search and the U. S. Department of Energy and is based on a 
Ph.D. thesis submitted to the University of California, Ir­
vine. 

1R. Briggs, J. Daugherty, and R. Levy, Phys. Fluids 13, 421 (1970). 
1W. White, J. Malmberg, and C. Driscoll, Phys. Rev. Lett. 49, 1822 (1982). 
3H. lshizuka, G . Lindley, B. Mandelbaum, A. Fisher, and N. Rostoker, 
Phys. Rev. Lett. 53, 266 ( 1984); A Mandelbaum, H. lshizuka, and N. Ros­
toker, in the Proceedings of the 5th International Conference on High Pow­
er Electron and Jon Beam Research and Technology, San Francisco, Cali­
fornia, 1983 (Lawrence Livermore National Laboratories, Livermore, 
CA, 1983), p. 476. 

•A. Fisher, P. Gilad, F. Goldin, and N. Rostoker, IEEE Trans. Nucl. Sci. 
28, 3383 (1981). 

5 A. Fisher, P. Gilad, F. Goldin, and N. Rostoker, Appl. Phys. Lett. 36, 264 
(1980). 

6F. Goldin, A. Fisher, and N. Rostoker, Bull. Am. Phys. Soc. 29, 1279 
(1984). 

7S. Ichimaru, Basic Principles of Plasma Physics (Benjamin, New York, 
1973), pp. 216-219. 

8S. Ichimaru, Basic Principles of Plasma Physics (Benjamin, New York, 
1973), pp. 36-39. 

91. Jackson, Classical Electrodynamics (Wiley, New York, 1975), pp. 338. 

G. A. Roberts and N. Rostoker 2553 



10J. Daugherty, J. Eninger, and G. Janes, Ph)". Fluids U, 2677 (1969). 
115. Eckbouse, A. Fisher, and N. Rostoker, Pb)". Rev. Lett. 42, 94 (1979). 
12c. Kapetanalcos, D. Hammer, C. Striggler, and R. Davidson, Phys. Rev. 

Lett. 30, 1303 (1973). 
13R. Levy, Phys. Fluids 8, 1288 (196S). 
14R. Davidson, Tlreoryo/Not1neutral Plasmas(Benjamin, New York, 1974), 

pp. 69-78. 

2554 Phys. Flulds, Vol. 28, No. 8, August 1985 

" G. Roberts and N. Rostokcr, submitted to Phys. Fluids. 
16G. Roberts, Ph.D. thesis, University of California, Irvine, 1984, p. 89. 
11R. Davidson and N. Krall, Phys. Rev. Lett. 22, 833 (1969). 
11R. Davidson, Theory of Nont1eutral Plasmas (Benjamin, New York, 1974), 

pp. 100-109. 
19H. Uhm and R. Davidson, Phys. Fluids 23, 813 (1980). 

G. A. Roberts and N. Rostoker 2554 




