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ABSTRACT OF THE DISSERTATION

Post-fire hydrologic behavior and recovery:

Advancing spatial and temporal prediction with an

emphasis on remote sensing

by

Alicia Michiko Kinoshita

Doctor of Philosophy in Civil Engineering

University of California, Los Angeles, 2012

Professor Terri S. Hogue, Chair

This work has investigated the policy of wildfires, modeling techniques for post-fire assessment,

and the influence of controlling variables on post-fire recovery. Post-fire mitigation and

management require reliable predictions of immediate hydrologic consequences and long-term

recovery to pre-fire conditions. This research shows that models used by agencies are not

adaptable to all geographical and climatological conditions. Results show inconsistencies

between model predictions for peak discharge events across the sites and less confidence

associated with larger return periods (25- and 50-year peak flow events). Remote sensing

techniques improve spatial and temporal resolution of data streams for model parameters and

post-fire recovery predictions. This research shows that recovery is dependent on many
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variables, including burn severity, slope aspect, and vegetation biomass. The lack of vegetation

recovery across watersheds results in significant changes in annual and seasonal discharge

throughout the study period. Understanding these key controlling variables will improve post-fire

hydrological predictions. Previously established remote sensing algorithms can be applied and

adapted to burned areas to improve hydrologic and recovery predictions. This work encourages

new tools that can be incorporated into policies that minimize development at the WUI, improve

homeowner preparation in fire-prone areas, and improve post-fire recovery predictions. This

work improves post-fire modeling and predictions primarily with remote sensing applications to

guide accurate, efficient, and cost-effective management decisions.
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Chapter 1. Introduction

Changing climate and increasing size and frequency of wildfires threaten western United

States watersheds (Westerling et al., 2006). According to CalFrap (2009a) more than half of the

twenty largest fires in southern California occurred within the last decade. In the past, remote

fires in the wildlands were not cause for concern, but development into fire-prone regions (i.e.

rural areas, foothills, mountainsides) has altered natural fire regimes and increased damage and

post-fire consequences to urban areas and downstream communities (Dombeck et al., 2004;

Pausas et al., 2008). This contributes to increased suppression and mitigation expenditures

(Busby and Albers, 2010). As fire incidents increase, preparation and management is imperative

for maintaining healthy ecosystems and sustainable urban-fringe development (Dombeck et al.,

2004). Burned land surfaces encourage flooding and debris flows (Debano, 2000; Ice et al.,

2004), often resulting in altered water quality and damage to nearby development (Burke et al.,

2011; Wohlgemuth et al., 2008).

There is a need for wildfire policies that can bridge gaps between fire science,

management, and local communities. The effects of wildfire and post-fire hydrological

consequences are well known to the scientific community; however, insurance programs and

zoning policies do not seem to reflect these issues. Similarly, understanding the effects of post-

fire hydrologic behavior and recovery time is critical for local and regional short- and long-term

water resources management in regions which experience periodic and extensive burns.

Agencies such as the U.S. Forest Service (USFS) are interested in reliable post-fire prediction in

order to efficiently and cost-effectively minimize post-fire impacts (debris flows and flooding)

on values at risk (Foltz et al., 2009).
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Remote sensing has greatly improved techniques for acquiring and studying variables in

ungaged and large spatial areas and has potential for post-fire application. Remote sensing

provides convenient data acquisition at high spatial and temporal resolutions and makes

estimating key hydrologic parameters that govern post-fire recovery possible. The development

of predictive models to large regional areas affected by wildfire will ultimately improve planning

for downstream communities and resource monitoring in semi-arid regions where water

resources are limited and highly impacted by upstream burns.

1.1 Wildfires

Wildfires are increasing in intensity and size across the western U.S. (Westerling et al.,

2006). Climate change, altered land use patterns, and fire suppression policies have contributed

to the threat of catastrophic wildfires (Keeley et al., 2004; Pincetl, et al., 2008; Service, 2004). In

southern California more than half of the twenty largest fires in California have occurred within

the last decade (CalFrap, 2009a). Within the last decade, there have been several large wildfires

in southern California near large cities (Figure 1-1). Table 1-1 includes characteristics of these

fires. Many of these large and destructive fires are occurring at the wildland-urban fringe and

raise concerns for fire management issues.
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Table 1-1: Six southern California wildfire events, including name, date, county, acres burned,
structures burned, deaths, cause, and rank within the last decade (CalFrap, 2009a)

Fire
Name Date County Acres

Burned
Structures

Burned Death Cause Rank

Cedar Oct 2003 San Diego 273,246 2,820 15 Human 1
Zaca Jul 2007 Santa Barbara 240,207 1 0 Human 2

Witch Oct 2003 San Diego 197,990 1,650 2 Power lines 4
Day Sep 2006 Ventura 162,702 11 0 Human 9

Station Aug 2009 Los Angeles 160,557 209 2 Human 10
Simi Oct 2003 Ventura 106,668 13 0 Unknown 16

Figure 1-1: Six southern California wildfire perimeters within the last decade since 1932
(CalFrap 2009a and b)

Increasing variability in wildfire regimes is a concern as fire dramatically alters

ecosystem characteristics and in situ processes. Vegetation loss and acute changes in soil

properties significantly change land-atmosphere interactions and overall water balance within a
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burned system (Debano, 2000; Ice et al., 2004; Meixner and Wohlgemuth, 2003). Immediately

post-fire, land surface alterations contribute to increased overland flow and related hazards for

downstream communities. Loss of vegetation and soil transformation alters normal flow patterns,

disrupts ecologic and hydrologic behavior, and water quality (surface and ground water) and

sediment transport to urban fringe communities not only the first post-fire year (i.e. debris flows

and flooding), but also years after fire (Burke et al., 2010, 2011; Debano, 2000; Cydzik and

Hogue, 2009; Ice et al.. 2004; Jung et al., 2009; Kinoshita and Hogue, 2011; Martin and Moody,

2001; Pierson et al., 2008; Rulli and Rosso, 2007; Wohlgemuth et al., 2008). Post-fire

consequences also include altered water quality (i.e. increased chemical and sediment loads)

(Burke et al., 2011; Debano, 2000; Ice et al., 2004). Accurate prediction of post-fire hydrological

behavior and assessing impacts on water supply and quality is critical for post-fire storm

preparation and response, especially at the wildland-urban interface.

1.2 Wildfire management

1.2.1 Wildfire suppression

Wildfire suppression became a popular technique to limit the adverse impacts of wildfires

to development at the urban-fringe. However, this policy has not been successful as the number

of fires per year increased. Suppression has adverse impacts on forest fire patterns (North et al.,

2009) and is not effective in chaparral environments (Keeley et al., 2004). In forests, suppression

often leads to fuel build-up and competition between trees for resources, leading to type

conversion. In chaparral environments climate and fuel type often result in unstoppable fires.

The shift from healthy forest structure to unhealthy structure results in catastrophic and

stand-replacing wildfires (Miller and Woolfenden, 1999; USDA Forest Service, 2004) (Figure1-



5

2) Sierran old-growth or healthy forest structures consist of spacious stands, where natural fire

disturbances are slow burning and of low intensity, clearing small to medium vegetation and

allowing the dominant and tolerant trees to age (USDA Forest Service, 2004). Unhealthy forest

structures consist of dense and unevenly aged vegetation, creating a “fuel ladder” (small and

medium vegetation) that provides fuel for wildfires to burn at high intensity and allow easy

spreading from the ground (understory) to treetops, resulting in large “crown fires” (Figure 1-

2)(USDA Forest Service, 2004). Fire suppression and recent climate variability, primarily

increasing temperatures; have contributed to unhealthy forest structures. Additionally, logging

and beetle infestations have led to large accumulations of dead timber (standing and downed).

Unhealthy stand structures not only threaten forests with catastrophic wildfires, but also wildlife

and local communities. Restoring a natural fire-regime and old-growth forest structure should

minimize catastrophic wildfire events (Abella et al., 2007; North et al., 2009).

Figure 1-2: Healthy forest (a) and unhealthy forest structures (b) in the Sierra

a) b)
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In southern California’s chaparral systems, fire suppression is less predictable and

promotes an unhealthy and unnatural over-accumulation of vegetation, changing the natural fire

regime (Syphard et al., 2007). This accumulation of vegetation biomass or high fuel loads

contributes to catastrophic and costly fires, especially within recent years (Baker, 1993; Beeson

et al., 2001; Dwire and Kauffman, 2003; Fairbrother and Turnley, 2005; Kumagai et al., 2003).

Keeley et al. (2004) note that wildfires combined with southern Californian fire weather are only

minimally controlled by vegetation age (stand age) or spatial patterns of fuels, evidenced by the

2003 and 2007 fire storms. Under moderate winds, fuel breaks are an effective tool against

wildfire, but fail when winds are capable of pushing the fire through barriers or spreading embers

(1-2 km from a source). Despite efforts to prevent and fight wildfires, the average frequency of

wildfires consistently appears to be 30-40 years (Keeley et al., 2004).

1.2.2 Hydrologic post-fire management

Increased post-fire runoff and sediment response threaten lives, natural resources, and

property and the ability to quickly and accurately predict hydrologic behavior is critical for

deciding values most at risk and guiding management decisions and treatments. The primary

responsibility for mitigation focuses on human lives, values at risk, and ecosystems (not private

property). Uncertainties in storm intensity, duration, and location affect ecosystem and

hydrologic response; however the first storm season post-fire poses the largest threat to

downstream communities. In southern California the storm season (November through February)

quickly follows the fire season (July through October). Rapid mobilization of resources to

prepare for post-fire response is necessary. However, the public often misinterprets a passing

storm with no damage as an indication that post-fire threats are gone or minimal. It was observed
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in the 2009 Station Fire (largest wildfire in Los Angeles County history), that with each

successive storm the public participation in preparation and evacuations decreased (Cannon,

2010). This behavior demonstrates the lack of communication between the scientific and the

local communities. Public perceptions of post-fire events should be made transparent before a

fire occurrence. Warning the public of post-fire hydrologic consequences during and

immediately after a fire does not benefit the community and steps to improve community

preparedness are necessary. For managers, all safety and management decisions such as opening

evacuations, closed recreation areas, roads, or removing k-rails depend on accurate post-fire

predictions and understanding of increased threats. The length of time that communities remain

at risk has important economic and resource implications.

Understanding the impact of wildfire on long-term water budgets, water resources, and

water quality is critical, especially for downstream communities (Meixner and Wohlgemuth,

2003; Barnett et al., 2004). The recovery of areas affected by wildfire varies based on many

parameters and has the potential to remain susceptible to adverse post-fire consequences for

prolonged periods of time. Accurate prediction of post-fire hazards can better guide cost

effective (allocation of agency funds and resources) and efficient management policies and

solutions. Integrating remote sensing data into relevant modeling systems can facilitate improved

post-fire hydrologic predictions. Changes from pre- to post-fire conditions in characteristics are

readily observable using remote sensing products, including albedo, vegetation biomass, and

land surface temperature. These and other parameters can be applied within various algorithms to

better understand and predict system recovery. Collaborative work with the U.S. Forest Service

reveals a need to initially validate vegetation biomass indicators, reducing uncertainty in

predictions centered on use of these data.
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1.3 Research goals and research questions

The overarching goal of this research is to understand post-fire management needs and

concerns of society, agencies, and ecosystems and to improve post-fire modeling and predictions

primarily with remote sensing applications to guide accurate, efficient, and cost-effective

management decisions. This research evaluates current wildfire management issues and

investigates improvements for policies. This research also evaluates current hydrological models

used in USFS post-fire assessments in order to provide guidance on model use across diverse

hydro-climatic regimes. Finally, this research strives to understand post-fire hydrologic recovery

and prediction utilizing remote sensing and in situ geophysical data. This work is guided by the

following questions:

 What are current hydrological post-fire management protocols in the western U.S. and

how are communities affected by both pre- and post-fire management and policy

decisions?

 What are commonly used models in post-fire assessments and how do these models

perform across diverse hydroclimatic regimes? What models are optimal for post-fire

hydrologic predictions?

 Does the integration of remote sensing products improve post-fire modeling and

management, especially in semi-arid regions? Can current remote sensing algorithms be

adapted for post-fire systems? What key variables can be used to assess post-fire

hydrologic behavior?

 How do we utilize answers to the above questions to inform future modeling, prediction,

and post-fire response efforts, especially for responsible agencies such as the USFS or

the National Weather Service (NWS)?



9

1.4 Research approach and organization of dissertation

To understand the consequences that wildfire poses to communities and ecosystems the

following framework is proposed to address the aforementioned goals:

 Management of post-fire consequences at the WUI. Many agencies as well as the

public are unaware of the risk that post-fire consequences pose. Raising awareness to

these issues is critical at the WUI for safety and remedial decisions.

 Current pre- and post-fire modeling practices using various regional wildfires in

collaboration with the USFS to assess the performance of selected hydrological

models. Preliminary results show inconsistencies in model parameter selections and

results (Kinoshita et al., 2012).

 Kinoshita and Hogue (2011) investigated short- and long-term post-fire hydrologic

response utilizing Moderate Resolution Imaging Spectroradiometer (MODIS)

enhanced vegetation index (EVI) and ground-based hydrologic variables. Results

offer insight on factors that influence hydrologic recovery in post-fire chaparral

systems such as precipitation patterns, level of burn severity, watershed slope aspects,

and vegetation recovery.

 Expansion of methods to include more characteristics and indicators of ecosystem

resilience, such as evapotranspiration and soil moisture, through the optimization of

remote sensing algorithms for post-fire systems.

The organization of this dissertation includes background on wildfires, policy and

management practices, and the importance of hydrological modeling and prediction; discussion

of preliminary work on assessment of hydrological models used by the USFS and investigation
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of controls on recovery in post-fire watersheds; development of a post-fire ET algorithm based

only on remote sensing variables, discussion of contributions and continuation of work on the

investigation of ecosystem resilience and post-fire recovery.
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Chapter 2. Management Policies at the Wildland-Urban Interface

2.1 Wildland-urban interface

In the western states, the population is growing faster than the national average

(Randeloff et al., 2005). As the population grows, development pushes the urban boundary

further into wildlands, increasing the interaction at the wildland-urban interface (WUI). The

WUI is characterized as the transitional area between undeveloped and human developed land.

Persistent development in wildfire prone regions such as rural areas, foothills, and mountainsides

contribute to more severe threats at the WUI (Dombeck et al., 2004; Pausas et al., 2008).

According to Randeloff et al., 2005, 9% of the United States is covered by WUI and California

has the largest number of homes at the WUI. In California, over five million homes are included

in the WUI and this number continues to rise as people seek more natural resources (Randeloff et

al., 2005; Stephens et al., 2009). As the number of wildfire incidents increased, an increase in

contribution to fire suppression and mitigation expenditures increased (Busby and Albers, 2010).

Since 2001, agencies have dramatically increased fire management allocations and expenses to

protect properties at the WUI (Dombeck et al., 2004). Land use patterns such as single-family

homes or large communities that are allowed to expand into naturally fire-prone areas are

supported by inadequate fiscal and fire management policies (Pincetl et al., 2008).

Since the late 1800s, wildfires at the WUI in the western United States gave rise to

federal fire suppression policies. To protect development, fire suppression aims to extinguish a

wildfire immediately, this responsive technique does not solve the problem. Suppression

promotes an unhealthy and unnatural over accumulation of vegetation, changing the natural fire

regime (Syphard et al., 2007). This accumulation of vegetation biomass or high fuel loads

contributes to the outbreak of catastrophic and costly fires within the recent years (Baker, 1993;
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Beeson et al., 2001; Dwire and Kauffman, 2003; Fairbrother and Turnley, 2005; Kumagai et al.,

2004). After World War II, policies aimed to completely suppress fires seemed attainable with

firefighting resources and technology dramatically increasing (firefighters, construction

equipment, aerial tankers, etc.) (Dombeck et al., 2004).

Despite the enormous fire suppression efforts, wildfires still prevailed evidencing the

unpredictability of wildfire regimes and the ineffectiveness of reliable suppression practices

(Dombeck et al., 2004). Even with advancing fire-fighting technology, the total amount of

landscape burned has increased – with more than 6 million acres burned in the mid- to late 1900s

and early 2000 (Dombeck et al., 2004). Under moderate winds, fuel breaks are an effective tool

against wildfire, but fail when winds are capable of pushing the fire through barriers or spreading

embers (1-2 km from a source) (Keeley et al., 2004). Despite efforts to prevent and fight

wildfires, the average frequency of natural wildfires appears to be 30-40 years (Keeley et al.,

2004). Figure 1-1 shows the major fire events in southern California relative to major cities

within the last decade and Table 1-1 provides information for these fires (CalFrap, 2009b). Table

1-1 demonstrates that these large fires are human induced as a result of increased wildland-urban

conflict. Consequently, increased damage and costs accompany increased wildfire at the WUI.

2.2 Motivation

Many Americans desire to live in undeveloped and remote areas and since 1982; over 8.6

million new homes in the Western United States are built within 30 miles of a national forest

(McKinley and Johnson, 2007). Destructive wildfires such as the 2009 Station Fire and more

recent fire storms in Texas and Arizona have made wildfire and post-fire management and

policies a primary concern, especially at the WUI (Randeloff et al., 2005). For example, the 2009
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Station Fire in the Angeles National Forest (Los Angeles County, California) is the largest

wildfire in Los Angeles County history and the tenth largest fire in California since the early

1930s (CalFrap, 2009b). The Station Fire burned 161,189 acres, damaged over 80 homes, and

cost over $95 million to suppress, impacting four major watersheds – the Los Angeles River, San

Gabriel River, Mojave River, and Santa Clara River (USDA Forest Service, 2009). The

watersheds experienced damage to vegetation, soil, wildlife, and water resources (USDA Forest

Service, 2009 and communities were threatened by winter storms that would inevitably cause

adverse hydrologic impacts.

Many factors played a role in the tremendous size of this fire, such as prior drought

conditions, immense fuel loads (area not recently burned), and steep and remote terrain.

Although the Santa Ana winds were not present, the Station Fire was not quickly contained as

steep and inaccessible terrain made immediate fire suppression impossible, allowing the fire to

easily spread. After the containment of the wildfire, the threat to downstream communities was

not over as winter storms threatened development with debris flows and flooding. Many homes

in the foothills were damaged by erosion and hundreds of people were evacuated during the

following storms. After the fire, most of the burned area was closed to the public to allow the

ecosystem to recover and protect the public from post-fire hazards such as debris flows, flash

flooding, or falling trees (USDA Forest Service, 2009).

The Arizona Wallow Fire in 2011 was the largest in the state’s history. It burned over

538,048 acres with estimated damage of $109 million. The fire was human ignition, but is still

under investigation. The Bastrop Fire in the summer of 2011 was the largest in Texas’ state

history. The cause of the fire was electrical. This fire is expected to cause over $325 million in

insured losses. Both the Arizona and Texas fire are only one out of the many that burned
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throughout each state. Both states have been added to National Oceanic and Atmospheric

Administration’s (NOAA) $1 billion weather disaster list. The recent large fires mentioned

above are examples of costly wildfires that do not yet include post-fire damages, which may be

brought on by monsoon and winter storms.

The relationship between wildfire and flooding is well studied in the scientific

community, but is not incorporated at the policy level. This study aims to provide analytical tools

to understand post-fire flooding and improve local and regional policies. This study is part of a

larger study that will suggest dynamic insurance policy adjustments based on analytical tools to

alter community behavior and reduce exposure to post-fire flooding threats at the wildland-urban

interface. The post-fire flooding rate will be a function of pre- and post-fire flood rate that is

dependent on the wildfire properties. Specifically, we will investigate the geography of fire and

post-fire flooding in the southwest, California and Arizona, and policy and market tools to

reduce risks to communities.

2.3 Policies and management

The primary responsibility for implemented mitigation by local management agencies

focuses on human lives, values at risk, and ecosystems (not private property). These mitigation

measurements may include k-rails, sandbags, and public closures of roads and spaces. The cost,

resources invested, and duration of these measures are dependent on post-fire predictions of

value-at-risk and recovery time. Insurance plays an important role in safeguarding private

development at the WUI. Insurance is a method to share the risk of loss, making coping with

disasters manageable. However, current policies are ineffective at protecting property and

discouraging further development at the WUI. Large insurance companies in the Nevada County
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in California are becoming more selective and more costly for those that choose to live in high-

risk areas (Brown, 2011), which is progression towards encouraging homeowners to take more

responsibility for their location. In both California and Arizona, the fire season is immediately

followed by rain events – winter storm season and monsoons. The recent 2011 Arizona wildfires

brought a rush to insure homes against post-fire floods. Basic home insurance does not cover

floods and homeowners that do not possess flood insurance are encouraged to purchase flood

insurance. Homeowners in danger of post-fire flooding should be aware that property does not

need to be located in a floodplain for damage to occur (post-fire flooding).

The Federal Emergency Management Agency (FEMA) has offered the National Flood

Insurance Program (NFIP) since 1968 and provides homeowners in disaster areas with the option

to purchase federally sponsored flood insurance. Less than half of the floods in the U.S. result in

federal disaster declaration, but the NFIP are available even if a disaster is not declared. The

NFIP offers flood insurance to any property owners and renters in communities (approximately

21,000 communities nationwide) that participate in the program. NFIP policies are sold through

private insurance agents throughout the country (www.floodsmart.gov). The NFIP program has a

30-day waiting period, which generally gives Californians adequate time to become

policyholders before the winter storms. However, Arizona homeowners often have less time to

purchase their policies within the 30-day window before the summer monsoons (2011 fires).

Homeowners unaware of post-fire risks are often caught unprepared. This study presents

parameters such as fire frequency, severity, and vulnerability, which can be implemented in

policy development and adapted to decrease adverse post-fire consequences at the WUI.
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2.4 Arroyo Seco case study and analytical tools

The entire Arroyo Seco watershed stretches from the San Gabriel Mountains to the Los

Angeles River in downtown Los Angeles (Figure 2-1). The land surfaces have been aggregated

into main land surface categories for simplicity and the transportation layer gives an estimate of

the amount of development present. The Upper Arroyo Seco is a smaller urban-fringe watershed

that contributes water to cities such as Pasadena, Sierra Madre, Arcadia, Altadena, and La

Canada-Flintridge (Figure 2-2).The Upper Arroyo Seco (here on referred to as Arroyo Seco) will

be used as a case study to investigate analytical tools that can be used to identify areas vulnerable

to wildfire and post-fire flooding. It is 42 km2 and the dominant vegetation includes chaparral,

sage, shrubs, and mixed conifer at the higher elevations (Figure 2-2).
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Figure 2-1: Land surface for the Arroyo Seco watershed, retrieved from the Landsat Thematic
Mapper layer (30m; NOAA C-CAP, 2000) with a Los Angeles County transportation layer in the
background. The Upper Arroyo Seco is predominantly chaparral, while the mid- to lower Arroyo
Seco becomes increasingly urbanized to its end at the Los Angeles River. The fire vulnerability
lines (least impact and real impact) at the wildland/urban interface are shown.
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Figure 2-2: NOAA C-CAP 2001 landcover over the Arroyo Seco, California

Fire frequency

Fire frequency can be used to estimate the historical occurrence in fire regimes within

affected watersheds. Fire frequency is an estimation of the size of the area burned within the
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watershed and its corresponding date (year of the occurrence) of the wildfire event. Estimation of

fire frequency provides insight into the health of an ecosystem (relative to natural wildfire

regime) and provides guidance for wildfire and post-fire consequence preparedness.

Fire data such as acreage burned, derived from the fire perimeter data (boundaries)

obtained from the historical fire data set provided by the California Department of Forestry and

Fire Protection (CalFrap, 2009a) and Rocky Mountain Geographic Science Center (RMGSC,

2010) are used to estimate fire frequency in the Los Angeles County and Arroyo Seco (Figure 2-

3). Prior to the Station Fire in 2009 (in which Arroyo Seco was 100% burned), large fires in the

Arroyo Seco included 57% burned in 1896 and the earliest burn recorded in 1959 (83%). The red

line represents the total area of the Arroyo Seco, and each point represents a major fire event for

the history of the Upper Arroyo Seco. Keeley et al. (2004) note that fires are a regular occurrence

in southern California chaparral systems and generally have a natural frequency rate of 30-40

years, despite suppression policies. In the Upper Arroyo Seco, smaller fires appear to occur

every 5-10 years, while the three observed large fires are about 50-60 years apart (Figure 2-3),

slightly longer than the 30-40 year cycle noted by Keeley et al. (2004) and possibly a result of

fire suppression. Information such as fire frequency can provide planners with a better

understanding of the natural fire cycle and can be incorporated in future management plans.
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Figure 2-3: Fire frequency for a small watershed (Upper Arroyo Seco) in the Los Angeles
County, near Pasadena. This figure shows the acres of the Upper Arroyo that burned in each fire.
The red horizontal line (about 10,200 acres) represents the area of Upper Arroyo Seco.

Fire vulnerability

Fire vulnerability is the measure and assessment of the risk wildfire poses to human

populations at the WUI. Fire vulnerability can be used as an indicator of the interaction between

the urban and wildland interface. Ideally, minimal deviation from a straight linear distance across

the WUI would indicate the lowest risk to human life and property. Minimal interaction

simulates natural disturbance processes and benefits both humans and ecosystems. The fire

vulnerability indicator is the ratio of the actual length of the urban-wildland interface to the

linear length across the urban-wildland interface (theoretical best-case scenario). The relative

difference or ratio between the two distances serves as an indicator that quantifies the risk to

human life and property on the fringe of the urban development.

Fire vulnerability also establishes the threat of fire ignition (potential for human

interaction).Keeley et al. (2004) show that 95% of all urban-fringe fires are started by people.
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Extensive urban development has resulted in an urban fringe with increased risk to wildfire

compared to borders that have minimal urban-wildland interaction. The Arroyo Seco watershed

and fire vulnerability indicator (Figure 2-1) at the interface is a linear edge (direct line across the

WUI) of 4.6 miles and the developed or real edge for Arroyo Seco is approximately 15.50 miles.

The fire vulnerability ratio at the WUI is 3.34, which represents three times the vulnerability risk

associated with urban development. More interaction at the urban interface results in increased

potential for fire ignition and post-fire risks such as floods, debris flows, or water quality issues.

Burn Severity

Fire severity or burn severity is used to characterize the degree to which an ecosystem is

altered (quantifies the amount of organic matter lost above ground) by fire and is used to

evaluate potential risks to downstream populations and guide management and treatment

decisions. Fire severity is strongly influenced by pre-fire vegetation, landscape, climate regime,

and historical fire practices (suppression, defensible space, building into fire perimeters, etc.)

(Baker, 1993; Keeley et al., 2005; Pausas et al., 2008). Higher burn severity results in more

vegetation damage, directly influencing soil structure and integrity, and increasing flood and

debris flow potential (Martin and Moody, 2001; Rulli and Rosso, 2007; Pausas et al., 2008;

Cydzik and Hogue, 2009; and Jung et al., 2009). The burn severity acquired from the US Forest

Service Remote Sensing Center for the Station Fire and Arroyo Sec show the spatial distribution

of the burn severity, which can aid planners by identifying which areas are more vulnerable to

post-fire debris and flooding (Figure 2-4).
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Figure 2-4: The burn severity for the Station Fire and the Arroyo Seco (US Forest Service
Remote Sensing Center, 2011)

2.5 Summary of research needs

This preliminary study investigates the relationship between variables indicative of

wildfire behaviors and post-fire consequences. Fire studies show that post-fire flooding is

influenced by many parameters (i.e. climate, topography, available fuel, etc.) and we advocate

that these should be incorporated into current policies. This study requires further understanding

of NFIP rates and qualifications necessary for communities to be included in areas deemed

floodplain and disaster zones. Specifically, we will continue our research to understand how the

NFIP bases its rates and if rate adjustments based on fire hazards and parameters (presented in

this study) exist. We will continue to examine home fire insurances, local government, and land

use policy cases in California and Arizona and the incorporation of new tools to stimulate
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policies that minimize development at the WUI, improve homeowner preparation in fire-prone

areas, and improve post-fire recovery predictions.
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Chapter 3. Post-Fire Hydrologic Model Assessment

3.1 Motivation

Wildfires alter land surfaces, land-atmosphere interactions, and hydrologic response (i.e.

post-fire runoff and sediment response) (Debano, 2000; Moody and Martin, 2001; Ice et al.,

2004; Cydzik and Hogue, 2009; Pierson et al., 2008; Jung et al., 2009; Burke et al., 2010).

Wildfires are also occurring more frequently at the wildland-urban interface and impose threats

on development (Randeloff et al., 2005; Cannon and DeGraff, 2009). Climate change and

increasing wildfire frequency add to post-fire hydrologic variability (Westerling et al., 2006;

Trouet et al., 2008; Cannon and DeGraff, 2009). The ability to accurately model and predict

post-fire consequences is vital for human safety, ecosystem impacts, as well as effective and

efficient management of state and regional resources.

The U.S. Department of Agriculture (USDA) Forest Service Burn Area Emergency

Response (BAER) teams are deployed immediately after a wildfire is contained and determine

values at risk. With respect to hydrology, BAER teams focus on estimating potential increases in

post-fire runoff and sediment that place downstream values at risk or threaten human life and

natural resources. The hydrologic models incorporated into BAER assessments vary by region,

fire, modeler, accessibility, and ease of use (Foltz et al., 2009), and lack conformity.

Furthermore, many of these models’ performances have not been well documented within the

post-fire context.

Numerous models and techniques exist for post-fire peak discharge prediction, varying in

complexity (as a function of number of parameters), are used by BAER teams. The BAER teams

typically use empirical, event-based models. A U.S. Forest Service (USFS) survey on BAER

models (Napper, 2010), found that out of 44 responses, 25 modelers use the U.S. Geological
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Survey (USGS) Linear Regression Model, 10 use the USDA Windows Technical Release 55

(Win TR-55), 22 use Curve Number (CN) methods, 19 use the Water Erosion Prediction Project

(WEPP), 2 use the Fire Enhanced Runoff and Gully Initiation (FERGI), 8 use the Rowe

Countryman and Storey (RCS), and 2 use the United States Army Corps of Engineers

(USACE)Hydrologic Modeling System (HEC-HMS) model. The BAER survey brings attention

to the wide-range of models being utilized by the wildfire community and the need for more

systematic approaches (i.e. gathering parameters and adjusting models for post-fire conditions).

The models have not been evaluated over an extensive range of conditions and there is limited

literature on post-fire model performance evaluation and validation (Cydzik and Hogue, 2009).

Models not well tested or validated contribute to prediction uncertainty and should be used with

caution in post-fire conditions.

Models chosen for review in the current study include the Rowe Countryman and Story

(RCS), USGS Linear Regression Equations, WinTR-55, Wildcat5, and HEC-HMS. The RCS

method consists of look-up-tables (LUTs) for discharge and erosion rates for southern

Californian watersheds based on in-situ observations (Rowe et al., 1949). Notable fires such as

the 2003 Old and Grand Prix Fires, and the 2009 Station Fire in California, utilized the RCS

method for BAER post-fire hydrological predictions and management assessments (Biddinger et

al., 2003; Moore et al., 2009).

The USGS Linear Regression Equations have been used to estimate discharge across the

southwestern United States, primarily under pre-fire conditions. This method uses relationships

between discharge and climatic and physical characteristics of the contributing area. The 2010

BAER hydrological assessment of the Bull Fire (Stewart and Kaplan-Henry, 2010) used a



33

variation of the USGS Linear Regression Model, calibrated towards local conditions (Kaplan-

Henry, 2007).

The Win TR-55, Wildcat5, and HEC-HMS utilize curve number (CN) methodology, but

the three systems vary by model parameters, constraints and developed interface. Several of the

models have been previously applied to the Hayman Fire (Wildcat4) and Valley-Complex (Soil

Conservation Service (SCS) runoff curve number method, customized in Excel; Burned Area

Emergency Rehabilitation Team, Valley Fire Complex, 2000) and the Old Fire (HEC-HMS;

Cydzik and Hogue, 2009). The CN method has been noted for having more uncertainty in

predictions when estimating at the extremes, especially during low flow and low rainfall

conditions (Hawkins, 1975). The HEC-HMS model was analyzed by Cydzik and Hogue (2009)

under pre- and post-fire conditions. Results showed significant changes from pre- to post-fire

parameters values as well as trends in several variables (initial abstractions, curve number, and

lag time) over a three-year recovery period. The CN returned to pre-fire values by the end of the

second post-fire year, initial abstractions reached pre-fire conditions after the third rainy season,

and the lag time remained lower than pre-fire values throughout the three-year study period

(Cydzik and Hogue, 2009).

The current study undertakes one of the first model intercomparisons for a range of

event-based hydrologic models utilized under pre- and post-fire watershed conditions. We also

outline the various modeling platforms, parameter acquisition (inputs and outputs), and

necessary parameter alterations for pre- and post-fire simulations. All study models are used

extensively by the USFS BAER teams as well as other operational and research communities.

Specifically the objectives of our work are to: 1) review a range of event-based hydrologic

models utilized in post-fire modeling of peak flow events, 2) evaluate the models’ performance
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across a range of diverse fire sites in California, Colorado, and Montana, 3) demonstrate

potential improvements in calibrated models where data are available, and 4) provide guidance

on model constraints and application in diverse post-fire regimes. Ultimately, we hope to

facilitate a uniform framework and calibration approach for improved post-fire hydrologic

practices and modeling assessments across multi-jurisdictional fires in the western U.S.

3.2 Methods

3.2.1 Models

Study models and related descriptions of requirements as well as system outputs have

been organized by level of complexity (Table 3-1). Most models include geomorphic parameters

that describe the physical watershed such as size, slope, or lengths. Forcing data typically

includes precipitation, storm intensity, or storm duration. In the current study, smaller basins are

modeled as lumped (basin inputs and parameter are uniform) and larger watersheds are

distributed (basin inputs and parameters vary by sub-basin). In both cases, modeled basin outputs

include peak discharge or a complete discharge hydrograph at the outlet. After pre-fire models

are established, models are altered using published literature or documentation to create post-fire

models. It is important to note that the tested hydrologic models do not include algorithms for

sediment or debris bulking factors. Bulking factors increase the clear water discharge to

represent the high concentrations of sediment typical of post-fire conditions (Gusman et al.,

2009).
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Table 3-1: Summary of models utilized in the current study, including model creator, platform
for application, constraints on watershed size, and model outputs.

Model Creator Platform Most suitable
watershed size Outputs

RCS
Rowe Countryman
Storey LUTs N/A Qpk, sediment

USGS Linear
Regression USGS

Regional USGS
regression eqns >5 mi2 Qpk

Curve Number (CN) Methods

TR-55 USDA NRCS WinTR-55 <25 mi2
Qpk and time,
hydrograph

Wildcat 5
USFS, Stream
Team, Fort
Collins, CO

Microsoft Excel
macros (2003 or
later) <5 mi2 Qpk and time,

hydrograph

USACE HEC-
HMS U.S. Army Corps Windows Flexible

Storm
hydrograph,
Qpk and time

RCS

The Rowe Countryman and Storey (RCS) is a method for estimating flood peaks and

erosion for basins within the national forests of southern California (Rowe et al., 1949). The RCS

method establishes reasonable estimates through detailed look-up-tables of the average

frequency and size of peak flow events and erosion rates associated with normal (unburned)

conditions, the effect of burned vegetation, and the recovery of vegetation and hydrology with

respect to time. Rowe et al. (1949) undertook extensive observations across southern California

watersheds (along the coast from the Mexican border to San Luis Obispo) and developed

relationships for peak discharge frequencies for over 250 watersheds within five zones.

Relationships were then established between storm precipitation and post-fire peak discharge for

watersheds in each specific storm zone and determined the changes in these flows for subsequent
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post-fire years. The method is still used for runoff estimates in many southern Californian

watersheds.

USGS Linear Regression Equations

The USGS Linear Regression Equations (USGS) is developed for estimating 2-, 5-, 10-,

25-, 50-, and occasionally 100-yr peak discharge for ungaged sites across the southwestern

United States. The least squares regression equations are produced for broad regions using long-

term discharge observations. In the current study we implement regression equations previously

developed for the Sierra (California), South Coast (California), Mountain (Colorado), Upper

Yellowstone (Montana), and West (Montana) regions. The general regional equations and

variables used in this study are outlined below (relevant coefficients are provided in Table 3-2):
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Sierra, California (Waananen and Crippen, 1977): Qt = kAaPbHc

South Coast, California (Waananen and Crippen, 1977): Qt = kAaPb

Mountain, Colorado (Vaill, 2000): Qt = kAa(S+1)b

Upper Yellowstone-Central Mountain, Montana (Omang, 1992): Qt = kAa(E/1000)b(HE+10)c

West, Montana (Omang, 1992): Qt = kAaPb

where:

t = recurrence interval

A = watershed area [mi2]

P = mean annual precipitation [in]

H = altitude index (average of elevations at points 10% and 85% along the channel in

thousands of feet)

E = mean basin elevation [ft]

S = slope

HE = basin high elevation index (percentage of the total basin area above 6,000 ft)
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Table 3-2: USGS Linear Regression Models and coefficients for each recurrence interval used in
the current study, where t = recurrence interval, A = watershed area [mi2], P = mean annual
precipitation [in], H = altitude index (average of elevations at points 10% and 85% along the
channel in thousands of feet), E = mean basin elevation [ft], S = slope, and HE = high elevation
index (percentage of the total basin area above 6,000 ft).

Regional
Equation Sierra South

Coast Mountain Upper Yellowstone-
Central Mountain West

State California California Colorado Montana Montana

Sites Bull

Arroyo
Seco
Devil
Canyon

Hayman Fridley Valley-
Complex

Equation Qt=kAaPbHc Qt=kAaPb Qt=kAa(S+1)b Qt=kAa(E/1000)b(HE+10)c Qt=kAaPb

t =2-yr

k=0.24,
a=0.88,
b=1.58,
c=-0.80

k=0.14,
a=0.72,
b=1.62

k=11.0,
a=0.663,
b=3.465

k=0.177, a=0.85,
b=3.57, c=-0.57

k=0.042,
a=0.94,
b=1.49

t =5-yr

k=1.20,
a=0.82,
b=1.37,
c=-0.64

k=0.40,
a=0.77,
b=1.69

k=17.9,
a=0.677,
b=2.739

k=0.960, a=0.79,
b=3.44, c=-0.82

k=0.140,
a=0.90,
b=1.31

t =10-yr

k=2.63,
a=0.80,
b=1.25,
c=-0.58

k=0.63,
a=0.79,
b=1.75

k=23.0,
a=0.685,
b=2.364

k=2.71, a=0.77,
b=3.36, c=-0.94

k=0.253,
a=0.89,
b=1.25

t =25-yr

k=6.55,
a=0.79,
b=1.12,
c=-0.52

k=1.10,
a=0.81,
b=1.81

k=29.4,
a=0.695,
b=2.004

k=8.54, a=0.74,
b=3.16, c=-1.03

k=0.379,
a=0.87,
b=1.19

t =50-yr

k=10.4,
a=0.78,
b=1.06,
c=-0.48

k=1.50,
a=0.82,
b=1.85

k=34.5,
a=0.700,
b=1.768

k=19.0, a=0.72,
b=2.95, c=-1.05

k=0.496,
a=0.86,
b=1.17

Curve Number Methodology

The Curve Number (CN) method is an empirical method commonly used for runoff

estimation and was developed by the USDA Natural Resources Conservation Service (NRCS) to

estimate runoff depth (USDA SCS, 1991). The USDA Win TR-55, Wildcat5, and USACE HEC-

HMS models all utilize the CN method with varying user interfaces and parameter requirements.
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The SCS CN method considers rainfall, hydrologic soils, land cover type, treatment and

conservation practices, hydrologic conditions, and topography. The selected CN value is a

function of land cover type, soil properties, and antecedent moisture conditions, which can be

estimated from look-up-tables or geospatial data sets. The SCS method considers four hydrologic

soil groups (A, B, C, and D), categorized by similar physical structure (i.e. texture), infiltration

and runoff characteristics (i.e. degree of swelling when saturated, transmission rate of water)

(USDA NRCS, 2007). Soil group runoff potential increases from low (A) to high (D) and

decreases from free water transmission (A) to restricted water transmission (D). The models

accommodate three pre-defined rainfall distributions types – Type I, IA, and III, which are based

on climate zones across the United States (USDA NRCS, 2009). Type I and IA represent the

Pacific maritime climate (wet winters and dry summers). Type IA is the most gradual rainfall

distribution type and Types II and III represent similar distributions of intense, short duration

rainfall.

The volume of runoff (Pe) is estimated using the CN and cumulative precipitation for a

specified duration. The empirical formulation of the uniform loss applied throughout a storm

includes:

101000


CN
S

Equation 3-1

where:

S = Storage

CN = estimated CN value
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Equation 3-2

where:

Ia=initial abstractions [in]

SIP
IPP
a

a
e 
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Equation 3-3

where:

Pe= precipitation excess (runoff depth) [in]

P=total storm precipitation [in]

For consistency, the SCS Dimensionless Unit Hydrograph (UH), an empirical method

used to route flow to a designated output location or design point, is selected for use in the

Wildcat5, Win TR-55, and the HEC-HMS models. The SCSUH method uses time of

concentration, Tc, which is defined as the time for a particle of water to travel from the furthest

point of the watershed to the design point (SCS, 1991):
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Equation 3-4

where:

Tc = time of concentration [hours]

L = watershed length [ft]

Y = watershed slope [%]

S = storage

The UH provides a simple method for quantifying the effect of a unit of rainfall on a

corresponding unit of runoff and estimates peak discharge by constructing a hydrograph based

on the variables lag time, time to peak, and base time.

Lag time is subsequently defined as:

cL TT 6.0
Equation 3-5

where:

TL = lag-time [hours]; which is the time from the center of mass of rainfall to the time of

peak discharge

Time to peak (Tp) is defined as:
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cp TT 67.0

Equation 3-6

where:

Tp = time to peak [hours]; which is the time from the beginning of rainfall to the time of

peak discharge

Base time (Tb) is defined as:

pb TT 67.2
Equation 3-7

where:

Tb = base time [hours]; which is the duration of the storm response

Finally, peak discharge (Qp) is defined as:

p
p T

AQ 484

Equation 3-8

where:

Qp = peak discharge [cfs]

A = area [mi2]

Wildcat5

The Wildcat5 is used extensively in US Forest Service applications to wildlands

(Hawkins and Munoz, 2011). The model is spreadsheet based (Microsoft Office Excel (2003 or

later)) whose inputs include storm characteristics, watershed soil and cover (to calculate runoff
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depths), timing parameters (related to time of concentration), and unit hydrograph selection. The

outputs include a calculated hydrograph and peak runoff (Hawkins and Munoz, 2011).

Win TR-55

Win TR-55 (TR-55) is a CN-based model for small watersheds (less than 25 mi2) that is

capable of accommodating up to ten homogenous sub-basins. The model calculates storm runoff

volume, peakflow rate, hydrograph, and storage volume for storm water management (USDA

NRCS, 2009). Storm data required by TR-55 includes: rainfall return period (year), 24-hour

rainfall amount (inch), and rainfall distribution type (function of rainfall intensity). The TR-55

uses the Muskingum-Cunge for routing with time of concentration manually inputted or

calculated using the following parameters: length (ft), slope (ft/s), surface (Manning’s n), and

velocity (ft/s), for sheet, shallow concentrated, and channel flow types. Using the NOAA Atlas

of precipitation to determine 24-hour storm depths for each recurrence interval, the TR-55

outputs corresponding peak streamflow values.

HEC-HMS

The HEC-HMS is a modular framework developed by the United States Army Corps of

Engineers (USCAE) where the CN methodology is used to simulate precipitation-runoff

processes based on physiographic data within watershed systems. The model can be used to

simulate observed events over a system (user-defined meteorological forcing) or to simulate pre-

defined design storms. The HEC-HMS has a more complex GUI interface, however the

modeling framework includes options for numerous physical configurations of a watershed (sub-

basin, reach, junction, etc.), including a variety of sub-basin loss methods (SCS CN selected for
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this study), runoff transformation methods (SCS unit hydrograph selected), and open channel

routing methods (Muskingum-Cunge selected) (USACE, 2010). In addition to parameters

necessary for the SCS method, the HEC-HMS model has options to include storm baseflow in

runoff prediction.

3.2.2 Post-fire models

To simulate post-fire conditions, model parameters are adjusted to reflect changes in

watershed properties. The look-up-tables for the RCS method incorporate post-fire peak flow

and erosion rates for time intervals up to 30 years after fire. The USGS regression equations and

CN models are altered using the following methodology (Foltz et al., 2009).

USGS Linear Regression Equations

The USGS uses estimated modifiers to scale pre-fire runoff values to post-fire runoff

values. The modifier is a function of the burn severity and a parameter that accounts for

increased runoff. The pre-fire Qn is then multiplied by the modifier to produce an estimate of

post-fire runoff for each return interval. There are no standard guidelines to determine post-fire

modifiers; BAER team members utilize their own methods, varying by region, model, or

modeler (Foltz et al., 2009). For this study the modifier is calculated using Foltz et al. (2009):
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Equation 3-9

where:

AH = Area of high burn severity [mi2]

AM = Area of moderate burn severity [mi2]

AT = total watershed area [mi2]

%ROincrease = percent of runoff increase, post-fire [%]

Methods for estimating the %RO increase for the post-fire year are not well defined. In

the current study, the %RO increase is estimated using long-term streamflow records from

burned watersheds or previously published studies. Regional watersheds, City Creek (USGS

gage 11055800), Devil Canyon (USGS gage 11063680), and Arroyo Seco (USGS

gage11098000) that have pre- and post-fire streamflow records are used to estimate a %RO

parameter for the southern California watersheds. The Colorado and Montana %RO parameter

values are based on Robichaud et al. (2008), while the Bull Fire %/RO increase parameter is

based on Moore et al. (2009). There is significant uncertainty in the modifier method as the

increase in runoff is basically estimated a priori through the %RO parameter. Reducing the

uncertainty in the modifier value for the USGS regression equation approach is outside the scope

of this study, but is a subject for future investigation.
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Curve Number Models

To adjust the CN parameter for post-fire land cover conditions, the following guidelines

developed by Higginson and Jarnecke (2007) are utilized (note that the maximum CN value is

100):

Low burn severity CN = pre-fire CN + 5

Moderate burn severity CN = pre-fire CN + 10

High burn severity CN = pre-fire CN + 15

3.2.3 Data resources and parameters

A range of parameters must be acquired for pre- and post-fire model development. These

parameters are often estimated using various methods (including maps, local knowledge, etc.)

and implemented into models to predict peak flow events. Electronic databases provide objective

and readily accessible tools for the acquisition of relevant model parameters (Table 3-3). A

Digital Elevation Map (DEM) can be utilized to determine contributing watershed area, basin

geophysical characteristics (slope, slope aspect, or lengths), and stream features, and are acquired

from the US Geological Survey (USGS) (http://seamless.usgs.gov/). Land cover classification is

used to estimate pre-fire land cover and is provided by the USGS

(http://www.mrlc.gov/finddata.php). National Land Cover datasets (2001 and 2006) are 16-class

land cover products across the United States with 30 meter spatial resolution. The classification

is developed from the unsupervised Landsat Enhanced Thematic Mapper+ (ETM+) satellite data.

The USDA Natural Resources Conservation Services (NRCS) provides a Web Soil Survey for

the contiguous United States (http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm). Soil type
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is used to establish model infiltration parameters and the partitioning between incoming

precipitation and surface runoff.

Burn severity, required for post-fire CN adjustment, is a representation of the boundary

and degree of burn within a wildfire (Key and Benson, 2004). Digital burn severity maps are

typically generated from remote sensing products such as Landsat and are validated in situ by

BAER teams. The validated maps are known as Burned Area Reflectance Classification (BARC)

maps and can be acquired from a remote sensing database developed by the USDA Forest

Service Remote Sensing Applications Center (RSAC) (http://www.fs.fed.us/eng/rsac/baer/).

All study models require representation of precipitation amount, frequency, intensity or

duration. Alternatively, a design storm or a representation of the variation of precipitation depth

over time can be used. The National Oceanic and Atmospheric Administration (NOAA) National

Weather Service (NWS) provides the NOAA Precipitation Frequency Estimates at various

durations (i.e. 5-min, 10-min, 24-hour, weekly, etc.) and recurrence intervals (i.e. 1-, 2-, 5-, 10-

year, etc.) for the United States with 90% confidence intervals

(http://hdsc.nws.noaa.gov/hdsc/pfds/index.html).
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Table 3-3: Websites with relevant databases used to obtain pre- and post-fire model parameters
and input data.

Electronic
Resources Source Parameters

Digital Elevation
Map

USGS Digital Elevation Map
(http://seamless.usgs.gov/)

Geophysical
parameters;
routing

Land cover National Land Cover Database (2001 and 2006)
(http://www.mrlc.gov/finddata.php) Curve number

Soil classification
USDA Natural Resources Conservation Service
(http://websoilsurvey.nrcs.usda.gov/app/HomePage.
htm)

Curve number

Climate National Oceanic and Atmospheric Administration
(http://hdsc.nws.noaa.gov/hdsc/pfds/index.html) Design storms

Burned Area
Reflectance
Classifications

Remote Sensing Applications Center
(http://www.fs.fed.us/eng/rsac/baer/) Burn severity

3.2.4 Study areas

Model evaluation was undertaken for six basins in the Western U.S. for both pre- and

post-fire conditions (Tables 3-4 and 3-5).The study sites are located within California, Colorado

and Montana and provide a range of hydroclimatic conditions and burn severity levels (Table 3-

5). Where observations are available, the models are calibrated for pre- and post-fire conditions

(Table 3-4). Southern California sites include the 2003 Old Fire in the San Bernardino

Mountains (Devil Canyon) and the 2009 Station Fire in the San Gabriel Mountains (Arroyo

Seco). The 2010 Bull Fire in the southern Sequoia, California (Bull #3), is also utilized within

the current study. Other study sites include the Hayman Fire in Colorado (2002), and the Valley-

Complex (2000) and Fridley Fires in Montana (2001) (Robichaud et al., 2008; 2010).
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Table 3-4: Available pre- and post-fire models for each basin, where * indicates observational
data is available for pre-fire model calibrations and indicates post-fire models adjusted from the
calibrated pre-fire models.

Model Valley-
Complex, MT

Fridley,
MT

Hayman,
CO

Devil
Canyon, CA

Arroyo
Seco, CA

Bull
#3, CA

RCS --- --- --- Pre,
Post

Pre,
Post ---

USGS
Linear
Regression

Pre,
Post

Pre,
Post

Pre,
Post

Pre,
Post

Pre,
Post

Pre,
Post

TR-55 Pre,
Post

Pre,
Post

Pre,
Post

Pre*,
Post*

Pre*,
Post*

Pre,
Post

Wildcat 5
Pre,
Post

Pre,
Post

Pre,
Post --- --- Pre,

Post
HEC-
HMS

Pre,
Post

Pre,
Post

Pre,
Post

Pre*,
Post*

Pre*,
Post*

Pre,
Post
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Table 3-5: General basin characteristics, including, nearest city/state, fire name and year, latitude
and longitude of basin outlet, area, outlet elevation, basin slope, and dominant pre-fire
vegetation.

Basin Location;
nearest city Fire, year

°N lat., Area
[km2]

Outlet
elev. [m]

Slope
[%]

Pre-fire
dominant
vegetation°W long.

Valley-
Complex

Western
MT; Sula

Valley-
Complex,

2000

45.91,
0.036 1720 46 forest•†

-114.03

Fridley
Southern

MT;
Emigrant

Fridley,
2001

45.51,
0.13 1930 43

shrubland/

-110.78 herbaceous•

†

Hayman
Central CO;

Lake
George

Hayman,
2002

39.18,
0.03 2440 33 forest•

-105.36

Devil
Canyon

Southern
CA; San

Bernardino
Old, 2003

34.208,
14 634 15

shrubland/

-117.331 forest•

Arroyo
Seco

Southern
CA; Station,

2009
34.221,

40 426 6
shrubland/

La Canada -118.178 forest†

Bull #3

Southern
Sequoia,

CA;
Kernville

Bull, 2010

35.835,

4.12 893 26

shrubland/

-118.46 forest†

•Homer et al., 2004 (National Land Cover Database, 2001)
†Fry et al., 2011 (National Land Cover Database, 2006)

3.2.5 Model evaluation

Pre-fire

Pre- and post-fire parameters and model forcing for the CN models were established

using the digital data bases and sources (Tables 3-3 and 3-6).We first undertake an assessment of

the pre-fire model performance to determine the relative accuracy of models where in situ data

(gage observations) are available. The Weibull method is commonly used to analyze streamflow

and estimate expected frequency of flows. It is based on the assumption that the peak discharge
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over a long period of time is evenly distributed and can be used to estimate a return period for

specific discharge peaks. Events that occur more frequently (2-yr, 5-yr, etc.) have smaller flow

volumes and consequently have higher probabilities of being exceeded. For each basin where a

long-term streamgage exists, a Weibull frequency distribution is generated using the observed

peak flow values (established USGS time series). The Weibull-generated discharge value for

each recurrence event is considered a reasonable approximation of the associated storm

frequency and allows comparison of modeled design storm simulations to an “observed” storm

frequency.
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Table 3-6: Summary of pre- and post-fire CN model parameters used in the Wildcat5, TR-55,
and HEC-HMS models.

Watershed Rainfall
Distribution°

Hydrologic
Soil Type

Pre-fire Post-fire

Curve
Number

Tc
[hr]

Dominant
Burn

Severity

Curve
Number

Tc
[hr]

Arroyo
Seco Type I C 72 5.14 66%

Moderate 81 3.94

AS* - Little
Bear Type I D 71 1.99 46% Low;

22% High
78 1.63

AS* -
Lower Type I C 73 4.33 49% Low;

31% High
81 3.41

AS* - Colby Type I C 73 2.69 24% Low;
45%

Moderate

80 2.19

Bull Fire #3 Type IA D 82 0.49 68%
Moderate

90 0.37

Devil
Canyon Type I C 73 2.09 63% High 86 1.39

Fridley Type II B 74 0.17 100% High 89 0.11

Hayman Type II D 79 0.14 100% High 94 0.08

Valley-
Complex Type II A 44 0.22 100% High 59 0.15

°24-hour rainfall distribution from NRCS
AS*indicates one of three sub-basins of the Arroyo Seco used in the distributed models

Post-fire

Evaluation of simulated discharge where no observed flow is available requires an

alternative approach. This occurs at our ungaged pre-fire sites and all post-fire sites. In these

cases, each model’s simulated discharge is compared to the mean of the modeled values for that

frequency. Given the lack of observations, we make the assumption that the multi-model is a
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reasonable proxy of the observed flow (Georgakakos et al., 2004; Ajami et al., 2006; Duan et al.,

2007).

3.2.6 Statistical evaluation

To evaluate performance, we utilize two metrics commonly used in model assessment

(Hogue et al., 2000, 2006; Cydzik and Hogue, 2009), root mean square error (RMSE) and

percent bias:

 
n

QQ
Error Square MeanRoot obsmodel

2


Equation 10

where:

n=1

%100*
obs

obsmodel

Q
QQBiasPercent 



Equation 11

where:

Qmodel = modeled discharge at a specific recurrence interval

Qobs = observed discharge (either Weibull or multi-model average)

3.2.7 Model calibration

Pre-fire models are calibrated to improve peak flow estimations, where observational data

are available (Arroyo Seco and Devil Canyon). Similarly, only models whose parameters allow

for adjustment are calibrated (TR-55 and HEC-HMS). Curve numbers and parameters dependent

on the curve number are adjusted to better match pre-fire observations using statistics and visual



54

inspection of hydrographs. Calibration efforts focus primarily on matching peak discharge, with

a secondary focus on discharge volume. The TR-55 is calibrated by adjusting the CN until the

peak discharge matches for each recurrence interval, while the HEC-HMS model is calibrated by

adjusting the CN, Ia, and lag time (Table 3-7). The calibrated pre-fire models are then adjusted

for post-fire conditions using established modifier methods.

Table 3-7: Uncalibrated (Uncal) and calibrated (Cal) parameters for Arroyo Seco lumped and
distributed models (the distributed model consist of three sub-basins denoted with AS). S5 and
S7 identify the storms shown in this study.

TR-55 Type CN TL[hr] Tc [hr] Ia [cm]

Lumped Uncal 72 --- 5.14 ---
Cal 51 --- 6.80 ---

HEC-HMS Type CN TL[hr] Tc [hr] Ia [cm]

Lumped
Uncal 72 6.17 10.28 0.99
Cal S5 45.5 3.17 5.28 10.39
Cal S7 35.25 5.25 8.75 10.80

AS - Colby
Uncal 73 1.61 2.69 1.88
Cal S5 21 2.08 3.47 8.13
Cal S7 21 2.33 3.89 7.87

AS - Little-Bear
Uncal 71 1.19 1.99 2.08
Cal S5 21 2.67 4.44 7.62
Cal S7 21 1.67 2.78 7.87

AS - Lower
Uncal 73 2.59 4.32 1.88
Cal S5 21 6.67 11.11 8.13
Cal S7 21 3.75 6.25 7.87

3.3 Results and discussion

3.3.1 Pre- and post-fire peak discharge

The TR-55, HEC-HMS, and USGS Regression method are adaptable to all of our study

sites (all basins are modeled; Table 3-5). The RCS method is only applicable to the two study

sites in southern California (Arroyo Seco and Devil Canyon). The Wildcat5 is applied to all sites
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except the Arroyo Seco and Devil Canyon. Only the TR-55 and HEC-HMS are utilized for

calibration – and only for the Arroyo Seco and Devil Canyon watersheds where pre-fire data is

available. We normalize each modeled outflow by basin area to evaluate performance across the

study sites.

Model performance across the sites is highly variable under both pre- and post-fire

conditions (Figure 3-1).Modeled discharge increases from small to large events for each

watershed and at each event there is variability as a function of site. Where applicable, the RCS

performs relatively well compared to observational data (Figures 3-1a and 3-1b). The USGS

performs well at the lower peak discharge events and generally shows increasing error for larger

events (Figures 3-1c and 3-1d). The Wildcat5 is the most limited in application of the CN

models, but seems to perform the best overall without calibration (Figures 3-1e and 3-1f). For

one of the smallest study sites (Valley-Complex; 0.036 km2) the model did not generate runoff

(Fig 3-1e and 3-1f). The uncalibrated TR-55 (Figures 3-1g and 3-1h) and HEC-HMS (Figures 3-

1i and 3-1j) models significantly over-predict discharge for all basins. The calibrated models

(Arroyo Seco and City Creek) significantly reduce discharge predictions, by decreasing the CN

and increasing initial abstractions. Both models at both sites produce improved estimates of

observed peak discharge. Uncalibrated model predictions for the Bull, Hayman, Valley, and

Fridley (smaller watersheds) are significantly larger than the calibrated Arroyo Seco and City

Creek values, indicating that these models would benefit from calibration.

The peak discharge per unit area is highly influenced by watershed elevation and slope

(Table 3-5). In the CN models, slope influences the time of concentration; steeper slopes equate

to smaller residence time within the basin. The shorter time of concentration values produce

more immediate discharge, especially under post-fire conditions. Higher elevation watersheds
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generally receive more precipitation, also contributing to larger runoff. Similarly the location of

each site determines the rainfall distribution type used as input to the USGS and CN models,

which has a significant influence in the predicted discharge. Type II rainfall distributions

(Colorado and Montana) have larger runoff in response to more intense precipitation events. This

is extremely pronounced in the Q25, Q50, and all post-fire events. Type I rainfall distributions

(Devil Canyon and Arroyo Seco) show similar discharge per unit area for the TR-55 and HEC-

HMS. Type IA (Bull Fire) is the least intense distribution type and generally predicts less

discharge per unit area than the other sites.

Figure 3-1: Modeled discharge for each basin according to each pre- and post-fire model: RCS (a
and b), USGS (c and d), Wildcat5 (e and f), TR-55 (g and h), and HEC-HMS (i and j). For the
Arroyo Seco and Devil Canyon watersheds, uncalibrated and calibrated models are the average
of the lumped and distributed uncalibrated and calibrated results.
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Further analysis shows that peak discharge for each recurrence interval is highly variable

between the study models for three focus watersheds – the Arroyo Seco (Figures 3-2a and 3-2b),

Bull Fire #3 (Figures 3-2c and 3-2d), and Hayman (Figures 3-2e and 3-2f) fires. Bull Fire #3 pre-

and post-fire models (Figures 3-2c and 3-2d) do not include the RCS (outside of southern

California), calibrated TR-55 (no observational data), or calibrated HEC-HMS models (no

observational data). The Hayman pre- and post-fire models do not include the RCS (outside of

southern California), calibrated TR-55 (no observational data), or calibrated HEC-HMS models

(no observational data). The USGS model is available for all study sites. In general, the models

show more discrepancy at the larger events (Q25 and Q50) where there is more intra-model

variability and larger uncertainty. The uncalibrated TR-55 and HEC-HMS pre-fire models for the

Arroyo Seco watershed, where there is observational data, significantly over-predict peak

discharge, while the other models under-predict for Q2-Q10 events (Figure 3-2a). At the Q25

and Q50, the USGS, uncalibrated TR-55, calibrated TR-55, and uncalibrated HEC-HMS models

over-predict peak discharge. The Wildcat5 appears to perform the best with the model average

for the pre-fire Bull Fire #3 and Hayman, while the TR-55 uncalibrated model estimates the most

discharge for each event (Figures 3-2c and 3-2d).When the Wildcat5 is applied to the Arroyo

Seco despite recommended watershed size (not shown), the model significantly over-estimates

peak discharge. The Wildcat5 seems the most well adapted for peak discharge modeling, but

application is limited by watershed size. The Bull #3 and Hayman (Figures 3-2c-3-2f) show

similar intra-model variability for each event. Generally, in the Bull Fire #3 and Hayman, the

uncalibrated TR-55 predicts significantly more discharge than the other models; contributing to

increased post-fire runoff response, while the HEC-HMS modeled discharge tends to be similar

to the model average.
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A sensitivity analysis (not shown) showed discharge estimated using the CN models is

highly sensitive to rainfall input and curve number (refer to Table 3-5 for CN model parameters).

Some of the California watersheds are on the boundary between NRCS Type I and IA rainfall

distribution types. Type IA is less intense rainfall than Type I; both types were modeled for these

basins and results showed significant influence of rainfall type on runoff production. Type I was

ultimately chosen given this distribution provided simulations that better matched observational

discharge. Similarly, the CN significantly influences the volume of predicted runoff. Lowering

the CN decreases the volume of discharge and raising the CN increases the volume. Both

parameters are subjective and contribute to model uncertainty due to the inconsistencies in CN

acquisition and rainfall distribution type.

The CN parameter is also significantly influenced by soil group (Table 3-6). The

California sites and Hayman site are generally characterized by soil types C (Arroyo Seco, City

Creek, Devil Canyon) and D (Bull Fire and Hayman), which generate moderate (type C) and

high (type D) runoff potential when thoroughly wet. In both soil groups, C and D, water

transmission is restricted. The Fridley site is characterized by soil type B, which is defined as

moderately low runoff potential and unimpeded water transmission. The Valley-Complex site is

characterized by soil type A, which is defined as low runoff potential and free water transmission

through the soil. This is seen in the Valley-Complex site, which is comparable in size to the

Hayman site, but generates significantly less discharge (Figure 3-1). Immediately post-fire the

soils are highly hydrophobic and increase runoff. Recovery to pre-fire conditions, the breakdown

of the hydrophobic layer is dependent on amount and intensity of rainfall. The post-fire CN

parameters are simply modified (Higginson and Jarnecke, 2007) to reflect an increase in surface

runoff and a decrease in infiltration.
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Figure 3-2: Arroyo Seco (a and b), Bull Fire #3 (c and d), and Hayman (e and f) pre- and post-

fire peak discharge estimates for applicable models. The observational flow (Obs) for each

watershed is the USGS gage data (a) or the model average (b-f).

3.3.2 Calibration

The lumped and distributed Arroyo Seco design for the HEC-HMS model result in

distinct differences for both uncalibrated and calibrated parameters (Table 3-7).The CN

significantly decreases and the initial abstractions significantly increase in both the calibrated

lumped and distributed models, as a result of having to lower the water volume. The alteration in

CN and initial abstraction reflect sensitivity to soil type and land cover, which govern the

transmission of runoff into the soil. By decreasing the CN and increasing the initial abstraction

we are essentially altering the soil characteristics of our models to accommodate more

infiltration.
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The lag time for the lumped Arroyo Seco and Lower Arroyo Seco sub-basin are lowered

to move water more quickly from the upper parts of the basin to the outlet, which more

appropriately accounts for the steepness of the watershed. The lumped and distributed

simulations for two observed storms in the Arroyo Seco (24-28 December 2003 and 19-26

October 2004) show significant improvement after calibration (Figures 3-3b and 3-3d

(uncalibrated) vs. Figures 3-3a and 3-3c (calibrated)). The observed discharge is greatly over-

estimated by the uncalibrated lumped and uncalibrated distributed hydrographs for each storm

(Figures 3-3a and 3-3c). The calibrated distributed model is able to capture the peak and volume

of the observed storm better than the lumped model. Amore challenging storm from October

2000 resulted in simulations that did not adequately match the observed discharge (Figure 3-3d).

This may be due to the second pulse of precipitation, where both models over-predict discharge

response. Overall, the distributed calibrated model performs better than the lumped calibrated

model (Figure 3-3d).
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Figure 3-3: Uncalibrated (a and c) and calibrated (b and d) lumped and distributed hydrographs
for two observed storms in the Arroyo Seco.

The final calibrated parameters are next evaluated on two independent storm events

(Figure 3-4). The final parameter values generally results in adequate performance for the

lumped and distributed models for the27 February – 3 March 2006 storm (Figure 3-4a). A less

successful validation is highlighted for a storm occurring 5-11 February 2009 (Figure 3-4b).

Both validation storms show that both models are sensitive to precipitation volumes and

intensity, which is influenced by the initial abstraction parameter in the model. Overall the

distributed model performs better than the lumped model, demonstrating the influence of

including parameter variability throughout the basin.
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Figure 3-4: Selected validation storms for the Arroyo Seco lumped and distributed models.

3.3.3 Model uncertainty and errors

In general, model errors are highly variable across the basins and fire systems studied.

We show that model selection considerably affects errors in peak discharge for the pre- and post-

fire Arroyo Seco (Figures 3-5a, 3-5b, 3-6a, 3-6b), Bull #3 (Figures 3-5c, 3-5d, 3-6c, 3-6d), and

Hayman (Figures 3-5e, 3-5f, 3-6e, 3-6f) simulations. Generally, the RMSE for each model and

watershed increases with event size (Q2-Q50) and increased volume of runoff. The RCS predicts

pre-fire discharge well but also tends to show larger errors with larger events. The USGS

predictions are more variable between events and watersheds and have the largest error for all

the models for the pre- and post-fire Arroyo Seco (Figures 3-5a and 3-5b) and pre-fire Bull Fire

#3 (Figure 3-5c). The Arroyo Seco HEC-HMS uncalibrated distributed model has the largest

RMSE deviation relative to the other models for all events (Figures 3-5a and 3-5b). Pre-fire, the

HEC-HMS uncalibrated distributed, uncalibrated lumped, and uncalibrated TR-55 have the

largest RMSE. The USGS shows larger RMSE at the Q25 and Q50 events. For the Bull #3, the

USGS and TR-55 (Figures 3-5c and 3-5d) show the largest RMSE for all events. Overall, the

Wildcat5 shows more consistent RMSE for all events pre- and post-fire (Figures 3-5c and 3-5d).
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The Hayman fire models show increasing RMSE with larger events and the TR-55 has the

largest RMSE followed by the USGS model (Figures 3-5e and 3-5f). Generally the TR-55

(uncalibrated) over-predicts discharge for all watersheds and has the highest error for the post-

fire Bull Fire #3 (Figure 3-5d) and pre- and post-fire Hayman (Figures 3-5e and 3-5f). The

Wildcat5 does well relative to the other models and generally has the lowest error for the pre-

and post-fire Bull Fire #3 and Hayman sites (Figures 3-5c-3-5f). Calibration of the TR-55 and

HEC-HMS results in decreased peak discharge for each event and improves RMSE for both pre-

and post-fire models.
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Figure 3-5: RMSE for each model for pre- and post-fire Arroyo Seco (a, b), Bull #3 (c, d), and
Hayman (e, f) models.

The percent bias (Figure 3-6) highlights the tendency of models to under- or over-predict

peak discharge. The Arroyo Seco pre-fire HEC-HMS uncalibrated lumped and distributed

models and the TR-55 uncalibrated models all significantly over-estimate peak discharge (Figure

3-5a). The post-fire Arroyo Seco models also tend to under- and over-predict (Figure 3-5b). The

Bull #3 percent bias is less than the Arroyo Seco, which is likely due to sensitivity to the size of

the watersheds. The uncalibrated TR-55 and USGS have the largest absolute percent bias
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(Figures 3-6c and 3-6d). The uncalibrated TR-55 over-estimates the peak discharge for the

Hayman basin (Figures 3-6e and 3-6f).

The importance of model selection for a basin of interest is shown by the spread and

variance of modeled peak discharge values for each recurrence interval (Figure 3-7). Larger

basins with more flow show more inter-model variability for each prediction. The largest basin,

Arroyo Seco shows the largest spread between modeled discharge (Figures 3-7a and 3-7b) and

the smallest basin, Hayman shows the smallest spread between the models for each event

(Figures 3-7e and 3-7f). The models appear most sensitive to storm data (precipitation) and the

CN parameter. Undefined methods of estimating CNs (current methods consist of maps, field,

GIS, look-up-tables, or “user experience”) result in highly variable and uncertain peak flow

estimates. Results show that lack of calibration for pre- and post-fire models contribute to

inaccurate peak flow estimates and that models are not well adapted for variability in watershed

size.
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Figure 3-6: Percent bias for each model for pre- and post-fire Arroyo Seco (a, b), Bull #3 (c, d),
and Hayman (e, f) models.
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Figure 3-7: Spread of modeled peak discharge for the pre- and post-fire Arroyo Seco (a and b),
Bull #3 (c and d), and Hayman (e and f) models.

3.4 Conclusions

Wildfires drastically alter land surfaces and have significant post-fire consequences for

downstream communities and ecosystems. Climate change and increasing wildfire frequency add

to post-fire hydrologic variability (Cannon and DeGraff, 2009; Trouet et al., 2008; Westerling et

al., 2006), requiring a balance between efficient and accurate hydrologic modeling for post-fire
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predictions. Post-fire consequences at the WUI are especially of concern and require rapid and

accurate assessments to mitigate immediate and long-term threats. The USDA Forest Service

BAER teams and other scientists utilize hydrologic models to predict post-fire discharge that

help guide assessment and treatment decisions. Hydrologic models used during post-fire

assessments vary based on modeler preference, geographic region, parameter availability, and

ease of use and do not include algorithms for sediment or debris bulking factors. Lack of

standardized parameter acquisition, model usage, and assessment of model uncertainty reduce

confidence in model performance and ultimately affects management decisions and mitigation

costs.

In the current study, we review six models commonly used in post-fire hydrologic

assessments: RCS, USGS Linear Regression Equations, USDA Win TR-55, Wildcat5, and

USACE HEC-HMS. The models are tested on a range of diverse geographical and hydro-

climatic conditions. We also provide a compilation of resources used to collect parameters for

each study basin. Model performance is summarized as follows:

 Estimated peak discharge is highly variable depending on the model and parameter

selection within the system.

 The RCS method performs well compared to watersheds where there are observations,

but RCS has limited regional applicability (only applicable to southern California). The

RCS is also a static model that is not adaptable to changing geomorphology and climate

conditions.

 The USGS linear regression model includes a subjective modifier used to adjust towards

post-fire peak runoff (requires percent of runoff increase a priori), adding significant
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uncertainty in discharge estimates. The regional regression equations are broad and not

fine-tuned for specific watersheds, resulting in more variable performance.

 The Wildcat5 seems to perform the best overall without calibration, but application is

limited by basin size.

 The uncalibrated TR-55 tends to over-estimate peak discharge events for all watersheds,

and has more uncertainty during low flow events.

 The HEC-HMS model has a moderate learning curve due to its complex GUI and high

number of required parameters, but provides relatively good results, especially after

calibration. In addition, the HEC-HMS provides more flexibility for watershed set up (i.e.

loss methods, runoff transformations, routing) with user-defined model selections and

parameter input.

 The utilized CN models are sensitive to the rainfall distribution and the CN parameter.

Currently a standardized method to acquire and calibrate the CN models does not exist,

increasing uncertainty in model results.

Our results show that discharge estimates are highly variable for each watershed and

event and that no one model appears suitable for all watersheds. We recommend the HEC-HMS

if there is sufficient time and data to, at the minimum, calibrate a pre-fire model for the area of

interest. This model provides the most customizable model, which if used properly, can best

reflect watershed behaviors and properties. However, if calibration data or adequate time is not

available, the Wildcat5 is a good choice for watersheds meeting size requirements. Hydrologic

modelers may also keep in mind that a combination of models may best represent peak

discharge. Where one model is not applicable or representative, another model may perform
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better. Models in agreeance can provide more confidence in post-fire model predictions. CN

model variability is partly attributed to parameter input. Our study shows that hydrologic soil

group and rainfall distribution significantly alter model predictions. Generally, CN models tend

to over-estimate discharge and stems from CN over-estimation. Attention to model limitations

(i.e. geography, climate, watershed size) must be considered when selecting an appropriate

framework for simulation of pre- and post-fire peak discharge. The ability to accurately model

and predict post-fire hydrological consequences with improved confidence is critical for

reducing management costs and improving regional resource allocation.
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Chapter 4. Controls on Recovery in Post-Fire Watersheds

4.1 Motivation

Fire dramatically alters watershed processes. Loss of vegetation and soil transformation

alter normal flow patterns and disrupt expected hydrologic behavior for years after fire (Debano,

2000; Ice et al., 2004; McMichael et al., 2004; Pierson et al., 2008; Cydzik and Hogue, 2009;

Jung et al., 2009). Mediterranean systems are generally resilient to fire and have been noted to

exhibit fairly quick recovery (Horton and Kraebel, 1955; Wittenberg et al., 2007). However, non-

native plants can invade post-fire landscapes and alter hydrology and energy balances in semi-

arid regions (Prater and DeLucia, 2006). Succession of vegetation or type conversion due to fire

may also result in decreased evaporation and may be partly responsible for increased summer

streamflow in post-fire semi-arid systems (Meixner and Wohlgemuth, 2003). Although

ecosystem behavior and hydrologic recovery are linked, few studies have explicitly coupled

investigation of both processes in post-fire systems. Typical studies of post-fire dynamics in

chaparral dominated systems include field observations of vegetation recovery and resilience

(Horton and Kraebel, 1955; Keeley and Sterling, 1981; Keeley et al., 2008). Plant recovery

studies in post-fire chaparral shrublands demonstrate that parameters such as slope aspect and

stand age (last fire event) are important determinants of burn severity; older vegetation implies

more biomass, ground litter and fallen debris available to burn (Keeley et al., 2008). However,

fire history, pre-fire land attributes (i.e. plant species and land-use history), and event-dependent

characteristics such as fire severity and post-fire precipitation complicate predictions of post-fire

vegetation recovery (Duguy and Vallejo, 2008; Keeley et al., 2005; Pausas, 2003; Roder et al.,

2008).
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Various studies have utilized remotely-sensed data to link burn or fire severity to

hydrologic or soil behavior (Moody et al., 2007; Gonzalez-Pelayo et al., 2006). Vegetation

regeneration after fire has also been evaluated in Mediterranean systems using a range of

vegetation indices (Diaz-Delgado et al., 2002; McMichael et al., 2004; Roder et al., 2008;

Wittenberg et al., 2007; Wittenberg and Inbar, 2009). Many remotely-sensed vegetation indices

are available, with most studies utilizing Leaf Area Index (LAI) or Normalized Difference

Vegetation Index (NDVI) (i.e. Landsat-TM or spectral mixture analysis (SMA) from Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS)) as a proxy of green biomass or vegetation

activity present in post-fire systems (Diaz-Delgado et al., 1998, 2002; McMichael et al., 2004,

2006; Riano et al., 2002; Roder et al., 2008).

LAI is the leaf area per unit ground area and estimates the structural property of

vegetation canopy (Myneni et al., 1995). LAI is estimated through the inversion of a canopy

radiative transfer model that simulates radiative absorption and vegetation scattering (Myneni et

al., 1995). Uncertainties in the LAI product include background interference and atmospheric

scattering at the top of the atmosphere and top of the canopy (Myneni et al., 1995). NDVI uses

the normalized difference between red and near-infrared channels. The product is sensitive to

vegetation fraction and the rate of absorption of photosynthetic solar radiation (Gitelson et al.,

1996). NDVI is noted to be adequate for monitoring plant recovery processes, but has drawbacks

due to atmospheric and soil reflectance interference (McMichael et al, 2004; Wittenberg et al.,

2007). For example, darker soils result in higher NDVI values (Gao et al., 2000) and there are

non-linear relationships between NDVI and other vegetation variables, particularly under

increasing biomass conditions. NDVI reaches a saturation level before the maximum is reached

and may be most useful during initial post-fire conditions (Diaz-Delgado et al., 2002).



78

Vegetation indices used in post-fire recovery studies typically have high spatial resolution (e.g.

30m), but the number of images utilized over study sites has been limited (McMichael et al.,

2006; Roder et al., 2008).

Investigators have also worked toward improving vegetation indices and validating new

observations (Chen et al., 2005; Huete et al., 2002; Gao et al., 2000). The difference between the

reflectance of the blue and red bands can be used to correct the atmospheric influences afflicting

the NDVI parameter (Chen et al., 2005). The result is an Enhanced Vegetation Index (EVI) that

is less sensitive to atmospheric influences and contains a blue band correction factor (Gao et al.,

2000; Chen et al., 2005). EVI effectively monitors plant resilience, while reducing the effect of

soil and atmospheric background interference. Unlike NDVI, EVI remains sensitive to

vegetation at high biomass levels due to its sensitivity to canopy structure (Matsushita et al.,

2007; Chen et al., 2005; Huete et al., 2002; Gao et al., 2000). EVI has been shown to detect

variations in LAI, canopy type and architecture, plant structure, seasonal vegetation patterns,

land cover, and biophysical variations (Gao et al., 2000; Wittenberg et al., 2007).

Despite the extensive literature on the application of remote-sensing products to study

vegetation behavior, there is a lack of studies evaluating coupled ecosystem and hydrologic

response in burned watersheds – especially integrating data from advanced satellite platforms.

Several recent studies utilize field observations and five LANDSAT-based EVI images to

evaluate the resilience of vegetation in semi-arid (Mediterranean) systems and the long-term

effects of repeat fires on plant recovery (Wittenberg et al., 2007; Wittenberg and Inbar, 2009).

The authors conclude that north facing slopes tend to return to pre-fire conditions faster than

south facing slopes (in the northern hemisphere) and that remotely-sensed EVI helps detect pre-

and post-fire vegetation cover but does not provide information on specific vegetation species. A
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recent study by Casady et al. (2009) also utilizes MODIS EVI time series (every 16 days for 5

years) as a proxy for green biomass recovery with respect to slope aspect and burn severity and

develops a decision tree model to predict post-fire vegetation behavior.

The segregation of hydrologic or ecosystem recovery in previous post-fire studies

highlights the need for investigation of coupled ecohydrologic response in fire altered systems.

We advocate that simultaneous evaluation of EVI, burn severity, slope aspect and post-fire

climatology will improve our understanding of the dynamics of ecosystem regeneration in

burned watersheds and the corresponding seasonal and annual hydrologic response. Similar to

previous studies, our work focuses on the amount of post-fire green biomass detected as a proxy

of vegetation recovery and does not specifically identify plant species recovery (Keeley et al.,

2008; Wittenberg, et al., 2007; Casady et al., 2009).The objectives of the current study are to: 1)

investigate the influence of aspect, burn severity and precipitation patterns on post-fire

vegetation response (using EVI as a proxy), 2) determine the impact of selected determinants

(vegetation, burn severity, aspect, and climate) on post-fire hydrologic variability, and 3)

establish recovery patterns and trends of both vegetation and discharge in post-fire chaparral

systems.

4.2 Methods

We investigate hydrologic and ecologic recovery in two watersheds located in the San

Bernardino Mountains of Southern California that were burned during the Old Fire of 2003 (26

October 2003 - 06 November 2003). Both watersheds are predominantly covered by chaparral

with mixed forests in the higher elevations of the watersheds. To evaluate pre- and post-fire

vegetation activity, we utilize MODIS EVI (MOD13Q1), a 16-day product with 250m spatial
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resolution (Huete et al., 2002). Burn severity and slope aspect of each watershed are also

extracted and aggregated to 250m resolution using MODIS and USGS Digital Elevation Models

(DEMs). Estimates of EVI (16-day), burn severity, and slope aspect are then evaluated as to their

influence and control on post-fire hydrologic response in each watershed system.

4.2.1 Study areas

Southern California has a semi-arid, Mediterranean climate, including a relatively short

precipitation season (generally December to March) and an extended dry period over the summer

and fall season (NOAA, 2009a). Vegetation is primarily chaparral, sage, and scrub, with mixed

conifer in the upper elevations. Chaparral typically have deep rooted systems necessary for

obtaining water and surviving in hot dry climates (Schenk and Jackson, 2002), while shallow-

rooted vegetation (grasses) cannot access deeper water stores and are senescent when moisture at

the surface is depleted (Prater and DeLucia, 2006). The hydrology and vegetation of Southern

California are heavily influenced by periodic El Nino events (NOAA, 2009b), which typically

result in cooler, wetter conditions, and enhance vegetation growth. During the dry (fall) season,

the Santa Ana Winds are a natural occurrence, where hot, dry air is moved west from the desert

towards the ocean, drying out vegetation and encouraging ignited fires to spread (Keeley et al.,

2004).

The Devil Canyon watershed (Figure 4-1) is approximately 14 km2 and receives an

average of 840 mm of precipitation each year (San Bernardino County Flood Control District

(SBCFCD), 2008; data period from 1985-2010). Pre-fire vegetation for Devil Canyon watershed

was retrieved from Landsat Thematic Mapper and consists primarily of chaparral (55%) and

mixed forest at higher elevations (29%); the remaining 16% consists of a mixture of coastal
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sagescrub, developed areas, riparian zones, unvegetated areas, water, and woodlands (Minnich,

1988; NOAA, 2003). Devil Canyon exhibits vegetation, soil, relief, and atmospheric conditions

typical to Southern Californian urban-fringe watersheds. Devil Canyon was 97% burned during

the Old Fire. A historical fire perimeter data set provided by the California Department of

Forestry and Fire Protection (from ~1900 to 2010) reveals notable fire events in Devil Canyon

during 1918 (24% burned), 1924 (27% burned), and 1980 (28% burned). The last major fire

event was about twenty years ago in 1954 (92% burned). Keeley et al. (2004) note that Southern

California chaparral systems generally have a natural frequency rate of 30-40 years, indicating

that Devil Canyon is generally close to a natural fire regime. The elevation range in Devil

Canyon is 500 to 1700 meters and the overall watershed slope is 15% (USGS 7.5 min,

Quadrangle Map; Silverwood Lake and San Bernardino North). The soil in Devil Canyon is

associated with gravelly loamy sand, loamy sand, coarse loamy sand, sandy loam, and clay loam

(Hromadka, 1986; Mays, 2001).
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Figure 4-1: Pre-fire vegetation for Devil Canyon (left) and City Creek (right) retrieved from the
Landsat Thematic Mapper layer (30m; NOAA C-CAP, 2000). USGS Gage locations are also
plotted

The City Creek watershed (Figure 4-1) is approximately 51 km2 and is located just

southeast of the Devil Canyon catchment. The basin receives an average of 600 mm of

precipitation a year (San Bernardino County Flood Control District (SBCFCD), 2010; data

period from 1985-2010). City Creek consists primarily of chaparral (72%) and mixed evergreen

and mixed conifer forests (20%) at higher elevations; the remaining 8% consists of a mixture of

coastal sagescrub, developed areas, riparian zones, unvegetated areas, water, and woodlands

(Minnich, 1988; NOAA, 2003). City Creek was estimated as 94% burned by the Old Fire. The

California Department of Forestry and Fire Protection’s historic fire perimeter set reveals notable

fire events in City Creek in 1922 (53% burned), 1956 (61% burned), and 1970 (28% burned). In

2007, the Slide Fire burned less than five percent of the upper northeast of City Creek

(predominantly mixed forest). The portion of City Creek re-burned during the 2007 fire was
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classified by the USDA Forest Service Remote Sensing Applications Center as mostly

unchanged/very low and low burn severity (USDA Forest Service, 2007). City Creek’s elevation

range is 300 to 2100 meters and the overall watershed slope is estimated at 10% (USGS 7.5 min,

Quadrangle Map Harrison). The soil in City Creek is associated with clay loams, shallow sandy

loam, soils with low organic content, and soils higher in clay content (Hromadka, 1986; Mays,

2001). Refer to Table 4-1 for both watersheds’ general characteristics.

Table 4-1: Devil Canyon and City Creek watershed characteristics with pre- and post-fire runoff
ratios

Devil Canyon (DC) City Creek (CC)
Watershed Size 14.2 km2 50.8 km2

Watershed Slope 15% 10%
USGS Gage # 11063680 11055800
San Bernardino
Precipitation Gage # 2840 2860 and 3377

% Burned 97% 94%
Pre-Fire Vegetation (%) Chaparral 55% 72%

Mixed Forest 29% 20%

Average Runoff Ratio Pre-fire
(WY85-03) 0.19 0.22

Yearly Post-fire runoff
ratio

Post-fire
(WY04-10) 0.37 0.36
WY 2004 0.47 0.36
WY 2005 0.48 0.62
WY 2006 0.42 0.41
WY 2007 0.45 0.3
WY 2008 0.27 0.27
WY 2009 0.25 0.23
WY 2010 0.28 0.33

4.2.2 Hydrologic data

Precipitation data for the two watersheds are available from the San Bernardino County

Flood Control District for water years (WY) 1985 to 2010 (01 October 1984 to 30 September

2010). The Devil Canyon rain gage (Gage 2840) is located at the top of the watershed, while the
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City Creek rain gage (Gage 3377) is more centrally located in the middle elevation of the basin.

There were about 160 days of missing data for the study period for the City Creek gage and

additional gages (5140 and 5339) outside (5 and 5.5 miles respectively) of the watershed were

used to estimate missing values (filled by the inverse-distance weighting method).Daily

precipitation data for Devil Canyon is available for the period 02 October 1934 to present with

only 373 days of missing data. Gage 3377 in City Creek is approximately 13 km directly south of

the Devil Canyon gage, hence a linear regression was developed between the two gages to

establish a relationship and estimate missing precipitation at the Devil Canyon gage. During the

current study period, WY 2005 is noted as the second wettest year on record (NOAA, 2009a) and

WY 2002 is noted as the driest year on record (NOAA, 2009c).

USGS discharge data are available at the outlet of both watersheds (gages 11055800

(City Creek) and 11063680 (Devil Canyon)). Hydrologic observations (discharge, runoff depth,

and precipitation) were aggregated to various timescales, including monthly, seasonal and yearly

totals for water years 1986 to 2010 to evaluate pre- and post-fire behavior of the watersheds.

Additionally, discharge (Q) values were transformed to provide improved visualization of the

full range of flows. In particular, the transformed flows are more ideal for observing baseflow,

where the transformation expands the recessions (Hogue et al., 2000). Transformed flow, Q t, is

similar to a Box-Cox transformation (Box and Cox, 1964) and is calculated as follows:

 


 11 


QQt

Equation 4-1

Where λ= 0 equates to a log transformation and λ= 1 implies no transformation. In the current

study, we set λ= 0.3 (Hogue et al., 2000).Annual and seasonal discharge values are compared
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with corresponding EVI values for both pre- and post-fire periods. Each 250m EVI is further

classified by aspect and level of burn severity.

4.2.3 Distributed watershed aspect

Aspect is defined as the compass direction of the slope face in the watershed and is

classified using a Digital Elevation Model (DEM). Slope aspect influences the amount of

radiative forcing that a respective land surface receives, facilitating or deterring growth rates.

USGS DEMs were obtained for each watershed with a 10m resolution as Spatial Data Transfer

Standard (SDTS) and aggregated to a 250m x 250m resolution to match the remote sensing data

utilized in this study. Devil Canyon requires two DEM tiles (Silverwood Lake and San

Bernardino North) and City Creek requires the Harrison Mountain tile. Similarly to Wittenberg

et al. (2007), the current study categorizes the cell aspects into four primary directions; north

(315° to 45°), east (45° to 135°), south (135° to 225°), and west (225° to 315°) facing slopes.

4.2.4 Differenced normalized burn ratio

MODIS is a multi-spectral sensor on board the Aqua and Terra satellite platforms containing 36

spectral bands with wavelengths between 0.4 to 14.4 μm. Spatial resolutions include 250m,

500m, and 1000m and temporal resolution include daily, 8-day, 16-day, monthly, quarterly, or

yearly. Normalized Burn Ratio (NBR) is derived from remotely-sensed near infrared (NIR) and

mid-infrared (MIR) MODIS bands and provides an estimate of the burn severity level (loss of

vegetation) of a patch of land surface (Key and Benson, 2006). In the current study, NIR and

MIR bands from the MOD13Q1 tile are used to derive NBR images for pre-fire (30 September

2003) and post-fire (17 November 2003) dates. The developed pre- and post-fire NBR images
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are differenced to create a differenced NBR (dNBR) image, which differentiates between burned

and unburned areas (Key and Benson, 2006) and approximates the amount of vegetation density

lost directly from wildfire. Based on Key and Benson’s (2006) definition of severity levels,

dNBR severity levels were classified into the following categories: unburned (<+100), low

severity (+100 to +269), moderate severity (+270 to +659), and high severity (+660 to +1300).

The relative amount of vegetation biomass lost during the wildfire (burn severity) provides

insight on post-fire soil conditions (hydrophobicity, structure, etc.). 2.2.4

4.2.5 MODIS Vegetation Indices

MOD13Q1 is acquired from the EROS Data Center, whose database consists of various

atmospheric, hydrologic, and energy variables that can be applied to global vegetation

observations, hydrologic modeling, and other management applications. MOD13Q1 contains

vegetation parameters such as NDVI, EVI, and relevant QA (quality analysis) data (Huete et al.,

2002; Chen et al., 2005). The MOD13Q1 EVI data are utilized with a temporal resolution of 16

days and a spatial resolution of 250 meters. EVI data were collected from WY 2001 to 2010 (01

October 2000 – 30 September 2010). The equation used to derive MOD13Q1 (EVI) is noted as:
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Equation 4-2

where ρ*NIR is the near infrared reflectance, ρ*RED is the red channel reflectance, ρ*BLUE is the

blue channel reflectance, C1andC2 are the red and blue correction coefficients for atmospheric

resistance, respectively, and L is the canopy background brightness correction factor (Huete et

al., 2002; Cheng et al., 2005). Spatial and temporal EVI values were extracted and visualized,

and various spatial aggregations are undertaken (per aspect type, per burn severity group, per
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basin area, etc.). The extracted EVI time series values are used to quantify the total annual EVI

detected (summation of each 16-day EVI value per determinant over the entire water year) in

order to represent the total vegetation biomass (dead or living) for each pre- and post-fire year. A

single image or “snapshot” of EVI values will miss the variability present in vegetation, while

the accumulation of EVI detected over the course of a year will capture the vegetation activity

and variability. We also estimate a percent recovery for each post-fire year, relative to the three-

year pre-fire average, with respect to each burn severity and aspect.

4.2.6 Savitzky-Golay analysis

Further assessment of vegetation recovery rates is undertaken using the Savitzky-Golay (S-G)

least squares polynomial filter (Jonsson and Eklundh, 2004). An unfiltered EVI timeseries

contains “noise” or small scale temporal variations and, similar to previous studies, steps are

taken to filter this “noise” out to create a smoother signal for analysis. The EVI time series for

each aspect for each burn severity level is smoothed using the S-G method where the degree of

the polynomial regression is 1. After smoothing, the Casady et al. (2009) method is used to

develop a relationship between post-fire years. The EVI time series is normalized by the pre-fire

EVI mean (f EVI); making the post-fire EVI a fraction of the pre-fire EVI, also allowing for

evaluation of the post-fire EVI vegetation relative to pre-fire EVI levels. For each succeeding

post-fire year (WY 2004-2010), the f EVI is summed to derive the integrated annual EVI. The

annual integral is subsequently fit with a regression line using the least squares method, using the

following equation:
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)(10 YearfEVI  
Equation 4-3

wheref EVI is the annual integration of the fraction of EVI for each successive post-fire year, β1

is the slope that represents the recovery from year to year, and βo is the slope intercept. The

derived regression provides an estimate of the annual progression (rate) of vegetation recovery

throughout the study period for each slope aspect and burn severity level pair.

4.2.7 Analysis of variance

An Analysis of Variance (ANOVA) is employed to determine the significance of

relationships between study parameters. Discharge and EVI are separated annually and

seasonally (OND (Oct to Dec - fall), JFM (Jan to Mar - winter), AMJ (Apr to Jun - spring), and

JAS (Jul to Sep - summer)) and evaluated for statistical differences from the pre-fire period. We

test the null hypothesis that the mean of each discharge timeseries (WY 1986-2010; seasonal and

annual periods) is similar to the mean from the pre-fire data period (WY 1986-2003) (α=0.05).

For consistency, pre-fire discharge average is calculated by excluding El Nino years (given that

no El Nino years were noted in the post-fire period). We also evaluate the null hypothesis that

the mean of each yearly EVI timeseries (WY 2001-2010) is similar to the mean of the pre-fire

EVI period (WY 2001-2003). We perform a multiple ANOVA comparison (pair-wise design)

and evaluate successive pairs of post-fire means to the pre-fire average. This step-wise

comparison allows us to evaluate when pre-fire conditions (behavior) are generally restored.
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4.3 Results and discussion

4.3.1 General watershed behavior

Relevant characteristics, including precipitation, discharge, and average (basin-scale)

EVI values are evaluated for each watershed for WY 2001-2010 (Figure 4-2). Both watersheds

show a distinct (pulse) response to precipitation events during the winter season and minimal but

consistent baseflow response in the summer period. Post-fire, discharge is significantly elevated

for precipitation events that are of similar (or lower) amounts to pre-fire storms. In addition,

baseflow values are heightened during the post-fire summer periods, especially after WY 2005

and WY 2006 winter seasons. Vegetation (EVI) in both basins shows a prolonged and increased

response to precipitation events, with an extended sinusoidal seasonal pattern, peaking after the

peak rainfall/discharge flux in each basin. Devil Canyon (Figure 4-2a) also shows a slightly

higher basin-average EVI than City Creek (Figure 4-2b). We attribute this to the initial

difference in vegetation distributions (Devil Canyon has a higher percentage of mixed forest and

smaller percentage of chaparral than City Creek). Immediately post-fire (right of the vertical

dashed line), the EVI of both watersheds shows a sharp decline, with EVI values decreasing by

more than half. Significant winter rainfall during WY 2005 increases the EVI to near pre-fire

levels in both Devil Canyon and City Creek; however the EVI response is dampened again

during the next and subsequent seasons. This implies that the rainfall during WY 2005 resulted

in a brief “green-up” of watershed vegetation; however the green-up was not sustained for either

watershed. Discharge values remain elevated during the following summer period, and we

hypothesize that mature (deeper) root systems, which can tap into deeper soil water stores, were

not yet developed (Jung et al., 2009). Finally, the aggregate EVI signal of both watersheds does
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not appear to be back to pre-fire levels (maximum values are significantly lower) in the last year

of the study period (WY 2010).

Figure 4-2: General hydrology of Devil Canyon (a) and City Creek (b) including precipitation,
discharge (transformed) and16-day EVI. The dark grey line indicates the start date of the Old
Fire (23 October 2003).

4.3.2 Seasonal runoff ratios

Annual and seasonal (wet and dry) runoff ratios (depth runoff:depth precipitation) are

highlighted in Table 4-1 and Figure 4-3. In general, City Creek and Devil Canyon exhibit fairly

similar runoff ratios over the pre-fire period, including 0.19 for Devil Canyon and 0.22 for City

Creek. After fire, the average annual runoff ratios are significantly higher for both basins, with

Devil Canyon having a runoff ratio of 0.37 and City Creek having a runoff ratio of 0.36 for the
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entire post-fire study period (Table 4-1). A cumulative distribution analysis also indicates that

post-fire precipitation patterns are generally similar to the pre-fire cumulative precipitation

patterns. However, the post-fire runoff depth is significantly altered (larger) in both watersheds

relative to the pre-fire period (Table 4-1).

Figure 4-3: Runoff relationships, associated regression line, and correlation coefficient (R2) for
annual (WY 1985 –2008), wet (Oct – Mar), and dry (Apr – Sep) seasons for Devil Canyon (a, c,
e) and City Creek (b, d, f).Pre-fire years and seasons are shown with open circles, while post-fire
years and seasons are shown with filled symbols.

There is extra sensitivity to precipitation (increased runoff) during the extreme wet year

(WY 2005), and then a gradual decrease in the runoff ratios to WY 2009. From 2009 to 2010 the

runoff ratio for both watersheds show a slight increase from 0.25 to 0.28 (Devil Canyon) and
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0.23 to 0.33 (City Creek). WY 2010 was generally wetter than the preceding years (Figure 4-2),

which contributes to elevated runoff in Devil Canyon. City Creek exhibits a much larger increase

in runoff, which is partly due to the increased precipitation but also attributed to the 2007 Slide

Fire which occurred over a small portion of the basin. WYs 2007 through 2009 were relatively

dry and the burned areas may not have contributed to increased runoff.

The post-fire trend line (annual response) shifts upward for both Devil Canyon (Figure 4-

3a) and City Creek (Figure 4-3b). Investigation was also undertaken for both wet and dry

seasons; with the wet season defined as fall and winter periods (October to March) and the dry

season defined as spring and summer periods (April to September). During the wet season, the

post-fire runoff ratio is higher than the pre-fire runoff ratio in both Devil Canyon (Figure 4-3c)

and City Creek (Figure 4-3d). The post-fire regression line (relationship) is shifted up during the

wet period and a slightly increased slope is seen at City Creek (Figure 4-3d), indicating increased

discharge response for post-fire precipitation events that are similar to pre-fire levels. In both

watersheds, there is also significantly more discharge present during the dry season (Figures 4-3e

and 3f). Dry season runoff ratios are noticeably higher, especially in Devil Canyon (Figure 4-3e).

Devil Canyon is smaller and steeper; hence a quicker (and elevated) response is reasonable. The

highest runoff value in the post-fire study period is for WY 2005 (recorded as the second wettest

year on record; NOAA, 2009a). In WY 2009, the runoff ratio values are near the pre-fire range

and indicate the post-fire hydrologic response is returning to pre-fire conditions. These variations

within the flow and precipitation regimes are further investigated with analyses of observed

vegetation regrowth.
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4.3.3 ANOVA and confidence intervals

As expected, during the pre-fire period, discharge is generally similar (within the average

confidence interval) except for established El Nino years (WY 1993, 1995, 1997, 1998). Excess

precipitation during El Nino years produces increased flow and shows a statistically different

mean discharge from the pre-fire average. Annual and dry season confidence interval (CI) plots

for EVI and Q are presented for each watershed (Figure 4-4). Pre-fire discharge is highly

variable at the annual scale and wet season response tends to dominate the yearly trends. During

the post-fire period, the dry season discharge values are elevated and significantly different than

the estimated pre-fire average. This is especially evident during the extremely wet year (WY

2005) and the following year (WY 2006) which was influenced by residual moisture from the

preceding year (Figures 4-4c and 4-4d). Dry season EVI for Devil Canyon (Figure 4-4a) and City

Creek (Figure 4-4b) show an expected decrease in EVI values immediately post-fire, with a

general progression towards pre-fire values. During the extremely wet year (WY 2005),

vegetation responds to the high winter precipitation, means similar to pre-fire conditions.

However, the EVI response is not sustained and recedes between 2006 and 2008. During the

final year of the study period (WY 2010), Devil Canyon and City Creek’s average EVI for the

dry season are statistically similar to the pre-fire EVI.
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Figure 4-4: ANOVA (Confidence Intervals (CI)) results for the dry season period for Devil
Canyon EVI (a) and discharge (c) and City Creek EVI (b) and discharge (d). The vertical lines
around the pre-fire average represent the tested confidence interval. Post-fire years are shaded in
grey. Bolded water years outside of the tested confidence interval represent a statistically
different mean from the pre-fire period at a confidence level of α=0.05.

Table 4-2 highlights ANOVA results for each season; in general, the Devil Canyon post-

fire EVI does not show statistically similar means compared to the pre-fire average. The

vegetation and hydrology do show inter-relatedness; as demonstrated by the post-fire dry season

flows in both watersheds. As the EVI values increase, the discharge values trend towards pre-fire

values (Table 4-2), but still are not within the significance interval. Table 4-2 also shows that the

annual EVI in both watersheds are statistically different from the pre-fire mean for five to six

years.
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Table 4-2: Average EVI annual and seasonal values for October through December (OND),
January through March (JFM), April through June (AMJ), and July through September (JAS)
and ANOVA results for the pre-fire and post-fire periods, including the 16-day EVI average and
discharge (mean daily) for both Devil Canyon and City Creek

Devil Canyon - Mean EVI
Annual OND JFM AMJ JAS

Pre-Fire Avg 3.42E-01 3.12E-01 3.25E-01 3.84E-01 3.43E-01
2004 2.02E-01 1.56E-01 1.80E-01 2.44E-01 2.14E-01
2005 2.63E-01 2.14E-01 2.45E-01 3.23E-01 2.61E-01
2006 2.62E-01 2.26E-01 2.19E-01 3.18E-01 2.79E-01
2007 2.67E-01 2.55E-01 2.49E-01 3.04E-01 2.59E-01
2008 2.83E-01 2.38E-01 2.53E-01 3.37E-01 2.98E-01
2009 2.96E-01 2.81E-01 2.79E-01 3.35E-01 2.86E-01
2010 3.31E-01 2.77E-01 2.92E-01 4.00E-01 3.44E-01

Devil Canyon - Mean Flow
Annual OND JFM AMJ JAS

Pre-Fire Avg 4.80E-02 3.39E-02 1.18E-01 3.61E-02 4.80E-03
2004 8.03E-02 1.35E-01 1.20E-01 5.33E-02 2.82E-02
2005 3.61E-01 1.91E-01 9.29E-01 2.39E-01 9.72E-02
2006 1.39E-01 8.93E-02 1.62E-01 2.39E-01 6.84E-02
2007 5.84E-02 7.17E-02 7.67E-02 5.36E-02 3.20E-02
2008 9.18E-02 5.67E-02 2.04E-01 7.41E-02 3.41E-02
2009 5.38E-02 5.36E-02 9.11E-02 5.14E-02 2.02E-02
2010 1.01E-01 5.57E-02 1.97E-01 1.11E-01 4.31E-02

City Creek - Mean EVI
Annual OND JFM AMJ JAS

Pre-Fire Avg 2.78E-01 2.43E-01 2.83E-01 3.16E-01 2.64E-01
2004 1.68E-01 1.14E-01 1.56E-01 2.05E-01 1.77E-01
2005 2.43E-01 2.04E-01 2.50E-01 2.89E-01 2.22E-01
2006 2.22E-01 1.89E-01 1.89E-01 2.73E-01 2.30E-01
2007 2.20E-01 2.01E-01 2.12E-01 2.54E-01 2.10E-01
2008 2.42E-01 1.92E-01 2.39E-01 2.83E-01 2.43E-01
2009 2.82E-01 2.71E-01 2.66E-01 3.11E-01 2.80E-01
2010 2.96E-01 2.59E-01 2.69E-01 3.35E-01 3.14E-01

City Creek - Mean Flow
Annual OND JFM AMJ JAS

Pre-Fire Avg 1.36E-01 9.15E-02 3.33E-02 1.13E-01 9.70E-03
2004 1.61E-01 3.14E-01 2.64E-01 7.54E-02 3.20E-02
2005 1.36E+00 4.29E-01 4.20E+00 6.42E-01 2.19E-01
2006 4.09E-01 1.91E-01 4.92E-01 7.86E-01 1.78E-01
2007 1.11E-01 1.45E-01 1.69E-01 9.02E-02 4.06E-02
2008 2.71E-01 1.10E-01 7.80E-01 1.56E-01 4.55E-02
2009 1.71E-01 1.60E-01 3.77E-01 1.22E-01 3.06E-02
2010 3.26E-01 1.14E-01 8.36E-01 3.00E-01 7.03E-02
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Devil Canyon EVI is the most statistically different from pre-fire, while City Creek seems to

recover sooner. However, both Devil Canyon and City Creek streamflows during the summer

(JAS) are not returned to pre-fire conditions. An analysis of controlling factors on vegetation

recovery, including burn severity and aspect reveal that the EVI means are statistically different

from pre-fire means in almost all scenarios, excluding Devil Canyon high burn north and City

Creek low burn (Table 4-3). These observed EVI patterns prompt a more rigorous investigation

as explored below.
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Table 4-3: Average 16-day EVI values and ANOVA results for Devil Canyon and City Creek
with respect to slope aspect and burn severity levels for the pre- and post-fire periods

Devil Canyon Burn Severity City Creek Burn Severity

Aspect Water
Year Low Moderate High Low Moderate High

North

Pre-Fire
Avg 2.74E-01 2.45E-01 2.58E-01 2.95E-01
2004 1.30E-01 1.97E-01 1.81E-01 1.40E-01
2005 2.40E-01 2.47E-01 2.37E-01 2.25E-01
2006 2.41E-01 2.18E-01 2.14E-01 2.24E-01
2007 2.44E-01 2.16E-01 2.19E-01 2.27E-01
2008 2.64E-01 2.30E-01 2.29E-01 2.41E-01
2009 2.64E-01 2.47E-01 2.41E-01 2.66E-01
2010 2.94E-01 2.55E-01 2.58E-01 2.89E-01

East

Pre-Fire
Avg 3.91E-01 4.02E-01 2.28E-01 2.61E-01 3.26E-01
2004 2.29E-01 2.01E-01 1.78E-01 1.49E-01 1.45E-01
2005 2.85E-01 2.73E-01 2.53E-01 2.32E-01 2.38E-01
2006 2.94E-01 2.90E-01 1.90E-01 2.00E-01 2.56E-01
2007 2.97E-01 2.96E-01 1.80E-01 1.99E-01 2.54E-01
2008 3.13E-01 3.19E-01 2.23E-01 2.20E-01 2.65E-01
2009 3.28E-01 3.40E-01 2.25E-01 2.41E-01 2.93E-01
2010 3.63E-01 3.80E-01 2.31E-01 2.56E-01 3.07E-01

South

Pre-Fire
Avg 3.34E-01 3.20E-01 3.54E-01 2.56E-01 3.05E-01 3.66E-01
2004 2.31E-01 1.71E-01 1.54E-01 1.87E-01 1.66E-01 1.49E-01
2005 2.79E-01 2.55E-01 2.44E-01 2.49E-01 2.44E-01 2.43E-01
2006 2.65E-01 2.51E-01 2.51E-01 2.18E-01 2.30E-01 2.71E-01
2007 2.70E-01 2.56E-01 2.56E-01 2.11E-01 2.36E-01 2.78E-01
2008 2.86E-01 2.75E-01 2.82E-01 2.34E-01 2.54E-01 2.94E-01
2009 2.92E-01 2.88E-01 3.01E-01 2.43E-01 2.75E-01 3.17E-01
2010 3.20E-01 3.22E-01 3.40E-01 2.55E-01 2.93E-01 3.33E-01

West

Pre-Fire
Avg 4.12E-01 3.23E-01 3.15E-01 2.43E-01 2.55E-01 3.39E-01
2004 2.52E-01 1.66E-01 1.50E-01 1.96E-01 1.74E-01 1.39E-01
2005 2.78E-01 2.28E-01 2.31E-01 2.47E-01 2.36E-01 2.22E-01
2006 2.69E-01 2.31E-01 2.34E-01 2.12E-01 2.09E-01 2.42E-01
2007 2.80E-01 2.35E-01 2.35E-01 2.06E-01 2.07E-01 2.47E-01
2008 2.90E-01 2.55E-01 2.58E-01 2.24E-01 2.21E-01 2.62E-01
2009 3.10E-01 2.65E-01 2.72E-01 2.30E-01 2.37E-01 2.87E-01
2010 3.37E-01 2.96E-01 3.08E-01 2.38E-01 2.49E-01 3.02E-01
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4.3.4 Post-fire EVI evolution

Annual total EVI values for each WY with respect to aspect and burn severity levels for

both watersheds are highlighted in Figure 4-5 (the number of pixels for each aspect and burn

severity are also shown). It is important to note that for all slope aspects, pixels associated with

high burn severity (high burn pixels) show the highest pre-fire EVI (biomass) values and low

burn pixels have the lowest pre-fire EVI (biomass) values. Generally, pre-fire pixels with larger

total EVI values show the largest decrease in EVI immediately post-fire, with the exception of

Devil Canyon, where inconsistencies may be due to the smaller sample size (number of pixels

available). Devil Canyon shows the general trend of increasing post-fire annual total EVI and

City Creek clearly illustrates the low burn severity stabilizing in Figure 4-5. The standard

deviation is also estimated for each burn severity class. Devil Canyon has larger standard

deviations, from 0.93 (low burn severity) to 1.63 (high burn severity) than City Creek (0.51 (low

burn severity) to 1.56 (high burn severity)), also indicating increased variability in Devil Canyon.

In both watersheds, the low severity burn has lower variability, while the high burn severities

have more variability (larger standard deviation). The standard deviations for each aspect in

Devil Canyon are 1.15 (north), 1.63 (east), 1.42 (south), and 1.51 (west).The standard deviations

for each aspect in City Creek are 1.33 (north), 1.09 (east), 1.56 (south), and 1.35 (west).
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Figure 4-5: Annual total EVI for each year with respect to aspect and burn severity levels for
Devil Canyon north aspect (a), east aspect (c), south aspect (e), and west aspect (g); and for City
Creek north aspect (b), east aspect (d), south aspect (f), and west aspect (h). Numbers of pixels
(n) is indicated for each burn severity level within each studied aspect.

Table 4-4 shows the percent recovery for each post-fire year for each aspect and burn

severity relative to the pre-fire mean. We estimate a (subjective) threshold of ~90% as generally

recovered, assuming some uncertainty in pre- and post-fire biomass estimates. The first post-fire



100

year, WY 2004, indicates the initial recovery from the burn. Both watersheds experienced lower

than average annual precipitation totals during this first wet season (260 mm and 355 mm for

Devil Canyon and City Creek, respectively). Overall, recovery values range from 39% (south

aspect, high burn in City Creek) to ~75% (west aspect, low burn in City Creek) during the first

year. As expected, low burn pixels show the largest recovery during the first year (70% on

average) and high burn pixels show the lowest recovery (43% average).



101

Table 4-4: Devil Canyon and City Creek percent annual total EVI recovery for each water year
with respect to aspect and burn severity, where greater than 90% is assumed to be recovered to
pre-fire vegetation conditions

Devil Canyon % yearly EVI City Creek % yearly EVI
Burn Severity Burn Severity

Aspect
Water
Year Low Moderate High Low Moderate High

North

2004 --- --- 45 73 64 43
2005 --- --- 83 102 94 71
2006 --- --- 85 91 86 76
2007 --- --- 86 92 86 77
2008 --- --- 92 97 90 80
2009 --- --- 93 103 96 89
2010 --- --- 103 108 103 94

East

2004 --- 61 45 72 65 52
2005 --- 76 69 99 104 76
2006 --- 77 74 81 82 78
2007 --- 78 75 83 79 78
2008 --- 81 81 87 94 82
2009 --- 83 87 94 98 91
2010 --- 91 97 96 103 92

South

2004 68 56 43 73 53 39
2005 80 83 74 98 84 69
2006 79 80 76 89 76 75
2007 80 81 78 87 78 77
2008 84 86 84 90 86 82
2009 86 90 90 97 91 89
2010 92 100 100 102 97 93

West

2004 61 49 46 75 69 42
2005 71 66 75 98 99 71
2006 68 68 76 90 86 74
2007 71 70 77 89 84 75
2008 72 75 84 87 92 79
2009 76 79 88 93 97 87
2010 83 88 98 97 100 91

Moisture availability during the extremely wet second post-fire year (2005) accelerated

vegetation activity in nearly all burn severity levels across all aspects, bringing biomass back up

to 80-100% of pre-burn levels. In City Creek, the south low burn severity pixels are generally

comparable to pre-fire values. However, the surge in vegetation activity is not sustained for the



102

following post-fire years and after WY 2005, vegetation generally returns to a reduced recovery

rate, with a slower increase of biomass through the next three study years (WY 2006 to 2010).

The majority of aspect and burn severities in both watersheds return to around 90% of the

pre-fire vegetation by 2010, with the exception of Devil Canyon, where the limited number of

pixels introduces more uncertainty in observed recovery trends. In City Creek, all aspects range

from 91-107% recovered by the end of 2010, where the majority of observed pixels are in the

south and west aspects (331 and 236 pixels, respectively; Figure 4-6). This indicates that

detected vegetation biomass has met or exceeded the pre-fire amount. However, it is important to

note that the high burn severity in all aspects just reach 90% by 2010. The north aspect pixels are

back to pre-fire conditions in both watersheds and show at least 90% recovery a year or two

earlier than the other aspects. All other aspects (south, west, east) appear, on average, about 75-

85% recovered by WY 2008, with high burn severity pixels on the low end of this range. In

Devil Canyon, the north high burn severity shows greater than 90% by 2008. The east and west

aspects tend to recover by 2010, however, the west aspect does not appear to be recovered (83-

98%) across the three burn severities.
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Figure 4-6: Percent spatial recovery for Devil Canyon for WY 2007 (a) and WY 2010 (c) and for
City Creek for WY 2007 (b) and WY 2010 (d). Results are relative to the pre-fire mean. Pixels
greater than 90% of the pre-fire average are considered recovered.

The recovery slopes (β1 from Equation 3) for all aspects and burn severities are estimated

and plotted for Devil Canyon and City Creek (Figure 4-7). The parameter β1 represents the rate

of biomass recovery relative to the initial loss (year 1). Overall recovery appears greatest (steeper

slope) in the high burn pixels and lower in the moderate and low burn severities (Figure 4-7).

The high burn pixels experience greater initial vegetation loss, which ultimately constrains

recovery and suggests a pre-disposition to return to initial biomass conditions. Low and moderate
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burn severity pixels experience low and medium (respectively) recovery rates as the vegetation

biomass begins to stabilize or reach pre-fire vegetation amounts. This observation is consistent

across both watersheds. Established recovery rates (β1) rates were analyzed with and without

WY 2005 and minimal difference in overall recovery rates were noted. As highlighted previously

in Figure 4-5, initial pre-fire biomass, and burn severity appear to dominate overall recovery rate

in the two watersheds, and less long-term influence is noted from the observed variability in

post-fire climatology.
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Figure 4-7: Recovery slopes (regression line, β1, from Equation 3) for the normalized EVI time
series: Devil Canyon north (a), east (c), south (e), and west (g) and City Creek north (b), east (d),
south (f), and west (h). Each burn severity level (low, moderate, high) is plotted for each aspect.
Note: In Devil Canyon, EVI values do not exist for north low or moderate and east low burn
pixels. The first post-fire year corresponds to WY 2004.
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In addition to temporal EVI analysis, selected spatial recovery of EVI for both

watersheds was analyzed (Figure 4-6). The percent recovery for each pixel is the total EVI for

the year relative to the total pre-fire average (how the total EVI for each pixel has changed since

pre-fire). For 2007, the percent recovery generally ranges from 60-80% in both watersheds. The

lower recovery percentages align with the high burn areas and the mixed forest vegetation

(Figures 4-6a and 4-6b). By 2010, the spatial percent recovery for both watersheds is

dramatically different. The recovery percents are predominantly 90%, with the upper elevations

(mixed conifer) still showing the lowest recovery. We hypothesize that the lower recovery at the

top of the watershed, where steeper slopes and larger vegetation dominate (mixed forest versus

chaparral), is contributing to prolonged increased runoff, especially during the summer period.

4.4 Conclusions

Evaluation of coupled ecologic and hydrologic recovery in post-fire systems over longer

time periods in semi-arid regions has not been well-documented. The current study integrates a

common vegetation index (EVI) and hydrologic data streams to simultaneously evaluate

ecosystem and hydrologic dynamics for two burned watersheds affected by wildfire in October

of 2003. The evaluation of vegetation biomass (EVI) in relation to factors such as slope aspect,

burn severity and hydrologic timeseries over an extended period provides insight on the spatial

variability of post-fire processes and ultimately, parameters controlling recovery patterns in each

system. Primary findings from our investigations include:

 There is observed increase in discharge in both post-fire systems, especially in the dry

season period. Distribution frequencies demonstrate that despite similar pre- and post-fire

precipitation regimes, overall discharge patterns are significantly elevated over the seven-
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year study period, especially in the smaller, steeper Devil Canyon watershed. Similarly,

the slower recovery of vegetation at the top of the watersheds (steeper) is contributing to

prolonged increased runoff. The increased dry season flow supports our understanding

that plant water consumption (ET) and flow pathways within the basin were significantly

during the fire and are generally not back to pre-fire behavior by the end of WY 2010.

 The MODIS EVI product provides key information on pre-fire vegetation biomass and

recovery cycles in post-fire watersheds, both temporally and spatially. In the studied

systems, the south, east, and west facing slopes show higher pre-fire EVI values and

annual totals, likely due to higher radiative forcing (conditions governed by solar

radiation), facilitating increased plant growth during the growing season. In terms of

recovery rates, higher pre-fire biomass appears correlated with larger EVI loss and

significant initial deficits in vegetation mass. We advocate that this implies a longer

return period for the original vegetation species (i.e. chaparral rather than short-term

grass recovery). South (and west) slopes also show the lowest percent recovery by the

end of the study period compared to pre-fire conditions. City Creek north and east slope

aspects reach pre-fire conditions earlier than the south and west aspects, likely due to

retained soil moisture (also noted in Casady et al., 2009).

 The low severity burn pixels for all aspects return to pre-fire levels relatively quickly,

while high severity burn pixels show the lowest overall recovery by WY 2010 especially

in City Creek (Table 4-4). High burn severities tend to show the largest recovery rates

(β1), attributed to the greater initial loss (Figure 4-7) and potential for biomass regrowth

(available root structure, seed release for new plant growth, etc.) but are still not back to

pre-fire conditions (Figure 4-5 and 4-7). Our results indicate that overall recovery in the
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two watersheds is heavily influenced by the aspect and burn severity of each pixel, and

less influenced by short-term climate conditions.

The extreme wet season during the post-fire period resulted in higher EVI values. However,

vegetation response from precipitation spikes may not be conducive to, or representative of full

or permanent recovery of the watershed vegetation. Shallow-rooted systems (e.g., grasses) likely

appear after these heavy rain events in the immediate post-fire period and are detected by the

MODIS EVI product, contributing to higher annual total EVI). However, vegetation behavior

(i.e. ET response) is not similar to pre-fire conditions (evidenced by the EVI patterns/cycles and

coupled hydrologic response). The growth of grasses is shown to alter the normal (pre-fire) water

demand in a system (Prater and DeLucia, 2006; Schenk and Jackson, 2002). Grasses also have

different spectral signatures, resulting in different EVI values (Huete et al., 2002). Despite the

inability to document specific plant species, we advocate that the MODIS-based EVI adds

significant insight into seasonal vegetation recovery and potential ET demand.

In summary, of the variables investigated in this study, longer-term hydrologic recovery

appears more dependent on burn severity, slope aspect and vegetation type, and less dependent

on short-term climatologic events. In addition, initial biomass appears to be the primary factor

influencing burn severity, recovery potential, and overall recovery rates. Despite the general

recovery of the north aspect and low burn severity areas, vegetation activity and hydrologic

behavior are not back to pre-fire conditions after a seven-year period for the two systems studied.

Although the difference in pixel numbers (significantly fewer observations in Devil Canyon) and

slightly different fire history may influence comparisons between City Creek and Devil Canyon,

recovery patterns are generally consistent in both watersheds, and significantly, high burn

severity pixels (in any aspect in either watershed) just return within pre-fire ranges (~90%) by
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the end of the study period. Hydrologic behavior is still altered from pre-fire conditions, and it

appears that the high burn pixels, particularly in the upper portion of the watershed, are exerting

significant control on post-fire hydrologic recovery. Given the established recovery rates and

observed patterns in both watersheds, we estimate that seasonal streamflow patterns will return

to pre-fire levels when the high burn areas (across all aspects) have stabilized to pre-fire biomass

conditions. Finally, the observed variability in post-fire discharge and precipitation demonstrates

the importance of studying seasonal and sub-annual timescales over extended post-fire periods.

The simultaneous exploration of vegetation biomass (EVI), slope-aspect, burn severity, and

regional climate patterns provides insight on the spatial and temporal controls on hydrologic

processes, and, ultimately, will assist in hydrologic predictions and watershed management over

extended post-fire periods.
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Chapter 5. Investigating Triangle-Based ET Algorithms for Post-Fire Systems

5.1 Introduction

Increasing wildfires at the wildland-urban interface (WUI) are a concern to local

populations and management communities. Post-fire consequences, such as debris flows,

flooding, and degraded water quality, require accurate hydrologic modeling and prediction,

especially in semi-arid regions, where water availability is already limited. Hydrologic systems

affected by fire can be altered for more than eight years post-fire (Kinoshita and Hogue, 2011).

Typical post-fire studies focus on vegetation or hydrologic recovery, and few examine the

relationship between the two disciplines. Studies that concentrate on vegetation recovery

generally utilize plot-scale or low temporal resolution remote sensing (Horton and Kraebel,

1955; Keeley and Sterling, 1981; McMichael et al., 2006; Keeley et al., 2008; Roder et al.,

2008). Few studies have incorporated timeseries of remotely sensed vegetation indices in post-

fire studies (Wittenberg, et al., 2007; Casady et al., 2009), but these data are necessary for

understanding seasonal and annual variations in post-fire recovery (Kinoshita and Hogue, 2011).

Remote sensing variables enable continuous monitoring of ungaged or inaccessible

watersheds at high spatial and temporal resolution and are well tested in unburned semi-arid

regions. Incorporation of higher temporal and spatial resolution data streams will improve post-

fire recovery models and predictions. NASA’s Moderate Resolution imaging Spectrum

(MODIS) has two satellites Aqua and Terra that capture images of the Earth with spatial

resolutions that range from 250 meters to 1 kilometer and temporal resolutions that range from

daily to 16-day averages. MODIS Aqua and Terra have 36 spectral bands from which land and

cryosphere variables are estimated. Variables like evapotranspiration (ET) and soil moisture

(SM) are important variables within the hydrological water budget, but are amongst the most
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difficult to retrieve. Traditionally, both variable measurements are ground-based and have

limited coverage. Many studies have incorporated remote sensing for development of

hydrological products over large spatial and ungaged areas (Jiang and Islam, 2003; Kim and

Hogue, 2008; 2012; 2012b).Various studies have worked towards developing ET estimates based

on remote sensing of land surface characteristics. The primary approaches to estimating ET are

through the energy balance residual method or the evaporative fraction method. Key schemes

that have been developed include the Surface Energy Balance Algorithm for Land (SEBAL)

(Bastiaanssen et al., 1998; Kim and Hogue, 2012b), Mapping EvapoTranspiration at high

Resolution with Internalized Calibration (METRIC) (Allen et al., 2007), Atmosphere-Land

Exchange Inverse (ALEXI) (Norman et al., 1995) and the Triangle method (Gillies and Carlson,

1995; Nishida et al., 1995; Jiang and Islam, 2003). More recent models are moving away from

integration of ground-based meteorological and remote sensing products towards purely remote

sensing estimations (Gillies and Carlson, 1995; Nishida et al., 1995; Jiang et al., 2003, 2004;

Nishida et al., 2003; Kim and Hogue, 2012). However, these models are calibrated for specific

sites and not readily transferrable. To date, application of these models and products to post-fire

sites has not been done, but these data have the potential to provide key information for post-fire

water resource management.

After fire, affected areas experience significant loss in vegetation, altering evaporative

fluxes and water budget dynamics until vegetation is recovered or replaced. Soil moisture is an

important indicator of the water content of the soil and influences the exchange of water and heat

energy between land and atmosphere. The relationship between ET and soil moisture and long-

term hydrological recovery at high spatial and temporal resolution has not been explored and we
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advocate that remote sensing data streams using previously developed methods can provide

estimation and monitoring of post-fire water budgets.

Prompted by the uncertainty in long-term, post-fire hydrologic response, Kinoshita and

Hogue (2011) investigated controlling variables and establish a strong relationship between

vegetation and hydrologic recovery using remote sensing. The current study seeks to incorporate

more remote sensing variables and products in the post-fire setting for continuous monitoring of

hydrologic recovery. Our work will build upon previously developed methods for estimating

high resolution ET (Kim and Hogue, 2008, 2012) and soil moisture (Kim and Hogue, 2012).

Many triangle methods have been developed and applied to hydrological variables such as ET

and soil moisture. A key component of these methods is defining an appropriate triangle and

related parameters over the chosen study domain to reflect variations in temperature for a range

of vegetation to establish evaporative cooling. The semi-arid climate and homogenous vegetation

type (mostly chaparral) of southern California presents a relatively insensitive triangle over the

region. We hypothesize that the triangle method will need enhancement and calibration for

utilization in the region, and especially over burned watersheds. The goals of this preliminary

work include determining an appropriate triangle method that will provide a representative

evaporative fraction for the Arroyo Seco, a southern California watershed affected by the 2009

Station Fire and estimating pre- and post-fire ET for the study period. Findings from this study

will be used to develop longer-term timeseries of ET (2002-2012) and to develop a timeseries of

downscaled soil moisture(AMSR-MODIS product), which will enable us to develop improved

estimates of pre- and post-fire water balance for disturbed systems in southern California.
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5.2 Methods

5.2.1 Study Area

We investigate hydrologic and ecologic recovery in Arroyo Seco, an urban-fringe

watershed located in the Angeles National Forest in the San Gabriel Mountains of southern

California, northeast of downtown Los Angeles (Figure 5-1). The hydrology and vegetation of

southern California are influenced by periodic El Nino events. El Nino typically brings cooler,

wetter weather, and encourages vegetation growth. Southern California also experiences hot and

dry Santa Ana Winds in the fall, which move air from the desert to the ocean. The cyclical

vegetation growth and drying out make southern California one of the worst fire regimes in the

country. The Station Fire (26 September 2009 – 16 October 2009) in 2009 is the largest fire in

Los Angeles County record. It burned over 160,000 acres and caused over a billion dollars in

suppression and damage. The Arroyo Seco was completely burned (mostly moderate severity) by

the Station Fire.

The Arroyo Seco is approximately 41 km2 and receives an average of 760 mm of

precipitation a year (Los Angeles County). The Arroyo Seco is a steep watershed with an

elevation range from approximately 430 m to 1877 m and a watershed slope of 6% (USGS

Digital Elevation Map).The Arroyo Seco consists of a mixture of hydrologic soil groups A (1%),

B (29%), C (34%), and D (36%) (USDA Natural Resources Conservation Service). The Arroyo

Seco is primarily shrubland (71%) and forest (23%), with a mix of developed, barren, and

herbaceous land cover (6%) (National Land Cover Database, 2006).
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Figure 5-1: Landcover for the Arroyo Seco watershed and surrounding areas. The domain of
landcover shown is 1º by 1.5º (34 to 35ºand -118.5º to -117) and is used for the triangle method.

5.2.2 In situ variables

Observed Hydrology

Precipitation data for Arroyo Seco is estimated from three Los Angeles County gages

(280c, 47d, and 56b) distributed just outside the basin, but representing low, middle, and high

elevations for water years 2006 to 2010. USGS discharge data is available at the outlet of Arroyo

Seco (gage 11098000) at 426 meters. Mean daily averages are used for the study period 2006-
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2010. The discharge values are transformed using the Box-Cox transformation for visualization

of low and high flows. The transformed flow is estimated as follows (Box and Cox, 1964):

 


 11 


QQt

Equation 5-1

where

λ= 0.3 (Hogue et al., 2000)

California Irrigation management Information System

The California Irrigation management Information System (CIMIS) manages a network

of over 120 weather stations in California. CIMIS weather stations collect and record seven

meteorological variables (solar radiation, air temperature, soil temperature, relative humidity,

wind speed, wind direction, and precipitation) and calculate six variables (net radiation,

reference evapotranspiration, wind rose, wind cubed, vapor pressure, and dew point

temperature). Reference ET (ETo) is the evapotranspiration from standardized well-watered

maintained grass or alfalfa surfaces. The CIMIS ETo values are based on a modified Penman-

Monteith equation (Equation 5-2):
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Equation 5-2

where:

ETo= grass reference evapotranspiration [mm h-1]

Δ = slope of saturation vapor pressure curve [kPa ºC-1] at mean air temperature (T) in ºC

Rn = net radiation [MJ m-2 h-1]

G = soil heat flux density [MJ m-2 h-1]

γ = psychrometric constant [kPa ºC-1]

Ta = mean hourly air temperature [ºC]

U2 = wind speed at 2 meters [m s-1]

es = saturation vapor pressure [kPa] at the mean hourly air temperature (T) in ºC

ea = actual vapor pressure [kPa] at the mean hourly air temperature (T) in ºC

λ = latent heat of vaporization in [MJ kg-1]

Cd = bulk surface resistance and aerodynamic resistance coefficient

The Glendale CIMIS station’s (#133) net radiation and ETo (grass surface) is used for

comparison with the Arroyo Seco. The Glendale station is located at an elevation of 388 meters

southwest of the Arroyo Seco watershed outlet (426 meters).
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5.2.3 Remote sensing variables

Enhanced vegetation index

To detect the amount of vegetation present during pre- and post-fire periods, MOD13Q1

is acquired from NASA’s Earth observing System Data and Information System (EOSDIS)

Reverb, whose database consists of various atmospheric, hydrologic, and energy variables that

can be applied to global vegetation observations, hydrologic modeling, and other management

applications. EVI measures the greenness of vegetation and is used as an indicator of the amount

of vegetation biomass present. The MOD13Q1 product has a temporal resolution of 16 days and

a spatial resolution of 250 meters and contains the red, near infrared, blue, mid-infrared, view

zenith angle, sun zenith angle, relative azimuth, and calculated NDVI, EVI, and relevant QA

(quality analysis) data (Huete et al., 2002; Chen et al., 2005). EVI data is collected from 2006-

2010 and the equation used to derive the EVI product from MOD13Q1 is noted as:














LCC
EVI

BLUENIRNIR

REDNIR
*

2
*

1
*5.2




Equation 5-3

where ρ*NIR is the near infrared reflectance, ρ*RED is the red channel reflectance, ρ*BLUE is the

blue channel reflectance, C1andC2 are the red and blue correction coefficients for atmospheric

resistance, and L is the canopy background brightness correction factor (Huete et al., 2002; Chen

et al., 2005).

Evapotranspiration

There are nine MODIS products used to estimate ET, based on Kim and Hogue (2012)

(Figure 5-2). These products include: solar zenith angle, relocation, aerosol optical depth,
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angstrom exponent, water vapor, albedo, total ozone, air temperature, dewpoint temperature,

emissivity, surface temperature (LST), enhanced vegetation index, cloud fraction, and cloud

optical thickness. The previously developed ET scheme is a combination of MODIS products

that incorporates daily available energy (Net Radiation – Ground Heat Flux (Rn – G) and an

evaporative fraction (EF) based on a triangle method to estimate a daily actual

evapotranspiration (Gillies et al., 1995; Jiang and Islam, 2003; Bisht and Bras, 2010; Kim and

Hogue, 2008; 2012).

Figure 5-2: MODIS variables used in the ET scheme

Net radiation

Net radiation, the residual of the total incoming and outgoing radiation, is estimated by

the combination of various MODIS products (Kim and Hogue, 2008; Bisht and Bras, 2010). It

Shortwave Radiation
• MOD03 (1x1km)

Solar Zenith Angle, Geolocation
(Lat, Lon)
• MOD04 (10x10km)

Aerosol Optical Depth,
Angstrom Exponent
• MOD05(1x1km) - Water Vapor
• MOD43(1x1km) - Albedo

Longwave Radiation
• MOD06 (5x5km)

Total Ozone, Air/Dew Point
Temp
• MOD11 (1x1km)

Emmisivity, Surface Temp

Ground Heat Flux
• MOD13Q1 & MYD13Q1

(250x250km)EVI

Cloudy Condition
• MOD06 (1x1km)

Cloud Fraction, Cloud
Optical Thickness, Surface
Temp

All sky condition
Available Energy (250x250m, Daily)

Evaporative Fraction
• MOD13Q1 (EVI)
• MOD11 (LST)
Jiang and Islam, 2003; Kim and
Hogue, 2012

+ ET
(250x250m, Daily)

Kim and Hogue, 2008; Bisht and Bras, 2010
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utilizes eight MODIS products to develop net radiation for clear sky conditions (Figure 5-2).

Clear sky radiation is estimated as follows:

clearlclearlclearsn RRRR
clear

 )1( 

Equation 5-4

Cloudy sky radiation is estimated as follows (Bisht and Bras, 2010; Kim and Hogue, 2012b)

cloudylcloudylcloudysn RRRR
cloudy

 )1( 

Equation 5-5

where:α is the surface albedo

Rs↓clear is downward shortwave radiation from a PS (Paulescu and Schlett, 2003)

parametric model for clear sky conditions

Rl↓clear is downward longwave radiation from a scheme developed by Brutsaert

(1975), using MOD07 (Air Temp) for clear sky conditions

Rl↑clear is upward longwave radiation derived from the Stefan-Boltzmann

equation, using MOD11 (LST) for clear sky conditions

Rs↓cloudy is downward shortwave radiation derived using cloud fraction and optical

thickness to interpolate between adjacent clear days for cloudy sky conditions

(Bisht and Bras, 2010)

Rl↓cloudy is downward longwave radiation derived using the Brutsaert (1975)

equation and an inverse distance weighting relationship to back-calculate air

temperature from MOD06 for cloudy conditions (Kim and Hogue, 2012b)

Rl↑cloudy is upward longwave radiation derived using the Stefan-Boltzmann

equation, by substituting MOD06 (LST) and surface emissivity for daily values

for cloudy sky conditions
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The net radiation for all sky conditions at satellite overpass time is used to develop a

daily average net radiation based on the following sinusoidal function:
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Equation 5-6

Where nR is daily net radiation and Ri is instantaneous net radiation (Rncloudy or Rnclear). The

sunrise (tsunrise) and sunset (tsunset) are obtained from the U.S. Naval Observatory and ti is the

satellite over-passing time.

Ground Heat Flux

To estimate the ground heat flux for semi-arid regions, we use the Moran et al. (1994)

relationship, modified by Kim and Hogue (2012b) as follows:

nREVIG  )4.1exp(22.0

Equation 5-7

Evaporative Fraction

The EF is the ratio of latent heat flux to the available energy at the surface and measures

the amount of available energy contributing to latent heat flux. The EF can be written as (Jiang

and Islam, 2003):
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Equation 5-8

Where λ is the latent heat of evaporation, E is the evaporation, Rn is the net radiation, and G is

the ground heat flux. ρ is the density of air, Cp is the heat capacity of air at constant pressure, ra is

the aerodynamic resistance for heat and momentum transfer, and ΔT is the difference between

surface and air temperature. There is small variation in the
an

p

rGR
C 1



term, so it can be assumed

constant and we are able to develop a linear relationship between EF and ΔT (for specific

vegetation class). Constructing a trapezoidal space of vegetation index to temperature (Figure 5-

3), we can obtain the EF for any point (i) within the bounding triangle using the following

equation based on Jiang and Islam (2003):
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Equation 5-9

where ΔT = TMODIS – Tmin, ΔTmax = Tmax – Tmin, and ΔTe = Te – Tmin (all temperatures are MODIS

surface temperature). The water stress parameter, β = 1- (ΔTe/ΔTmax) and theoretically ranges

from 0 to 1. When β is approximately 0, it is unstressed conditions, and when βis approximately

1, there are fully stressed conditions (Jiang and Islam, 2003). The temperature parameters Tmax,

Tmin, and Te are determined from the EVI and temperature triangle/trapezoidal space (Figure 5-3).

Tmax is the maximum MODIS surface temperature within the triangle domain. Tmin is the

minimum MODIS surface temperature within the triangle domain. Te is the maximum MODIS

surface temperature at maximum vegetation coverage (EVI is approximately 1).

The triangle method uses the relationship between vegetation coverage and land surface

temperature to estimate EF (Jiang and Islam, 2003). It is based on the concept that bare ground is

warmer and as ground cover (vegetation) increases, temperature linearly decreases (Figure 5-3).
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The cold edge, where ΔT = 0 (EF = 1), the triangle represents maximum evapotranspiration for

all vegetation cover classes. The warm edge (linear regression from minimum evaporation to

minimum transpiration) includes dry pixels over the study domain (minimum evapotranspiration

for all vegetation cover). There are four vertices, 1) minimum vegetation coverage and maximum

temperature (minimum evaporation), 2) minimum vegetation coverage and minimum

temperature (max evaporation), 3) maximum vegetation coverage and temperature (minimum

transpiration or water stress), and 4) maximum vegetation coverage and minimum temperature

(maximum transpiration).
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Figure 5-3: EF concept (for the large domain surrounding and including the Arroyo Seco) using
vegetation index and temperature spaces for 1 January 2009

The EF triangle must be constructed with a large enough domain that can capture the

variability in vegetation coverage and temperature. This study develops a triangle over a large

domain (1º by 1.5º) that includes the Arroyo Seco watershed (Figure 5-1). The temperature is a

daily MOD11 product and the EVI is an 8-day composite. Initial trials (not shown) find that the

EVI and LST domain limited to the Arroyo Seco is not large enough or sensitive enough for the

triangle method, thus the domain is expanded appropriately. Clouds (present in daily MOD11

product) and outliers contribute to error in the triangle method. Outliers skew the shape of the
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triangle. To develop the warm edge of the triangle, we establish a constant interval

(approximately 10 intervals) for EVI and find the maximum temperature of each interval and

calculate the deviation between the interval maximum and the line. A threshold is set and

standard deviations that exceed this threshold are considered outliers and deleted. The new set of

maximum temperatures is used to re-develop the linear regression line (warm edge). For days

where the triangle is not well defined, we manually estimated the triangle vertices.

5.3 Preliminary Results

Hydrology and vegetation index

The annual precipitation and discharge show cyclical trends, increased precipitation and

discharge during the winter seasons (Figure 5-4). The annual precipitation and discharge for the

Arroyo Seco is used to estimate annual runoff ratios. Pre-fire the ratios are 0.21 (2006), 0.05

(2007), 0.19 (2008), and 0.15 (2009). The post-fire runoff ratio is 0.42 (2010), highlighting the

immediate effect of wildfire on discharge. The EVI shows seasonal trends, with more vegetation

after precipitation and less vegetation during the summer. Immediately following the fire, the

amount of vegetation detected significantly decreases (Figure 5-4).

Figure 5-4: Arroyo Seco hydrology (precipitation and transformed discharge) and EVI for 2006-
2010. The red dashed vertical line indicates the date the Arroyo Seco is completely burned by the
Station Fire.
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Net radiation

The MODIS net radiation for the Arroyo Seco is larger than the CIMIS net radiation

(Figure 5-5). The Arroyo Seco net radiation is the average over the entire watershed, which

includes an elevation range of 431-1877 meters, while the CIMIS station is located at 388

meters. The difference in elevation affects the estimated temperature; given that temperature

linearly decreases with increasing elevation. The temperature at the CIMIS station is greater than

the average temperature at the Arroyo Seco (adiabatic cooling). On cloudy sky conditions, the 8-

day composite MYD06 product is used as substitution for the daily MOD11 surface temperature

and emissivity. This affects the outgoing longwave radiation and influences the net radiation

over the Arroyo Seco watershed. It is important to note that the Arroyo Seco watershed is

naturally vegetated and will tend to have a lower LST, which will decrease the longwave

radiation and increase the net radiation. Whereas, the CIMIS station estimates net radiation over

well maintained grass surface, which will have a different LST than the natural vegetation of the

Arroyo Seco.

Despite the discrepancies between the two net radiation timeseries for 2009, the patterns

appear generally similar. The MODIS net radiation is able to capture the “June Gloom”

(phenomenon typical in southern California, an inversion brings marine layer to the coast),

where the net radiation is much lower than the surrounding months (Figure 5-5).
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Figure 5-5: Average net radiation over the Arroyo Seco (elevation: 426m with mainly chaparral)
compared to estimated net radiation at the Glendale CIMIS station (elevation: 300 m over well-
maintained grass). The red vertical line represents the date where the Arroyo Seco is completely
burned. The grey box shows the approximate dates of “June Gloom” and the orange box shows
the approximate dates of the Station Fire.

Triangle method

As previously described, the triangle method is adjusted specifically for our study area to

include a larger domain, but we highlight the pixels from within the Arroyo Seco (red circles;

Figure 5-6).Triangles are developed for fifteen days in 2009 to evaluate variability in EVI and

LST space from month to month; days are chosen where the Arroyo Seco MODIS data is cloud-

free (49 pixels represented). We also highlight the day before the fire (25 August 2009) and the

day after fire containment (17 October 2009). The large domain chosen is not affected by the fire

(too few pixels), but the Arroyo Seco (49 pixels) is affected. The EVI for the Arroyo Seco is

generally around 0.2-0.4 until the fire. During the fire the EVI decreases to less than 0.2, except

for a few pixels that are unburned or have low burn severity. By early December, the spread of

the EVI seems to increase, indicating some vegetation regrowth, but not back to pre-fire

conditions. The temperature is generally between 280 and 300ºK except 25 August – 1

November 2009, where the temperature increases to 300 to 320ºK.
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To highlight the triangle parameters, June 2, 2009 vertices are estimated. The sparse EVI

(0.4 to 0.5) to LST (300 to 320ºK) pixels skew the triangle vertex estimations and are manually

modified. This causes inconsistencies in the estimated triangle and final ET product.

Figure 5-6: Select triangles constructed for the large domain (black open circles) and the Arroyo
Seco (red filled circles) during 2009. The Orange box includes two days during the fire (3
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September 2009 and 1 October 2009). The red box includes four days post-fire (17 October 2009
(immediately post fire), 1 November 2009, 2 December 2009, and 29 December 2009).

We incorporate the temperature parameters from the 2009 triangle models into daily ET

estimates (Figure 5-7). The triangle boundary conditions, MODIS surface temperatures for the

domain, vary daily and influence the ET estimates.

Figure 5-7: Daily MODIS surface temperatures, Tmax, Tmin, and Te, for the large domain over the
Arroyo Seco for 2009.

2009 ET for Arroyo Seco

We calculate the 2009 ET timeseries for the Arroyo Seco using the developed triangle

method (Figure 5-7 parameters). The CIMIS ETo from approximately Julian day 0 to 100

(January to mid-April) seem to have missing data and the daily data is interpolated (smoothed

line). The MODIS ET is generally lower than the CIMIS ETo and follows the same seasonal

patterns. Both ET and ETo are affected by the “June Gloom” and show a decrease around Julian

day 150 (end of May and early June). After the watershed is completely burned, the MODIS ET

decreases more than the CIMIS ETo, which would correspond to loss in vegetation (decreased

EVI).

As discussed above, the temperature of the CIMIS station is generally higher than the

temperature over the Arroyo Seco. Generally, the net radiation over the Arroyo Seco is also
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higher than the CIMIS station, likely due to elevation and atmospheric conditions, resulting in a

higher ET. Despite CIMIS ETo being characterized as a potential ET (maximum

evapotranspiration), we cannot assume the CIMIS ETo as the upper limit of evaporative flux in

our watershed (different vegetation pattern and soil conditions).

Figure 5-7: Estimated ET using MODIS products and triangle method for the Arroyo Seco, 2009
(black filled circles). Daily ETo estimated at the Glendale CIMIS Station (blue line). The day the
Arroyo Seco is completely burned is shown as a vertical red line.

Challenges with the triangle method application

The triangle method is based on many assumptions that increase uncertainties in the ET

algorithm. A summary of uncertainties in the application of the triangle method to our post-fire

area is outlined below:

 Cloudy days obstruct reliable LST (MOD11) acquisition and significantly affect net

radiation and evaporative fraction estimates.

 The Arroyo Seco study domain is too small and the EVI and LST space is insensitive. A

large domain used for the triangle method incorporates a 1º by 1.5º domain around the

Arroyo Seco. This assumes that the varying landcover within this domain is

representative of our watershed. However, the domain in this study includes different

landcover classes than just the natural landcover found in the Arroyo Seco (Figure 5-1).

 Temperature and elevation assumptions. The large domain covers urban and mountainous

areas, which affect the shape and vertices of the triangle, used for the Arroyo Seco. The
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vegetation in the Arroyo Seco is different from the grass at the CIMIS station and affects

the temperature, net radiation, and ET. We will further explore the triangle domain and

sensitivity to land cover types in upcoming work.

5.4 Summary

Remote sensing is critical for post-fire monitoring and recovery because it is able to

capture seasonal and annual trends at spatial resolutions critical for resource management. This

preliminary study investigates application and sensitivity of a triangle-based method for

estimating the ET over a post-fire system. The triangle method is sensitive to the study domain

and variability in the EVI and temperature that are necessary to define the triangle vertices. In

semi-arid regions such as southern California, where there is more bare ground and homogenous

chaparral vegetation coverage, the necessary spread in EVI values is difficult to obtain. To

address this limitation, we enlarge the triangle space to include a larger domain. Although the

domain creates more defined triangles, there is large uncertainty associated with this method.

The vegetation type represented in the triangle domain may significantly influence the EF and

ultimately ET. We will re-develop the triangle to include more natural vegetation (similar to that

found in the Arroyo Sec) to test the sensitivity of the triangle method. In this way, we will

understand the limitations of the triangle method and acceptable landcover types to incorporate

into the triangle space.

The triangle is the basis for developing the current ET algorithm over the burned system

in this study and is also the basis for a soil moisture product developed by Kim and Hogue

(2012). This soil moisture product improves the spatial resolution of Advanced Microwave

Scanning Radiometer (AMSR-E) from the NASA Earth Observing System’s Aqua Satellite. The
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Aqua satellite is capable of retrieving soil moisture using the C-band microwave channel (6.9

GHz) that is approximately 60 km mean spatial resolution and is resampled to global cylindrical

25 km Equal-Area Scalable Earth Grid (EASE-Grid) cell spacing (Njoku et al., 2003). The

AMSR-E soil moisture only represents the upper soils (approximately 1 cm for bare soil). The

Kim and Hogue (2012) downscaled soil moisture is a computationally fast and based purely on

remote sensing data. It uses a modified Jiang and Islam (2003) triangle to derive soil wetness

(SW) index with higher resolution at 1 km spatial resolution. The MODIS SW index is used to

scale the AMSR-E (25 km) soil moisture product.

Future work will also include validation of the remotely sensed ET product for burned

surfaces. A coarse validation will include using a disaggregated MOD16 ET product to compare

with our triangle-based ET product. We will also include the comparison of a higher spatial

resolution (MODIS plus Landsat combined products), 30m daily ET product using the SEBAL

method to our triangle-based ET method to determine the best algorithm for post-fire systems in

semi-arid climates. The preliminary determination of an appropriate triangle method over our

study domain is the first step towards estimating hydrological variables such as

evapotranspiration and soil moisture. Ultimately we will incorporate these hydrologic variables

and other key controlling parameters that affect recovery into a simple multi-variable predictive

model for estimating daily discharge in ungaged and post-burn systems.
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Chapter 6. Contributions and Continuation of Work

Communicating the ongoing hazards associated with wildfires during and after a post-fire

event to the public is necessary and our work has shown that there is a significant need for more

post-fire research to guide cost-effective and efficient management decisions. Post-fire policies,

models, and recovery predictions depend on accurate data and the increased usage of remote

sensing in post-fire environments require uncertainty assessments. Vegetation indices are

important variables of post-fire recovery and ongoing work includes collaboration with the USFS

to validate remotely sensed vegetation with ground-based observations in post-fire systems

(Section 6.1). Accurate detection of vegetation and other post-fire variables can be included in

models to improve post-fire recovery predictions (Section 6-2).

6.1 Remotely sensed post-fire vegetation regeneration and prediction

Post-fire watershed response is influenced by numerous variables and establishment of

vegetative cover is often used to determine when watersheds return to pre-fire response behavior.

BAER teams, along with other agencies that have jurisdictional responsibility to prescribe and

implement post-fire treatments based on expected hydrologic response and associated threats to

life, property, and resources. Remote sensing technologies can be utilized to assess the rate of

natural vegetative regeneration after wildfire and evaluate the risk for continued increased post-

fire watershed response. The following sections summarizes preliminary methods, findings, and

future needs for the development of a decision support tool that will give land managers and

emergency response teams guidance on the level of risk relative to pre-fire or immediate post-

fire levels (Clark et al., 2012).
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The presence of ground cover is the governing factor of post-fire erosion. Hillslope

treatments, such as mulching with agricultural straw, are most effective at reducing rill

development and sediment transportation when applied at 60% or greater cover (Robichaud et

al., 2010). This is critical especially during the first post-fire year, when the highest risk of

erosion exists (DeBano et al., 1998). As natural vegetation begins to recover, more protection to

the soil is provided, decreasing erosion risks. Material such as downed woody debris, sloughed

tree bark, and needle cast provide ground cover and intercept precipitation, but are not easily

discernible using common remote sensing data sets, thus living plant material is classified in the

following photo interpretation method. Remotely sensed vegetation indices measure the amount

of “green” cover present. The vegetation index, EVI is an important indicator of post-fire

recovery and serves as an indicator of post-fire hydrology (Kinoshita and Hogue, 2011). As more

studies utilize remotely sensed products such as vegetation indices, it becomes necessary for an

uncertainty assessment with the remotely sensed products and ground-based observations. The

ultimate goal of this work is to correlate commonly used vegetation indices (EVI and normalized

differenced vegetation index (NDVI)) from remote sensing platforms with hydrologic and

geomorphologic response and provide predictive tools for mitigation strategies (Clark et al.,

2012).

Initial research of in situ and remote sensing post-fire vegetation shows discrepancies

between the amount of cover estimated by remote sensing and present in situ. Burned surfaces,

dead vegetation, and rock outcrops skew the amount of vegetation detected by satellites. An

ongoing project, in collaboration with the U.S. Forest Service, provides a ground-based

opportunity to collect in situ post-fire vegetation data across many wildfires to improve the

relationship between remotely sensed EVI and NDVI and the actual vegetation biomass present.
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This study consists of the following tasks: 1) ground-based vegetation data acquisition, 2)

comparison of ground-based and remotely sensed products, and 3) regression analysis and

validation of regression model. Ultimately, this study will develop a decision support tool that

incorporates geospatial inputs to assist monitoring watershed recovery.

6.1.1 Ground-based vegetation data acquisition

Ground-based vegetation sampling and images are acquired from six fires in California

(Table 6-1) covering a variety of vegetation types, elevation, and recovery stages. These six sites

are used to document the percent cover that exists within the burned area. This study uses pole-

mast photography (down-looking camera attached to the top of a telescoping monopod) to take

pictures of the ground from an elevated height, about 25-30 feet (Gilbert et al 2009, Smith et al.

2000, Vanha-Majamaa et al. 2000). The ground locations must consist of homogeneous

vegetation type and include a variety of spatial coverage (full to no coverage). Four to ten photos

are taken along a defined transect (transects endpoints are flagged and GPS locations recorded).

The number of photos taken will depend on the homogeneity of the ground coverage (no less

than 4 photos should be taken) and more photos should be taken as the landscape changes. This

is necessary as these homogeneous areas of data will be correlated to remote sensing products

(i.e. Landsat or MODIS products).
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Table 6-1: Summary of fire sites with photo data and validation sites, where NF is National
Forest

Fire National Forest Year of fire Years visited
Old San Bernardino NF 2003 2011

American River
Complex Tahoe NF 2008 2011

La Brea Los Padres NF 2009 2011

Station Angeles NF 2009 2010;
2011

Bull Sequoia NF 2010 2010;
2011

Canyon Sequoia NF 2010 2010;
2011

Validation
Monument Coronado NF 2011 N/A
Horseshoe2 Coronado NF 2011 N/A

Sagehen
treatments Tahoe NF N/A N/A

6.1.2 Comparison of ground-based and remotely sensed products

Ground-based photo interpretation

Photos are interpreted with Esri’s ArcGIS ArcMap as a simple binary (cover-no cover)

classification using a random dot grid sampling approach (Figure 6-1). The number of photo

points (n) needed per transect is at least 400 (regardless of the number of photos acquired along a

transect) for a 95% confidence interval (CI) (Equation 6-1). The number of photo points, n, is

calculated using the equation below. 600 points are initially collected so points that captured

anomalies in the photos (humans, monopod, etc.) can be ignored or thrown out. Finally, a binary

photo interpretation will estimate percent cover.
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n

ppCI 


12%95

Equation 6-1

where: 95% CI = +/- 0.05 and p = 0.5 (worst case scenario; equal chance of the ground

exhibiting cover or bare ground).

Figure 6-1: In situ pole-mast photography and photo interpretation using random dot grid and
binary classification of percent ground cover.
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Remote sensing observations

Landsat 5 Thematic Mapper (TM) imagery is used for fire severity mapping (Clark and

Bobbe, 2006) and vegetation regeneration monitoring (Diaz-Delgado et al., 1998, Clark and

Kuyumjian, 2006, Wittenberg et al., 2007), and many other resource applications. To leverage

the spectral richness of Landsat, this study creates vegetation indices that are used for vegetation

regeneration monitoring. Three common indices are the normalized difference vegetation index

(NDVI; Equation6-2), enhanced vegetation index (EVI; Equation 6-3), and normalized burn ratio

(NBR; Equation 6-4) (Chen et al., 2011). NDVI and EVI measure the chlorophyll activity and

content in plant material (Huete et al., 2002), while NBR is influenced by chlorophyll activity

and soil moisture content (presence or absence of dry, bare soil) (Lòpez Garcia and Caselles,

1991).

NDVI = (B4 −B3) / (B4 + B3)

Equation 6-2

EVI = 2.5 * ((B4 – B3) / (B4 + 6 * B3 – 7.5 * B1 + 1))

Equation 6-3

NBR = (B4 – B7) / (B4 + B7)

Equation 6-4

where B is the top of atmosphere (TOA) reflectance of the specified Landsat TM/ETM+

band.
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The photo interpretation includes only living plant material (green and brown), similarly,

satellite imagery will only capture green-up cycles. Cloud-free Landsat imagery is acquired for

the entire growing season or seasons after the fire to create the vegetation indices for each image,

then the indices are composited based on their maximum value (Sousa et al., 2003). This

approach sufficiently highlights grasses or other vegetation that are green in the spring but brown

in August.

6.1.3 Regression analysis and validation

Regression analysis

Geospatial analysis creates a predictive model that computes ranges of percent ground

cover from a composite vegetation index. This process based on data that represents areas burned

by wildfire. Regression models produce an acceptable model fit for NDVI (N = 53, R2 = 0.65, p

= 0.038) and EVI (N = 53, R2 = 0.63, p = 0.019), but not for NBR (N = 53, R2 = 0.17, p =

0.004). The following equations are fitted for NDVI (6-5) and EVI (6-6):

Predicted cover = 221.18*MaxNDVI – 26.273

Equation 6-5

Predicted cover = -455.22*MaxEVI2 + 519.99*MaxEVI – 47.508

Equation 6-6

Validation of regression model

Equations 6-5 and 6-6 are applied to the Monument and Horseshoe2 fires (southern

Arizona, 2011). Class thresholds of 0-30%, 30-60%, 60-100% are applied to the continuous data

for interpretation. An initial qualitative assessment of the classification for the Monument Fire

showed strong potential for predicting current percent ground cover. The data used to create the
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regression analysis are from one sampling period and result in a single snapshot in time with

respect to vegetation conditions. To address this, only live material is included in the field photos

for comparison. The areas also vary in years following the fire (i.e. the Old Fire is about eight

years recovered and the Bull Fire is only one year recovered). Ongoing photographs are being

acquired for the Bull Fire as they recover over time (photos taken approximately every 112 days)

to better develop a model that sufficiently matches observed ground cover over time. Also, the

Sagehen Experimental Watershed in the Tahoe National Forest will undergo forest management

treatments in 2013 and will present an opportunity for further analysis. Sagehen will provide pre-

and post-treatment remote sensing validation. Coordination between federal agencies and non-

federal agencies must continue beyond containment of the fire for efficient implementation of

protection treatments. The in situ observations and geospatial technologies from this study will

help land managers make more informed decisions regarding watershed recovery.

6.2 Application of remote sensing algorithms for post-fire systems

Prompted by previous work, further investigation of watershed recovery and ecosystem

resilience will expand the analysis to include more watersheds across various regional fires. It

will also include a more rigorous hydrological application of remote sensing in post-fire

environments. An important hydrological variable that is affected by vegetation is

evapotranspiration and is arguably the most difficult variable to retrieve in the water balance

equation, yet is an important parameter for water resources management, ecology, and climate

change studies (Huxman et al., 2004; Kim and Hogue, 2008; 2012b). A UCLA-developed

remotely sensed evapotranspiration (ET) product that uses MODIS and Landsat will estimate an

independent satellite-based ET time series over various burned watersheds (Kim and Hogue,
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2012b). The ET variable can be monitored at high spatial and temporal resolution for pre-fire

seasonal patterns and also response to burned areas. Monitoring post-fire soil moisture recovery

will provide insight to post-fire water balances. Remote sensing algorithms investigated by this

work are applicable to post-fire systems from the watershed to regional scale. Dependency on

remote sensing data provides convenient and large coverage for post-fire monitoring, which will

provide significant benefit for predicting consistent and high-resolution hydrologic response over

large burn areas.

6.3 Summary and Contributions

The overarching goal of this project is to assess current post-fire modeling techniques and

develop tools using remote sensing products that can improve our understanding of post-fire

hydrologic behavior and ultimately be utilized across the western United States for post-fire

predictions. The major contributions of this research are presented in response to the guiding

questions posed in Chapter 1.

 What are current hydrological post-fire management protocols in the western U.S. and

how are communities affected by both pre- and post-fire management and policy

decisions?

Current post-fire management consists of BAER teams that assess immediate values at

risk and implement decisions and treatments to mitigate threats. Downstream

communities are immediately at risk to increased flooding, debris flows, and degraded

water quality. BAER teams focus on estimating potential increases in post-fire runoff and

sediment that place downstream values at risk or threaten human life and natural
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resources. Mitigation efforts include closures of public areas, k-rails, or ground treatment

(i.e. mulching or seeding to protect the ground surface and deter erosion).

A federally funded NFIP is available to property owners and renters that live in

qualifying communities, but there is a probationary period of 30-days. Analytical tools

and incorporation into polices should be further investigated to provide policies that

encourage minimizing development or better homeowner preparation in fire-prone areas.

 What are commonly used models in post-fire assessments and how do these models

perform across diverse hydroclimatic regimes? What models are optimal for post-fire

hydrologic predictions?

Hydrologic models incorporated in BAER hydrologic assessments vary by region, fire,

modeler, accessibility, and ease of use. A lack of consistency in model parameter

acquisition contributes to uncertainty in post-fire peak discharge estimates. A study of a

suite of hydrologic models used by BAER hydrologists tests multiple models over

diverse pre- and post-fire sites in California, Colorado, and Montana. Hydrologic soil

group and rainfall distributions (based on site location and region) significantly affect

model predictions. Model results for each site are highly variable and demonstrate

inconsistencies based on model selection. The HEC-HMS is the most robust model if

users have time to incorporate many parameters and calibrate the model. The Wildcat5

provides a simpler model that estimates peak discharge well without calibration, if the

area of interest meets size requirements.

 Does the integration of remote sensing products improve post-fire modeling and

management, especially in semi-arid regions? Can current remote sensing algorithms be
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adapted for post-fire systems? What key variables can be used to assess post-fire

hydrologic behavior?

Remote sensing provides convenient access to continuous data streams that cover large

regions. Remote sensing provides many variables for post-fire systems that are often

isolated and ungaged. Specifically, remote sensing can provide insight to hydrological

variables that are important in estimating water availability in semi-arid regions. Post-fire

ecology and hydrology are strongly related and ecosystem dynamics largely affect system

recovery. Key controlling parameters of post-fire hydrologic recovery include slope

aspect, burn severity, and MODIS EVI (proxy for vegetation biomass). Despite the

general recovery of the north aspect and low burn severity areas, vegetation activity and

hydrologic behavior are not back to pre-fire conditions after a seven-year period for the

two southern Californian systems.

Methods to estimate evapotranspiration and soil moisture from purely remote sensing

data is available. These methods can be modified for post-fire systems to provide details

for a water balance. A triangle method used for ET and SM has been validated in semi-

arid regions and is a promising selection for ET and SM algorithms in burned systems.

The triangle-based ET is undergoing more validation, but will ultimately provide a key

component of the water balance, essential in water limited regions such as southern

California.

 How do we utilize answers to the above questions to inform future modeling, prediction,

and post-fire response efforts, especially for responsible agencies such as the USFS or

the National Weather Service (NWS)?
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The ability to accurately model and predict post-fire hydrological consequences with

improved confidence is critical for agencies such as the USFS or NWS for forecasting

and reducing management costs and improving regional resource allocation. Including

remote sensing data streams will provide higher spatial and temporal resolutions to

current models and predictions. Better resolution will enhance post-fire monitoring and

encourage more efficient post-fire management.

This study evaluate models used for post-fire decisions and encourage more accurate and

confident models that have important implications for mitigation treatments and costs. This study

provides new tools and methods that can be integrated into post-fire policies to improve

management and preparation at the WUI, specifically with remote sensing methods. This study

also establishes collaboration with the USFS to validate and improve post-fire models and

remote sensing products.
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